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EULER : A Generalization of ALGOL, and its Farmal Definition*

by
Niklaus Wirth and Helmut Weber

Abstract:

A method for defining progranm ng | anguages is devel oped which intro-
duces a rigorous relationship between structure and meaning. The structure
of a language is defined by a phrase structure syntax, the nmeaning in terms
of the effects which the execution of a sequence of interpretation rules
exerts upon a fixed set of variables, called the Environnent. There exists
a one-to-one correspondence between syntactic rules and interpretation rules
and the sequence of executed interpretation rules is determned by the se-
quence of corresponding syntactic reductions which constitute a parse
The individual interpretation rules are explained in terms of an el ementary
and obvious algorithmc notation. A constructive nethod for eval uating
a text is provided, and for certain decidable classes of |anguages their
unambi guity is proven. As an exanple, a generalization of ALGOL is described
in full detail to demonstrate that concepts |ike block-structure, procedures

parameters etc. can be defined adequately and precisely by this method.

¥/ This work was partially supported by the National Science Foundation
(ap 4053) and the Conputation Center of Stanford University.







It is the character of mathematics of nodern times that through our
| anguage of signs and nomenclature we possess a tool whereby the most com
plicated arguments are reduced to a certain nmechanism Science has thereby
gained infinitely, but in beauty and solidity, as the business is usually
carried on, has lost so mich. How often that tool is applied only mechani-
cally, although the authorization for it in nost cases inplied certain
silent hypotheses! | demand that in all use of calculation, in all uses

of concepts, one is to remain always conscious of the original conditions

Gauss

(in a letter to Schumacher, Sept. 1, 1850)
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[ ntroduction and Sunmarv

Wien devising a new programm ng |anguage, one inevitably becones
confronted with the question of how to define it. The necessity of a formal
definitiun is twfold: the users of this |anguage need to know its precise
meani ng, and al so need to be assured that the automatic processing systens,
i.e. the inplenentations of the language on computers, reflect this sane
meaning equally precisely. ALGOL 60 represented the first serious effort
to give a formal definition of a progranmng |anguage [I]. The structure
of the language was defined in a formal and concise way (which, however
was not in all cases unanbiguous), such that for every string of synbols
it can be determned whether it belongs to the language ALGOL 60 or not.
The nmeaning of the sentences, i.e. their effect on the conmputational pro-
cess, was defined in terns of ordinary English with its unavoi dable |ack
of precision. But probably the greater deficiency than certain known im
precise definitions was the inconpleteness of the specifications. By
this no reference is nade to certain intentional omssions (like specifi-
cation of real arithnetic), but to situations and constructs which sinply
were not anticipated and therefore not explained (e.g. dynamc own arrays
or conflicts of nanes upon procedure calls). A method for defining a
| anguage shoul d therefore -be found which guarantees that no unintentiona
om ssions may occur.

How shoul d nmeaning be defined? It can only be explained in ternms of
another |anguage which is already well understood. The nethod of formally
deriving the neaning of one | anguage from anot her nmakes sense, if and only
if the latter is sinpler in structure than the fornmer. By a sequence of

such derivations a language will ultimately be reached where it would not




be sensible to define it in terms of anything else. Recent efforts have
been conducted with this principle in mnd.

BSm [3] and Landin [4][5] have chosen the h-cal culus as the fundamen-
tal notation [6],[7], whose basic element is the function, i.e. a well-
established concept. The notivation for representing a program in functiona
formis to avoid a commitnent to a detailed sequence of basic steps repre-
senting the algorithm and instead to define the neaning or effect of a
program by the equival ence class of algorithns represented by the indicated
function. Wether it is worth while to achieve such an abstract defini-
tion of nmeaning in the case of programmng |anguages shall not be discussed
here. The fact that a program consists basically of single steps remains
and it cannot even be hidden by a transliteration into a functional nota-
tion. the sequence is represented by the evaluations of nests of functions
and their parameters. An unpleasant side-effect of this translation of
ordinary programmng |anguages into h-calculus is that sinple conmputer
concepts such as assignnent and junps transforminto quite conplicated
constructs, this being in obvious conflict with the stated requirenent
that the fundamental notation should be sinple.

Van Wjingaarden describes in [8] and [9] a nore dynamic approach
to the problem the fundanental notation is governed by only half a dozen
rules which are obvious. It is in fact so sinple that it is far from being
a useful progranm ng notation whatsoever, but just capable enough to pro-
vide for the mechani smof accepting additional rules and thus expanding

into any desirable programming system This nethod of defining the meaning




(or, since the meaning is inperative: effect) of a language is clearly dis-
tinct fromthe nethod using functional notations, in that it explicitly
nmakes use of algorithmc action, and thus guarantees that an eval uating
algorithm exists for any sentence of the language. The essence of this

al gorithm consists of first scanning the ordered set of rules defining the
structure of the language, and determning the applicable structural desig-
nations, i.e. performng an ‘applicability scan’, and then scanning the
set of rules for evaluating the determned structural units, i.e. perform-

“evaluation scan’. The rules are such that they may invoke appli-

ing an
cation of other rules or even themselves. The entire mechanismis highly
recursive and the question remains, whether a basically subtle and intri-
cate concept such as recursion should be used to explain other progranm ng
| anguages, including possibly very sinple ones

The nethods described so far have in conmon that their basic set of
fundamental semantic entities does not resenble the elementary operations
performed by any conputational device presently known. Since the chief aim
of progranmng |anguages is their use as communication media with conputers
it would seemonly natural to use a basic set of semantic definitions close-
ly reflecting the conmputer's elenentary operators. The inval uable advan-
tage of such an approach is that the |anguage definition is itself a pro-
cessing system and that inplementations of the |anguage on actual machines
are merely adaptations to particular environnental conditions of the |an-
guage definition itself. The question of correctness of an inplenmentation
will no longer be undecidable or controversial, but can be directly based

on the correctness of the individual substitutions of the elenentary se-

mantic units by the elementary machine operations




It has el sewhere been proposed (e.g. [10]) to let the processing
systens thenselves be the definition of the |anguage. Considering the
conpl exity of known conpiler-systens this seenms to be an unreasonable sug-
gestion, but if it is understood as a call for system zing such processing
systens and representing themin a notation independent from any particul ar
conputer, then the suggestion appears in a different |ight.

The present paper reports on efforts undertaken in this direction.

It seens obvious that the definition of the structure, i.e. the syntax

and the definition of the neaning should be interconnected, since struc-
tural orderings are merely an aid for understanding a sentence. |n the
presented proposal the analysis of a sentence proceeds in parallel with
its evaluation: whenever a structural unit is discovered, a corresponding

interpretation rule is found and obeyed. The syntactic aspects are defined

~ by a Phrase Structure System (cf. [I1], [12], [2]) which is augnmented by
the set of interpretation rules defining the semantic aspects. Such an
augmented Phrase Structure Language is subsequently called a Phrase

Structure Progranm ng Language, inplying that its meaning is strictly

imperative and can thus be expressed in terns of a basic algorithmc

notation whose constituents are, e.g., the fundanental operations of a
conput er.

Al though in [8] the processes of syntactic analysis and semantic
evaluation are nore clearly separated, the analogies to the van Wjngaarden
proposal are apparent. The parsing corresponds to the applicability scan,
the execution of an interpretation rule to the evaluation scan. However,
this proposal advocates the strict separation between the rules which

define the language, i.e. its analysis and evaluation mechanisns, and the



rules produced by the particular program under evaluation, while the
van Wjngaarden proposal does not distinguish between |anguage definition
and program \Wether the elimnation of this distinction which enables--
and forces--the programmer to supply his own |anguage defining rules, is
desirable or not nust be left unanswered here. The original aimof this
contribution being the devel opnent of a proposal for a standard |anguage,
it would have been neaningless to elimnate it.

Chapter Il contains the descriptions of an algorithmc notation
donsi dered intuitively obvious enough not to necessitate further expla-
nation in terms of nore primtive concepts. This notation wll subse-
quently be used for the definition of algorithnms and interpretation rules,
thus playing a simlar role for the semantic aspects as did BNF for the
syntactic aspects of ALGOL 60. The function of this notation is twofold:
1. It serves to precisely describe the analysis and eval uati on mechani sns,
and 2. It serves to define the basic constituents of the higher |eve
| anguage. E.g., this basic notation contains the elenmentary operators
for arithmetic, and therefore the specifications of the higher level Ian-
guage defer their definition to the basic algorithmc notation. It is
in fact assuned that the definition of integer arithnetic is below the
|l evel of what a programm ng |anguage designer is concerned with, while
real arithmetic shall very intentionally not be defined at all in a
| anguage standard. The concepts which are missing in the basic notation
and thus will have to be defined by the evaluation nechanisns are mani-
fold: the sequencing of operations and operands in expressions, the stor-
age allocation, the block structure, procedure structure, recursivity,

value- and nane- paraneters, etc.




Chapter 11l starts out with a list of basic formal definitions |eading
to the terms ‘Phrase Structure Systeml , ‘Phrase Structure Progranmi ng
Language' and ‘Meaning' . The notation and terninology of [12] is adopted
here as far as possible. The fact that the nature of neaning of a program
mng language is inperative, allows the meaning of a sentence to be ex-
plained in terms of the changes which are affected on a certain set of
variables by obeying the sentence. This set of variables is called the
Environnment. of the Programm ng Language. The definition of the meaning
with the aid of the structure, and the definition of the evaluation algo-
rithmin terns of structural analysis of a sentence demand that enphasis
be put on the devel opnent of a constructive algorithm for a syntactic
analysis. Chapter IIl is mainly devoted to this topic. It could have
been entirely avoided, had a reductive instead of a productive definition
of the syntax been chosen. By a productive syntactic definition is neant
a set of rules illustrating the various constructs which can be generated
by a given syntactic entity. By a reductive syntactic definition is neant
a set of rules directly illustrating the reductions which apply to a given
sentence. A reductive syntax therefore directly describes the anal yser
and recently sone conpilers have been constructed directly relying on a
reductive syntactic description of the |anguage. [13]. A language defini-
tion, however, is not primarily directed toward the reader (human or arti-
ficial), but toward the witer or creative user. Hs aimis to construct
sentences to express certain concepts or ideas. The productive definition
allows himto derive directly structural entities which conformto his
concepts. In short, his use of the language is primarily synthetic and not

analytic in nature. The reader then nmust apply an anal ytic process, which




in turn one should be able to specify given the productive syntactic defi-
nitions. One mght call this a transformation of a productive into a
reductive form a synthetic into an analytic form

The transformation method derived subsequently is largely based on
earlier work by R W Floyd described in [14]. The grammars to which this

transformation applies are called_Precedence Gammars. The term 'Prece-

dence Syntax' is, however, redefined, because the class of precedence gram
mars described in [14] was considered to be too restrictive, and even unnec-
essarily so. In particular, there is no need to define the class of prece-
dence grammars as a subclass of the ‘Cperator grammars' .  Several classes
of precedence grammars are defined here, the order of a precedence gramnar
being determned by the amount of context the analysis has to recognize
and menorize in order to make decisions. This classification relates to
the definition of 'Structural Connectedness' described in [ 15], and
provides a nmeans to effectively determne the amount of connectedness for
a given granmar.

Al'so in Chapter |11, an algorithmis described which deci des whet her
a given grammar is a precedence grammar, and if so, perforns the desired
transformation into data representing the reductive form of the grammar.

A proof is then provided of the unanmbiguity of precedence grammars
in the sense that the sequence of syntactic reductions applied to a sen-
tence is unique for every sentence in the |anguage. Because the sequence
of interpretation rules to be obeyed is determned by the sequence of
syntactic reductions, this uniqueness also guarantees the unanbiguity of
neaning, a crucial property for a programming |anguage. Furthernore, the

fact that all possible reductions are described exhaustively by the syntax




and that to every syntactic rule there exists a corresponding interpretation
(semantic) rule, guarantees that the definition of neaning is exhaustive.
In other words, every sentence has one and only one neaning, which is well
defined, if the sentence belongs to the I|anguage. Chapter Ill ends with
a short exanple: The formal definition of a sinple programmng |anguage

containing expressions, assignment statements, declarations and block-

structure.

A formal definition of an extension and generalization of ALGOL 60
is presented in Chapter IV. It will denonstrate that the described nethods
are powerful enough to define adequately and concisely all features of a
programmi ng | anguage of the scope of ALGOL 60.  This generalization is

a further devel opment of earlier work presented in [16].




[, An Elementary Notation for Al gorithns.

This notation will in subsequent chapters be used as basis for the
definitions of the nmeaning of nore conplicated progranmng |anguages.

A programis a sequence of inperative statenents. In the follow ng
paragraphs the forms of a statenment witten in this elementary notation
are defined and rules are given which explain its neaning. There exist
two different kinds of statements:

A the Assignnment Statenent, and

B. the Branching Statenent.

The Assignment Statenment serves to assign a new value to a variable
whose old value is thereby lost. The successor of an Assignnent Statenent
Is the next statement in the sequence. The.Branching Statenent serves to
designate a successor explicitly. Statements may for this purpose be

| abel | ed.

A The Assignnent Statenent

The (direct) Assignment Statenent is of the form
Vv « B
v stands for a variable and E for an expression. The neaning of this
statement is that the current value of v is to be replaced by the cur-
rent value of E
An expression is a construct of either one of the follow ng forns:
X,0X,x0y,rr

where x, y, stand for either variables, literals or lists, o stands

for a unary operator, © stands for a binary operator and r stands for

a reference. The value of an expression involving an operator is ob-

tained by applying the operator to the current value(s) of the operand(s).




Areference is witten as @v, where v is the referenced vari abl e.
The indirect Assignment Statement is witten as
V.« E
and is neant to assign the current value of the expression E to the

variable, whose reference is currently assigned to the variable v .

1. Literals
Aliteral is an entity characterized by the property that its value
is always the literal itself. There may exist several kinds of literals,
e.g.’
Nunber s
Logi cal constants (Bool ean)
Symbols
Furthernore there exists the literal @ with the neaning "undefined".

Nureric constants shall be denoted in standard decimal form The |ogica

constants are true and fal se*.

A synbol or character is denoted by the synbol itself enclosed in
quote marks (¢’). A list of symbols is usually called a string.

Qher types of literals nmay arbitrarily be introduced.

2. Lists

A list is'an entity denoted by
{e, 7, . .,q]
whose value is the ordered set of the current values of the expressions
EEF ..., G called the elenents of the list. A list can have any
number Of elenents (including 0), and the elements are nunbered with the

natural nunbers starting with 1 .

the underlined (boldface) letters have to be understood as one single synbol.

10




3. Variables

A variable is an entity uniquely identified within a programby a
nane to which a value can be assigned (and reassigned) during the execution
of a program Before the first assignnent to a variable, its value shall
be a .

If the value of a variable consists of a sequence of elements, any
one elenent nmay be designated by the variable nanme and a subscript, and
thus is called a subscripted variable. The subscript is an expression,
whose current value is the ordinal nunber of the elenent to be designated.
Thus, after a «{1,2,{3,4,5,},6}, a[1] designates the el enent "1", a[3]
designates the elenment {3,4,5}, and therefore a[3][2] designates the
second el enment of a[3],i.e. "4". The notation a. shall be understood

equivalent to af[i], 83 ;5 equivalent to al[il[j] etc.
)

4. Unary Operators

Exanpl es of unary operators are:
-x , Yyields the negative of x

X , yields the value of the variable whose reference is

lo

currently assigned to x
abs x , Yyields the absolute value of x

i nteger x , yields x rounded to the nearest integer

tailx , yields the list x with its first elenent deleted,;

isli x , yields true, if x is alist, false otherwse

A further set of unary operators is the set of typetest operators
whi ch determ ne whether the current value of a variable is a menber of
a certain set of literals. The resulting value is true, if the test is

affirmative, false otherwise.

