
        

DISTRIBUTED PROCESSES:

A CONCURRENT

PROGRAMMING CONCEPT

PER BRINCH HANSEN

(1978)

A language concept for concurrent processes without common variables is in-

troduced. These processes communicate and synchronize by means of proce-

dure calls and guarded regions. This concept is proposed for real-time applica-

tions controlled by microcomputer networks with distributed storage. The pa-

per gives several examples of distributed processes and shows that they include

procedures, coroutines, classes, monitors, processes, semaphores, buffers, path

expressions, and input/output as special cases.

1 INTRODUCTION

This paper introduces distributed processes—a new language concept for con-
current programming. It is proposed for real-time applications controlled by
microcomputer networks with distributed storage. The paper gives several
examples of distributed processes and shows that they include procedures,
coroutines, classes, monitors, processes, semaphores, buffers, path expres-
sions and input/output as special cases.

Real-time applications push computer and programming technology to
its limits (and sometimes beyond). A real-time system is expected to moni-
tor simultaneous activities with critical timing constraints continuously and
reliably. The consequences of system failure can be serious.

P. Brinch Hansen, Distributed processes: A concurrent programming concept, Communi-
cations of the ACM 21, 11 (November 1978), 934–941. Copyright c© 1978, Association for
Computing Machinery, Inc.

1



  

2 PER BRINCH HANSEN

Real-time programs must achieve the ultimate in simplicity, reliability,
and efficiency. Otherwise one can neither understand them, depend on them,
nor expect them to keep pace with their environments. To make real-time
programs manageable it is essential to write them in an abstract program-
ming language that hides irrelevant machine detail and makes extensive com-
pilation checks possible. To make real-time programs efficient at the same
time will probably require the design of computer architectures tailored to
abstract languages (or even to particular applications).

From a language designer’s point of view, real-time programs have these
characteristics:

1. A real-time program interacts with an environment in which many
things happen simultaneously at high speeds.

2. A real-time program must respond to a variety of nondeterministic
requests from its environment. The program cannot predict the order
in which these requests will be made but must respond to them within
certain time limits. Otherwise, input data may be lost or output data
may lose their significance.

3. A real-time program controls a computer with a fixed configuration of
processors and peripherals and performs (in most cases) a fixed number
of concurrent tasks in its environment.

4. A real-time program never terminates but continues to serve its envi-
ronment as long as the computer works. (The occasional need to stop a
real-time program, say at the end of an experiment, can be handled by
ad hoc mechanisms, such as turning the machine off or loading another
program into it.)

What is needed then for real-time applications is the ability to specify
a fixed number of concurrent tasks that can respond to nondeterministic
requests. The programming languages Concurrent Pascal and Modula come
close to satisfying the requirements for abstract concurrent programming
(Brinch Hansen 1975, 1977; Wirth 1977). Both of them are based on the
monitor concept (Brinch Hansen 1973; Hoare 1974). Modula, however, is
primarily oriented towards multiprogramming on a single processor. And a
straightforward implementation of Concurrent Pascal requires a single pro-
cessor or a multiprocessor with a common store. In their present form,
these languages are not ideal for a microcomputer network with distributed
storage only.



    

DISTRIBUTED PROCESSES 3

It may well be possible to modify Concurrent Pascal to satisfy the con-
straints of distributed storage. The ideas proposed here are more attractive,
however, because they unify the monitor and process concepts and result in
more elegant programs. The new language concepts for real-time applica-
tions have the following properties:

1. A real-time program consists of a fixed number of concurrent processes
that are started simultaneously and exist forever. Each process can
access its own variables only. There are no common variables.

2. A process can call common procedures defined within other processes.
These procedures are executed when the other processes are waiting
for some conditions to become true. This is the only form of process
communication.

3. Processes are synchronized by means of nondeterministic statements
called guarded regions (Hoare 1972; Brinch Hansen 1978).

These processes can be used as program modules in a multiprocessor sys-
tem with common or distributed storage. To satisfy the real-time constraints
each processor will be dedicated to a single process. When a processor is
waiting for some condition to become true then its processor is also waiting
until an external procedure call makes the condition true. This does not
represent a waste of resources but rather a temporary lack of useful work for
that processor. Parameter passing between processes can be implemented ei-
ther by copying within a common store or by input/output between separate
stores.

