
        

Model Programs for Computational

Science: A Programming Methodology

for Multicomputers∗

(1993)

We describe a programming methodology for computational science based on

programming paradigms for multicomputers. Each paradigm is a class of al-

gorithms that have the same control structure. For every paradigm, a general

parallel program is developed. The general program is then used to derive

two or more model programs, which solve specific problems in science and

engineering. These programs have been tested on a Computing Surface and

published with every detail open to scrutiny. We explain the steps involved

in developing model programs and conclude that the study of programming

paradigms provides an architectural vision of parallel scientific computing.

1 Introduction

For the past three years I have studied computational science from the point
of view of a computer scientist (Brinch Hansen 1990b–1992f). I have followed
the advice of Geoffrey Fox (1990) to “use real hardware to solve real problems
with real software.” But, where the Caltech group concentrated on scientific
applications for their own sake, I have used them as realistic case studies to
illustrate the use of structured programming in computational science.

My research explores the role of programming paradigms in parallel com-
puting. In programming the word paradigm is often used with a general (but
vague) connotation, such as “the high level methodologies that we recognize
as common to many of our effective algorithms” (Nelson 1987). I will use
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the term in a more narrow (but precise) sense: A programming paradigm is
a class of algorithms that solve different problems but have the same control
structure.

I have studied paradigms for all-pairs computations, tuple multiplication,
divide-and-conquer, Monte Carlo trials and cellular automata (Brinch Han-
sen 1990c, 1991a, 1991d, 1992d, 1992f). For each paradigm I have written a
general program that defines the common control structure. Such a program
is sometimes called an algorithmic skeleton, a generic program, or a program
template (Cole 1989; Brinch Hansen 1991b).

From a general parallel program I derive two or more model programs
that illustrate the use of the paradigm to solve specific problems. A general
program includes a few unspecified data types and procedures that vary
from one application to another. A model program is obtained by replacing
these data types and procedures with the corresponding data types and
procedures from a sequential program that solves a specific problem. The
essence of the programming methodology is that a model program has a
parallel component that implements a paradigm and a sequential component
for a specific application. The clear separation of the issues of parallelism
and the details of application is essential for writing model programs that
are easy to understand.

My own model programs solve typical problems in science and engineer-
ing: linear equations, n-body simulation, matrix multiplication, shortest
paths in graphs, sorting, fast Fourier transforms, simulated annealing, pri-
mality testing, Laplace’s equation, and forest fire simulation.

I have run these parallel programs on a Computing Surface configured as
a pipeline, a tree, a cube or a matrix of transputers.

It has been fun to enter an interdisciplinary field, refresh my memory
of mathematics and physics I learned as an undergraduate, study numerical
analysis, and teach myself the art of multicomputer programming.

My one serious criticism of computational science is that it largely has
ignored the issue of precision and clarity in parallel programming that is
essential for the education of future scientists. A written explanation is not
an algorithm. A graph of computational steps is not an algorithm. A picture
of a systolic array is not an algorithm. A mathematical formula is not an
algorithm. A program outline written in non-executable “pseudocode” is
not an algorithm. And, a complicated “code” that is difficult to understand
will not do either.

Subtle algorithms must be presented in their entirety as well-structured
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programs written in readable, executable programming languages (Forsythe
1966; Ignizio 1973; Wirth 1976; Brinch Hansen 1977; Dunham 1982; Press
1989). This has been my main reason for publishing model programs for
parallel scientific computing.

In the following, I will describe parallel programming paradigms and
explain why I use different programming languages and computers for pub-
lication and implementation of model programs. I will also outline the steps
involved in developing model programs based on paradigms. Finally, I will
argue that the study of programming paradigms provides an architectural
vision of parallel scientific computing.

2 The Computing Surface

When I started this research, I knew that my programs would soon become
obsolete unless I wrote them for parallel architectures of the future. So I
had to make an educated guess about the direction in which hardware and
software technology would move parallel architectures during the 1990s.

By 1989 I had tentatively formulated the following requirements for a
general-purpose parallel computer of the future (May 1988, 1990; Valiant
1989; Brinch Hansen 1990a):

1. A parallel architecture must be expandable from tens to thousands of
processors.

2. A parallel computer must consist of general-purpose processors.

3. A parallel computer must support different process structures (pipe-
lines, trees, matrices, and so on) in a transparent manner.