11




Fxamples:

isn x, current value of x is a nunber

ishx, ..., is a logical (Boolean) constant
IsuU X, .. is Q@ (undefined)
isyx,. . . . . ..is a synbol

A further set of unary operators is the set of conversion operators
whi ch produce val ues of a certain type froma value of another type

Exanpl es:

real x vyields the nunber corresponding to the |ogical value x;
logical x inverse of real (true 1, false &0 shall be assumed);
Conversi on operators between nunbers and synbol s shall not
be defined here, although their existence is assuned, because
the notation does not define the set of synbols which may

possi bly be used.

5. Binary Operators

Exanpl es of binary operators are

+ - X designating addition, subtraction and nmultiplication in the
usual sense. The accuracy of the result in the case of the
operands being non-integral numbers is not defined.

/ denoting division in the usual sense. The accuracy of the
result is not defined here. In case of the denoninator being
0, the result is Q.

+ denoting division between the rounded operands with the

result being truncated to its integral value

12




mod yields the renmainder of the division denoted by s .
& yields the concatenation of two lists, i.e.
{x} & {y} = ix,y}
= yields true, if the two scalar operands are equal, false
ot herw se.
) denoting exponentiation, i.e. x4 y stands for xY
The classes of unary and binary operators listed here may be ex-
tended and new types of literals may be introduced along wth corresponding

typetest and conversion operators.

B. The Branching Statenent

There are Sinple and Conditional Branching Statements.

1. The Sinple Branching Statenent

[t is of the form

got 0
where £ stands for a label. The neaning is that the successor
of this statement is the statement with the label ¢ . Labelling

of a statenment is achieved by preceding it with the label and a
colon (:). The label is a unique name (within a program) and desig-

nates exactly one statenent of the program

2. The Conditional Branching Statenent

It is of the form
if E then goto
where (is a label uniquely defined in the programand E is

an expression. The neaning is to select as the successor to the

15



Branching Statement the statement with the label £, if the current
value of Eis true, or the next statement in the sequence, if it
is false. For notational convenience a statenent of the form

if 9 E then goto ¢ (7 = not)

shall be admtted and understood in the obvious sense.

KKK AR Ko MK KK HIHHH NN K

Not ational standards shall not be fixed here. Thus the sequence
of statenments can be established by separating statements by delimters,
or by beginning a new line for every statenent. The Branching Statenent
and the labelling of statements may be replaced by explicit arrows, thus

yielding block diagrams or flowcharts.
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Phrase Structure Programming' Languages'!,'

A Notation, Terninology, Basic Definitions

Let © be a given set: the vocabulary. Elenents of ¢ are called
synbols and will be denoted by capital Latin letters, S T, Uetc. Finite
sequences of synbols -- including the enpty sequence (A) -- are called
strings and will be denoted by small Latin letters -- x, y, z, etc. The
set of all strings over 1V is denoted by '*. dearly U ¢ V¥,

A sinple phrase structure systemis an ordered pair (G ©), where

U is a vocabulary and ¢ is a finite set of syntactic rules ¢ of the

form

U-sX . £ .. UEV,x€Ux) .

For ¢ = U—-x, Uis called the left part and x the right part
of o.

y directly produces z(y - z) and conversely z directly reduces
intoy, if and only if there exist strings u, v such that y = ulv
and z =uxv, and the rule U-xis an elenent of o .

y produces z(y 5 z) and conversely z reduces intoy, if and

only if there exist a sequence of strings x . 9% s such that

o -
Y =Xy X =2 and Xi_lvéx- (i-=1,...,n;n> 1)

A sinple phrase structure syntax is an ordered quadruple G=(;0,%, A),
where U and ¢ forma phrase structure system % is the subset of %% such
that none of the elements of B (called basic symbols) occurs as the |eft
part of any rule of o, while all elements of V-8 occur as left part of

at least one rule; A is the synbol which occurs in no right part of any

rule of ¢ .

15




The letter U shall always denote some synbol U € V-%.
X is a sentence of ¢, if x € U*¥ (i.e. x is a string of basic
symbol s) and A Xx.
A sinmple phrase structure language £ is the set of all strings x which
can be produced by (V, ¢) fromA:
£(6) = {x|a Bx A x €Y.

Let U3 z. A parse of the string z into the synbol U is a sequence

of syntactic rules Pys Pps .o P such t hat cpj directly reduces
Z5 1 intozj (j =1. . .n), and z =2 2 = u.

Assune z, = U,U, ... U (for some 1 <x <n) . Then z, (i <K)
must be of the form i = WU, . W where for each £ =1. . . m either
U, % u;; O U = u, . Then the canonical form of the section of the
parse reducing z, into z_shall be {o,;}e 3. . . {0}, where the

sequence {cpg} s the canonical form of the section of the parse reducing

u, into Uz Cearly {cpl} is empty, if U, =, and i s canoni cal,

£
if it consists of 1 element only..

The canonical parse is the parse which proceeds strictly from.left
to_right in a sentence, and reduces a leftnost part of a sentence as far
as possible before -proceeding further to the right. In general, there
may exist several canonical parses for a sentence, but every parse has
only one canonical form

An unanbiguous syntax is a phrase structure syntax with the prop-
erty that for every string x € ‘() there exists exactly one canoni cal
par se.

It has been shown that there exists no algorithm which decides the
anbiguity problem for any arbitrary syntax. However, a sufficient con-
dition for a syntax to be unanbiguous will subsequently be derived.

A nethod will be explained to determne whether a given syntax satisfies

16




this condition.
An environment € is a set of variabl es whose val ues define the

meani ng of a sentence.

An interpretation rule y defines an action (or a sequence of actions)

involving the variables of an environnent £ .

A phrase structure progranm ng | anguage Bﬁp(g,‘i’,E ) is a phrase
structure |anguage £ (§), where ¢(U, ¢,8, A) is a phrase structure
syntax, Y is a set of (possibly enpty) interpretation rules such that
a' unique one to one mapping exists between elenents of Y and ¢, and
€ is an environnent for the elements of Y. Instead of sﬁp(g,w,a) we
also wite % (B, 9,8, 4,%,€).

The nmeaning m of a sentence X € xPis the effect of the execution
of the sequence of interpretation rules LTI 2R ) the environnent
€, where o 9y - O is a parse of the sentence x into the synbol A
and 14 corresponds to P, for all i.

It follows inmmediately that a progranmng |anguage will have an unam
bi guous neaning, if and only if its underlying syntax is unambiguous. As a
consequence, every sentence of the |anguage has a well-defined neaning.

A sentence X, € .;Cp( Ql,‘i’l,ﬁ) is called equivalent to a sentence
x, € $€P<92, ¥,,€) (possibly G, =G, Y, =Y%,),if and only if

m(xl) is equal to m(xg),

A programmi ng | anguage ;€p( G, ¥y, €) is called equivalent to
;Ep( Gor ¥y, €), if and only if %I _ %2 and for every sentence x,

m, (x) according to (gl, ‘fl) is equal to m(x) according to (92, ‘fg) .

1
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B. Precedence Phrase Structure Systens

The definition of the meaning of a sentence requires that a
sentence nust be parsed in order to be evaluated or obeyed. Qur prine
attention will therefore be directed toward a constructive nethod for
parsing. In the present chapter, a parsing algorithmwll be described.
It relies on certain relations between synbols. These relations can be
determined for any given syntax. A syntax for which the relation between

any two symbols is unique, is called a sinple precedence syntax.  Cbviously

the, parsing algorithmonly applies to precedence phrase structure systens.
It will then be shown that any parse in-such a systemis unique. The

class of precedence phrase structure systens is only a restricted subset
among all phrase structure systems. The definition of precedence relations
wi |l subsequently be generalized with the effect that the class of prece-

dence phrase structure systems will be considerably enlarged.

1. The Parsing Al gorithm for Sinple Precedence Phrase Structure

Languages.

In accordgnce with the definition of the canonical form of a
generation tree or of a parse, a parsing algorithm nust first detect
the leftnost substring of the sentence to which a reduction is ap-
plicable. Then the reduction is to be perfornmed and the same princi-
ple is applied to the new sentence. |n order to detect the |eftnost
reduci bl e substring, the algorithmto be presented here nakes use of
previously established noncommutative relations between synmbol s of
U which are chosen according to the follow ng criteria:

a. The relation = holds between all adjacent symbols within &

string which is directly reducible;
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b. The relation < holds between the synbol inmmediately pre-
ceding a reducible string and the leftnost synbol of that string;
c. The relation® hol ds between the rightnost synbol of a
reduci ble string and the synbol immediately follow ng that string.
The process of detecting the leftnost reducible substring now consists
of scanning the sentence fromleft to right until the first synbol
pair is found so that ;> 8y then to retreat back to the Iast
synbol pair for which S.

il <'Sj hol ds. SJ. o S, s then the
sought substring; it is replaced by the symbol resulting fromthe
reduction. The process then repeats itself. At this point it nust
be noted that it is not necessary to start scanning at the beginning
of the sentence, since all synbols S, for k <j have not been
altered, but that the search for the next & can start at the place
of the previous reduction.

In the following formal description of the algorithm the original
sentence is denoted by P ...P . k is the index of the last synbol
scanned.  For practical reasons, all scanned synbols are copied and
renaned SJ....Si . The reducible substring therefore will always be
Sl..,.si for some j . Internal to the algorithm,there exists a
synbol L initializing and term nating the process. To any synbol

S of Uit has the relations- L < Sand S > 1 .

W assune that Py = Pn+l =] .
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1
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Al gorithm for Syntactic Anal ysis
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Comments to the Algorithm
@ Copy the string P into S and advance until a relation > is
encount er ed;
Retreat backward across the reducible substring;

(® A reduction has been made. Resume the search for » .

The step denoted by "Reduce SJ....si" requires that the reducible
substring is identified in order to obtain the synbol resulting from
the reduction. |If the parsed sentence is to be evaluated, then the
interpretation rule v, corresponding to the syntactic rule P,

u —)SJ;...Si is identified and obeyed.

2. An Algorithm to Determine the Precedence Relations.

The definition of the precedence relations can be fornalized in

the follow ng way:
a. For any ordered pair of symbols (si, Sj), S; = S.J, i f and only
if there exists a syntactic rule of the form u - XSiSjy',
for some symbol U and sone (possibly enpty) strings x, V.
b. For any ordered pair of synmbols SF S_.J), S. & SJ., if and only
if there exists a syntactic rule of the form u - x8,U ¥,

for some U x, y, U and there exists a generation

2}

* .
U, - sz, for some string z.

c. For any ordered pair of synbols si,s_.J, S. & sj, i f and
only if
1. there exists a syntactic rule of the formU—>xUkSJ.y,

for some U X, Y, U and there exists a generation

* .
U > 28, for sonme string z, or
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2. there exists a syntactic rule of the form U "XUkUzy’

for some U, Xx, v, U Ups and there exist generations

* * .
U = 28, and U£—>sjw for sone strings z, w.

V¢ now introduce the sets of leftnost and rightnost synbols of a non-basic
synbol U by the follow ng definitions:

£ (V) = (8]32(v 5 s2))

R(v) = {s]3 2(v 5 25)}
Now the definitions a. b. c. can be reformulated as:

a. S = S, e Ip(p: U - xSiSjy)

b. 8, <8, ¢c-3 }(: U > x8.U,y) A S5 € (U,

c. 8> 8, Ip(p: U —>xUksjy) AS, € Q{(Uk) Y

(P: U - xU,Uy) A5 € R(u,) A sje:t,(Uz)

~ These definitions are equivalent to the definitions of the precedence
relations, if & does not contain any rules of the form u -A, where
A denotes the enpty string.

The definition of the sets & and ® is such that an algorithm for
effectively creating the sets is evident. A synbol S is a nenber of
L), if

a. There exists a syntactic rule o: U3 Sx, for sone x, or
b. There exists a syntactic rule 9: u - Ux, and S Ei(Ul);

1

L) . {s|lzp:. - -V I:. —ale/\S€x(Ul)}

Anal ogousl y:

R(U) . {s] 3p: UsxsV 3: UsxU A S €R(U)]
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The algorithm for finding £ and & for all synbols U € V-8 invol ves

searching o for appropriate syntactic rules. |n practice, this turns

out to be a rather intricate affair, because precautions nust be taken

when recursive definitions are used. An algorithmis presented in Appen-

dix I as part of an Extended ALGOL programfor the Burroughs B5500 conputer.
The precedence relations can be represented by a matrix M with ele-

ment s Mij representing the relation between the ordered synbol pair

(si, sj). The matrix clearly has as many rows and colums as there are

synbol s in the vocabulary V.

Assuning that an arbitrary ordering of the symbols of V has been made
(U= {81,82,...,Sn)), an algorithm for the determnation of the precedence
matrix M can be indicated as follows:

For every element ¢ of o which is of the form

U—)SlSQ. . . S

m
and for every pair Si, Sir1 (i=1. .. m=-1) assign
a. = to I\_/Ij., 141 0
b. <toall M, , withrowindex k such that s, € &(s.,);

_l)k
c. >toall M ;41 Wth colum index k such that s, € %(Si);
5

d. e >t0 all LA with indices ¢, k such that s, € R(si) and s, € £(s,,,) .

Assignments under b. occur only if S, . € V-8, under c. only if

s, € V-%, and under d. only if both Si» 81 € V-9, because

L(s) and R(s) are enpty sets for all SE $K.
This algorithm appears as part of the ALGOL program listed in Appendix I.

A syntax is a sinple precedence syntax, if and only if at nost one

relation holds between any ordered pair of synbols.
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vl—{S’H’%-:"}

Bl:CA;"}

CDlZ ﬁ—)I'-’I"
H -
H-HMA\
H—->HS

Assume that S stands for‘string’and H forhead’,then this phrase
structure systemwould define a string as consisting of a sequence of

string el ements enclosed in quote-marks, where an element is either A

or another (nested) string.

U l () K()
S 1 H "
H 1 H 1 }\- S

M|]s H » "
S>> » > »
Hl=2 < = @
Al » > »
"> > > >
Since both H="and H< ", gl is not a precedence syntax. It is

intuitively clear that either nested strings should be delineated by

di stinct opening and closing marks (92 ) or that no nested strings should

be al | owed (%)
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v
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mimy@uv
H — HS Aer.v
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NS ?

L)
4

«~ >~ @—m »n
Ile
vV VANV

N
\
\4

is a precedence syntax

omw = A\&.h ewuma”_.u S

o, : S->H"
55 5o
H—-HA\

-

v V Vv

vV V VvV ANV
Y vV VYV o

R(v)

:m
:m

= I [
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-
1

¥ I »|Z

vV w
v Vv

93 IS a precedence syntax.

As an illustration for the parsing algorithm we choose the parsing

of a sentence of 56(92):

‘7&‘?\.,, ‘>\9>\7 ’
| -
Pyt HASA? H
| —
H‘)\.,’
® L
HHA %2 ? H
P2 1
Py HH ? ? H
| |
9
?; HS . S
H? H
q)l* | )
P S S

4. The Uni queness of a Parse.

The three previous exanples suggest that the property of unique
precedence relationship between all synbol pairs be connected with unique-
ness of a parse for any sentence of a language. This relationship is
established by the follow ng theorem
Theorem  The given parsing algorithm yields the canonical form of the
parse for any sentence of a precedence phrase structure |anguage, if there
exist no two syntactic rules with the sanme right part. Furthernore, this

canoni cal parse is unique.
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This theoremis proven, if it can be shown that in any sentence its
directly reducible parts are disjoint. Then the algorithm proceeding
strictly fromleft to right, produces the canonical parse, which is unique,
because no reducible substring can apply to nore than one syntactic rule.

The proof that all directly reducible substrings are disjoint is achieved
indirectly:  Suppose that the string S +e8, contain two directly reducible

substrings sl...Sk (a.) and SiJ"'Sz (b.), where 1<i<j<k<f<n.