The problems of designing verification rules and computer architectures
for distributed processes are currently being studied and are not discussed.
This paper also ignores the serious problems of performance evaluation and
fault tolerance.

2 LANGUAGE CONCEPTS

A concurrent program consists of a fixed number of sequential processes
that are executed simultaneously. A process defines its own variables, some
common procedures, and an initial statement

process name
own variables
common procedures
initial statement



    

4 PER BRINCH HANSEN

A process may only access its own variables. There are no common variables.
But a process may call common procedures defined either within itself or
within other processes. A procedure call from one process to another is
called an external request.

A process performs two kinds of operations then: the initial statement
and the external requests made by other processes. These operations are
executed one at a time by interleaving. A process begins by executing its
initial statement. This continues until the statement either terminates or
waits for a condition to become true. Then another operation is started (as
the result of an external request). When this operation in turn terminates
or waits the process will either begin yet another operation (requested by
another process) or it will resume an earlier operation (as the result of a
condition becoming true). This interleaving of the initial statement and the
external requests continues forever. If the initial statement terminates, the
process continues to exist and will still accept external statements.

So the interleaving is controlled by the program (and not by clock signals
at the machine level). A process switches from one operation to another
only when an operation terminates or waits for a condition within a guarded
region (introduced later).

A process continues to execute operations except when all its current
operations are delayed within guarded regions or when it makes a request to
another process. In the first case, the process is idle until another process
calls it. In the second case, the process is idle until the other process has
completed the operation requested by it. Apart from this nothing is assumed
about the order in which a process performs its operations.

A process guarantees only that it will perform some operations as long
as there are any unfinished operations that can proceed. But only the pro-
grammer can ensure that every operation is performed within a finite time.

A procedure defines its input and output parameters, some local variables
perhaps, and a statement that is executed when it is called.

proc name(input param#output param)
local variables
statement

A process P can call a procedure R defined within another process Q as
follows:

call Q.R(expressions, variables)



      

DISTRIBUTED PROCESSES 5

Before the operation R is performed the expression values of the call are
assigned to the input parameters. When the operation is finished the values
of the output parameters are assigned to the variables of the call. Parameter
passing between processes can therefore be implemented either by copying
within a common store or by input/output between processors that have no
common store.

In this paper processes can call procedures within one another without
any restrictions. In a complete programming language additional notation
would be added to limit the access rights of individual processes. It may
also be necessary to eliminate recursion to simplify verification and imple-
mentation. But these are issues that will not concern us here.

Nondeterminism will be controlled by two kinds of statements called
guarded commands and guarded regions. A guarded region can delay an
operation, but a guarded command cannot.

A guarded command (Dijkstra 1975) enables a process to make an ar-
bitrary choice among several statements by inspecting the current state of
its variables. If none of the alternatives are possible in the current state the
guarded command cannot be executed and will either be skipped or cause a
program exception.

The guarded commands have the following syntax and meaning:

if B1: S1 | B2: S2 | ... end

do B1: S1 | B2: S2 | ... end

If statement: If some of the conditions B1, B2, . . ., are true then select
one of the true conditions Bi and execute the statement Si that follows it;
otherwise, stop the program.

(If the language includes a mechanism whereby one process can detect
the failure of another process, it is reasonable to let an exception in one
process stop that process only. But, if recovery from programming errors
is not possible then it is more consistent to stop the whole program. This
paper does not address this important issue.)

Do statement: While some of the conditions are true, select one of them
arbitrarily and execute the corresponding statement.

A guarded region (Hoare 1972; Brinch Hansen 1978) enables a process
to wait until the state of its variables makes it possible to make an arbitrary
choice among several statements. If none of the alternatives are possible in
the current state the process postpones the execution of the guarded region.

The guarded regions have the following syntax and meaning:



     

6 PER BRINCH HANSEN

when B1: S1 | B2: S2 | ... end

cycle B1: S1 | B2: S2 | ... end

When statement: Wait until one of the conditions is true and execute
the corresponding statement.

