

INTERFERENCE CONTROL IN SUPERPASCAL

Process interference due to shared variables is a serious problem in parallel programs

written in insecure programming languages. The only effective remedy has been known

since the 1970s: a parallel programming language must be designed to permit detection

of process interference during compilation. This sound principle has seldom been adopted

and enforced consistently for block-structured parallel languages. This paper discusses

syntactic control of interference in SuperPascal, a block-structured programming language

for parallel scientific computing. SuperPascal omits the insecure concepts of Pascal, and

adds parallel statements and synchronous communication channels. Restrictions on the

use of variables permit a single-pass compiler to check that parallel processes are disjoint,

even if they use procedures with global variables.

1 INTRODUCTION

Scientific computer users are now facing the same problem that operat-
ing system designers encountered in the 1960s: How do we prevent time-
dependent errors that make parallel computations behave in a completely
erratic manner? This serious problem is also known as process interference.

If parallel processes update the same variable at unpredictable times,
the combined effect is time-dependent. Similarly, if two parallel processes
both attempt to send (or receive) messages through the same channel at
unpredictable times, the net effect is time-dependent. This paper discusses
process interference caused by variable conflicts but ignores interference due
to channel conflicts.

The effects of time-dependent errors are both unpredictable and irrepro-
ducible. Consequently, it is rarely possible to locate interference by program
testing. In the 1970s, a radical solution to this problem was proposed: a par-
allel programming language must be designed to permit detection of process
interference during compilation (Hoare 1972, Brinch Hansen 1973).

P. Brinch Hansen, Interference control in SuperPascal—A block-structured language par-
allel language. The Computer Journal 37, 5 (1994), 399–406. Copyright c© 1994, The
British Computer Society.

1

2 PER BRINCH HANSEN

Concurrent Pascal was the first programming language designed to per-
mit syntactic detection of process interference (Brinch Hansen 1975). The
key idea was modular parallelism. The variables and algorithm of a pro-
cess were combined into a syntactic unit. The scope rules made the local
variables of each module inaccessible to other modules.

Unfortunately, the simple modular approach to interference control has
not been widely adopted by a new generation of programmers who are ex-
ploiting parallelism in insecure extensions of Fortran, C and Pascal.

Although I regard the trend towards non-modular parallelism as a step
backwards, I also recognize it as another mountain to climb. So I will ap-
proach the interference problem from a different angle by asking the ques-
tion: Is it feasible to detect variable conflicts in a block-structured language
with non-modular parallelism? The answer is yes, provided the language has
certain pleasant properties:

1. Structured parallelism. It must be possible by scanning a program text
to identify all statements that may be executed in parallel.

2. Transparent contexts. It must be possible by scanning a program text
to identify all variables that may be updated or used as expression
operands during the execution of any statement.

3. Disjoint variables. Distinct variable identifiers occurring in the same
statement must denote distinct variables.

These properties are also helpful to a person who reads a program text.
I will discuss syntactic control of interference in SuperPascal, a block-

structured programming language for parallel scientific computing. Super-
Pascal omits the insecure concepts of Pascal and adds parallel statements
and synchronous communication channels (Welsh 1977, IEEE 1983, Brinch
Hansen 1994a, b). I will ignore communication and concentrate on making
parallel variable access secure. In SuperPascal, restrictions on the use of
variables permit a single-pass compiler to detect variable conflicts, even if
parallel processes use procedures with global variables.

My emphasis on single-pass compilation is a personal preference. A
language designed for single-pass compilation enables both compilers and
programmers to read program texts from the beginning without forward
references. The challenge of language design is to select a notation that of-
fers an abstract model of the essential properties of a computer. The right
compromise will simplify both programming and compilation. A language

INTERFERENCE CONTROL IN SUPERPASCAL 3

that requires multi-pass compilation with extensive optimization is, in my
opinion, a poor choice.

The general guidelines for extending a block structured language with
secure parallelism have been known for two decades but have seldom been
adopted and enforced consistently (Hoare 1971, 1972, Brinch Hansen 1973,
Inmos 1988. I will recapitulate these ideas and reach a surprising conclusion:
The selection of secure programming concepts for a block-structured parallel
language is dominated by the issue of interference control.

This is one of several publications that illustrate the merits of using
SuperPascal to publish parallel scientific algorithms in their entirety as ex-
ecutable programs expressed in a clear, secure notation.