Then because of a. it follows fromthe definition of the precedence rela-
tions that SJ._l =S; and s, > S, ., and because of b. Sj o <SJ

and Sk = Sk+l Therefore this sentence cannot belong to a precedence
grammar .

Since in particular the leftnost reducible substring is unique, the
syntactic rule to be applied is unique. Because the new sentence again
bel ongs to the precedence |anguage, the next reduction is unique again.
It can be shown by induction, that therefore the entire parse nust be
uni que.

From the definition of the meaning of a phrase structure programmi ng
language it follows that its neaning js unanbiguous for all sentences,

if the underlying syntax is a precedence Syntax.

5. Precedence Functions.

The given parsing algorithmrefers to a matrix of precedence
relations with n° elements,where N is the nunber of synbols in the
| anguage.  For practical conpilers this would in nost cases require an
extensive amount of storage space. Often the precedence relations are such

that two nuneric functions (f, g) ranging over the set of symbols can
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be found, such that for all ordered pairs (si, sJ_)
a. f(Si) = g(Sj) —8; = sj
b. f(Si) < g(SJ.) — 8, < sj

c. f‘(Si) > g(SJ.) — 5, > s.J

If these functions exist and the parsing algorithmis adjusted appro-
priately, then the amount of elenments needed to represent the precedence
information reduces from n2 to 2n. An algorithm for deciding whether
the functions exist and for finding the functions if they exist is given
as part of the ALGOL program in Appendix-1 .

In exanpl e 92 e.g. the precedence matrix can be represented by the
two functions f and g, where

S =|s h AN ¢

f(<g =3 1 3 3 3
g(s) = |1 2 1 2 1

A precedence phrase structure syntax for which these precedence functions
do not exist is given presently:

U = {A: B, C, [; ]}

B =101

: A->CB]
Ao ]
B-A
B-oANA
B-oA
C o[

It can be verified that this is a precedence syntax and in particul ar

the follow ng precedence relations can be derived
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N[, [, [ =], xo]
Precedence functions f and g would thus have to satisfy
£f(z) < g(l) < £([) = &(]) <£(n)
which clearly is a contradiction. Precedence functions therefore do not

exist for this precedence syntax.

6. H gher Oder Precedence Syntax.

It is the purpose of this chapter to redefine the precedence
ral ationships nore generally, thus enlarging the class of precedence phrase
structure systems. This is desirable, since for precedence |anguages a
constructive parsing algorithm has been presented which is instrunenta
in the definition of the neaning of the language. The notivation for the
manner in which the precedence relationships will be generalized is first
illustrated in an informal way by means of exanples. These exanples are
phrase structure systems which for one or another reason mght be likely
to cccur in the definition of a language, but which also violate the rul es
for sinple precedence syntax.
Exanpl e 1.
V=@® . B, ;,s, D}
B=4,s8,0}
o: A > B
A>D ;A
B—>S
BB ;S
S€$A, thus; «S, and also ;=S .
This syntax produces sequences of D's separated by ";", followed

by a sequence of synbols S, also separated by ";" . A parse is con-

structed as foll ows:
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The sequence of S's is defined using a left-recursive definition. while
the sequence of D's is defined using a right-recursive definition. The
precedence violation occurs, because for both sequences the sane separator
synbol is used

The difficulty arises when the synbol sequence " ;8" occurs. It
is then not clear whether both synbols should be included in the sane sub-
string or not. The decision can be made, if the immediately preceding
synbol is investigated.

In other words, not only two single synbols should be related, but a
synbol and the string consisting of the two previously obtained synbols.
Thus:

B; =S and D; <8S .

Exanpl e 2:

v=[A, B, ,S,D),
B=1{;, s, D}
¢: A-B

A->A S

B->D
B-D ;B
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D€ RA), thus D> ; and also D = ;
This syntax produces the same strings as the preceding one, but with

a different syntactic structure:

D couve . 3D:D;S;S:; ...... 3 S
u
B
)
B
B
L ]
A
\ i
‘ A
A
AR
A

Here the sanme difficulty arises upon encountering the synbol
sequence "D;" . The decision whether to include both symbols in the
same syntactic category or not can be reached upon investigating the
followi ng synbol. Explicitly, a symbol should be related to the subsequent
string of 2 synbols, i.e.

D= ;D and D> ;s .

Exanpl e 3:

V={a,B,r,5,0,1}

B={N,;,0[,1]

®: A->B ;B
B-o[ A]
B[ A ]
B-oA

Since » € £(A) and A € %A : [ < xand A>] . But'also
[ =x and N =17 .
In this case the following relations nust be established to resolve the

anbi guity.
[=A], [<x;, x> ] and [n =]
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This syntax therefore conbines the situations arising in Exanples 1 and 2.
Obviously, exanples could be created where the strings to be related woul d
be of length greater than 2. W wll therefore call a precedence phrase
structure systemto be of order (m n), if unique precedence relations
can be established between strings of length < mand strings of length
<n . Subsequently, a more precise definition will be stated. A set of
extended rules must be found which define the generalized precedence
relations. The parsing algorithm however, renmains the same, with the
exception that not only the synbols S5 and Pk be related, but pos-
sibly the strings S, m...si and Pk"'Pk+n .
The definitions of the relations <=, > is as follows: Let

X = s S s, let uv,u’,v' € ¥ and U,U,,0, € T-B

-m - -1’ yzsl"'n 1’ ?

a. x=y, if and only if there exists a syntactic rule

u - us_,8,v, and

* * YL
us_1—>ux, Slv—>yv :

bh. x<y, if and only if there exists a syntactic rule
u - uS_lUlV, and

* * .
uS_l—>u'x,Ulv—> yv' o,

c. x>y, if and only if there exists a syntactic rule

U- uUlSlv, and
uty 5 ux, Siv X yv', or there exists a syntactic rule

*
U- uUerv and uUl Su

" X, Ugvf)yv'.
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A syntax is said to be a precedence_syntax of order (mn), if and

only if
a. it is not a precedence syntax of degree (mM, n') for m’" < m
or n <n and
. . / 7
b. for any ordered pair of strings S, - S08 - Sn s
where m < mand n' < n either at nost one of the 3 relations

< = o > holds or otherwise b. is satisfied for the pair

-(m/+l)“. wﬂSl-..Snl_'_l_

A precedence syntax of order (1,1) is called a sinple precedence syntax.

S

Wth the help of the sets of |eftmost and rightnost strings, the defini-

tions of the precedence relations can be refornulated anal ogously to their
counterparts in section 2b, subject to the condition that there exists

no rule U +A .
a. x =3 o 3(@:U > uS_lSlV)

/\(u'S_m...S_2 =uVS§_...5 € ﬁ(m_l)(u))

A(Sg...Snv' =vV Sg...Sn € gv(n—l)(V))
b. X <Yy & 3(p: U > US —1U1V)

Au's .8 , = UVS_...5,€ R(m'l)(u))

Ne,.. .S, € £<n)(ulv>)

1

C. x>y o (e U - uUlSlv)

s, 0 QLT € 5{<m)(uul) )
NCHCITEEEE I S to)
or (p: U - uUlUQV)

A(S_---S_ € ﬂ'{(m)(uul) A8y .S € ?fr(n)(Ugv))

-m -
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£ (s) and KW zs) are then defined as follows:

(07 € 21 ) e w0 <k <n) >

1. z =2
(z,. . .z_€ A 2= vz, €2 w)
| a. z2=12,...2 € Ee(n)(U)e’:lk(OS k< n) 3

1
(U - Z, - .ZkuAZk...ZHEIJ(n_k)(u))

2. z:zn..zle ﬂ(n)(uU)eak(lgk <n) >
(2 By 2 UV 2y 2y, € R (4)) A (Zy--2y € R (0))
2a. z =72...2, € ﬁ(n)w) o k(0 < k <n) 3

(U-uzy . ..2) A 7...2, ., € %n'k)(u))

These fornulae indicate the nmethod for effectively finding the sets
£ and &R for all synbols in V-93. In particular, we obtain for 26(1)
and R the definitions for & and ® without superscript as defined in
section 2b.

Al though for practical purposes such as the construction of a
useful progranmm ng | anguage no precedence syntax of order greater than
(2,2) == or even (2,1) -- will be necessary, a general approach for the
determnation of the precedence relations of any order shall be outlined
subsequent | y:

First it is to ve determ ned whether a given syntax is a precedence

syntax of order (1,1). If it is not, then for all pairs of synbols

(Si’ Sk) between which the relationship is not unique, it has to be

determ ned whether all relations will be unique between either (SjSi, Sk)
or (si, Sksj), wher e Sj ranges over the entire vocabulary. According to
the outcome, one obtains a precedence syntax of order (2,1), (1,2) or

(2,2), or if sone relations are still not unique, one has to try for even

hi gher orders. If at some stage it is not possible to determne relations
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between the strings with the appended symbol S_ ranging over the entire
J
vocabul ary, then the given syntax is no precedence syntax at all.

Exanpl e:

={A;B;>‘-:[’]}

The conflicting relations are [ <A ,[ = A, A 2] and A > ]. But a
relation between (S[ , N\) or (A, ]S) can be established for no synbol
S what soever, and between ([ , xsl) and (Sgh , 1) only for 5, = ]

and 82 =[. Thus this is no precedence syntax.

Cearly there exist two different parses for the string [A],

nanmel y
[ N and [ A
(I -
B B
— —_ 1
A A
The underlying phrase structure systems in section II1.3 and chapter

IV will be sinple precedence phrase structure systens.

C An Exanple

A sinple phrase structure programm ng | anguage shall serve as an
illustration of the presented concepts. This |anguage contains the fol-

| owi ng constructs which are well-known from ALGOL60: Variables, arithmetic

expressions, assignment statements, declarations and the block structure.

The neaning of the |anguage is explained in terns of anarray of variables,
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called the '"value stack', which has to be understood as being associ at ed
with the array s which is instrunental in the parsing algorithm The
variable V. represents the “value' associated with the symbol 8,
E.g., the interpretation rule Vi corresponding to the syntactic rule
?;q determnes the value of the resulting symbol expr- as the sum of
the values of the synbols expr- and term belonging to the string to be
reduced

Pyy ¢ EXPr- - expr- + term

¥q :MJ. e—Xj + V. [V(expr-) « V(expr-) + V(term)]

Note that the string to be reduced has been denoted by

ﬁﬁ”.§iin t he
parsing al gorithm of section III.2a. Instead of thus making explicit
reference to a particular parsing algorithm VooV the val ues of

the synbol s gi...§j, can be denoted explicitly, i.e. instead of v,
and_y. in Yy one mght wite V(term) and V(expr-) respectively.
For the sake of brevity, the subscripts i and | have been preferred
here.

A second set of variables is called the ‘nane stack' . It serves to
represent a second value of certain synbols, which can be considered as

a “name’ . The synbol decl is actually the only synbol with two val ues;
it represents a variable of the program in execution which has a name
(namely its associated identifier) and a value (namely the value |ast
assigned to it by the programj. The syntax of the language is such that
the synbol decl remains in the parse-stack S as long as the declaration
is valid, i.e. until the block to which the declaration belongs is closed

This is achieved by defining the sequence of declarations in the head

of a block by the right - recursive syntactic rule ? - The
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parse of a sequence of declarations illustrates that the declarations can
only be involved in a reduction together with a body- symbol after a
synbol body- has originated through some other syntactic reduction.
This, inturn, is only possibly when the synbol end is encountered. The
end synbol then initiates a whole sequence of reductions which result in
the collapsing of the part of the stack which represented the closing
block. On the other hand, the sequence of statements which constitutes
the inperative part of a block, is defined by the left-recursive syntactic
forml a Og - Thus a statement reduces with a preceding statement-|ist
into a statenent-list immediately, because there is no need to retain
information about the executed statement in the val ue-stack.

This is a typical exanple where the syntax is engaged in the defini-
tion of not only the structure but also the nmeaning of a |anguage. The
consequence is that in constructing a syntax one has to be fully aware of
the meaning of a constituent of the language and its interaction wth
other constituents. Many other such exanples will be found in chapter IV
of this article. It is, however, not possible to ennunerate and discuss
every particular consideration which had to be made during the construction
of the language. 'Only a detailed study and analysis of the |anguage can
usual Iy reveal the reasons for the nmany decisions which were taken in
its design.

Subsequently the formal definition of the sinple phrase structure
| anguage is given:

oﬁp = (U,9,8, program @ &)
VU -R = {program| bl ock ‘body' body- decl| statmentg

statlist | expr | exp:r- | term | term- |
factor | var | number | digit ] |

11}
B= (N beginfend ;1,11 +] -1 xI/](])]
ol1T2 '56ln4 5‘6‘7|8I9|@|L}
El-= {_S_;E;H) i}
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: CPI ¢ program
?5 ¢ block
q)3 :  body
(p5 : body-

cp6 : statlist

- 4 block L

- begin body end

- body-
— decl ; body-
- statlist

— statlist , statment

- statment

: statlist
¥

Pg : statment

- Var « €Xpr

— block

cp9: statment
Pof XPT
)y expr-
Pyp¢ EXpr-
Pzt EXPI-
Py XRI-
P15 term
9t lterm-
9y terme
98! term-
9 g¢ factor
Pyt factor
¢y, ¢ factor
Pop? YBL
Ppy Dumber

q’2h: number

q>25: decl

¢ digit
P26 g
(927 : digit
¢, ¢ digit

- expr- +term

- expr- ~term

- term-

- term- X factor

- term- / factor

- factor

- var

- ( expr )

- number

- digit

- number digit

— new A
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<

L ¢ A (empty)

\Ve HEAN
¥t A
WS' ¢A
W6 ¢ A
W.? A
Vg Yy <Yy

=3
‘119 s A
wlO: A
byt Yl ey,
WlE. !,] F-Yj - V1
\1115: Vj « - Vi
Y A
\V15= A
4‘16' _V_j ‘_.Yj X Vi
Wl?': —Yi "".Y.J / .Y]_
Vgt A
‘V19 !.'] (—!!J
Yoo Yy <Yy
Yoy i A
Vont t e«
22 fet-1 <«—

ERROR

if t = O then ——>

if W, F S Then -

‘!;j(‘t

$23: A

tecsscescscss s

35: Vje— 9




Not es:

1. The branch in rule labelled With ERROR is an exanple for the

¥ar
indication of a 'semantic error’ in a'}p . By 'semantic error' isin
general meant a reaction of an interpretation rule which is not ex-
plicitly defined. In the exanple of Voo t he labelled branch is
foll owed when no identifier equal to S, is found in the Wstack,
i.e. when an 'undeclared identifier is encountered.

2. The basic symbol X in® is here neant to act as a representative

of the class of all identifiers. Nothing will be said about the

representation of identifiers.

On the subsequent pages follow the sets of leftmost and right-
most synbols & and ®, the matrix M of precedence relations, and the
precedence functions f and g, all of which were determined by the

synt ax- processor program listed in Appendix I.
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Of
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V. EULER  An Extension and Generalization of ALGOL 60

In this chapter the algorithmc |anguage EULER is described first
informally and then formally by its syntax and semantics. An attenpt has
been made to generalize and extend sonme of the concepts of ALGOL thus crea-
ting a | anguage which is sinpler yet nore flexible than ALGOL 60. A second
objective in developing this language was to show that a useful progranm ng
| anguage which can be processed with reasonable efficiency can be defined
in rigorous formality.

