
        

HOUSEHOLDER REDUCTION OF LINEAR EQUATIONS

This paper discusses Householder reduction of n linear equations to a triangular form which

can be solved by back substitution. The main strength of the method is its unconditional

numerical stability. I explain how Householder reduction can be derived from elementary

matrix algebra. The method is illustrated by a numerical example and a Pascal procedure.

I assume that you have a general knowledge of vector and matrix algebra, but are less

familiar with linear transformation of a vector space.

1 INTRODUCTION

The solution of linear equations is important in many areas of science and
engineering (Kreyszig 1988). This chapter discusses Householder reduction
of n linear equations to a triangular form that can be solved by back sub-
stitution (Householder 1958, Press 1989). I will explain how Householder
reduction can be derived from elementary matrix algebra. The method is
illustrated by a numerical example and a Pascal procedure.

I assume that you have a general knowledge of vector and matrix algebra,
but are less familiar with linear transformation of a vector space.

I begin by looking at Gaussian elimination.

2 GAUSSIAN ELIMINATION

The classical method for solving a system of linear equations is Gaussian
elimination. Suppose you have three linear equations with three unknowns
x1, x2, x3:

2x1 + 2x2 + 4x3 = 18
x1 + 3x2 − 2x3 = 1

3x1 + x2 + 3x3 = 14
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First, you eliminate x1 from the second equation by subtracting 1/2 of
the first equation from the second one. Then you eliminate x1 from the third
equation by subtracting 3/2 of the first equation from the third one. Now,
you have three equations in which x1 occurs in the first equation only:

2x1 + 2x2 + 4x3 = 18
2x2 − 4x3 = −8

− 2x2 − 3x3 = −13

Finally, you eliminate x2 from the third equation by adding the second
equation to the third one. The equations have been reduced now to a trian-
gular form that has the same solution as the original equations but is easier
to solve:

2x1 + 2x2 + 4x3 = 18
2x2 − 4x3 = −8

− 7x3 = −21

The triangular equations are solved by back substitution. From the third
equation, you immediately have x3 = 3. By substituting this value in the
second equation, you find x2 = 2. Substituting these two values in the first
equation you obtain x1 = 1.

In general, you have n linear equations with n unknowns:

a11x1 + a12x2+ · · · +a1nxn = b1

a21x1 + a22x2+ · · · +a2nxn = b2 (1)
· · ·

an1x1 + an2x2+ · · · +annxn = bn

The a’s and b’s are known real numbers. The x’s are the unknowns you must
find.

The equation system (1) can be expressed as a vector equation

Ax = b (2)

where A is the n×n matrix

A =


a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · ·
an1 an2 · · · ann


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while x and b are n-dimensional column vectors

x =


x1

x2
...
xn



b =


b1
b2
...
bn


The equation system has a unique solution only if the matrix A is non-

singular as defined in the Appendix.
Gaussian elimination reduces (2) to an equivalent form

Ux = c

where U is an n×n upper triangular matrix

U =


u11 u12 · · · u1n

0 u22 · · · u2n

· · · · · ·
0 0 · · · unn


with all zeros below the main diagonal. The elimination process replaces the
original right-hand side b by another n-dimensional column vector c.

The scaling of equations is a source of numerical errors in Gaussian elimi-
nation. To eliminate the first unknown x1 from, say, the second equation, you
subtract the first equation multiplied by a21/a11 from the second equation.
However, if the pivot element a11 is very small, the scaling factor a21/a11

becomes very large, and you may end up subtracting very large reals from
very small ones. This makes the results highly inaccurate.

The numerical instability of Gaussian elimination can be reduced by a
process called pivoting: By changing the order in which the equations are
written, you can make the pivot element as large as possible. You examine
the first coefficient of every equation, that is
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a11, a21, · · · , an1

If the largest of these coefficients is, say, a51, then you exchange equations
1 and 5. After this rearrangement, you subtract multiples of the (new) first
equation from the remaining ones. The pivoting process is repeated for each
submatrix during the Gaussian elimination.