4. Process creation, communication, and termination must be hardware
operations that are only an order of magnitude slower than memory
references.

5. A parallel computer should automatically distribute the computational
load and route messages between the processors.

The first three requirements eliminated multiprocessors, SIMD machines,
and hypercubes, respectively. The only architecture that satisfied the first
four requirements was the Computing Surface (Meiko 1987; McDonald 1991).
No parallel computer satisfied the fifth condition.
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In the summer of 1989 a Computing Surface was installed at Syracuse
University. It is a multicomputer with 48 processors that can be extended
to 1000 processors. Every processor is a T800 transputer with one or more
megabytes of memory. The transputers are connected by a communication
network that can be reconfigured before program execution. Direct commu-
nication is possible only among connected transputers, but is very fast (a
few microseconds only). Process creation and termination are also hardware
operations.

The programming tool is the parallel programming language occam 2
(Inmos 1988; Cok 1991). This language makes it possible to define parallel
processes that communicate by messages.

3 The All-Pairs Pipeline

Although I knew nothing about numerical analysis, I thought that parallel
solution of linear equations would be a useful programming exercise for a
beginner. I chose the problem for the following reason: When a pipeline with
p processors solves n linear equations in parallel, the numerical computation
requires O(n3/p) time, while the input/output takes O(n2) time. If the
problem size n is large compared to the machine size p, the overhead of
processor communication is negligible. The high ratio of computation to
communication makes the problem ideal for efficient parallel computing.

A colleague recommended Householder reduction as an attractive method
for solving linear equations on a parallel computer. The main strength of
the method is its unconditional numerical stability (Householder 1958). The
familiar Gaussian elimination is faster but requires a dynamic rearrangement
of the equations, known as pivoting, which complicates a parallel program
somewhat (Fox 1988).

Unfortunately, I could not find a well-written, understandable explana-
tion of Householder’s method. Most textbooks on numerical analysis pro-
duce Householder’s matrix like a rabbit from a magician’s top hat without
explaining why it is defined the way it is. At this point I stopped writing par-
allel programs and concentrated on sequential Householder reduction. After
several frustrating weeks I was able to write a tutorial on Householder reduc-
tion (Brinch Hansen 1990b). Two pages were sufficient to explain the pur-
pose and derive the equation of Householder’s matrix. I then explained the
computational rules for Householder reduction and illustrated the method
by a numerical example and a Pascal program.
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I was beginning to think that others might have the same difficulty un-
derstanding this fundamental computation. So I submitted the tutorial to
a journal that published it. One of the reviewers wrote that he “found the
presentation far superior to the several descriptions I have seen in numerical
analysis books.” I quote this review not just because I like it, but because
it was my first lesson about computational science: In order to understand
a computation, I must first explain it to myself by writing a tutorial that
includes a complete sequential program.

After studying parallel programming for 25 years it was not too diffi-
cult for me to program a Householder pipeline (Brinch Hansen 1990c). The
parallel program was written in occam for the Computing Surface. I used
a coarse-grain pipeline to reduce communication overhead. To achieve ap-
proximate load-balancing, the pipeline was folded three times across an array
of p transputers (Brinch Hansen 1990d). Figure 1 shows the folded pipeline.
The squares and lines represent pipeline nodes and communication channels,
respectively. Each column represents a single transputer that executes four
parallel nodes.

1 2 p

1

2

3

4

- - - -

- - - -
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Figure 1 A folded pipeline.

My next exercise was to compute the trajectories of n particles that in-
teract by gravitation only. I considered the n-body problem to be particularly
challenging on a parallel computer since it involves interactions among all
the particles in each computational step. This means that every proces-
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sor must communicate, directly or indirectly, with every other processor.
My description of an n-body pipeline included a brief summary of Newton’s
laws of gravitation and a Pascal program for sequential n-body simulation
(Brinch Hansen 1991a). Others have solved the same problem using a ring
of processors (Ellingworth 1988; Fox 1988).

