

SHARED CLASSES

PER BRINCH HANSEN

(1973)

The author discusses the close relationship between data and operations and

suggests that a compiler should be able to check that data structures are ac-

cessed by meaningful procedures only. This idea leads to the introduction of

shared classes—a programming notation for the monitor concept. The nota-

tion is illustrated by a message buffer for concurrent processes.

We will discuss the close relationship between data and operations and use
it to define a very important form of resource protection.

If we consider variables of primitive types such as integer and boolean, it
is quite possible that values of different types will be represented by identical
bit strings at the machine level. For example both the boolean value true
and the integer value 1 might be represented by the bit string

000...001

in single machine words.
So data of different types are distinguished not only by the representa-

tion of their values, but also by the operations associated with the types.
An integer, for example, is a datum subject only to arithmetic operations,
comparisons, and assignments involving other data subject to the same re-
strictions.

Now consider structured types. Take for example a variable that repre-
sents a message buffer which contains a sequences of messages sent, but not
yet received. A static picture of process communication can be defined by

P. Brinch Hansen, Operating System Principles, Section 7.2 Class Concept, Prentice Hall,
Englewood Cliffs, NJ, (July 1973), 226–232. Copyright c© 2001 Per Brinch Hansen.

1

2 PER BRINCH HANSEN

assertions about the relationships of the components of the message buffer.
But to understand how and when messages are exchanged dynamically, one
must also study the send and receive procedures defined for a message buffer.
These operations in turn are only meaningful for the particular representa-
tion of the message buffer chosen and can only be understood precisely by
studying its type definition.

These examples illustrate the point made by Dahl (1972): “Data and
operations on data seem to be so closely connected in our minds, that it
takes elements of both kinds to make any concept useful for understanding
computing processes.”

Simon (1962) has pointed out that the search for state and process
descriptions of the same phenomenon is characteristic of problem solving:
“These two modes of apprehending structure are the warp and weft of our
experience. Pictures, blueprints, most diagrams, chemical structural for-
mulae are state descriptions. Recipes, differential equations, equations for
chemical reactions are process descriptions. The former characterize the
world as sensed; they provide the criteria for identifying objects, often by
modeling the objects themselves. The latter characterize the world as acted
upon; they provide the means for producing or generating objects having
the desired characteristics.”

“The distinction between the world as sensed and the world as acted
upon defines the basic condition for the survival of adaptive organisms. The
organism must develop correlations between goals in the sensed world and
actions in the world of process.”

In Section 2.6 on program construction, I have illustrated this alternation
between a refinement of data (representing states) and program (representing
processes). The essence of this form of problem solving is the following:

When a programmer needs a concept such as process communication, he
first postulates a set of operations (in this case, send and receive) that have
the desired effect at his present level of thinking. Later, he chooses a specific
representation of a data structure (a message buffer), that enables him to
implement the operations efficiently on the available machine.

When the programmer is trying to convince himself of the correctness
of a program (by formal proof or testing), he will tacitly assume that these
operations (send and receive) are the only ones carried out on data structures
of this type (message buffers).

If other statements in his program are able to operate on message buffers,
he cannot make this assumption. The most extreme case is unstructured ma-

SHARED CLASSES 3

chine language, which potentially permits each statement to influence any
other statement, intentionally or by mistake. This makes program verifica-
tion an endless task since one can never be sure, when a new component is
added to a large program, how this will influence previously tested compo-
nents.

If, on the other hand, the previous assumption is justified, the program-
mer can convince himself of the correctness of process communication by
studying only the type definition of a message buffer and the procedures send
and receive. Once this program component has been shown to be correct,
the designer can be confident that subsequent addition of other components
will not invalidate this proof. This makes the task of verification grow lin-
early with the number and size of components—an essential requirement for
the design of large, reliable programs.

According to the previous definition, it is an obvious protection problem
to check that data are accessed by operations consistent with their type.
To what extent do the structures of present high-level languages enable a
compiler to do this?

A decent compiler for an algorithmic language such as Fortran, Algol 60,
or Pascal will check the compatibility of data and operations on them for
primitive types (Naur 1963). The compiler can do this because the permis-
sible operations on primitive types are part of the language definition.

But in the case of structured types, only the most rudimentary kind of
checking is possible with these languages. All the compiler can check is that
data in assignment statements and comparisons for equality are of the same
type. But, since the languages mentioned do not enable the programmer
to associate a set of procedures with a type definition, the compiler cannot
check whether the operations on a message buffer are restricted to send
and receive procedures as intended by the programmer. This is a serious
deficiency of most programming languages available today.

An exception is the Simula 67 language (Dahl 1968), an extension of
Algol 60 originally designed for simulation. In Simula 67, the definition of
a structured data type and the meaningful operations on it form a single,
syntactical unit called a class.1

I will briefly describe a simplified, restricted form of the Simula 67 class
concept in a Pascal-inspired notation.

The notation

1Readers of the Pascal report by Wirth (1971) should notice that the Simula class
concept is completely unrelated to the Pascal class concept.

4 PER BRINCH HANSEN

class T = v1: T1; v2: T2; . . . ; vm: Tm;

procedure P1(. . .) begin S1 end
· · ·
procedure Pn(. . .) begin Sn end

begin S0 end

defines: (1) a data structure of type T consisting of the components v1, v2,
. . ., vm of types T1, T2, . . ., Tm; (2) a set of procedures (or functions), P1,
P2, . . ., Pn that operate on the data structure; and (3) a statement S0 that
can define its initial value.

A variable v of type T is declared as usual:

var v: T

Upon entry to the context in which the variable v is declared, storage is
allocated for its components v1, v2, . . ., vm, and the initial statement S0 is
carried out for this variable.