Pivoting rearranges both the rows of the matrix and the elements of the
right-hand side. The algorithm must keep track of this permutation in an
additional vector. Although pivoting does not guarantee numerical stability,
numerical analysts believe that it works in practice (Golub 1989, Press 1989).

In the following, I describe an alternative method that is numerically
stable and does not require pivoting. This method has been used in a parallel
algorithm (Brinch Hansen 1990a, 1990b).

3 SCALAR PRODUCTS

Householder’s method requires the computation of scalar products and vec-
tor reflections. The following is a brief explanation of these basic operations.
The Appendix defines the elementary laws of vector and matrix algebra,
which I will take for granted.

Let a and b be two n-dimensional column vectors:

a =


a1

a2
...
an



b =


b1
b2
...
bn


The transpose of a and b are the row vectors

aT = [ a1 a2 · · · an ]

bT = [ b1 b2 · · · bn ]
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The scalar product of a and b is

aT b = a1b1 + a2b2 + · · ·+ anbn (3)

A scalar product is obviously symmetric:

aT b = bTa (4)

The Euclidean norm

‖a‖ =
√
a2

1 + a2
2 + · · ·+ a2

n (5)

is the length of the n-dimensional vector a.
From (3) and (5) you obtain an equivalent definition of the norm:

‖a‖2 = aTa (6)

4 REFLECTION

Householder reduction of an n×n real matrix has a simple geometric inter-
pretation: The matrix columns are regarded as vectors in an n-dimensional
space. Each vector is replaced by its mirror image on the other side of a
particular plane. This plane reflects the first column onto the first axis of
the coordinate system to produce a new column with all zeros after the first
element.

First, I will look at reflection in three-dimensional space. The reflection
plane P includes the origin O and is perpendicular to a given vector v. For
an arbitrary vector a, I wish to find another vector b, which is the reflection
of a on the other side of the plane P . Figure 1 shows a plane that includes
the vectors v, a, and b. The dotted line represents the reflection plane P ,
which is perpendicular to v.

The concept of reflection is defined by three equations. The reflection
plane P is determined by the vector v. To simplify the algebra, I assume
that v is of length 1:

‖v‖ = 1 (7)

Reflection preserves the norm of a vector:

‖a‖ = ‖b‖ (8)
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Figure 1 Reflection.

The difference between a vector a and its reflection b is a vector fv, which
is a multiple of v:

fv = a− b (9)

The (unknown) scalar f is the distance between a vector and its reflection.
I must find the reflection of an arbitrary vector a through a plane P

defined by a given unit vector v. Now,

‖a‖2 = ‖b‖2 by (8)

= (a− fv)T (a− fv) by (6), (9)

= aTa− faT v − fvTa+ f2vT v

= ‖a‖2 − 2fvTa+ f2 by (4), (6), (7)

This equality determines the distance f between vector a and its image
b:

f = 2vTa (10)

The reflection of b into a displaces b by the same distance f in the opposite
direction. So, you can also express the distance as

f = −2vT b (11)
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Finally I define b in terms of a and v

b = a− vf by (9)

= Ia− v(2vTa) by (10)

= (I − 2vvT )a

where I is the n×n identity matrix defined in the appendix.
In other words, the reflection of a vector a is the vector

b = Ha (12)

obtained by multiplying a by the n×n reflection matrix

H = I − 2vvT (13)

H is also called a Householder matrix. This is the “rabbit” that is often
pulled out of the hat without any explanation of why it has this particular
form.

Figure 1 is a geometric definition of reflection in three-dimensional space.
However, the algebraic equations derived from this figure make no assump-
tions about the dimension of space. In the following, I will simply as-
sume that (12) and (13) define a transformation of an n-dimensional vec-
tor. By analogy, I will call this transformation a “reflection” through an
(n − 1)-dimensional plane. The essential property is that reflection of an
n-dimensional vector preserves the norm:

‖Ha‖ = ‖a‖
This follows from (8) and (12).