Cycle statement: Endless repetition of a when statement.
If several conditions are true within a guarded command or region it is

unpredictable which one of the corresponding statements the machine will
select. This uncertainty reflects the nondeterministic nature of real-time
applications.

The data types used are either integers, booleans, or characters, or they
are finite sets, sequences, and arrays with at most n elements of some type
T :

int bool char set[n]T seq[n]T array[n]T

The following statement enumerates all the elements in a data structure:

for x in y: S end

For statement: For each element x in the set or array y execute the
statement S. A for statement can access and change the values of array
elements but can only read the values of set elements.

Finally, it should be mentioned that the empty statement is denoted skip
and the use of semicolons is optional.

3 PROCESS COMMUNICATION

The following presents several examples of the use of these language concepts
in concurrent programming. We will first consider communication between
processes by means of procedure calls.

Example: Semaphore

A general semaphore initialized to zero can be implemented as a process sem
that defines wait and signal operations.

process sem
s: int
proc wait when s > 0: s := s − 1 end
proc signal; s := s + 1
s := 0



    

DISTRIBUTED PROCESSES 7

The initial statement assigns the value zero to the semaphore and terminates.
The process, however, continues to exist and can now be called by other
processes

call sem.wait call sem.signal

Example: Message buffer

A buffer process stores a sequence of characters transmitted between pro-
cesses by means of send and receive operations.

process buffer
s: seq[n]char
proc send(c: char) when not s.full: s.put(c) end
proc rec(#v: char) when not s.empty: s.get(v) end
s := [ ]

The initial statement makes the buffer empty to begin with. The buffer
operations are called as follows:

call buffer.send(x) call buffer.rec(y)

The semaphore and buffer processes are similar to monitors (Brinch Han-
sen 1973; Hoare 1974): They define the representation of a shared data
structure and the meaningful operations on it. These operations take place
one at a time. After initialization, a monitor is idle between external calls.

Example: Character stream

A process inputs punched cards from a card reader and outputs them as a
sequence of characters through a buffer process. The process deletes spaces
at the end of each card and terminates it by a newline character.

process stream
b: array[80]char; n, i: int
do true:

call cardreader.input(b)
if b = blankline: skip |

b 6= blankline: i := 1; n := 80;
do b[n] = space: n := n − 1 end
do i ≤ n: call buffer.send(b[i]); i := i + 1 end

end
call buffer.send(newline)

end



   

8 PER BRINCH HANSEN

This use of a process is similar to the traditional process concept: the
process executes an initial statement only. It calls common procedures within
other processes, but does not define any within itself. Such a process does
not contain guarded regions because other processes are unable to call it and
make the conditions within it true.

The example also illustrates how peripheral devices can be controlled by
distributed processes. A device (such as the card reader) is associated with a
single process. Other processes can access the device only through common
procedures. So a peripheral device is just another process.

While a process is waiting for input/output, no other operations can
take place within it. This is a special case of a more general rule: When a
process P calls a procedure R within another process Q then R is considered
an indivisible operation within process P , and P will not execute any other
operation until R is finished (see Section 2).

Notice, that there is no need for interrupts even in a real-time language.
Fast response to external requests is achieved by dedicating a processor to
each critical event in the environment and by making sure that these proces-
sors interact with a small number of neighboring processors only (to prevent
them from being overloaded with too many requests at a time).

Exercise: Write a process that receives a sequence of characters from a
buffer process and outputs them line by line to a printer. The process should
output a formfeed after every 60 lines.

4 RESOURCE SCHEDULING

We will now look at a variety of scheduling problems solved by means of
guarded regions. It should perhaps be mentioned that resource schedulers
are by nature bottlenecks. It would therefore be wise in a real-time program
to make sure that each resource either is used frequently by a small number
of processes or very infrequently by a larger number of processes. In many
applications it is possible to avoid resource scheduling altogether and ded-
icate a resource to a single process (as in the card reader and line printer
examples).

Example: Resource scheduler

A set of user processes can obtain exclusive access to an abstract resource
by calling request and release operations within a scheduling process.



