

THE DESIGN OF EDISON

PER BRINCH HANSEN

(1981)

This paper describes the considerations behind the design of the programming

language Edison including the reasons why a large number of well-known lan-

guage features were excluded. It also discusses the linguistic problems of

writing a concise language report.

1 THEMES

This paper describes the considerations behind the design of the program-
ming language Edison (Brinch Hansen 1981). Edison is deeply influenced
by the advances made by Pascal (Wirth 1971) and its successors Concurrent
Pascal (Brinch Hansen 1975) and Modula (Wirth 1977). In my attempt to
learn from these previous efforts and improve on them I had to focus on
both the virtues and defects of these languages. The criticism may appear
very unfair coming from a programmer who has benefited immensely from
the innovations of Pascal ten years ago. But such criticism is necessary to
gain a clearer perspective of a programming tradition that has become so
natural to me that it inhibits my ability to search for better methods.

In designing the programming language Edison I tried to do two things:
(1) to achieve simplicity by questioning the necessity of a number of well-
known language concepts, and (2) to gain new insight by deliberately ap-
proaching language design with a philosophy that is completely different
from the spirit in which Concurrent Pascal was designed.

The first viewpoint gradually led to the omission of many language fea-
tures that I had previously thought were valuable features of the program-
ming languages Pascal and Concurrent Pascal, namely

P. Brinch Hansen, The Design of Edison. Software—Practice and Experience 11, 4 (April
1981), 363–396. Copyright c© 1981, Per Brinch Hansen.

1

2 PER BRINCH HANSEN

reals
subrange types
variant records
files
pointers
unnamed types
goto statements
case statements
repeat statements
for statements
with statements
cycle statements
init statements
multiple class instances
parameterized classes
monitors
process modules
process queues

If I were to do it again, I would go further and eliminate functions as well.
When you see the list of what is not in the language, you may wonder

what is left. The answer is—not much!
The process of eliminating language features took place over a period of

more than a year and was not an easy one. Old habits are hard to break!
What took the longest though was the simple discovery of new syntactical
structures for well-known concepts, such as type declarations. The experi-
ence of using a good programming tool tends to make one unable to discover
better ones.

The search for a different design philosophy can best be illustrated by
contrasting Concurrent Pascal and Edison.

In Concurrent Pascal, program modularity is supported by the rather
complicated concepts of processes (which combine modularity and concur-
rent execution) and monitors (which combine modularity and synchronized
execution). A large class of time-dependent programming errors are elim-
inated at compile-time by checking that processes do not refer directly to
the same variables. The only form of communication among processes is by
means of monitor procedure calls. Within monitors another class of synchro-
nization error is automatically eliminated by a mutual exclusion of monitor
calls enforced during program execution. In addition, the compiler detects
recursive calls to prevent deadlocks.

This rigorous approach to security was based on the belief that race

THE DESIGN OF EDISON 3

conditions would be extremely difficult to locate at run-time due to their
irreproducible nature, and that they must be detected by a compiler before
a concurrent program is even tested. The resulting programs have been
simple enough to publish and have been more reliable than the hardware
they run on (Brinch Hansen 1977).

The security of Concurrent Pascal was achieved by careful selection of
a small number of complicated concepts. Although this approach can be
quite successful in practice, it is not without pitfalls. It requires a great deal
of practical experience in operating system design and a gambler’s instincts
to select the combination of shared variables, synchronized procedure calls,
and the Simula class concept as the only possible mechanism of process
communication in a programming language—when the much simpler concept
of a semaphore (in theory) suffices. If you make the right guess, fine—
otherwise, such a language will be of little practical use.

The RC 4000 multiprogramming system had the conceptual advantage of
a clear and consistent structure, but it was not always successful in practice.
When the system was ready, it soon became apparent that the transmission
of small messages of fixed length was not enough to support the design of
a general operating system. Since this was the only form of communication
available to concurrent processes, system programmers began in some cases
to ignore the system by using a single process to simulate several corou-
tines for which they could design more suitable forms of interaction (Brinch
Hansen 1970).

Another (somewhat unexpected) consequence of careful ad hoc design is
that the number of specialized mechanisms tends to multiply to cover the
programming needs. In Concurrent Pascal, modules occur in three vari-
eties (processes, monitors, and classes), and in Modula there are four kinds
(processes, interface modules, device modules, and other modules).

These observations led to a separation of the concepts of modularity,
concurrency, and synchronization in Edison. The result is a more flexible
language based on fewer concepts in which one can achieve the same security
as in Concurrent Pascal by adopting a programming style that corresponds
to the processes and monitors of Concurrent Pascal. Or one can use the
language to express entirely different concepts. On the other hand, it is also
possible to break the structuring rules and write meaningless programs with
a very erratic behavior. I have adopted this more general and less secure
approach to programming to learn from it. It is still too early to make firm
conclusions about consequences of such a compromise.

4 PER BRINCH HANSEN

The desire to replace specialized mechanisms with more general ones that
can be combined freely led to the adoption of the following rule: Whenever
a mechanism is needed for a particular purpose the most general variant of
that mechanism will be selected.

An example is provided by the well-known need to enable programs to
call certain procedures implemented by an operating system, for example to
access files. In Sequential Pascal the headings and parameter types of such
procedures are described by a prefix to every program. When an operating
system (written in Concurrent Pascal) calls a program (written in Sequen-
tial Pascal) an anonymous table with the addresses of these procedures is
automatically generated for the program. The program prefix is the only
mechanism for using procedures as parameters in Sequential Pascal.

In Edison the same problem is solved more generally by allowing proce-
dures to be parameters of other procedures and by letting library programs
in Edison take the form of procedures.

The more general approach has already paid off. The Mono operating
system written in Concurrent Pascal includes procedures for writing integers
and text on a variety of media. Each of these procedures in turn calls
another procedure to write a single character on a given medium. Since the
latter procedure varies from medium to medium it was necessary to write a
different version of the former procedure for each kind of medium. When this
operating system was rewritten in Edison it was sufficient to program one
version of each procedure and pass as a parameter to that procedure another
procedure for writing single characters on the desired medium. Generality
pays off in unexpected ways!

Another example of the preference for generality in Edison is the general
nesting of procedures and modules which is already supported by Pascal and
Modula, but is forbidden in Concurrent Pascal. I find nested procedures as
hard to read as prose that makes frequent use of parenthetic remarks. Such
procedures were therefore outlawed in Concurrent and Sequential Pascal.
The compilers took advantage of the exclusive use of two block levels by
generating efficient instructions for the addressing of local and global vari-
ables.

In designing Edison I found that this restriction made it impossible to
describe the effect of library programs by the simple rule of conceptually
inserting the program text where the corresponding program declaration
appears in the calling program. Since both the calling program and the li-
brary program could use two levels of nesting this textual substitution might

THE DESIGN OF EDISON 5

create an invalid program with three levels of nesting. So general nesting
was allowed merely as a means of simplifying the language description. Once
this decision was made I discovered the obvious: the compiler can still recog-
nize references to variables in a local block and the immediately surrounding
block and generate special instructions for addressing them.

It is with both regret and delight that I finally in 1980 find myself ap-
preciating language concepts that were obvious to the designers of Algol 60
twenty years ago (Naur 1962). In the following, a number of other design
decisions are explained in some detail.

2 ABSTRACT DATA TYPES

The invention of syntactic structures to describe self-contained parts of larger
programs is one of the major achievements of the last decade. In Concur-
rent Pascal, these structures are called processes, monitors, and classes. In
Modula and Edison they are known as modules.

One of the main purposes of a program module is to implement the
concept of an abstract data type—a data type that can only be operated
upon by a fixed set of operations. In Concurrent Pascal, abstract data types
are implemented by means of a secure variant of Simula classes (Dahl 1972).
In Edison I decided to use a very different idea inspired by Modula.

Consider the problem of unpacking integer values from a sequence of
disk pages. In Modula this can be done by means of the following module
(Algorithm 1). The define clause shows that the module exports an entitity
named next to the surrounding block. The use clause indicates that the
module uses (or imports) entities named page, pagelength, and get from the
surrounding block.

The data structure of the module consists of two local variables which
assume the value of a disk page and the index of the last value unpacked
from that page.

The procedure called next gets another disk page from the disk (if neces-
sary) and unpacks the next integer value from the page. The initial operation
described at the end of the module gets the first page from the disk and sets
the index to zero.