A call of a procedure Pi on the variable v is denoted:

v.Pi(. . .)

Procedure Pi can refer to the components v1, v2, . . ., vm of v, to its own
local variables, and to the parameters of the given call. The operations P1,
P2, . . ., Pn are the only ones permitted on the variable v.

An obvious idea is to represent critical regions by the concept shared
class, implying that the operations P1, P2, . . ., Pn on a given variable v of
type T exclude one another in time.

The concept message buffering is defined as a shared class in Algorithm 1.
A buffer variable b and a message variable t are declared and accessed as
follows:

var b: B; t: T;

b.send(t) b.receive(t)

Strictly speaking, assignment to a message parameter m can only be
made within the class B if its type T is primitive. But it seems reasonable
to retain the simple type definition

type T = <type>

SHARED CLASSES 5

shared class B =
buffer: array 0..max−1 of T;
p, c: 0..max−1;
full: 0..max;

procedure send(m: T);
begin

await full < max;
buffer[p] := m;
p := (p + 1) mod max;
full := full + 1;

end

procedure receive(var m: T);
begin

await full > 0;
m := buffer[c];
c := (c + 1) mod max;
full := full − 1;

end

begin p := 0; c := 0; full := 0 end

Algorithm 1 Representation of a
message buffer by a shared class.

to indicate that variables of this type can be accessed directly.
The class concept in Simula 67 has several other aspects, among them a

mechanism for defining a hierarchy of classes (Dahl 1972). My main purpose
here is to show a notation which explicitly restricts operations on data and
enables a compiler to check that these restrictions are obeyed. Although such
restrictions are not enforced by Simula 67, this would seem to be essential
for effective protection.

Many computers support a restricted form of shared class at the ma-
chine level of programming. I am referring to the basic monitor procedures
and data structures which control the sharing of processors, storage, and
peripherals at the lowest level of programming. This class concept enforced
at run time is implemented as follows: The address mapping performed by
a central processor prevents computations from referring directly to data
structures belonging to the basic monitor, but permits them to call a well-

6 PER BRINCH HANSEN

defined set of monitor procedures. Mutual exclusion in time of such calls
is achieved by means of an arbiter and by delaying interrupt response. To
prevent computations from bypassing the monitor and referring directly to
physical resources, the central processor recognizes two states of execution:
the privileged state, in which all machine instructions can be executed; and
the user state, in which certain instructions cannot be executed (those that
control program interruption, input/output, and address mapping). The
privileged state is entered after a monitor call; the user state is entered after
a monitor return.

In Chapter 1 I said “It is now recognized that it is desirable to be able
to distinguish in a more flexible manner between many levels of protection
(and not just two).” We have seen that it is indeed desirable to be able
to enforce a separate set of access rules for each data type used. The class
concept is a general structuring tool applicable at all levels of programming,
sequential as well as concurrent.

The class concept was introduced here to protect local data structures
within a program against inconsistent operations. But the concept is appli-
cable also to data structures which are retained within the computer after
the termination of computations.

One example of retained data structures are those used within an operat-
ing system to control resource sharing among unrelated computations. These
data structures must be accessed only through well-defined procedures; oth-
erwise, the operating system might crash. So an operating system defines
a set of standard procedures which can be called by computations. Since
these procedures remain unchanged over reasonable periods of time, a com-
piler should be able to use a description of them to perform type checking
of calls of them within user programs in advance of their execution.

We are thus lead to the idea of maintaining data structures defining
environments of compilation and execution. An environment defines a set of
retained data structures and procedures accessible to a given computation.

Another example of retained data structures are files stored semiperma-
nently on backing stores. In most present file systems, a computation can
either be denied access to a given file or be permitted to read, write, or ex-
ecute it. This seems a rather crude distinction. In most cases, a data file is
intended to be used only in a particular manner; for example, a source text
of a program is intended to be edited or compiled by a particular compiler;
most other operations on it may be entirely meaningless from the user’s point
of view. To maintain the integrity of a file, its creator should therefore be

SHARED CLASSES 7

able to associate it with a set of procedures through which it can be accessed
in a meaningful manner. This is possible, for example, in the file system for
the B5500 computer (McKeag 1971).

Assuming that this set of procedures remains unchanged over reasonable
periods of time, it would again be possible to check the consistency of refer-
ences to files within user programs at compile time. The basic requirement
is that the access rules remain fixed between compilation and execution of
programs.

Such a system differs from the present ones in two aspects: (1) a program
is compiled to be executed in a particular environment; and (2) a compiled
program may become invalid if its environment changes. This is acceptable
only if most programs are compiled shortly before execution or if they oper-
ate in a fairly constant environment. The benefits of this approach would be
an early detection of program errors and a more efficient execution because
fewer protection rules would have to be checked dynamically.

References

Dahl, O.-J., Myhrhaug, B., and Nygaard, K. 1968. Simula 67—common base language.
Norsk Regnesentral, Oslo, Norway, (May).

Dahl, O.-J., and Hoare, C.A.R. 1972. Hierarchical program structures. In Structured
Programming, O.-J. Dahl, E.W. Dijkstra, and C.A.R. Hoare, Eds., Academic Press,
New York, 175–220.

McKeag, R.M. 1971. Burroughs B5500 master control program. In Studies in Operating
Systems, R.M. McKeag and R. Wilson, Academic Press, New York, (1976), 1–66.

Naur, P. 1963. The design of the GIER Algol compiler. BIT 3, 2–3, 124–140 and 145–166.

Simon, H.A. 1962. The architecture of complexity. Proceedings of the American Philo-
sophical Society 106, 6, 468–482.

Wirth, N. 1971. The programming language Pascal. Acta Informatica 1, 1, 35–63.

