

STRUCTURED

MULTIPROGRAMMING

PER BRINCH HANSEN

(1972)

This paper presents a proposal for structured representation of multiprogram-

ming in a high level language. The notation used explicitly associates a data

structure shared by concurrent processes with operations defined on it. This

clarifies the meaning of programs and permits a large class of time-dependent

errors to be caught at compile time. A combination of critical regions and

event variables enables the programmer to control scheduling of resources

among competing processes to any degree desired. These concepts are suf-

ficiently safe to use not only within operating systems but also within user

programs.

1 Introduction

The failure of operating systems to provide reliable long-term service can
often be explained by excessive emphasis on functional capabilities at the
expense of efficient resource utilization, and by inadequate methods of pro-
gram construction.

In this paper, I examine the latter cause of failure and propose a language
notation for structured multiprogramming. The basic idea is to associate
data shared by concurrent processes explicitly with operations defined on
them. This clarifies the meaning of programs and permits a large class of
time-dependent errors to be caught at compile time.

The notation is presented as an extension to the sequential programming
language Pascal (Wirth 1971). It will be used in a forthcoming textbook to
explain operating system principles concisely by algorithms (Brinch Hansen

P. Brinch Hansen, Structured multiprogramming. Communications of the ACM 15, 7
(July 1972), 574–578. Copyright c© 1972, Association for Computing Machinery, Inc.

1

2 PER BRINCH HANSEN

1971). Similar ideas have been explored independently by Hoare. The con-
ditional critical regions proposed in (Hoare 1971) are a special case of the
ones introduced here.

2 Disjoint Processes

Our starting point is the concurrent statement

cobegin S1; S2; . . . ; Sn coend

introduced by Dijkstra (1965). This notation indicates that statements
S1, S2, . . . , Sn can be executed concurrently; when all of them are termi-
nated, the following statement in the program (not shown here) is executed.

This restricted form of concurrency simplifies the understanding and ver-
ification of programs considerably, compared to unstructured fork and join
primitives (Conway 1963).

Algorithm 1 illustrates the use of the concurrent statement to copy
records from one sequential file to another.

var f, g: file of T;
s, t: T; eof: Boolean;

begin
input(f, s, eof);
while not eof do

begin t := s;
cobegin

output(g, t);
input(f, s, eof);

coend
end

end

Algorithm 1 Copying of a sequential file.

The variables here are two sequential files, f and g, with records of
type T ; two buffers, s and t, holding one record each; and a Boolean, eof,
indicating whether or not the end of the input file has been reached.

Input and output of single records are handled by two standard proce-
dures. The algorithm inputs a record, copies it from one buffer to another,
outputs it, and at the same time, inputs the next record. The copying,
output, and input are repeated until the input file is empty.

STRUCTURED MULTIPROGRAMMING 3

Now suppose the programmer by mistake expresses the repetition as
follows:

while not eof do
cobegin

t := s;
output(g, t);
input(f, s, eof);

coend

The copying, output, and input of a record can now be executed concur-
rently. To simplify the argument, we will only consider cases in which these
processes are arbitrarily interleaved but not overlapped in time. The erro-
neous concurrent statement can then be executed in six different ways with
three possible results: (1) if copying is completed before input and output
are initiated, the correct record will be output; (2) if output is completed
before copying is initiated, the previous record will be output again; and (3)
if input is completed before copying is initiated, and this in turn completed
before output is initiated, the next record will be output instead.

This is just for a single record of the output file. If we copy a file of
10,000 records, the program can give of the order of 310,000 different results!

The actual sequence of operations in time will depend on the presence of
other (unrelated) computations and the (possibly time-dependent) schedul-
ing policy of the installation. It is therefore very unlikely that the program-
mer will ever observe the same result twice. The only hope of locating the
error is to study the program text. This can be very frustrating (if not im-
possible) when it consists of thousands of lines and one has no clues about
where to look.

Multiprogramming is an order of magnitude more hazardous than se-
quential programming unless we ensure that the results of our computations
are reproducible in spite of errors. In the previous example, this can easily
be checked at compile time.

In the correct version of Algorithm 1, the output and input processes
operate on disjoint sets of variables (g, t) and (f , s, eof). They are called
disjoint or noninteracting processes.

In the erroneous version of the algorithm, the processes are not disjoint:
the output process refers to a variable t changed by the copying process; and
the latter refers to a variable s changed by the input process.

This can be detected at compile time if the following rule is adopted: a
concurrent statement defines disjoint processes S1, S2, . . . , Sn which can be

4 PER BRINCH HANSEN

executed concurrently. This means that a variable vi changed by statement
Si cannot be referenced by another statement Sj (where j 6= i). In other
words, we insist that a variable subject to change by a process must be
strictly private to that process; but disjoint processes can refer to shared
variables not changed by any of them.

Throughout this paper, I tacitly assume that sequential statements and
assertions made about them only refer to variables which are accessible to
the statements according to the rules of disjointness and mutual exclusion.
The latter rule will be defined in Section 3.