The compiler ensures that the only operation performed on the data
structure (following the initial operation) is the well-defined operation called
next. This kind of module is appealing because it ensures the integrity of the
data structure entirely by means of scope rules: the variables named data
and index are local to the module and are unknown outside the module.

6 PER BRINCH HANSEN

The protection of the data structure is achieved at compile-time without
run-time support.

module symbolinput;
define next;
use page, pagelength, get;

var data: page; index: integer;

procedure next(var value: integer);
begin

if index = pagelength then
get(data); index := 0

end;
index := index + 1;
value := data[index]

end next;

begin get(data); index := 0
end symbolinput

Algorithm 1

In Edison the same module looks as follows (Algorithm 2). The define
clause has been replaced by an asterisk in front of the exported procedure
(a notation borrowed from Pascal Plus; see Welsh 1980). This simplifies the
visual image of the module a bit and makes it unnecessary for the compiler
to check whether all entities mentioned in the define list are indeed declared
within the module. On the negative side one must now scan the module
visually to discover the operations it implements. The imported entities are
known simply by virtue of the ordinary scope rules of nested blocks. So
there is no use clause either in Edison.

This kind of module is an ideal structuring tool when it controls the
access to a single instance of a data structure that is hidden inside the
module as in the previous example. The initial operation ensures that the
data structure is brought into a consistent, initial state before it is operated
upon by the surrounding block. The module concept is less convenient when
several instances of an abstract data type are needed. The following example
shows an Edison module that implements push and pop operations on stacks
of integer values (Algorithm 3).

THE DESIGN OF EDISON 7

module ”symbol input”
var data: page; index: int

∗ proc next(var value: int)
begin

if index = pagelength then
get(data); index := 0

end;
index := index + 1;
value := data[index]

end

begin get(data); index := 0 end

Algorithm 2

In the surrounding block one or more stacks can be declared

var s, t: stack

and used as follows

push(s, 15) pop(t, value)

The initial operation of the module can no longer guarantee that all
stacks are empty to begin with (since the stacks are declared in the sur-
rounding block after the module). The surrounding block must do that by
performing the operations

newstack(s) newstack(t)

on the stacks before using them to push and pop integer values.
Now, if the asterisk in front of the record type named stack would export

not only the record type, but also its field, then it would be possible to
perform meaningless operations on stacks outside the module, for example

s.size := −3

The rule that record fields cannot be exported from modules was introduced
in the language to ensure that the module procedures describe the only

8 PER BRINCH HANSEN

module
array table[1:100](int)
∗ record stack(contents: table; size: int)

∗ proc push(var x: stack; y: int)
begin x.size := x.size + 1;

x.contents[x.size] := y
end

∗ proc pop(var x: stack; var y: int)
begin y := x.contents[x.size];

x.size := x.size − 1
end

∗ proc newstack(var x: stack)
begin x.size := 0 end

begin skip end

Algorithm 3

possible operations on stacks (apart from assignments and comparisons of
the values of whole stacks).

In Concurrent Pascal, a stack can be described more elegantly by the
following type declaration (Algorithm 4). An instance of this data type is
declared and used as follows:

var s: stack

init s s.push(15) s.pop(value)

But the class concept is more complicated both to explain and implement
because it combines the concepts of data types, procedures, and modules
into a single, indivisible unit. By contrast, the module concept of Edison
merely modifies the scopes of a set of named entities of any kind. With
the exception of fields, any named entity can be exported from a module by
placing an asterisk in front of its declaration.

3 MONITORS

The significance of the monitor concept was that it imposed modularity on
synchronizing operations used by concurrent processes. A monitor intro-

THE DESIGN OF EDISON 9

type stack =
class

var contents: array [1..100] of integer;
size: 0..100;

procedure entry push(y: integer);
begin size := size + 1;

contents[size] := y
end;

procedure entry pop(var y: integer);
begin y := contents[size];

size := size − 1
end;

begin size := 0 end

Algorithm 4

duces an abstract data type and describes all the operations on it by means
of procedures that can be called by concurrent processes. If several processes
attempt to execute monitor procedures simultaneously these procedures will
be executed one at a time (Brinch Hansen 1973; Hoare 1974).

In Concurrent Pascal, a message buffer for transmitting characters from
one process to another can be declared as follows (Algorithm 5). The buffer
is represented by a message slot of type character and a boolean indicating
whether it is full or empty. Two variables of type queue are used to de-
lay the sending and receiving processes until the buffer is empty and full,
respectively.

Initially, the buffer is empty. The procedure named put delays the calling
process (if necessary) until there is room in the buffer for another message.
When that condition is satisfied, a character is placed in the buffer making it
full. Finally, the receiving process is continued if it is waiting for the message.
(If the receiver queue is empty the continue operation has no effect.)

The get operation is similar to the put operation.
Since only one operation must be performed at a time on the monitor

variables the following rules apply to operations on queues: When a process
delays its completion of a monitor operation another monitor operation can
be performed by another process, and, when a process continues the execu-

10 PER BRINCH HANSEN

type buffer =
monitor

var slot: char; full: boolean;
sender, receiver: queue;

procedure entry put(c: char);
begin if full then delay(sender);

slot := c; full := true;
continue(receiver)

end;

procedure entry get(var c: char);
begin if not full then delay(receiver);

c := slot; full := false;
continue(sender)

end;

begin full := false end

Algorithm 5

tion of a delayed process, the former process automatically returns from the
monitor procedure in which it executed the continue operation.

The whole monitor concept is a very intricate combination of shared
variables, procedures, process scheduling, and modularity.

Here is Modula’s variant of the monitor concept for a single buffer in-
stance (Algorithm 6). Although monitors and queues are called interface
modules and signals in Modula the concepts are essentially the same.

Now, process queues were originally proposed by me as an engineering
tool to reduce the overhead of process scheduling on a single-processor com-
puter (Brinch Hansen 1972). Each queue is used to delay a process until the
monitor variables satisfy a particular condition, such as

not full or full

When a process delays itself in a queue until a condition holds it depends
on another process to continue its execution when the condition is satisfied.

In 1972, Tony Hoare published a much more elegant mechanism for pro-
cess scheduling in the form of the conditional critical region

with v when B do S

THE DESIGN OF EDISON 11

interface module buffer;
define get, put;

var slot: char; full: boolean;
nonempty, nonfull: signal;

procedure put(c: char);
begin if full then wait(nonfull);

slot := c; full := true;
send(nonempty)

end put;

procedure get(var c: char);
begin if not full then wait(nonempty);

c := slot; full := false;
send(nonfull)

end get;

begin full := false end buffer

Algorithm 6

which delays a process until a variable v satisfies a condition B and then
executes a statement S. The execution of conditional regions on a given
variable v will take place strictly one at a time in some order (Hoare 1972).

This beautiful concept requires a process to reevaluate a boolean expres-
sion B periodically until it yields the value true. The fear that this reeval-
uation would be too costly on a single processor motivated the introduction
of queues (also called signals or conditions) as an engineering compromise
between elegance of expression and efficiency of execution.

With the new inexpensive microprocessor technology now available, I feel
that the much simpler concept of conditional critical region should be pre-
ferred. Occasional inefficiency is of minor importance on a microprocessor.

Hoare’s original proposal made it possible for operations on different
shared variables, such as

with v1 when B1 do S1

and

with v2 when B2 do S2

12 PER BRINCH HANSEN

to take place simultaneously. For Edison I decided to use the simplest form
of the conditional critical region

when B do SL end

where SL is a statement list of the form S1; S2; . . . ; Sn. The execution of all
when statements will take place strictly one at a time. If several processes
need to evaluate (or reevaluate) scheduling conditions simultaneously they
will be able to do so one at a time in some fair order (for example cyclically).

Measurements of concurrent systems have shown that in a well-designed
system each process spends most of its time operating on local data and
only a small fraction of its time exchanging data with other processes. The
additional overhead of expression evaluation will therefore most likely be
quite acceptable. This performance issue can, of course, only be settled by
measurements of running Edison programs. But it is an intellectual gamble
that I feel quite comfortable about.