It was a complete surprise for me to discover that the sequential Pascal
programs for Householder reduction and n-body simulation had practically
identical control structures. I suddenly understood that both of them are
instances of the same programming paradigm: Each algorithm solves an all-
pairs problem—a computation on every possible subset consisting of two
elements chosen from a set of n elements. I have not found this insight
mentioned in any textbook on numerical analysis or computational physics.

I now discarded both parallel algorithms and started all over. This time I
programmed a general pipeline algorithm for all-pairs computations (Brinch
Hansen 1990c). This program is a parallel implementation of the common
control structure. It provides a mechanism for performing the same opera-
tion on every pair of elements chosen from an array of n elements without
specifying what the elements represent and how they “interact” pairwise.

I then turned the all-pairs pipeline into a Householder pipeline by using
a few data types and procedures from the sequential Householder program.
This transformation of the parallel program was completely mechanical and
required no understanding of Householder’s method. A similar transforma-
tion turned the all-pairs pipeline into an n-body pipeline.

Later I discovered that all-pairs pipelines were described informally by
Shih (1987), and Cosnard (1988), but without concise algorithms.

I had now found my research theme: the use of parallel programming
paradigms in computational science.

4 The Multiplication Pipeline

After programming a subtle parallel program, I looked for the simplest prob-
lem that would illustrate the benefits of developing generic algorithms for
parallel programming paradigms that can be adapted to different applica-
tions.

This time I chose matrix multiplication, which can be pipelined in a
straightforward way as shown in Fig. 2 (Kung 1989).

First, the rows of a matrix a are distributed evenly among the nodes
of the pipeline. Then the columns of a matrix b pass through the pipeline
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1 2 p
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Figure 2 A simple pipeline.

while each node computes a portion of the matrix product a × b. Finally,
the pipeline outputs the product matrix.

For sequential algorithms it is well-known that matrix multiplication is
similar to the problem of finding the shortest paths between every pair of
nodes in a directed graph with n nodes (Cormen 1990).

After studying both algorithms, the unifying concept seemed to me to be
an operation that I called tuple multiplication: the product of two n-tuples
a and b is an n×n matrix c. The matrix elements are obtained by applying
the same function f to every ordered pair consisting of an element of a and
an element of b, that is cij = f(ai, bj).

In the case of matrix multiplication, the tuple elements are rows and
columns, respectively, and every function value is the dot product of a row
and a column. The input to the shortest paths problem is the adjacency
matrix of a graph. The output is a distance matrix computed by a sequence
of tuple multiplications. In every multiplication, tuple a consists of the n
rows of the adjacency matrix, while tuple b consists of the n columns of
the distance matrix. The function value f(ai, bj) defines the shortest path
length found so far between nodes i and j of the graph.

The task was now obvious. I wrote a paper that defined a pipeline
algorithm for tuple multiplication. I briefly explained matrix multiplication
and the all-pairs shortest-path problem by means of Pascal algorithms. I
then transformed the parallel program into pipeline algorithms for the two
applications by defining the data types of the tuples and the corresponding
variants of the function f . After rewriting the parallel programs in occam, I
analyzed and measured their performance on the Computing Surface (Brinch
Hansen 1991b).
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5 The Divide and Conquer Tree

My third paradigm was a parallel divide-and-conquer algorithm for a binary
tree of processor nodes (Browning 1980; Brinch Hansen 1991d). Figure 3
shows the tree machine.
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HH
H

��
�

Figure 3 A tree machine.

The root node of the tree inputs a complete problem, splits it into two
parts, and sends one part to its left child node and the other part to its
right child node. The splitting process is repeated at higher levels in the
tree. Eventually, every leaf node inputs a problem from its parent node,
solves it, and outputs the solution to its parent. Every parent node in the
tree inputs two partial solutions from its children and combines them into a
single solution, which is output to its parent. Finally, the root node outputs
the solution to the complete problem.

A problem and its solution are both defined by an array of n elements of
the same type. The element type and the procedures for splitting problems
and combining solutions are the only parts of the parallel algorithm that
depend on the nature of a specific problem. Consequently, it was easy to
transform the general algorithm into parallel versions of quicksort (Hoare
1961) and the fast Fourier transform (Cooley 1965; Brigham 1974; Brinch
Hansen 1991c).