If you reflect a vector twice through the same plane, you get the same
vector again:

H(Ha) = a

In other words, two reflections are equivalent to an identity transformation:

HH = I

Consequently, H is a nonsingular matrix that is its own inverse:

H−1 = H

(see the Appendix).
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5 HOUSEHOLDER REDUCTION

I am looking for an algorithm that reduces an n×n real matrix A to trian-
gular form without increasing the magnitude of the elements significantly.

An element of a column can never exceed the total length of the column
vector. That is,

|aij | ≤ ‖ai‖ for i, j = 1, 2, . . . , n

In other words, the norm of a column vector is an upper bound on the
magnitude of its elements.

A method that changes the elements of a matrix A without changing
the norms of its columns will obviously limit the magnitude of the matrix
elements. This can be achieved by multiplying A by a Householder matrix
H.

If you multiply a system of linear equations

Ax = b

by a nonsingular matrix H, you obtain an equation

(HA)x = Hb

that has the same solution as the original system.
The first step in Householder reduction produces a matrix HA that has

all zeros below the first element of the first column.
The reflection must transform column

a1 = [ a11 a21 · · · an1 ]T (14)

into a column of the form

Ha1 = [ d11 0 · · · 0 ]T (15)

where the diagonal element is

d11 = ±‖a1‖ (16)

The choice of sign will be made later.
Equations (14)–(16) define the computation of the first column of the

matrix HA.
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The difference between column a1 and its reflection Ha1 is the column
vector

f1v = a1 − b1 by (9)

= a1 −Ha1 by (12)

Combining this with (14) and (15) you find

f1v = [ w11 a21 · · · an1 ]T (17)

where the first element is

w11 = a11 − d11 (18)

The distance between a1 and its image Ha1 is f1 where

f2
1 = f1(−2vTHa1) by (11), (12)

= −2(f1v)THa1

= −2w11d11 by (3), (15), (17)

In short,

f1 =
√
−2w11d11 (19)

The unit vector v that determines the appropriate Householder matrix
is

v = f1v/f1

or by (17):

v = [ w11 a21 · · · an1 ]T /f1 (20)

After the transformation of the first column a1, each remaining column
ai is also replaced by its reflection through the same plane defined by (9),
(10), and (12):

Hai = ai − fiv (21)

fi = 2vTai (22)

The reflection of a column is obtained by subtracting a multiple of the unit
vector v.
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6 NUMERICAL STABILITY

I still need to decide which sign to use for the diagonal element d11 in (16).
If d11 = a11, the scalars w11 and f1 are zero by (18) and (19), and

the division by f1 in (20) causes overflow. You can avoid this problem by
selecting the sign that makes d11 6= a11.

The overflow occurs when a1 is a multiple of the unit vector

e1 = [ 1 0 · · · 0 ]T

For a1 = a11e1 there are four cases to consider:

a11 > 0 :
d11 = +‖a1‖ = a11 (overflow)
d11 = −‖a1‖ = −a11 (no overflow)

a11 < 0 :
d11 = +‖a1‖ = −a11 (no overflow)
d11 = −‖a1‖ = a11 (overflow)

If a1 is close to a multiple of e1, serious rounding errors may occur if f1 is
very small.

This insight leads to the following rule:

d11 = if a11 > 0 then −‖a1‖ else ‖a1‖ (23)

7 COMPUTATIONAL RULES

I am now ready to summarize the rules for computing the matrix HA as
defined by (3), (6), (15), and (18)–(23):

‖a1‖ =
√
aT1 a1

d11 = if a11 > 0 then −‖a1‖ else ‖a1‖
w11 = a11 − d11

f1 =
√
−2w11d11 (24)

Ha1 = [ d11 0 · · · 0 ]T

v = [ w11 a21 · · · an1 ]T /f1

fi = 2vTai for 1 < i ≤ n

Hai = ai − fiv
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Householder’s algorithm reduces a system of linear equations to upper
triangular form in n− 1 steps.