A monitor in Edison is simply a module in which the procedure bod-
ies consist of single when statements as illustrated by the buffer example
(Algorithm 7).

module ”buffer”
var slot: char; full: bool

∗ proc put(c: char)
begin

when not full do
slot := c; full := true

end
end

∗ proc get(var c: char)
begin

when full do
c := slot; full := false

end
end

begin full := false end

Algorithm 7

THE DESIGN OF EDISON 13

Notice that Edison does not include the monitor concept. A monitor is
constructed by using a programming style that combines the simpler con-
cepts of modules, variables, procedures, and when statements. In addition,
processes are no longer required to manipulate scheduling queues, since the
when statements implement the necessary delays of processes. This form
of a monitor is very close to the original proposal which I called a “shared
class” (Brinch Hansen 1973).

Once this module has been programmed correctly, the compiler will en-
sure that the buffer only is accessed by the synchronized get and put oper-
ations. The module is now as secure as any monitor.

But the programmer is no longer tied to the monitor concept, but can
use simpler concepts, such as semaphores (Algorithm 8).

module
∗ record semaphore(value: int)

∗ proc wait(var s: semaphore)
begin

when s.value > 0 do
s.value := s.value − 1

end
end

∗ proc signal(var s: semaphore)
begin

when true do
s.value := s.value + 1

end
end

∗ proc newsem(var s: semaphore; n: int)
begin s.value := n end

begin skip end

Algorithm 8

Semaphores can then be used to implement a multislot buffer in which
sending and receiving can take place simultaneously from different slots (Al-
gorithm 9).

If the mutually exclusive operations are as simple as wait and signal

14 PER BRINCH HANSEN

module
∗ record semaphore(value: int)

∗ proc wait(var s: semaphore)
begin

when s.value > 0 do
s.value := s.value − 1

end
end

∗ proc signal(var s: semaphore)
begin

when true do
s.value := s.value + 1

end
end

∗ proc newsem(var s: semaphore; n: int)
begin s.value := n end

begin skip end

Algorithm 8

(rather than entire monitor procedures) then the conditional critical regions
may well be more efficient in some cases than conventional monitors with
scheduling queues.

4 PROCESSES

In the RC 4000 system I dealt with the complexities of processes that may
appear and disappear at any time during program execution. In Concurrent
Pascal, I tried the opposite approach of processes that exist forever after their
creation. This works quite well for operating systems and real-time programs
which perform the same tasks over and over. In addition, it simplifies store
allocation dramatically.

For Edison I selected a compromise between these two extremes. Pro-
cesses described by a concurrent statement of the form

THE DESIGN OF EDISON 15

cobegin 1 do SL1

also 2 do SL2

· · ·
also n do SLn end

can appear and disappear dynamically—but only at the same time!
The concurrent statement was published with the following syntax by

Dijkstra in 1968

parbegin S1;S2; . . . ;Sn parend

I merely replaced the semicolon (which normally denotes sequential execu-
tion) with the word also (to indicate simultaneity).

The process constants 1, 2, . . ., n were introduced to make it possible to
select a particular processor in a multiprocessor system (usually because the
given processor is the only one that is connected to a particular peripheral
device). On a single-processor computer the process constants can either
be ignored or used to define the storage requirements of processes. (If they
are ignored the simplest implementation strategy is to divide the available
storage space evenly among the processes.)

Consider now two processes that exchange a sequence of characters ter-
minated by a period through a buffer. In Concurrent Pascal the producer
can be declared as follows

type producer =
process (buf: buffer);
var x: char;
begin read(x);

while x <> ’.’ do
begin buf.put(x); read(x) end;
buf.put(x)

end

To vary the theme a bit the consumer will be programmed in Modula

process consumer;
var y: char;
begin get(buf, y);

while y <> ’.’ do
write(y); get(buf, y)

end;
write(y)

end consumer

16 PER BRINCH HANSEN

In both cases, a process is described by a special kind of module. These
syntactic forms enable compilers to check that one process does not refer to
the variables of another process—an extremely dangerous kind of program-
ming error.

In Edison, the same operational security can be achieved by adopting
a programming style in which processes are described by procedures which
are called by concurrent statements (Algorithm 10). Since each procedure
call creates fresh instances of the local variables of the given procedure, and
since these variables are only accessible to the calling process, this solution
is as secure as any.

proc producer
var x: char
begin read(x);

while x <> ’.’ do
put(x); read(x)

end;
put(x)

end

proc consumer
var y: char
begin get(y);

while y <> ’.’ do
write(y); get(y)

end;
write(y)

end

cobegin 1 do producer
also 2 do consumer end

Algorithm 10

On the other hand, the programmer can also write concurrent programs,
such as the following in Edison

THE DESIGN OF EDISON 17

var x, y: char
begin read(x);

while x <> ’.’ do
y := x;
cobegin 1 do write(y)
also 2 do read(x) end

end;
write(x)

end

Since the compiler provides no assistance in checking whether these processes
refer simultaneously to the same variables without proper synchronization,
such programs must be written with extreme care.

The added flexibility (and insecurity) of Edison compared to Concur-
rent Pascal will be viewed by some as a step backwards and by others as a
challenge. To me it is simply an experiment that will either confirm or con-
tradict my current feeling that programming languages cannot be expected
to support complex abstractions, but should instead make it reasonably con-
venient to adopt programming styles which use simpler concepts to construct
the more complex ones. Needless to say this makes the design of a program-
ming language a delicate balance between the anarchy of assembler language
and the straightjacket of highly specialized languages.

5 SCOPE RULES

Although Pascal is block structured it is not clear from the report whether
this means that the scope of a named entity is the entire block in which
the entity is declared or whether the entity is known from the point of its
declaration to the end of the given block (Jensen 1974).

The former interpretation is used in the Algol 60 report from which the
block concept originates (Naur 1962). The latter meaning is implemented
by most Pascal compilers and is the one described in the Edison report.

The requirement that a named entity must be declared before it is used
makes it possible for a compiler to build a name table and verify that the
names are used correctly during a single scan of the program text. In most
cases this convention is quite natural since we are used to reading text in
the order in which it is written. Occasionally, however, programmers are
mystified by the compiler’s refusal to accept an Edison program with the
following structure

18 PER BRINCH HANSEN

array line [1:80] (char)
· · ·

proc program(
proc writetext(text: line))

array line [1:80] (char)
var x: line
· · ·

begin · · · writetext(x) · · · end

The compiler insists that the statement

writetext(x)

contains a type error. The problem is an inadvertant use of two declarations
of the type called line in nested blocks that are separated by more than a
hundred lines of text and therefore do not appear on the same page of text.

To the compiler these declarations introduce two different data types with
the same name. The scope of the first line type extends from its declaration
in the outer block up to the declaration of the second line type in the inner
block. The second line type is valid in the rest of the program. This makes
the parameter of the procedure writetext of the first type while the argument
of the procedure call is of the second type.

The record fields in Pascal do not follow the normal scope rules. If two
variables are declared as follows

var x: record y, z: char end; y: boolean

then the name y denotes a boolean variable when it stands alone but refers
to a character field when it occurs in the variable symbol x.y. Although
this convention seems natural enough when it is illustrated by example, it
is nevertheless an exception that adds to the complexity of an already quite
subtle set of naming rules.

In looking at the first Edison compiler I found that its most complicated
part, the semantic analysis, introduced about 400 distinct names of which
less than 40 were field names of records. I decided that anyone who can invent
360 different names can surely invent another 40. Consequently, in Edison
the scope of a field name (like any other name) extends from its declaration
to the end of the block which contains the declaration. Although a field
name y can only be used in a field variable symbol of the form x.y it cannot
be redeclared with another meaning in the same block.

THE DESIGN OF EDISON 19

The reasons for including modules which restrict the scope rules further
in the language have already been discussed in previous sections. Later I
will discuss the difficulties of explaining scope rules precisely in prose.

6 DATA TYPES

The most significant advance made by Pascal ten years ago was the introduc-
tion of a set of data types which for the first time made systems programming
in an abstract programming language practical. The influence of Pascal on
Edison in the choice of data types is considerable. Nevertheless, it must be
admitted that the finer conceptual details of the data types are somewhat
complicated and are imprecisely described in the Pascal report.

In Edison I have tried to simplify and clarify some of the issues concerning
data types. A type is a named set of values. Every value is of one and only
one type, so the data types are disjoint.