The emphasis on the common paradigm enabled me to discover an unex-
pected similarity between these well-known algorithms. After programming
an iterative version of the fast Fourier transform, I suddenly realized that it
must also be possible to write a quicksort without a stack! In standard quick-
sort, the partition procedure divides an array into two slices of unpredictable
sizes. Why not replace this algorithm with the find procedure (Hoare 1971)
and use it to split an array into two halves? Then you don’t need a stack to
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remember where you split the array.
On the average, find is twice as slow as partition. That is probably the

reason why a balanced quicksort is seldom used for sequential computers.
However, on a multicomputer, the unpredictable nature of standard quick-
sort causes severe load imbalance (Fox 1988). If the two halves of a tree
machine sort sequences of very different lengths, half of the processors are
doing most of the work, while the other half are idle most of the time. As a
compromise, I used find in the parent nodes and partition in the leaf nodes.
Measurements show that the balanced parallel quicksort consistently runs
faster than the unbalanced algorithm.

I selected the divide-and-conquer paradigm to demonstrate that some
parallel computations are inherently inefficient. The average sorting time of
n elements is O(nlogn) on a sequential computer. A tree machine cannot
reduce the sorting time below the O(n) time required to input and output
the n elements through the root node. So, for problems of size n, the parallel
speed-up cannot exceed O(logn). No matter how many processors you use to
sort, say, a million numbers, they can do it only an order of magnitude faster
than a single processor. This modest speed-up makes divide-and-conquer
algorithms unsatisfactory for multicomputers with hundreds or thousands of
processors.

6 The Divide and Conquer Cube

I have never been enamored of hypercube architectures (Seitz 1985). I felt
that hypercube algorithms would be dominated by the problem of mapping
problem-oriented process configurations onto a hypercube. This prediction
turned out to be true, I think (Fox 1988). Hypercubes can probably be
made reasonably easy to use if they are supported by a library of program-
ming paradigms that hide the mapping problem from scientific users. But I
pity the professional programmers, who will have to cope with the awkward
details of paradigm implementation.

In the future, most parallel architectures will almost certainly support
automatic routing of messages between any pair of nodes. Although the
hardware architecture may be a hypercube, this structure will be transpar-
ent to the programmer, who will define abstract configurations of nodes
connected by virtual channels (May 1988; Valiant 1989). In the meantime,
reconfigurable multicomputers are a reasonable compromise.

On a general-purpose multicomputer, a programmer may, of course,
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choose the hypercube as a programming paradigm in its own right. So,
I was curious to find out if a hypercube sorts faster than a tree machine.
Figure 4 shows a cube with eight processor nodes.
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Figure 4 Data distribution in a cube.

First, node 0 inputs n numbers, splits them into two halves, sends one
half to node 1, and keeps the other half. Then nodes 0 and 1 each split their
halves into quarters. Finally, nodes 0, 1, 2, and 3 each keep an eighth of the
numbers and sends the other eighths to nodes 4, 5, 6, and 7. All the nodes
now work in parallel while each of them sorts one eighth of the numbers.
Afterwards, nodes 0, 1, 2, and 3 each input a sorted sequence of size n/8
from their “children” and combine them with their own numbers to form
sorted sequences of size n/4. Nodes 0 and 1 repeat the combination process
and form sorted sequences of size n/2. At the end, node 0 outputs n sorted
numbers to its environment.

A larger hypercube follows the same general pattern of splitting a sorting
problem into smaller problems, solving them in parallel and combining the
results. Needless to say, the sorting algorithm can easily be replaced by a
fast Fourier transform.

On a hypercube, every node sorts a portion of the numbers. However, on
a tree machine, sorting is done by the leaf nodes only. In spite of this, I found
that a hypercube with 32 or more nodes sorts only marginally faster than a
tree machine of the same size. This conclusion was based on a performance
model verified by experiments (Brinch Hansen 1991e). The reason is simple.
On a large tree machine, the sorting time of the leaf nodes is small compared
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to the data distribution time of the remaining nodes. So there is is not much
gained by reducing the sorting time further.

