
cs20

EULER : A GENERALIZATION OF ALGOL,*
AND ITS FORMAL DEFINITION

BY

NIKIAUS ilVlRTH and HELMUT WEBER

TECHNICAL REPORT CS20

APRIL 27, 1965

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences

STANFORD UN IVERS ITY

Technical Report 20

EULER: A Generalization of AIGOL, and its Formal Definition

ERRATAetADDENDA

P-4,

P.5,

P.6,

P-10,

P-11,

P.13,

P-15,

P.16,

P.26,

P*37,

P 938,

p.41

P-48,

a4 : replace "systemizing" by "systematizing" .

121: replace "in [81" by "here" .

a6 : "standard" should read "fixed" .

114: underline "productive" .

11.6: underline "reductive" .

121: replace curly braces [) by parentheses () .

110: dito

111: dito
.

118: add the following sentence:
(as an alternative notation for 2x we will use x J

a3 : replace 1,) by (,) respectively .

111: after "U +x" insert "where" .

114: insert a space after the first ZJ ..*Z (y + z)....

117: dito

a2 : underline

a4 : underline

a9 : the third

the word "sentence" .

"simple phrase structure language" .

symbol to the right of the vertical line should be
I’ (‘I instead of 11) 1’

.

117: change "ennumerate" into "enumerate" .

1311 underline the letter V .

1341 (bottom line) dito.

: the horizontal line should be between IDENT and DIGIT instead
of between DIGIT and NUMBER.

123: "a[l]" instead of "a[i]" .

P*52,

p.63, #4,

p.64, #37,

~965, #50

p-65, #n

p.67, #/114

P-70,

P-71,

P.72,

P.73,

P-75,

P.77,

P-91,

P-981

p.110,

122:

16 :

18 :

a111

12 :

:

:

I

a6 I

113:

112:

a4 :

129~

114:

a4 :

125 :

122:

117:

117:

"will" instead of "would" .

add a semicolon (3) to the right.

dito, also underline label

add a semicolon to the right.

"P[V[j][2] +k + 1" should be "P[V[j][2]] +k + 1" .

"isn var" should be "isb var"-m - -

change the two occurrences of "isn" into " isu" .

change "blockhead" into "blokhead"

change the colon at the right into a

add the symbol "t" underneath mod

"At i - i - 1" should be "A: i +-

change "string" into "sy+ol".

add a semicolon at the right.

dito

insert a semicolon in front of "X +

semicolon.

i - 1" .

s[l]" .

change "is a number" into "is not a number".

“RESUTS ” should read "RESULTS" .

change "13" at the left into rr281f .

add to the right: "S[SP].ADR +-FP; COMMF3NT A NULL LIST;"

2

EULER : A Generalization of ALGOL, and its Formal Definition*

bY
Niklaus Wirth and Helmut Weber

Abstract:

A method for defining programming languages is developed which intro-

duces a rigorous relationship between structure and meaning. The structure

of a language is defined by a phrase structure syntax, the meaning in terms

of the effects which the execution of a sequence of interpretation rules

exerts upon a fixed set of variables, called the Environment. There exists.

a one-to-one correspondence between syntactic rules and interpretation rules,

and the sequence of executed interpretation rules is determined by the se-

quence of corresponding syntactic reductions which constitute a parse.
.

The individual interpretation rules are explained in terms of an elementary

and obvious algorithmic notation. A constructive method for evaluating

a text is provided, and for certain decidable classes of languages their

unambiguity is proven. As an example, a generalization of ALGOL is described

in full detail to demonstrate that concepts like block-structure, procedures,

parameters etc. can be defined adequatel.y and precisely by this method.

f* This work was partially supported by the National Science Foundation
(GP 4053) and the Computation Center of Stanford University.

It is the character of mathematics of modern times that through our

language of signs and nomenclature we possess a tool whereby the most com-

plicated arguments are reduced to a certain mechanism. Science has thereby

gained infinitely, but in beauty and solidity, as the business is usually

carried on, has lost so much. How often that tool is applied only mechani-

cally, although the authorization for it in most cases implied certain

silent hypotheses! I demand that in all use of calculation, in all uses

of concepts, one is to remain always conscious of the original conditions.

Gauss

(in a letter to Schumacher, Sept. 1, 1850)

ii

TABLE OF CONTENTS

I. Introduction and Summary. , , . . . 1

II. An Elementary Notation for Algorithms 9

III. Phrase Structure Programming Languages. 15

A. Notation, Terminology, Basic Definitions. , 15

B. Precedence Phrase Structure Systems 18

1.

2.

3.
4.

59

6.

The Parsing Algorithm for Simple Precedence

.Phrase StrwtureLanguages, , , , , . . o . . . 18

The Algorithm to Determine the

Precedence Relations. . . 0 . . e 21

Examples. e 24

The Uniqueness of a Parse . . . e , 26

Precedence Functions.- . . . , 27

Higher Order Precedence Syntax. . l . . , . . . 29

c. An Example of a Simple Precedence , L , .

Phrase Structure Programming Language , 35

IV. EULER: An Extension and Generalization of ALGOL 60 . . 43

A. An Informal Description of EULER. 43

1. Variables and Constants 43

2. Expressions 50

39 Statements and Blocks 53

4. Declarations. 54

B. The Formal Definition of EULER. 56

c. Examples of Programs. 75

References. e l . . 81

Appendix 1 s , 83

bwndix 11 , 92

iii

I. Introduction and Summarv

When devising a new programming language, one inevitably becomes

confronted with the question of how to define it. The necessity of a formal

definitiun is twofold: the users of this language need to know its precise

meaning, and also need to be assured that the automatic processing systems,

i.e. the implementations of the language on computers, reflect this same

meaning equally precisely. ALGOL 60 represented the first serious effort

to give a formal definition of a programming language [l]. The structure

of the language was defined in a formal and concise way (which, however,

was not in all cases unambiguous), such that for every string of symbols

it can be determined whether it belongs to the language ALGOL 60 or not.

The meaning of the sentences, i.e. their effect on the computational pro-

cess, was defined in terms of ordinary English with its unavoidable lack

of precision. But probably the greater deficiency than certain known im-

precise definitions was the incompleteness of the specifications. By

this no reference is made to certain intentional omissions (like specifi-

cation of real arithmetic), but to situations and constructs which simply

were not anticipated and therefore not explained (e.g. dynamic own arrays

or conflicts of names upon procedure calls). A method for defining a

language should therefore.be found which guarantees that no unintentional

omissions may occur.

How should meaning be defined? It can only be explained in terms of

another language which is already well understood. The method of formally

deriving the meaning of one language from another makes sense, if and only

if the latter is simpler in structure than the former. By a sequence of

such derivations a language will ultimately be reached where it would not

1

be sensible to define it in terms of anything else. Recent efforts have

been conducted with this principle in mind.

B8hm [3] and Landin [4][5] have chosen the h-calculus as the fundamen-

tal notation [6],[7], whose basic element is the function, i.e. a well-

established concept. The motivation for representing a program in functional

form is to avoid a commitment to a detailed sequence of basic steps repre-

senting the algorithm, and instead to define the meaning or effect of a

program by the equivalence class of algorithms represented by the indicated

function. Whether it is worth while to achieve such an abstract defini-

tion of meaning in the case of programming languages shall not be discussed

here. The fact that a program consists basically of single steps remains,

and it cannot even be hidden by a transliteration into a functional nota-

tion: the sequence is represented by the evaluations of nests of functions

and their parameters. An unpleasant side-effect of this translation of

ordinary programming languages into h-calculus is that simple computer

concepts such as assignment and jumps transform into quite complicated

constructs, this being in obvious conflict with the stated requirement

that the fundamental notation should be simple.

Van Wijingaarden describes in [8] and [9] a more dynamic approach

to the problem: the fundamental notation is governed by only half a dozen

rules which are obvious. It is in fact so simple that it is far from being

a useful programming notation whatsoever, but just capable enough to pro-

vide for the mechanism of accepting additional rules and thus expanding

into any desirable programming system. This method of defining the meaning

2

(or, since the meaning is imperative: effect) of a language is clearly dis-

tinct from the method using functional notations, in that it explicitly

makes use of algorithmic action, and thus guarantees that an evaluating

algorithm exists for any sentence of the language. The essence of this

algorithm consists of first scanning the ordered set of rules defining the

structure of the language, and determining the applicable structural desig-

nations, i.e. performing an ' 9applicability scan , and then scanning the

set of rules for evaluating the determined structural units, i.e. perform-

ing an 6 9evaluation scan . The rules are such that they may invoke appli-

cation of other rules or even themselves. The entire mechanism is highly

recursive and the question remains, whether a basically subtle and intri-

cate concept such as recursion should be used to explain other programming

languages, including possibly very simple ones.

The methods described so far have in common that their basic set of

fundamental semantic entities does not resemble the elementary operations

performed byany computational device presently known. Since the chief aim

of programming languages is their use as communication media with computers,

it would seem only natural to use a basic set of semantic definitions close-

ly reflecting the computer's elementary operators. The invaluable advan-

tage of such an approach $s that the language definition is itself a pro-

cessing system and that implementations of the language on actual machines

are merely adaptations to particular environmental conditions of the lan-

guage definition itself. The question of correctness of an implementation

will no longer be undecidable or controversial, but can be directly based

on the correctness of the individual substitutions of the elementary se-

mantic units by the elementary machine operations.

3

It has elsewhere been proposed (e.g. [lo]) to let the processing

systems themselves be the definition of the language. Considering the

complexity of known compiler-systems this seems to be an unreasonable sug-

gestion, but if it is understood as a call for systemizing such processing

systems and representing them in a notation independent from any particular

computer, then the suggestion appears in a different light.

The present paper reports on efforts undertaken in this direction.

It seems obvious that the definition of the structure, i.e. the syntax,

andthe definition of the meaning should be interconnected, since struc-

tural orderings are merely an aid for understanding a sentence. In the

presented proposal the analysis of a sentence proceeds in parallel with

its evaluation: whenever a structural unit is discovered, a corresponding-__ _ ._-----.--". .-.---

interpretation rule is found and obeyed. The syntactic aspects are defined

- by a Phrase Structure System (cf. [ll], [12], [Z]) which is augmented by

the set of interpretation rules defining the semantic aspects. Such an

augmented Phrase Structure Language is subsequently called a Phrase

Structure Programming Language, implying that its meaning is strictly

imperative and can thus be expressed in terms of a basic algorithmic

notation whose constituents are, e.g., the fundamental operations of a

computer.

Although in [81 the processes of syntactic analysis and semantic

evaluation are more clearly separated, the analogies to the van Wijngaarden

proposal are apparent. The parsing corresponds to the applicability scan,

the execution of an interpretation rule to the evaluation scan. However,

this proposal advocates the strict separation between the rules which

define the language, i.e* its analysis and evaluation mechanisms, and the

rules produced by the particular program under evaluation, while the

van Wijngaarden proposal does not distinguish between language definition

and program. Whether the elimination of this distinction which enables--

and forces --the programmer to supply his own language defining rules, is

desirable or not must be left unanswered here. The original aim of this

contribution being the development of a proposal for a standard language,

it would have been meaningless to eliminate it.

Chapter II contains the descriptions of an algorithmic notation

donsidered intuitively obvious enough not to necessitate further expla-

nation in terms of more primitive concepts. This notation will subse-

quently be used for the definition of algorithms and interpretation rules,

thus playing a similar role for the semantic aspects as did BNF for the

syntactic aspects of ALGOL 60. The function of this notation is twofold:

1. It serves to precisely describe the analysis and evaluation mechanisms,

and 2. It serves to define the basic constituents of the higher level

language. E.g., this basic notation contains the elementary operators

for arithmetic, and therefore the specifications of the higher level lan-

guage defer their definition to the basic algorithmic notation. It is

in fact assumed that the definition of integer arithmetic is below the

level of what a programming language designer is concerned with, while

real arithmetic shall very intentionally not be defined at all in a

language standard. The concepts which are missing in the basic notation

and thus will have to be defined by the evaluation mechanisms are mani-

fold: the sequencing of operations and operands in expressions, the stor-

age allocation, the block structure , procedure structure, recursivity,

value- and name-parameters, etc.

5

Chapter III starts out with a list of basic formal definitions leading

to the terms ‘Phrase Structure System' , ‘Phrase Structure Programming

Language' and ‘Meaning' . The notation and terminology of [12] is adopted

here as far as possible. The fact that the nature of meaning of a program-

ming language is imperative, allows the meaning of a sentence to be ex-

plained in terms of the changes which are affected on a certain set of

variables by obeying the sentence. This set of variables is called the

Environment of the Programming Language.- - The definition of the meaning

with the aid of the structure, and the definition of the evaluation algo-

rithm in terms of structural analysis of a sentence demand that emphasis

be put on the development of a constructive algorithm for a syntactic

analysis. Chapter III is mainly devoted to this topic. It could have

been entirely avoided, had a reductive instead of a productive definition

of the syntax been chosen. By a productive syntactic definition is meant

a set of rules illustrating the various constructs which can be generated

by a given syntactic entity. By a reductive syntactic definition is meant

a set of rules directly illustrating the reductions which apply to a given

sentence. A reductive syntax therefore directly describes the analyser,

and recently some compilers have been constructed directly relying on a

reductive syntactic description of the language. [13]. A language defini-

tion, however, is not primarily directed toward the reader (human or arti-

ficial), but toward the writer or creative user. His aim is to construct

sentences to express certain concepts or ideas. The productive definition

allows him to derive directly structural entities which conform to his

concepts. In short, his use of the language is primarily synthetic and not

analytic in nature. The reader then must apply an analytic process, which

6

in turn one should be able to specify given the productive syntactic defi;

nitions. One might call this a transformation of a productive into a

reductive form, a synthetic into an analytic form.

The transformation method derived subsequently is largely based on

earlier work by R. W. Floyd described in [lb]. The grammars to which this

transformation applies are called Precedence Grammars. The term 'Prece-

dence Syntax' is, however, redefined, because the class of precedence gram-

mars described in [lb] was considered to be too restrictive, and even unnec-

essarily so. In particular, there is no need to define the class of prece-

dence grammars as a subclass of the ‘Operator grammars' . Several classes

of precedence grammars are defined here, the order of a precedence grammar

being determined by the amount of context the analysis has to recognize

and memorize in order to make decisions. This classification relates to

the definition of 'Structural Connectedness' described in [151, and

provides a means to effectively determine the amount of connectedness for

a given grammar.

Also in Chapter III, an algorithm is described which decides whether

a given grammar is a precedence grammar, and if so, performs the desired

transformation into data representing the reductive form of the grammar.

A proof is then provided of the unambiguity of precedence grammars,

in the sense that the sequence of syntactic reductions applied to a sen-

tence is unique for every sentence in the language. Because the sequence

of interpretation rules to be obeyed is determined by the sequence of

syntactic reductions, this uniqueness also guarantees the unambiguity of

meaning, a crucial property for a programming language. Furthermore, the

fact that all possible reductions are described exhaustively by the syntax,

and that to every syntactic rule there exists a corresponding interpretation

(semantic) rule, guarantees that the definition of meaning is exhaustive.

In other words, every sentence has one and only one meaning, which is well

defined, if the sentence belongs to the language. Chapter III ends with

a short example: The formal definition of a simple programming language

containing expressions, assignment statements, declarations and block-

structure.

A formal definition of an extension and generalization of ALGOL 60

is presented in Chapter IV. It will demonstrate that the described methods

are powerful enough to define adequately and concisely all features of a

programming language of the scope of ALGOL 60. This generalization is

a further development of earlier work presented in [16].

8

II. An Elementary Notation for Algorithms.

This notation will in subsequent chapters be used as basis for the

definitions of the meaning of more complicated programming languages.

A program is a sequence of imperative statements. In the following

paragraphs the forms of a statement written in this elementary notation

are defined and rules are given which explain its meaning. There exist

two different kinds of statements:

A. the Assignment Statement, and

B. the Branching Statement.-__ --.L

The Assignment Statement serves to assign a new value to a variable

whose old value is thereby lost. The successor of an Assignment Statement

is the next statement in the sequence. The.Branching Statement serves to

designate a successor explicitly. Statements may for this purpose be

labelled.

A. The Assignment Statement

The (direct) Assignment Statement is of the form

vtE .

V stands for a variable and E for an expression. The meaning of this

statement is that the current value of v is to be replaced by the cur-

rent value of E. I

An expression is a construct of either one of the following forms:

x,0x, x@y,r

where x, Y? stand for either variables, literals or lists, o stands

for a unary operator, 0 stands for a binary operator and r stands for

a reference. The value of an expression involving an operator is ob-

tained by applying the operator to the current value(s) of the operand(s).

9

I- . :,v,- ,,
I’.,::

A reference is written as @v, where v is the referenced variable.

The indirect Assignment Statement is written as

v.+-E

and is meant to assign the current value of the expression E to the

variable, whose reference is currently assigned to the variable v .

1. Literals

A literal is an entity characterized by the property that its value

is always the literal itself. There may exist several kinds of literals,

e.g.’

Numbers

Logical constants (Boolean)

Sjrmbols

Furthermore there exists the literal 0 with the meaning "undefined". '

Numeric constants shall be denoted in standard decimal form. The logical

constants are true and false*.

A symbol or character is denoted by the symbol itself enclosed in ,

quote marks ("). A list of symbols is usually called a string.

Other types of literals may arbitrarily be introduced.

2. Lists

A list is-an entity denoted by'

1% F, . . 9 9 G’)

whose value is the ordered set of the current values of the expressions

E, F, . . . , G, called the elements of the list. A list can have any

nwflber of elements (including 0), and the elements are numbered with the

natural numbers starting with 1 .

*
the underlined (boldface) letters have to be understood as one single symbol.

10

3. Variables

A variable is an entity uniquely identified within a program by a

name to which a value can be assigned (and reassigned) during the execution

of a program. Before the first assignment to a variable, its value shall

be R .

If the value of a variable consists of a sequence of elements, any

one element may be designated by the variable name and a subscript, and

thus is called a subscripted variable. The subscript is an expression,

whose current value is the ordinal number of the element to be designated.

Thus, after a +{1,2,{3,4,5,},6), a[l] designates the element "l", a[31

designates the element \3,4,5), and therefore a[3][2] designates the

second element of a[3], i.e. "4". The notation a
i shall be understood

equivalent to &I, a.
4

equivalent to a[i][j] etc.

4. Unary Operators

Examples of unary operators are:

-X f yields the negative of x

c x- > yields the value of the variable whose reference is

currently assigned to x

abs x 7 yields the absolute value of x

integer x 9 yields x rounded to the nearest integer

tailx , yields the list x with

isli x > yields true, if x is a

A further set of unary operators is the

its first element deleted;

list, false otherwise

set of typetest operators

which determine whether the current value of a variable is a member of

a certain set of literals. The resulting value is true, if the test is

affirmative, false otherwise.

11

Xxamples:

isn x, current value of x is a number- -

isb x, is a logical (Boolean)

isu x,is R (undefined)

.is a symbolisyx, ._̂ .

A further set of unary operators is the

which produce values of a certain type from a

Examples:

constant

set of conversion operators

value of another type:

real x yields the number corresponding to the logical value x;

logical x inverse of real (true ~1, false ~0 shall be assumed);

Conversion operators between numbers and symbols shall not

be defined here, although their existence is assumed, because

the notation does not define the set of symbols which may

possibly be used.

5. Binary Operators

Examples of binary operators are:

+-x designating addition, subtraction and multiplication in the

usual sense. The accuracy of the result in the case of the

operands being non-integral numbers is not defined.

I

f

denoting division in the usual sense. The accuracy of the

result is not defined here. In case of the denominator being

0, the result is R .

denoting division between the rounded operands with the

result being truncated to its integral value.

12

mod yields the remainder of the division denoted by + .

& yields the concatenation of two lists, i.e.

(x3 & CY3 = Cx,Y3

= yields true, if the two scalar operands are equal, false

otherwise.

denoting exponentiation, i.e. XT Y stands for xY .

The classes of unary and binary operators listed here may be ex-

tended and new types of literals may be introduced along with corresponding

typetest and conversion operators.

B. The Branching Statement

There are Simple and Conditional Branching Statements.

1. The Simple Branching Statement

It is of the form

Igot0

where R stands for a label. The meaning is that the successor

of this statement is the statement with the label a . Labelling

of a statement is achieved by preceding it with the label and a

colon (:). The label is a unique name (within a program) and desig-

nates exactly one statement of the program.

2. The Conditional Branching Statement

It is of the form

if E then goto 1

where R is a label uniquely defined in the program and E is

an expression. The meaning is to select as the successor to the

13

Branching Statement the statement with the label 1, if the current

value of E is true, or the next statement in the sequence, if it

is false. For notational convenience a statement of the form

if 1 E then goto 1- - - (1 = not)

shall be admitted and understood in the obvious sense.

*-H+***JCJC+EeHHe+****

Notational standards shall not be fixed here. Thus the sequence

of statements can be established by separating statements by delimiters,

or by beginning a new line for every statement. The Branching Statement

and the labelling of statements may be replaced by explicit arrows, thus

yielding block diagrams or flow-charts.

14

III. Phrase Structure Programming‘ Languages'!,'

A. Notation, Terminology, Basic Definitions

Let r be a given set: the vocabulary. Elements of 1" are called

symbols and will be denoted by capital Latin letters,--. __I__-_ S, T, U etc. Finite

sequences of symbols -- including the empty sequence (A) -- are called

strings and will be denoted by small Latin letters -- x, y, z, etc. The--.--

set of all strings over 2': is denoted by 1:*. Clearly 0 5: I?".

A simple phrase structure system is an ordered pair- _.___. _ -- - .-_ . . --.. ---. .--.. ('b; a), where

fl is a vocabulary and Q is a finite set of syntactic rules Q, of the

form

u-+⌧ (⌧ k u, u EV, ⌧ E o*> l

For cp = U +x, U is called the left part and x the right part---_-. .____ __^

of cp.

y directly produces- ..----- __.. z(y i z) and conversely z directly reduces-__-_.. .- --

into y, if and only if there exist strings u, v such that y = UUV

and z = uxv, and the rule U +x is an element of Q, .

y produces z(y 5 z) and conversely z-- -. _ _ - - reduces into y, if and- - - -

only if there exist a sequence of strings
⌧09 l -� �Xn�

such that

' = xOz xn = " and xi-l‘Ax i
(i-= l,...,n;n> 1) .

A simple phrase structure syntax is an ordered quadruple s=(%:Q,%, A),- --.- . --- .-. . . . -- - .-_---- _.____

where 0 and @ form a phrase structure system; 8 is the subset of'8 such

that none of the elements of n(called basic symbols) occurs as the left

part of any rule of @, while all elements of 0-8 occur as left part of

at least one rule; A is the symbol which occurs in no right part of any

rule of @ .

15

The letter U shall always denote some symbol U E I?-.$.

x is a sentence of 5, if x E u* (i.e. x is a string of basic

symbols) and A 5 x .

A simple phrase structure language & is the set of all strings x which

can be produced by (24, 0) from A:

g(S) = (xiA%xA x Ep*] .

Let U 3 Z . A parse of the string z into the symbol U is a sequence--. --

of syntactic rules rp,t rp2, l l l cp,>
such that cp.

3
directly reduces

'j-1 into z j (j I. 1 . . . n), and z = zo, z = U .
n

Assume zk = UlU2 .O. Urn (for some -1 < k C n) . Then zi (i < k)

must be of the form z i = u1"2 l *' um'
where for each I = 1 . . . m either

Ud 3 up or Ub = ua . Then the canonical form of the section of the-

parse reducing zi. into zk shall be \(Q]\T~] . . . {q,], where the

sequence ccp IR
is the canonical form of the section of the parse reducing

9
into U

R l

Clearly (q,] is empty, if Ue = ua, and is canonical,

if it consists of 1 element only..

The canonical parse is the parse which proceeds strictly from left---- _

to right in a sentence, and reduces a leftmost part of a sentence as far- - - -

as possible before -proceeding further to the right. In general, there

may exist several canonical parses for a sentence, but every parse has

only

erty

one canonical form.

An unambiguous_ -__. syntax is a phrase structure syntax_ .-_- --- with the prop-

that for every string x E -i(iy) there exists exactly one canonical

parse.