The subrange types of Pascal can be used to introduce types that are
either disjoint, contained in other types, or even overlapping, as illustrated
by these examples

var x1: 1..10; x2: 11..20;
x3: 5..9; x4: 0..15

This raises complicated issues, such as: Is the expression x1 + x2 valid, and
if so, what is its type (1..10, 11..20, 1..20, or perhaps 12..30)? Is a value
of type 1..10 also of type 0..15? Are some of the values of type 0..15 also
of type 1..10 while others are also of type 11..20? Are the values of these
subrange types in general compatible with the integer values or are they
distinct types?

The elimination of subrange types from Edison makes these issues irrel-
evant.

Subrange types may originally have been introduced in Pascal to define
the possible values of array indices. In Edison the concept of range serves
the same purpose. A range is not a type. It is a finite set of successive,
elementary values of the same type from a lower bound to an upper bound
(both included). An array type declaration, such as

array table [1:100] (int)

describes a range of possible indices from 1 to 100. The indices of the array
elements are of type integer.

20 PER BRINCH HANSEN

The syntactic rules of Pascal and Modula make type definitions of the
form

type temperature = integer;
speed = integer

legal but do not define the meaning of this. Are temperature and speed just
different names for the standard type integer? In that case, the use of type
synonyms serves no purpose since the addition of temperatures to speeds is
now a valid operation (because they are just integers). If, on the other hand,
temperature and speed are distinct types then we have conceptual confusion
in the language. For although the types are now incompatible, we would
presumably expect the arithmetic operations and the ordering relations to
apply to both of them. But the set of values to which these operations
apply is per definition the set of integers. And, to introduce several different
kinds of incompatible “integers” nullifies in one stroke one of mankind’s most
important concepts.

Since the syntax of Edison does not include the rule

Type name = Type name

the problem never arises.
The conceptual clarity of operational security that is gained from the use

of types is considerable. But, as all abstractions, types derive their power
from an oversimplified view of the security problem: all integer values are
considered compatible irrespective of the physical or conceptual properties
they represent. One cannot hope to use the type concept to capture the
subtle distinctions between temperatures and speed any more than it can
describe the constraints among related values of the same type, such as the
requirement that the sum of free and used pages on a disk must equal the
total number of available pages.

In Pascal and Modula type declarations begin with a name as in

T1 = record x: char; y: integer end;
T2 = array [1..10] of char

The compiler must therefore scan three symbols before it can determine
whether the type is a record or an array. This is an ugly exception in
a recursive descent compiler that otherwise only needs to look at a single
symbol to determine which syntactic form it is the beginning of.

Error recovery is also complicated by the above syntax. After a syntax
error, such as

THE DESIGN OF EDISON 21

T1 = record x: char; y: integer ned;
T2 = array [1..10] of char

the transcribed keyword end will now be interpreted as a misplaced field
name ned, and so will the type name T2 that follows the semicolon. The
result is a burst of misleading error messages referring to all uses of variables
of type T2.

In Edison each type declaration begins with a word symbol (instead of a
name), for example

record T1 (x: char; y: int)
array T2 [1:10] (char)

After a syntax error, such as

record T1 (x: char; y: int]
array T2 [1:10] (char)

the compiler will skip the right bracket and correctly recognize the word
array as the beginning of a new type declaration.

It is true that assignments and procedure calls suffer from the same
problem of error recovery since they both begin with names and also may
contain names as operands. But the accidental erasure of a statement during
compilation is not as serious as the erasure of a declaration since other
statements cannot refer to the missing one by name.

It is characteristic of a superior tool like Pascal that its notation is felt
to be so natural that there seems to be no reason for the programmer to
look for a better one. So it was without much thought that I originally used
Pascal’s notation for type declarations in Edison. As I was testing an Edison
compiler written in Pascal the problems of error recovery became apparent.
But even then it took a while before I was mentally prepared to propose an
alternative syntactic notation.

With one exception (strings) the fixed length of array types in Pascal has
never bothered me in the design of operating systems and compilers. But
character strings pose special problems that are cleverly hidden by the use
of ad hoc means in Pascal and Concurrent Pascal. (The Modula report is
too vague on this point for me to understand it.)

By their nature character strings are of different lengths, for example

’tape’ ’emono’

22 PER BRINCH HANSEN

How then does one write a procedure that outputs a string to some device
(or file) one character at a time? In Pascal you can try the following

procedure writetext(text: phrase);
var i: integer; c: char;
begin i := 0;

while i < n do
begin i := i + 1;

write(text[i])
end

end

where

type phrase = array [1..n] of char

Now, if n = 4 the call

writetext(’tape’)

is valid, but the call

writetext(’emono’)

is not since the string argument is now of length 5.
Why then is it not felt as an intolerable problem in Pascal? Because

Pascal includes a standard procedure named write which is cleverly designed
to accept strings of any length as shown below

write(’tape’) write(’emono’)

But this procedure cannot be written in the language itself.
Since Concurrent Pascal is a language for operating system design, a

standard procedure such as write cannot be built into the language. For
one of the purposes of Concurrent Pascal is to design a filing system that
includes a write procedure.

This difficulty is circumvented by the following ad hoc rule in the Con-
current Pascal report: “An argument in a procedure call corresponding to a
string parameter may be a string of any length.” This rule makes it possible
to write a procedure that outputs a string of any length terminated by a
given delimiter, say #

THE DESIGN OF EDISON 23

procedure writetext(text: phrase);
var i: integer; c: char;
begin c := text[1]; i := 1;

while c <> ’#’ do
begin write(c); i := i + 1;

c := text[i]
end

end

This procedure can print any string of at most n characters as illustrated by
the calls

writetext(’tape#’) writetext(’emono#’)

In both cases, however, the actual parameter value will be a string of n char-
acters consisting of the given character string followed by some characters
of unknown value (an implementation detail that programmers fortunately
seldom discover).

In designing the array constructors of Edison these problems were care-
fully considered. An array constructor, such as

phrase(’t’, ’a’, ’p’, ’e’, ’#’, ’ ’, ’ ’)

denotes an array value of type phrase (assuming that n = 7). The elements
of the array value are given by a list of characters.

In Edison a character string, such as

’tape# ’

can be used as an abbreviation for a character list

’t’, ’a’, ’p’, ’e’, ’#’, ’ ’, ’ ’

that contains the same sequence of characters separated by commas. The
previous array constructor can therefore also be written as follows

phrase(’tape# ’)

In general, an array constructor must contain an expression for each
element of the array type (unless it is a string type). In the latter case, the
above constructor may be written simply as

24 PER BRINCH HANSEN

phrase(’tape#’)

This is an abbreviation for an array value consisting of the given character
values followed by spaces to make the string of length n.

A graphic character, such as #, is denoted ’#’ in Edison. A control
character is given by its ordinal value in the character set. In the ASCII
character set, the control character new line is character number 10. In
Concurrent Pascal, Modula, and Edison the new line character is denoted

’(:10:)’ 10C char(10)

respectively. In Concurrent Pascal the control characters may be given
names, such as

const nl = ’(:10:)’

But the name nl cannot be used within a character string

’tapenl#’

because it is indistinguishable from the graphic letters n and l. This leads
to the following awkward notation

’tape(:10:)#’

in Concurrent Pascal. Whether the string

’tape10C#’

has the intended meaning in Modula I cannot tell from the report. In Edison,
the inclusion of character names in string constructors is straightforward

const nl = char(10)

phrase(’tape’, nl, ’#’)

In Pascal and Modula the absence of constructors makes the use of con-
stant tables so awkward that one soon adopts a programming style in which
decisions are made by case statements rather than table lookup. The ability
to initialize tables by a single assignment statement in Edison should once
again make table-driven decision-logic an attractive alternative.

THE DESIGN OF EDISON 25

The Concurrent Pascal compiler, which is written in Sequential Pascal,
makes extensive use of the variant records and pointers of Pascal (Hartmann
1977). Since these concepts are both complicated and insecure to use I
decided to write an Edison compiler without using them. The resulting
compiler was much easier to understand. Evidently these tools were only
used previously because they were there.