7 Parallel Monte Carlo Trials

Monte Carlo methods are algorithms that use random number generators
to simulate stochastic processes. Probabilistic algorithms have been applied
successfully to combinatorial problems, which cannot be solved exactly be-
cause they have a vast number of possible solutions.

The most famous example is the problem of the traveling salesperson
who must visit n cities (Lawler 1985). No computer will ever be able to find
the shortest possible tour through 100 cities by examining all the 5× 10150

possible tours. For practical purposes, the problem can be effectively solved
by simulated annealing (Kirkpatrick 1983; Aarts 1989). This Monte Carlo
method has a high probability of finding a near-optimal tour of 100 cities
after examining a random sample of one million tours.

Fox et al. (1988) have shown that a hypercube can solve the traveling
salesperson problem by simulated annealing. Allwright and Carpenter (1989)
have solved the same problem on an array of transputers. These algorithms
use parallelism to speed up the annealing process.

After a while I noticed that papers on simulated annealing often included
remarks such as the following: “Our results [are] averaged over 20 initial
random tours” (Moscato 1989). When you think about it, it makes sense:
Due to the probabilistic nature of Monte Carlo methods, the best results are
obtained by performing the same computation many times with different
random numbers.

The advantage of using a multicomputer for parallel Monte Carlo trials is
obvious. When the same problem has been broadcast to every processor, the
trials can be performed simultaneously without any communication between
the processors. Consequently, the processor efficiency is very close to 1 for
non-trivial problems.

A straightforward implementation of the Monte Carlo paradigm requires
a master processor that communicates directly with p servers. Each pro-
cessor performs m/p trials. The master then collects the m solutions from
the servers. Unfortunately, most multicomputers permit each processor to
communicate with only a few neighboring processors. For p larger than, say,
4, the data must be transmitted through a chain of processors. The simplest
way to do this is to use a pipeline with p processors controlled by a master
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processor (Brinch Hansen 1992d).
I used this paradigm to compute ten different tours of 2500 cities simul-

taneously and select the shortest tour obtained (Brinch Hansen 1992a).
My second application of the paradigm was primality testing of a large

integer, which is of considerable interest in cryptography (Rivest 1978). It
is not feasible to determine whether or not a 150-digit integer is a prime by
examining all the 1075 possible divisors. The Miller–Rabin algorithm tests
the same integer many times using different random numbers (Rabin 1980).
If any one of the trials shows that a number is composite, then this is the
correct answer. However, if all trials fail to prove that a number is composite,
then it is almost certainly prime. The probability that the algorithm gives
the wrong answer after, say, 40 trials is less than 10−24.

I programmed the Miller–Rabin algorithm in occam and used the Monte
Carlo paradigm to perform 40 tests of a 160-digit random number simulta-
neously on 40 transputers (Brinch Hansen 1992b).

For primality testing, I had to program multiple-length arithmetic. These
serial operations imitate the familiar paper-and-pencil methods. I thought
it would be easy to find a textbook that includes a simple algorithm for
multiple-length division with a complete explanation. Much to my surprise,
I was unable to find such a book. I ended up spending weeks on this “well-
known” problem and finally wrote a tutorial that includes a complete Pascal
algorithm (Brinch Hansen 1992c). I mention this unexpected difficulty to
illustrate what happens when a standard algorithm is not published as a
well-structured program in an executable language.

8 Parallel Cellular Automata

A cellular automaton is a discrete model of a system that varies in time and
space. The discrete space is an array of identical cells, each representing a
local state. As time advances in discrete steps, the system evolves according
to universal laws. Every time the clock ticks, the cells update their states
simultaneously. The next state of a cell depends only on the current states
of the cell and its nearest neighbors.

John von Neumann (1966) and Stan Ulam (1986) introduced cellular
automata to study self-reproducing systems. John Conway’s game, Life,
is undoubtedly the most widely known cellular automaton (Gardner 1970).
Another well-known automaton simulates the life cycles of sharks and fish
on the imaginary planet Wa-Tor (Dewdney 1984).
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Cellular automata can simulate continuous physical systems described by
partial differential equations. The numerical solution of, say, Laplace’s equa-
tion by grid iteration is really a discrete simulation of heat flow performed
by a cellular automaton.