It has been show-n that there exists no algorithm which decides the

ambiguity problem for any arbitrary syntax. However, a sufficient con-

dition for a syntax to be unambiguous will subsequently be derived.

A method will be explained to determine whether a given syntax satisfies

15

this condition. . .

An environment & is a set of variables whose values define the

meaning of a sentence.

An interpretation rule pt/ defines an action (or a sequence of actions)

involving the variables of an environment & .

A phrase structure programming language %p($Y,E) is a phrase~-----

structure language % (s), where $(v, @,B, A) is a phrase structure

syntax, Y is a set of (possibly empty) interpretation rules such that

a'unique one to one mapping exists between elements of Y and 0, and

& is ,an environment for the elements of 'i'. Instead of %p((;,%',E) we

also write % (v, 0,9, A,‘k',E).
P

The meaning m of a sentence x E & is the effect of the execution
P

of the sequence of interpretation rules + , \I,1 2'**'n on the environment

& 7 where 'p, 'p, . . . (p, is a parse of the sentence x into the symbol A

and Q corresponds to 'pi for all i.

It follows immediately that a programming language will have an unam-

biguous meaning, if and only if its underlying syntax is unambiguous. As a

consequence, every sentence of the language has a well-defined meaning.

A sentence is called equivalent to a sentence

x2 E gp(G2, y2,&) (possibly slm=s2, yl = y,), if and only if

m(y) is equal to dx2 > l

A programming language sp(sl, yl, &) is called equivalent to

Yv,(G2’ \f-‘,, I), if and only if %
pl =

%
p2

and for every sentence x,

ml(x) according to ($I? 5) is equal to m,(x) according to (F2, Y2) ’

17

B. Precedence Phrase Structure Systems

The definition of the meaning of a sentence requires that a

sentence must be parsed in order to be evaluated or obeyed. Our prime

attention will therefore be directed toward a constructive method for

parsing. In the present chapter, a parsing algorithm will be described.

It relies on certain relations between symbols. These relations can be

determined for any given syntax. A syntax for which the relation between

any two s~bois is unique, is called a simple precedence syntax._.-- - Obviously,

the, parsing algorithm only applies to precedence phrase structure systems.

It will then be shown that any parse in-such a system is unique. The

class of precedence phrase structure systems is only a restricted subset

among all phrase structure systems. The definition of precedence relations

will subsequently be generalized with the effect that the class of prece-

- dence phrase structure systems will be considerably enlarged.

1. The Parsing Algorithm for Simple Precedence Phrase Structure

Languages.

In accordance with the definition of the canonical form of a,

generation tree or of a parse, a parsing algorithm must first detect

the leftmost substring of the sentence to which a reduction is ap-

plicable. Then the reduction is to be performed and the same princi-

ple is applied to the new sentence. In order to detect the leftmost

reducible substring, the algorithm to be presented here makes use of

previously established noncommutative relations between symbols of

vwhich are chosen according to the following criteria:

a. The relation A holds between all adjacent symbols within 6

string which is directly reducible;

18

b. The relation + holds between the symbol immediately pre-

ceding a reducible string and the leftmost symbol of that string;

C. The relation+= holds between the rightmost symbol of a

reducible string and the symbol immediately following that string.

The process of detecting the leftmost reducible substring now consists

of scanning the sentence from left to right until the first symbol

pair is found so that SiO Si+l, then to retreat back to the last

symbol pair for which S e s
j-l j

holds. S
j l *�

S
i

is then the

sought substring; it is replaced by the symbol resulting from the

reduction. The process then repeats itself. At this point it must

be noted that it is not necessary to start scanning at the beginning

of the sentence, since all symbols Sk for k < j have not been

altered, but that the search for the next .> can start at the place

of the previous reduction.

In the following formal description of the algorithm the original

sentence is denoted by

scanned. For practical

renamed S....S
J i' The

sl.*. 'i
for some j .

symbol L initializing

Pl...Pn . k is the index of the last symbol

reasons, all scanned symbols are copied and

reducible substring therefore will always be

Internal to the algorithm,there exists a

and terminating the process. To any symbol

S of Bit has the relations- A+ S and S Gl .

We assume that PO = Pn+l = J- .

19

STARTP
it1
ktl

s1 +-I.

iti+l
jt-i
sitPk

ke-k+l
01

a
03 02

s jt-j-l

t
1

Reduce

sj si. . . .

i c j
ss tru

Algorithm for.Syntactic Analysis

20

Comments to the Algorithm:

0
/

1 Copy the string P into S and advance until a relation 9 is

encountered;

02 Retreat backward across the reducible substring;

0 A reduction has been made. Resume the search for G .

The step denoted by "Reduce S
J

Si" requires that the reducible

substring is identified in order to obtain the symbol resulting from

the reduction. If the parsed sentence is to be evaluated, then the

interpretation rule % corresponding to the syntactic rule cpQ:

u + s....s;
J

is identified and obeyed.

2. An Algorithm to Determine the Precedence Relations.

The definition of the precedence relations can be formalized in

the following way:

a . For any ordered pair of symbols (Si, Sj), Si G S., if andonly
J

if there exists a syntactic rule of the form u + XSiSjY,

for some symbol U and some (possibly empty) strings x, y.

b. For any ordered pair .of symbols (s s.), s. Q si,
J = 3'

if and only

if there exists a syntactic rule of the form u 3 xsiuly,

for some U, x, y, UR, and there exists a generation

u), r sjz, for some string z.

C. For any ordered pair of symbols (s s.), s. + si,
J = 3'

if and

only if

1. there exists a syntactic rule of the form U +xUkSjy,

for some U, x, y, Uk, and there exists a generation

Uk 2 zs i for some string z, or

21

2. there exists a syntactic rule of the form U +xUkU1y,

for some U, x, y, Uk, U!, and there exist generations

Uk 5 zs
*

i
and U

&
-$ Sjw for some strings z, w .

We now introduce the sets of leftmost and rightmost symbols of a non-basic

symbol U by the following definitions:

iE (u) = Csl3z(u r sz))
mJ> = csl3 z(u 5 zs)}

Now the definitions a. b. c. can be reformulated as:

a. S i
k sj f--3 3ql(cp: u + XSiSjY) _

b. si Q sj c-3 39(cp: u ~ XSiU~Y) A 'j ~ ~(u,>

39(rp: U -,xUkU~y) A S. ~ I A Sj~~Um)1

- These definitions are equivalent to the definitions of the precedence

relations, if 0 does not contain any rules of the form u +A, where

A denotes the empty string.

The definition of the sets % and %. is such that an algorithm for

effectively creating the sets is evident. A symbol S is a member of

X(U), if

a. There exists a syntactic rule cp: U 3 Sx, for some x, or

b. There exists a syntactic rule cp: u + ulx, and S E$(Ul);

i.e.

g(u) = ☯sl3p: u + s ⌧ � 3cp: u --j up A s E %(v,)3 l

Analogously:

☺R(u) = {sl =☺p: U-+⌧S� 3p: U4☺lA s Ew☺,)3 l

22

The algorithm for finding & and %, for all symbols U E fl-fi involves

searching Cp for appropriate syntactic rules. In practice, this turns

out to be a rather intricate affair, because precautions must be taken

when recursive definitions are used. An algorithm is presented in Appen-

dix I as part of an Extended ALGOL program for the Burroughs B5500 computer.

The precedence relations can be represented by a matrix g with ele-

ments &.
12

representing the relation between the ordered symbol pair

(S i' 'j)' The matrix clearly has as many rows and columns as there are

symbols in the vocabulary ??.

(-@= cs,,s,,..*,s I>,
n

an algorithm for the determination of the precedence
I L

matrix M can

For every

be indicated as follows:

element cp of 0 which is of the form

u+sl s2 . . . s
m

Assuming that an arbitrary ordering of the symbols of '19 has been made

and for every pair S i, Si+l (i = 1 . . . m - 1) assign

a. A to gi i+l ;
9

b. + t0 all xi k with row index
9

k such that Sk E &(Si+l);

c. a> to all
- ,i+lYk with column index k such that Sk E %(Si);

d. l > to all_Mj,k with indices 1, k such that SR E Sl(S,) and Sk E %(Si+l) .

Assignments under b. occur only if S i+l E v-3, under c. only if

Si E v-!& and under d. only if both Si, Si+l E v-3, because

&O and R(S) are empty sets for all SE 33.

This algorithm appears as part of the ALGOL program listed in Appendix I.

A syntax is a simple precedence syntax, if and only if at most one

relation holds between any ordered pair of symbols.

23

3. Examples

a. & = CU,, al, Bl, S>

Ill = is 9 H 7 A 9 "3

3, = CA) "1

a1 : S+H"
-- 11

Assume that

structure system

H + ”

H+Hh
H+HS

S stands for'stringfand H for‘head',then this phrase

would define a string as consisting of a sequence of

string elements enclosed in quote-marks,_where an element is either h

or another (nested) string.

U & u) 9-t u)
II

---I---

S " H

H " H " A s

Since both H 4 " and H 4 (0 sl is not a precedence syntax. It is

intuitively clear that either nested strings should be delineated by

distinct opening and closing marks (4)2 , or that no nested strings should

be allowed (F)3 ’

x cn c

8= =
cxx-

5
2 = cV
Y

M S H h 11

S

H . .= =

A 3 >
If > 3

5 3
is a precedence syntax.

As an illustration for the parsing algorithm, we choose the parsing

of a sentence of $(s2):

‘PC9

v3 :

cp,:

93 :

9,:

‘p4:

9,:

QbhS?

Hh%"

H'h :,'

HHh"

HH"

HS'

H7

S

‘A 3-h 7 9

H
1 !
H

H
I 1
H

t t

S
1 1

H
I I

S

4. The Uniqueness of a Parse.

The three previous examples suggest that the property of unique

precedence relationship between all symbol pairs be connected with unique-

ness of a parse for any sentence of a language. This relationship is

established by the following theorem:

Theorem: The given parsing algorithm yields the canonical form of the

parse for any sentence of a precedence phrase structure language, if there

exist no two syntactic rules with the same right part. Furthermore, this

canonical parse is unique.
26

This theorem is proven, if it can be shown that in any sentence its

directly reducible parts are disjoint. Then the algorithm, proceeding

strictly from left to right, produces the canonical parse, which is unique,

because no reducible substring can apply to more than one syntactic rule.

The proof that all directly reducible substrings are disjoint is achieved

indirectly: Suppose that the string Sl...Sn contain two directly reducible

substrings sl... Sk (a.) and S....E$ (b.),
J

where l<i<j<k<l<n.- - - -

Then because of a. it follows from the definition of the precedence rela-

tions that S ' Sj-l= j and Sk*> S
k+l ' and because of b. S 4s

j-l j

and S
k

A Sk+l l

Therefore this sentence cannot belong to a precedence

grammar.

Since in particular the leftmost reducible substring is unique, the

syntactic rule to be applied is unique. Because the new sentence again

belongs to the precedence language, the next reduction is unique again.

It can be shown by induction, that therefore the entire parse must be

unique.

From the definition of the meaning of a phrase

language it follows that its meaning is unambiguous___.__ _._ _ I-. -- - --.-_-.---. .--- ---

structure programming

for all sentences,

if the underlying syntax is a precede.nce syntax.

59 Precedence Functions.

The given parsing algorithm refers to a matrix of precedence

relations with n* elements,where n is the number of symbols in the

language. For practicalcompilers this would in most cases require an

extensive amount of storage space. Often the precedence relations are such

that two numeric functions (f, d ranging over the set of symbols can

be found, such that for all ordered pairs ('i' 'j)

a. f(Si) = g('j) 1s a5i j

b. f(si) ' g('j) -si + s.
3

C. f(Si) ' g('j) t--die+ s.
3

If these functions exist and the parsing algorithm is adjusted appro-

priately, then the amount of elements needed to represent the precedence

information reduces from n
2

to 2n. An algorithm for deciding whether

the functions exist and for finding the functions if they exist is given

as part of the ALGOL program in Appendix-1 .

In example G2 e.g. the precedence matrix can be represented by the

two functions f and g, where

S = s h h‘ 9

f(S) = 3 1 3 3 3
g(s) = 1 2 1 2 1

A precedence phrase structure syntax for which these precedence functions

do not exist is given presently:

v = (A, B, C, h, [, 1)

33 = CA, [, 13

0: A-+CB]

A-+[1

B-h

B+hA

B+A

c-d

It can be verified that this is a precedence syntax and in particular

the following precedence relations can be derived:

28

h~C,[*[,[-‘l,h+l

Precedence functions f and g would thus have to satisfy

f(h) < gu> < f(L) = g(l) < f(h)

which clearly is a contradiction. Precedence functions therefore do not

exist for this precedence syntax.

6. Higher Order Precedence Syntax.

It is the purpose of this chapter to redefine the precedence

ralationships more generally, thus enlarging the class of precedence ph.rase

structure systems. This is desirable, since for precedence languages a

constructive parsing algorithm has been presented which is instrumental

in the definition of the meaning of the language. The motivation for the

manner in which the precedence relationships will be generalized is first

illustrated in an informal way by means of examples. These examples are

phrase structure systems which for one or another reason might be likely

to cccur in the definition of a language, but which also violate the rules

for simple precedence syntax.

Example 1._.__ _.__ - ---_

v = (A , B ? ; 9 s 9 D3

@:A+B
A-+D;A
B+S
B-+B;S

S E $(A), thus ; + S , and also ; k S .

This syntax produces sequences of D's separated by ";", followed

by a sequence of symbols S, also separated by ";" . A parse is con-

structed as follows:

29

D ; ;D;D;S;S; , . . , S

'r:

v.

c I
A

I I
A.**.a

1 1
A

The sequence of S's is defined using a left-recursive definition. while

the sequence of D's is defined using a right-recursive definition. The

precedence violation occurs, because for both sequences the same separator

symbol is used.

The difficulty ari$es when the symbol sequence " ;s " occurs. It

is then not clear whether both symbols should be included in the same sub-

string or not. The decision can be made, if the immediately preceding

symbol is investigated. ,

In other words, not only two single symbols should be related, but a

symbol and the string consisting of the two previously obtained symbols.

Thus:

B; : S and D;GS .

Example 2:

L? = [A , B , ; , S > D),

(9: A-+B
A-+A;S
B+D
B-,D;B

30

D C R(A), thus D -> ; and also D A';

This syntax produces the same strings as the preceding one, but with

a different syntactic structure:

D ; ; D ; D ; S ; S ; ; S
u
B

B
.

B

e
I 1

A
I I

A
.

I I
4

Here the same difficulty arises upon encountering the symbol

sequence �W� l
The decision whether to include both symbols in the

same syntactic category or not can be reached upon investigating the

following symbol. Explicitly, a symbol should be related to the subsequent

string of 2 symbols, i.e.

D& ;D and DG ;S .

Example 3:

Since A E %(A) and A C %(A) : [+ h and A->] . But'also

[LA and AA].

In this case the following relations must be established to resolve the

ambiguity.

[AA], [GA;, ;A+] and [A 4] .

31

This syntax therefore combines the situations arising in Examples 1 and 2.

Obviously, examples could be created where the strings to be related would

be of length greater than 2. We will therefore call a precedence phrase

structure system to be of order (m, n), if unique precedence

can be established between strings of length < m and strings-

<n . Subsequently, a more precise definition will be stated.

relations

of length

A set of

extended rules must be found which define the generalized precedence

relations. The parsing algorithm, however, remains the same, with the

exception that not only the symbols Si and Pk be related, but pos-

sibly the strings Si m...Si and Pk...Pk+n .

The definitions of the relations Q 1, -4 is as follows: Let

x = s
-m l **

S
-1�

y = s1 . . . sn, let u,v,u',v' E '6! and U,Ul,U2 E ??-B,

then

a. x;y, if and only if there exists a syntactic rule

u 3 us-lslv, and

us-1 3 u'x, slv 5 y-v' ;

b. x 0 Y, if and only if there exists a syntactic rule

u 4 us~lulv' and

us -1 3 dx, ulv 2 yv’ ;

c. x-’ Y, if and only if there exists a syntactic rule

U + uUISlv, and

uul i: u'x, slv 5 yv', or there exists a syntactic rule

U + uUlU2v and uUl z u'x, u*v&-v' .

32

A syntax is said to be a precedence syntax of order (m,n), if and___ --. ---

only if

a. it is not a precedence syntax of degree (m', n') for m" < m

or n' < n, and

b. for any ordered pair of strings S-,' . . . Swl, Sl . . . S 'n'

where m' < m and n' < n either at most one of the 3 relations-

+ A l > holds or otherwise b. is satisfied for the pair

s-(m�+l) l l l sMl, Sl� l �Sn�+l l

A precedence syntax of order (1,l) is called a simple precedence syntax.

With the help of the sets of leftmost and rightmost strings, the defini-

tions of the precedence relations can be reformulated analogously to their

counterparts in section 2b, subject to the condition that there exists

no rule U +A .

a. x& y f) 3zp(qx u + us ,lSIV)

A(u'S-m...s~2 = u v s,,...s,* E 5tcm'1)(U))

A(S2...Snv' = v v s*...s, (5 %-(v))

b. x e y f) Jp((p: u + us -pp)

A(u's~m...S-2 = u v s,,...s,* c $m-l+u))

A(S,. . . sn E d")(u,y))

c. x*> y f) 3rg(fp: u -+ uulslv)

am* l l sm1 c RCrn)(uul) >
A(Sl...Snv’ = v v S2.. .Sn E %(n-1)(v))

or 3p(cp: u 3 uu1u2v)

m es-1-m' ' E @m)(uUl) A (Sl . ..s E xw(u,v))n

33

&(n)(s) and Rn (s)(> are then defined as follows:

1. (>
Z = zl-.. n2. E %" (Uu) H 3k(l 5 k 5 n) 3

w- . . .Zk C dk)(U)) A (Zk.. .Znu’ = uvz
1

. . . z E t(n-k+u))
k n

la. z (>z =
1

. . . ZnE v (U)t, 3k(O<_ kl n) 3

(U + Zl.. .Zku A Zk.. .Zn E dn-k)(~))

2 . z = z . . .

((dzn

ZIE %(")(uU) ti Xk(l< k < n) 3- -

. . . u v z . ..z
n 'k+l = n

k+l c R(n'k) (4) A (zy.zl E RCk)(u))

2a. (>z = Zn...Zl E Rn (U) +P Jk(0 5 k 5 n) 3

(u --) uz
k

. ..Zl A Z ...Zk+l
n

E 9tkk)(u))

These formulae indicate the method for effectively finding the sets

,$ and %for all symbols in V-B. In particular, we obtain for &(1)

and R()1 the definitions for & andxwithout superscript as defined in

section 2b.

Although for practical purposes such as the construction of a

useful programming language no precedence syntax of order greater than

(*,a -- or even (2,l) -- will be necessary, a general approach for the

determination of the precedence relations of any order shall be outlined

subsequently:

First it is to b.e determined whether a given syntax is a precedence

syntax of order (1,l). If it is not, then for all pairs of symbols

(Si, Sk) between which the relationship is not unique, it has to be

determined whether all relations will be unique between either (S S
j i9 'k)

or (EL, S,Sj), where Sj ranges over the entire vocabulary. According to

the outcome, one obtains a precedence syntax of order (2,1), (1,2) or

(*,*L or if some relations are still not unique, one has to try for even

higher orders. If at some stage it is not possible to determine relations

34

between the strings with the appended symbol S
j

ranging over the entire

vocabulary, then the given syntax is no precedence syntax at all.

Example:

1,: =(A, B, A, [9 1)

%={A, [, I)

(3 :A-,B
A+[B 1
B-+A
B-+-C A 1

The conflicting relations are [G 1 , [5 A, A &] and A +] . But a

relation between (SE 9 A) or (A , IS) can be established for no symbol

S whatsoever, and between ([, ASl) and (S2A , 1) only for s1 = I
and S

2
= [. Thus this is no precedence syntax.

Clearly there exist two different parses for the string [A],

namely

[)\. 1 and [A 1
I 1

B B
1 1 I L

A A

The underlying phrase structure systems in section III.3 and chapter

IV will be simple precedence phrase structure systems.

C. An Example

A simple phrase structure programming language shall serve as an

illustration of the presented concepts. This language contains the fol-

lowing constructs which are well-known from ALGoZ 60: Variables, arithmetic

expressions, assignment statements, declarations and the block structure.

The meaning of the language is explained in terms of anarray of variables,

35

called the 'value stack', which has to be understood as being associated

with the array S which is instrumental in the parsing algorithm. The

variable vi represents the ‘value' associated with the symbol Si .

E*&, the interpretation rule Jr,, corresponding to the syntactic rule

cp,, determines the value of the resulting symbol expr- as the sum of

the values of the symbols expr- and term belonging to the string to be

reduced.

%l : expr- + expr- + term

qll ' -j
v '~j+~i, [x(expr-) tV(expr-) + V(term)]

Note that the string to be reduced has been denoted by S...Si in the
-3

parsing algorithm of section III.*a. Instead of thus making explicit

reference to a particular parsing algorithm, vi...Vi, the values of

the symbols Q.S.,
J

can be denoted explicitly, i.e. instead of vi

and V. in 'y,,
-3

one might write V(term) and I(expr-) respectively.- -

For the sake of brevity, the subscripts i and j have been preferred

here.

A second set of variables is called the ‘name stack' . It serves to

represent a second value of certain symbols, which can be considered as

a'name' . The symbol decl is actually the only symbol with two values;

it represents a variable of the program in execution which has a name

(namely its associated identifier) and a value (namely the value last

assigned to it by the program). The syntax of the language is such that

the symbol decl remains in the parse-stack S as long as the declaration

is valid, i.e. until the block to which the declaration belongs is closed.

This is achieved by defining the sequence of declarations in the head

of a block by the right - recursive syntactic rule 'p4 . The

36

parse of a sequence of declarations illustrates that the declarations can

only be involved in a reduction together with a body- symbol after a

symbol body- has originated through some other syntactic reduction.

This, in turn, is only possibly when the symbol end is encountered. The

end symbol then initiates a whole sequence of reductions which result in

the collapsing of the part of the stack which represented the closing

block. On the other hand, the sequence of statements which constitutes

the imperative part of a block, is defined by the left-recursive syntactic

formula 'p6 . Thus a statement reduces with a preceding statement-list

into a statement-list immediately, because there is no need to retain

information about the executed statement in the value-stack.

This is a typical example where the syntax is engaged in the defini-

tion of not only the structure but also the meaning of a language. The

consequence is that in constructing a syntax one has to be fully aware of

the meaning of a constituent of the language and its interaction with

other constituents. Many other such examples will be found in chapter IV

of this article. It is, however, not possible to ennumerate and discuss

every particular consideration which had to be made during the construction

of the language. 'Only a detailed study and analysis of the language can

usually reveal the reasons for the many decisions which were taken in

its design.

Subsequently the formal definition of the simple phrase structure

language is given:

Lep = (l&Q,!& program,@,&)

v -3 = (program,1 block 1 body1 body-
statlist 1 expr 1 exp:'

zB=

1 decl 1-_ statment!

37

program -+ I block I

block *begin body end

body +body-

body- +decl ; body-

body- + statlist

statlist + statlist , statment

statlist + statment

statment + var t-expr

‘pg : statment +block

50:

.‘p11:

%2:

%3:

'p14:

%5:

%6:

(p1.7:

'%8:

%g:

expr

expr-

expr-

expr-

expr-

term

terun-

term-

term-

factor

factor

factor

var

numberq23' 7

number‘P24: -

decl925: -

‘P26’ -digit

(Pq: digit

+ expr-

+ expr- + term

+ expr- - term

+-term

+term

+term-

+term- X factor

+term- / factor--

+ factor

3var

+ (expr)

*number

+A

+ digit

+ number digit

q35'
-+ 9digit

Y : 4fi : A bmeW)

JI, : A

If3 : A

: w tR$4 -j

$5': A

'$6: A

*7
: A

$8: !.~~“i

Jr9 :, A

Jr10:
A

tv +vJr11: Ij -j -i

$12’ lj ‘Ij - Vi

$13: Ij +- - vi

Jr14: A

*15: A

$16: !j ‘Ij x vi

*17' -j' *Xj/vi

q18: A

$19: xj +xlj

920: Ij +xj+1

*21: A

$22: ttj ,.
ttt-1
if t = 0 then

ERRoR
+-I--if Wt f STFien

3
Ij i-t

$23: A

‘1’24: lj dj'X 10
lj +- xj + vi

$25: 3 z%
3

$26' l!j +--O

$q: xj a-1
.,........................