A . An Infornmal Description of EULER:

1. Variables and Constants

In ALGOL the followi ng kinds of quantities are distinguished:
sinple variables, arrays, labels, switches and procedures. Sonme of these
quantities ‘possess values' and these values can be of certain types, in-
teger, real. and Bool ean.  These quantities are declared and naned by iden-
tifiers in the head of blocks. Since these declarations fix sone of the
properties of the quantities involved, ALGOL is rather restrictive with
respect to dynamc changes. The variables are the nost flexible quantities,
because val ues can be assigned dynamcally to them But the type of these
values always renains the sane. The other quantities are even less flexi-
ble. An array identifier will always designate a quantity with a fixed
dimension, fixed subscript bounds and a fixed type of all elements. A
procedure identifier will always designate a fixed procedure body, with a
fixed nunber of parameters with fixed type specification (when given) and
with fixed decision on whether the paraneters are to be called by name or
by value. A switch identifier always designates a list with a fixed nunber

of fixed elements. We may call arrays, procedures, and switches€semistatic?,
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because sone of their properties may be fixed by their declarations

In order to lift these restrictions, EULER enploys a general type concept.
Arrays, procedures, and switches are not quantities which are declared and
named by identifiers*, i.e. they are not as in ALGOL quantities which are
on the same level as variables. In EULER these quantities are on the Ievel
of nunmeric and Bool ean constants. EULER therefore introduces besides the

number and
| ogi cal constant

the follow ng additional types of constants

reference

| abel

syrmbol

list (array),

procedure,

undef i ned.
These constants can be assigned to variables, which assunme the same form
~as in ALGOL, but for which no fixed types are specified. This dynanic
principle of type handling requires of course that each operator has to
make a type test at execution time to insure that the operands invol ved
are appropriate
The generality goes one step further: A procedure when executed can produce
a value of any type (and can of course also act by side effects), and this
type can vary fromone call of this procedure to the next. The el enents
of a list can have values of any type and the type can be different from
element to elenment within the same list. If the [ist elements are |abels
then we have a switch, if the elements are procedures then we have a pro-
cedure list, a construct which is not available in ALGOL 60 at all. If

the elements of a list are lists thenselves then we have a general tree

structure.

* identifiers are defined in EULER exactly as in ALGOL 60.
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EULER provi des general type-test operators and sone type conversion

operators.

a) Nunbers and Logi cal Constants

Nunbers in EULER are essentially defined |ike unsigned numbers
in ALGOL 60.

The |ogical constants are true and false.

b) References
A reference to a variable in EULER is a value of type Reference

It designates the identity of this particular variable rather than

the value assigned to it. W can forma reference by applying the

operator @ to a variable:

@xvari abl e>
The inverse of the reference operator is the evaluation operator (.).
If a certain variable x has been assigned the reference to a

variable y, then

represents thevariable y. Therefore the form
<vari abl e>.

is also considered to be a variable.
c) Labels

A label is like in ALGOL a designation of an entry point into a
statement sequence. It is a 'Program Reference' . A label is
synbolically represented by an identifier. In contrast to ALGOL 60
each label has to be declared in the head of the block where it is
defined. In the paragraph on declarations it is explained why this

IS SO.
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d) Symbols
A symbol (or character) in EULER is an entity denoted in a dis-
tingui shabl e manner as a literal symbol. Alist of synbols is

called a string.

e) Lists

Lists in EULER take the place of arrays in ALGOL. But they
are nore general than arrays in ALGOL in several respects. Li st's
can be assigned to variables, and are not restricted to a rectangul ar
format; they can display a general tree structure. Furthernore,
the structure of lists can be changed dynamically by list operators.

Basically a list is a linear array of a nunber of elenents
(possibly zero). A list element is a variable: to it can be assigned
a constant of any type (in particular, it can itself be a list), and
its identity can be specified by a reference.’

A list can be witten explicitly as

(<expression> , <expression>,. ...)

The expressions are evaluated in sequence and the results are the
el ements of the created |ist.

A second way to specify a list literally is by neans of the |ist
operator |ist

fisxpression>

where the expression has to deliver a value of type Number, and the
result is a list with as many elements (initialized to Q) as spe-
cified by the expression

The elenents of a list are nunbered with the natural nunbers

beginning with 1. A list element can be referenced by subscripting
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a variable (or a list element) to which a list is assigned. |f the
subscript is not an integer then its value rounded to the nearest
integer is used for subscripting. An attenpt to subscript with i,
where 1 <O or i >length of the list, results in an error indi-
cation. An exanple for specifying a list structure is
(1,2,(3,(4,5),6,()))
This is a list with three elements, the first two elenments being

nunbers, the third elenent being a list itself. This sublist has

four elements, a nunmber, another sublist, again a nunber and | ast

anot her sublist with O elements. [f this list would have been
assigned to the variable a, then al[2] woul d be the nunber 2,
a[3][2] would be the list (4,5) .

In order to manipulate lists, |ist operators are introduced into
EULER  There are a type-test operator (isli), an operator to deter-
mne the current number of elenents (length), a concatenation opera-
tor (&), and an operator to delete the first elenent of a Iist

(tail). Here are some exanples for the use of these operators:

(Assuming the list given above assigned to a)

isli a[2] gives a value false
Terge a[3][L4] gives a value 0

2,3) & a[3][2] gives the list (2,3,4,5)
(al2]) & tail tail a[3] gives the list (2,6,0)]

From the formal description of EULER it can be seen what rules
have to be observed in applying list operators, and in what sequence
these operators are executed when they appear together in an expres-
sion (like in the last exanple).

Only a mniml set of list operators is provided in EULER

This set can, however, easily be expanded. The introduction of Iist
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mani pul ation facilities into EULER makes it possible to express with
this |anguage certain problems of processing symbolic expressions
which can not be handled in ALGOL but required special |ist processing
| anguages |ike LISP or IPL.

f) Procedures

Simlar to ALGOL, a procedure is an expression which is defined
once (possibly using formal parameters), and which can be eval uated
at various places in the program (after substituting actual para-
.meters). The notion of a procedure in EULER is, however, in severa
respects more general than in ALGOL. A procedure, i.e. the text
representing it, is considered a constant, and can therefore be
assigned to a variable. An evaluation of this variable effects an
evaluation of this procedure, which always results in a value. In
this respect every EULER procedure acts like a type-procedure in ALGOL.
The nunber and type of paraneters specified may vary from one call of
a procedure to the next call of this same procedure.

Formal |y parameters are always called ‘by value’ . However
since an actual parameter can again be a procedure, the equivalent
of a "call by nanme' in ALGOL can be acconplished. Furthermore an
actual parameter being a reference establishes a third kind of call
"call by reference'. It must be-noted that the type of the call of
a paraneter is determned on the calling side. For exanple, assunng

i=1 and al[i] = 2,

p(alil) is acall by value
p(¢alil?) is a call by procedure (nane),
p(@ alil) is acall by reference
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In the first case the value of the parameter is 2, in the second
case it is a[i], in the third case it is the reference to a[1] .
A procedure is witten as
¢ <expression>’ or
$8;8;...;5; <expression>'
where & represents a formal declaration. The evaluation of a

procedure yields the expression enclosed in the quote marks

A formal declaration is witten as
formal <identifier> .
The scope of a formal variable is the procedure and the val ue assigned
to it is the value of the actual paraneter if there exists one, @
otherwise. Wen a formal variable is used in the body of the proce-
dure, an evaluation of it is inplied. For instance in
P «*formal X; X «5°;...;p(@a);
the reference to a is assigned to the formal variable x, and the
inplied evaluation of x causes the nunber 5 to be assigned to
the variable a (and not to the fornmal variable x). As a conse-
quence, the call p(1) would inply that an assignnent should be made
to the constant 1. This is not allowed and will result in an error
i ndi cati on.

g) The Value‘Undefined’

The constant @ neans 'undefined? Variables are automatically
initialized to this value by declarations. Also,a formal paraneter
is assigned this value when a procedure is called and no corresponding

actual parameter is specified in the calling sequence
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2. Expr essi ons

In ALGOL an expression is a rule for obtaining a value by applying

certain operators to certain operands, which have thenselves values. A
statement in ALGOL is the basic unit to prescribe actions. |n EULER
these two entities are conbined and cal |l ed expression', while the term
‘statement’ is reserved for an expression which is possibly |abelled. An
expression in EULER with the exception of a goto-expression, produces
a value by applying certain operators to certain operands,and at the same
time may cause side effects. The basic operands which enter into ex-
pressions are constants of the various types as presented in paragraph 1,
variables and list elements, values read in from input devices, values
delivered by the execution of procedures and val ues of expressions en-
closed in brackets. Operators are in general defined selectively to
operate on operands of a certain type and producing values of a certain
type. Since the type of a value assigned to a variable can vary, type-
tests have to be nade by the operators at execution tine. |[|f a type
test is unsuccessful, an error indication is given. Expressions are
generally executed from left to right unless the hierarchy between op-
erators demands execution in a different sequence. The hierarchy is
implicitly given by the syntax.

Qperators with the highest precedence are the following type test
operators

wn

b <variable> (is |ogical?)
sn <variable> (is nunber?)
sr <variable> (is reference?)

il

isl (is label?)

isy . gi S symbol?)
isli Is list?)

| Sp (i's procedure?)

Tsu <variabl e> (1's undefined?)
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These operators, when applied to a variable, yield true or false,

depending upon the type of the value currently assigned to the variable.

At the sane level are the numeric unary operators: abs (formng the

absol ute value of an operand of type Number), _integer (rounding an operand
of type Nunber to its nearest integer), the list reservation operator

list, the length operator length (yielding the nunber of elements in a
list), the tail operator, and type conversion operators |ike real, which
converts a logical value into a nunber, |ogical which converts a nunber
into a logical value, conversion operators from nunbers to synbols and
from synbols to nunbers, etc.

The next |ower precedence |levels contain in this sequence: Exponen-
tiation operator, nultiplication operators (%/,+, mod), addition op-
erators (+, =-), extremal operators (max, mp). Operands and results
are of type Nunber.

The next |ower precedence levels contain the relational and |ogica
operators in this sequence: relational operators (=, £, <, <, >, >),
negation operator 9, conjunction operator A, disjunction operator V.
The relational operators require that their operands are of type Nunber
and they forma logical value. The operators A and V are executed
differently from their ALGOL counterparts: If the result is already
determned by the value of the first operand, then the second operand
is not evaluated at all. Thus, false A x - false, true V x = true for
all x.

The next |ower precedence |evel contains the concatenation operator

(perators of the lowest level are the sequential operators goto,
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I'f, then, and else, the assignment operator «, the output operator
out and the bracketing synbols begin and end. According to their
occurence We di stinguish between the follow ng types of expressions:
goto-expressior, assignment expression, output expression, conditional
expression, and block. As it was already nentioned, all expressions
except the goto-expression produce a value, while in addition they may
or may not cause a side effect.
The go-to-expression is of the form
gekPression>
If the value of the expression follow ng the goto-operator i s of the type
Label, then control is transferred to the point in the program which this
| abel represents. If this expression produces a value of a different type,
then an error indication is given.
The assignnment expression assigns a value to a variable. It is of
the form
<vari abl e> « <expression>
In contrast to ALGOL an assignnment expression produces a val ue, namely
the value of the expression follow ng the assignnent operator, This
general nature of the EULER assignnent operator allows assignnent of
intermediate results of an expression. For exanple:
a b+ [ced+ el
would conpute d + e, assign this result to ¢, and then add b, and
assign the total to a.
The output expression is of the form
out  <expression>

The value of the expression followng the output operator is transmtted
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to an output medium. The value of the output expression is the value of
the expression following the output operator.

A conditional expression is of the form

if <expression> then <expression> €l se <expression>
The neaning is the same as in ALGOL.
The construct
if <expression>_then <expression>

is not allowed in EULER because this expression would not produce a
value,if the value of the first expression is false.

An expression can also be a block.

%. Statenents and Bl ocks

A statenent in EULER is an expression which nay be preceded by
one or nore |abel definition'(s). |If a statement is followed by another
statement, then the two statements are separated by a semicolon. A sem-
colon discards the value produced by the previous statement. Since a
goto-expression leads into the evaluation of a statement without encoun-
tering a semcolon, the goto operator also has to discard the value of
the statenment in which it appears.

A block in EULER is like in ALGOL a device to delineate the scope
of identifiers used for variables and labels, and to group statenents
into statenent sequences. A block is of the form
begin o;0;...30 end or
begin %;%;...38;030;...30 end
where ¢ represents a statenment and 3 represents a declaration. The |ast
statement of a block is not followed by a semicolon, therefore its value

becones the val ue of the bl ock.
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Since procedures, |abels, and references in EULER are quantities
whi ch can be dynami cal |y assigned to variables, there is a probl em which
I's unknown to ALGOL: These quantities can be assigned to variables which
in turn can be evaluated in places where these quantities or parts of them
are undefi ned.
Situations like this are defined as semantic errors, i.e. the language

definition is such that occurrences of these situations are detected.

- 4. Decl arations

There are two types of declarations in EULER variabl e-declara-
tions and |abel-declarations:

new <identifier> and
| abel <identifier>

A variable declaration defines a variable for this block and all inner
bl ocks, to be referenced by this identifier as long as this sanme identifier
is not used to redeclare a variable or a label in an inner block. A vari-
able declaration also assigns the initial value q to the variable.

As discussed in paragraph 1, no fixed type is associated with a variable.

A label declaration serves a different purpose. It is not a definition
like the variable declaration; it is only an announcement that there is
going to be a definition of a [abel in this block of the form

<identifier> :
prefixing a statenent.

Al though the | abel declaration is dispensable it is introduced into
EULER to make it easier to handle forward references. A situation |ike

begin...L:...begin...goto L;...L:...end;..end
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makes it necessary to detect that the identifier | follow ng the goto
operator is supposed to designate the |abel defined in the inner block.
Wthout |abel'declarations it is inpossible to decide, whether an identifier
(not declared in the sane block) refers to.a variabl e declared in an outer
block, or to a label to be defined later in this block, unless the whole

block is scanned. Wth a label declaration every identifier is known

upon encounter.
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B. The Formal Definition of EULER

EULER was to be a | anguage which can be concisely defined in such
a way that the |anguage is guaranteed to be unanbiguous, and that from the
| anguage definition a proceésing system can be derived nechanically, wth
the additional requirenment that this processing systemshould run with
reasonable efficiency. A method to perform this transformation nechani-
cally, and to acconplish parsing efficiently, has been developed and is
given in Chapter Il for |anguages which are sinple precedence phrase
structure languages. Therefore, it appeared to be highly desirable to
define EULER as a sinple precedence |anguage with precedence functions.
It was possible to do this and still include in EULER the main features
of ALGOL and generalize and extend ALGOL as descri bed.
The definition of EULER is given in two ‘steps’ to insure that the
~ language definition itself forns a reasonably efficient processing sys-
tem for EULER texts. The definition of the conpiling system consists of
the parsing algorithm given in paragraph III.B.1., a set of syntactic
rules, and a set of corresponding interpretation rules by which an EULER
text is transformed into a polish string. The definition of the executing
system consists of a basic interpreting mechanismwith a rule to interpret
each synbol in the polish string. Both descriptions use the basic notation
of chapter Il. If the definition of EULER would have been given in one
step like the definition of the exanple in chapter IIl C it would have
been necessary to transformit into a two phase systemin order to obtain
an efficient processing system Furthermore, a one phase definition re-
quires the introduction of certain concepts (e.g. a passive node, where

a text is only parsedbit not eval uated) which are w thout consequence for

56



practical systems, because they take on an entirely different appearance
when transformed into a two phase system

The form of the syntactic definition of EULER is influenced by the
requirement that EULER be an unambi guous sinple precedence phrase structure
| anguage. This involves that:

a) there must be exactly one interpretation rule (possible enpty)
for each syntactic rule,

b) the parsing algorithmhas to find reducible substrings in exactly
the same sequence in which the corresponding interpretation rules
have to be obeyed,

c) extra syntactic classes (with enpty interpretation rules) have
to be introduced to insure that at most one precedence relation
hol ds between any two synbol s,

d) no two syntactic rules can have the same right part.