In the language tutorial (Brinch Hansen 1994a), I argue that universi-
ties should adopt a common programming language for publication of pa-
pers and textbooks on parallel scientific computing. The programming lan-
guage Pascal has played a major role as a publication language for sequential
computing. Building on that tradition, I have developed SuperPascal as a
publication language for computational science. The tutorial also discusses
detection of channel conflicts and compares SuperPascal to occam (Inmos
1988).

The language report (Brinch Hansen 1994b) defines the parallel features
of SuperPascal concisely using the terminology and syntax notation of the
Standard Pascal report (IEEE 1983). The report also summarizes the dif-
ferences between SuperPascal and Pascal.

A collection of SuperPascal programs for computational science, summa-
rized in Brinch Hansen (1993), is described in detail in a forthcoming book
(Brinch Hansen 1994c). These programs have also been rewritten in the
implementation language occam and tested on a Computing Surface with 40
T800 transputers.

I have developed a portable implementation of SuperPascal on a Sun
workstation under Unix. It consists of a compiler and an interpreter written
in Pascal. You can obtain the SuperPascal software by using anonymous
FTP from the directory pbh at top.cis.syr.edu.

At Syracuse University, undergraduate and graduate students have used
the SuperPascal software in computational science courses.

2 PROCESSES AND VARIABLES

I begin by introducing some terminology. Every occurrence of a variable
access, an expression, a statement or a statement sequence is called a com-

4 PER BRINCH HANSEN

mand. The evaluation or execution of a command is called a process. A
structured process is a sequential or parallel composition of processes. The
components of a parallel composition are called parallel processes. As long
as they do not communicate, parallel processes proceed independently at
unpredictable speeds until all of them have terminated.

In a program text, an entire variable is a syntactic entity that has an
identifier, a type and a textual scope.

During recursive and parallel activations of a block, multiple instances
of the local variables exist. Each variable instance is a dynamic entity that
has a location, a current value, and a finite lifetime in memory.

The distinction between a variable as a syntactic entity in the program
text and a class of dynamic entities in memory is usually clear from the
context. Where it is : necessary, I will distinguish between syntactic variables
and variable instances.

I will impose the following requirement on a set of parallel processes P1,
P2, . . ., Pn:

The variable instances used by the n processes must be divided into
n+ 1 disjoint sets. Each process Pi has access to a set of variable instances
that may be updated and accessed by Pi only. The processes share a set of
variable instances that may be accessed, but not updated, by any of them.
Parallel processes that satisfy this requirement are called disjoint processes.

3 SYNTACTIC VARIABLES

3.1 Variable contexts

To facilitate the detection of variable conflicts, I associate a context of entire
variables with every command. An entire variable is a variable denoted by
an identifier only. The variable context of a command C consists of two sets
of entire variables, called the target and expression variables of C. If the
process denoted by C may assign a value to an entire variable v (or one of
its components), then v is a target variable of C. If the process may use the
value of v (or one of its components) as an operand, then v is an expression
variable of C. Since variable conflicts are detected during compilation, target
and expression variables are syntactic variables.

An entire variable may be both a target and an expression variable of
the same command.

Example: The target and expression variables of the assignment state-
ment

INTERFERENCE CONTROL IN SUPERPASCAL 5

x := x + y

are the sets {x} and {x, y}.

3.2 Structured variables

During compilation, it is generally impossible to distinguish between differ-
ent components of a structured variable. So I regard an operation on the
component of a variable as an operation on the entire variable. That is why
the concept of variable context is defined in terms of sets of entire variables.

Example: The target and expression variables of the assignment state-
ment

a[i] := a[j] − b[j]

are the sets {a} and {a, b, i, j}.

3.3 Structured commands

A compiler cannot predict whether or not a particular component of a con-
ditional statement will be executed, so I adopt the conservative rule that the
variable context of a structured command is the union of the contexts of its
components.

Example: The target and expression variables of the if statement

if x > y then x := x− y else y := y − x

are the sets {x, y} and {x, y}.

3.4 Pointer types

A compiler can only determine the variable context of a command if every
entire variable is declared in the program text. Since a pointer variable
x may refer to an undeclared variable xˆ pointer types are omitted from
SuperPascal.

6 PER BRINCH HANSEN

4 STRUCTURED PARALLELISM

4.1 Algorithmic parallelism

Algorithmic parallelism is parallel execution of different algorithms using
different data structures. It is expressed by parallel statements.

The effect of a parallel statement

parallel S1|S2| . . . |Sn end

is to execute the process statements S1, S2, . . ., Sn as parallel processes until
all of them have terminated.