$35: vj t- 9

38

e.‘.I’.,I 0

Notes:

1. The branch in rule $22 labelled with ERROR is an example for the
/

indication of a 'semantic error' in &
P'

By 'semantic error' is in

general meant a reaction of an interpretation rule which is not ex-

plicitly defined. In the example of q22 the labelled branch is

followed when no identifier equal to Si is found in the W stack,

i.e. when an 'undeclared' identifier is encountered.

2. The basic symbol h in3 is here meant to act as a representative

of the class of all identifiers. Nothing will be said about the

representation of identifiers.

On the subsequent pages follow the sets of leftmost and right-

most symbols & and R, the matrix _M of precedence relations, and the

precedence functions f and g, all of which were determined by the

syntax-processor program listed in Appendix I.

39

BLOCU
BODY
BOOY-
DECL
ST~TLIST
S T A T Y E N T
VAR
E X P R

TERM

TERW-

F A C T O R

D I G I T

BLOCK
BODY

z

BODY-

DCCL
STATLIST

S T A T Y E N T

VAR
E X P R

EXPR-

NUMBER

tiEGIN
BODY- OECL NErl STATLIST STATMEAT
DECL YEN ST4TLIST S T A T Y E N T V A 9
NEti
;;:TLIST STATMEN VAR

IDfh(T B L D C K
IDENT
EXPR- - TEqM
1 2 3
EXPR- - TERM
1 2 3
TERW- FACTJH VAR
4 5 6
TERM- FACT?IH JAR
4 5 6
VAK IDENT C
6 7 8
DIGIT 0 1
9 YUYdER
0 1 2

l **

END
BODY- STATLIST STATMENT
1 NIJWBEH DIGIT
7 B 9
BOOY- STATLIST Sl~l HE!JT
1 NI)M8EH
7 B
I O E N T
S T A T Y E N T E X P R
DIGIT

:XPR
0
BLOCK
IDENT
EXPR-

:ERM
2
TERM-

FACTOR
4
VAR
5
DIGIT

op

0
BLOCK
f xptt-

&D

TERM
2
T E R M ’
3
FAC TJH
4
VAR
5
IDENT
6 _
0

1

D I G I T
9

E X P R
D
RLOCK
E X P R
0
BLOCK

EXPR-
1
E N D
EXPR-
1
END

EXPR-

:w
TES’4
2

TERM TERH- F A C T O R
7 3 4

TERM- F A C T O R VAR
3 4 5

T E R M - F A C T O R VAR
3 4 5
F A C T O R VAR IDENT
4 5 6
JAR IDENT 1
5 6 7
IDENT 1 NUMBER
6 7 ,8
) tiUMBEY D I G I T
7 9 9
1 7 3

2 3 4

Ir)ENT
BEGIN

T E R M -
0
TEf?Y-
4
IDE”rT

IDENT

DIG11
9
2

3

+**

BLOCK

F A C T O R
5
F A C T O R
5
(
R
(
6
0
NUqBER
3

4

VAR
IDENT

BEGIY

VAR
6
VAR
6
DIGIT
9
DIGIT
9
1

4

5

TERM
2 .

TERM
2

IDENT
6
1
7
N UM B E R

DIGIT
9
0

4

5

IDENT BLOCK
BLOCK B E G I N

BEGIN

IDENT
7
IDENT
7
0
NUMBER
0
Y U Y B E R
2

S

6

C DIGIT 0
8 9 h(lJMBER
(DIGIT 0
9 9 YUMBER
1 2 3

1 2 3

3 4 5

6 7 9

7 8 9

T E R M - F A C T O R
3 4

TERW- F A C T O R
3 4

VA9 IDENT
5 6

V A R I O E N T
5 6

VAR IDENT 1 YUMf3ER
5 6 7 8

IDENT 1 NUYBEH D I G I T
6 7 B 9

1

~J*(BER

&GIT
9
0

NUMRER
8
DIGIT

i

1

1

5

DIGIT
9
0

1

2

3

7

6 8 9

9

8

7

6

5

4

3

2

1

0

1

('

I
X

+

t

J

;

END

BEGIN

IDENT

VA

VA

VA

VA

VA

VA

AIAAAAAAA

A

v v

A ItAAAA

A I8 A A A A

A II A A A A A A

A II A A A A A A

II A

MAAAAAAAAAA A

II A

AAAAAAAAAAA

V vv

vvvvvv AAAAAAAAAA

vvvvvv AAAAAAAAAA

ttvvvvv AAAAAAAAAA

vvvvvv AAAAAAAAAA

vvvvvv AAAAAAAAAA

vvvvvv AAAAAAAAAA

vvvvvv AAAAAAAAAA

vvvvvv AAAAAAAAAA

vyvvvv AAAAAAAAAA

vvvvvv AAAAAAAAAA

AAAAAAAAAAA

vvvvvv

AAAAAAAAAAA

AAAAAAAAAAA

V VAAAAAAAAAAA

AAAAAAAAAAA

AAAAAAAAAAA

AAAAAAAAAAA

V

In V vvvvvvvv II
H

u It A vvvvvv AAAAAAAAAADIGIT c

NUMBER ",
vvvvvv

FACTOR (\i v v v II II vd

TERM- “,
0

TERM d

EXPR- 6

EXPR m

vvv V

v II II V

V V aa
- II 11 E

4

STATLIST

DECL

BODY-

BODY

BLOCK

41

NO. SYMBOL c G

001
002
003
004
005
006
007
008
OOY
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038

BLUCK
BODY
BODY-
OECL
ST4TLIS'T
STUTMENT
VAR
EXPR
EXPR"
TERM
TERM"
FACTOR
NUMBER
OIWT’
IOENl”
l3EGIN
END
i
9
f
+
I
x
/
t
1
0
1
2
3
‘4
5
6
‘I
8
9
N E N
_t

003 00 4
001 OCl
002 002
001 003
00 2 003
00 3 003
0 0 6 004
003 001
i)o4 OQ2
00s 002
00s a03
006 003
0 0 6 00 4
008 006
007 OCY
00s 005
004 001
00% 001
003 002
001 006
002 004
00 2 004
003 OC5
003 00s
001 004
00 6 003
008 007
OOA oc7
008 007
cm3 oc7
00 6 QO7
OW 007
006 007
008 007
008 007
OQ8 007
004 003
004 003

42

IV. EULER: An Extension and Generalization of ALGOL 60

In this chapter the algorithmic language EULER is described first

informally and then formally by its syntax and semantics. An attempt has

been made to generalize and extend some of the concepts of ALGOL thus crea-

ting a language which is simpler yet more flexible than ALGOL 60. A second

objective in developing this language was to show that a useful programming

language which can be processed with reasonable efficiency can be defined

in rigorous formality.

A . An Informal Description of E'ULER:

1. Variables and Constants

In ALGOL the following kinds of quantities are distinguished:

simple variables, arrays, labels, switches and procedures. Some of these

quantities ‘possess values' and these values can be of certain types, in---

teger, real and Boolean.- - These quantities are declared and named by iden-

tifiers in the head of blocks. Since these declarations fix some of the

properties of the quantities involved, ALGOL is rather restrictive with

respect to dynamic changes. The variables are the most flexible quantities,

because values can be assigned dynamically to them. But the type of these

values always remains the same. The other quantities are even less flexi-

ble. An array identifier will always designate a quantity with a fixed

dimension, fixed subscript bounds and a fixed type of all elements. A

procedure identifier will always designate a fixed procedure body, with a

fixed number of parameters with fixed type specification (when given) and

with fixed decision on whether the parameters are to be called by name or

by value. A switch identifier always designates a list with a fixed number

of fixed elements. We may call arrays, procedures, and switches'semistatic',

43

because some of their properties may be fixed by their declarations.

In order to lift these restrictions, EULER employs a general type concept.

Arrays, procedures, and switches are not quantities which are declared and

named by identifiers*, i.e. they are not as in ALGOL quantities which are

on the same level as variables. In EULER these quantities are on the level

of numeric and Boolean constants. EULER therefore introduces besides the

number and
logical constant

the following additional types of constants:
I

reference,
label,
s7ymbol
list (array),
procedure,
undefined.

These constants can be assigned to variables, which assume the same form

-as in ALGOL, but for which no fixed types are specified. This dynamic

principle of type handling requires of course that each operator has to

make a type test at execution time to insure that the operands involved

are appropriate.

The generality goes one step further: A procedure when executed can produce

a value of any type (and can of course also act by side effects), and this

type can vary from one call of this procedure to the next. The elements

of a list can have values of any type and the type can be different from

element to element within the same list. If the list elements are labels

then we have a switch, if the .elements are procedures then we have a pro-

cedure list, a construct which is not available in ALGOL 60 at all. If

the elements of a list are lists themselves then we have a general tree

structure.

*
identifiers are defined in EULER exactly as in ALGOL 60.

44

EULER provides general type-test operators and some type conversion

operators.

a) Numbers and Logical Constants

Numbers in EULER are essentially defined like unsigned numbers

in ALGOL 60.

The logical constants are true and false.

b) References

A reference to a variable in EULER is a value of type Reference.

It designates the identity of this particular variable rather than

the value assigned to it. We can form a reference by applying the

operator @ to a variable:

@<variable>

The inverse of the reference operator is the evaluation operator (.).

If a certain variable x has been assigned the reference to a

variable y, then

x.

represents thevariable y. Therefore the form

<variable>.

is also considered to be a variable.

c) Labels

A label is like in ALGOL a designation of an entry point into a

statement sequence. It is a 'Program Reference' . A label is

symbolically represented by an identifier. In contrast to ALGOL 60

each label has to be declared in the head of the block where it is

defined. In the paragraph on declarations it is explained why this

is so.

45

d) Sy&ols

A symbol (or character) in ER is an e'ntity denoted in a dis-

tinguishable manner as a literal syxibol. A list of symbols is

called a string.

e) Lists

Lists in EULER take the place of arrays in ALGOL. But they

are more general than arrays in ALGOL in several respects. L i s t s

can be assigned to variables, and are not restricted to a rectangular

format; they can display a general tree structure. Furthermore,

the structure of lists can be changed dynamically by list operators.

Basically a list is a linear array of a number of elements

(possibly zero). A list element is a variable: to it can be assigned

a constant of any type (in particular, it can itself be a list), and

its identity can be specified by a reference.'

A list can be written explicitly as

(<expression> , <expression> ;)

The expressions are evaluated in sequence and the results are the

elements of the created list.

A second way to specify a list literally is by means of the list

operator list

<expression>list

where the expression has to deliver a value of type Number, and the

result is a list with as many elements (initialized to Cl) as spe-

cified by the expression.

The elements of a list are numbered with the natural numbers

beginning with 1. A list element can be referenced by subscripting

46

a variable (or a list element) to which a list is assigned. If the

subscript is not an integer then its value rounded to the nearest

integer is used for subscripting. An attempt to subscript with i,

where i<O or i > length of the list, results in an error indi-

cation. An example for specifying a list structure is

L%(3,(4,5),6,0)~ l

This is a list with three elements, the first two elements being

numbers, the third element being a list itself. This sublist has

four elements, a number, another sublist, again a number and last

another sublist with 0 elements. If this list would have been

assigned to the variable a, then a[2] would be the number 2,

a[3][2] would be the list (4,5) .

In order to manipulate lists, list operators are introduced into

EULER. There are a type-test operator (isli), an operator to deter-

mine the current number of elements (length), a concatenation opera-

tor (W, and an operator to delete the first element of a list

(tail). Here are some examples for the use of these operators:

(Assuming the list given above assigned to a)

I
isli a[2] gives a value false
Len th a[3][4]
79-T

gives a value 0
2, & aC31[21 gives the list C&3,4,5)

\

(a[2]) & tail tail a[31- - gives the list (2,6,())

From the formal description of EULER it can be seen what rules

have to be observed in applying list operators, and in what sequence

these operators are executed when they appear together in an expres-

sion (like in the last example).

Only a minimal set of list operators is provided in EULER.

This set can, however, easily be expanded. The introduction of list

47

manipulation facilities into EULER makes it possible to express with

this language certain problems of processing symbolic expressions

which can not be handled in ALGOL but required special list processing

languages like LISP or IPL.

f) Procedures

Similar to ALGOL, a procedure is an expression which is defined

once (possibly using formal parameters), and which can be evaluated

at various places in the program (after substituting actual para-

*meters). The notion of a procedure in EULER is, however, in several

respects more general than in ALGOL. A procedure, i.e. the text

representing it, is considered a constant, and can therefore be

assigned to a variable. An evaluation of this variable'effects an

evaluation of this procedure, which always results in a value. In

this respect every EULER procedure acts like a type-procedure in ALGOL.

The number and type of parameters specified may vary from one call of

a procedure to the next call of this same procedure.

Formally parameters are always called ‘by value9 . However,

since an actual parameter can again be a procedure, the equivalent

of a "call by name' in ALGOL can be accomplished. Furthermore an

actual parameter being a reference establishes a third kind of call:

"call by reference'. It must be-noted that the type of the call of

a parameter is determined on the calling side. For example, assuming

f = 1 and a[i] = 2,

dd il> is a call by value,

p(‘ dil’) is a call by procedure (name),

PC@ dil) is a call by reference.

48

In the first case the value of the parameter is 2, in the second

case it is &I, in the third case it is the reference to aC11 .

A procedure is written as

‘<expressiorD' or

‘S;S;...;S; <expression>'

where 6 represents a formal declaration. The evaluation of a

procedure yields the expression enclosed in the quote marks.

A formal declaration is written as

formal <identifier> .

The scope of a formal variable is the procedure and the value assigned

to it is the value of the actual parameter if there exists one, R

otherwise. When a formal variable is used in the body of the proce-

dure, an evaluation of it is implied. For instance in

p &formal x; x e5’ ;...;~(@a);

the reference to a is assigned to the formal variable x, and the

implied evaluation of x causes the number 5 to be assigned to

the variable a (and not to the formal variable x). As a conse-

quence, the call p(l) would imply that an assignment should be made

to the constant 1. This is not allowed and will result in an error

indication.

g) The Value'Undefined'

The constant R means 'undefined? Variables are automatically

initialized to this value by declarations. Also,a formal parameter

is assigned this value when a procedure is called and no corresponding

actual parameter is specified in the calling sequence.

49

2. Expressions

In ALGOL an expression is a rule for obtaining a value by applying

certain operators to certain operands, which have themselves values. A

statement in ALGOL is the basic unit to prescribe actions. In EULER

these two entities are combined and called‘expression', while the term

‘statement'is reserved for an expression which is possibly labelled. An

expression in EULER, with the exception of a goto-expression, produces

a value by applying certain operators to certain operands,and at the same

time may cause side effects. The basic operands which enter into ex-

pressions are constants of the various types as presented in paragraph 1,

variables and list elements, values read in from input devices, values

delivered by the execution of procedures and values of expressions en-

closed in brackets. Operators are in general defined selectively to

operate on operands of a certain type and producing values of a certain

type. Since the type of a value assigned to a variable can vary, type-

tests have to be made by the operators at execution time. If a type

test is unsuccessful, an error indication is given. Expressions are

generally executed from left to right unless the hierarchy between op-

erators demands execution in a different sequence. The hierarchy is

implicitly given by the syntax.

Operators with the highest precedence are the following type test

operators:

isb <variable> (is logical?)
isn <variable> (is number?)
isr <variable> (is reference?)
isl .
-E l

(is label?)
(is symbol?)

. (is list?)
isp . (is procedure?)
isu <variable> (is undefined?)

50

These operators, when applied to a variable, yield true or false,

depending upon the type of the value currently assigned to the variable.

At the same level are the numeric unary operators: abs (forming the

absolute value of an operand of type Number), integer (rounding an operand

of type Number to its nearest integer), the list reservation operator

list, the length operator length (yielding the number of elements in a

list), the tail operator, and type conversion operators like real, which

converts a logical value into a number, logical which converts a number

into a logical value, conversion operators from numbers to symbols and

from symbols to numbers, etc.

The next lower precedence levels contain in this sequence: Exponen-

tiation operator, multiplication operators (x,/,i, addition op-

erators (+, -), extremal operators (max, min).- - Operands and results

are of type Number.

The next lower precedence levels contain the relational and logical

operators in this sequence: relational operators (=, A <, 5, >, >_A

negation operator 7, conjunction operator A, disjunction operator V.

The relational operators require that their operands are of type Number

and they form a logical value. The operators A and V are executed

differently from their ALGOL counterparts: If the result is already

determined by the value of the first operand, then the second operand

is not evaluated at all. Thus, false A x + false, true V x +true for- -

all x.

The next lower precedence level contains the concatenation operator

& .

Operators of the lowest level are the sequential operators goto,

51

.If, then, and else, the assignment operator t, the output operator

out and the bracketing symbols begin and end. According to their

occurence we distinguish between the following types of expressions:

goto-expression, assignment expression, output expression, conditional

expression, and block. As it was already mentioned, all expressions

except the goto-expression produce a value, while in addition they may

or may not cause a side effect.

The go-to-expression is of the form

<expressiorDgot0

~ If the value of the expression following the goto-operator is of the type

Label,then control is transferred to the point in the program which this

label represents. If this expression produces a value of a different type,

then an error indication is given.

The assignment expression assigns a value to a variable. It is of

the form

<variable> t<expressioD

In contrast to ALGOL an assignment expression produces a value, namely

the value of the expression following the assignment operator, This

general nature of the EULER assignment operator allows assignment of

intermediate results of an expression. For example:

atb+[ctd+e]

would compute d + e, assign this result to c, and then add b, and

assign the total to a.

The output expression is of the form

out <expression>

The value of the expression following the output operator is transmitted

52

to an output medium . The value of the output expression is the value of

the expression following the output operator.

A conditional expression is of the form

if <expression> then <expressiom else <expression>

The meaning is the same as in ALGOL.

The construct

if <expression> then <expressiorD

is not allowed in EULER, because this expression would not produce a

value,if the value of the first expression is false.

An expression can also be a block.

39 Statements and Blocks

A statement in EULER is an expression which may be preceded by

one or more label definition'(s). If a statement is followed by another

statement, then the two statements are separated by a semicolon. A semi-

colon discards the value produced by the previous statement. Since a

goto-expression leads into the evaluation of a statement without encoun-

tering a semicolon, the goto operator also has to discard the value of

the statement in which it appears.

A block in EULER is like in ALGOL a device to delineate the scope

of identifiers used for variables and labels, and to group statements

into statement sequences. A block is of the form

begin a;a;...;a end or

begin 6;6;...;6;a;a;...;a end

where 0 represents a

statement of a block

becomes the value of

statement and 6 represents a declaration. The last

is not followed by a semicolon, therefore its value

the block.

53

Since procedures, labels, and references in EULER are quantities

which can be dynamically assigned to variables, there is a problem which

is unknown to ALGOL: These quantities can be assigned to variables which

in turn can be evaluated in places where these quantities or parts of them

are undefined.

Situations like this are defined as semantic errors, i.e. the language

definition is such that occurrences of these situations are detected.

' 4. Declarations

There are two types of declarations in EULER, variable-declara-

tions and label-declarations:

new <identifier> and
label <identifier>

A variable declaration defines a variable for this block and all inner

blocks, to be referenced by this identifier as long as this same identifier1

is not used to redeclare a variable or a label in an inner block. A vari-

able declaration also assigns the initial value R to the variable.

As discussed in paragraph 1, no fixed type is associated with a variable.

A label declaration serves a different purpose. It is not a definition

like the variable declaration; it is only an announcement that there is

going to be a definition of a label in this block of the form

<identifier> :

prefixing a statement.

Although the label declaration is dispensable it is introduced into

EULER to make it easier to handle forward references. A situation like

begin...L:...begin...goto L;...L:...end;..e&

makes it necessary to detect that the identifier L following the goto

operator is supposed to designate the label defined in the inner block.

Without label'declarations it is impossible to decide, whether an identifier

(not declared in the same block) refers to's variable declared in an outer

block, or to a label to be defined later in this block, unless the whole

block is scanned. With a label declaration every identifier is known

upon encounter.

55

B. The Formal Definition of EULER

EULER was to be a language which can be concisely defined in such

a way that the language is guaranteed to be unambiguous, and that from the

language definition a proce&ing system can be derived mechanically, with

the additional requirement that this processing system should run with

reasonable efficiency. A method to perform this transformation mechani-

cally, and to accomplish parsing efficiently, has been developed and is

given in Chapter III for languages which are simple precedence phrase

structure languages. Therefore, it appeared to be highly desirable to

define EULER as a simple precedence language with precedence functions.

It was possible to do this and still include in EULER the main features

of ALGOL and generalize and extend ALGOL as described.

The definition of EULER is given in two ‘steps' to insure that the

- language definition itself forms a reasonably efficient processing sys-

tem for EULER texts. The definition of the compiling system consists of

the parsing algorithm, given in paragraph III.B.l., a set of syntactic

rules, and a set of corresponding interpretation rules by which an EULER

text is transformed into a polish string. The definition of the executing

system consists of a basic interpreting mechanism with a rule to interpret

each symbol in the polish string. Both descriptions use the basic notation

of chapter II. If the definition of EULER would have been given in one

step like the definition of the example in chapter III C, it would have

been necessary to transform it into a two phase system in order to obtain

an efficient processing system. Furthermore, a one phase definition re-

quires the introduction of certain concepts (e.g. a passive mode, where

a text is only parsedbrt not evaluated) which are without consequence for

56

practical systems, because they take on an entirely different appearance

when transformed into a two phase system.

The form of the syntactic definition of EULER is influenced by the

requirement that EULER be an unambiguous simple precedence phrase structure

language. This involves that:

a) there must be exactly one interpretation rule (possible empty)

for

b) the

the

each syntactic rule,

parsing algorithm has to find reducible substrings in exactly

same sequence in which the corresponding interpretation rules

have to be obeyed,

d extra syntactic classes (with empty interpretation rules) have

to be introduced to insure that at most one precedence relation

holds between any two symbols,

d) no two syntactic rules can have the same right part.

For an illustration of the requirements a) and b) consider the syn-

tactic definition of an arithmetic expression in ALGOL 60:

<arithmetic expression> :: = <simple arithmetic expression> 1
<if clause> <simple arithmetic expression> else

<arithmetic expressi

If the text

if b then a + c else d + e

is parsed, then d +

cordingly evaluated,

ceding <if clause>

e is reduced to <arithmetic expression> and ac-

before it has been taken into account that the pre-

may prevent d + e to be evaluated at all. In this

example, the syntax of ALGOL 60 fails to reflect the sequence of evaluation

properly, as it does e.g. in the formulations of simple expressions.

To correct this default, the corresponding syntactic definitions in EULER

are as follows: (BNF is adopted here to obviate the analogies)

57

<expresssio* ::= <if clause> <true part> <expressio*
<if clause> ::= if<expression> then'
<true par* ::= <expressi else

In the example above, the operator else will be recognized as occuring in

<true part> before the expression d + e is parsed. Through the inter-

pretation rule for <true par0 the necessary code can be generated.

A similar situation holds for the ALGOL definition

<basic statement> ::= <label> : <basic statemen

The colon, denoting the definition of a label, is included in a reduction

only after <basic statement> was parsed and evaluated. In EULER the

corresponding definitions read:

<statemen* tz= <label definition> <statement>
<label definitior3 ::= <identifier> :

Thus the parsing algorithm detects the label definition before parsing the

statement.

- As a third example, we give the EUJXR definition of <disjunctioD

<disjunctiorD :I= <disjunction head> <disjunctionS
<disjunction head> t:= <conjunction> V

Thus, v is included in a syntactic reduction, before <disjunction> is

parsed and evaluated; code can be generated which allows conditional skip-

ping of the following part of program corresponding t&disjunction>.

The corresponding ALGOL syntax

<Boolean term ::=. <Boolean term0 V <Boolean factor>

reflects the fact that both <Boolean terxrD and <Boolean factor> are

to be evaluated before the logical operation is performed. This irnter-

pretation of the logical operators A and V was deliberately discarded

as being undesirable.