    

DISTRIBUTED PROCESSES 9

process resource
free: bool
proc request when free: free := false end
proc release if not free: free := true end
free := true

call resource.request ... call resource.release

The use of the boolean free forces a strict alternation of request and release
operations. The program stops if an attempt is made to release a resource
that is already free.

In this example, the scheduler does not know the identity of individual
user processes. This is ideal when it does not matter in which order the
users are served. But, if a scheduler must enforce a particular scheduling
policy (such as shortest job next) then it must know the identity of its users
to be able to grant the resource to a specific user. The following example
shows how this can be done.

Example: Shortest job next scheduler

A scheduler allocates a resource among n user processes in shortest job next
order. A request enters the identity and service time of a user process in a
queue and waits until that user is selected by the scheduler. A release makes
the resource available again.

The scheduler waits until one of two situations arises:

1. A process enters or leaves the queue: The scheduler will scan the queue
and select the next user (but will not grant the resource to it yet).

2. The resource is not being used and the next user has been selected:
The scheduler will grant the resource to that user and remove it from
the queue.

User processes identify themselves by unique indices 1, 2, . . ., n. The
constant nil denotes an undefined process index.

The scheduler uses the following variables:

queue the indices of waiting processes
rank the service times of waiting processes
user the index of the current user (if any)
next the index of the next user (if any)



    

10 PER BRINCH HANSEN

process sjn
queue: set[n]int; rank: array[n]int
user, next, min: int

proc request(who, time: int)
begin queue.include(who); rank[who] := time

next := nil; when user = who: next := nil end
end

proc release; user := nil

begin queue := [ ]; user := nil; next := nil
cycle

not queue.empty & (next = nil):
min := maxinteger
for i in queue:

if rank[i] > min: skip |
rank[i] ≤ min: next := i; min := rank[i]

end
end|

(user = nil) & (next 6= nil):
user := next; queue.exclude(user)

end
end

In a microprocessor network where each processor is dedicated to a single
process it is an attractive possibility to let a process carry out computations
between external calls of its procedures. The above scheduler takes advantage
of this capability by selecting the next user while the resource is being used
by the present user. It would be simpler (but less efficient) to delay the
selection of the next user until the previous one has released the resource.

The scheduling of individual processes is handled completely by means of
guarded regions without the use of synchronizing variables, such as semaphores
or event queues.

The periodic reevaluation of a synchronizing condition, such as

user = who

might be a serious load on a common store shared by other processors. But it
is quite acceptable when it only involves the local store of a single processor
that has nothing else to do. This is a good example of the influence of
hardware technology on abstract algorithms.

Exercise: Write a first-come, first-served scheduler.



    

DISTRIBUTED PROCESSES 11

Example: Readers and writers

Two kinds of processes, called readers and writers, share a single resource.
The readers can use the resource simultaneously, but each writer must have
exclusive access to it. The readers and writers behave as follows:

call resource.startread call resource.startwrite
read write
call resource.endread call resource.endwrite

A variable s defines the current resource state as one of the following:

s = 0 1 writer uses the resource
s = 1 0 processes use the resource
s = 2 1 reader uses the resource
s = 3 2 readers use the resource
· · · · · ·

This leads to the following solution (Brinch Hansen 1978):

process resource
s: int
proc startread when s ≥ 1: s := s + 1 end
proc endread if s > 1: s := s − 1 end
proc startwrite when s = 1: s := 0 end
proc endwrite if s = 0: s := 1 end
s := 1

Exercise: Solve the same problem with the additional constraint that
further reader requests should be delayed as long as some writers are either
waiting for or are using the resource.

Example: Alarm clock

An alarm clock process enables user processes to wait for different time
intervals. The alarm clock receives a signal from a timer process after each
time unit. (The problems of representing a clock with a finite integer are
ignored here.)



    

12 PER BRINCH HANSEN

process alarm
time: int

proc wait(interval: int)
due: int
begin due := time + interval

when time = due: skip end
end

proc tick; time := time + 1

time := 0

5 PROCESS ARRAYS

So far we have only used one instance of each process. The next example
uses an array of n identical processes (Hoare 1978):

process name[n]

A standard function this defines the identity of an individual process within
the array (1 ≤ this ≤ n).