Example: The parallel statement

parallel master(b,a)|pipeline(a,b) end

denotes parallel execution of a master process and a pipeline process. Each
process is defined by a procedure statement with two value parameters.

The following restriction ensures that a parallel statement defines disjoint
processes: in a parallel statement, a target variable of one process statement
cannot be a target or an expression variable of another process statement.

Example: The parallel statement

parallel x := 1|y := 2 end

denotes disjoint processes (provided x and y are not aliases of the same
syntactic variable).

Example: The parallel statement

parallel a[i] := 1|a[j] := 2 end

is incorrect because the array variable a is a target variable of both process
statements.

Example: The parallel statement

parallel i := j + 1|a[i] := a[j] end

is incorrect because i is a target variable of the first process statement and
an expression variable of the second process statement.

INTERFERENCE CONTROL IN SUPERPASCAL 7

4.2 Data parallelism

Data parallelism is parallel execution of the same algorithm applied to dif-
ferent parts of the same data structure. It is expressed by forall statements.

A forall statement

forall i := e1 to e2 do S

denotes a (possibly empty) array of parallel processes, called element pro-
cesses, and a corresponding range of values, called process indices. The lower
and upper bounds of the index range are denoted by two expressions, e1 and
e2, of the same simple type. Every index value corresponds to a separate
element process defined by an index variable i and an element statement S.

The index variable declaration

i := e1 to e2

introduces the variable i that is local to S.
A forall statement is executed as follows:

1. The expressions e1 and e2 are evaluated. If e1 > e2, the execution of
the forall statement terminates; otherwise, step 2 takes place.

2. e2− e1 + 1 element processes run in parallel until all of them have ter-
minated. Every element process creates a local instance of the index
variable i, assigns the corresponding process index to the variable, and
executes the element statement S. When an element process termi-
nates, its local instance of the index variable ceases to exist.

Example: The forall statement

forall i := 1 to p do
node(i, c[i− 1], c[i])

denotes parallel execution of identical processes with indices from 1 to p.
Each process is defined by a procedure statement with three value parame-
ters.

If the element statement has a target variable, the parallel processes
may share a single instance of this variable in a time-dependent manner. To
prevent this kind of interference, I impose a severe restriction: in a forall
statement, the element statement cannot use target variables.

8 PER BRINCH HANSEN

This restriction implies that a process array must output its results
through a communication channel or a file. Otherwise, the results will be
lost when the element processes terminate and their local variables cease to
exist.

Example: The forall statement

forall i := 1 to n do a[i] := 0

is incorrect because the array variable a is a target variable of the element
statement.

Example: The forall statement

forall i := 1 to n do i := i + 1

is incorrect because the index variable i is a target variable of the element
statement.

Example: The forall statement

forall i := 1 to i + 1 do S

is incorrect because the index variable i is unknown outside the element
statement S.

4.3 Goto statements

The syntax of the parallel and forall statements makes it easy to scan a
program text and recognize statements that may be executed in parallel.
However, if you permit arbitrary jumps in statements, a compiler cannot
always determine whether certain statements may be executed in parallel.
Consequently, goto statements and labels are omitted from SuperPascal.

5 PROCEDURES

5.1 Global variables

The use of global variables in procedures complicates syntactic detection of
process interference considerably.

Example: In procedure P , the global variable x and the variable param-
eter y are target variables of different process statements:

INTERFERENCE CONTROL IN SUPERPASCAL 9

var x: integer;

procedure P (var y: integer);
begin

parallel x := 1|y := 2 end
end;

If the identifiers x and y denote distinct variables, the parallel statement
defines disjoint processes. However, if the global variable x occurs as an
actual parameter in a procedure statement P (x), the parallel statement is
incorrect because the identifiers x and y now refer to the same variable.

Example: In procedure Q, the global variable x is an expression variable
of one process statement, and the variable parameter y is a target variable
of another process statement:

var x: integer;

procedure Q(var y: integer);
begin

parallel write(x)|y := 1 end
end

If the global variable x occurs as an actual parameter in a procedure state-
ment Q(x), the parallel statement is incorrect because the identifiers x and
y are aliases of the same variable.

Variable aliasing violates the sound principle that distinct variable iden-
tifiers used in the same statement should denote distinct syntactic variables.
To discuss the aliasing problem concisely, I need more terminology.