Only in one part of the compiler did I feel the need for variant records.
During semantic analysis a name index is used to retrieve the attributes of a
named entity from a table. Since the attributes depend on the kind of entity
the name refers to, the name table is best described as an array of variant
records of the following Pascal type

nameattr =
record link: integer;

case kind: namekind of
constant:

(consttype, constvalue: integer);
· · ·

procparam, procedur:
(proclevel, procaddr, proctype,

param: integer)
end

In Edison the name table is described as an array of elements of the type

record nameattr (kind: namekind; link: int;
none1, none2, none3, none4, none5: int)

The variants of the type are described by separate record types

record constattr (constkind: namekind;
constlink, consttype, constvalue,
none6, none7, none8: int)
· · ·

record procattr (prockind: namekind;
proclink, proclevel, procaddr, proctype,
param, none11)

The above records are padded with fields to make them all of the same
length.

The compiler first uses a name index x to select a general name de-
scription of type nameattr. If the kind field is equal to constant, the name
description is then retyped to be of type constattr as illustrated by the fol-
lowing program piece

26 PER BRINCH HANSEN

var x, value: int

if names[x].kind = constant do
value := names[x]:constattr.constvalue
· · ·

If v denotes a variable of some type T1 then v:T2 denotes the same variable
considered to be of another type T2 of the same length. The retyped variable
v :T2 has a value of type T2 with the same stored value as the value of v. A
selection of a field f of the retyped variable is denoted v :T2.f .

I cannot recall any other system program that requires the use of variant
records. If they are that rare in practice then dynamic retyping seems prefer-
able to introducing a very complicated data type in Edison with a matching
set of constructors and control statements. But, if the use of variant records
is more frequent than I thought, then their elimination from Edison must be
regarded as a mistake. Until the experimental data are available from a wide
range of applications, the elimination of variant records seems a worthwhile
experiment.

The pointers of Pascal have been omitted from Edison for the same
reason that variant records were eliminated. It is a complicated concept
that appears to be a concession to the current practice of programming even
though its full implications are not well understood. The need to define
cyclical data structures in terms of different record types that can point to
one another breaks the general rule that a type must be declared before it
can be used as a subtype of another type. Furthermore, like the tag fields
of variant records, pointer variables must be initialized to nil automatically
to enable a processor to detect the use of a meaningless pointer. Otherwise,
the effect of an assignment can even change the code of a program (just as in
assembler language). No other kind of variable poses this serious problem.

The dynamic allocation of storage accessed through pointers is quite
complicated particularly when it is combined with the storage allocation
of concurrent processes. And there is no secure way to release the storage
again and make sure that it can no longer be accessed through existing
pointer values. Since the aim of Edison is utter simplicity rather than a
compromise dictated by tradition the pointer types of Pascal could only be
excluded from the language.

Most operations on a pair of data values are valid only if the values are
of the same type. Unfortunately, the precise meaning of type equivalence
is not defined in the Pascal and Modula reports. The Concurrent Pascal

THE DESIGN OF EDISON 27

report states that two types are compatible if one of the following conditions
is satisfied:

1. Both types are defined by the same type or variable declaration, or

2. Both types are subranges of a single enumeration type, or

3. Both types are strings of the same length, or

4. Both types are sets of compatible base types. The empty set is com-
patible with any set.

Although this clarifies the matter, it is not particularly simple to remem-
ber or implement.

Every data type used in an Edison program has a name—either a stan-
dard name (int, char, bool) or a name introduced by a type declaration.

The nameless data types of Pascal and Modula, as in

var x: array [1..100] of integer

do not exist in Edison and nor do subrange types.
In Edison each set constructor includes the name of its type and so does

a string constructor. Even the empty set has a type name!
Consequently, the issue of type equivalence is settled by the simple rule

that two types are the same only if they are denoted by the same name and
have the same scope.

7 STATEMENTS

Where Pascal and Modula use 11 and 9 different sequential statements,
respectively, Edison supports only 5 (including the empty statement)

skip
assignment
procedure call
if statement
while statement

Inspired by Dijkstra’s guarded commands (1975) the syntactic forms of
the if and while statements have been generalized and made more uniform

28 PER BRINCH HANSEN

if B1 do SL1 while B1 do SL1

else B2 do SL2 else B2 do SL2

· · · · · ·
else Bn do SLn end else Bn do SLn end

where the B′s and SL′s denote boolean expressions and statement lists. But,
in contrast to guarded commands, the if and while statements of Edison are
deterministic since the boolean expressions are evaluated in the order written
(and not in unpredictable order).

Programs, such as compilers, that accept both correct and incorrect in-
put often describe a choice among several different actions on valid inputs
followed by a single action to be taken on invalid input. For example

if mode = constant do
constant factor(typ, endfactor)

else mode in typekinds do
constructor(typ, endfactor)

else mode in varkinds do
variable factor(typ, endfactor)

else mode in prockinds do
function call(typ, endfactor)

else true do
kinderror2(x, typ); nextsym

end

If the order in which the expressions are evaluated is unknown (as it is
for guarded commands) then the final expression in this example must be
changed from true to the following monstrosity

(mode <> constant) and
not (mode in typekinds) and
not (mode in varkinds) and
not (mode in prockinds)

In Edison the execution of an if statement has no effect if all the boolean
expressions yield the value false. For guarded commands, Dijkstra assumed
that this would cause a program failure. If a programmer wishes to provoke
such a failure it can be done by ending an if statement as follows

· · · else true do halt end

THE DESIGN OF EDISON 29

where halt is a procedure that causes program failure when executed. (The
language Edison-11 for the PDP 11 computers includes a standard procedure
halt.)

Dijkstra has convincingly demonstrated the use of the while statement
that describes a repeated choice among several conditional statements. A
beautiful example of its use is found in the Edison compiler in a procedure
that recognizes the syntax of a variable symbol consisting of a variable name
possibly followed by one or more field names, index expressions, or type
names (indicating a temporary retyping of the variable). When the variable
name has been recognized the compilation proceeds as follows

while sym = period1 do
field selector(endvar)

else sym = lbracket1 do
indexed selector(endvar)

else sym = colon1 do
type transfer(endvar)

end

The if statements of Pascal are special cases of the ones in Edison and
can be expressed as follows

if B do S end

if B1 do S1

else true do S2 end

In an attempt to eliminate empty options, I have resisted the temptation to
introduce an abbreviation for the clause

else true do

Needless to say, the compiler does not emit any code for this clause.
The while statements of Pascal and Modula are also special cases of the

one used in Edison and can be expressed as follows

while B do SL end

The conditional critical region proposed by Hoare

when B do SL end

30 PER BRINCH HANSEN

is a special case of the more general when statement of Edison which has the
same syntactic structure as the if and while statements

when B1 do SL1

else B2 do SL2

· · ·
else Bn do SLn end

In an earlier paper, Staunstrup and I introduced this language concept,
which we called a guarded region, and illustrated it by examples (Brinch
Hansen 1978). The following example describes a process that continuously
polls three boolean variables and sounds an alarm if any one of them yields
the value true.

proc poll(var on1, on2, on3: bool)
begin on1 := false; on2 := false; on3 := false;

while true do
when on1 do alarm(1); on1 := false
else on2 do alarm(2); on2 := false
else on3 do alarm(3); on3 := false end

end
end

As Wirth has pointed out what is omitted from a programming language
is as important as what is included.

The repeat statement of Pascal and Modula

repeat SL until B

can be represented in Edison either by the statements

SL; while not B do SL end

or by the following program piece

var again: bool
begin again := true;

while again do
SL; again := not B

end
end

The for statement of Pascal

THE DESIGN OF EDISON 31

for i := 1 to n do S

can be written either as

i := 0;
while i < n do i := i+ 1;S end

or as

i := 1;
while i <= n do S; i := i+ 1 end

in Edison. It may seem that the two representations of the for statement are
not equivalent since the final value of the control variable i will be n in the
first version and n + 1 in the second. Although the Pascal report is silent
on this issue the more informal user report states that “the final value of
the control variable is left undefined upon normal exit from the for state-
ment.” This rule is introduced precisely to give the language implementor
the freedom to choose the most efficient implementation for a given machine.

The decreasing variant of the for statement in Pascal

for i := n downto 1 do S

can be represented similarly in Edison.
The case statement of Pascal and Modula

case expression of
constant1: S1;
constant2: S2;
· · ·

constantn: Sn
end

was originally part of Edison as well, but was later removed. The experience
of writing the Edison compiler showed that a case statement often is used
to describe actions on symbols that are grouped together as in

case ch of
’a’, ’b’, . . ., ’z’: name;
’0’, ’1’, . . ., ’9’: numeral;
· · ·

end

32 PER BRINCH HANSEN

The same clarity and efficiency can be achieved by using a combination of
if statements and sets representing the necessary symbol classes, for example

if ch in letters do name
else ch in digits do numeral
· · ·

end

This grouping of symbols reduces the number of conditional statements
to eight in the lexical analysis of the compiler.

