Per Brinch Hansen

hansenBrinch Hansen was one of the pioneers of concurrent programming and operating systems (kernels). In the 1960s, Brinch Hansen worked at the Danish computer company Regnecentralen, first in the compiler group headed by Peter Naur and Jørn Jensen, and, later, as the chief architect of the RC 4000 minicomputer and its renowned operating system kernel (RC 4000 Multiprogramming System). In 1972, he wrote the first comprehensive textbook on Operating System Principles.

In 1970 his research in computer science focused on concurrent programming.  Inspired by Ole-Johan Dahl and Kristen Nygaard’s programming language Simula 67, he invented the monitor concept in 1972. In the United States, he also developed the first concurrent programming language, Concurrent Pascal, in 1975. In 1977, he wrote the first book on Concurrent Programming: The Architecture of Concurrent Programs.

Per Brinch Hansen has concentrated on simplicity. Only the essential, always ask why complications are tolerated. His book on Programming a Personal Computer, read by me in 1983, made a lasting deep impresssion on me.

Two citations from Per Brinch Hansen on simplicity and programming
– Writing is a rigorous test of simplicity: It is just not possible to write convincingly about ideas that cannot be understood.
– Programming is the art of writing essays in crystal clear prose and making them executable

Information on the work of Per Brinch Hansen:
Solo and Concurrent/Sequential Pascal
Edison system
Joyce A programming language for networks
SuperPascal
– Collected articles by Per Brinch Hansen http://brinch-hansen.net/.

Books in my library:

pbhoperating Operating System Principles
(1973, ISBN 0-13-637843-9) (scanned)
pbharchitecture The Architecture of Concurrent Programs
(1977, ISBN 0-13-044628-9)
Concurrent Pascal and Solo
Programming a Personal Computer, Per Brinch Hansen
The book describing the Edison system, design,
development,listing of programs including compiler in the Edison language,
and the interpreter/runtime written in PDP-11 Alva language.
(1983, ISBN 0-13-730267-3), the Edison system
Programming a Personal Computer, Per Brinch Hansen
OCR version (thanks Daniel Toffetti)
pbhpascalcompiler Brinch Hansen on Pascal Compilers
(1985, ISBN 0-13-083098-4) (scanned)
pbhpascalcompiler Brinch Hansen on Pascal Compilers
OCR version (thanks Daniel Toffetti)
The Search for Simplicity.
Essays on Parallel ProgrammingSee below.
(1996, ISBN 0-8186-7566-7

The Search for Simplicity. Essays on Parallel Programming.

The Cobol compiler for the Siemens 3003
Design considerations for the RC 4000 computer
The logical structure of the RC 4000 computer
The RC 4000 real-time control system at Pulawy
RC 4000 Software: Multiprogramming System (abridged)
RC 4000 Computer: Reference Manual
RC 4000 Software: Multiprogramming System (complete)
The nucleus of a multiprogramming system
An outline of a course on operating system principles
Structured multiprogramming
Shared classes
Testing a multiprogramming system
The programming language Concurrent Pascal
The Solo operating system: A Concurrent Pascal program
The Solo operating system: Processes, monitors, and classes
The programmer as a young dog
Experience with modular concurrent programming
Design principles
Network—A multiprocessor program
Distributed processes: A concurrent programming concept
Reproducible testing of monitors
A keynote address on concurrent programming
The design of Edison
Joyce—A programming language for distributed systems
A multiprocessor implementation of Joyce
The nature of parallel programming
The Joyce Language Report
The linear search rediscovered
Householder reduction of linear equations
Monitors and Concurrent Pascal: A personal history
Model programs for computational science
Parallel cellular automata
Multiple-length division revisited
SuperPascal—A publication language
Interference control in SuperPascal
Efficient parallel recursion
The all-pairs pipeline
Balancing a pipeline
Java’s insecure parallelism
The evolution of operating systems
The invention of concurrent programming

Other books:
– Studies in Computational Science: Parallel Programming Paradigms (1995, ISBN 0-13-439324-4)
– Programming for Everyone in Java (1999, ISBN 0-387-98683-9)
– Classic Operating Systems: From Batch Processing to Distributed Systems (2001, ISBN 0-387-95113-X)
– The Origin of Concurrent Programming: From Semaphores to Remote Procedure Calls (2004, ISBN 0-387-95401-5)
– A Programmer’s Story: The Life of a Computer Pioneer (2004, local copy available here at http://brinch-hansen.net/)
– Many articles in the scientific journals, many available at local copy of http://brinch-hansen.net/.


