

BALANCING A PIPELINE

A pipeline for Householder reduction is folded several times across an array of processors

to achieve approximate load balancing. The performance of the folded pipeline is analyzed

and measured on a Computing Surface.

1 INTRODUCTION

Reduction of a matrix to triangular form plays a crucial role in the solu-
tion of linear equations. In this chapter, I analyze a pipeline algorithm for
Householder reduction (Brinch Hansen 1990). The pipeline is folded several
times across an array of processors to achieve approximate load balancing.

The pipeline inputs, transforms, and outputs a matrix, column by col-
umn. During the computation, the columns are distributed evenly among
the processors. The computing time per column decreases rapidly from the
first to the last column. So, the performance of the algorithm is limited
mainly by the order in which the columns are distributed among the proces-
sors.

The simplest idea is to store a block of columns with consecutive indices
in each processor (Ortega 1988). Block storage performs poorly because it
assigns the most time-consuming columns to a single processor and leaves
much less work for other processors.

It is much better to distribute the columns cyclically among the proces-
sors, so that each processor holds a similar mixture of columns. This storage
pattern is called wrapped mapping or scattered decomposition (Ortega 1988,
Fox 1988).

A third method is reflection storage where the columns are distributed
one at a time by going back and forth across the processors several times
(Ortega 1988).

The folded pipeline combines block and reflection storage. On a Com-
puting Surface with 25 transputers, the Householder pipeline achieves an
efficiency of 81% for a 1250×1250 real matrix.

P. Brinch Hansen, Studies in Computational Science, Chapter 5: Balancing a pipeline.
Prentice Hall, Englewood Cliffs, NJ, (March 1995), 90–100. Copyright c© 2001, Per Brinch
Hansen.

1

2 PER BRINCH HANSEN

The performance analysis applies not only to Householder reduction, but
also to Gaussian elimination and Givens reduction.

2 PIPELINE NODES

Figure 1 shows a pipeline which transforms an n×n matrix in n − 1 steps.
Each node of the pipeline holds q columns of the matrix and performs q of
the n − 1 steps. The number of nodes is (n − 1)/q, assuming that n − 1 is
divisible by q. I am not yet making any assumptions about how the pipeline
nodes are distributed among the available processors.

Figure 1: A simple pipeline.

Initially I will concentrate on the computing time of the parallel algo-
rithm and ignore communication between the nodes. It is convenient to
number the steps and nodes in reverse order as follows:

step numbers (n− 1), . . . , 2, 1
node numbers (n− 1)/q, . . . , 2, 1

For Householder reduction, the computing time of the ith step is approx-
imately

c(i+ 1)2

where c is a system-dependent constant (Brinch Hansen 1990).
The computing time T (k) of the kth node is the sum of the computing

times of steps (k− 1)q+ 1 through kq. For q À 2, the sum is approximately
equal to the integral∫ kq

(k−1)q
cx2dx =

1
3
cq3(3k2 − 3k + 1)

The formula can be rewritten as follows

T (k) = aq3(3k2 − 3k + 1) (1)

BALANCING A PIPELINE 3

where a = c/3. The performance analysis is valid for any pipeline algorithm
which satisfies (1).

When a matrix is reduced by a pipeline of 50 nodes, the computing
times of the first and last nodes differ by a factor of 7350. This enormous
variation creates a load-balancing problem when you attempt to distribute
the computation evenly among the processors.

3 A SIMPLE PIPELINE

My goal is to predict the parallel computing time Tp when the pipeline is
executed by p processors. I am still ignoring communication.

First I will consider block storage with each node running on a separate
processor. For n À 1, the block length (n − 1)/q is approximately n/p.
Due to the computational imbalance, the first processor has more work to
do than any other processor. So, it determines the parallel computing time.
Using (1), you find for q ≈ n/p

Tp = T (p)

= a(n/p)3(3p2 − 3p+ 1)

= a(n/p)3(p2 + (p− 1)(2p− 1))

which can be rewritten as

Tp = a(1 + f)n3/p (2)

where
f = (1− 1/p)(2− 1/p) (3)

Notice that 0 ≤ f ≤ 2.
If the pipeline runs on a single processor (where p = 1 and f = 0), the

computing time is
T1 = an3 (4)

The speedup
Sp = T1/Tp (5)

shows how much faster the computation runs on p processors compared to
a single processor.

4 PER BRINCH HANSEN

The efficiency of the parallel computation is

Ep = Sp/p (6)

For the simple pipeline, I use (2) and (4) to obtain

Ep = 1/(1 + f) (7)

where f is a measure of the load imbalance which reduces the processor
efficiency below 100%.