Example: Dining philosophers

Five philosophers alternate between thinking and eating. When a philoso-
pher gets hungry, he joins a round table and picks up two forks next to his
plate and starts eaiting. There are, however, only five forks on the table.
So a philosopher can eat only when none of his neighbors are eating. When
a philosopher has finished eating he puts down his two forks and leaves the
table again.

process philosopher[5]
do true: think

call table.join(this); eat; call table.leave(this)
end

process table
eating: set[5]int
proc join(i: int)
when([i ª 1, i ⊕ 1] & eating) = [ ]: eating.include(i) end
proc leave(i: int); eating.exclude(i)
eating := [ ]



    

DISTRIBUTED PROCESSES 13

This solution does not prevent two philosophers from starving a philosopher
between them to death by eating alternately.

Exercise: Solve the same problem without starvation.

Example: Sorting array

A process array sorts m data items in order O(m). The items are input
through sort process 1 that stores the smallest item input so far and passes
the rest to its successor sort process 2. The latter keeps the second smallest
item and passes the rest to its successor sort process 3, and so on. When the
m items have been input they will be stored in their natural order in sort
processes 1, 2, . . ., m. They can now be output in increasing order through
sort process 1. After each output the processes receive the remaining items
from their successors.

A user process behaves as follows:

A: array[m]int
for x in A: call sort[1].put(x) end
for x in A: call sort[1].get(x) end

The sorting array can sort n elements or less (m ≤ n). A sorting process is in
equilibrium when it holds one item only. When the equilibrium is disturbed
by its predecessor, a process takes the following action:

1. If the process holds two items, it will keep the smallest one and pass
the largest one to its successor.

2. If the process holds no items, but its successor does, then the process
will fetch the smallest item from its successor.

A sorting process uses the following variables:

here the items stored in this process (0 ≤ here.length ≤ 2)
rest the number of items stored in its successors

A standard function succ defines the index of the successor process (succ
= this + 1).



     

14 PER BRINCH HANSEN

process sort[n]
here: seq[2]int; rest, temp: int
proc put(c: int) when here.length < 2: here.put(c) end
proc get(#v: int) when here.length = 1: here.get(v) end

begin here := [ ]; rest := 0
cycle

here.length = 2:
if here[1] ≤ here[2]: temp := here[2]; here := [here[1]] |

here[1] > here[2]: temp := here[1]; here := [here[2]]
end
call sort[succ].put(temp); rest := rest + 1 |

(here.length = 0) & (rest > 0):
call sort[succ].get(temp); rest := rest − 1
here := [temp]

end
end

A hardware implementation of such a sorting array could be used as a very
efficient form of priority scheduling queue.

Exercise: Program a process array that contains N = 2n numbers to
begin with and which will add them in time O(log2N).

Since a process can define a common procedure it obviously includes
the procedure concept as a special case. Hoare (1978) shows that a process
array also can simulate a recursive procedure with a fixed maximum depth
of recursion.

Exercise: Write a process array that computes a Fibonacci number by
recursion.

6 ABSTRACT DATA TYPES

A process combines a data structure and all the possible operations on it into
a single program module. Since other processes can perform these operations
only on the data structure, but do not have direct access to it, it is called
an abstract data structure.

We have already seen that a process can function as a monitor—an ab-
stract data type that is shared by several processes. The next example shows
that a process also can simulate a class—an abstract data type that is used
by a single process only.



    

DISTRIBUTED PROCESSES 15

Example: Vending machine

A vending machine accepts one coin at a time. When a button is pushed
the machine returns an item with change provided there is at least one item
left and the coins cover the cost of it; otherwise, all the coins are returned.

process vending machine
items, paid, cash: int
proc insert(coin: int) paid := paid + coin
proc push(#change, goods: int)
if (items > 0) & (paid ≥ price)

change := paid − price; cash := cash + price
goods := 1; items := items − 1; paid := 0 |

(items = 0) or (paid < price):
change := paid; goods := 0; paid := 0

end
begin items := 50; paid := 0; cash := 0 end

7 COROUTINES

Distributed processes can also function as coroutines. In a coroutine rela-
tionship between two processes P and Q only one of them is running at a
time. A resume operation transfers control from one process to the other.
When a process is resumed it continues at the point where it has transferred
control to another process.

process P
go: bool
proc resume; go := true

begin go := false
. . .
call Q.resume
when go: go := false end
. . .

end

Process Q is very similar.