Fox et al. (1988) described a Wa-Tor simulator for a hypercube. Numer-
ical solution of Laplace’s equation on multicomputers has been discussed by
Barlow and Evans (1982), Evans (1984), Pritchard et al. (1987), Saltz et al.
(1987), and Fox et al. (1988).

I developed and published a model program for parallel execution of a
cellular automaton on a multicomputer configured as a matrix of processors
(Fig. 5).

Figure 5 Processor matrix.

The combined state of a cellular automaton is represented by an n × n
grid. The q × q processors hold subgrids of size n/q × n/q. In each step,
every node exchanges boundary values with its four nearest neighbors (if
any). The nodes then update their subgrids simultaneously. At the end of
a simulation, the nodes output their final values to a master processor that
assembles a complete grid.

The shared boundary values raise the familiar concern about time-depen-
dent errors in parallel programs. Race conditions are prevented by assigning
a binary parity to every grid element. Even and odd elements are updated in
two separate phases (Barlow 1982). Deadlock is prevented by letting every
node communicate simultaneously with its four neighbors (Brinch Hansen
1992f).

The only parts of the parallel program that vary from one application to
another are the possible states of the cells and the state transition function.

I have used a 6 × 6 matrix of transputers to simulate a forest fire on a
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480× 480 grid. Every element represents a tree that is either alive, burning,
or dead. In each step, the next state of every tree is defined by probabilistic
rules (Bak 1990).

I used the same paradigm to solve Laplace’s equation for equilibrium
temperatures in a square region with fixed temperatures at the boundaries.
Every element represents the temperature at a single point in the region.
In each step, the temperature of every interior element is replaced by a
weighted sum of the previous temperature and the average of the surrounding
temperatures (Brinch Hansen 1992e). In numerical analysis, this method is
known as successive overrelaxation with parity ordering (Young 1971; Press
1989). The parallel program used 6×6 transputers to solve the heat equation
on a 1500× 1500 grid.

9 Program Characteristics

After studying the paradigms separately, it is instructive to consider what
they have in common.

I was surprised by the specialized nature of some of the paradigms (Ta-
ble 1). It may well be that some of them apply to only a small number of
problems. To me that is a minor concern. The essence of the programming
method is that you attempt to write two or more programs simultaneously.
The intellectual discipline required to do this seems almost inevitably to
produce well structured programs that are easy to understand.

The model programs illustrate programming methods for a variety of
multicomputer architectures (Table 2). The reconfigurable Computing Sur-
face was ideal for this purpose.

If a parallel architecture is not reconfigurable, it may be necessary to
reprogram some of the paradigms. However, since all instances of a para-
digm have the same sequential control structure, you know that if you can
implement any one of them on a parallel architecture, the rest will turn out
to be variations of the same theme.

Every program has a parallel component that implements a paradigm and
a sequential component for a specific application (Table 3). The paradigm
typically accounts for 60% of a program and is the most difficult part to
write.

To make the programs readable, I divided them into short procedures of
10–20 lines each. No procedure exceeds one page of text (Table 4).

I have always found that a good description of a program is considerably
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Table 1 Paradigms.

Program Paradigm
Annealing Monte Carlo trials
Primality Monte Carlo trials
Multiply Multiplication
Paths Multiplication
Householder All-pairs
N -body All-pairs
FFT tree Divide-and-conquer
Sorting tree Divide-and-conquer
Sorting cube Divide-and-conquer
Laplace Cellular automata
Forest fire Cellular automata

Table 2 Architectures.

Program Architecture
Annealing Pipeline
Primality Pipeline
Multiply Pipeline
Paths Pipeline
Householder Pipeline
N -body Pipeline
FFT tree Tree
Sorting tree Tree
Sorting cube Cube
Laplace Matrix
Forest fire Matrix

longer than the program text (Table 5). Fifteen years ago, I put it this way:
“Programming is the art of writing essays in crystal clear prose and making
them executable” (Brinch Hansen 1977).

Table 6 illustrates the performance of the model programs on a Comput-
ing Surface in terms of the size of the problems solved and the speedup Sp
achieved by p processors running in parallel.
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Table 3 Program lengths.