Consider a procedure P with the statement part S. An implicit parame-
ter of P is an entire variable v that is global to P and is part of the variable
context of S.If v is a target variable of S, then v is an implicit variable pa-
rameter of P .If v is an expression variable of S, then v is an implicit value
parameter of P . The implicit parameters of a procedure P are also regarded
as implicit parameters of every procedure statement that denotes activation
of P. So, the actual parameters of a procedure statement are the explicit pa-
rameters that occur in the actual parameter list and the implicit parameters
of the corresponding procedure.

Using this terminology, I define a restriction that prevents the aliasing
problems illustrated by the two previous examples: an implicit parameter of
a procedure statement S cannot occur as an explicit variable parameter in S.

10 PER BRINCH HANSEN

This rule is a special case of a more general restriction that will be imposed
later.

An entire variable v is a target variable of a procedure statement S if v
(or one of its components) is an explicit variable parameter of S, or if v is
an implicit variable parameter of S.

The rules of implicit parameters imply that one procedure can inherit
the implicit parameters of another procedure.

Example: Procedure Q has an implicit variable parameter x. Since pro-
cedure P contains the procedure statement Q(a + 1), x is a target variable
of the statement part of P . And, since x is global to P , x is also an implicit
variable parameter of P .

var x: integer;

procedure Q(b: integer);
begin x := b end;

procedure P (a: integer);
begin Q(a+ 1) end;

This insight reveals that the parallel statement

parallel x := 1 |P (1) end

is incorrect because x is a target variable of both process statements. Notice
that x is a target variable of the procedure statement P (1), although x does
not occur in the statement.

5.2 Procedural parameters

I assume that a compiler has determined the variable context of any com-
mand C when it reaches the end of C. However, in general, a single-pass
compiler cannot detect the implicit parameters of procedural parameters.

Example: When a single-pass compiler reaches the procedure statement
Q in procedure P , the procedural parameter Q is unknown:

INTERFERENCE CONTROL IN SUPERPASCAL 11

var x: 1nteger;

procedure P (procedure Q);
begin Q end;

procedure R;
begin x := 1 end;

P (R)

In general, Q varies from one activation of P to another. For the activation
P (R), the procedural parameter Q denotes procedure R, which uses x as an
implicit variable parameter.

The simplest solution to this problem is to omit procedural parameters
from SuperPascal.

5.3 Recursive procedures

A single-pass compiler cannot always detect the implicit parameters of re-
cursive procedures.

Example: When a single-pass compiler reaches the parallel statement in
procedure P , it has not yet scanned the rest of P :

var x: integer;

procedure P (y: integer);
begin

if y > 2 then
parallel P (y − 1)|P (y − 2) end

else x := y
end;

At this point the compiler is unable to detect that x is an implicit variable
parameter of P , which means that x is a shared target variable of the parallel
recursive activations of P .

I solve this problem, too, by outlawing it: a recursive procedure cannot
use implicit parameters. To enforce this restriction, the compiler must be
able to detect recursion.

If the heading of a procedure precedes every use of the procedure identi-
fier in the program text, there are only two possible forms of recursion, both
of which are easy to detect. Either a procedure P activates itself

12 PER BRINCH HANSEN

procedure P ;
begin P end;

or a procedure Q activates a surrounding procedure P which, in turn, acti-
vates Q recursively

procedure P ;
procedure Q;
begin P end;

begin Q end;

In either case, an activation of a procedure P is recursive if the corresponding
procedure statement occurs within the declaration of P .

5.4 Forward declarations

Forward declarations of procedures make syntactic detection of recursion
impossible during single-pass compilation.

Example: During compilation of procedure P it cannot be determined
that procedures P and Q are mutually recursive:

procedure Q; forward;
procedure P ; begin Q end;
procedure Q; begin P end;

Again, I eliminate the problem by omitting forward declarations from
SuperPascal.

5.5 File procedures

When you consider the complications introduced by implicit parameters, it
is tempting to exclude them altogether. I have not done that. Part of the
challenge of extending a block-structured language with secure parallelism
is to face the problems of global variables head-on.

The issue can hardly be ignored, since even the required procedures of
Pascal use implicit parameters. In Pascal, the required textfile input is
an implicit variable parameter of any read statement that omits the file
identifier. The required textfile output is an implicit variable parameter of
any write statement that omits the file identifier. This convention enables a
compiler to prevent simultaneous access to the same file.

Example: The parallel statement

INTERFERENCE CONTROL IN SUPERPASCAL 13

parallel write(x)|writeln end

is incorrect because the file output is a target variable of both process state-
ments.