According to requirement c) the language definition of EULER

contains certain auxiliary nonbasic symbols like

58

--- -=

<variable-> , <integer-> etc. to insure that EULER is a simple

precedence language. Without these nonbasic symbols the reducible sub-

strings in a sentence are not disjoint, as the following example taken

from ALGOL shows:

X X y t z , x x y t z
u I 1 u
<term> <factor> <factor> <prim>

I I I 1
<term> <factor>

Therefore one obtains the contradicting precedence relations x A <factor>

and X G <factor> .

The requirement d) together with the precedence property is a suf-

ficient condition for the language to be unambiguous. Requirement d)

has far reaching consequences on the form of the language definition,

because it forces the syntax to be written in a sort of linear arrangement

rather than a net. Two examples will be given.

A label unlike in ALGOL can in EULER not be defined as <identifier>,

because we already have

<variable-> ::= <identifier>

This suggests that the best thing to do would be to introduce two different

forms of identifiers for the two different entities variable and label.

It was felt, however, that tradition dictates that the same kind of iden-

tifiers be used for variables and labels. It was possible to do this in

EULER although

the identifier

the solution might not be considered clean.

got0 L

In the text

L is categorized by the parsing algorithm into the syn-

tactic class <variable>, but the corresponding interpretation rule ex-

amines the table of declared identifiers and discovers that this identifier

59

designates a label (defined or undefined at this time). Therefore, a

label is inserted into the polish string instead of a variable.

A second example for the specific arrangement of the syntax chosen

to fullfill requirement d) is the following: The concatenation operator

(a is introduced into the syntax in the syntactic class <catena>,

which is defined as

<caten ::= <catena> & <primary> 1
<disjunction>

This looks as if & had a lower precedence than the logical and arithme-

tic operators. But this is of no consequence, since an operand of &

must be a quantity of type List and a <disjunction> can only be of type

List if it is a <primary>, i.e. not containing any logical or arithmetic

operators.

- But we cannot write

<eaten0 ::= <primary> ,

because this would violate requirement d). Therefore <caten appears

in the syntax at a rather arbitrary place between <primary> and <expres-

sion>.

Looking at the requirements made upon the language definition and
r

observing the careful choices that had to be made in drawing up the

language definition in line-with these requirements, the criticism will

probably be raised, that the difficulties usually encountered in deriving

syntax directed compilers for given languages are not avoided in EULER

but merely ‘sneaked' into the definition of the language itself. This

point is well taken, but we think that nobody is likely to create some-

thing as complicated as a processing system for an algorithmic language

like ALGOL without encountering some difficulties somewhere. We think

60

it is the merit of this method of language definition to bring these dif-

ficulties into the open, so that the basic concepts involved can be recog-

nized and systematically dealt with. It is no longer possible to draft

an ‘ad hoc syntax' and call it a programming language, because the natural

relationship between structure and meaning must be established.

Subsequently follows the formal definition of EULER. It has been

programmed as an Extended ALGOL program for the Burroughs B5500 computer.

This program is listed in Appendix II.

61

Phase I (Translator)

The vocabulary v:

The set of basic symbols '%: *

<I >I’l’l~Ot~Iou+lif

minlmaxl+l-IXI/I+lmod--

.I;I:I@InewlformalIlabellhl[

thenlelsel&lV]Alll=lfl<l<l>l>- - - -

tlabsllength(integerIreal(log
.

listltaillinlisbl isn(isr)isllisli)isylisplisula(R)--w---v-

&Itruelfalse)1_PY

The set of non-basic symbols U-B: -

programlblocklblokhead(blokbodyllabdeflstat~stat-~I- .-- - -

exprlexpr-lifclause_ --.

con;iI-conj-Igo-njhead

E(sum-ltermlterm-- - -

ltruepartlcatenaldisj(disjhead)- - - -

lnegationlrelationlchoicelchoice-(- -- - --.-- - ---. -^_" ..--

Ifactorlfactor-(primaalprocdef)- -

]Jbegin

call

prochead\list*(reference(numberlreal*\- -

integer*linteger-ldigitllogval(var\var-lvardecll-- - - - -

1abdecl)fordecl- - -

The environment cl :

S
V
i
.

;
k
N
n
m
bn
on
scale

(stack used by the parsing algorithm)

(index to S and V)
(index to S and V)
(program produced by Phase I)
(index to P)
(list of identifiers and associated data)
(index to N)
(index to N)
(block number)
(ordinal number)
(scale factor for integers)

&, = (S , V , i , j , P , k , N , n , m , bn , on , scale]

*

I end

h and 0 are representatives for identifiers and symbols respectively.

62

k t'k+l; P[k] t
n t n+l; N[n] t.

k tk+l; P[k] t
n tn+l; N[n] t

n tn+l; N[n] t

t tn; k tk+l;

(‘new’);’ on +bn +l;
(Vm, bn, on, 4newT)

1: vardecl + new h

2: fordecl + formal h (Cformal,); on ton +l;.
(V-n, on, ‘formal')

(vbl, bn, Q, Q)3: labdecl dlabel A

4:vs- -,A
L41: if t < 1 then croto Error:

if N[t] [l~$~then goto L42;I -
t t t-1

'new' then oto
Yr-

L43 ;
(W , tim[5n[t 21); oto ~46
[4] # ‘label' then oto L l%r

(‘labeim-t]m h[2]);)goto 1
[4] f: 'formal' then oto L45;
(,‘@ ', Nmm, mr 2$r;

L42:

L43:

L44:

if N[t]
xk] t
if N[t]
xk] t
if-N[t]
P[k] t
k tk+l; P[k] t ('value'); oto L46
P[k] t (‘labe& N[m, Nit 21);$r
N[t][3] t-k; poto ~46;

k t k+l; P[k] t (‘1')

L45:

L46 :
5: var- 4 var-[expr]

k t k+l; P[k]'+- (‘value')6: var- +var- .

A7: var . 4 var-
-.

V[j] ttrue8: logval itrue

9: logval + ,fa-lse V[j] t false

10: digit 4 0 Vhl +O
. .. .

19: digit+ 9 WI g9

20: integer- +digit scale t -1

21: integer- + integer- digit t t10 X V[j]; V[j] tV[i] + t;
scale t scale - 1

22: integefl 3 integer-. A

23: real* + integerjc . integefi t t10 T scale;
t +V[i] X t;
VCjl +VlIjl + t

24: real* 3 integeti A

63

25: number 3 real*

26: number -3 real* integer*. --.I_ - 10

27: number + real*10zinteger*

28: number + 10
integer*

29: number + 10
z integer*

30: reference + evar-

31: listhead -+listhead expr ,_.-_

32: listhead + (

33: list* + listhead expr)- -

34: list* +listhead)

35: prochead -+ prochead fordecl ;--- -

36: prochead

37: procdef + prochead expr 9

38: primary

39: primary

40: primary

41: primary

42: primary

43: primary

44: primary

45: primary

46: primary

47: primary--_--

-3‘

+ var

+ var list*- -

+logval

+nurriber- -

+cl

+ reference

+list*

+ tail primary

+ procdef

+R

A

t t10 t V[i];
Wh-V[jl >! t

t to.1 ? V[i];
WI +V[jl X t

V[j] t10 tV[i]

V[j] to.1 t V[i]

A

WI +VCjl + 1

V[jl +O

k tk+l; P[k] + VP, WI + 1)

k tk+l; P[kl +-- (‘>', v[jl)

A

bn tbn+l; on t 0; k tk+l;
P[k] t(c6',R); V[j] tk;
n tn+l; N[n] t (SI, m);
m t n

k tk+l; P[k] t (‘9');
PCWH21 tk+l; bn tbn - 1;
n tm-1; m +N[m][2]

k tk+l; P[k] t ('value')

k tk+l; P[k] t ('call')

k t k+l; P[k] t (, 410gvals, V[j])

k tk+l; P[k] t ('number', V[j])

k tk+l; P[k] t(‘s~rmbol', v[j])

A

A

k t k+l; P[k] t (‘tail')

A

k tk+l; P[k] t (‘Q')

64

48: primary

49: primary

50: primary

51: primary

52: primary

53: primary

54: primary- -

55: primary--.

56,: primary

57: primary----- - -

58: primary

59: primary

60: primary

61: primary

62: primary

63: primary

64: factor-

65: factor-

66: factor

67: term-

68: term-

69: term-- -

70: term-

71: term-

72: term

73: sum-

-+ C expr 1

+ in

+ isn var

+ isn var- -

+isr var- -

-3 is1 var- -

+ isli var--

.&s.y,, var

isp var

isn var- -

abs primary

integer primary- -

real primary

logical primary

list primary

primary

factor- ? primary

factor-

factor

term- X factor

term- / factor

term- + factor

term- mod factor- -

term-

term

A

k tk+l; P[k] t (‘in“)

k tk+l; P[k] t (‘isb')

k t k+l; P[k] t (‘isn')

k tk+l; P[k] t (‘isr')

k tk+l; P[k] t (‘isl')

k tk+l; P[k] t (‘isli')

k tk+l; P[k] t (‘isy')

k t k+l; P[k] t (‘isp")

k ck+l; P[k] e (‘isn')

k tk+l; P[k] t (‘abs')

k t k+l;. P[k] t (‘length')

k tk+l; P[k] t (‘integer')

k t k+l; P[k] t (‘real')

k tk+l; P[k] t ('logical')

k tk+l; P[k] t (‘list')

A

k tk+l; P[k] t ('T')

A

A

k tk+l; P[k] t (‘X')

k t k+l; P[k] t (‘/')

k tk+l; P[k] t (',+')

k t k+l; P[k] c ('mod')

A

A

65

74: sum- ++ term

75: pn- -+-term

76: SUIT+ -+sum- + term

77: sum- -+sum- -term

78: SIXI + sum-

79: choice- + sum

80: choice- + choice- min sum- -

81: Thoice- + choice- max sum- -

82: *choice + choice-- - -

83 : relation + choiceI---_- - -----

84: relation + choice = choice

85: relation + choice k choice

86: relation + choice < choice- - -

- 87: relation + choice < choice- - - - . _

88: relation + choice > choice- - ___I_

89: relation + choice > choice

90: negation + relation- -

91: negation + 7 relation.- -.-

92: _conjhead --) negation A- -

93 : conj- --j conjhead conj-.

94: conj- + negation

95 : conj + conj-

96: disjhead + conj V

97: disJ + disjhead dis;i

98: disj + conj

99: catena 3 catena & primary

A

k tk+l; P[k] t ("')

k tk+l; P[k] t (‘+')

k tk+l; P[k] t (‘-')

A

A

k tk+l; P[k] t (‘min')

k t k+l; P[k] t (‘

A

A

k tk+l; P[k] t (‘=')

k tk+l; P[kl + (‘f ')

k t k+l; P[k] t (‘<')

k tk+l; P[k] t (‘5')

k tk+l; P[k] t ('2')

k t k+l; P[k] t (‘>')

A

k ek+l; P[k] t (‘7')

k tk+l; P[k] t (‘A', i-2); V(j] tk

P[V[jll[21 + k+l

A

A

k tk+l; P[k] t (‘V), 0); V[j] tk

P[v[jllkl + k+l

A

k tk+l; P[k] t (‘&')

66

100: catena +

101: truepart 3

102: ifclause +

103: expr-

104: expr-

105: expr-

106: expr-

lD7: expr---_.

108: expr-. - -

109: expr- -

110: stat-

111: stat-

112: stat

113: labdef__I--

+expr

disj

expr else

if expr then- - -

'Block~-

ifclause truepart- -
expr-

var t expr-

got0p r i m a r y

out expr---_

catena- - - -

expr-

labdef stat-- -

+ stat-

-+ A:
Lll31:

m-132:

L 1133:

L1134:
114: blockhead +begin

115: blokhead jblokhead vardecl;

116: blokhead +blokhead labdecl;

117: blokbody +blokhead ' '. __-._ ._

118: blokbody +blokbody stat;

119: block +blokbody stat end

120: program + lblock 1,

A

k tk+l; P[k] t (ce1se9, fl); V[jl + k

k tk+l; P[k] t (‘then', !G?); V[j] tk

A

P[V[j]][2] +V[j+ll +l; P[V[j+lllkl +k+l

k t k+l; P[k] t (‘t')

k e k+l; P[k] t (‘goto')

k tk+l; P[k] t ('out')

A

A

A

A

A

t t n ;

132;

N[t][4] t‘iabel';

bn tbn+l; on t 0; k tk+l;

m); m tn

k tk+l; P[k] t (';')

k t k+l; P[k] t (‘end');
bn tm-1; m +N[m]m
A

67

Phase II (Interpreter)

The following is the definition of the execution code produced by Phase I.

The variables involved are:

S (tree structured memory stack)
. (stack index)
mp (stack ' din ex, points at the last

element of a linked list of Marks)
P (program)
k (program index of the instruction

currently being interpreted)
fct (counter of formal parameters)

s 9 LA,b C (variables and labels local to any interpretation

rule)

&2=E s, i, mP9 p, k, fct3

The following types of quantities are introduced, which were not men-

tioned in Chapter II :

labels
procedures

i.e. program references)
i.e. procedure descriptors)

with the accompanying type-test operators isl, isp and the following

type-conversion operators :

progref converting the two integers pa and bn into the pro-

gram-reference with address pa defined in the block

with number bn.

proc

b l n

mix

converting three integers (block-number, Mark-index,

program-address) into a uniquely defined procedure-

descriptor,

converting a

converting a

index of the

procedure-descriptor into its block-number,

procedure-descriptor or a label into the

Mark belonging to the block in which the

procedure-descriptor or label is defined (Mark-index),

68

adr converting a procedure-descriptor or a label into its

program address.

Also, there exists an operator

reference converting the two integers on and bn, into the

reference of the variable with ordinal number on in the

variable-list of the block with number bn.

The detailed description of these operators depends on the particular

scheme of referencing used in an implementation, for which an example is

given in Appendix II. It should be noted, however, that a reference,

label or procedure-descriptor, may become undefined if it is assigned

to any variable which is not in its scope. Since procedures and blocks

may be activated recursively, the actual identity of a reference, label

or procedure-descriptor can only be established in Phase II, which makes

it necessary for Phase I to describe them in terms of more than one quan-

tity. The sufficient and necessary amount of information to establish

these identities is contained in the 'Marks' stored in S . Marks are

created upon entry into a block (or procedure) and deleted upon exit.

A Mark contains the following data:

1. a block-number

%:
a link to its dynamically enclosing block
a link to its statically enclosing block

5:
a list of its variables -
a program return address

By ‘link' is meant the index of the Mark of the indicated block. -

The following list indicates to the left the operator P[k][l] currently

to be executed, and to the right the corresponding interpretation

algorithm. At the end of each rule a transfer to the Cycle routine has

to be implicitly understood. This basic fetch cycle is represented

as follows:

69

Initialize: it-O; mp t 0; k t- 0;
Cycle : k tk+l;
T : Obey the Rule designated

by P[k][l]; goto Cycle

Operators Interpretation Rules (y,)

+ if 1 isn S[i-l] then goto ERROR:
if 1 isn S[i] then goto ERROR;
s[i-l]CS[i-l]‘+ S[i]; i ti-1

X

I

- I

defined analogously to +
c *
mod

. if 1 isn S[i] then goto ERROR;
s[i] +yS[i]

abs
integer 1 defined analogously to L
logical

real if 1 isb S[i] then goto ERROR;
s[i] +=a1 S[iF

min if T isn S[i-l] then goto ERROR;
if 1 % S[i] then goto ERROR;
iti-l;
if S[i] < S[i+l] then goto A;
zi] t- STi+l]; A:

max defined analogously to min

isn

isb

isli
isy
isp
isu

if 1 isr S[i] then goto A;
s[i] ts[i]. ;T
A: S[i] +-isn S[i]

)
defined analogously to isn

70

< if 1 isn S[i-l] then goto ERROR;
if1 isn S[i] then goto ERROR;
Ti-1J-L S[i-11 < S[i]; it i-l

b defined analogously to <

A if 1 isb S[i
if S[rthen
ktP[k]C21;
A: i - i -1

then goto ERROR;

V if 1 isb S[i] then goto ERROR;- -
if l’m] then goto A;
kt P[k][2Eoto T; -

1

A:iti-1

if 1 isb Sri] then goto ERROR;
xi] t7 S[i] ----

then if lisb Sri] then goto ERROR;
iti-1;
if S[i+l] then goto A;
k +-P[k][2]; poto T ;
A:

else k +P[k][2]; goto T

length if 1 isr S[i] then goto A;
S[i] t S[i].;
A: if 1 isli S[i] then go-to ERROR;
S[i] *length S[i]

tail if 1 isli S[i] then goto ERROR;
S[i] ttail S[i]

& if 1 isli S[i-11 then goto A;
if 1 isli S[i] then goto ERROR;
S[i-l] tS[i-1] Be S[i]; i ti - 1

list A: if 7 isn S[i] then poto ERROR;
t eS[i]; S[i] +'(>;
B: if t 4 0 then goto C;
S[i] tS[i] m(n); t tt - 1;
goto B; C:

71

number

logval

R

string

label

@

new

formal

begin

end

4

value

i t i+l; Sb-1 f- Pblkl

i ti+l; S[il t- P[klbl

i ti+l; S[i] t-R

i t i+l; Sk] + P[k1[21

i ti+l; S[i] +progref(P[k][2], P[k][3])

i ti+l; S[i] f- reference(P[k][2], P[k][3])

ShplNl t- SCmplP+l & (Q>

fct t fct+l;
if fct < len th S[mp][4] then goto A;
s[mp][4T '*I[41 8~ (R);

if 1 isr S[i-l] then goto ERROR;
ST-11.~S[i]; S[i-l] +-S[i]
i +-i-l;

iti-

if 1 isn S[i] then goto ERROR;
if S[rL 0 then goto ERROR; i ti-1;

. .
gi;~;[~',;i then goto ERROR;

] then goto ERROR;
il;
tpWy;toE R R O R ;

i ti+l;
Nil + (Sbpl[ll+l, mpt wt 0);
mp ti

t + SCmpH21; Shpl +-WI;
itmp; mp t-t

i ti+l;
(sh?l[ll+l, S[mpl[31, k)

; goto T

A: if1 isp S[i] then goto B;
fct70; t eS[i];
S[i] t- (bln t, mix t, mp, (), k);
mp ti; ktadry B:

(subscript)

(a Mark)

(a Mark)

72

call i +-i-l;
if 1 isr S[i] then goto A;
S[i] cS[i].;
A: if lisp Sri] then goto ERROR;
fct t 0; t -Sri];
S[i] t (bln t/mix t, mp, S[i+l], k);
mp ti; k +adrT

9 k t S[mpl[51; t + Shpl[21;
Shwl + SCil;
itmp; mp tt

got0 if 1 is1 S[i] then goto ERROR;
E t= S[i];ytadr S[i];
i tmcgoto T-

t +-Pklkl; s + (>

S[i] t s

(a Mark)

(build a list)

73

Certain features of ALGOL are not included in EULER, because they were

thought to be non basic (or not necessary), or because they did not fit

easily into the EULER definition, or both.

Examples are

the empty statement, allowing an extra semicolon before end,

the declaration list, avoiding the necessity of repeating the

declarator in front of each identifier,

the conditional statement without else,

the for-statement,

the own type.

It is felt that these features could be included in a somewhat

‘fancier' EULER+ language, which is transformed into EULER by a prepass

to the EULER processing system. This prepass might include other features

- like ‘macros' or ‘clich&', it would take care of the proper deletion of

comments,etc. Certain standard macros or procedures might be known to

this prepass and could thus be used in EULER+ without having been declared,

like the standard functions in ALGOL. The set of these procedures would

necessarily have to include a complete set of practical input-output pro-

cedures. It should be noted, however, that in contrast to ALGOL, they can

be described in EULER itself, assuming the existence of appropriate opera-

tors in and out (reading and editing characters).T h e p r e s e n c e o f s y m b o l s

and lists (formats are lists of symbols), of type-test- and conversion-

operators are of course instrumental in the design of these procedures.

A few other useful ‘standard procedures' are given as programming exam-

ples in the following paragraph. (cf. ‘for', ‘equal' and ‘array')

74

c. Examples of Programs

A list can contain elements of various types, here numbers and procedures:

begin new x; new s;

s + (2, ‘begin x +x+1; s[x] end', ‘out x') x t s[l]; s[x]

end

*****SC****

A reference can be used to designate a sublist. Thus repeated double

indexing is avoided:

begin new a; new r;

a + (1, t&3),4);

r +@d21;
out r.[l]; out r.[2];

r.[l] tR

The output is: 2, 3

end

A procedure assigned to a variable (here p) is replaced by a constant,

as soon as further execution of the test n < 100 is no longer needed:

begin

n

P

f

end

new p; new n; new f;

t 0;

t ‘n t n+l; if n < 100 then f(n) else p t f(n)';

-t ‘formal x;*.j 9.,

. .

If a parameter is a ‘value-parameter', the value is established at call

time. In the case of a ‘name-parameter', no evaluation takes place at

call time. Thus the output of the following program is 4, 16, 3

75

begin

P

i

a

new p; new a; new i;

t 'formal x; formal k;

begin k tk+l; out x

t 1;

+ (4, 9, 16);

end';

p(a[i], @i); p(‘a[i]', @i); out i

end .- _- - --
begin new p; new a; new i;

p t ‘formal x; formal k;

begin k tk+l; x ek end';

a tlist 3; i tl;

p(@a[il, @i>; p(‘@aCil’, @i> _
end

Here the final value of a is (2, Cl, 3).

* * * * * S t * * * *

A for statement is not provided in EULER.

grammed as a procedure and adapted to the

are given below, the latter corresponding

for t ‘formal v; formal n; formal s;

begin label k; v tl;

k: if v 5 n then

It can, however, easily be pro-

particular needs. Two examples

to the ALGOL for:

begin s; v tv+l; goto k end

else R

e n d '

algolfor e ‘formal v; formal 1; formal step; formal u; formal s;

begin label k; v t I;

k: if (v-u) X step 5 0 then

begin s; v tv + step; goto k end

else R

end'

76

It should be noted that the decision whether the iterated statement should

be able to alter the values of the increment and limit is made in each

call for ‘for' individually by either enclosing the actual parameters

in quotes (name-parameter), or omitting the quotes (value-parameter).

E.g. -a). n + 5; for (@i, n, /begin n + n-1'; .out,n end')'I '# ';'.

b) n t5; for (@i, ‘n', ‘begin n tn-1; out n end')8 :-. 7 -. . .

a) yields 4,3,2,1,0, while b) yields 4,3,2 .

St*********

There is no provision for an operator comparing lists in EULER. But

list comparisons can easily be programmed. The given example uses the

‘for' defined above:

equal t ‘formal x; formal y;

begin new t; new i; label k;

t t false;

if isli x A isli y A length x = length y thenv-
begin for (@i, length x,

‘if -iequal (@x[i], @y[i]) then goto k else Q');

t ttrue

end elsem-
t tisn x A isn y A x=y;

k: t

end'

It should be noted that the definition of A deviates from AIXOL and

thus makes this program possible; therefore in

t tisn x A isn y A x=y

the relation x=y is never evaluated if either x or y is a number.

If the list elements may also be logical values or symbols, then the above

statement must be expanded into:

77

t tisn,x A isn y A x=y V isb x A isb y Area1 x = real y V

isy x A isy y A real x = real y

There is no direct provision for an array declaration (or rather array

‘reservation') either. It can be programmed

array t ‘formal f; formal x;

begin new t; new a; new b; new i;

b tl; t tlist b[l];

by the following procedure:

a tif length b > 1 then array (tail b, x) else x;

for (@i, b[l], ‘t[i] +a');

t

end'

The statement a t array ((xl, x2, . . . , xn)) would then correspond to

the ALGOL array declaration

array a[l: xl, 1: x2, . . . , 1: xn],-.- -

while the statement a tarray ((xl, x2, . . . , xn), a) would additionally

‘initialize all elements with a! .