The first step reduces A to a matrix HA with all zeros below the diag-
onal element in the first column. At the same time, b is transformed into
a vector Hb. This computation, defined by (24), is called a Householder
transformation (Fig. 2).

Figure 2 Householder transformation.

The second step reduces the (n− 1)× (n− 1) submatrix of HA, shown
in Fig. 2, by Householder transformation. Now, you obtain a matrix with
zeros below the diagonal elements in the first two columns. The same trans-
formation is applied to the (n− 1)× 1 subvector of Hb shown in Fig. 2.

By a series of Householder transformations, applied to smaller and smaller
submatrices and subvectors, the equation system is reduced, one column at
a time, to upper triangular form.

8 A NUMERICAL EXAMPLE

I now return to the previous example of three equations with three unknowns.
For convenience, I combine the matrix A and the vector b into a single 3×4
matrix:

A0 =

 2 2 4 18
1 3 −2 1
3 1 3 14


First, you reduce A0 to a matrix A1 with all zeros below the diagonal

element in the first column. This is done column by column using (24).
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The numbers shown below were produced by a computer using 64-bit real
arithmetic and rounded to four decimal places in the printing.

First column:

a1 = [ 2 1 3 ]T

v = [ 0.8759 0.1526 0.4577 ]T

f1 = 6.5549
Ha1 = [ −3.7417 0 0 ]T

Second column:

a2 = [ 2 3 1 ]T

f2 = 5.3344
Ha2 = [ −2.6726 2.1862 −1.4414 ]T

Third column:

a3 = [ 4 −2 3 ]T

f3 = 9.1433
Ha3 = [ −4.0089 −3.3949 −1.1846 ]T

Fourth column:

a4 = [ 18 1 14 ]T

f4 = 44.6536
Ha4 = [ −21.1136 −5.8123 −6.4368 ]T

You now have the matrix

A1 =

 −3.7417 −2.6726 −4.0089 −21.1136
0 2.1862 −3.3949 −5.8123
0 −1.4414 −1.1846 −6.4368


The next step of the algorithm reduces the 2×3 submatrix

A1′ =

[
2.1862 −3.3949 −5.8123
−1.4414 −1.1846 −6.4368

]
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to

A2′ =

[
−2.6186 2.1822 1.3093

0 −2.8577 −8.5732

]

The final triangular matrix

A2 =

 −3.7417 −2.6726 −4.0089 −21.1136
0 −2.6186 2.1822 1.3093
0 0 −2.8577 −8.5732


consists of the first row and column of A1 and the submatrix A2′.

The triangular equation system is solved by back substitution to obtain

x = [ 1.0000 2.0000 3.0000 ]T

9 PASCAL PROCEDURE

The following Pascal procedure assumes that the matrix A is stored by
columns, that is, a[i] denotes the ith column of A. For each submatrix of
A, the eliminate operation is applied to the first column, and the transform
operation is applied to each remaining column (including b).

type
column = array [1..n] of real;
matrix = array [1..n] of column;

procedure reduce(var a: matrix;
var b: column);

var vi: column; i, j: integer;

function product(i: integer;
a, b: column): real;
{ the scalar product of

elements i..n of a and b }
var ab: real; k: integer;
begin

ab := 0.0;
for k := i to n do

ab := ab + a[k]∗b[k];
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product := ab
end;

procedure eliminate(i: integer;
var ai, vi: column);

var anorm, dii, fi, wii: real;
k: integer;

begin
anorm := sqrt(

product(i, ai, ai));
if ai[i] > 0.0

then dii := −anorm
else dii := anorm;

wii := ai[i] − dii;
fi := sqrt(−2.0∗wii∗dii);
vi[i] := wii/fi;
ai[i] := dii;
for k := i + 1 to n do

begin
vi[k] := ai[k]/fi;
ai[k] := 0.0

end
end;

procedure transform(i: integer;
var aj, vi: column);

var fi: real; k: integer;
begin

fi := 2.0∗product(i, vi, aj);
for k := i to n do

aj[k] := aj[k] − fi∗vi[k]
end;

begin
for i := 1 to n − 1 do

begin
eliminate(i, a[i], vi);
for j := i + 1 to n do



     