With father

Class of 1949

Age 21

Ivar Bech

Naur and Brinch Hansen

Naur, Dahl, Brinch Hansen

Compiler Group

RC4000 computer

1959

1967

1975

Edsger Dijkstra

In Pursuit of Simplicity Presentation slides of A Symposium Honoring Professor Edsger Wybe Dijkstra May 12–13, 2000

A Case against the GO TO Statement.

Famous quotes

Articles and books by and on Edsger Dijkstra

On my bookshelf
On my bookshelf
On my bookshelf
Structured Programming
O.J. Dahl, E. W. Dijkstra, C.A.R. Hoare
E.Q. Dijkstra PhD thesis
A Discipline of Programming
ALGOL The Dijkstra Zonneveld ALGOL-60 Compiler
for the X1, sources, stories, explanations
F.J. Kruseman Aretz
In Pursuit of Simplicity.pdf
The Man Who Carried Computer Science on His Shoulders
Krzystof Apt

Edsger Dijkstra archive, the manuscripts

Edsger W. Dijkstra

Edsger W. Dijkstra

How do we tell truths that might hurt?
Sometimes we discover unpleasant truths. Whenever we do so, we are in difficulties: suppressing them is scientifically dishonest, so we must tell them, but telling them, however, will fire back on us. If the truths are sufficiently impalatable, our audience is psychically incapable of accepting them and we will be written off as totally unrealistic, hopelessly idealistic, dangerously revolutionary, foolishly gullible or what have you. (Besides that, telling such truths is a sure way of making oneself unpopular in many circles, and, as such, it is an act that, in general, is not without personal risks. Vide Galileo Galilei…..)

Computing Science seems to suffer severely from this conflict. On the whole, it remains silent and tries to escape this conflict by shifting its attention. (For instance: with respect to COBOL you can really do only one of two things: fight the disease or pretend that it does not exist. Most Computer Science Departments have opted for the latter easy way out.) But, Brethren, I ask you: is this honest? Is not our prolonged silence fretting away Computing Science’s intellectual integrity? Are we decent by remaining silent? If not, how do we speak up?

To give you some idea of the scope of the problem I have listed a number of such truths. (Nearly all computing scientists I know well will agree without hesitation to nearly all of them. Yet we allow the world to behave as if we did not know them….)
*

Programming is one of the most difficult branches of applied mathematics; the poorer mathematicians had better remain pure mathematicians.
The easiest machine applications are the technical/scientific computations.

The tools we use have a profound (and devious!) influence on our thinking habits, and, therefore, on our thinking abilities.

FORTRAN —”the infantile disorder”—, by now nearly 20 years old, is hopelessly inadequate for whatever computer application you have in mind today: it is now too clumsy, too risky, and too expensive to use.

PL/I —”the fatal disease”— belongs more to the problem set than to the solution set.

It is practically impossible to teach good programming to students that have had a prior exposure to BASIC: as potential programmers they are mentally mutilated beyond hope of regeneration.

The use of COBOL cripples the mind; its teaching should, therefore, be regarded as a criminal offence.

APL is a mistake, carried through to perfection. It is the language of the future for the programming techniques of the past: it creates a new generation of coding bums.
The problems of business administration in general and data base management in particular are much too difficult for people that think in IBMerese, compounded with sloppy English.

About the use of language: it is impossible to sharpen a pencil with a blunt axe. It is equally vain to try to do it with ten blunt axes instead.
Besides a mathematical inclination, an exceptionally good mastery of one’s native tongue is the most vital asset of a competent programmer.

Many companies that have made themselves dependent on IBM-equipment (and in doing so have sold their soul to the devil) will collapse under the sheer weight of the unmastered complexity of their data processing systems.