The following is an example of a summation procedure, using what is

in AIGOL known as 6Jensen*s device'. Thestatement sum (‘t', @i, I, u)

has the meaning of E t
i=f .

begin new k; new I; new sum; new a; new b;

sum t 'formalt; formal i; formal 1; formal u;

begin i t 1;

iff>uthenOelset+sum(‘t',bi,1+l,u)

end';

a t- (l,T 9, 16);

b +- ((1, 41, (9, 16));

78

out sum ('a[k]', @k, 1, 4);.-

& sum (‘a[k] X a[5-k]', @k, 1, 4);

& sum (‘sum (‘b[k][L]', @a, 1, 2)', @k, 1, 2)

end

*

begin new x;

elliptic

********St

new sqrt; new elliptic; label K;

t ‘formal a; formal b;

if abs [a-b] 5 ,0r- - 6 then 1.57q96326/a else

elliptic ([a+b]/2, sqrt (a)(b))';

sqrt t ‘formal a;

begin label L; new x; X ta/2;*
L:if abs [x7 2 - a] < ,cL 8 then x elsew- P -
begin x +[x+a/x]/2; goto L

end

end';

x e0.7;

K: out x; out sqrt(x);

x +x+0.1; if x < 1- -
end

. 3 then goto K else Q

out elliptic (1,x);

This program contains a square-root procedure using Newton's method

iteratively, and a procedure computing the elliptic integral

using the Gaussian method of the arithmetic-geometric mean recursively.

-K***

As a final example, a permutation generator is programmed in EULER, so

that the value of

w-m (1, 1)

79

is the list of all permutations of the elements of list &, i.e. a list with

1 x 2 x 3 x . . . X length 1s u b l i s t s :

begin new perm;new a; new k; label f;

perm t ‘formal k; formal y;

begin new rot;new exch; new x;

x +Y;

rot t ‘formal k; formal m;

if m > length x then () else

per-m (k+l, exch (k, m, ax)) Bc rot (k, m+l)';

exch t ‘formal k; formal m; formal x;

begin new b; new t;

t tx;

b +t[k]; t[k] +t[m]; t[m] tb; t

end';

if length x = k then (x) else rot (k, k)

end';

a + 0;

f: out perm (1, a); a ta & (length a); goto f

end

This program generates the following lists:

0
((0))
Wd, Lo))
m&2), @Al), Lw), Lw
. .

1, (%W), (2,091 1)

80

References

1.

2.

3.

4.

5.

6.

7-

8.

9.

10.

11.

12.

P. Naur, ed., ‘Report on the algorithmic language ALGOL 60',

Comm. ACM, vol. 3, pp. 299-314; (May 1960).

-m-m 9 ‘Revised Report on the algorithmic language ALGOL 60',

Comm. ACM, vol. 6, pp. l-17 (Jan. 1963).

C. B&m, ‘The CUCH as a formal and descriptive language', IFIP

Working Conf., Baden, Sept. 1964.

P. Landin, 'The mechanical evaluation of expressions', Comp. J.

vol. 6, 4 (Jan 1964).

P. Landin, ‘A correspondence between ALGOL 60 and Church's Lambda-

Notation', Comm. ACM vol. 8, 2 and 3, pp. 89-101 and 158-165.

A. Church, ‘The calculi of lambda-conversion', Ann. of Math. Studies,

vol. 6, Princeton N. J., 1941.

A. Curry, R. Feys and W. Craig, ‘Combinatory Logic', North-Holland

pub., 1958.

A. van Wijngaarden, ‘Generalized ALGOL', Annual Review in Automatic

Programming, vol. 3, pp. 17 -26.

A. van Wijngaarden, ‘Recursive definition of syntax and semantics',

IFIP Working Conf., Baden, Sept. 1964.

J. van Garwick, ‘The definition of programming languages by their

compiler', IFIP Working Conf., Baden, Sept. 1964.

R. W. Floyd, ‘The syntax of programming languages - a survey',

IEEE Trans. on El. Comp., vol. EC-13, pp. 346-353 (Aug. 1964).

Y. Bar-Hillel, M. Perles and E. Shamir, ‘On formal properties of

simple phrase structure grammars', Zeitschrift fsr Phonetik,

Sprachwissenschaft und Kommunikationsforschung, vol. 14, pp. 143-172;

also in ‘Language and Information' Addison-Wesley Pub., 1964.

81

13 l R. W. Floyd, ‘A descriptive language for symbol manipulations',

J. ACM, ~01. 8, pp. 579-584 (Oct. 1961).

14. R. W. Floyd, ‘Syntactic analysis and operator precedence', J. ACM,

vol. lo, pp. 316-333 (July 1963).

15. E. T. Irons, ‘Structural connections in formal languages', Comm. ACM,

vol. 7, pp. 67-71 (Feb. 1964).

16. N. Wirth, ‘A generalization of ALGOL', Comm. ACM vol. 6, pp. 547-

554 (Sept. 1963).

Acknowledgement: The authors wish to acknowledge the valuab,le assistance

of Mr. W. M. McKeeman, who programmed the major part of the Interpreter

on the Burroughs B5500 computer. His contribution includes the "Garbage

Collector", a particularly subtle piece of code.

82

Appendix I

The following is a listing of the syntax-processor programmed in Extended

ALGOL* for the Burroughs B5500 computer. The organization of this program

is summarized as follows:

I Input lists of non-basic symbols, basic symbols and productions

Build list of leftmost and rightmost symbols, cf. III B2.

Establish precedence relations, cf. III B2.

Find precedence functions, cf. III B5.

Build tables to be used by the parsing algorithm of the

EULER processor. (punch cards)

Most of the program is written in ALGOL proper. Often used extensions

of ALGOL are:

1. READ and WRITE statements

(symbol strings enclosed in < and > denote a format)

2. DEFINE declarations, being macros to be literally expanded by the

ALGOL compiler.

3. STREAM procedures, being B5500 machine-code procedures, allowing the

use of the B5500 character mode.

*
cf. Burroughs B5500 Extended ALGOL Reference Manual.

83

BEGIN COMMENT SYNTAX=PROCESSOR, NIKLAUS WIRTH OECd964J
DEFINE NSY a iSOt COMMENT MAX. NO,'OF SYMBOLSJ
DEFINE NPH II 15OlrJ COMMENT MAXr NO, OF PRODUCTIONSJ
DEFINE UPTU 8 STEP 1 UNTIL LJ
DEFINE LS l “4 � 8, EO a �8� 81 GR l “a” #p NULL m ” ” #J
FILE OUT PCH 0 C2rlO)J COMMENT PUNCH FILEJ
INTEGER l.TJ COMMENT NUMBER OF LAST NONBASIC SYHBOLJ
I N T E G E R K,HIN, MAX, OLONJ BOOLEAN ERRORFLAG)
ALPHA ARRAY READBUFFERC0:9h WRItEBUFFER(0:14~J
ALPHA AHRAY TEXT COttllJ COMMENT AUXILIARY TUT ARRAYJ
ALPHA ARRAY SYTB CO:NSYlJ COMMENT SYMBOLTABLE J
INTEGER ARRAY MEF CO:NPR,O:SJJ COMMENT SYNTAX REFERENCE TABLE)
LABEL STARTI EXITJ
LABEL AIB~,~P,GJ

STREAM PROCEOURE CLEAR (0rN)J VALUE NJ
BEGIN 01 + DJ OS + 8 LIT " “I SI t DJ DS t N W D S
END J’

STREAM PHOCEOURE MARK (D,SlJ VALUE SJ -
BEGIN 01 * 0) St t LOC SJ SI t SIt7J OS t C H R
END i

BOOLEAN STMEAM PROCEDURf: FINIS(S)1
BEGIN TALLY 6 1J SI t SJ IF SC a "*w THEN FINIS + TALLY
END J

STREAM PROCEDURE EDIT (S,OrN)J
8EGIN DI + DJ SI t NB OS t 3 OECJ 31 t SJ OS t 9 UDSJ
END J

STREAM PROCEOURE MOVE (SIO)J
BEGIN SI + SJ 01 t DJ OS + WDSJ
EN0 J

STREAM PROCEDURE MOVETEXT (S~DIN)J VA/UC NJ
BEGIN 01 t DJ SI t SJ OS t N WDSJ
END J

BOOLEAN ST)(EAM PROCEDURE EQUAL (SrD)J
BEGIN SI t SJ 01 t DJ TALLY t 1J IF 8SC a DC THEN EOUAL (I TALLYI
END J

STREAM PROCEDURE SCAN (S,OD,N)J
BEGIN LAB&L A~B,CID,EJ

SI t SJ 01 t ODJ OS t 48 LIT "0"J. DI t DDJ $1 t SI+,iJ
IF SC 8 " " THEN 01 t DI+8J

Al IF SC 8 tt " THEN BEGIN SI t SItlJ 00 TO A END J
IF SC) ‘9” THEN GO TO DJ
8 (IF SW w T H E N 6gGfN DStLIt ” “J GO TO E END J DStCHRJ EOJ

B: IF SC fi " " THEN BEGIN SI t St+lJ 00 TO B END J
CI SI t SItlJ GO TO AJ
;;DD; * NJ Sf + SIt5J OS t 3 O C T

STREAM PROCEDURE EDITTEXT fS,O,N)J VALUE NJ
BEGIN SI t SJ 01 t DJ OI t DI+lOJ N(DI + DI+OJ OS + 8 CHR)
END J

STREAM PROCEDURE SETTEXT CAdbbO~Ert)J
BEGIN 01 + 2, 01 t DI+.cIJ SI t AJ OS t 3 DECJ SI t 81 OS (! WOSJ

01 t DI+SJ SI t CJ OS t 3 DECJ 01 t DI+3J SI + DJ OS + 3 OECJ
01 t OX+31 SI t EJ OS t 3 O E C J

84

END)
STREAM PROCEOURE PCHTX (SdrN); VALUE N)

BEGIN SI 4 S) 01 + 0) 01 * DI+4t
NtOS + LIT """3 OS + 8 CHR; OS t LIT """j DS + LIT “,“)J

END)
PROCEDURE INPUT)

READ CC4ROFIb IO, REAOBUFFERCd) [EXI T])
PROCEDURE OUTPUT)

BEGIN WHITE CPHINFIL R 151 WRITEBUFFER(+))J
CLEAM (WHITEBUFfERCOh 14))

EN0 3
INTEGER PROCEDURE IN% (X)3 REAL X)

i3EGIN INTEGER II LABEL f1
FOR 1 + 0 UPTO M DO

IF EQUAL (SYTatI), X) THEN GO TO F J
vlRITE C<“UNOEfINED SYMBOL">)J ERRORfLAG t TRUEJ

fl IfiX + Ii
END)

START8
FOR N + 0 UPTO 5 DO
FOR M * 0 UPTO NPR DO REP [M,NJ + OJ
M + N 6 MAX + ULON t OJ ERRORFLAG * FALSEi
CLEAR {WRITEBUFFERCOI, 14))
COMMENf REAO LIST OF SYMBOLS, ONE SYMBDL MUST APPEAR PER CARD8
STARTING IN COL, 9 C8 CHARS, ARE SIGNIFICANT), THE LIST OF NON"
BASIC SYMBOLS IS FOLLOWED BY AN ENDCARD ("+" IN COl.,l,o THEN
FOLLOWS THE LIST Of BASIC SYMBOLS AND AGAIN AN ENDCARO J
WRITE (4 "NONBASIC SYM6OLS:">);

4: INPUTJ
IF FINIS CREAOBUFFERCOI) THEN GO TO El
M t Mtl;
MOVE tREADBUFFERC13r VT8 [Ml,;
EDIT (REAOBUfFERtOJr WRITEBUffERtlJ, M)J
OUTPUTJ GO TO AJ

E: WRITE ($/"t)ASIC SYMBOLSJ">)J LT + MI
Fr INPUT)

IF FINIS CRE406UFFER~OI) THEN GO TO. GJ
M t Mtl;
MOVE (REAOBUFFERCII, SYTB [MJ)I
EDIT (REAOtQJFfERCOlr WRITEBUFFERCll, M))
OUTPUTJ GO TO FJ

COMMENT RE40 THE LIST UF PRODUCTIONS, ONE PER CARD, THE LEFTPART
IS 4 NONBASIC SYM8OL STARTING IN CoL.2, NO FORMAT 1s PRESCRIBE D
FOR THE RIGHT FART. ONE OR MORE BLANKS ACT 4 SSYMBOL SEPARATORS,
IF COLd IS BLANK, THE SAME LEFTPART A$ IN THE PREVIOUS PRODUCTION
IS SUBSTITUTED. THE MAX. LENGTH OF A PRODUCTION IS 6 SYMBOLS)

0: WRITE (</"SYNTAXJ">)J
61 INPUT)

IF FINIS ~REAO~UFFERCOJ) THEN GO TO CJ
MOVETEXT (HE408UFFERtOlr WRITEBUFFER[lJ, 10)) OUTPUT)
M A R K CREAD~UFfERt9lr 12)) SCAN (READBUfFER[OJ, TE%T(OJ, N))
IF N S 0 OH N) NPR OR REFCNIOJ + 0 THEN

BEGIN WRITE (<"UNACCEPTABLE TAG">)) ERRORFLAG t TRUE) GO TO 8

85

IF N b MAX THEN MAX t NJ
COMMENT THE SYNTAX IS STORED IN REFI EACH SYMBOL REPRESENTED BY

ITS INDEX IN THE SYMBOL"tABLE)
FOR K 6 0 UPTO 5 DO REF CNrKI + INX (TEXT[K])I
IF REF CbOJ m 0 THEN REf CNIOI + REF [OLDN,Ol ELSE.
IF REF CNIOI) LT THEN

BEGIN WHITE (("ILLEGAL PRODUCTION">)I ERRORFLAG t TRUE END i
OLDN t Ni GO TO BI

C: :FtE;;;;FLAG THEN GO TO EXIT)

COMMENT M IS THE LENGTH OF THE SYMBOL-TABLE, N DF THE REF-TABLE)

BEGIN COMMENT BLOCK A)
INTEGER ARRAY HCO:M, 0:Mli COMMENT PRECEDENCE MATRIXI
IN,TEGER ARRAY FI GtOtMlJ COMMENT PRECEDENCE FUNCTIONSJ

BEGIN COMMENT BLOCK Bl1
INTEGER ARRAY LINX, RINX [OtLTJJ COMMENT LEFT / RIGHT INDICES8
INTEGER ARRAY LEFTLIST, RIGHTLIST t01102211

BEGIN COMMENT BLOCK Cl, BUILD LEFT- AND RIGHT-SYMBOL LISTS)
INTEGER 1~31
INTEGER SPI RSP) COMMENT STACK- AND RECURSTACK"POlNTERSJ
INTEGER LPI RP) COMMENT LEFT/RIGHT LIST,POINTERSJ
INTEGER ARNAY ANSTACK COtMU
BOOLEAN ARRAY DONE, ACTIVE COq.TfJ
INTEGER ARRAY HECURSTACK, STACKMARK COaLT+lJ)
INTEGER ARRAY STACK, t0:10221) COMMENT HERE THE LISTS ARE BUILT)

PROCEDURE PRINTLIST (LXIL)J ARRAY LXr 1 CO],
BEGIN INTEGER I,JrKi

FOR I + 1 UPTO LT OU IF DONECII THEN
BEGIN K + 0) MOVE (SYTBCII, WRITEBUfFERCOI))

FOR 3 + LXCII, J+l WHILE LCJI + 0 DO
BEGIN MOVE CSYTBCLCJIJ, TEXTtK])) K + K+l)

IF K L 10 THEN
BEGIN EDITTEXT (TEXTCOb WRITEBUFFERtDJr 1031 OUTPUTJ

K +Oi
END i

EN0 i
IF K > 0 THEN
BEGIN EDITTEXT CTEXTCOI, WRITEBUF:ER(OJ, K)) OUTPUT END t

EN0
END t

PROCEDURE DUMPIT)
BEGIN INTEGER 1,Ji WRITE (CPAGEI))

WRIT& (*XQ,"DONC ACTIVE LINX RINX",))
W R I T E C(516*, FOR I + 1 UPTO LT D O

CI, DONECII, ACTIVECII, IJNX CIJr RINXCIIJ~~
WRITE ((/"STACK: se '"#I3b SP)J
WRITE Cc1100 I “‘r1016,, FOR I + 0 STEP 10 UNTIL SP DO

[II FOR J * I UPTO I+9 DO STACK [J)I)8
WRITE t</"R~CURSTACK:"b)J
WRITE (<316*, FOR I + 1 UPTO RSP DO

(1, RECURSTACKCIb StACKMARKtITl))

fND i
PRDCEDuRE KESET (X)i VALUE Xt INTEGER X;

BEGIN INTEGER Ii
FOR I + X UPTO RSP DO STACKMARK CIJ + STACKMARK [Xl;

END i
PROCEDURE YUTINTOSTACK (X)i VALUE XI INTEGER X)

COMMENT X Is PUT INTO THE dORKSTACK, DUPLICATION IS AVOIDED!
BEGIN IF INSTACK CX] a 0 THEN

BEGIN SP + SP+tI STACK (Sfl 6 X; INSTACK [Xl t Sf' END
ELSE IF INSTACK [Xl 4 STACKMARK [RSPJ THEN
BEGIN SP + SP+lI STACK CSPI t X4

STACK CINStACKtXll + 0) INSTACK [Xl + SP)
END i

IF SP 3 1020 THEN
BEGIN WRITE C</"STACK OVERFLOW"/>)1 DUMPIT) GO TO EXIT END i

END J
PROCEDURE COPYLEFTSYMBOLS CX>) VALUE X) INTEGER Xi

'COMMENT COPY THE LIST OF LEFTSYMBOLS OF X INTO THE STACKI
BEGIN FUR X + LINXtXh X+1 WHILE LEFTLISTCXI + 0 DO

PUTINTOSTACK cLEFTLISTCXl~i
END 1

PROCEDURE COPYRIGNTSYHBDLS (X1; VALUE Xt INTEGER %I
COMMENT COPY THE LIST OF RIGHTSYMBOLS OF X INTO THe: STACKi
BEGIN FUR X + RINXCXI, X+1 WHILE RIGHTLISTCXI I 0 DO

PUTINTOSTACK (RIGHTLIST[XJ)I
EN0 i

PROCEDURE SAVELEFTSYMBDLS tX,i VALUE Xi INTEGER XI
COMMENT THE LEFTSYMBOLLISTS OF ALL SYMBOLS IN THE RECURSTACK
WITH INDEX > X HAVE 'BEEN BUILT AND MUST NOW BE REMOVED, THEY ARE
COPIED 1NTJ "LEFTLIST" AN0 THE SYMBOLS ARE MARKED "DONE")
BEGIN INTEGER f,J,Ui LABEL L,EX; '
Lt IF STACKMARK CXJ 10 STACKMARK tX+lf THEN

BEGIN X + X+1; IF X (RSP THEN GO TO L ELSE GO TO LX END j
STACKMAHK CRSP+lJ + SP+l,
FOR I + X+1 UPTO RSP 00
BEGIN LINX ERECURSTACKCIIT t LP+l;

ACTIVE CRECURSTACKCIII t FALSEl DONE [RECURSTACKWJ t TRUE)
FUR 3 + STACKMARKCII UPTO STACKMARK[I+lJ-1 DO
IF STACK tJ1 + 0 THEN
B E G I N LP + LP+lt LEFTLIST [LPI + STACK SJJ1
If LR a 1020 THEN
BEGIN WRITE C</"LEftLIST OVERFLOW"/>)I DUMPITl

PRINTLIST (LINX, LEFTLIST)) GO TO EXIT
E N D 1
EN0

EN0 i
LP + LP+11 LEFTLIST [LPI * Ot

KRfP + xi
PROCEDURE SAVERIGHTSYMBOLS (X1; VALUE X1 INTEGER X4

COMMENT ANALOG TO "SAVELEFTSYMBOLS";
BEGIN INTEGER IrJj LABEL LrEXi
Lt I F STACKMARK [Xl 4 STACKMARK CX+lf THEN

BEGIN X + X+13 IF X * RSP THEN GO TO L ELSE GO TO EX END J
STACKMAHK CHSP+lJ + SP+l;

(87

FOR I + X+1 UPTD RSf' DO
BEGIN HINX CRECURSTACKCIJI + RP+l)

ACTIVE tHECURSTACKtIJ1 + FALSE; DONE [RECURSTACKCIJJ t TRUEi
FUR J + STACKYARKCIJ UPTO STACKMARK[I+lJ’l DO
IF STACK CJI C 0 THEN
B E G I N RP + RP+lJ RIGHTLIST CRPI l STACK CJJ)
IF RP a 1020 THEN
BEGIN WRITE (</"RIGHTLIST OVERFLOW"/>)) DUMPITi

PMNTLIST CRINXn RIGHTLISTjI GO TO EXIT
END 4
END

END i
RP l RPW HIGHTLIST [RPI t 0)

EXtRSP 4 X4
END J

PROCEDURE BUILDLEFTLIST CX)l VALUE Xi INTEGER Xi
COMMENT THE LEFTLIST Of THE SYMBOL X IS BUILT BY SCANNING THE
SYNTAX FOR PRODUCTIONS WITH.LEFTPART 8 x, THE LEFTMOST SYMBOL IN
THE RIGHTPART IS THEN INSPECTED: IF It TS NONBASIC AND NOT MARKED
DONE, ITS LEFTLIST IS BUILT FIRST, WHILE A SYMBOL IS BEING INSPECTED
IT IS MARKEO ACTIVE)
BEGIN INTEGER I,RIOWNRSPJ

ACTIVECXJ 6 TRUE)
RSP * OWNRSP + LINX CXJ t RSP+lj
RECUHSTACK CRSPJ t Xi STACKMARK CRSPJ t’sP+li
FOR I + 1 UPTO N D O
IF REF CIrOJ 51 X THEN
BEGIN IF OWNRSP e RSP THEN SAVELEfTSyMBOLS (0WNRSP)I

R + HEF CblJl PUTINTOSTACK (R)i
If R S LT THEN
BEGIN IF DONE CR1 THEN CDPYLEPTSYMBOLS CR) E L S E

IF ACfIVE CR1 T H E N R E S E T CLINX [RJ) E L S E
BUILDLEFTLIST (R))

EN0
END)

END ;
PROCEDURE BUILORIOHTLIST tX)I VALUE X) INTEQER Xi

COMMENT ANALOG TO "BUILDLEFTLIST"l
BEGIN INTEGER IrR,OWNRSPl LABEL 001

ACTIVE [X3 t TRUE;
RSP t OWNRSP (. RINX CXJ t RSP+lj
RECUKSTACK CRSPJ t Xi SJACKMARK (RSP) t SP+li
FOR I + 1 UQTO N DO
If REF tI,OJ a X T H E N
BEGIN IF OWNRSP 4 RSP THEN SAVERIOHTSyMBOLS COWNRSP)I

FOR R + 2r3,4,5 00 If REF tI,RJ u 0 THEN GO TO 00)
008 H + REF CIrR-1Ji PUTINTOSTACK (R))

If R 5 LT THEN
BkGIN IF DONE tRJ THEN COPYRIQHTSYMBOLS (A) E L S E

IF ACTIVE CR1 THEN RESET CRINX[RJ) ELSE
BUILORIGHTLIST (R);

EN0
END

END i

88

SP + RSP + LP 6 oi
POR I + i UPTU LT 00 OUNEt13 6 FALSE;
FOR I + 1 UPTO LT 00 IF NOT DONE (I1 THEN
BEGIN SP t RSP tOi

I

FOR J + 1 UPTO M 00 INSTACK [J] t 0;
BUILDLEFTLIST (I); SAVELEFTSYMBOLS (0);

END i
WRITE ([PAGE)); WRITE (<X20,"**+ LEfTMOST SYMBOLS ***"/>);
PRINTLIST (LINXr LEFTLfST);
SP 6 RSP + HP * Of/ FOR I + 1 UPTO LT 00 DONEt + fALSE;
FOR I + 1 UPTO CT DD IF NOT OONE [IT THEN

I BEGIN SP + RSP 6 0;
I FOR 3 + 1 URTO M 00 INSTACK (31 + 0;

BUILDRIGHTLIST (I); SAVERIGHTSYMBOLS (0);
END JI
WRITE (131); WRITE (cX20r"*++ RIGHTMOST SYMBOLS +**"/~)I
PRfNTLIS'T (RINX, RIGHTLIST);

END BLOCK Cli

BEGIN COMMENT BLOCK C2, fjUIL0 PRECEDENCE RELATIONS;
INTEGER JrKrPdbR,L,T;
LABEL NEXTPRODUCTION;