The syntactic and semantic analysis of the Edison compiler use recursive
descent and include one procedure for each syntactic form of the language.
Since a given procedure only is prepared to recognize a small number of
symbols (corresponding to the syntactic form it represents), an if statement
combined with sets is again quite efficient. Several examples described earlier
illustrate this point.

The code generator is the only part of the compiler that inputs one
symbol at a time and immediately uses it to branch to one of about sixty
procedures. In that one case, I had to resort to an awkward construct of the
form

if op <= construct2 do
if op = add2 do add
else op = also2 do alsox(a, b)
else op = and2 do andx
else op = assign2 do assign(a)
else op = blank2 do blank(a)
else op = cobegin2 do cobeginx(a, b, c)
else op = constant2 do constant(a)
else op = construct2 do construct(a) end

else op <= endproc2 do
if op = difference2 do difference
· · ·

to obtain fast compilation. But that was only 64 lines out of a compiler of
4300 lines and hardly worth the addition of another kind of statement to the
language.

The with statement of Pascal and Modula appears to be used mostly to
assign values to all the fields of a record variable as in the following statement

THE DESIGN OF EDISON 33

with names[nameno] do
begin

kind := mode;
minlevel := scope;
maxlevel := origin;
originalname := x

end

In Edison this is expressed more concisely by means of an assignment
statement and a record constructor

names[nameno] := nameattr(mode, scope, origin, x)

The goto statement of Pascal was already eliminated in Concurrent Pas-
cal and was never missed during the five years of experience with this lan-
guage.

Finally, I agree with Dijkstra that the empty action (like the number
zero) should be denoted by a distinct symbol

skip

and not be implied by the absence of one.
Although the use of distinct terminators, such as endif, endwhile, end-

when, coend, endproc, and endmodule would have made error recovery more
successful in the compiler, I have used the symbol end in all these cases to
make the typographical image of correct programs more pleasing (for they
are the only ones I publish). This is obviously a matter of personal prefer-
ence.

8 INPUT/OUTPUT

In Concurrent Pascal, all input/output is handled by standard procedure
calls of the form

io(data, operation, device)

The calling process is delayed until the operation is completed. In the mean-
time, other processes can continue to use the rest of the computer. The
advantage of this approach is that a data transfer is just another sequential
operation that takes a finite time and produces a reproducible result. An-
other benefit of making input/output an indivisible operation for a single

34 PER BRINCH HANSEN

process is that peripheral interrupts become irrelevant to the programmer.
They are handled completely at the machine level as part of the implemen-
tation of the io operations.

The disadvantage of using a single standard procedure for low-level in-
put/output is that the system kernel for the language must contain a separate
piece of code for each kind of peripheral device. This means that industrial
programmers must be prepared to extend the kernel (which is a non-trivial
task since peripheral interrupts interact with the processor multiplexing).

In Modula, Niklaus Wirth offered a more practical solution in the form
of device modules combined with device processes and device registers. The
whole concept was tailored to the PDP 11 computers to enable programmers
to write device procedures in the language itself. Algorithm 11 shows a
device module that outputs one character at a time on a screen. The module
consists of a device process, named driver, which is connected to an exported
procedure, named display, through a set of variables used as a character
buffer.

The standard procedure doio delays the device process until the screen
produces an interrupt with the octal number 64B. Since the doio operation
only can be performed by a device process and since a device process must be
hidden within a device module the above appears to be the simplest possible
way of displaying a character on the screen. It does not seem to be possible
to eliminate a device process and let a user process control the peripheral
directly. This example shows that Modula (like Concurrent Pascal) attempts
to support and enforce a particular programming style by means of very
specialized language constructs.

The Edison language implemented for the PDP 11 computers is called
Edison-11. Since the language is designed to support inexpensive micropro-
cessors I decided to anticipate this use and ignore interrupts completely on
the PDP 11 (even at the machine level).

In Edison-11, input/output is controlled by standard procedure calls of
the form

place(device address, value)
obtain(device address, variable)
sense(device address, value)

The operation place(x,y) assigns the integer value y to the device register
with the byte address x. The operation obtain(x,y) assigns the value of
the device register with the byte address x to the integer variable y. The
operation sense(x,y) compares the integer value y to the value of the device

THE DESIGN OF EDISON 35

device module screen [4];
define display;
var slot: char; full: boolean;

nonempty, nonfull: signal;

procedure display(c: char);
begin

if full do wait(nonfull) end;
slot := c; full := true;
send(nonempty)

end put;

process driver [64B];
var status [177564B]: bits;

buffer [177566B]: char;
begin

loop
if not full do wait(nonempty) end;
buffer := slot; full := false;
status[6] := true; doio; status[6] := false;
send(nonfull)

end
end driver;

begin full := false; driver end screen

Algorithm 11

register with the byte address x. If some of the corresponding bits of the
two values both are equal to one then the operation yields the value true;
otherwise, it yields the value false.

Edison-11 also includes octal numerals of the form

#177564

to denote device addresses. This option is necessary because the computer
manufacturer does not use the decimal system in the computer manuals.
Why I do not know.

A process described by a concurrent statement in Edison-11 can output
a character directly on the screen by calling the following procedure

36 PER BRINCH HANSEN

proc display(c: char)
const status = #177564; buffer = #177566;

ready = #200
begin

when sense(status, ready) do
place(buffer, int(c))

end
end

The effect of executing the when statement is to delay the output until the
status register shows that the device is ready.

A PDP 11 computer executes one process at a time. This continues un-
til the process either terminates or attempts to execute a when statement
in which the boolean expressions yield the value false. The waiting pro-
cesses are executed in cyclical order in Edison-11. The simplicity of process
scheduling makes the overhead of process switching five times shorter than
in Concurrent Pascal (which is interrupt driven). The Edison-11 implemen-
tation ignores all interrupts.

The input or output of non-elementary data types requires the use of a
standard function call

addr(y)

which yields the byte address of a variable y of any type. The operation
place(x,addr(y)) assigns the address of the variable y to the device register
with the address x. This operation is necessary to transfer data between the
variable y and a block-oriented device, such as a disk or magnetic tape.

9 LANGUAGE DESCRIPTION

In 1967 the designer of the programming language Pascal, Niklaus Wirth,
wrote that “the definition of a language, comprising its syntax specifying the
set of well-formed sentences, and its semantics defining the meaning of these
sentences, should not extend over more than 50 pages.” The Edison report
is comparable in size to the reports which define its predecessors: Algol 60
(43 pages), Pascal (38 pages), Concurrent Pascal (34 pages), and Modula
(29 pages). The Edison report is 34 pages long. (The sizes of these reports
are measured in pages of 50 lines each.)

The shortness of a language report is, of course, of no help unless it
is written with complete clarity. As Wirth put it: “In programming, we
are dealing with complicated issues, and the more complicated the issue is,

THE DESIGN OF EDISON 37

the simpler the language must be to describe it. Sloppy use of language—
be it English, German, Fortran or PL/1—is an unmistakable symptom of
inadequacy.”

The only language report that has been widely recognized as a model of
clarity is the Algol 60 report written by Peter Naur. In 1967 Donald Knuth
wrote that “the most notable feature of the Algol 60 report was the new
standard it set for language definition.” Unfortunately, as Tony Hoare said,
the Algol 60 report was a considerable improvement over its successors.

Even though the Pascal language was far more successful than Algol 60,
Nico Habermann severely criticized Wirth for the imprecision of the Pascal
report and pointed out that it was hiding some conceptual inconsistencies in
the definition of data types (Habermann 1973). Peter Naur pointed out that
the Concurrent Pascal report, which I wrote, suffered from similar problems.

The task of writing a language report that explains a programming lan-
guage with complete clarity to its implementors and users may look decep-
tively easy to someone who hasn’t done it before. But in reality it is one of
the most difficult intellectual tasks in the field of programming.

In writing the Edison report I have benefited greatly from the construc-
tive criticism of Peter Naur. Naur made almost no comments about my
choice and design of language features. His main concern was the clarity of
the report. I would write a complete draft of the language report and Naur
would then point out what the weaknesses were and suggest broadly how
they might be removed in my next draft. The following describes the stages
of development which the Edison report went through over a period of two
years.