Table 1 shows how Ep approaches 0.33 for p À 1. The load imbalance
wastes two thirds of the processing capacity!

Table 1: Load imbalance.

p f Ep
1 0.00 1.00
5 1.44 0.41

10 1.71 0.37
20 1.85 0.35
30 1.90 0.34

4 A FOLDED PIPELINE

To reduce the load imbalance, I fold the pipeline an odd number of times m
as shown in Fig. 2.

The pipeline now consists of (m + 1)p nodes. Every processor executes
m + 1 nodes, each holding q columns, where q = (n − 1)/(m + 1)p. For
n À 1, the block length is approximately

q ≈ n

(m+ 1)p
(8)

The idea is to reduce the computing time of the first node by reducing the
block length q by a factor of (m+ 1).

In the Appendix, I show that the parallel computing time Tp is

Tp = a(1 + f)n3/p (9)

where (3) is replaced by

f =
(1− 1/p)(2− 1/p)

(m+ 1)2
(10)

BALANCING A PIPELINE 5

Figure 2: A folded pipeline.

Notice how folding reduces the load imbalance f .
The processor efficiency is

Ep = 1/(1 + f) (11)

Table 2 shows f and Ep for various values of m, assuming that p À 1.

Table 2: Folding.

m f Ep
0 2.00 0.33
1 0.50 0.67
3 0.13 0.89
5 0.06 0.95
7 0.03 0.97
9 0.02 0.98

5 THE EFFECT OF COMMUNICATION

The remaining task is to consider how communication affects the perfor-
mance of the folded pipeline.

6 PER BRINCH HANSEN

In the single-processor case, the n×nmatrix passes throughm+1 pipeline
nodes. The sequential run time is the sum of the computing and communi-
cation times

T1 = an3 + b(m+ 1)n2 (12)

where a and b are system-dependent constants. This replaces (4).
For a sufficiently large matrix, the communication time is negligible com-

pared to the computing time and you have approximately

T1 = an3 for n À (b/a)(m+ 1) (13)

If you use several processors, each of them must still transmit the matrix
through m + 1 nodes of the pipeline. The parallel run time determined by
the first processor is

Tp = a(1 + f)n3/p+ b(m+ 1)n2 (14)

This is a refinement of (9).
The grain-size of a parallel computation is the ratio of the computing

time to the communication time. In the Appendix, I show that

g = (a/b)(1 + f)q (15)

According to (10), f becomes constant when p À 1. This makes the grain
size proportional to the block length q.

The processor efficiency is

Ep =
1

(1 + f)(1 + 1/g)
(16)

(see the Appendix).
Since communication decreases the efficiency, I would like to make it

negligible in the parallel case as well. Equation (16) shows that this can be
done by making the algorithm coarse-grained (g À 1). This, in turn, means
that the blocks must be large.

The efficiency approaches

Ep ≈ 1/(1 + f) for g À 1 (17)

From (8) and (15), I conclude that if

n

(m+ 1)p
À b

a

BALANCING A PIPELINE 7

then g À 1 + f . Since f ≥ 0, this implies that g À 1. In other words, the
problem size n must be large compared to the pipelength (m + 1)p. This
is an example of the necessity of scaling both the problem and the parallel
computer to maintain constant efficiency (Gustafson 1988).

6 PERFORMANCE MEASUREMENTS

The Householder pipeline was programmed in occam for a Computing Sur-
face with 45 transputers. Each transputer is connected to its two neighbors
by four bidirectional channels. The channels make it possible to fold the
pipeline three times.

For 64-bit real matrices, measurements show that

a = 2.8µs b = 4.2µs

According to Table 2 and (17), it should be possible to obtain a processor
efficiency close to 0.89 for m = 3, provided n/p À 6.

The first experiment is Householder reduction of a 1000×1000 matrix.
Table 3 shows the values of T1, Tp, Sp, and Ep predicted by (13) and (14).
The measured run times are shown in parentheses. As the number of pro-
cessors increases from 20 to 45, communication reduces the efficiency from
0.81 to 0.72.

Table 3: Fixed problem size.

p n T1(s) Tp (s) Sp Ep
20 1000 2800 173 (171) 16 0.81
25 1000 2800 142 (141) 20 0.79
30 1000 2800 121 (120) 23 0.77
35 1000 2800 106 (105) 26 0.75
40 1000 2800 95 (95) 29 0.74
45 1000 2800 87 (87) 32 0.72

In the second experiment, I let n/p = 50 to maintain an efficiency of
0.81, which is independent of the number of processors. (With the available
memory, the computation can be scaled only for p ≤ 25. See Table 4.)