For an illustration of the requirements a) and b) consider the syn-
tactic definition of an arithnetic expression in ALGOL 60:

<arithmetic expression> :: = <sinple arithmetic expression> |

<if clause> <sinple arithmetic expression> el se
<arithnetic expression>
If the text
if bthena+c elsed+e

is parsed, then d + ¢ is reduced to <arithmetic expression> and ac-
cordingly evaluated, before it has been taken into account that the pre-
ceding <if clause> my prevent d + e to be evaluated at all. Inthis
exanpl e, the syntax of ALGOL 60 fails to reflect the sequence of eval uation
properly, as it does e.g. in the formulations of sinple expressions

To correct this default, the corresponding syntactic definitions in EULER

are as follows: (BNF is adopted here to obviate the anal ogies)
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<expresssion> ::= <if clause> <true part> <expression>

<if clause> ::= if <expression> then'

<true part> ::= <expression> el se
In the exanple above, the operator else will be recognized as occuring in
<true part> before the expression d + e is parsed. Through the inter-
pretation rule for <true part> the necessary code can be generated.

A simlar situation holds for the ALGOL definition
<basic statenent> .= <label> . <basic statement>

The colon, denoting the definition of a label, is included in a reduction
only after <vasic statenent> was parsed and cvaluated. In EULER the

corresponding definitions read:

<statement> 3i1= <label definition> <statenent>
<| abel definitior> ;:= <identifier> :

Thus the parsing algorithmdetects the |abel definition before parsing the

statenent .
“ As a third exanple, we give the EULER definition of <disjunction>

<disjunction> ::= <di sjunction head> <disjunction>
<di sj unction head> ::= <conjunction> V

Thus, V is included in a syntactic reduction, before <disjunction> is
parsed and eval uated; code can be generated which allows conditional skip-
ping of the following part of program corresponding t&disjunction>.

The correspondi ng ALGOL syntax

<Bool ean term> ::=. <Bool ean term> V <Bool ean fact or>
reflects the fact that both <Bool ean term> and <Bool ean factor> are
to be evaluated before the logical operation is performed. This inter-
pretation of the |ogical operators A and V was deliberately discarded

as being undesirable.

According to requirenent c¢) the language definition of EULER

contains certain auxiliary nonbasic synbols Iike
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<variable-> , <integer-> etc. to insure that EULER is a sinple
precedence |anguage. Wthout these nonbasic synbols the reducible sub-
strings in a sentence are not disjoint, as the following exanple taken

from ALGOL shows:

x X v t z ’ X X y t zZ

[ (I L1 (I

<term> <fact or> <factor> <prinp

! | \ |
<termp <factor>

Therefore one obtains the contradicting precedence relations x = <factor>
and X < <factor> .

The requirement d) together with the precedence property is a suf-
ficient condition for the language to be unanbiguous. Requirenent d)
has far reaching consequences on the form of the |anguage definition,
because it forces the syntax to be witten in a sort of |inear arrangenent
rather than a net. Two exanples will be given

A label unlike in ALGOL can in EULER not be defined as <identifier>,
because we al ready have

<variable-> ::= <identifier>

This suggests that the best thing to do would be to introduce two different
forms of identifiers for the two different entities variable and |abel.

[t was felt, however, that tradition dictates that the sane kind of iden-

tifiers be used for variables and labels. It was possible to do this in
EULER al t hough the solution might not be considered clean. In the text
goto L

the identifier L is categorized by the parsing algorithminto the syn-
tactic class <variable> but the corresponding interpretation rule ex-

amines the table of declared identifiers and discovers that this identifier
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designates a |abel (defined or undefined at this time). Therefore, a
| abel is inserted into the polish string instead of a variable.

A second exanple for the specific arrangenment of the syntax chosen
to fullfill requirement d) is the following: The concatenation operator
(&) is introduced into the syntax in the syntactic class <catena>,
which is defined as

<catena> .= <catena> & <pri mary> ’
<di sj uncti on>

This looks as if & had a |ower precedence than the logical and arithne-
tic operators. But this is of no consequence, since an operand of &
must be a quantity of type List and a <disjunction> can only be of type
List if it is a <primary> i.e. not containing any |ogical or arithnetic
operators.
- But we cannot wite
<catena> .= <primary> ,

because this would violate requirement d). Therefore <catena> appears
in the syntax at a rather arbitrary place between <primary> and <expres-
si on>

Looking at the requirements made upon the |anguage definition and
observing the careful choices that had to be made in drawing up the
| anguage definition in line-with these requirenents, the criticism wll
probably be raised, that the difficulties usually encountered in deriving
syntax directed conpilers for given languages are not avoided in EULER
but nerely ‘sneaked into the definition of the language itself. This
point is well taken, but we think that nobody is likely to create sone-
thing as conplicated as a processing system for an algorithmc |anguage

like ALGOL without encountering sone difficulties somewhere. W think
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it is the merit of this method of |anguage definition to bring these dif-
ficulties into the open, so that the basic concepts involved can be recog-
nized and systematically dealt with. It is no longer possible to draft
an ‘ad hoc syntax' and call it a programmng |anguage, because the natural
relationship between structure and meaning nust be established.
Subsequently follows the formal definition of EWLER |t has been

programred as an Extended ALGOL program for the Burroughs B5500 conputer.

This programis listed in Appendix II.
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Phase | (Translator)

The vocabulary V:

The set of basic symbols %: *
ol1|2|3]x|5]6|718]9l, .|| :| @ |new| forma1|1abe1|n|[|]|pegin]end|

(1)1¢1° | goto|out| | if| then|else |&|v|a || =| £l<|<|>|>]

gig|y§§|+|—lx|/|+|mod|f|abs|length|integerlrealllogicall

listltaillig‘isblisnlisr|isl|isli|isy|isplisulclﬂl

10 | =|true|false| L

The set of non-basic synbols V-%:

programlblock‘blokhead|blokbody|;gbdeflstatlstat-l

expr|expr-l}fclauseltruepartlcatena|disj|disjhead|

conjlconj-lggnjhead|negationlrelation]choicelchoice-l

§3@|sum-|term|term:|factorlfactor-lprimarylprocdefl

procheadllist*lreferencelnumberlreal*l

integer*linteger-|gigit|logv&;|g§;|vg;;|vardecl|

labdecl|fordeql

The envi r onnent 6'1 :

S (stack used by the parsing algorithm
%
i (index to S and V)
J (index to S and V)
P (program produced by Phase 1)
k (index to P)
N (list of identifiers and associated data)
n (index to N
m (index to N
bn (block nunber)
on (ordinal nunber)
scale (scale factor for integers)
&:(S, V,i,j,P,k, N, n, m, bn, on, scale]

*
A and o are representatives for identifiers and synbols respectively.
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d V1

(o)}

©

10:

19:

20:

21:

22:
23:

=~

vardecl - new A «k+l; P[k] « (“new®); on «on +1;

N « n+tl; N[n) « (V[i], bn, on, ‘new?)
fordecl — formal A K «k+1l; P[k] « (‘formal?); on ton +1;
N «ntl; Nn] « (V[i], bn, on, ‘formal')
| abdecl - label A N «n+l; N[n] « (V[i], bn, Q, Q)
: var- -> A ttn;, K & k+l;
Lh1l: if t <1 then goto Error:
if N[t][1T = Vi |! then goto L42;
t « t-1; goto :
Ly2: if N[t]luj F ‘new? then o L3
Plk] « (@’ N[ET(37, '[%21) oto) L46
Ih3: if N[t](k] /= | abel' the; ow:d LEX
Plik] (‘1abe1 N[+]T3], N[tI[2]); goto Ik4é6
Lhl: if- N[t][4] )é f or mal " then oto L45
Plk] « (‘@ ’, N[t1[3], _['t_T[%T
K « k+l; P[k] ('value'); tol46
I45: Plk] « (‘la'bel" N[t][3], N[ 21);
\ N[t][3] t-k; poto L46;
L46:
: var- - [expr] k « k+l; Plk] « (]?)
! var- - var- . K « k+l; P[k] « (‘value')
. var . = var- A
: logval = true V[j] « true
: | ogval - false Vv[j] « false
digit 40 V[i] «0
ot git 9 V[iil «9
i nt eger- — digit scale « -1
integer- + integer- digit t «210 X V[jl; V[J] «V[i] + t;
scale « scale -1
integer* 3 integer-. A
real * - integer* . integer* t <10 % scale;
t «V[i]l X t;
VIileVIi] + t
: real * 3 integer¥* A
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25:

26

28:
29:
30:
31:
32:
33
3l
55:
36:

37:

38:

39:

40:
41:

Lo

43:
44:
45:

L6

47:

nunber - real*

nunber - real* i nteger*

— 10

: nunber - . rinteger¥

10—

nunber ~ 10 | nt eger*
nunber ~ 10 - integer*
reference - @var

listhead — listhead expr ,

listhead - (

ljst* - listhead expr)

[ist* — listhead)

prochead - prochead fordecl ;

prochead — ¢

procdef - prochead expr ?

rimar - var
rimar - yar list*
rimar - logval

primary - number

primry - g
rimar - reference
rimar — list*

primary - tail primry
primary - procdef

primary —Q

A

t e—lOTV[i];

VIi] «V[j) x t

{011 Vi];
V] «V[3l x ¢t

V[3] «10 Y V[i]

V[j)l «0.1 1 V[i]

A

VijleViil + 1

V[j]l «0

k «ktl; P[k] « (4)?, V[3] + 1)
kK «k+1; P[k] « ()%, V[5])

A

bn «bntl; on « 0; Kk « k+1;
P[k] « (¢62%,0); Vv[j] tk;

N «ntl; Nin] « (2, m;

mt n

kK «k+l; P[k] « (€29);

PV[jl[2] « k+1; bn tbn - 1;
ntml, meNnl(2]

K «k+1; P[K] « ('value')

K «ktl; P[k] « (%cal1®)

k « k+1; P[k] « ( ¢logval®, V[j])
k «k+1; P[k] « (' nunmber', Vv[j])

« k+1; P(k] « (% symbo1?, VI[3])

> r» x

K « ktl; P[k] « (‘tail')

A

kK «k+l; P[k] « (‘Q?)

an




48:

L9:
50:
51:

52:

53:

54:
55:

56

5T

58:
59:

60:
61
62:
63:
64
65:
66:

67:

68:

69:

70:
71:

T2:
T5:

primry - [expr 1
primary - in

primary - isn var

primary - isn var

primary - isr val

primary - isl var

primary +isli var
primry - isy var
primary —isp var
prinmpry - isn var

primary - abs primry
primary — length var
primary - integer _primary
primary - real prinmary
primary — logical prinmary
primary - list primry
factor- - primary

factor- - factor- 1 prinary
factor - factor-

term- - factor

term- - term X factor
ternm - term / factor
term- - term <+ factor
term- - term nod factor
term - term

sum- - term

X X X x

~ X X x x

k

A

A
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«k+1; P[k] « ("1 N%)

« k+1; P[k] « (“isb?)

« k+l; P[k] « (“isn?)
«ktl; P[K] « (¢isr?)
«k+l; P[Kk] « (‘isl?)
«k+1l; P[K] « (¢isli®)
«k+1l; Plk] « (“isy?)

« k+l; Plk] « (“isp?)
«k+1; P[k] « (¢isn?)

« k+1; P[k] « (‘abs?)

« k+1; Plk] « (‘length')
«kt1; P[Kk] « (‘integer')
« kt1; P[k] « (‘real’)

e k13 P[k] « ('logical')

«k+l; P[k] « (‘list')

«k+t1; P[Kk] « (¢1?)

«k+l; P[K] « (¢x?)
« k+tl; P[Kk] « (‘/’)
«k+l; P[K] « (‘«-:—’)

« kt1; P[k] « ('nod')




Th:
75:
76:
K
78:
79:
80:
81:
82:
83:

84:

85:
86:
87:
88:
89:
90:

91:

92:
%

%
96:
gr:
98:
99:

sum-

Sum-

sum-

Sum-

sum

choi ce-

++ term
_+_tﬂn
- sum- + term
- sum- -term

- sum-

+ sum

choi ce- - choice- min sum

choice- -» choi ce- max sum

.choice
[QlﬁtiOD

rel ation

- choiLce-
— choice

- choice = choice

relation

- choice £ choice

— choi ce < choice

relation
tel ation
relation

relation

- chaice < choice
- choi ce. > choi ce

- choice > choice

negat Lon

negation

conj head

conj-

: conj-

conj

di sj head

- relation
- 7relation
- negation A

— conj head conj

- negation

- conj-

- conj V

disj
di sj

cat ena

- di sj head disj

- conj

3 catena & prinary

K «k+t1; Plk] « (‘-’-’)
K «k+1; P[k] « (¢+?)

kK «k+1; P[k] « (¢-?)

kK «k+1; P[k] « (‘min?)

kK « k+1; P[k] « (‘max?)

K «k+l; P[K] « (6=°)
k «k+l; Plk] « (‘£ ?)
K « k+1; P[k] « (<?)
k «k+1; P[k] « (¢<?)
K «ktl; PLK] « (¢>9)
k « k+1; Plk] « (

‘>’)

K «k+1l; P[k] « (49?)

=~

«ktl; PIK] « ("A, 2); V[J] «k
PIV[ j11[2] « kt1

A

A

k «ktl; P[k] « (*V?, 0); v[]j] <k
P[V[j11[2] « k+1

A

K « k+l; P[Kk] « (&°)
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100: catena - disj

101: truepart 3 expr else

102: ifclause - jf expr then
103: expr- - 'Block
104  expr- — ifclause truepart
expr-
105: expr- - var « expr-
106: expr- - potd mar y
107: expr-  — out expr-
108: expr- - catena
109:  expc - expr-
110: stat- ~ — labdef stat-
111: stat-  —-expr
112: stat - stat-
113: lahdef - A
- L1131:
L1l132:
L 1133:
L1134:
114: bl ockhead - begin
115: bl okhead - blokhead vardecl;
116: bl okhead - blokhead | abdecl ;
117: bl okbody - blokhead -
118: bl okbody - blokbody stat;
119: bl ock -> blokbody stat end
120: program - L block _L

A
k « ktl; P[k] « (felse?, Q); V[j] « &k
k « k+1l; P[k] « (‘then?, @); V[j] «k

A

PIV[§11[2) «V[j+1] +1; P[V[j+1]][2] « ktl

K « k+1; P[k] «
k « k+1l; P[k] « (‘goto
K «k+l; P[k] «
A
A
A
A

A

ttn;

if t < m then
if N[EI[1] =V

t «t-1; oto LllBl,

if N[t][k Q then goto ERROR;
seNHMﬁ,M][]«mL

to ERROR,
then goto L1132;

N[t][4] « “label?;
if s = Q then go to J_.llBll-
t « P[s][2]; Pls][2] « k+1;

s «t; goto Lll§5,

bn «bntl; on « 0; K « k+1;

P[k] « (*begin?);

nentl; N[n] «(Q, n); men
A

A

A

K «k+1l; P[k] « (¢;°)

k « k+1; P[k] « (‘end);
bn tm1l; meNnl2]
A
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Phase || (Interpreter)

The followng is the definition of the execution code produced by Phase I.
The variables involved are:

S (tree structured nmemory stack)

i (stack index)

mp (Stack index, points at the |ast
element of a linked list of Marks)

P rogra
k Bro%ranr% index of the instruction

currently being interpreted)
fct (counter of formal paraneters)
s, t, A, B, C(variables and labels local to any interpretation

rule)
€2={S,i,mp,P,k,fct}
The following types of quantities are introduced, which were not nen-

tioned in Chapter 11

| abel s Ei .e. program ref erences)
procedur es I.e. procedure descriptors)

with the acconpanying type-test operators isl, isp and the following
type-conversion operators :
progr ef converting the two integers pa and bn into the pro-
gramreference with address pa defined in the block
W th nunber bn.
roc converting three integers (block-nunber, Mark-index,

programaddress) into a uniquely defined procedure-

descriptor,
bl n converting a procedure-descriptor into its block-nunber,
m X converting a procedure-descriptor or a label into the

index of the Mark belonging to the block in which the

procedure-descriptor or |abel is defined (Mrk-index),
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adr. converting a procedure-descriptor or a label into its
program address.
Al'so, there exists an operator
reference converting the two integers on and bn, into the
reference of the variable with ordinal nunmber on in the
variable-list of the block wth nunber bn.