The first Edison report of January 1979 used syntax graphs of the form
shown below with an explanation such as the following:

38 PER BRINCH HANSEN

“Each parameter declaration introduces a name to represent the param-
eter and specifies its type or procedure heading.”

“A value parameter is a local variable which is assigned the value of an
expression before the procedure is executed.

A variable parameter denotes a variable which is bound to the procedure
before it is executed. The symbol var distinguishes a variable parameter
from a value parameter.

A procedure parameter denotes another procedure which is bound to the
given procedure before the latter is executed.”

About this report, Naur wrote the following:
“The weaknesses that will be described in most cases are such that may

cause only little difficulty to a reader who is familiar with, for example, re-
ports on the language Pascal, and who is generous in his willingness to rely
on his own ability to fill in open holes by guesses and to remove inconsisten-
cies. With the view taken all such holes and inconsistencies are unacceptable
and should be removed, as far as possible.”

“There is a poor connection between the formal syntactic description and
the prose explanation.”

I had used syntax graphs because they enable a programmer to see quite
complex structures at a glance. Unfortunately, when a complicated concept
is presented under a single name, the substructures of the graph have no
names and cannot easily be referred to in the text. So, although the text
refers to the concept of a “parameter declaration,” the graph does not reveal
what it is. The reader must also guess what the syntax of value, variable,
and procedure parameters looks like. Note also that rather than explaining
the meaning of certain concepts (such as variable parameters) the first report
would use suggestive (but undefined) terms such as “binding.”

In the second Edison report of July 1979 a parameter list was defined as
follows (now using an extended Backus-Naur form instead of syntax graphs)

Parameter list:
Parameter group [’;’ Parameter group]∗

Parameter group:
Value parameter group # Variable parameter group

Value parameter group:
Parameter name [’,’ Parameter name]∗ ’:’ Type name

Variable parameter group:
’var’ Parameter name [’,’ Parameter name]∗ ’:’ Type name

Parameter name:

THE DESIGN OF EDISON 39

Name

(In this version of the language I had tentatively excluded the use of proce-
dures as parameters of other procedures.)

These syntactic forms were now explained as follows:
“A parameter list consists of a sequence of parameter groups. Each

parameter group is either a value parameter group or a variable parameter
group.

A value parameter group introduces one or more names, called parameter
names, to denote value parameters. Each value parameter is a local variable
that is assigned the value of an argument before the procedure block is
executed.

A variable parameter group introduces one or more names to denote
variable parameters. Each variable parameter denotes a variable argument
which is selected before the procedure block is executed. During the exe-
cution of the procedure block all operations performed on the variable pa-
rameter stand for the same operations performed on the variable argument.
The variable parameter is said to be bound to the variable argument during
the execution of the procedure block.”

The concept of a parameter list is now presented as the composition of
four simpler concepts. Each concept is described by a syntactic form that
introduces a name for the concept and defines its syntax. The prose expla-
nation carefully follows the syntactic structures and explains their meaning
using the same terminology. As a minor detail the meaning of variable bind-
ing is now explained.

The idea of using an abundance of simple syntactic forms to introduce
names for most concepts, so that the text can refer directly to these defini-
tions, had not occurred to me previously. But, once you realize that syntactic
forms can be used to define terminology (and not just syntax), the job of
writing a language report becomes far more well-defined. When the syntac-
tic forms become very trivial the syntax graphs lose their visual appeal and
appear bulky and clumsy. So I returned to the BNF notation, which has the
great advantage that it can be included in program texts as comments.

Later, when I wrote the Edison compiler, I found that the syntactic
forms used in the report were so short that each of them conveniently could
be represented by a single procedure with the same name as the syntactic
form. Each procedure is now preceded by the corresponding syntactic form
written as a comment in BNF notation.

About the second report, Naur wrote this:

40 PER BRINCH HANSEN

“The report is a vast improvement over the previous version in clarity,
consistency, and completeness. The remaining weaknesses, described be-
low in detail, are to a large extent concerned merely with finer matters of
conceptual clarity.”

After this pleasant introduction, Naur goes on to enumerate 79 concep-
tual problems. The first of these is that “a number of weaknesses of the
description can be traced to a general disinclination to accept abstract no-
tions, not uniquely associated with syntactic entities of the language, as
well-defined useful constituents of the language and its description.”

The conceptual difficulties of trying to describe all concepts purely in
terms of their notation are both philosophical and practical. If, for example,
the notion of a data value is purely notational then it is quite difficult to
explain why the relation

’A’ = char(65)

is true for the ASCII character set. But the matter becomes quite sim-
ple if both symbols are viewed as different notations for the same abstract
concept—the first capital letter of the alphabet.

In the third report of January 1980 the distinction between fixed values
and the notations used to represent them in the language was made as fol-
lows: “A constant is a fixed value of a fixed type,” and “A constant symbol
denotes a constant.”

The distinction between an abstract concept and the symbol that denotes
the concept is immediately obscured when a syntactic form is given the same
name as the abstract concept. In the second Edison report, a variable used
as an operand was described by a syntactic form named variable

Variable:
Whole variable # Subvariable

The report explained that “a variable denotes either a whole variable or
a subvariable.” For a purist this is already unsatisfactory. Does the term
“variable” in that sentence refer to the abstract concept of a variable that
exists during program execution, or does it refer to one of the symbols in
the program text described by the syntactic form named variable? For the
writer of the language report it becomes downright awkward to describe
what action a processor takes when a variable is used as an operand in
a program. If we stick strictly to the rule of using the name introduced
by the syntactic form, the result is the following cryptic sentence: “The

THE DESIGN OF EDISON 41

evaluation of a variable causes the processor to locate the variable in the
current context.”

In the third report, the matter was settled by making a distinction be-
tween a variable (which is a named entity that may assume any of the values
of a known type) and a variable symbol (which denotes a variable used as
an operand). It was now easy to explain that “the evaluation of a variable
symbol involves locating the corresponding variable in the current context.”

The failure to make this conceptual distinction pervades most language
reports. In the Pascal, Concurrent Pascal, and Modula reports one finds
syntactic forms named constant, number, type, and variable instead of the
more appropriate terms constant symbol, numeral, type description, and
variable symbol (or similar ones).

After reading both the first and second drafts of the Edison report, Naur
felt that “the central concept of types is not properly introduced, while the
many different aspects of it are scattered around in an unsystematic and con-
fusing manner.” In the third version of the report I tried to clarify the type
concept and its relation to the abstract notions of value and operation. I did
not, however, succeed in organizing the report into chapters each describing
all the aspects of a single type in one place.

The problem is that the type concept pervades the whole language. To
explain even a simple type, such as boolean, in all its aspects, one must
discuss constants, ranges, variables, expressions, functions, and statements
as they relate to boolean values. Now that is practically the whole language
right there. So, even to begin this chapter, one has to assume that the reader
already understands all these concepts in general. And then one has to do
it all over again for integers, characters, enumerations, arrays, records, and
sets. It ends up being a very repetitive report in which the same story is told
seven times. And that is, of course, because the language is designed in such
a way that all the types have very similar properties which are described by
very similar syntax.

After spending about 25 full working days trying to write a report along
these lines I gave up and wrote another one instead (the third version). As
a compromise, I now described several facets of each kind of type in the
same chapter, namely the introduction of a new data type by means of a
type declaration, the representation of values of the type by constants or
constructors, and the meaning of the operators that apply to these values.
The chapters on data types were followed by chapters describing the general
properties of variables, expressions, statements, and procedures.

42 PER BRINCH HANSEN

The concept of scope is explained quite concisely in the Algol 60 report:
“Every block automatically introduces a new level of nomenclature. This

is realized as follows: Any identifier occurring within the block may through
a suitable declaration be specified to be local to the block in question. This
means (a) that the entity represented by this identifier inside the block has
no existence outside it and (b) that any entity represented by this identifier
outside the block is completely inaccessible inside the block.

Identifiers occuring within a block and not being declared to this block
will be non-local to it, i.e. will represent the same entity inside the block and
in the level immediately outside it.”

“Since a statement of a block may itself be a block the concepts local
and non-local must be understood recursively.”