Violations of these rules must be detected at compile time and prevent
execution. To enable a compiler to check the disjointness of processes the
language must have the following property: it must be possible by simple
inspection of a statement to distinguish between its constant and variable
parameters. I will not discuss the influence of this requirement on language
design beyond mentioning that it makes unrestricted use of pointers and
side-effects unacceptable.

The rule of disjointness is due to Hoare (1971). It makes the axiomatic
property of a concurrent statement S very simple: if each component state-
ment Si terminates with a result Ri provided a predicate Pi holds before its
execution then the combined effect of S is the following:

“P” S “R”

where

P ≡ P1 & P2 & · · · & Pn
R ≡ R1 & R2 & · · · & Rn

As Hoare puts it: “Each Si makes its contribution to the common goal.”

3 Mutual Exclusion

The usefulness of disjoint processes has its limits. We will now consider
interacting processes—concurrent processes which access shared variables.

A shared variable v of type T is declared as follows:

var v: shared T

Concurrent processes can only refer to and change a shared variable
inside a structured statement called a critical region

STRUCTURED MULTIPROGRAMMING 5

region v do S

This notation associates a statement S with a shared variable v.
Critical regions referring to the same variable exclude each other in time.

They can be arbitrarily interleaved in time. The idea of progressing towards
a final result (as in a concurrent statement) is therefore meaningless. All
one can expect is that each critical region leaves certain relationships among
the components of a shared variable v unchanged. These relationships can
be defined by an assertion I about v which must be true after initialization
of v and before and after each subsequent critical region associated with v.
Such an assertion is called an invariant.

When a process enters a critical region to execute a statement S, a pred-
icate P holds for the variables accessible to the process outside the critical
region and an invariant I holds for the shared variable v accessible inside the
critical region. After the completion of S, a result R holds for the former
variables and invariant I has been maintained. So a critical region has the
following axiomatic property:

“P”
region v do “P&I” S “R&I”;
“R”

4 Process Communication

Mutual exclusion of operations on shared variables makes it possible to make
meaningful statements about the effect of concurrent computations. But
when processes cooperate on a common task they must also be able to wait
until certain conditions have been satisfied by other processes.

For this purpose I introduce a synchronizing primitive, await, which de-
lays a process until the components of a shared variable v satisfy a condition
B:

region v do
begin . . .await B; . . . end

The await primitive must be textually enclosed by a critical region. If
critical regions are nested, the synchronizing condition B is associated with
the innermost enclosing region.

The await primitive can be used to define conditional critical regions of
the type proposed in (Hoare 1971):

6 PER BRINCH HANSEN

“Consumer” “Producer”
region v do region v do S2

begin await B; S1 end

The implementation of critical regions and await primitives is illustrated
in Fig. 1. When a process, such as the consumer above, wishes to enter a
critical region, it enters a main queue Qv associated with a shared variable v.
After entering its critical region, the consumer inspects the shared variable
to determine whether it satisfies a condition B. In that case, the consumer
completes its critical region by executing a statement S1; otherwise, the
process leaves its critical region temporarily and joins an event queue Qe
associated with the shared variable.

Figure 1 Scheduling of conditional
critical regions V by means of process
queues Qv and Qe.

All processes waiting for one condition or another on variable v enter the
same event queue. When another process (here called the producer) changes
v by a statement S2 inside a critical region, it is possible that one or more
of the conditions expected by processes in the event queue will be satisfied.
So, after completion of a critical region, all processes in the event queue Qe
are transferred to the main queue Qv to enable them to reenter their critical
regions and inspect the shared variable v again.

It is possible that a consumer will be transferred in vain between Qv and
Qe several times before its condition B holds. But this can only occur as
frequently as producers change the shared variable. This controlled amount
of busy waiting is the price we pay for the conceptual simplicity achieved by
using arbitrary Boolean expressions as synchronizing conditions.

The desired invariant I for the shared variable v must be satisfied before
an await primitive is executed. When the waiting cycle terminates, the
assertion B & I holds.

STRUCTURED MULTIPROGRAMMING 7

As an example, consider the following resource allocation problem: two
kinds of concurrent processes, called readers and writers, share a single re-
source. The readers can use the resource simultaneously, but the writers
must have exclusive access to it. When a writer is ready to use the resource,
it should be enabled to do so as soon as possible.

This problem is solved by Algorithm 2. Here variable v is a record con-
sisting of two integer components defining the number of readers currently
using the resource and the number of writers currently waiting for or using
the resource. Both readers and writers are initialized to zero.

var v: shared record readers, writers: integer end
w: shared Boolean;

“Reader” “Writer”
region v do region v do
begin begin

await writers = 0; writers := writers + 1;
readers := readers + 1; await readers = 0;

end end
read; region w do write;
region v do region v do
readers := readers − 1; writers := writers − 1;

Algorithm 2 Resource sharing by readers and writers.

Mutual exclusion of readers and writers is achieved by letting readers
wait until the number of writers is zero, and vice versa. Mutual exclusion of
individual writers is ensured by the critical region on the Boolean w.