The detailed description of these operators depends on the particul ar
schene of referencing used in an inplementation, for which an exanple is
given in Appendix Il. It should be noted, however, that a reference
| abel or procedure-descriptor, may becone undefined if it is assigned
to any variable which is not in its scope. Since procedures and bl ocks
may be activated recursively, the actual identity of a reference, |abel
or procedure-descriptor can only be established in Phase I, which makes
it necessary for Phase | to describe themin ternms of nore than one quan-
tity. The sufficient and necessary amount of information to establish
these identities is contained in the 'Marks' stored in S . Mirks are
created upon entry into a block (or procedure) and deleted upon exit.

A Mark contains the follow ng data

a bl ock- nunmber

a link to its dynamcally enclosing block
alink toits statically enclosing block

alist of its variables -
a program return address

o FW e

By “link' is neant the index of the Mark of the indicated bl ock. —
The following list indicates to the left the operator P[k][1] currently
to be executed, and to the right the corresponding interpretation
algorithm At the end of each rule a transfer to the Cycle routine has
to be inplicitly understood. This basic fetch cycle is represented

as follows:
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Initialize: 1«03 nmp « 0; k « O;

K « k+1;
OGbey the Rule designated
by P[k][1]; goto Cycle

Qperators Interpretation Rules (‘1/2)

34-\)(!

|§

o
R |T

(=
n
|._-l

@

G

w
[

isn s[i-1] then goto_ERROR
if = isn s[i] then goto ERRO?
S[i-11 < sli-117+ s[i); i « i-1

defined anal ogously to +

i_f_‘! S[i] then goto ERROR;
S[i] « - s[i]

defined anal ogously to -

if §i] <s 1+11 t hen goto A;

Tl « S-[-1+l
defined anal ogously to mn
isr s[i] then goto A

A
] «8[i]. ;
S[i] « isn §[i]

it
s[i
A

> defined anal ogously to isn




> T~ VIVIA

<

—_
>

@

>
—

F

—

15

if 7isn s[i-1] then goto ERROR
if 71 isn S[i] then goto ERROR
S[i-1] « s[i-1] < s[il; it i-I

defined anal ogously to <

if 1isb s[i] then gotq ERROR,
if 1 S[i] then goto A
k « P[k][2]; goto T,

A i 1 -1

then goto ERROR

- isb s[i]
] S[i]  ----

-
.J

if —isb 8[i] then goto ERRCOR;
iei-1;
i f s[i+l] then goto A

i] then goto A

if 7 isli S[i-1] then goto A
if 2 isli S[I] then oto ERROR;
] «s[i- || «i=-1

A if 7 isn s[i] then poto ERROR;

t «s[il; s[i] <—()
B: if t <0then gotoC

S[i] «S[i] & (@)t «t - 1;
gotoBC

T1




nunber

logval

string

| abel

new

f or mal

begi n

end

val ue

i« itl; S[i] « P[k][2]

I «i+l; s[i] « P[k][2]

i« i+l; 8[i] «Q

i« i+l; s[i] « Plx][2]

i« i+1l; S[i] « progref(P[k1[2], P[k][3])

i« i+l; S[i] « reference(P[kl[2], P[k][3])
S(mp][4] « S[mpl[4] & ()

fet « fet+l;

if fet <1 tri‘oump][h] then goto A;
S[mp](4T «s[mpl[h] & ()3 A:

isr §[i-1] then goto ERROR
], s[1]; s[i-1] <[]

n s[i] then goto ERROR;
[i 5 0_then goto ERROR i ti-1;
511 then goto ERROR

wm

if i S[i] then goto ERROR
t <—len th S[il;

if S[i+1] > t EheR gBtcO R
STi) « @s[i][sS[i+1

I« i+l

S[1] « (S[mpl[1]+1, mp, mp, ());
np «1

t « s[mpl[2]; S[mp] « S[i];
itnp; np «t

|« i+l
S[i] « proc (S[mp][1]+1, S[mpl[3], k)
k « P[k][2] goto T

if 71 isr S[i] then goto Aj
s[i]l <slil.;

A if 1 isp s[i] then goto B;
fct <—O t «s[ily;

S[i] e(L_n t,_mxt, m, (), k);
M «1i; k «adr t; B
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cal l I e i-1;
if 1isr_S[i] then goto A
S[i] «s[il.;
A if lisp s[i] then goto ERROR
fct « 0; t «slil;
S[i] « (bln t, mix t, np, sS[i+l], k); (a Mark)
m ti; K «adrt

’ k « S[mp][5];t « S[mpl[2];
S[mp] « S[il;

itnp; nNp «t
got 0 if = isl 8[i] then goto ERROR

mp «mix S[i]; pp «adr S[i];
| emp; goto T

« P[k][2]; s « () (build a list)
: if t = O then goto B;

—t-1; s «s &@B[i~t]); goto A;

: 1 e itly; i i - P[k][2T;

t
A
t
B
S[i] « s
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Certain features of ALGOL are not included in EULER, because they were
thought to be non basic (or not necessary), or because they did not fit
easily into the EULER definition, or both.
Exanples are

the enpty statenent, allowing an extra senicolon before end,

the declaration list, avoiding the necessity of repeating the
declarator in front of each identifier,

the conditional statement without else,

the for-statenent,

the own type.

It is felt that these features could be included in a somewhat
‘fancier’ EULER+ |anguage, which is transformed into EULER by a prepass
to the EULER processing system This prepass night include other features

- like ‘macros' or ‘clichés’, it would take care of the proper deletion of
comrents,etc. Certain standard macros or procedures night be known to
this prepass and could thus be used in EULER+ wi thout having been declared,
like the standard functions in ALGOL. The set of these procedures woul d
necessarily have to include a conplete set of practical input-output pro-
cedures. It should be noted, however, that in contrast to ALGOL, they can
be described in EULER itself, assumng the existence of appropriate opera-
tors in and DButh (meeading and eedsstipg mhactaaters)o f sy mbol s
and lists (formats are lists of symbols), of type-test- and conversion-
operators are of course instrumental in the design of these procedures.

A few other useful ‘standard procedures' are given as programming exam

ples in the follow ng paragraph. (cf. ‘for', ‘equal' and ‘array')
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C. Exanples of Prograns

A list can contain elenents of various types, here numbers and procedures:

begin_new Xx; new s;

s « (2, ‘begin x «x+l;s[x] end', ‘out x') X « s[1]; s[x]
end

¥R K K K K X X ¥ ¥

A reference can be used to designate a sublist. Thus repeated double
indexing is avoi ded:
begin new a; new r;
a « (1,(2,3),4); The output is: 2, 3
r «@al2];
out r.[1]; out r.[2];
r.[1] «0Q
nd

¥ K K K K X X K X ¥

A procedure assigned to a variable (here p) is replaced by a constant,
as soon as further execution of the test n < 100 is no |onger needed:

begi n new p; new n; new f;

n«0:
Pe'Nently if n<100 then f(n) else p « f(n)';
fe‘forml x; ....... . . ...’

¥R X X K X X X ¥ X

If a parameter is a ‘value-paraneter', the value is established at call
tine. In the case of a ‘name-paranmeter', no evaluation takes place at

call time. Thus the output of the followi ng programis 4,16,3
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begin new p; new a; new i;

P« "forml x; formal k;
begin k «k+1; out x end';
I« 1
a e (4 9,16);
p(alil, @i); p(‘alil’, @i); out i
end

begin new p; new a; new i;

p « ‘formal x; formal k;
begin k «k+l; X «k end';
a «list 351 «1;
r(@a[i], @i); p( ‘@a[i]’, @i)
nd

Here the final value of ais (2, 0,3).

*****St****

A for statement is not provided in EULER It can, however, easily be pro-
grammed as a procedure and adapted to the particular needs. Two exanples
are given below, the latter corresponding to the ALGOL for:

for « ‘formal v; formal n; formal s;
begin label ki v «1;
k: if v <n then
begin s; v «v+l; goto k end
el se @

end’
algolfor « ‘formal v; formal f; formal step; formal u; formal s;
begi n | abel k; v « f;
ki if (v-u) xstep < 0 then
begin s; v «v + step; goto k end
else @

end
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It should be noted that the decision whether the iterated statement should
be able to alter the values of the increment and limt is nmade in each

call for “for' individually by either enclosing the actual parameters
in quotes (name-paranmeter), or omtting the quotes (value-paraneter).
E.g. a) ne«5;for (@, n, ‘fbegin N « n-1; out.n end”)

b) N «5; for (@i, ‘'n", ‘begin ntn-1; out n end')
a) yields 4,3,2,1,0, while b) yields &,3,2

¥R K K K X X X ¥ ¥

There is no provision for an operator conparing lists in EULER But
list conparisons can easily be programmed. The given exanple uses the
“for' defined above:

equal « ‘formal x; formal v;

begin new t; new i; |abel Kk;

t « false
If isli xAisli y Alength x =1lengthy then
begin for (ei, length x,
“if -1equal (@x[i], @y[i]) then goto k el se Q’);
t ttrue

end el se

t tisn x Aisny A x=y;

k: t
end'

I't should be noted that the definition of A deviates from ALGOL and
thus nmakes this program possible; therefore in
t tisn x Aisny A x=y
the relation x=y is never evaluated if either x or y is a nunber.
If the list elements may also be |ogical values or synbols, then the above

statement nust be expanded into
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t «ishx Aisny Ax=y Visb x Aisby A real x =real y V

isy x Aisy y Areal x =real y

¥ X X K K K X ¥ X %

There is no direct provision for an array declaration (or rather array
‘reservation') either. It can be programmed by the follow ng procedure:

array « ‘formal f; formal x;

begin new t; new a; new b; newi:
b «12; t «1ist b[1];

a «if length b > 1 then array (tail b, x) else x;
for (@i, b[1], “t[i] «a’);
t

end'

The statenment a « array ((xI, x2, . . . , xn)) would then correspond to

the ALGOL array declaration

array a[l: x|, 1. x2, . . . , 1. xn],
while the statement a «array ((xI, x2, . . . , xn), a) would additionally

‘“initialize all elenments with o .

¥ ¥ H X X X K K X ¥

The following is an exanple of a summation procedure, using what is

i n ALGOL known as ‘Jensen's devi ce'. The statement sum(‘’, @i, |, u)
u
has the nmeaning of } t
i=t

begin new k; new |; new sum new a; new b;

Sum « ‘formal t3 fornmal i; formal 3 formal u;
begin i « 4

if 2> u il u)else t + sum (“t’, @i,
end' ;

a « (1, k4, 9,16)3
b « ((l, h‘): (9) 16));
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ut sum (‘a[k]’, @k, 1, 4);
t sum ( ‘alk] X a[5-k]’, @k, 1, 4);
t sum (‘sum (‘b[k1[¢]’, @, 1, 2)°, @k, 1, 2)

o

[o]
[

(o]
c

|

R SR I S

begin new x; new sqrt; new elliptic; |abel K
elliptic « ‘formal a; formal b;
if abs [a-b] <, 6 then 1.570796326/a el se
elliptic ([a+b]/2, sqrt (axb))’;
sqrt « ‘formal a;

begin label L; new x; % «a/2;

L:if abs &1 2 -a] < -8 then x else
begin x « [x+a/x]/2; goto L
end

end’;
X « 0.7
K: out x; _out sqrt(x); out elliptic (1,x);
X «x+0.1; if x < 1.3 then goto K else @

nd

This program contains a square-root procedure using Newton's nethod

iteratively, and a procedure conputing the elliptic integral

E

Ve

j dt -
: \;a?cosgt + besinzt
0

using the Gaussian nethod of the arithmetic-geonmetric mean recursively.

no

¥R K K X K K K X ¥

As a final exanple, a pernutation generator is programmed in EULER so

that the value of

perm (1, £)
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is the list of all pernutations of the elenents of list £,i.e. alist with
1 x2x3x . . . xbengtthlgi st s:

begin new permnew a; new k; |abel f;
perme ‘formal k; formal v;

begi n _new r@Eew exch; new Xx;
X «V;
rot « ‘formal k; formal m
if m>length x then () else
perm (k+l, exch (k, m @x)) & rot (k, m+l)’;
exch « ‘formal k; formal m formal x;
begi n_new b; new t;
t tx;
b «t[k]; t[k] «tlm]; t[m] «b; t
end';
if length x = k then (x) else rot (k, k)
end';

a « 0;
f: out perm(1l, a); a «a & (length a); goto f
end
This program generates the following lists:
()
((0))
((0,1), (1,0))
((0,1,2), (0,2,1), (1,0,2), (1,2,0), (2,1,0), (2,0,1))

80



Ref er ences

1.

10.

11.

12.

P. Naur, ed., ‘Report on the algorithmc |anguage ALGOL 60°,

Conm ACM vol. 3, pp. 299-314; (May 1960).

----, ‘Revised Report on the algorithmc |anguage ALGOL 60°,

Comm ACM vol. 6, pp. 1-17 (Jan. 1963).

C. Bohm, ‘The CUCH as a fornmal and descriptive language', I|FIP
Working Conf., Baden, Sept. 196k.

P. Landin, °‘The nechanical evaluation of expressions', Conp. J.
vol. 6, & (Jan 196k4).

P. Landin, ‘A correspondence between ALGOL 60 and Church's Lambda-
Notation', Comm ACMvol. 8, 2 and 3, pp. 89-101 and 158-165.

A Church, ‘The calculi of |anbda-conversion', Ann. of Mth. Studies,
vol. 6, Princeton N. J., 1941.

A CQurry, R Feys and W Craig, ‘Conbinatory Logic', North-Holland
Pub., 1958.

A. van Wjngaarden, ‘Ceneralized ALGOL', Annual Review in Automatic
Programm ng, vol. 3, pp. 17 -26.

A. van Wjngaarden, ‘Recursive definition of syntax and semantics',
| FI P Working Conf., Baden, Sept. 196k.

J. van Garwick, ‘The definition of programm ng |anguages by their
conpiler', |FIP Wrking Conf., Baden, Sept. 196k.

R W Floyd, ‘The syntax of programm ng |anguages - a survey',

| EEE Trans. on El. Conp., vol. EGC 13, pp. 346-353 (Aug. 1964).

Y. Bar-Hllel, M Perles and E. Shamr, ‘On formal properties of
sinple phrase structure grammars', Zeitschrift fur Phonetik,
Sprachwi ssenschaft und Kommuni kati onsforschung, vol. 14, pp. 143-172;

also in ‘Language and Information' Addison-Wesley Pub., 196k4.
81




13. R W Floyd, ‘A descriptive |anguage for symbol manipulations',
J. AcM, vol.8,pp.579-584 (Cct. 1961).

14, R W Floyd, ‘Syntactic analysis and operator precedence', J. ACM
vol . 10, pp. 316-333 (July 1963).

15. E T. lrons, *‘Structural connections in formal |anguages', Comm ACM
vol. 7, pp. 67-7T1 (Feb. 1964).

16, N Wrth, ‘A generalization of ALGOL', Comm ACMvol. 6, pp. 547-
554 (Sept. 1963).

Acknow edgement:  The authors wi sh to acknow edge the valuable assistance

of M. W M McKeeman, who progranmmed the major part of the Interpreter
on the Burroughs B5500 conputer. H's contribution includes the "Garbage

Col lector", a particularly subtle piece of code.