PROCEDURE ENTER (X,YrS); VALUE X,Y,S; INTEGER X,Y,S;
COMMENT ENTER THE RELATION S INTO POSITION [XrY], CHECK FOR OOUBLE-
OCCUPATION OF THIS POSITION;
BEGIN T + HCXdlJ If 1 + NULL AN0 1 I $ THEN

BEGIN ERRORFLAG t THUE;
WRITE (<"PRECEDENCE VIOLATED BY “r2Alr” FOR PAIR",PIQ,

" BY RRODUCTION"rI4>r T, S, x0 Y, 3);
END J
HCX,YJ * St

EN0 J
WRITE ([PAGEI);
FOR K + 1 UPTO M DO
FOR 3 * 1 UPTD M DO HtK,Jl t NULL;
FOR J + 1 UPTO N DO
BEGIN FUR K + 2,3~4,5 00 IF REF CJ,Kl # 0 THEN

BEGIN R + REP tJ,K-11; Q t REF [JIK];
ENTER (PdbEQ);
If P S LT THEN
B E G I N FQR R + RINXCPI, R + l W H I L E R I G H T L I S T [R] d 0 DO

E N T E R (RIGHTLIST CRlr 0, OR);
If 0 S LT THEN
FOR L + LINXCQl# L+l W H I L E LEFTLIST CL) # 0 00
BEGIN ENTER (PI LEFTLIST (LJ, LS);

F O R R * RINXCPJr R+l WHILE RIGHTLIST CR] # 0 DO
E N T E R (RIGHTLISTCRJ, LEFTLISTCLJ, OR)

END
EN0
ELSE IF G S LT THEN

F U R L t LINXtQlr L+l W H I L E LEFTLIST EL1 I 0 00
E N T E R (PI LEFTLIST (Llr LS);

EN0

89

ELSE GO TO NEXTPROOUCTION;
NEXTPHOOUCTIDNI END 3 ;
WRITE (</X3,3913/>, FOR J * 1 UPTO M 00 J);
FOR K + 1 UPTO M DO
WRITE (<Ib3Y(X2,Al)b KI FOR 3 6 1 UPTO M DO HtK,Jl);

END BLOCK C2 ;
END BLOCK 131;

IF EHKOtiFLAG THEN GO TO EXIT;
WRITE (</“SYNTAX IS A PItECEDENCE GRAMMAR"/>);

BEGIN COMMENT BLOCK 82, BUILO F AN0 G PRECEDENCE FUNCTIONS1
INTEGEH Ir JI K, Kl, NB FMIN, GMINr T;

PRDCEOURE THHU (IrJ,X); VALUE I,JpX; INTEGER I,J,Xj
BEGIN WHITE (</"NO PRIURITY FUNCTIONS EXIST ",3I6>, I,JrX);

GO TO EXIT
END E

PROCEDURE FIXUPcOL (LIJ,X;; VALUE LrJ,-X; INTEGER L~JIX; FORWARD;
PROCEDURE FIXUPROti (I,L,X;B VALUE I,L#X; INTEGER I,L,XJ

B E G I N I N T E G E R JB FCIJ + G[Ll + XB
IF Kl = K THEN
BEGIN IF HtIrKl 4 EQ AN0 FCIJ # GtKJ THEN THRU (1rK10) ELSE

I F HCIrKJ 4 LS AN0 FfIl L GCKJ THEN THRU (I,K,O)
EN0 B

FOR J + Kl STEP ‘1 UNTIL 1 00
I F HChJJ 4 EQ AN0 FIIJ + GLJI THEN FIXUPCOL CI,J,O) E L S E
If HCIBJJ = LS AND FCII L GtJJ THEN FIXUPCOL CIIJII)B

END B
PROCEDURE f IXUPCOL (LB 3,X;; VALUE L, JaX; INTEGER L, J,X;

BEGIN INTEGER Ii GtJJ + FtLJ + Xi
IF Kl # K THEN
BEGIN IF HCK,Jl 8 EG AND FtKJ)1 GCJJ THEN THRU CK,J,l) ELSE

IF HWJI m GR AN0 FCKJ 5 GCJJ THEN THRU CKrJd)
END I

FOR I + K STEP -1 UNTIL 1 DO
I F HtI~Jl = EQ AND FCII C GCJJ THEN FIXUPROW CI,J,O) EiLSt:
IF HCbJl 8 GR AND FCII 5 613) THEN FfXUPROw CI,J,l);

EN0 I
Kl t OB
FOR K + 1 OPT0 M DO
8EGIN FMIN + 1;

FOR 3 + 1 UPTO .Kl DO-
IF HCKBJJ * EQ AN0 FMIN emGCJJ THEN FMIN * GtJ1 ELSE ,
IF HCK,J) = GR AND FMIN S GCJ.) THEN FMIN t GCJJ+lB. .

FCKI + FMIN;
FOR J + Kl STEP -1 UNTIL 1 DO

IF HCKfiJJ * EQ AND FMIN s GtJJ THEN FIXUPCOL CK,JIO) ELSE
IF HtK,JJ * LS ANO FMIN)1 OCJI THEN FIXUPCOL (K~Jal);

Kl 6 Kl+lB GMIN t 1J
FOR I + 1 UPTO K 00

IF WA1 = EG AN0 FtIJ B GMIN THEN GMIN + FCIJ ELSE
IF HhKJ n LS AN0 FCIJ L G M I N THEN GMIN * FCIJ+l)

GtKJ + G M I N J
FOR I + K STEP -1 UNTIL 1 D O

IF HCIrKJ 8 EG AN0 FM1 4 WIN THEN FIXUPROW (bK,o) ELSE:

90

j IF HU,KI = GR AND FtIl s G M I N THEN FIXUPROW (I,K,lJJ
END K i

END BLOCK B2 i
rlRtTE UPAGEIU

BEGIN COMMENT BLOCK 83, BUILD TABLES Of PRODUCTION REfERENCESl
INTEGER I,JrK#L)
INTEGER AHHAY MtB COtMJ3 COMMENT MASTER TABLE i
INTEGER ARRAY PRTB [Ott02211 COMMENT PRODUCTION TABLE i
L. 4 0,
FOR I + 1 UPTO M DO

B E G I N MTBCII + L+lJ
FUR J + 1 UPTO N 00
I F REFtJdl " I T H E N

BEGIN FOR K 4 283~4,s DO
IF REFCJ,KI t 0 THEN

BEGIN l. + L+li PRTBtL] + REFtJ,Kl
END 1

L 4 L+l; PRTBtLI * "JI L + L+li PRTBtLJ + REF CJ,OII
END 3

L + l.+li PHTBCLJ + 0
END i

COMMENT PRINT AND PUNCH THE RESUTS:
SYMBOLTABLE PRECEDENCE FUNCTIOM, SYNTAX REFERENCE TABLESi
WRITE (cXBr"NO .",X5,"SYMB0L"#X80 "f",X!h"G",X4e"MTB"/))t
FOR I + 1 UPTO M DO
B E G I N SETTEXT (1, SYTBtIJr FtIJr GCIJr MTB[Il, WRITEBUFFERCOJ))

OUTPUT
END)
WRITE C~/wPRODUCTIO~ TABLEt"/ut
FOR I + 0 STEP 10 UNTIL L DO
WRITE C*I9rX2rlOIbb FUR I + 0 STEP 10 UNTIL I. DO

[II FOR 3 4 I UPTO I+9 DO PRTB (JJJ))
WRITE ((/"SYNTAX VERSION "#AS>, TIME (0)))
WRITE CPCH, <Xb"FT +“,I3 r”i LT *“,14r”J LP +“,14,“i”>,LT~lrM1LJi
FOR I + 1 STEP 6 UNTIL M DO
BEGIN PCHTX (SYTBtIJ, tiRITEBUFfERCOJ, IF M-I26 THEN 6 ELSE M-I+i)j

W R I T E CPCHI 101 WRITEBUFFERt*JJJ C L E A R (WRITEBUFFERtOJ, 9)
END i
W R I T E (PCHI <X4d2C14,“rwJh FOR I + 1 UPTO M 0 0 FtIJJi
WRITE (PCHI ~X4,12(14,"-~")> a PQR I + 1 UPTO M DO Gtt,,i
W R I T E (PCH) <X4r12C14rw,“)+, F O R I 4 1 UPTO M D O MTBCIl)l
W R I T E (f’CH, ~X4d2CI4,“r”)b F O R I +I UPTO L 00 PRTBCIJJJ’

END BLOCK t33
END BLOCK A 1

EXIT:
END,

Appendix I"___-_-_.._ . ..-_

this pro:;.ra::: is summarized a:; fol!.ows :

EULER. Transl.ator

Declarations kcluding the procedure INSYMBOL and the code-generating

procedures P!_, P2, P3, FIXUP,

Initialization of tables with data produced by the syntax-prccr‘-::;or,

The parsing algorithm,

I The interpretation rules (their labels correspord to their numbI., qing

in IV B)

-
EULER Interpreter

Declarations including the procedures DUMPOUT (used for outputtnt;

results) and FREE (used to recover no longer used storage space -liken

memory space becomes scarce)

The interpretation rules for the individual ir,;jtrt-..:::tions

The source program is punched on cards (col. l-72) in free field

format. Blank spaces are ignored, but may not occllr within identifiers or

word-delimiters.

An identifier is any sequence of letters and digits (starting with

a letter), which is not a word-delimiter. Only the first 8 characters

are significant; the remaining characters are ignored.

92

Appendix II (continued)

A _word-delimiter is a sequence of letters corresponding to a single

EULER symbol, which in the reference-language is expressed by the same

sequence of underlined or boldface letters. E.g., begin + BEGIN,

end + END etc. Note: ‘ + LQ, ' + RQ, 1c -+TEN, R + UNDEFINED.

A symbol is any BCL-charactefl (or sequence of up to 5 XL-characters)- - - -

enclosed between characters “". E.g. r,*"

An example of an EULER program is listed at the end of this

Appendix.

*
cf. Burroughs B5500 Extended ALGOL Reference Manual.

93

BEGIN COMMENT E U L E R I V S Y S T E M MARCH 1965)
INTEGER FT, LT) COMMENT INDEX OF FIRST AND LAST BASIC SYMBOLI
INTEGER LPI COMMENT LENGTH OF PRODUCTIDN TABLE)
ARRAY PKOGKAM CO1102211
DEFINE AFIELD f t39r9J Itr BPIELD 1 t 98301 X, C F I E L D 8 Clt8J #i
LABEL EXIT;
FT + 45; Lf + 119; LP + 465) COMMENT DATA GENERATED BY sY-PRd

BEGIN COMMENT E U L E R IV TRANSLATOR N,WIRTH)
DEFINE MARK " 119 t, IDSYM " 63 X, REFSYM " 59 X, LABSYM = 62 *j
DEFINE VALSYM * 56 8, CALLSYM " 55 8, UNDEF = 0 i#, NEWSYM * 60 I)
DEFINE UNARYMINUS " 116 01, NUMSYM 4, 68 x, BOOLSYM " 64 Lj
DEFINE LISTSYM " 1028, SYMSYM " 113 Ir fORSYM " 61 li
DEFINE NAME I, VCOJ ti
INTEGER IPJIKIM~NPR,T~~SCALE~ BOOLEAN ERRORFLAG)
INTEGER EN, ONi COMMENT BLOCK- AND ORDtR"NUMBER)
INTEGER NP) COMMENT NAME LIST POINTER j
INT'EGE*R MPJ COMMENT MARK-POINTER Of NAME”LIST1
INTEGER PRPi COMMENT PROGRAM POINTER;
INTEGER WC8 CCI COMMENT INPUT POINTERS;
ALPHA ARRAY READBUFFER, WRITEBUFFERtOtlqJ)
ALPHA ARRAY SYTB COtLTJ) COMMENT TABLE Of BASIC SYMBOLS)
INTEGER ARRAY F, 0 [OlLTJ) COMMENT PRIORITY PUNCTIONS i
INTEGER ARRAY MTB ColLTJi COMMENT SYNTAX MASTER TABLE I
INTEGER ARRAY QRTB [OtLPJj COMMENT PRODUCTION TABLE,
INTEGER ARRAY S tO8l27J1 COMMENT STACK)
REAL ARRAY V CO:127]1 COMMENT VALUE STACK I
ALPHA ARRAY NLl CO:631) COMMENT NAME LIST)
INTEGER ARRAY NL2, NL3, NL4 (0163))
LABEL AO,Al,A2,A3,A4,A5,Ab,AI,A8rAOI
LABEL LO, Lllbl, NAMEFDUND,
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Ll02,L103,L104,Ll05,LlO6,L1O7,LlOB,LlO9,LllO,Llll,Lll2,Lll3,Lll4,
L115,L116,L117,L118,L119,I.120~

SWITCH BRANCH +
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
L115,L116,L117,L118,L119,L120~

STREAM PROCEQURE ZERO (D)i
BEGIN 01 + 01 OS + 8 LIT "O"j
END i

STREAM PROCEDURE CLEAR (0);
BEGIN 01 + 0) DS 6 8 LIT " "1 Sf + 01 OS l 14 WOS
END i

94



STREAM PROCEDURE HOVE (S,D)l
BEGIN SI + SJ 01 c 0; OS + WDS
END i

BOOLEAN STHEAM PROCEDURE EQUAL (XrY);
BEGIN TALLY * 1; SI + XI 01 + YJ IF 8SC o DC THEN EQUAL + TALLY
END J

INTEGER PROCEDURE INSYMBOL;
COMMENT “INSYMtJOL” READS THE NEXT EULER-SYMBOL  FROM INPUT.4
STRINGS Of LETTERS AND DIGITS ARE RECOGNIZED AS fOENlIFIERS~  IF
THEY ARE NUT EQUAL TO AN EULERdV  WORD~DELIMITER,
A CHARACTER*SEQUENCE  ENCLOSED IN m IS RECOGNIZED AS A SYMBOL;
BEGIN INTEGER 1; LABEL AIB~~OIEJ

STREAM PROCEDURE TRCH (SdbO,N)J  VALUE M,NJ
BEGIN SI + SJ SI + SI+MJ 01 6 Di 01 6 Df+N)  OS + CHR
END J

BOOLEAN STHEAM PROCEOURE BLANK (S,NlI  VALUE NJ
BEGIN TALLY + 1J SI + SJ SI + SItNJ IF SC a ” ” THEN BLANK + TALLY
EN0 J

STREAM PROCEDURE BLANKDUT  (0);
BEGIN 01 + 0; DS + 8 LIT ” “J
END J

BOOLEAN STNEAM PROCEDURE QUOTE (SIN);  VALUE NJ
BEGIN TALLY 4 1; SI 4 SJ SI + SI+NJ  IF SC I 0”” THEN QUOTE t TALLY
END J

BOOLEAN STNEAM PROCEDURE LETTER (SrN);  VALUE NJ
BEGIN TALLY * 1; Sl + SJ SI * SI+.fJ;

IF SC s ALPHA THEN
BEGIN IF SC < “0” THEN LETTER + TALLY END

END J
BOOLEAN STREAM PRUCEOURE  LETTERORDIGIT (S,N)J  VALUE NJ

BEGIN TALLY 6 1; SI * SJ SI + SI+N;
IF SC = ALPHA THEN CETTEROROIGIT  + TALLY

END J
STREAM PROCEOURE EOIT (NI S, 0); VALUE NJ.

BEGIN SI + LOC NJ Of 6 0; OS + 3 OECJ
SI + s; 01 + 01 + 13; OS + 10 was

EN0 J
PROCEDURE ADVANCE;

COMMENT ADVANCES THE INPUT POINTER BY 1 CHARACTER POSITfONJ
BEGIN IF CC 1 7 THEN

BEGIN IF WC s B-THEN
- BEGIN READ (CARDF-ILr  101 REAOBUFFERC+))  CEXITIJ

E O I T  (PRP+l, READBUFFERCO3,  WRITEBUFPERtOI)J
WRITE (PRINFIL,  15r WRITEBUFFER[+3);  WC +* 0

END ELSE WC + WC+lJ
cc 6 0;

END
ELSE CC + CC+lJ L

EN0 ADVANCE J
BLANKOUT  (NAME);

A, IF BLANK (READBUFFER  CWCJr CC) THEN
BEGIN ADVANCE;<  GO TO A EN0 J

IF LETTER (REAOBUFFER  CWCJ, CC) THEN
BEGIN FOR I + 0 STEP 1 UNTIL 7 00

95



BEGIN TRCH (READBUFFER [WClr  CC, NAME, I); AOVANCEJ
If NOT LETTERORDIGIT (READBUFFER  CWCJ, CC) THEN GO TO C

fN0 J
B1 AOVANCEJ

IF LETTERORDIGIT CREAOBUFFER  [WCJ,  CC) THEN GO TO BJ
CI
EN0 ELSE

IF QUOTE (READBUFFER tWC3, CC) THEN
BEGIN AOVANCEJ ZERO (NAMElJ NAME (I " “J
El THCH CREAOBUFFERCWCJ,  CC, Ir 7); A D V A N C E ;

IF I C ““” THEN
bEGIN NAME 6 10142:6~ 8 NAME [l8:24r241;  GO TO E END
ELSE I + SYMSYMJ GO TO 0

EN0 ELSE
BEGIN TRCH (REAOBUFFER CWCI, CC, NAME0  0); ADVANCE
EN0  J

FOR I + FT STEP 1 UNTIL LT DO
5 II; EQUAL  (SYTBCIh NAME) THEN BEGIN ZEROfNAMElJ  GO TO 0 EN0 J
I + IOSYMJ

01 INSYMBUL * 1
END INSYMBOL J

PROCEDURE Pl(X)J VALUE XI INTEGER Xi
BEGIN PRP + PRP+lJ PRDGRAM[PRP]  + x
END J

PROCEDURE PZCX,Y)J VALUE XrYJ INTEGER XJ REAL YJ
BEGIN PRP + PRP+lJ PROGRAMCPRPJ  + XJ PROGRAM[PRPl,BFIELQ  6 YJ
END J

PROCEDURE  P3(x1vmJ  VALUE x,ydJ  INTEG ER X,Y,ZJ
BEGIN PHP + PHP+lJ PRUGRAMtPRPJ  + XJ PRDGRAM(PRP),BFIELO  + Y J

PROGRAMCPRPl,CFIELD  + 2
EN0 J

PROCEDURE FIXUP  (I, X); VALUE 1, XI INTEGER I, XI
“ROGRAMCII,tWIli~O  + XJ

PROCEOURE ERROR CN)J  VALUE NJ INTEGER N J
HEGIN SWITCH fORMAT ERR *

("UNDECLARED IDENTIFIER”),
("NUMBER TDU LARGE"),
C"LAtICL IS OEFINEO  TWICE”b
("A LABr;L  IS NOT OECLARED"),
("LAdEL DECLARED BUT NOT DEFINED?),
("PRUGRAM  SYNTACTICALLY INCORRECT");
ERRORFLAG + TRUE;
WRITE (INOlr  ERR(Nl)J WRITE (~%4O,"COL,",13b  WCK8 4 CC +I)

EN0 ERROR J

PROCEDURE QRUGRAMOUMPJ
BEGIN REAL TJ INTEGER II LA,BEL  LJ

STREAM PROCEDURE NuM (~~01;  VALUE NJ
BEGIN 01 + DJ SI + LOC NJ OS * 3 O E C
EN0  J

READ C<A4w  Tl CLIJ If T # "DUMP" THEN GO TO LJ
WRITE(<//"PROGRAM  DUMP",);
FOR  I + 1 STEP 1 UNTIL PRP 00
BEGIN CLEAR CWRITEBUfFERCOIlJ

96



T + PHOGflAMCIJJ  NUM (Ir W~ITEBUFFERCOJJJ
MOVE (SYTB ~T.AFIELOJ~  WRITERUFFER[lJ)J
IF TvBFIELO  C 0 THEN NUM (TaBFIELD  WRITEBUFFERt2));
IF T.CFIELO  + 0 THEN NUM (TdFIEl.0, WRITEBUFFERt3J)J
I F  T.AFICLD 3 NUMSYM THEN
BEGIN I + I+li WRITE (~N0J#~X14#~16,8>#  PROGRAMfIJ)  END J

WRITE WRINfIL0  150 WRITEBUFFERC"J)
EN0  J

LIEN0 PROGRAMDUMP J

COMMENT INITIALISE THE SYMBOLTABLE,  THE PRIORfTY  FUNCTIONS AN0 THE
PRODUCTION TABLES WITH DATA GENERATED BY THE SYNTAX-PROCESSORJ
FILL SYTB C*J WITH O n
"PROGRAM "8"BLUCK "r"BL0KHEA0"~"BL0KB0DY"~"LAB0EF  "#"STAT  "a
"STAT- ","EXPR ","EXPR- "r"1FCLAUSE","TRUEPART"~"CATENA  "8
"DISJ "r"01S3HEA0"r"C0NJ ","CONJ= "r"CONJHEAO"r"NEGATION"~
"RELAT1UN"r"CH01CE "r"CHOICEa  "r"SUM 'Sr"SUM- "#"TERM "8
"TERM=  , "#"FACTOR ","FACTOR- "#"PRIMARY ","PROCOEF  “#“PR0CHEA0”#
“LIST* "r"L1STHEA0"r"REFERENC"~"NlJMBER  ;#;;;;L* “#“INTEGER*“0
“INTEGER-“#“DIGIT "',"LOGVAL "'r"VAR m "'r"VARD&CL  "8
"FORDECL “0”LABDECL  “0”O “#“I “:“2 “r”3 “8
“ 4 “0”s “#“6 “B”7 “r”8 “B”9 “B
“#

?:;AI)EL
"8") “8”: “r”@ "#"NEW "0

"FORMAL “#“10ENT* “0°C “#“I "#"BEGIN  "8
"EN0 “8°C "0") “#“LO ","RQ "r"GOT0 "0
"OUT ","+ "#"IF "#"THEN "#"ELSE ","0 "8
"OR "#"AND "n"NOT "D"1 "8°C "r"* “8 .
"S “8”L "0") "r"MIN "8"MAX "r"+ "#
"- "#"at "0"/ "r"% "r"MO0 ")"J, "8
"ABS "#"LENGTH "#"INTEGER "#"REAL “#“LOGICAL “#“L1ST “4
“TAIL “D”IN "r"ISB "r"ISN “#“ISR “#“ISL “8
“ISLI “8”ISY “8”ISP “r”ISU ","SYMBOL+ “r”UNOEFfNE”0
"TEN “8”;c "#"TRUE "#"FALSE "8"s “ J
FILL FC*J WITH 00

18 4 0 1 9 0 ’10 2 0 18 28 30 40 18 40 40
58 50 50 6, 60 60 ID tr 8 ,

118 120 128 138 130 38 130 38 130 1:: ii: :::
118 190 130 130 150 10 10 10 190 190
190 198 198
140 140 160

I;; :;0 190 190 160 210
u; o;

148

19:
218 58 190 138 198 138 $28

48 48 30 190 120 190 190 78 80 88 8 ,
80 80 80 90 90 101 10, 11° 118 iir 128

120 130 128 u;. ;y 12r 120 2’ 13’ 13,13, 13# 13, c 130 160 16: 130 ::: %
FILL Gt*J  WITH 00

10 50 60 60 30 10 20 30 40 50 I# s;,
5 0 6 0 6 0 6 0 ?n 7, 7, 80 9 0 9 0 100 1OB

118 ii8 12# 128 138 138 138 14, 130 160
178 17# 13# 130 148 190 38 190 180

::: :t:
188

180 180 180 180 180 180 30 15, 18 160 1 3 0 2 0 0
40 200 140 15, 30 60 18 148 38 13, 38 50
58 13# 50 3, 3r 40 50 60 tr ?r 78 ?,
78 70 7r 80 80 100 108 110 110 110 lb 128

138 138 138 130 130 138 13, 131 13fi 13, 130 138
130 138 13r 13r 13r 1 3 0 1 3 0 1 6 0 1 3 0 1 3 0 4J