We can found no scientific discipline, nor a hearty profession on the technical mistakes of the Department of Defense and, mainly, one computer manufacturer.
The use of anthropomorphic terminology when dealing with computing systems is a symptom of professional immaturity.
By claiming that they can contribute to software engineering, the soft scientists make themselves even more ridiculous. (Not less dangerous, alas!) In spite of its name, software engineering requires (cruelly) hard science for its support.

In the good old days physicists repeated each other’s experiments, just to be sure. Today they stick to FORTRAN, so that they can share each other’s programs, bugs included.
Projects promoting programming in “natural language” are intrinsically doomed to fail.

Isn’t this list enough to make us uncomfortable? What are we going to do? Return to the order of the day, presumably…….
18th June 1975
NUENEN

The Netherlands prof.dr.Edsger W.Dijkstra
Burroughs Research Fellow
PS. If the conjecture “You would rather that I had not disturbed you by sending you this.” is correct, you may add it to the list of uncomfortable truths.
EWD

Home

News

SOLO Operating system running in simh

On bitsavers.org you can find files belonging to the Solo Operating system by Per Brinch Hansen, including Concurrent Pascal. With these ...

Read More

Disk images of the PDP-11/23 version of Edison

Disk images of the PDP-11/23 version of Edison

Jos Dreessen received a disk set of the Edision system from Günter Dotzel of Modulaware. And he made images of it. This ...

Read More

Pascal P3 compiler, VU Pascal compilers, Pascal-S

Thanks to a tip by Stefano B., who found tape dumps of university archives I have added: Compilers developed at the ...

Read More

Oberon for PICO RP2040 (and PICO 2 RP2350)

Oberon is still alive. Chris Burrows of Astrobe has maintained and added a lot to his Oberon compilers. New are support for ...

Read More

Oberon Pi

Oberon Pi

Oberon, the jewel by Niklaus Wirth and Jürg Gutknecht: Operating System, Compiler and Computer. Oberon Pi is a port of Peter ...

Read More


DSC_3541
This site is about my experience with the Wirth school of languages, based on the ideas and implementations of Prof Niklaus Wirth, Kenneth Bowles, Per Brinch Hansen, colleagues, and their students. And my experience with the various variants, from the P2 and P4 compilers originating in Zürich ETH, via UCSD Pascal P-System to the Borland compilers and Modula and Oberon systems. All applicable to small computers and device control.

On this website you will find information on Pascal for small machines, like Wirth compilers, the UCSD Pascal system, many scanned books and other files on UCSD Pascal, Pascal on MSX and CP/M, Delphi programming on PC, Freepascal and Lazarus on Windows and Raspberry Pi, Oberon systems. Many sources of early Pascal compilers! And last but not least my Pascal-M system!

On this site you will information on (see the menu on the right!)
Standard Pascal and Validation
Niklaus Wirth
Edsger Dijkstra
Per Brinch Hansen
Ca.A.R Hoare
Jim Welsh
Pascal Px descendants like P5 and Pascal-M
UCSD Pascal
– Other Pascal articles like Freepascal on Raspberry Pi, Turbo Pascal and Delphi and electronics

Timeline of my exposure to the Wirth language and OS and systems family, 5 years as student, 10 years as software engineer, hobby, 40 years as the way of programming!

  • WIRTH (1)1970- Pascal compilers, the P2-P4 compilers, Pascal-S, Pascal-VU (the forerunnner of the Amsterdam Compiler Kit), Andrew Tanenbaum, Professor R.P  van de Riet.
  • 1979 – Pascal-M
  • 1980 – UCSD P-System, HP Pascal 1000
  • 1983 – RSX-11M VMS Pascal
  • 1985 Turbo Pascal, , 10 years VAX/VMS Pascal programmer, teacher of the Teleac support course Pascal, teacher and examinator Exin/Novi T5 Pascal
  • 1990 – Turbo Pascal 3 on CP/M and MS DOS to Delphi on Windows
  • 2010 – Freepascal + Lazarus on Windows and Linux