Program Paradigm Application
(lines) (lines)

Annealing 150 200
Primality 150 520
Multiply 150 30
Paths 150 90
Householder 190 120
N -body 190 130
FFT tree 140 100
Sorting tree 140 80
Sorting cube 170 80
Laplace 280 30
Forest fire 280 60

Table 4 Procedure lengths.

Program Lines/procedure
Min Aver Max

Annealing 1 12 34
Primality 3 15 43
Multiply 6 12 28
Paths 6 14 28
Householder 8 18 50
N -body 2 12 26
FFT tree 6 14 24
Sorting tree 6 13 24
Sorting cube 6 13 29
Laplace 3 12 31
Forest fire 3 13 31
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Table 5 Program descriptions.

Program Program Report
(pages) (pages)

Annealing 8 20
Multiply 5 10
Householder 7 40
FFT tree 6 30
Laplace 7 40

Table 6 Program performance.

Program Problem size p Sp
Annealing 400 10 10
Primality 160 40 40
Multiply 1400× 1400 35 31
Householder 1250× 1250 25 20
N -body 9000 45 36
FFT tree 32768 31 4
Sorting tree 131072 31 3
Sorting cube 131072 8 2
Laplace 1500× 1500 36 34
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10 Programming Languages

As I was describing my first parallel paradigm, I became disenchanted with
occam as a publication language. To my taste, occam looks clumsy compared
to Pascal. (I hasten to add that I prefer occam to its competitors, Fortran,
C, and Ada.)

At the time, no programming language was suitable for writing elegant,
portable programs for multicomputers. As a compromise, I used Pascal ex-
tended with parallel statements and communication channels as a publication
language.

To avoid dealing with the obscure behavior of incorrect programs on
a multicomputer, I tested the parallel programs on a sequential computer.
Since my publication language was not executable, I rewrote the model pro-
grams in an executable Pascal dialect that includes parallel statements and
conditional critical regions. I used conditional critical regions to implement
message passing and tested the programs on an IBM-PC with 64 Kbytes of
memory.

When the parallel programs worked, I rewrote them in occam, changed
a few constants, and used them to solve much larger problems on a Com-
puting Surface with 48 transputers and 48 Mbytes of distributed memory.
Sometimes I used Joyce to run the same computation on an Encore Multi-
max, a multiprocessor with 16 processors and 128 Mbytes of shared memory
(Brinch Hansen 1987, 1989). The manual translation of correct readable
programs into occam or Joyce was a trivial task.

The ease with which I could express the model programs in three dif-
ferent programming languages and run them on three different computer
architectures prove that they are eminently portable.

The development of an executable publication language was a long-term
goal of my research. One of my reasons for writing the model programs
was to identify language features that are indispensable and some that are
unnecessary for parallel scientific computing.

The published paradigm for the tree machine includes a recursive proce-
dure that defines a tree of processes as a root process running in parallel with
two subtrees. A notation for recursive processes is essential for expressing
this idea concisely (Brinch Hansen 1990a). After using Joyce, I found the
lack of recursion in occam unacceptable.

So far I have not found it necessary to use a statement that enables a
process to poll several channels until a communication takes place on one
of them. I have tentatively adopted the position that non-deterministic
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communication is necessary at the hardware level in a routing network, but
is probably superfluous for scientific programming. It would be encouraging
if this turns out to be true, since polling can be inefficient (Brinch Hansen
1989).

In practice, programmers will often be obligated to implement programs
in complicated languages. However, wise programmers will prefer to develop
and publish their ideas in the simplest possible languages, even if they are
expected to use archaic or abstruse implementation languages for their final
software products. Since it is no problem to rewrite a model program in an-
other language, it is not particularly important to be able to use publication
and implementation languages on the same machine.

Nevertheless, I must confess that the relentless efforts to adapt the world’s
oldest programming language for parallel computing strike me as futile. A
quarter of a century ago, Alan Perlis boldly selected Algol 60 as the publica-
tion language for algorithms in Communications of the ACM. In response to
his critics, he said: “It is argued that more programmers now know Fortran
than Algol. While this is true, it is not necessarily relevant since this does
not increase the readability of algorithms in Fortran” (Perlis 1966).