The priority rule is obeyed by increasing the number of writers as soon
as one of them wishes to use the resource. This will delay subsequent reader
requests until all pending writer requests are satisfied.

A correctness proof of Algorithm 2 is outlined in (Brinch Hansen 1972).
In this paper I also point out the superiority of conditional critical regions
over semaphores (Dijkstra 1965). Compared to the original solution to the
problem (Courtois 1971) Algorithm 2 demonstrates the conceptual advan-
tage of a structured notation.1

1The original solution includes the following refinement: when a writer decides to
make a request at most one more reader can complete a request ahead of it. This can
be ensured by surrounding the reader request in Algorithm 2 with an additional critical
region associated with a shared Boolean r.

8 PER BRINCH HANSEN

The conceptual simplicity of critical regions is achieved by ignoring de-
tails of scheduling: the programmer is unaware of the sequence in which
waiting processes enter critical regions and access shared resources. This
assumption is justified for processes which are so loosely connected that si-
multaneous requests for the same resource rarely occur.

But in most computer installations resources are heavily used by a large
group of users. In this situation, an operating system must be able to control
the scheduling of resources explicitly among competing processes.

To do this a programmer must be able to associate an arbitrary number
of event queues with a shared variable and control the transfers of processes
to and from them. In general, I would therefore replace the previous proposal
for conditional delays with the following one:

The declaration

var e: event v;

associates an event queue e with a shared variable v.
A process can leave a critical region associated with v and join the event

queue e by executing the standard procedure

await(e)

Another process can enable all processes in the event queue e to reenter
their critical regions by executing the standard procedure

cause(e)

A consumer/producer relationship must now be expressed as follows:

“Consumer” “Producer”
region v do region v do
begin begin

while not B do await(e); S2;
S1; cause(e);

end end

Although less elegant than the previous notation, the present one still
clearly shows that the consumer is waiting for condition B to hold. And we
can now control process scheduling to any degree desired.

To simplify explicit scheduling, I suggest that processes reentering their
critical regions from event queues take priority over processes entering critical

STRUCTURED MULTIPROGRAMMING 9

var v: shared record
available: set of R;
requests: set of P;
grant: array P of event v;

end

procedure reserve(process: P; var resource: R);
region v do
begin

while empty(available) do
begin enter(process, requests);

await(grant[process]);
end
remove(resource, available);

end

procedure release(resource: R);
var process: P;
region v do
begin enter(resource, available);

if not empty(requests) then
begin remove(process, requests);

cause(grant[process]);
end

end

Algorithm 3 Scheduling of heavily used resources.

regions directly through a main queue (see Fig. 1). If the scheduling rule
is completely unknown to the programmer as before, additional variables
are required to ensure that resources granted to waiting processes remain
available to them until they reenter their critical regions.

Algorithm 3 is a simple example of completely controlled resource alloca-
tion. A number of processes share a pool of equivalent resources. Processes
and resources are identified by indices of type P and R respectively. When
resources are available, a process can acquire one immediately; otherwise, it
must enter a request in a data structure of type set of P and wait until a
resource is granted to it. It is assumed that the program controls the entry
and removal of set elements completely.

10 PER BRINCH HANSEN

5 Conclusion

I have presented structured multiprogramming concepts which have simple
axiomatic properties and permit extensive compile time checking and gen-
eration of efficient machine code.

The essential properties of these concepts are:

1. A distinction between disjoint and interacting processes;

2. An association of shared data with operations defined on them;

3. Mutual exclusion of these operations in time;

4. Synchronizing primitives which permit partial or complete control of
process scheduling.

These are precisely the concepts needed to implement monitor procedures
such as the ones described in (Brinch Hansen 1970). They appear to be
sufficiently safe to use not only within operating systems but also within
user programs to control local resources.

References

Brinch Hansen, P. 1970. The nucleus of a multiprogramming system. Communications of
the ACM 13, 4 (April), 238–250.

Brinch Hansen, P. 1971. An outline of a course on operating system principles. Interna-
tional Seminar on Operating System Techniques, Belfast, Northern Ireland, (August–
September).

Brinch Hansen, P. 1972. A comparison of two synchronizing concepts. Acta Informatica
1, 190–199.

Conway, M.E. 1963. A multiprocessor system design. Proc. AFIPS FJCC 24, Spartan
Books, New York, 139–146.

Courtois, P.J, Heymans, F., and Parnas, D.L. 1971. Concurrent control with “readers”
and “writers.” Communications of the ACM 14, 10 (October), 667–668.

Dijkstra, E.W. 1965. Cooperating sequential processes. Technological University, Eind-
hoven. Also in Programming Languages, F. Genyus, Ed. Academic Press, New York,
1968.

Hoare, C.A.R. 1971. Towards a theory of parallel programming. International Seminar
on Operating System Techniques, Belfast, Northern Ireland, (August–September).

Wirth, N. 1971. The programming language Pascal. Acta Informatica 1, 35–63.