97



FIL\,MT~;*J, W;TH 08
16, 258 298 300  338 390 420 470 48,

558 S8: 6 2 :  680 710 t58 818 84, 1110  1228 125, 1360
1398 158~ 1610 168 l 1710  1748 183~ 186, 198, 201r  2048 2160
2238 2298 232, 235, 245~ 256, 257, 258, 259~ 2620 2650 2680
2710  2148 2770 2800 283, 286, 2 8 9 ,  2 9 0 8  2910 292~ 2 9 3 0  2970
3018 3050 3098 315 8 320~ 321, 324~ 3 2 5 ,  3280 3290 332r  3 3 3 0
3 3 7 0  3 4 1 0  3 4 2 8  347, 348 P 3498 350, 351, 3528 3568 3570 358~
3590 360, 361~ 362 8 3638 3648 368, 372, 3730 3748  375, 3740.
3770 3810 3858 389, 3930 3978 401 n 405, 4080 4120 4160 420,
424, 428, 4320  4360 440, 4438 446r 454, 4558 4580 461;

FILL PRTBWJ  WITH 08
00"1030 98 0, 42, 57@-1158 38 44, 57,~116,  30

-117r 40 00 68 570-118~  4, 60 678-1190  20 08
70-1100  7, 08 oDm%?8 68 00 770’1010 11~“111#
70 00’1098  80 0, 11, 90@‘1040  90 00 00 780

7:
-990 i28wio8n 91 00-100, 120 00 138 -970 138

79r -960 140 -988 138 08 ‘950 150 OD 160 ,930
160  08 801 -92, 178 “940 168 - Or -908 180 01 -838
190 820  208 -848 19, 830 200 -850 198 848 20, -860
190 85r 200 w87r  198 868 20, -880  190 870 200 -890
198 08 88, 22r .8O8  218 89r 220 -810 ;;; :;;; 200
00 -798 218 08 908 240 -760 230 910 238

-78, 220 08 -73,  238 08 920 26~ -680 258 930 26,
-690 25~ 940 26, -To, 25, 950 260 671, 25~ o?28 248

Or -670 25~ 01 960 288 w658  218 '66~ 260 0 8  ‘640
2fr 0 8  -46~  280 08 438 578 -350 300 88 710 -37r
298 08 “448 28, 08 80 550 -3l0 328 80 690 -330
310 690 -340 310 0 8  '430 280 0, -418 2 8 0 08 "25,
340 llS0 360 -260  348 1150 1160 360 -270 340 00 560
360 -230 350 -240  350 OD 38, - 2 1 0 370 "220 360 08

"200 370 00 -400 280 0 8  -380 280 310 -398 280 740
90-1050 90 0, 640 80 65, -50 410 560 -6, 4 1 8

‘70 400 08 0, 08  00 “‘108 380 08 -118 380 0,
'120 380 08 "13,  380 01 -148  380 0, -158 380 01
-160 38, 08 -170  38, 0, -180 38, 0, -190 380 0 8

08 08 08 0, 400 -300 330 0 8 630 ‘ 1 8 420 0 8
638 '20 438 0, 63, -30 440 0, *48. 410 5;;.1138
50 08 80 650 -480 260 00 00-1140  3 0 08

-320  328 08 0, -360 300 00 6, 280-1068 90 08

98"~070 ;; Or  08 8 0  760-102,
lo0 ii: O8 ::08 08 190 '910 180 DD 00 08 08

00 08 -Or 340 -14; 230 0, 240 -750 238 OI 0,
0, 08 Or ;; 280 "580 280 08 400 9590 280 01

280 -600 280 280 -610 28~ 08 280 -620 280 0,
280 -63~ 280 On 280 -450  280 00 -490 280 0 8 400

-500 280 o# 408 -518 280 0, 400 -520 280 08 4 0 8
-530 280 08 400 -540 280 0, 400 “558 280 00 408
'560 28, 01 400 -570 280 0, -42, 280 0 8  -470 28~

01 36, -280 34, 1168 360 -290 348 00 00 a88 39,
00 '90 390 00 28 1198-iah 18 0;

WC + 8; CC + 7; CLEAR CWRITEBUFFERtOJ);  CLEAR (REAOBUFFERCOI)J
S[O] 6 MARK;  ERRORFLAG  + FALSE;
1 + J + BN + ON + NP 6 PRP + OJ



COMMENT ALGURITHM  FOR SYNTACTIC ANALYSIS1
COMPARE THE PRIOUTIES  OF THE SYMBOL R AN0 OF THE
SYMBOL UN TOP OF THE STACK S, IF SCJlr,, St11 CONSTITUTE A RIGHT-
PART OF A PRODUCTION, THEN REPLACE THISSEQUENCE BY THE
CORRESPONDING LEFT-PART AND BRANCH TO THE INTERPRETATION-RULE
BELONGING TO THE PERFORMED PRODUCTION;

AOa R 6 INSYMBOL)
Ala IF FCStIJJ 3 GtRl  THEN GO TO A2J

IF R t MARK THEN GO TO A9J
I + J + I+lJ St11  + RI MOVE (NAME,  V[TJ)J  GO TO AOJ

A21 IF FCSLJ-111 * GTSCJIJ THEN BEGIN J + J-1)  GO TO A2 EN0 J
M + MTBCSCJJJJ

A3: IF PRTBCMJ = 0 THEN BEGIN ERROR( GO TO EXIT EN0 J
N + JJ

A4r N + N+lJ
IF PHTBCMJ 4 0 THEN GO TO A81
IF N s I THEN GO TO Ati

A51 M, + M+lJ
IF PRTBCMJ L 0 THEN GO TO ASf

A68 M + M+21  GO TO A3J
A?# IF PRTBCMJ Ir SCNJ THEN GO TO ASJ

M + M+lJ GO TO A4J
A8: IF N 4 I THEN GO TO A61

G O  T O  BRANCH[-PHTB[MlJ;  -
LO: SCJJ 6 ~RTB~M+llJ  I + JJ GO TO All'

COMMENT THE FDLLONING  ARE THE INTERPRETATION-RULES;
Lit
La PlWJJ)J NP + NP+lJ  MOVE ~Vt~hNLl~NP],;  ZERO WIJJJ

NL2CNPJ + BNJ NL3CNPl (I ON 6 ON+lJ NLo[NPJ + SCJJJ  GO TO LO!
L38 NP + NfWJ MOVE (VtIJrNLICNPJ)J  ZERO (v[IJ)J

NL2fNPI + BNJ NL3CNPl 6 NL4CNPJ + UNOEFJ GO TO LO;
L48 FOR T + NP STEP =I UNTIL 1 DO

IF EWAL (NLicTJr VCIJJ THEN GO TO NAMEfOUNDI
ERROR CO)1 GO TO LOJ

NAMEFOUNDI
IF NLQCTI w NEWSYM THEN

PdtREFSYMn  NL3CTJr NL2CTJJ ELSE
IF NL4CTJ ri: LABSYM THEN

P~~LABSYMD  NLXTJ,  NLZCTJJ ELSE
If NLUUI a FORSYM THEN

BEGIN P3tREFSYMr  NL3~Tla NLZ[TJJJ PlCVALSYMJ  END ELSE
BLGIN P3cLABSYMn  NL3tTJr NL2tTJU NL3[TJ +PRP EN0 J

GO TO LO)
L58 Pl(SCIl)J GO TO LOJ
L61 PltVALSYM);  GO TO I.01
LlOt
L9r VCJI + 0; GO TO LOJ
Lila
L8r VCJJ + li GO TO LOJ
t;;; VCJJ  + 2J GO TO LOJ

VtJJ  + 31 GO TO LOi
Ll41 VtJl + 4) GO TO LO,
Ll!o VCJJ + 5) GO TO LOJ
116: VCJJ + 61 GU TO LOJ

99



L17: VCJJ  4 7) GO TO LO,
L18: VCJI + 8) GO TO LOi
Ll98 VCJI  + 9) GO TO LOi
L201 SCALE a- 11 GO TO LO;
L21:  VTJI  + VT31 x 1 0  + VCIl) S C A L E  (r SCALE+l)

IF SCALE a 11 THEN ERROR (1)) GO TO L0i
U6': VtJl + VtI3 x IO + (‘SCALE) + VfJJJ  60 TO l.0)

VCJJ + VCJI x 10 l VCW GO TO LOI
kg;; VCJJ + VCJI n ,I + VCIIl GO TO LOJ

VCJl + 10 * VW) GO TO LOi
L29: VCJI + rl * VtIl) GD TO LO)
',::: VtJl * VtJ)+lZ G O  TD LO)

VCJI + Oi GO TO LOI
L331 P2(SLIlr VfJl+I)I GD TO LOi
:hl:  P2(SCIlr vCJI)J  GO TO LOi

f3N + BN+li ilN + 0; R2(StJlr UNDEf)t V[  J) 4 PRPi
,NP f NP+1I ZERO (NLICNPW  NLPCNPI * MPI MP + NPI GO TO LOI

L37:  Pl(SCIl);  FIXUP (VCJh PRP+l)1 NP-+ Me-l)  MP + NL2(MP,i
BN + BN-1) GO TO LOi

W3; PlCVALSYM);  GO TO LO,
Pl(CALLSYbW  GO TO LO;

L401 P2(BO0LSYM,  VCIl)I G O  TO LOJ
L4lt  Pl(NUMSYM)I  PHP t PHP+lI PROGRAM[PRpJ  + V(I]j  GO TO LO)
L42:  P2CStIlr VTII))  GO TO LO)
i.75: Pl(lJNARYMINUS);  GO TO LO)
L92:  L96: LIOI: LlO2: PP(SCI], UNDEF)I VtJJ + PRP)  GO TO LO)
LO31  L97:  FIXUP CV[JJ,  PRP+I)I GO TO LO)
LlO4:  FIXUP (VCJI,  V[J+I3+1)1  FIXUP  (V[J+l],  PRP+l)l @iI T O  l.Oi
L113: FOR T + NP STEP -1 UNTIL MP+l DO

If EQUAL (NLltTlrVCJl)  THEN
BEGIN IF NL4CTl t UNDEF THEN ERROR(2))

T l  + NL3CT)I NL3CTl + PRPW NL4(T3 4 LABSYM) ZERO (V(Jl)1
L1131: IF Tl I UNOEF THEN
WWJ T + PROGRAMfTlJrBfIELD~  fIXUP Ctl,  PRP+l)l

Tl 6 11 GO TO Lll31
. END i GO TO LO)

END i
ERRDR(3)I GO' TO LO;

Lll4r  BN + BN+li  ON + 0) Pl(S[IW
NP + NP+li ZERO (NLICNPJ); NLZtNPI 6 MP) MP + NPI GO TO LO)

Cl181  PlCSCIJ);  GO TO LOi
L119: FOR T + MP+1 STEP 1 UNTIL NP DO If NL4[T) I UNOEf THEN ERROR(

Nf’ + W-l;- MP * NLPTMPI)  Pl(S[Il)J BN e BN-/I  GO TO LO)

l.45: L47: L49: L50:  L51: L52: L53: L54: L55: L568 L57: LS88  L59r L60:
L61:  L 6 2 :  L 6 3 :  L91: LlO6:  l.107:  f’l(S(JJ)) 60 TO LOi
L65: L68: L69: I.702 L71: L76: L77: L80: L81: L84: L85: LB61  LB7: LBB:
L89: L99: LlO5:  Pl(StJ+I)); GO TO LO)
L7: L22: i.24: L25: I.301  L35: L43: L44: L46: L48: L64:  166:  L67: L72:
L73: L74: L78:  L79:  L82: L83: LOO: L94: L95: L98: I,,1001  LlO3: Ll088
L109:  LllO: Llll: Lll2:  t.114: l.116:  l.117:  L12Dr G O  TO LDI

A9: Pl(MARK); PROGRAMDUMPJ  If ERRORfLAG  THEN GO TO EXIT
END + )

100



BEGIN COMMENT E U L E R IV INTERPRETER MCKEEMAN 8 WIRTH I
HEAL AHRAY S, SI, Fr BI CO:102211 COMMENT STACKI
INTEGER llr 12r LVb FUMMALCOUNTJ
INTEGER SP) COMMENT TOP"STACK  POINTERi
INTEGER F Pi COMMENT FREE STORAGE SPACE POINTER;
INTEGER MPI COMMENT BLOCK- OR PROCEDURE-MARK POINTER;
INTEGER t'Pi COMMENT PROGRAM POINTER)
LABEL ADD@  SUBr MUL,  DIVIDE, IDIVr  REMAINDER, POWER@ NEGI  ABSV, .
INTEGEKILE,  HEALL, LOGICALr MIN,  MAX, EQLI NEQ, LSS,  LEQ, GEQ,  GTR#
LENGTH, ISLUGICAL, ISNUWER,  ISREFERENCE, ISLABEL, 1ssYMB0l.1
ISLIST, ISPKOCEDURE,  ISUNDEPINED,  LANDr  LOR,  LNOT,  LEFTQUOTE,
RIGHTQUOTE, KIGMTPAREN,  REFERENCE, PROCEDURECALL, VALUEOPERATOR,
GOTOp  NEWI  FORMAL, BEGINV, ENDV, STORE0 THENVr  ELSEVI NUMBER, LOGVAL,
LABELL, SUBSCRIPTr SEMICOLON, UNDEFINDI OUTPUT, INPUTI  TAIL,
CATENATE, LISTT,  SYMBOb DONEI  UNDEFINEDOPERATORr  NEXT,  TRANSFER;

COMMENT SI AND FI FIELD DEFINITIOYS
b 1-4 8.17 18-27 28-37 38-47 48-7

NUMBER TYPE VALUE
BOOLEAN TYPE VALUE
SYM6OL TYPE VALUE
UNDEFINED TYPE
LIST TYPE LENGTH ADDRESS
REFERENCE TYPE MARK ADDRESS
LABEL TYPE MARK ADDRESS
PROCEDURE TYPE BLOCK NO, MARK ADDRESS
BLOCKMARK TYPE DYNAMIC BLOCK NOe STATIC ADDRESS LSSTJ

-DEFINE
TYPE~~S:~I#R
WCT=t28J102h
'ADORESS=t3811O~X,
STATIC~[28:101~~
DYNAMIC~t81103b
BLN~~l8:101~~
NSA*fl8:lOlh COMMENT NEW STARTING ADDRESS FOR fREEI

UNDEfINED@OI,
NUMBERTYPEnlX,
SYMBOLTYPER~X,
BOOLEANTYPE@3#r
LABELTYPEs41,
REFERENCETYPE@Str
PROCEDURETYPE*6tr
LISTTYPE@I#,
BLOCKMARKsB#  1

STREAM PROCEDURE MUVECFla Tlr W)J
BEG;; +L;;AL Rlr R2J

SI + SI + 6J
01 + LOC RlJ DI + 01 + 7; OS * CHRJ
01 6 LOC R2J 01 + 01 + 7) OS * CHRI
SI * Fli 01 + Tll
Rl(O(DS + 32 WDS))J  OS ' R2 WDSJ

END)

101



PtiOCEOURE  DUMYUUT~XII  X); VALUE XI, XI REAL XI, XJ
BEGIN INTEtiC;IH  T0 Ii

PROCEDURE LISTWTCXI);  VALUE XIJ REAL XI;
B&GIN COMMtNT RECUttSIVE  LIST OUTPUT;

INTEGER 1, NJ
SWITCH FURMAT LPAR 6

(“v98(“,(“)0(” r,(")~C",,,P)0C"
SWITCH FURMAT HPAH 6

,,,,~")0c",,~,~c")~(".~.,..c"~J

(“)w)8(“r)n)0c” .,)")~c",,,~)")0c",,~,)")0~~,.~..~"~0c"...,,.~"~J
WRITE(~X9rwLIST”~110~~  XI0ADQRESS)J  WRITE (tNOl#  LPARCLVLiW
LVL + LVL + 1; N + XIdUDRESS  + XI,WCT -1;
FOR I + XIrADDRESS  STEP 1 UNTIL N 00 DUMPQUT  (FI[Ib FCIJ);
LVL + LVL - Ii MRITE CRPARtLVLI)J

EN0 LIST OUT;

T *, XIeTYPEJ
IF T = IUNOEFINEO  THEN WRITE(tX90  "UNDEfINEO">)  ELSE
If T " NUMBERTYfE  THEN
BEGIN

If X 3 ENTIEH(X)  THEN WRITE(tX90"NUMBER"rE20,10,,  X) ELSE
WRIlEC<X90 "NUMBER"0 12030 X)

EN0 ELSE
IF T TV BUOLEANTYPE  THEN WRITE(~X9r"LObICAL
ELSE

"B 14X10 15,~ BOOLEAN(X))

IF T " LISTTYPE  THEN LISTOUT ELSE
fF T " LABELTYPE THEN WHITE(eX90  "LABEL0 ADDRESS ""0 140

MARK""0 14h XIIADORESSI  XI,STATIC)  ELSE
If T * REFERENCETYPE THEN WRITE(ot90"REfERENCEr ADDRESS~"0140
" MARK""014~0X1,A00RESS0X1,STAT1C)  ELSE
If T " PROCEDURETYPE THEN
WR1TE(~X90"PR0CE0URE  DESCRIPTOR0 AODRESS""#  14, " BNn"a 140
" MARK""0 14>0 XI.ADDRESS0  XI,BLN, XI,STATIC)  E L S E
IF T " BLOCKMARK THEN

WRITE((X90 "BLOCKMARK BN""0  140 " DYNAMIC""0 140 " STATIC~"r
140 " R E T U R N " " 0  143, XI,BLN0 XI,OYNAMIC,  XI,STATIC,  XI,ADDRESSl

ELSE IF T " SYM8OLTYPE  THEN
wRITEC(X90  "SYMBOL “rA5w Xl;

END OUMPOUT;

PROCEDURE ERROR(N); VALUE N; INTEGER NJ
BEGIN INTEGER I;

SWITCH FORMAT ER +
(“ILLEGAL INSTRUCTION ENCOUNTERED"10
("IMPROPER OPERANO  TYPE"),
("CANNOT DIVIDE BY 0")0
("CALL OPERATOR 010 NOT FIN0 A PROCEDURE")0
("REFERENCE OR LABEL OUT OF SCOPE"),
("OUT  Of SCOPE ASSIGNMENT OF A LABEL OR A REFERENCE")0
(“SUBSCRIPT IS NOT A NUMBER"),
("SUBSCRIPT NOT APPLIED TO A VARIABLE")0
("SUBSCRIPTED VARIABLE IS NOT A LIST")0
("SUBSCRIPT IS UUT OF BOUNDS"),
("CANNOT TAKE TAIL OF A NULL LIST"),
("STACK UVERFLO""),

102



("STACK DVEHFLOK  DURlNG GARBAGE COLLECTION")0
("ASSIGNMENT TO A NO'q-VARIABLE  ATTEMPTED"),

I ("FREE STUKAGE AREA IS TOO SMALL");
WRITE CtDBLJ~  EKTNI);
W R I T E  ((1 "Sf'=",I4r"  fP-,I4,"  PP=",I4,"  MP*",I4,"  SYL+",I4/*,

SP, FP, PPI MP, PRDGRAMCPPl.AFIELD);
FOR I + 1 STEP 1 UNTIL Sip 00
B E G I N  WRITECCNOI,  <14- 11; DUMPOUT CSI(Ilr  SCII) END ;

I

GO TO DONE
END ERROR;

PROCEDURE FHEE(NEED);  VALUE NEEOJ INTEGER NEED;
COMMENT "FREE" IS A "GAKBAGE  COLLECTION" PROCEDURE. IT IS CALLED

WHEN FREE STORAGE f IS USED UPI AND MORE SPACE IS NEEDED.
GARBAGE cULLf;CTfON  TAKES THE FOLLOWING STEPS1
1. ALL BLOCKMARI(S ) LIST DESCRIPTORS AND REFERENCES IN STACK
POINT TO VALID INFUHMATIQN  IN FREE STORArJE, LIKEWISEI  A&

1 LIST,DESCRIPTDRS  AND REFERENCES THAT ARE POINTED TO ARE VALID,
ENTER INTO THE STACK ALL SUCH ENTITIES,
2. THE GARBAGE COLLECTDR  MUST KNOW TN WHICH ORDER TO COLLAPSE THE
FREE STORAGE* THUS SURT THE LIST BY FREE STORAGE ADDRESS,
3 , MOVE EACH BLOCK DOWN If NECESSARY,

NUW THE ADDRESSES ARE WRONG-hAKE  ONE MORE PASS THROUGH THE
i;)HTEU  LIST TO UPDATE ALL ADDRESSES;

BEGIN OWN INTEGER G, H, 1, J; OWN REAL T;

INTEGER PKOCEDUHE fINDtw)I VALUE W; REAL w;
_ BEGIN COMMENT BINARY SEARCH THROUGH QRDERE~ TA&E;

INTEGEK T, NI 6, KEY, K;
LABEL fOUNDr BINAKY;
T + G+ii 6 + SP + 1;
KEY + WeADDRESS;
BINARY: N l (B+T) DIV 2;
K + SItNl~AOORESSI
If K 2 KEY THEN GO TO FOUND;
IF K < KEY THEN B 6 N ELSE T 6 N;
GO TO BINAKY;
FOUND: fINO + SICN3,NSA

END FIND;

PROCEDURE RESETCW, 2); REAL Wr 2;
BEGIN INTEGEH TV;

TY * W.TYPE;
If TY 1~ REFERENCETYPE OR‘TY = LrSTTYPE  THEN W,ADORESS  + FIND(W)  ELSE
IF TY s BLUCKMAHK  THEN ZtADORESS  * FIND(Z)

EN0 RESET;

PROCEDURE VALIDATE(P); VALUE PI REAL p;
BEGIN COMMENT TREE SEARCH fOR ACTIVE LIST STORAGE;

INTEGER II U;
G + G + 1;
IF G B 1022 THEN ERROR(l2);
SICGI * PI
U + PeAODRESS  + P,WCT - 1;
IF P.TYPE = LISTTYPE  THEN FOR I + P,ADDRESS  STEP 1 UNTIL U Do -



I F  FICIJOTYPE a L:STTYPfI  OR FI~IJoTYP~ I REFERENCETYPE THEN
VALIDAfE(FI[IJJ~

END VALIDAtIONi

PROCEDURE SURTCl.8, UBJ)  VALUE Lb UBJ INTEGER LBr UBJ
BEGIN COMMLNT  BINARY sORTi

INTEGER MJ
PROCEDURE MERGECLBr M, UBJi VALUE LBr MB uR1 INTEGER LB, MI UBJ
B E G I N  I N T E G E R  K, im8  u8 .Klr K21 LABEL AI 8)

K + UB - LB)
l40VE(S1[Lt318 Sk618 KJ)
L t K t Ll31 U t Mi GO TO RJ

At Kl t SCLJeADDRESSI K2 6 S[UJ,ADlJRESSI
IF Kl < K2 UR (Kl B K2 AND S(LJ,TYPE  I: LISTTYPE)  THEN
B E G I N  SICK1 + SCLJi  L * L+i
EN0 ELSE
BEGIN SICK1 * SCUJI U + U+l
ENDI’
K 6 K + 11

-61 IF L m M THEN ELSE IF U m UB THEN
OfGIN K * M-Lj  MOVE (StL18  S1[UB-K18 K)
END ELSE GO TO A

END MERGE)

If, LB 4 UB THEN
BEGIN M 0 CLB+UR) DIV 2)

S0f?T(Lb  MU SORttM+l,  U8Ji MERGE(LB,  M+lr UB+l)
END

<ND SORT)

INTEGER LLA8 LLKJ
G + SPJ
FOR H + 1 STEP 1 UNTIL SP DO
BEGIN CUMMENT LOCATE ALL ACTIVE LISTS AND REFERENCES1

IF SICHJ,TYf%  * LISTTYPE  OR SItHlrTYPE  . REfERENCETYPE  THEN
VALIDATECSItHJJ  ELSE
IF SItHhfYPE  0 RLOCKMARK  THEN VALIDATE[$[H1)1

ENDJ
COMMENT SORT THEM IN ORDER OF INCREASING ADDRESSJ
SORT(SP+1,  G)I
I t 1) COMMENT COLLAPSE THE FREE STORAGEI
FOR J + SP + 1 STEP i UNTIL 0 DQ
IF SICJJrTYPE  l LISTTYPE  THEN
BEGIN CUMMENT  IF G,Ce  OCCURS DURING “COPY” THEN WE MUST AVOID

THE CHEATION  OF DOUBLE LIST ENTRIES  FROM DUPLICATED OESCRIPTORS~
IF SIC31  8 SICJ+lJ THEN SItJ+lJotYPE t U N D E F I N E D )
LLA + SICJJoADDRESSI  LLW l SICJl,UCTr
IF LLA I I TMEN
BEGIN

MOVEcFCLLAJr  f[Ib LLN)j
MOVEtFItLLAh  rftu8 Li.ti)J

ENDJ
SI(JlrNSA  + Ii
I + I + LLWi

END ELSE SItJleNSA + I - LLW + SICJ3rADDRESS  - L/AI

l-04



FP + 1)

COMMENf RESET ALL AFFECTED ADDRESSES)
FOR I t 1 STEP 1 UNTIL SF DO RESETCSITI),  St1J)l
FOR I + 1 STEP 1 UNTIL fP*l DO RESET(FI[I]r  F[IJ)i
IF FP + NEED > 1022 THEN ERROR(l4)J

END FREE i

PROCEDURE MOVESEG(CD)I  REAL LO)
BEGIN COMMENT MOVE ONE LIST SEGMENTJ

INTEGER w8 X)
W t LOI WCTt
IF FP + W ) 1022 THEN FREE(W)1
X + LDeADDRESSI
MOVE(FtXh  F(fP), WI)
MOVE(FICXh  FwP18 W)i
LDdDDRESS  t FPJ
FR + FP + WJ

END MOVE SEGMENTl

PROCEDURE CUPY(LD)J REAL LDt
BEGIN INTEGER  18 3) COMMENT RECURSIVE LIST COPY1

MOVfSEGCLD)I
J t LD,WCT  l 1)
FOR I + 0 STEP 1 UNTIL 3 DO
IF FICI+LDeADDRESSlrTYPE  II LISTTYPE  THEN'COPY(fI[~+LD,AODRE$SJ)

EN0 COPY;

- PROCEOURE BOOLTESTJ  IF SICSPJ,TYPE  # BOOLEANTYPE  THEN ERROR(l)j

INTEGER PROCEDURE  HOUND(X)! VALUE Xj REAL XJ ROUND + XJ

PROCEDURE BARITHi
BEGIN If SICSPJ,TYqE  # NUMBERTYPE  OR Sf[SPmlj,TyPE  fl NUMBERTYPE  THEN

ERROKW ELSE SP t SP-1
END BARITHJ

PROCEDURE PETCHI
BEGIN INTEGER Ii

IF SICSPloTYPE  0 REfERENCETYPE  THEN
BEGIN I + SItSPl,ADDRESSi  SIISPJ + ff(T)J SCSP)  t ftt) END

EN0 FETCH i

INTEGER PROCEDURE MAHKINOEXtBlJI VALUE BL, INTEGER 8Lj
BEGIN COMMENT MARKINDEX IS THE INDEX OF THE MARK WITH BLOCKNUMB~R  6LI.