7 FINAL REMARKS

I have analyzed a pipeline for Householder reduction. The algorithm il-
lustrates the subtleties of distributing a large computation evenly among

8 PER BRINCH HANSEN

Table 4: Scaled problem size.

p n T1(s) Tp (s) Sp Ep
10 500 350 43 (42) 8 0.81
15 750 1181 97 (96) 12 0.81
20 1000 2800 173 (171) 16 0.81
25 1250 5469 271 (268) 20 0.81

parallel processors. Load balancing is achieved by folding the pipeline sev-
eral times across the array of processors. The predicted efficiency has been
confirmed by experiments on a Computing Surface.

8 APPENDIX PERFORMANCE ANALYSIS

When the Householder pipeline is folded, as shown in Fig. 2, the ith processor
from the right executes the m+ 1 nodes with indices

mp+ i
mp− i+ 1
· · ·
3p+ i
3p− i+ 1
p+ i
p− i+ 1

The processor executes (m + 1)/2 pairs of nodes. The kth pair has the
indices

(2k − 1)p+ i (2k − 1)p− i+ 1

for 1 ≤ i ≤ p and 1 ≤ k ≤ (m+ 1)/2

From (1), you have

T ((2k − 1)p+ i)

= aq3(3((2k − 1)p+ i)2 − 3((2k − 1)p+ i) + 1)

= aq3(3(2k − 1)2p2 + 3(2k − 1)(2i− 1)p+ 3i2 − 3i+ 1)

BALANCING A PIPELINE 9

and

T ((2k − 1)p− i+ 1)

= aq3(3((2k − 1)p− i+ 1)2 − 3((2k − 1)p− i+ 1) + 1)

= aq3(3(2k − 1)2p2 − 3(2k − 1)(2i− 1)p+ 3i2 − 3i+ 1)

The combined computing time of the kth pair of nodes is

Tpair(i, k) = T ((2k − 1)p+ i) + T ((2k − 1)p− i+ 1)

= 2aq3(3(2k − 1)2p2 + 3i2 − 3i+ 1)

= aq3(24p2k2 − 24p2k + 6p2 + 6i2 − 6i+ 2)

The total computing time of processor i is

Ti =
(m+1)/2∑
k=1

Tpair(i, k)

I use the standard formulas∑n
k=1 k = n(n+ 1)/2

∑n
k=1 k

2 = n(n+ 1/2)(n+ 1)/3

to find the previous sum

Ti = aq3(p2(m+ 1)(m+ 2)(m+ 3)− 3p2(m+ 1)(m+ 3)
+ (3p2 + 3i2 − 3i+ 1)(m+ 1))

which can be reduced to

Ti = aq3(m+ 1)(p2(m2 + 2m) + 3i2 − 3i+ 1)

10 PER BRINCH HANSEN

Ti is an increasing function of the processor index i. It reaches its maxi-
mum value for i = p :

Tp = aq3(m+ 1)(p2(m2 + 2m) + 3p2 − 3p+ 1)

= aq3(m+ 1)(p2(m+ 1)2 + 2p2 − 3p+ 1)

= aq3(m+ 1)3(p2 + (p− 1)(2p− 1)/(m+ 1)2)

= an3/p(1 + (1− 1/p)(2− 1/p)/(m+ 1)2) by (8)

= an3/p(1 + f) by (10)

Tp is the computing time of the whole pipeline.
The time grain g is the ratio of the computing time and the communi-

cation time:

g =
a(1 + f)n3/p

b(m+ 1)n2
by (14)

=
a(1 + f)n
b(m+ 1)p

= (a/b)(1 + f)q by (8)

The efficiency Ep is derived as follows:

1/Ep = pTp/T1 by (5), (6)

= p(a(1 + f)n3/p+ b(m+ 1)n2)/(an3) by (13), (14)

= a(1 + f)n3
(
1 + b(m+1)p

a(1+f)n

)
/(an3)

= (1 + f)(1 + 1/g)

References

Brinch Hansen, P. (1990) Householder reduction of linear equations. School of Computer
and Information Science, Syracuse University, Syracuse, NY. Also in ACM Computing
Surveys 24, 185–194, June 1992. Also in Brinch Hansen (1995).

BALANCING A PIPELINE 11

Fox, G.C., Johnson, M.A., Lyzenga, G.A., Otto, S.W., Salmon, J.K. and Walker, D.W.
(1988) Solving Problems on Concurrent Processors, Vol. I, Prentice-Hall, Englewood
Cliffs, NJ.

Gustafson, J.L. (1988) Reevaluating Amdahl’s law. Communications of the ACM 31,
532–533.

Ortega, J.M. (1988) Introduction to Parallel and Vector Solutions of Linear Systems.
Plenum Press, New York.