Present multicomputers are difficult to program, because every program
must be tailored to a particular architecture. It makes no sense to me to
complicate hard intellectual work by poor notation. Nor am I swayed by the
huge investment in existing Fortran programs. Every generation of scientists
must reprogram these programs if they wish to understand them in depth
and verify that they are correct. And the discovery of new architectures will
continue to require reprogramming in unfamiliar notations that have not
been invented yet.

11 Research Method

It took me a year to study numerical analysis, learn multicomputer program-
ming, select a research theme, understand the development steps involved
and complete the first paradigm. From then on, every paradigm took about
one semester of research.

I followed the same steps for every paradigm:

1. Identify two computational problems with the same sequential control
structure.
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2. For each problem, write a tutorial that explains the theory of the
computation and includes a complete Pascal program.

3. Write a parallel program for the programming paradigm in a readable
publication language.

4. Test the parallel program on a sequential computer.

5. Derive a parallel program for each problem by trivial substitutions of a
few data types, variables and procedures, and analyze the complexity
of these programs.

6. Rewrite the parallel programs in an implementation language and mea-
sure their performance on a multicomputer.

7. Write clear descriptions of the parallel programs.

8. Rewrite the programs using the same terminology as in the descrip-
tions.

9. Publish the programs and descriptions in their entirety with no hidden
mysteries and every program line open to scrutiny.

The most difficult step is the discovery of paradigms and the selection
of interesting instances of these paradigms. This creative process cannot be
reduced to a simplistic recipe. Now that I know what I am looking for, I
find it helpful to browse through books and journals on the computational
aspects of biology, engineering, geology, mathematics and physics. When I
see an interesting problem I ask myself: “Is there any way this computation
can be regarded as similar to another one?” Luck clearly plays a role in
the search for paradigms. However, as the French philosopher Bernard de
Fontenelle (1657–1757) once observed: “These strokes of fortune are only for
those who play well!” So I keep on trying.

12 Conclusions

I have described a collection of model programs for computational science.
Every program is a realistic case study that illustrates the use of a paradigm
for parallel programming. A programming paradigm is a class of algorithms
that solve different problems but have the same control structure. The in-
dividual algorithms may be regarded as refinements of a general algorithm
that defines the common control structure.
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Parallel programming paradigms are elegant solutions to non-trivial prob-
lems:

1. Paradigms are beautiful programs that challenge your intellectual abil-
ities and programming skills.

2. A programming paradigm is a unifying concept that reveals unexpected
similarities between algorithms and raises new questions about familiar
algorithms.

3. Viewing a parallel algorithm as an instance of a paradigm enables you
to separate the issues of parallelism from the details of application.
This sharp distinction contributes to program clarity.

4. Every paradigm defines an effective programming style that becomes
part of your mental tool kit and enables you to apply previous insight
to new problems (Nelson 1987).

5. Paradigms serve as case studies that illustrate the use of structured
programming in scientific computing (Dijkstra 1972).

6. A commitment to publish paradigms as complete, executable programs
imposes an intellectual discipline that leaves little room for vague state-
ments and missing details. Such programs may serve as models for
other scientists who wish to study them with the assurance that every
detail has been considered, explained, and tested.

7. Model programs may also teach students the neglected art of program
reading (Wirth 1976; Mills 1988).

8. Parallel paradigms capture the essence of parallel architectures such as
pipelines, trees, hypercubes and matrices.

9. Parallel programs based on the same paradigm can be moved to dif-
ferent architectures with a reasonable effort by rewriting the general
program that defines the common control structure. The individual
programs can then be moved by making minor changes to the para-
digm (Dongarra 1989).

10. Since a paradigm defines a whole class of useful algorithms, it is an
excellent choice as a benchmark for parallel architectures.
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11. A collection of paradigms can provide valuable guidance for program-
ming language design (Floyd 1987). If the paradigms are rewritten in a
proposed notation, the readability of the programs will reveal whether
or not the language concepts are essential and concise.

After using this programming methodology for three years, the evidence
strikes me as overwhelming: The study of programming paradigms provides
an architectural vision of parallel scientific computing!
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