5.6 Variable parameters

Formal variable parameters are another potential source of variable aliasing.

Example: The parallel statement in procedure P is incorrect if the vari-
able parameters x and y denote the same actual parameter:

procedure P (var x, y: integer);
begin

parallel x := 1|y := 2 end
end

This happens if the same variable z occurs twice in a procedure statement
P (z, z)

This loophole is plugged by introducing a new concept and a stronger
restriction for procedure statements: the restricted actual parameters of a
procedure statement are the explicit variable parameters that occur in the
statement and the implicit parameters of the corresponding procedure block.
The restricted actual parameters of a procedure statement must be distinct
entire variables (or components of such variables).

Example: The exchange of the values of two array elements a[i] and a[j]
cannot be denoted by a procedure statement

swap(a[i], a[j])

in which the array variable a occurs twice as an actual variable parameter.
It can, however, be expressed by a procedure statement with the actual
variable parameter a and the value parameters i and j:

swap(a, i, j)

14 PER BRINCH HANSEN

6 FUNCTIONS

6.1. Variable parameters

Functions with side-effects complicate the meaning of even the most elemen-
tary concepts in a programming language. Such a language does not even
have the algebraic property that e = e for any expression e.

Example: The function f has an implicit variable parameter x:

var x: integer;

function f(y: integer): integer;
begin x := x + y; f := x end;

The function designator f(1) is an expression with the sad property that
f(1) <> f(1).

Example: The function f has an explicit variable parameter x:

function f(var x: integer): integer;
begin x := x + 1; f :- x end;

The function designator f(y) uses an actual variable parameter y. For this
expression, you also have f(y) <> f(y).

A function concept that does not satisfy the fundamental rules of arith-
metic expressions is an absurd choice for a language designer who is striving
for simplicity. The choice is clear. I need simple rules to prevent side-effects
of functions:

1. A function cannot have implicit or explicit variable parameters.

2. A function cannot use required or declared procedures.

The second rule prevents indirect side-effects due to message communi-
cation and file input/output.

6.2 File functions

I am still left with one question: Should I permit functions to use global
variables as implicit value parameters?

The answer is yes, for the simple reason that some required functions of
Pascal already use such parameters. The required textfile input is an implicit

INTERFERENCE CONTROL IN SUPERPASCAL 15

value parameter of any eof (or eoln) function designator that omits the file
identifier.

Example: The parallel statement

parallel
read(x)|if eof then writeln

end

is incorrect, because the file input is a target variable of the first process
statement and an expression variable of the second process statement.

6.3 Function results

Finally, when the identifier of a function occurs on the left side of an assign-
ment operator in the statement part of the function block, I regard it as the
identifier of a local target variable that holds the function result. This con-
vention facilitates the detection of a meaningless attempt to assign multiple
values to the same function designator.

Example:

function f(x: integer): integer;
begin

parallel f := x|f := 2 ∗ x end
end

7 TARGET AND EXPRESSION VARIABLES

A command denotes a process that uses a set of target variables and a set
of expression variables. I am now ready to give concise recursive definitions
of these two sets of entire variables.

An entire variable is a variable denoted by one of the following kinds of
identifiers:

1. A variable identifier introduced by a variable declaration or a forall
statement.

2. A function identifier that occurs as the left part of an assignment
statement in the statement part of the corresponding function block.

An entire variable v is a target variable of a command C in the following
cases:

16 PER BRINCH HANSEN

1. The variable identifier v occurs in an assignment statement C that
denotes assignment to v (or one of its components).

2. The variable identifier v occurs in a for statement C that uses v as the
control variable.

3. The variable identifier v occurs in a procedure statement C that uses
v (or one of its components) as an actual variable parameter.

4. The variable v is an implicit variable parameter of a procedure block
B and C is a procedure statement that denotes activation of B.

5. The variable v is a target variable of a command D and C is a struc-
tured command that contains D.

An entire variable v is an expression variable of a command C in the
following cases:

1. The variable identifier v occurs in an expression C that uses v (or one
of its components) as an operand.

2. The variable identifier v occurs in the element statement C of a forall
statement that introduces v as the index variable.

3. The variable v is an implicit value parameter of a function block B
and C is a function designator that denotes activation of B.

4. The variable v is an implicit value parameter of a procedure block B
and C is a procedure statement that denotes activation of B.