8 PATH EXPRESSIONS

Path expressions define meaningful sequences of operations P , Q, . . ., (Camp-
bell 1974). A path expression can be implemented by a scheduling process



16 PER BRINCH HANSEN

that defines the operations P , Q, . . ., as procedures and uses a state vari-
able s to enforce the sequence in which other processes may invoke these
procedures.

Suppose, for example, that the operation P only can be followed by the
operation Q as shown by the graph below:

To implement this path expression one associates a distinct state a, b, and
c with each arrow in the graph and programs the operations as follows:

proc P if s = a: . . . s := b end

proc Q if s = b: . . . s := c end

If P is called in the state s = a it will change the state to s = b and make Q
possible. Q, in turn, changes the state from b to c. An attempt to perform
P or Q in a state where they are illegal will cause a program exception (or
a delay if a when statement is used within the operation).

The next path expression specifies that either P or Q can be performed.
This is enforced by means of two states a and b.

If an operation P can be performed zero or more times then the execution
of P leaves the state s = a unchanged as shown below.

The simple resource scheduler in Section 4 implements a composite path
expression in which the sequence request . . . release is repeated zero or more
times.



   

DISTRIBUTED PROCESSES 17

The readers and writers problem illustrates the use of a state variable to
permit some operations to take place simultaneously while other operations
are temporarily excluded (in this case, simultaneous reading by several pro-
cesses excludes writing). Each simultaneous operation P is surrounded by
a pair of scheduling operations, startP and endP. The state variable counts
the number of P operations in progress.

9 IMPLEMENTATION HINTS

The following outlines the general nature of an implementation of distributed
processes but ignores the details which are currently being studied.

In a well-designed concurrent program one may assume that each process
communicates with a small number of neighboring processes only. For if the
interactions are not strongly localized one cannot expect to gain much from
concurrency. (A few resource schedulers may be an exception to this rule.)

Each processor will contain a distributed process P and a small, fixed
number of anonymous processes which are the representatives of those dis-
tributed processes that can call process P . Additional notation in the lan-
guage should make it possible for a compiler to determine the number of
processes which call a particular process.

Whenever a processor is idle it activates a local representative which
then waits until it receives a request with input data from another processor.
The representative now calls the local procedure requested with the available
input. When the procedure terminates, its output data are returned to the
other processor and the representative becomes passive again. The switching
from one quasiconcurrent process to another within a processor takes place
as described in Section 2.

Since processes are permanent and procedures are nonrecursive, a com-
piler can determine the maximum storage required by a distributed process
and the local representatives of its environment. So the storage allocation is
static within each processor.

The parameter passing between two processors requires a single input
operation before a procedure is executed and a single output operation when
it terminates.

The speed of process switching within a single processor will probably
be crucial for its real-time response.

The technique of representing the environment of a processor by local
processes synchronized with external processes seems conceptually attrac-
tive. Although these processes are anonymous in this proposal one could



    

18 PER BRINCH HANSEN

design a language in which the store of a single process is shared by qua-
siconcurrent processes which communicate with nonlocal processes by in-
put/output only.

10 FINAL REMARKS

It would certainly be feasible to adapt the processes and monitors of Concur-
rent Pascal to multiprocessor networks with distributed storage by restrict-
ing the parameter passing mechanism as proposed here. All the examples
discussed here could then be programmed in that language—but not nearly
as elegantly!

What then are the merits of distributed processes? Primarily, that they
are a combination of well-known programming concepts (processes, proce-
dures, and conditional critical regions) which unify the class, monitor, and
process concepts. They include a surprising number of basic programming
concepts as special cases:

procedures
coroutines
classes
monitors
processes
semaphores
buffers
path expressions
input/output

Since there is a common denominator for all these concepts, it may well be
possible to develop common proof rules for them. The use of a single concept
will certainly simplify the language implementation considerably.