\AfEip;” INTlEWR Ir

UlI I F  SICIlr6LN > BL T H E N
B E G I N  I + SICIlrSTATICI  G O  TO Ul  E N D  J
If SI[IJeBLN  a SL THEN ERROR(O))
MARKINDEX + I

END MARKINDEX i

PROCEOURE  LEVELCHECK(X8  Y)J VALUE YZ INTEGER Yl REAL XJ
BEGIN INTEGER TI 18 t.8 Ui T + XtTYPEJ

105



If T * REFERENCETYPE OR T = LABELTYPE  THEN
BEGIIJ IF XrsTATIC ) Y THEN ERROR(S)  END ELSE

IF T = PtWCEDUHETYPE  THEN XeSTATIC  t Y ELSE
IF T 3 LISTTYPE  THEM
BEGIN L + XeADDRESSJ  U + L + X,WCT -1)

FOR I t L STEP 1 UNTIL U DO LEVELCHECKCfICIJrY)
EN0

END LEVEL CHECKJ

PROCEOURE SPUPJ IF SP L 1022 THEN ERROR ELSE SP t SP + lJ

PRDCEOURE SETISW)J  VALUE VI INTEGER VJ
BEGIN FETCHJ

S[SPJ  + HEAL(SICSPJtTYPE  * V)J
SI[SPJ,TYPE  + BUOLEANTYPEJ

END SET ISI

SWITGH EXfCUTE +
PROCEDURECALL,  VALUEOPERATOR SfMIcDLDN,  uNDEFINEDOPERATOR
REFERENCE8 NEW8 FORMAL, LA6fLL8 uNDEFINEDoPERAfOR8  LOGVAL,
su8scRIPf8 6EGINb  fNDV8 NUMBERI RIGHTPAREN8  LEfTQUOTE  RIGHTQUOTE
GOT08 OUTPUT8 STORE8  UNDEfINEDO~ERATOR,  THENV, fLSfV8 CATENATE8
Lof?8 LAND8 LNob mL8 NEb  usI id08 6fQ8  GTR8  wd8 M A X 8
A D D 8  SUBr  MULI  UVIDE,  IOtV8 REMAINDER8  POWER8 ABSVr  LENGTHI
INTEGERIZEr REALL,  LOGICALI  LISTTr  T A I L ;  INPUT,
ISLoGICAL  ISNUMBER, ISREFERENCE,  ISLABEL,  fsLfsT8  IssYMBoL

ISPROCEDURE ISUNDEfINEo8  SYMBOL8 UNDEFIND,  UNOff~NfOOP~RATORr  NEG8
UNOEFINEOOPERATOR,  UNOEfINEOOPfRATOR~  DONE)

WRITE CCf’AGEJ)J
sp t Mp t PP t 01 FP t iJ LVL + GJ ft 0 ft+W

NEXTt  PP + PP+lJ
TRANSFER1 GO To E X E C UT E ~PROGRAMCPPJ.AFIELD  " FTTJ

UNOEFINEDDPtRATOR:
ERROR(O)J

SEMICOLON:
se * SP ” 1) GO TO NCXTJ

UNDEFIND: SPUPJ
SICSPJrTYPE  + UNDEfINEDJ  GO TO NEXT)

NUMBER:
PP t PP + lJ.SPUPJ . .
SI[SPI,TYPE  + NUMBERTYPEJ  SCSPJ + PROGRAM(  GO TO NEXT)

SYMBOLI SPUPJ
SItSPl,TYPE  + SYMBDLTYPEJ  SCSPJ * PROGRAM(PP~,BfIELOJ  GO TO NEXTJ

LOWALl SPUPJ
SICSPl,TYPE  t BOOLEANTYPEJ SCSPJ + PROGRAM(PP),BfIELOJ
GO TO NEXTJ

REFERENCE: SPUPJ
SICSPJ + OJ
SICSPJrTYPE  + REFERENCETYPEJ
SftSPJeSTATIC  + 11 + MARKINOEXCPROGRAM[PP~,CfIELO~J
SICSPJoADORESs  + SCIlJrAODRESS  + PROGRAM~PPJrBfIELO  . 11
GO TO NEXT)

106



LABELL: SPUPJ
SIWPJoTYPE  + LABELTYPEJ
SICSPJ,SIATIC  t MARKINDEXCPROGRAMCPPl,CfIELB)J
SI[SPJrADDHESS  * PRDGRAMCPPJrBfIELOJ  GO TO-NEXT;

CATENATE;
I f  SICSPJoTYPE  fl LISTTYPE  OR SICSP-lJ,TYPE  C LISTTYPE T H E N  ERROR(l);
I F  SICSP-1JtADDHESS  + SICSP-lJ.WCT  C SICSPJrAODRESS  T H E N
BEGIN COMMENT  MUST HAVE CONTIGUOUS LISTS;

MOVESEGCSICSP-II);
MOVESEG(SItSRJ)J

ENOi
SP + SP ” lJ
SI[SPJ,WCT  t SItSPlrWCT  + SICSP+lJ,WCTJ
GO TO NEXT)

LOR I RDOLTlISfJ
IF NOT 6DOLEAN~StSPJ)  THEN BEGIN SP t SP - 11 GO TO NEXT ENDi
PP t PROGRAMCPP4,BFIELDJ  GO TO TRANSFER;

LAND': t3ODLTESTJ
IF BDOLEANWSPJ)  THEN BEGIN SP + SP - 1; GO TO NEXT END;
PP 6 PRDGRAMCPPJr6FIELOJ  GO TO TRANSFER;

LNOT 1 600L’IESTJ
SCSPJ + KEAL(NDT  BODLEAMSCSPJJJJ  GO TO NEXT;

LSSl BARITHJ
S[SPl  + HEALtStSPJ  4 SCSP+lJJJ
SICSPJrTYPE  + 6UOLEANTYWJ  GO TO NEXTJ

LEO: BARITH;
SCSPI  + KEALCSCSPJ  S SLSP+lJJJ
SItSPJrTYPE  * BDOLEANTYMEJ  GO TO NEXT;

EQL:  6ARITHJ
S[SPJ  t NEALWSPJ  a SCSP+lJJI
SItSPJrTYPE  + BUOLEANTYf’EI  GO TO NEXT;

NEQt BARITHJ
SCSPI 6 HEALWSPJ  + SCSP+lJJJ
SI(SPJ,TYPE + BUOLEANTYPEJ  GO TO NEXT;

GE08 BAR1  THJ
S C S P J  l REAL(StSP1  2 SCSP+lJJJ
SI[SPJrTYPE  t BOOLEANTYf’EJ  GO TO NEXT;

GTR:  6ARlTHJ
S[SPl  + REALtSCSPJ  3 SCSP+lJJJ
SftSPJ,TYPE  + BDOLEANTYPEJ GO TO NEXT)

MINI BARITHJ
IF ;;;W;;; c StSPJ  THEN S C S P J  * StSP+lIJ GO TO N E X T ;

MAX,
I F  ;:;Zi;;;  ) S C S P J  THEN SCSPJ + StSP+lJJ GO T O  NEXT;

ADOt
S C S P J  6 StSSJ  + SCSP+lJJ  GO TO N E X T ;

SU6 I BARITHJ
S C S P J  + SCSPJ - SCSP+lJJ  GO TO NEXT;

NEG: IF SItSPlrTYPE  # NUMBERTYPE  THEN ERROR(l);
StSPJ + - SCSPJJ  GO TO NEXTI

MULt BARITtlJ
SCSPJ ;A;;;;;  X StSP+lJJ  G O  T O  N E X T ;

DIVIDE:
IF S[SP+11 * 0 THEN ERRUR(2);
S[SPl  + StSPl / SESP+lJJ GO TO NEXT;



IOIVI t3AHI  it-Ii
IF HUUNO(StSP+lJJ = 0 TMEN  ERRDR(2)J
S[SPJ  + tiDUW(SL5Pl)  DIV RDUND(S[SP+II)J  GQ T O  N E X T ;

REMAINDER: BAHITHJ
IF S[SP+l I = 0 THCN ERRUR(2);
StSPJ  + SCSPJ  MUD SESP+lJJ GO TO N E X T ;

PDdER  t 6ARlTHJ
SCSPI  + SKiPI  * StSP+lJJ GO TO NEXTJ

ABSV I IF SUSPJrTYPE  I NWWERTYPE  THEN ERROR(l);
SCSPJ  * ABSCSCSPJ);  GO TO NEXT;

INTEGERIZE:
IF SICSPJrTYPE  p 6DDLEANTYPE  THEN ERROR(l);
S[SPJ  + HOUNOCStSPlJJ  GO T O  NEXT;

REALL:
IF SI[SPJ,TYPE  ) BOOLEANTYPE  THEN ERROR(l);
SI[SPJ.TYPE  + NUMBERTYPE;  G O  T O  N E X T ;

LOGICAL1
IF SItSPJ.TYPE  # NUH6ERTYPE  THEN ERROR(l);
IF S[SPJ I 0 OR SCSPI  3 1 THEN SIC-SPJ,TypE  t BOOLEANTYPE  ELSE
SI(SPJ,TYPE  t UNDEFINEOJ
GO TO NEXT;

LISTT:
IF SICSPJrTYPE  fi NUMBERTYPE THEN ERROR(I);
1 2  + SCSPIJ
IF 12 + FP 3 1022 THEN FREEtIP);
FOR  1 1  + FP S T E P  1  U N T I L  fP+IZ-1  D O  FI[rlJ,TYPE  + UNDEFINEOJ
S I C S P J r T Y P E  + LISTTYPEJ  SItSPJddCT + 1 2 ;  sI[sPJ,ADORESS  * fPJ
FP + FP + 12; GO TO  NEXT;

ISLOGICALI SETIS(6ODLEANTYPE)J  GO TO N E X T J
ISNUMBERI SETIS(NUMBERTYPf>J  GO TO NEXT)
ISREFERENCE: SETIS(REFERENCETYPE)J  GO TO NEXT4
ISLABEL SLTIS(LA6ELTYPE)J  GO TO NEXTJ
ISLIST: SETIStLISTTYPEJJ  GO T O  NEXT;
ISSYMBoLa SETISCSYMBOLTYPEJ1  GO TO NEXT;
ISPRDCEDUREF SETISCPRDCEWURETYPE~J  GO TO NEXT;
ISUNDEfINEDI SETIS(UNDEFINED)J  GO TO NEXTJ

TAIL8
IF SItSPJeTYPE  * LISTTYQE  THEN ERRORCl)J
IF SI[SPJQWCT  8 0 THEN ERROR(
SI[SPJ,WCT  * SItSPltWCT  - IJ
sI[SPJ,ADDRESS  * SICSP1rADDRES~  + Ii GO TO NEXT;

THENV.
6DOLTESTJ SP * SP-IJ
IF BDOLEAN(StSP+lJ)  THEN GO TO NEXT;
PP * PROGHAM[PPJ,6FIELOJ  GO TO TRANSFER;

ELSEVI
PP 6 PRDGRAMtPPJ.6FIELDJ  GO TO TRANSFERI

LENGTH1
FETCH1
IF SItSPJrTYPE  * LISTTYPE  THEN ERROR(I)8
SI[SPJ,TYPE  6 NUMBERTYPEJ  StSPl  + SICSPJ,WCT1  GO T O  NEXT;

GOT0 I
IF SItSPlrTYPE  * LA6ELlYRE  THEN ERROR ( i)i

108



MP + SItSPJrSTATICJ
COMMENT WE MUST RETU?N TO THE BLOCK WHERE THE LABEL IS OEfINEDJ
PP + SItSPJrADDMESSJ  SP * MPJ GO TO TRANSFERJ

FORMAL1
FORMALCOUNT t FURMALCOUNT  + I;
I F  FORMALCOUNT  S StMPJo  WCT T H E N  G O  T O  N E X T  ELSE 430 T.0 N E W ;

NEW I
S(MPJ,WCI + SCMPlrWCT  + 1;
FI~FPJoTYPE  + UNDEfINEOJ
FP + FP + Ii
IF FP * 1022 THEN FREE(l);
GO TO NEXT;

STORE I
IF SICSP-IJoTYPE  # REFERENCETYPE THEN ERROR(l3);
LEVELCHfCKtSICSPlr  SICS~‘IJ.STATIC)J
SP * SP - Ii COMMENT  NON-OESTRUCTIVE  STORE)
II + SI(SPJ.ADORESSJ
SCSPJ + FtIlJ + S[SP+llJ SItSP) + fI_tIlJ (r $I(SP+lJJ
COMMENT THE NON~DESTRUCTIVE  STORE IS NOT APPLICABLE TO LISTS)
I F  SICSPJeTYPE  = LISTTYPE T H E N  SItSPl,TYPE  t UNDEfINEDI
GO TO NEXT;

SUBSCRIPT1
If SICSPJaTYPE  * NUMBERTYPE  THEN ERROR(6)J
SP t SP - Ii
IF SItSPJoTYPE  N REFERENCETYPE THEN ERROR(T)J
I I  + SICSPJ.STAfICI  SItSPI + ffCSItSPlrADDRESSJJ
IF SItSPhTYPE  I, LISTTYPE  THEN ERROR(B);

- IF SCSP + IJ 4 1 O f ?  StSR+lJ  a SICSPJ,WCT  THEN ERROR(9))
SI[SPJrADDRESS  + SI[SPJrADDRESS  + s[SP+lJ . lj
SICSPJ,TYPE  t REFERENCETYPEJ COMMENT MUST CREATE A REFERENCEI
SICSPJrSTATIC  + It; G O  T O  N E X T ;

BEGINVJ SPUPJ
SItSPI + O J
SItSPJ,TYPE  4 BLOCKMARK)
SItSPJ,BLN  + SItMPJrBLN  + 11
SI(SPJ,DYNAMIC  6 MPI
SIISPJ,SIATIC + MPJ
StSPlrTYPE  + LISTTYPE;
StSPJ,ADURESS  + FPJ
SCSPJ,WCI’  + O J COMMENT A NULL LIST;
MP 6 SPJ GO TO NEXT)

ENOV:
11 + SICMPJrOYNAMICJ  . -
LEVfLCHECK(SICSRJr  SICMPl,STATIC)J
SItMPl + S I C S P J J  SCMPJ  + SCSPIJ
SP (I MPJ MP * IIJ GO TO NEXT)

LEF TOUOTE 1 COMMENT PROCEDURE DECl.ARATfONJ
SPUPJ
SItSPJ,TYPE  + PROCEDURETYPEJ
SI[SPJ,AODHESS  + P P J
COMMENT THE PRDCEDURE  DESCRIPTOR MUST SAVE ITS OWN LEXICOGRAPHICAL
LEVEL AS WELL AS THE STACK MARKER FOR UPLEVEL  ADDRESSED VARIABLES;
SItSPJr6LN  + SICMPloBLN + 1;
SICSPlrSTATIC  6 MPJ
PP + PRDGRAMCPPl.6FIELDJ  GO TO TRANSFER)

109



RIGHTQUOTE:
PP l SICMPJrAOOHESSJ COMMENT A PROCEDURE RETURN;
1 1  + SItMPJoOYNAMICJ
LEVELCHfCKWCSPJr  SItMPJ,STAT~CH
;$;P:,;  SItSPJJ SCMPJ  + SCSPJJ

MP * 11; Go TO NEXT;
VALUEOPERATOR:

IF SICSPloTYPE a LISTTYPE  THEN GO TO NEXT)
FETCH;

I F  SI[SPJ,TYPE = PROCEDURETYPE  THEN
BEGIN fORMALCOUNT  + 0;

1 1  + SICSPloAODRESSJ
SItSPJ.TYPE  + BLOCKMARK;
SICSPJrADDRESS  * PPJ
SICSPl,OYNAMIC  + MPJ
SCSPlaTYPE  6 LISTTYPE;

’ StSPlrWCT  + 0 ;
MP * SPJ PP t 11;

END ELSE IF SICSPJtTYPE  * LISTTYPE -THEN cOPY(SICSPJ)J
G O  T O  N E X T ;

PROCEOURECALL:
SP + SP - IJ FETCH-r
If SICSPJrTYPE  $ PROCEDURETYPE THEN ERRDR(3)J
FORMALCOUNT + OJ
1 1  + SICSPJ,AOORESSJ
SICSPlrTYPE  6 BCOCKMARKJ
SI[SPl,ADORESS  + PPJ
SItSPJrDYNAWC  + MPJ
SCSPJ 6 SICSP+lJJ COMMENT THE LIST DESC. fOR PARAMETERS;
MP + SPJ Ps l Ill GO TO NE%TJ

RIGHTPARENI
1 1  + PROGRAM[PPJ,6fIELOJ
If 1 1  + FP a 1022  THEN FHEE(11);
SP + SP - 11 + lJ
MOVECSCSPJr  FCFPJr  11); MOVftSItSPJ,  FI[FP)r  fl)J
SICSPJ.TYPE  + LISTTYPEJ
SI[SPJ,WCT  + 11;
SItSPJ.AOORESS  + fPJ
FP + FP + III GO TO NEXT;

INPUT: SPUPJ
READ(SCSPJJ[EX:TJJ  SItSP‘),TYPE  t NUMBERTYPEJ  GO TO NEXT;

OUTPUT 8
OUMPOUT~SI~SPI~  SCSPJJJ  ‘GO TO NEXT;

DONE :
EN0 INTERPRETER;

E X I T  8
END .

110



., / &’
.

..:

: a

‘.a ,
‘3

001
006
013
013
014
020
036
047
051
052
OS7
057
062
067
061 1
103
126
127
132
132
136
165

PROGRAM
001

- 002
003
004
00s
006
007
008
009
010
011
012
013
014
01s
016
Di7
018
019
020
021
022
023
024
025
026
027
028
029

DUMP
BEGlN
NEW
NEW
NEW
NEW
c

ERCIAL
FDRMAL
FORMAL
FORMAL
FORMA4
BEGIN
e

;
THEN
e

BEGIN NEW FURJ NEW MAKE1  tiEW Ti NEW AI
FOR + LO BDRMAL CVI FORMAL LBJ fORMA STEP)
BEliIN

LABEL LJ LABEL KI
CV * LBJ
Kt If CV S UB THEN S ELSE: GOT0 LJ
CV + CV + STEPJ
GOT0 KC
41 0

END RQJ

FORMAL lJB1  FORMAL SJ

MAKE 6 LQ FORMAL BJ FORMAL Xj
BEGIN N&W Ti NEW It NEW F) NEW LJ

4 + B1 T + LIST Ltlli
P + IF LENGTH L # 1 THEN MAKE(TAIL L; X) ELSE XI
fDRt@Ir 1, I, LCll, La t[fJ + F RO 1 J
T

END RQI

A * Oi
FOR (-‘la lr 4r LO BEGIN A + A 8 <T)J O U T  MAKE VA,T) END RQ )

EN0 t

001
056

001

002

001

004

033
00s

002

002

002

002

030
031
032.
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
054
059
056
OS7
058
059

LABEL

iOT0
i
8

0

;

0

f

;

LABEL

iOTO
i
(
END
RO
+
I
e
40

036
052

001

021

002

002

003

ooa
131

1 1 1



060
061
062
063
064
065
066
067
068
069
070
07l
072
073
074
07s
07i
078
079
080
081
082
083
084
083
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
10s
106
108
110
111
113
Ii4
115
116

:g
119

FOHMAC
FORMAL
BEGIN
NEW
NEW
NEW
NEW
Q
Q
8
l

4

☺

Q

Q

(

☺

;ISl
4

i

Q

Q

L E N G T H

c

#

T H E N

I

:AIL
Q
0

;

&SE
Q
0
8
+
i
Q
Q
C
t
Q
C
J

60

Q

;

004 003
001 002

001 003
004 003
1.OOOOOooOQ+oo

003 003 ,
004 003

l.OOOOOOooQ+oO

099
002 001
004 003

002 002

002

102
002 002

112

001 001
002 003
1oOOOOOoooQ+oo
lr00000000Q+0o
004 003
lmOoOoooooQ+oo

124
001 003
002 003

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
141
143
145
146
147
148
149
150
151
152
IS3
IS4
15s
156
IS7
IS8
159
160
161
162
163
164
165
166
lb7
168

Q
8

L
1

;
Q

;ND
RQ
4
i
Q
)
4
i
Q
Q
(
C
(
LO
BEOIN
Q
Q

003 003

00s

001 003

001 001
003 001
lr00000o00Q+0o
1oOOOOOoOOQ+Oo
4,00000000Q+00
165

004 001
004 001

003 001

002 001
004 001
003 001



NUMB&H
NUMB&R

L I S T
NUMBER

24

61
62

LIST
LIST
NUMB&R
NUMBER

LIST 382
.a*( NUMBER

NUMBER
NUMBER

4
4
a
a

2
2

NUMB&R

LIST
LIST
LIST
NUMBER
NUMBER
NUMBER

142
143
14s

3
3 -

*o 1

..C
LIST
NUMB&R
NUMB&R
NUMB&R

148
3

3

LIST
LIST
LIST
LIST
NUMB&R
NUMB&R
NUMBER
NUMB&H

353
354
356
359

LIST
NUMB&R
NUMBER
NUMB&R
NUMB&R

363

LIST
NUMt3ER
NUMBER
NUMBER-
NUMBER

367
4
4
a
4

LIST
LIST
NUM8&H
NUMBER
NUMBER
NUMBER

371
374l e C

.**C 4
4
4
4

4
4

113

LIST
NUMBER
NUMBEH

378





programI

cldisjunction

t
conjunction

.
conjunction-

choice

( chtice-  ]

1
rel op choice

I





tlterm-
.

LizIfactor-

cllist*

proc head - expression
I

num her

real*

integeP
I