5. The variable v is an expression variable of a command D and C is a
structured command that contains D.

8 UNRESTRICTED STATEMENTS

I have imposed the following restrictions on the use of variables and proce-
dure statements, parallel statements and forall statements:

1. In a procedure statement, the restricted actual parameters must be
distinct entire variables (or components of such variables).

2. In a parallel statement, a target variable of one process statement can-
not be a target or an expression variable of another process statement.

INTERFERENCE CONTROL IN SUPERPASCAL 17

3. In a forall statement, the element statement cannot use target vari-
ables.

Occasionally, it is necessary to override these restrictions on variable
access to define operations on distinct elements of the same array.

An unrestricted statement

[sic] S

is a statement S prefixed by a sic clause. The above restrictions do not apply
to unrestricted statements. Consequently, the programmer must prove that
every unrestricted statement preserves the disjointness of parallel processes;
otherwise the semantics of unrestricted statements are beyond the scope of
the language definition.

Examples:

[sic] {i <> j}
swap(a[i], a[j])

[sic] {i <> j}
parallel a[i] := 1|a[j] := 2

[sic] {disjoint elements a[i]}
forall i := 1 to n do a[i] := 0

If a parallel program is written in a language without interference control,
the programmer is completely responsible for avoiding variable conflicts. In
SuperPascal, disjoint parallelism is the default and insecure parallelism is
the exception. The syntax of unrestricted statements clearly marks the few
places where the programmer has the obligation to prove disjointness.

9 CONCLUSION

The design of SuperPascal was guided by two objectives:

1. Simplicity. Derive an elegant programming language for parallel scien-
tific computing by adding a minimal number of concepts to the block-
structured language Pascal.

2. Security. Impose additional restrictions on the programming concepts
of Pascal to permit a single-pass compiler to check that parallel pro-
cesses are disjoint.

18 PER BRINCH HANSEN

Simplicity was achieved by extending Pascal with three concepts only:
parallel statements, forall statements and synchronous communication chan-
nels.

Security was ensured by imposing additional restrictions on procedures
and functions and omitting some features of Pascal:

1. The explicit variable parameters and the implicit parameters of a pro-
cedure statement cannot be aliases.

2. Recursive functions and procedures cannot use global variables.

3. Functions cannot update global variables and cannot use variable pa-
rameters or procedure statements.

4. Procedures and functions cannot use procedures and functions as pa-
rameters.

5. Forward declarations of procedures and functions cannot be used.

6. Pointer types cannot be used.

7. Goto statements and labels cannot be used.

These were the most difficult choices made in the design of SuperPas-
cal. The only remaining task was to eliminate well-known ambiguities and
insecurities of Pascal.

So, I draw the following conclusion: the selection of secure programming
concepts for a block-structured parallel language is dominated by the issue of
interference control.

Acknowledgements

I thank Steve Cooper, Jonathan Greenfield, Peter O’Hearn, Dave Parnas
and the anonymous referees who helped me improve this paper.

References

Brinch Hansen, P. (1973) Operating System Principles. Prentice-Hall, Englewood Cliffs,
NJ.

Brinch Hansen, P. (1975) The programming language Concurrent Pascal. IEEE Transac-
tions on Software Engineering 1, 199-207.

Brinch Hansen, P. (1993) Model programs for computational science: a programming
methodology for multicomputers. Concurrency—Practice and Experience 5, 407-423.

INTERFERENCE CONTROL IN SUPERPASCAL 19

Brinch Hansen, P. (1994a) SuperPascal—a publication language for parallel scientific com-
puting. Concurrency—Practice and Experience 6, to appear.

Brinch Hansen, P. (1994b) The programming language SuperPascal. Software—Practice
and Experience 24, 467–483.

Brinch Hansen, P. (1994c) Studies in Computational Science, to appear.

Hoare, C. A. R. (1971) Procedures and parameters: an axiomatic approach. Lecture Notes
in Mathematics 188, 102–116.

Hoare, C. A. R. (1972) Towards a theory of parallel programming. In Hoare, C. A. R. and
Perrott, R. H. (eds.) Operating Systems Techniques, Academic Press, New York.

IEEE (1983) IEEE Standard Pascal Computer Programming Language. IEEE, New York.

Inmos (1988) occam2 Reference Manual. Prentice-Hall, Englewood Cliffs, NJ.

Welsh, J., Sneeringer, W. J. and Hoare, C. A. R. (1977) Ambiguities and insecurities in
Pascal. Software—Practice and Experience 7, 685–696.