82



Appendi x_|

The following is a listing of the syntax-processor programmed in Extended
ALGOL* for the Burroughs B5500 conputer. The organization of this program

is summarized as follows:

Input lists of non-basic synmbols, basic synbols and productions

A.
1.
I:Cl. Build list of leftnost and rightnost synbols, cf. Il B2
l:ce. Establish precedence relations, cf. IIl B2,
F_—BQ. Find precedence functions, cf. Il BS.
__335. Build tables to be used by the parsing algorithm of the
| EULER processor. (punch cards)
" Most of the programis witten in ALGOL proper. Often used extensions
of ALGOL are:

1. READ and WRITE statenents
(synbol strings enclosed in < and > denote a format)

2. DEFINE declarations, being macros to be literally expanded by the
ALGOL conpiler.

3. STREAM procedures, being B5500 nachine-code procedures, allowing the
use of the B5500 character node.

*

cf. Burroughs B5500 Extended ALGOL Reference Manual.
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BEGIN COMMENT SYNTAX=PROCESSOR, NIKLAUS P‘IRTHDEC.!96U
DEFINE NSY =150#3 COMMENT MAX. NO, OF SYMBOLS)
DEFINE NPH s $50%} COMMENT MAXes NOy OF PRODUCTIONSJ
DEFINE UPTQ 3 STEP § UNTIL #3

DEFINE LS o "<" £, EQ & "gn g, GR o "d"3a,NULLE®"P)
FILE OUT PCH 0 (2,10)} COMMENT PUNCH FILEJ

INTEGER LT# COMMENT NUMBER OF LAST NONBASIC SYMBOL}
INTEGER KoMsN» MAX, OLONJ} BOOLEAN ERRORFLAG)

ALPHA ARRAY READBUFFERCO39), WRITEBUFFER[O114]))

ALPHA ARRAY TEXT (0313113 COMMENT AUXILIARY TEXT ARRAY)
ALPHA ARRAY SYTB [OINSY)3} COMMENT SYMBOLTABLEJ

INTEGER ARRAY REF COSNPR»Q35)) COMMENT SYNTAX REFERENCE TABLE?}
LABEL START,EXIT)

LABEL A»B»sCsEsFsG}

STREAM PROCEOURE CLEAR (DsN)} VALUE NJ
BEGIN 01 ¢ DJ OS ¢ 8 LIT ""3SItDJDStNWDS
END J° )
STREAM PHOCEOURE MARK (D»$)} VALUESS
BEGI@ DI ¢ D3S1 t LOC SJ SItSIers DStCHR
END
BOOLEAN STREAM PROCEDUREFINIS(S))
BEGIN TALLY €1} SItSJIF SC ® "™ THEN FINIS ¢ TALLY
END J
STREAM PROCEDURE EDIT (S»s0sN)}
BEGIN DI ¢ DJ SItN) OS t 3IDECISYI t SI DSe¢ O WDS}
END J
STREAM PROCEOURE MOVE ($»0))
BEGIN Sl ¢ §$301tD} OS ¢ WDSJ
END J
STREAM PROCEDURE MOVETEXT(S»DsN)J VALUE NJ
BEGIN DItDJ) SIeS)OS ¢NNWDSS
END J
BOOLEAN STREAM PROCEDURE EQUAL ($»0)3
BEGIN Sl t SJ 01tDJ TALLY ¢ 1JIF 8SC s DC THENEQUAL ¢TALLYS
END J
STREAM PROCEDURE SCAN (S»00sN))
BEGIN LABEL A»B,CsD,E)
St SJ0ItODJ 0S8t 48 LIT "0"3.Dle¢ DDJ SItSIel}
IF SC " ® THEN DItDI+83
Al IF SC ® " " THEN BEGIN S| ¢SI¢1JGOTOAEND
IFSC » "9® THEN GO TO DJ
8 CIFSCe™™ THEN BEGINDSeLIT™"3 GO TO E END J DS¢CHRIE1))
By IF SC # " "™ THEN BEGIN S ¢SI+{360708 END J
Ct Sl t SI+§3 GO TO A)
Dt DI ¢ NJ SI ¢S1+45) OSe¢30CT
END
STREAM PROCEDURE EDITTEXT ¢S»D»N)J VALUE NJ
BEGIN SI ¢ S35 01t0sDIe DI+10} N(DI ¢DI1¢23 0S8 ¢ 8 CHR)
END J
STREAM PROCEDURE SETTEXT CAsBsCr0,E»2Z))
BEGIN 01 23 Ol t DI+8) Sl t A DSe 3 DECI Sl ¢B) DS ¢ HWDS)
DIt DI*5) S t CJ) 0S ¢3IDECSH DIe pI+3s SI ¢DJ DS ¢ 3 DEC)
Ol t DI+3) SI t EJ OS ¢ 3 0ECJ
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END 3
STREAM PROCEDURE PCHTX(S»0sN)3 VALUE N)
BEGIN SI ¢ S) VI ¢ 03DIeDI+4}
NCDS ¢ LIT ™""3 DS ¢ 8 CHR; DS ¢ LIT nwn3 DS & LIT "s")}
END 3
PROCEDURE  INPUT)
READ(CARDFIL»10, READBUFFER[#J) [EXIT])
PROCEDURE  OUTPUT)
BEGIN WHITE (PRINFILs 15» WRITEBUFFER(#1)}
CLEAR (WRITEBUFFERCO)s 14)3
END
INTEGER PROCEDURE IN% €X)3 REAL X}
BEGIN INTEGER Il LABEL F}
FOR 1¢O0UPTO M DO
IF EQUAL CSYTBLIJs X) THEN GO TO F J
WRITE C<"UNDEFINED SYMBOL">)J ERRDRFLAG ¢ TRUE}
Fo INXK ¢ i
END)

START?S
FOR N ¢ O UPTOQ 5 DO
FOR M ¢ 0 UPTO NPR DO REP [MsN) ¢(J
M e N e MAX ¢ ULDN ¢ 0} ERRORFLAG e FALSE}S
CLEAR {WRITEBUFFER(O0)»14))
COMMENT READ LIST OF SYMBOLS, ONE SYMBOL MUST APPEAR PER CARDs
STARTINGIN COL,O(C8 CHARS: ARE SIGNIFICANT), THE LIST OF NON"
BASIC SYMBOLS IS FOLLOWED BY AN ENDCARD ¢"#" IN COLe2J)e THEN
FOLLOWS THE LIST Of BASIC SYMBOLS AND AGAIN AN ENDCARD J
WRITE (€< "NONBASIC SYMBOLSt">)}
At INPUTJ
IF FINIS (READBUFFERLO)) THEN GO TO E3
M e M+1)
MOVE C(READBUFFER([11, SYTB [MI,;
EDIT (READBUFFER(O0), WRITEBUFFERI[1])» M)}
OUTPUTJ GO TO Aj
£E3 WRITE (C</"BASIC SYMBOLSI">)3 LT ¢ M}
Fi INPUT)
IF FINIS (READBUFFERCO0I) THEN GO YOG}
M ¢ Mel)
MOVE C(READBUFFERC1), SYTBLM])}
EDIT (READBUFFER[O), WRITEBUFFERL11,» M)}
OUTPUTJ GO TO FJ

COMMENT READ THE LIST UF PRODUCTIONS, ONE PER CARD, THE LEFTPART
IS4 NONBASIC SYMBOL STARTING IN CDLe+2, NO FORMAT 18 PRESCRIBED
FOR THE RIGHT PARTs ONE OR MORE BLANKS ACT 4 SSYMBOL SEPARATORS,
IFCOLs2 ISBLANK» THE SAVME LEFTPART AS IN THE PREVIOUS PRODUCTION
IS SUBSTITUTED. THE MAX. LENGTH OF A PRODUCTION IS 6 SYMBOLS)

G$ WRITE C(</"SYNTAXI">)}

Bt INPUTS
IF FINIS (READBUFFERCOJ) THEN GO TO €3
MOVETEXT C(READBUFFER(O)» WRITEBUFFERC13» 10)3 OUTPUTS
MARK C(READBUFFERL91» 12)3 SCAN (READBUFFERCLO1s» TEXTCOJoN)J
IFN S 0 OR N > NPR OR REFIN»O0) # O THEN

BEGIN WRITE (C<"UNACCEPTABLE TAG">)J ERRORFLAGtTRUE} GO TO B

85




END

IFN> MAX THEN MAX t NJ

COMMENT THE SYNTAX 1S STORED IN REFs EACH SYMBOL REPRESENTED BY
ITS INDEX IN THE SYMBOL=TABLEJ

FOR K ¢ 0 UPTO 5 DO REF [NseK] ¢ INX CTEXTIK)))

IF REF [N»O0) ® 0 THEN REF [(NsO] ¢ REF {OLDON»OJ ELSE.

IF REF (N20) > LT THEN
BEGIN WHITE ¢(<"I_LEGAL PRDDUCTION™>)3 ERRORFLAG ¢ TRUE END

OLDN ¢ N3 GO TO B}

C3 IF ERRORFLAG THEN GO TO EXIT)
N ¢ MAX}
COMMENT M IS THE LENGTH OF THE SYMBOL-TABLE, N OF THE REF=TABLE}

BEGIN COMMENT BLOCK A3}
INTEGER ARRAY HCOtM, O08M)J} COMMENT PRECEDENCE MATRIX)
INTEGER ARRAY F» G(OSM)} COMMENT PRECEDENCE FUNCTIONSJ
BEGIN COMMENT BLOCK B1}
INTEGER ARRAY LINX» RINX (O8LT)J} COMMENT LEFT / RIGHT INDICES)
INTEGER ARRAY LEFTLISTsRIGHTLIST(011022]))
BEGIN COMMENT BLOCK CI, BUILD LEFT- AND RIGHT-SYMBOL LISTS)
INTEGER I2J}
INTEGER S§P» RSP} COMMENT STACK- AND RECURSTACK=POINTERS)
INTEGER LPs RPJ  COMMENT LEFT/RIGHT LIST POINTERS)
INTEGER ARRAY INSTACK (OIM]}
BOOLEAN ARRAY DONE» ACTIVE (08T
INTEGER ARRAY RECURSTACK»s» STACKMARK LOSLT+11}
INTEGER ARRAY STACK, (03102213 COMMENT HERE THE LISTS ARE BUILT)

PROCEDURE PR4NTLIST (LX»L)3 ARRAY LXs L [0)}
BEGIN INTEGER I»JsK3
FOR 1 ¢ 1UPTO LT 00U |FDONECI) THEN
BEGIN K €03 MOVE (SYTB[IJ» WRITEBUFFERCLO1))
FOR J ¢ LXLI)sJ*1 WHILE LCLJI # O DO
BEGIN MOVE (€SYTBCLLJI)» TEXTIKIYS K ¢ Kei}
IF K 210 THEN
BEGIN EDITTEXT (TEXTLO3}s» WRITEBUFFERC0)»10)3 OUTPUTS
K e 0 )
END 3
END
IFK » 0 THEN
BEGIN EDITTEXTCTEXTLO)» WRITEBUFFERLOJ» K)J OUTPUT END J
END
END
PROCEDURE DUMPIT)
BEGIN INTEGER I»J3 WRITE (LPAGE))S
WRITE (<X9»"DONE ACTIVE LINX RINX">)}
WRITE (€516», FOR | ¢ 1UPTOLT DO
{1, DONECIJ». ACTIVELIY, LINX LI3s RINXTIJI1))
WRITE (</"STACK?S se ®",13% SP))
WRITE (<€I10s™% ",1016> FOR | ¢O0STEP 10 UNTIL SP DO
{I» FOR J ¢|UPTO I+9 DO STACK [J)1)}
WRITE (</"RECURSTACKI™>)}
WRITE (€<€316»» FOR | ¢ 1UPTO RSP DO
(I, RECURSTACKII), STACKMARK(IJ)))
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END 3
PROCEDURE KESET (X)3 VALUE X3 INTEGER X;

BEGIN INTEGER i
FOR I ¢ X UPTO RSP DO STACKMARK [I] ¢ STACKMARK (X1}
END }
PROCEDURE PUTINTOSTACK ¢(X)} VALUE XI INTEGER X3
COMMENT X IsPUT INTO THE WORKSTACK, DUPLICATION IS AVOIDED!
BEGIN IF INSTACK [X) & O THEN
BEGIN SP ¢ SP+#13 STACK (SPJ ¢ X3 INSTACK [XI ¢ SP END
ELSE IF INSTACK {X) € STACKMARK (RSP THEN
BEGIN SP ¢ SP+1) STACK (SPJ) ¢ X3
STACK [INSTACKIX]] ¢ 0J INSTACK {(X) ¢ SPJ
END )
IFSP » 1020 THEN
BEGIN WRITE (</"STACK OVERFLOW"/>)3 DUMPITS GO TO EXIT END }
END 3
PROCEDURE GCUPYLEFTSYMBOLS (X33 VALUE X3 INTEGER Xi
"COMMENT COPY THE LIST OF LEFTSYMBOLS OF X INTO THE STACK}
BEGIN FUR X ¢ LINX[X)» X¢1 WHILE LEFTLISTI(X] # O DO
PUTINTOSTACK (CLEFTLISTCX1)}
END J /
PROCEDURE COPYRIGHTSYMBOLS (X))} VALUE X3 INTEGER X3
COMMENT COPY THE LIST OF RIGHTSYMBOLS OF X INTO THE STACK)
BEGIN FUR X ¢RINXIX1» X+% WHILE RIGHTLISTEX) % 0 DO
PUTINTOSTACK (RIGHTLISTI(X1)}
END 3
PROCEDURE SAVELEFTSYMBDLS €X)J VALUE Xi INTEGER XI
COMMENT THE LEFTSYMBOLLISTS OF ALL SYMBOLS IN THE RECURSTACK
WITH INDEX > X HAVE "BEEN BUILT AND MUST NOW BE REMOVED, THEY ARE
COPIED INTJ "LEFTLIST™ AND THE SYMBOLS ARE MARKED 'DONE"™ )
BEGIN INTEGER 1IsJsU) LABEL LsEX3 -
Lt IF STACKMARK CXJ # STACKMARK {X#{) THEN
BEGIN X € X*1} IF X € RSP THEN GO TO L ELSE GO TO LXEND 3
STACKMAHK ([RSP+1)¢ SP+1}
FOR 1 ¢ X+1 UPTQ RSP D0
BEGIN LINX [RECURSTACK[I1le¢ LP+1)
ACTIVE (RECURSTACKIII) ¢ FALSES DONE (RECURSTACK{Ille TRUEJ
FUR J ¢ STACKMARK[I] UPTO STACKMARK[I+11*"1 DO
IF STACK fJ) # 0 THEN
BEGIN LP ¢ LP+IJLEFTLIST (LP) ¢« STACK ([J1J
If LP » 1020 THEN
BEGIN WRITE (</"LEFTLIST OVERFLOW"/>)3 DUMPIT)
PRINTLIST SCLINX» LEFTLIST)J GO TO EXIT
END3
END
END 3
LP ¢ LP+1} LEFTLIST L[LP) ¢ 0J
EXIRSP ¢ X}
END 3
PROCEDURE  SAVERIGHTSYMBOLS (X)3 VALUE X3 INTEGER X}
COMMENT ANALOG TO M"SAVELEFTSYMBOLS"S
BEGIN INTEGER lsJ3 LABEL LaEX3
Lt ] F STACKMARK [X] = STACKMARK [X+13 THEN
BEGIN X ¢ X*#$43|FX <« RSP THEN GO TO L ELSE GO TO EX END 3
STACKMARK [RSP+1) ¢ SP+i}