HOUSEHOLDER REDUCTION OF LINEAR EQUATIONS 15

transform(i, a[j], vi);
transform(i, b, vi)

end
end { reduce };
For nÀ1, the execution time of the algorithm is dominated by the trans-

form procedure, which uses one addition, one subtraction, and two multipli-
cations per array element. The ith submatrix requires n − i + 1 transform
operations, each involving 4(n − i + 1) arithmetic operations. So the total
number of numerical operations is approximately

n−1∑
i=1

4(n− i+ 1)2 =
n∑
k=2

4k2 ≈ 4n3/3

A similar analysis shows that Gaussian elimination requires 2n3/3 arithmetic
operations only.

10 FINAL REMARKS

I have explained Householder’s method for reducing a matrix to triangular
form. The main advantage of the method is its unconditional stability. I have
illustrated the computation by a numerical example and a Pascal procedure.

Gaussian elimination and Householder reduction of an n×n matrix both
have O(n3) complexity. However, Householder reduction requires twice as
many numerical operations. For that reason, Householder reduction is sel-
dom used to solve linear equations on a sequential computer.

Why then should you be interested in Householder reduction?

1. For some matrices, Gaussian elimination with pivoting is highly inac-
curate. Numerical analysts believe that such matrices are so rare that
pivoting is stable “in practice.” However, I have not found a theoretical
or statistical justification of this claim in the literature. Householder’s
method is unconditionally stable, both in theory and in practice. An
engineer usually prefers a stable method with reasonable speed to a
faster, but potentially unstable, technique.

2. When a multicomputer with p processors solves n linear equations in
parallel, the solution time has the form

Tp = an3/p+ bn2
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where a and b are system-dependent constants of matrix transforma-
tion and processor communication. The transformation time is reduced
by the number of processors. The communication time is proportional
to the number of matrix elements. Parallelism reduces the transforma-
tion time, but not the communication time. Since Gaussian elimina-
tion and Householder reduction require the same amount of commu-
nication, a multicomputer reduces the time difference between these
methods. On a Computing Surface with 45 transputers, I used both
methods to solve 1000 equations. The parallel solution times differed
by only 50% (Brinch Hansen 1990b, 1992). For parallel solution of
linear equations, Householder reduction is an attractive compromise
between unconditional numerical stability and computing speed.

3. Finally, it should be mentioned that Householder reduction is used for
least squares and eigenvalue computations in the Linpack procedures
developed at Argonne National Laboratory (Dongarra 1979).

Householder reduction is an interesting example of a fundamental com-
putation with a subtle theory and a short algorithm. If you are interested
in further details and alternative methods, you will find them in the books
by Golub (1989) and Press (1989).

11 APPENDIX: MATRIX ALGEBRA

In the algebraic laws, A, B, and C denote matrices, while k is a scalar.
The identity matrix is

I =


1 0 · · · 0 0
0 1 · · · 0 0

· · ·
0 0 · · · 0 1


The transpose AT is the matrix obtained by exchanging the rows and

columns of the matrix A.
The inverse of a matrix A is a matrix A−1 such that

AA−1 = I

If A−1 exists then A is called a nonsingular matrix.
The laws apply also to vectors since they are n×1 (or 1×n) matrices.
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Identity Law:

IA = AI = A

Symmetry Law:

A+B = B +A

Associative Laws:

A ± (B ± C) = (A ± B) ± C

A(BC) = (AB)C

Distributive Laws:

A(B ± C) = AB ± AC

(A ± B)C = AC ± BC

Transposition Laws:

IT = I

(AT )T = A

(A ± B)T = AT ± BT

(AB)T = BTAT

Scaling Laws:

kA = Ak

k(AB) = (kA)B = A(kB)

kAT = (kA)T
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