“No identifier may be declared more than once in any one block head.”
One may complain about the complexity of block structure but not, I

think, about the precision with which it is explained in the Algol 60 report.
In the Pascal report written ten years later the explanation of the same
concept is much more incomplete:

“All identifiers introduced in the formal parameter part, the constant
definition part, the type definition part, the variable, procedure or function
declaration parts are local to the procedure declaration which is called the
scope of these identifiers. They are not known outside their scope.”

This explanation fails to distinguish between a name and the entity it
denotes. Since a name can be used with different meanings in different
blocks, it is not the name itself that is unknown outside a given block but
the use of the name to denote a given entity declared inside the block. In
short, it is named entities (rather than names) which have scopes. I too
failed to make that distinction in the earlier Edison reports.

More importantly, the above explanation from the Pascal report does
not explain which entity a name denotes when it is declared with different
meanings in nested blocks. To paraphrase an earlier remark, such weaknesses
of the Pascal report have (fortunately) caused little difficulty for readers who
are already familiar with the Algol 60 report.

The Concurrent Pascal and Modula reports also do not succeed in ex-
plaining scope rules precisely. This is much more unfortunate since these lan-
guages introduce new forms of modularity which primarily serve to change
the traditional scope rules of block structured languages. My present at-
tempts to explain these rules are contained in the chapter on Named Entities
in the Edison report.

THE DESIGN OF EDISON 43

Having deprived myself of the opportunity to gloss over ill-understood
issues in the Edison report it was quite embarrassing to explain the ef-
fect of executing processes described by concurrent statements. Although a
programmer may have no difficulty understanding a particular concurrent
statement, the language designer faces the much harder task of explaining
in a few paragraphs the meaning of every conceivable use of this idea.

Unfortunately, one can only make a simple statement about the most
trivial (and uninteresting) use of concurrent processes, which is the follow-
ing: “If concurrent processes only operate on private variables and disjoint,
common variables then the effect of executing a concurrent statement is the
same as the effect of executing the process statements one at a time in any
order.”

As soon as processes begin to communicate, one needs the whole ap-
paratus of the Gries–Owicki theory to reason about the effects of using
semaphores, buffers, monitors, and so on (Owicki 1976). And, even so,
processes must satisfy very rigid assumptions for the theory to apply. Al-
though one can design language features (such as monitors) which enable a
compiler to check that some of these assumptions are satisfied one cannot
expect a programming language to capture all aspects of well-behaved con-
current programs. And, even if one could, it would not be very helpful to
repeat the entire theory behind these concepts in a language report.

The difficulty of explaining what concurrent processes really do will, of
course, arise in any report that describes a concurrent programming lan-
guage. In yet another appeal to the generous reader the Concurrent Pascal
and Modula reports evade the issue by suggestive use of undefined phrases
to the effect that “all processes are executed concurrently.” In writing the
Edison report I decided to make the difficulty explicit by the following state-
ment:

“If concurrent processes operate on intersecting, common variables then
the effect of executing a concurrent statement is generally unpredictable
since nothing is known about the order in which the processes operate on
these variables. However by restricting the operations on intersecting vari-
ables to well-defined disciplines under the control of modules, procedures,
and when statements it is possible to formulate concurrent statements that
make predictable use of such variables. The theories used to reason about
concurrent statements, when statements, and common variables are beyond
the scope of this report.”

In effect, the report says that one can write meaningless Edison programs

44 PER BRINCH HANSEN

that will produce unpredictable results. But it does not prescribe how to
avoid doing this. This is surely a startling property of a programming tool.
The report does, however, say that when this happens even the most basic
programming concepts can lose their meaning:

“The meaning of variable retrieval and assignment defined earlier is valid
only if these operations are performed one at a time on a given variable. Con-
current processes can ensure that this assumption is satisfied by performing
all operations on intersecting, common variables within when statements.”

The execution of recursive procedures and concurrent statements will
generally create multiple instances of named entities, such as variables. Fur-
thermore, procedures used as parameters of other procedures can have side-
effects on some of these variable instances (and not necessarily the most
recent ones!). In such cases, the language report must make it possible to
decide which variable instance a process refers to at any given time.

In the fourth version of the Edison report (September 1980) the dynamic
meaning of names is explained in terms of the so-called context of a process.
This concept is introduced at the beginning of the report as follows:

“When a process executes a statement it operates on known entities
selected from a set of entities called the current context of a process.”

(A language implementor might say more loosely that a context is an
abstract description of that part of a stack that is currently accessible to a
process by following the chain of static links.)

Subsequent sections of the report then explain how the initial context of
an executed program is established and how it is changed by the execution
of procedure calls and concurrent statements.

A key idea is to associate contexts with procedures as well as processes.
When a procedure body is executed by a process the current context of
the process is attached as an attribute to all the local procedures declared
in the body. If one of these procedures is called directly by the process
its execution will take place in the context associated with the procedure.
And if the procedure and its current context are bound to a parameter of
another procedure the above rule still applies: when a procedure parameter
is called it is executed in the context currently associated with the procedure
parameter.

So the effect of any procedure call is now explained by a single rule.
This concludes the discussion of the linguistic dificulties which a language

designer is faced with during the writing of a language report. The writing
of the Edison report was far more difficult and time-consuming than the

THE DESIGN OF EDISON 45

selection of the language features and the design of the first compiler.

References

Brinch Hansen, P. 1970. The nucleus of a multiprogramming system. Communications of
the ACM 13, 4 (April), 238–250. Article 2.

Brinch Hansen, P. 1972. Structured multiprogramming. Communications of the ACM 15,
7 (July), 574–578. Article 4.

Brinch Hansen, P. 1973. Operating System Principles. Prentice-Hall, Englewood Cliffs,
NJ (July).

Brinch Hansen, P. 1975. The programming language Concurrent Pascal. IEEE Transac-
tions on Software Engineering 1, 2 (June), 199–207. Article 7.

Brinch Hansen, P. 1977. The Architecture of Concurrent Programs. Prentice-Hall, Engle-
wood Cliffs, NJ, (July).

Brinch Hansen, P., and Staunstrup, J. 1978. Specification and implementation of mutual
exclusion. IEEE Transactions on Software Engineering 4, 5 (September), 365–370.

Brinch Hansen, P. 1981. Edison—A multiprocessor language. Software—Practice and
Experience 11, 4 (April), 325–361.

Dahl, O.-J., Dijkstra, E.W., and Hoare, C.A.R. 1972. Structured Programming. Academic
Press, New York.

Dijkstra, E.W. 1968. Cooperating sequential processes. In Programming Languages, F.
Genyus, Ed. Academic Press, New York.

Dijkstra, E.W. 1975. Guarded commands, nondeterminacy and formal derivation. Com-
munications of the ACM 18, 8 (August), 453–457.

Habermann, A.N. 1973. Critical comments on the programming language Pascal. Acta
Informatica 3, 47–57.

Hartmann, A.C. 1977. A Concurrent Pascal compiler for minicomputers. Lecture Notes
in Computer Science 50, Springer-Verlag, New York.

Hoare, C.A.R. 1972. Towards a theory of parallel programming. In Operating Systems
Techniques, C.A.R. Hoare and R.H. Perrott, Eds. Academic Press, New York, 61–71.

Hoare, C.A.R. 1974. Monitors: An operating system structuring concept. Communica-
tions of the ACM 17, 10 (October), 549–557.

Jensen, K., and Wirth, N. 1974. Pascal—User manual and report. Lecture Notes in
Computer Science 18, New York.

Knuth, D.E. 1967. The remaining trouble spots in Algol 60. Communications of the ACM
10, 10 (October), 611–618.

Naur, P., Ed. 1962. Revised Report on the Algorithmic Language Algol 60. Regnecentralen,
Copenhagen, Denmark.

Owicki, S., and Gries, D. 1976. An axiomatic proof technique for parallel programs. Acta
Informatica 6, 319–340.

Welsh, J., and McKeag, M. 1980. Structured System Programming. Prentice-Hall, Engle-
wood Cliffs, NJ.

Welsh, J., Sneeringer, W.J., and Hoare, C.A.R. 1977. Ambiguities and insecurities in
Pascal. Software—Practice and Experience 7, (November–December), 685–696.

Wirth, N. 1971. The programming language Pascal. Acta Informatica 1, 35–63.
Wirth, N. 1977. Modula: A language for modular multiprogramming. Software—Practice

and Experience 7, 1 (January–February), 3–35.