The Concurrent Pascal machine distinguishes between 15 virtual instruc-
tions for classes, monitors, and processes. This number would be reduced
by a factor of three for distributed processes. In addition, numerous special
cases would disappear in the compiler.

It is also encouraging that distributed processes can be used to write
elegant algorithms both for the more well-known concurrent problems and
for some new ones that are nontrivial.

A recent proposal by Hoare (1978) has the same pleasant properties.
Both proposals attack the problem of concurrency without shared variables
and recognize the need for nondeterminacy within a single process.



  

DISTRIBUTED PROCESSES 19

Hoare’s communicating sequential processes can be created and termi-
nated dynamically. A single data transfer from one process to another is
the communication mechanism. A process synchronizes itself with its envi-
ronment by guarded input commands which are executed when a boolean
expression is true and input is available from another process. The rela-
tionships between two communicating processes is symmetrical and requires
both of them to name the other. The brief and nonredundant notation does
not require declarations of communication channels but depends (concep-
tually) on dynamic type checking to recognize matching input and output
commands in two processes.

In their present form communicating sequential processes seem well-
suited to a theoretical investigation of concurrency and as a concise spec-
ification language that suppresses minor details, However, as Hoare points
out, the language concepts and the notation would have to be modified to
make them practical for program implementation.

The proposal for distributed processes is intended as a first step toward a
practical language for networks. The proposal recognizes that the exchange
of input and output in one operation is a frequent case, particularly for pe-
ripheral devices which return a result after each operation. The notation is
redundant and enables a compiler to determine the number of processes and
their storage requirements. The relationship between two communicating
processes is asymmetrical and requires only that the caller of an operation
name the process that performs it. This asymmetry is useful in hierarchi-
cal systems in which servants should be unaware of the identities of their
masters.

Distributed processes derive much of their power from the ability to de-
lay process interactions by means of boolean expressions which may involve
both the global variables of a process and the input parameters from other
processes (as illustrated by the sjn scheduler and the alarm clock). The
price for this flexibility is the need for quasiconcurrent processes in the im-
plementation. A more restricted form of Hoare’s proposal might be able
to implement process synchronization by the simpler method of polling a
number of data channels until one of them transmits data.

But more work remains to be done on verification rules and network
architectures for these new concepts. And then the ideas must be tested in
practice before a final judgment can be made.



    

20 PER BRINCH HANSEN

Acknowledgements

I am grateful to Nissim Francez, Wolfgang Franzen, Susan Gerhart, Charles
Hayden, John Hennessy, Tony Hoare, David Lomet, David MacQueen, Jo-
hannes Madsen, David Musser, Michel Sintzoff, Jørgen Staunstrup and the
referees for their constructive comments.

References

Brinch Hansen, P. 1973. Operating System Principles. Prentice Hall, Englewood Cliffs,
NJ.

Brinch Hansen, P. 1975. The programming language Concurrent Pascal. IEEE Transac-
tions on Software Engineering 1, 2 (June), 199–207.

Brinch Hansen, P. 1977. The Architecture of Concurrent Programs. Prentice Hall, Engle-
wood Cliffs, NJ.

Brinch Hansen, P., and Staunstrup, J. 1978. Specification and implementation of mutual
exclusion. IEEE Transactions on Software Engineering 4, 4 (September), 365–370.

Campbell, R.H., and Habermann, A.N. 1974. The specification of process synchronization
by path expressions. Lecture Notes in Computer Science 16, 89–102.

Dijkstra, E.W. 1975. Guarded commands, nondeterminacy, and formal derivation of pro-
grams. Communications of the ACM 18, 8 (August), 453–457.

Hoare, C.A.R. 1972. Towards a theory of parallel programming. In Operating Systems
Techniques, C.A.R. Hoare and R.H. Perrott, Eds., Academic Press, New York.

Hoare, C.A.R. 1974. Monitors: An operating system structuring concept. Communica-
tions of the ACM 17, 10 (October), 549–557.

Hoare, C.A.R. 1978. Communicating sequential processes. Communications of the ACM
21, 8 (August), 666–677.

Wirth, N. 1977. Modula: A programming language for modular multiprogramming.
Software—Practice and Experience 7, 1 (January), 3–35.