FOR| ¢X+#} UPTD RSP DO
BEGIN RINX {RECURSTACK[I]) ¢ RP+1{}

ACTIVE [RECURSTACK[I)le FALSE; DONE [RECURSTACK(II] t TRUEJ
FUR J e STACKMARKII) UPTD STACKMARK[I+13'1 DO

If STACK (J) # O THEN
BEGIN RP¢RP+1} RIGHTLIST [RP] e STACK (J)J
IFRP » 1020 THEN

BEGIN WRITE (</"RIGHTLIST OVERFLOW™/>)) DUMPIT}

PRINTLIST CRINXsRIGHTLIST)YS GO TO EXI
END 3
END
END
RP e RP+13 RIGHTLIST [RP)e¢ 03
EXIRSP ¢ X}
END 3
PROCEDURE BUILDLEFTLIST (€XJ)3 VALUE Xi INTEGER X}
COMMENT THE LEFTLIST OF THE SYMBOL X IS BUILT BY

T

SCANNING THE

SYNTAX FORPROOUCTIONS WITH LEFTPART = X¢ THE LEFTMOST SYMBOL IN
THE RIGHTPART IS THEN INSPECTED: |IFIt1S noNBASIC AND NOT MARKED

DONE, ITS LEFTLIST IS BUILT FIRSTs WHILE A SYMBOL
IT IS MARKEO ACTIVE}
BEGIN INTEGER IsR,0UWNRSP}
ACTIVELX] ¢ TRUE)
RSP ¢ OWNRSP ¢ LINX [{X)¢ RSP#+1} :
RECUHSTACK CRSPJ ¢ Xi STACKMARK [RSP)e SP¢i)}
FOR 1 ¢ { UPTO N DO
IF REF [I,0) 3 X THEN
BEGIN IF OWNRSP « RSP THEN SAVELEFTSYMBOLS (OWN
R ¢ REF(I»1)3 PUTINTOSTACK (R)}
If R $ LT THEN

ISBEING INSPECTED

RSP

BEGIN IF DONE [RJ THEN COPYLEFTSYMBOLS CR) ELSE

IF ACTIVE[R) THEN RESET CLINX CRJ) ELSE
BUILDLEFTLIST (R)}
END
END 3
END 3
PROCEDURE BUILDRIGHTLIST(X)s VALUE X3 INTEGER X}
COMMENT ANALOG TO "BUILDLEFTLIST"}
BEGIN INTEGER I»Rs0WNRSP3 LABEL QQ)
ACTIVE [X] ¢ TRUE;
RSP ¢ OWNRSP ¢ RINX {Xle¢ RSP+1}
RECUKSTACK (RSPJe Xi SJACKMARK (RSP)e SP+1}
FOR | ¢« 1UPT0 N DO
IT REF (1,018 X THEN

BEGIN IF OWNRSP ¢ RSP THEN SAVERIGHTSYMBOLS COWNRSP)J
FOR R ¢ 2»3,4,5 00 If REF (I,RIw0 THEN GO TO Q@3

QQt R ¢ REF [1sR=11} PUTINTOSTACK (R))
If R SLT THEN

BEGINIF DONE (RJ THEN COPYRIGHTSYMBOLS(R) ELSE

IF ACTIVE tR) THEN RESET (RINX{RI)ELSE
BUILORIGHTLIST (R)J
END
END
END
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SP ¢ RSP ¢ (P ¢ 0J
FORI ¢ { UPTU LT 00 DONECI) ¢ FALSE;
FOR |«1UPTO LT DO IF NOT DONE (!3} THEN
BEGIN SP ¢ RSP 0}
FOR J ¢« 1 UPTOMDO INSTACK LJY e 0O}
‘ BUILOLEFTLIST ¢I)3 SAVELEFTSYMBOLS ¢0)3
END
WRITE C([PAGE))3 WRITE (<X20,"#ww (EFTMOST SYMBOLS w#w%"/3)}
PRINTLIST (LINXs LEFTLIST)S
SP ¢ RSP ¢ HP ¢ 0}
FOR | e 1 UPTO LT 00 OONECIY ¢ FALSES
FOR 1 ¢ 1 UPTO (T DO IF NOT OONE (I} THEN
| BEGIN SP ¢ RSP ¢ O:
: FOR J ¢ 1 UPTO M 00 INSTACK [J] ¢ 03
BUILDORIGHTLIST (1); SAVERIGHTSYMBOLS (0)}
END J
WRITE €(31)) WRITE (<X20s"ww® RIGHTMOST SYMBOLS ##*%/>)}
PRINTLIST (RINX, RIGHTLIST))
END BLOCK C13J

BEGIN COMMENT BLOCK C2, BUILD PRECEDENCE RELATIONS:
INTEGER J2KsPsQsRoLs T}
LABEL NEXTPRODUCTIONS
PROCEDURE ENTER (X»Y»S)3 VALUE XsY»S$3 INTEGER XsYsS}
COMMENT ENTER THE RELATION S INTO POSITION (£XsY)s CHECK FOR DOUBLE=
OCCUPATION OF THIS POSITION;
BEGIN T ©H{XaY)I} If T# NULL ANDT#S THEN
BEGIN ERRORFLAG t TRUE}
WRITE (<"PRECEDENCE VIOLATED BY ",2A{,™ FOR PAIR",2]4,
" BY PRODUCTION"»14%s T» S» Xa Ys J)J
END J
HEX2Y)e St
END J
WRITE CLPAGE))}
FOR K ¢1UPTO M DO
FOR J ¢ 1 UPTD M DO HCKsJ) ¢ NULL;
FOR Je¢ 1 UPTO N DO
BEGIN FUR K & 253,4,5 00 IFREF [JsK) # 0 THEN
BEGIN P ¢ REP [JsK=113 Q@ ¢ REF [JsK)}
ENTER (P»QsEQ)}
If P S LT THEN
BEGIN FORReRINX(P)s» R+| WHILE RIGHTLIST {R}# 0 DO
ENTER (RIGHTLISTCR)»0Q,GR)Y}
If @8 LT  THEN
FORLeLINXCQ)o Lyt WHILE LEPTLIST (L) ¥ 0 00
BEGIN ENTER (P» LEFTLIST tLd» L$))
FOR R¢RINX{P)sR+1 WHILE RIGHTLIST LR} # 0 DO
ENTER CRIGHTLISTIR), LEFTLISTLILI»GR)
END
END
ELSE IF@SLT THEN
FURL®LINX[Q)oL¢1 WHILE LEFTLIST LLY # O OO
ENTER (Ps LEFTLISTCLLI»LS))
END
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ELSE GO TO NEXTPROOUCTIONS

NEXTPROODUCTIONS END J ;

WRITE (</X3,3913/>s FOR J ¢1UPTO M 00 J);

FOR K «1UPTO M DO

WRITE (<13239(X2,A1)>» K» FOR J ¢ 1 UPTO M DO H[K»J))}
END BLOCK €2}
END BLOCK B13

IF ERRORFLAG THEN GO TO EXIT;

WRITE (</“SYNTAX ISA PRECEDENCE GRAMMAR™/>);

BEGIN COMMENT BLOCK B2, BUILD F ANO G PRECEDENCE FUNCTIONS1
INTEGER 15 Js» Ko Kis» N» FMINs GMIN» T3
PROCEDURE THRU (I»J»X)3 VALUE 1sJsX3 INTEGER 1sJaX}
BEGIN WHITE (</"ND PRIORITY FUNCTIONS EXIST ™»3162» 1sJsX)}
GO TO EXIT
END 3
PROCEDURE FIXUPCOL CL»JsX)J) VALUE LsJsX3 INTEGER L#J2XJ FORWARD;
PROCEDURE FIXUPROACIsLsX)3 VALUEL»L»X3 INTEGER lsLaX}
BEGIN INTEGER JJFLIYeGCLL)+ X}
IF K{ ®# K THEN
BEGIN IF Hl{1,K1ls E@ ANO F(L1) AGLK) THEN THRU (1»,K»0) ELSE
IF H{1,K)s LS ANDFLI) 2GCK] THEN THRU (12K»s0)
END
FOR J ¢K1 STEP=f UNTIL 1 00
IF HEYIsv3¥s EQ ANO FUI) #GCJ) THEN FIXUPCOL €I»Js0) ELSE
If HE1soJ1 % LS AND FCI) 2 GCJ) THEN FIXUPCOLCI»Jsri))
END 3
PROCEDURE ¥ IXUPCOL CL» JsX)3 VALUE L» JsX3 INTEGER Lo Ja X}
BEGIN INTEGER I3GCJ] ¢ FLL) ¢ X
IF Ki# K THEN
BEGIN IF HI{K,J) = EQ AND FCK) #GCJY THEN THRU(K»J21) ELSE
END ) IF HEK»J) & GR ANO FC(KJ € GCJJ THEN THRU (KsJdsi)
FOR | ¢ K STEP =1 UNTIL 1 DO
IF H{I»J) = EQ AND FLI) P#GCJY THEN FIXUPROW(I»J»0)ELSE
IF HL1»J) 8 GR AND F[I) SGCLJ) THEN FIXUPROWCIsJal)d}
END J
KI t 0J
FOR K €1UPTO M DO
BEGIN FMIN e1}
FOR J ¢ {1 UPTOD K§ 00
IF H(KsJ) = EQ AND FMIN <€ GLJ) THEN FMIN ¢ GLJ) ELSE ,
IF HIK»J1I® GR AND FMINS GCJ) THEN FMIN t GLJI+1}.
FCK) ¢ FMIN;
FOR J ¢K§ STEP -1 UNTIL 100
IF H(K»J] = EQ AND FMIN » GCJ) THEN FIXUPCOL (€KaJds0) ELSE
IF HEK2J) = LS AND FMIN 2GCLJ) THEN FIXUPCOL (Kadsi)}
Ky ¢ K1+13 GMIN ¢ 1)
FOR | ¢1UPT0 K 00
IF H{1,K)®= EQ ANO FCI
IF HEIoK)® LS ANDFLI)
GLK] ¢« GMINJ
FOR | ¢ K STEP »{ UNTIL1DO
IF HEI»,K) ® EQ ANO FUI) <GMIN THEN FIXUPROW(I»K»0) ELSE:

1» GMIN THEN GMIN ¢F{I) ELSE
2 GMIN THEN GMIN eF(1)+1}
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END K ,IF H{I,K) = GR AND FL[I) S GMIN THEN FIXUPROW(I»K»1)3

END BLOCK B2 i

WRITE CCPAGE])3

BEGIN COMMENT BLOCK B3, BUILD TABLES Of PRODUCTION REFERENCES)

INTEGER l»sJdsKal}
INTEGER ARRAY MTB [OtM1} COMMENT MASTER TABLE J
INTEGER ARRAY PRTB [0tt02211 COMMENT PRODUCTION TABLE 3
L ¢ 03
FOR |« 1UPTO M DO
BEGIN MTB(lleL+1}
FUR J «¢1UPTO N DO
IF REFLJ23] S| THEN
BEGIN FOR K ¢ 2»324,5 DO
IF REFLJsK) # O THEN
BEGIN 1. ¢ L+1} PRTBIL] ¢ REF[JsK)
END 3
L ¢ L+1} PRTBIL] e =J3 | ¢ L+1} PRTBIL) ¢ REF ([JsO0))
END 3
L eL+31IPRTBLLI® O
END 3

COMMENT PRINT AND PUNCH THE RESUTS1
SYMBOLTABLEs PRECEDENCE FUNCTIONS» SYNTAX REFERENCE TABLES)
WRITE (<X8s"NO¢®»X5,"SYMBOL"»X8s "F"sX5,"G"sX4»"MTB"/>))
FOR |«1UPTO M DO
BEGIN SETTEXTCI»SYTBLI)»FL{I1)»GC1)» MTBLIJ» WRITEBUFFER([O01)}
OUTPUT
END
WRITE (</T™PRODUCTION TABLEs"/>)}
FOR |e O STEP 10 UNTIL & 0O
WRITE (€192X221016>, FOR | ¢ O STEP 10 UNTIL I. DO
(I» FOR J ¢ 1 UPTO I+9 DO PRTB(JII)}
WRITE ((/""SYNTAX VERSION "»A5>, TIME (0))}
WRITE C(PCHs <X4,"FTe"s13,"3 LT ¢"518,"5 LP ¢"p[85"3">2sLT4+1,MsL))
FOR |« 1 STEP 6 UNTIL M DO
BEGIN PCHTX (SYTB(I), WRITEBUFFERCLOl» IF M=126 THEN 6 ELSE M=l1+1)}
WRITE (PCH210s WRITEBUFFERI*]))S CLEAR (WRITEBUFFERLO0),9)
END }
WRITE (PCH»<X4,12(14,"2")>y FOR | ¢« 1 UPTOM OO FLI)
WRITE (PCHs <X4,12(185"»")>, FOR | ¢ 1 UPTO M DO G[11))
WRITE (PCHs» <X4,12(145"»")>» FOR | ¢ 1 YPTOM DO MTB(}

)
]
]
WRITE (PCHs<X8,12C(14,"»")>» FOR | ¢1UPT0 L DOPRTB(I]

2
1

END BLOCK 83
END BLOCK A }

EXIT:
END,
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Appendi x 1T
The following is a listing cf the FULER processing system programaei i

Extended ALSGOL for the Burroughi B5500 computer. The organization of

this program is summarized a:; follows :

EULER Translator

Decl arations including the procedure INSYMBOIL and the code-gererating
procedures Pl1, P2, P3, FIXUP,

Initialization of tables with data produced by the syntax-prccessor,
The parsing al gorithm

The interpretation rules (their labels correspord to their numbe -ing

in IV B

SN

EULER Interpreter

Decl arations including the procedures DUMPOUT (used for outputt.ing
results) and FREE (used to recover no |longer used storage space whan
menory space becomes scarce)

The interpretation rules for the individual instru.ctions

S—

The source programis punched on cards (col. i-72) in free field

format. Blank spaces are ignored, but may not occur within identifiers or

word-delimters.

An identifier is any sequence of letters and digits (starting with

a letter), which is not a word-delimter. Only the first 8 characters

are significant; the remaining characters are ignored
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Appendi x |l (continued)

A word-delimiter i s a sequence of letters corresponding to a single

EULER synbol, which in the reference-language is expressed by the sane
sequence of underlined or boldface letters. E g., begin - BEGN
end - END etc. Note: ¢ »LQ, °* - RQ | —TEN, @ - UNDEFINED.

A synbaol is any BCL-character* (or sequence of up to 5 XL-characters)

encl osed between characters *"’. E g. "*"

An exanple of an EULER programis listed at the end of this
Appendi x.

* cf. Burroughs B5500 Extended ALGOL Reference Manual .
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BEGIN COMMENT EULER 1V SYSTEM MARCH 1965 }
INTEGER FTs LT3 COMMENT INDEX OF FIRST AND LAST BASIC SYMBOL3}

INTEGER LP# COMMENT LENGTH OF PRODUCTION TABLE)
ARRAY PKOGKAM C01102211
DEFINE AFIELD =(3919) #, BFIELDO=(9330)#, C F | E L D®(118]#}

LABEL EXIT3
FT ¢ 45; LT ¢ 1193 LP ¢ 4653} COMMENT DATA GENERATED BY SY®PR,}

BEGIN COMMENT E U L E R 1V  TRANSLATOR NeWIRTH 3
DEFINE MARK ® 119 #, IDSYM 3 63 #», REFSYM = 50 #, LABSYM = 62 #}
DEFINE VALSYM = S6 2, CALLSYM = 55 £, UNDEF 3 O #» NEWSYM = 60 #)
DEFINE UNARYMINUS s 116 #», NUMSYM = 68 #£», BOOLSYM = 64 #3
DEFINE LISTSYM = 1028, SYMSYM = 113 #» FORSYM = G1 #}
DEFINE NAME = VCOJ #3
INTEGER l1soJsKsMsNsRyT»T3,SCALES BOOLEAN ERRORFLAG)
INTEGER B8N» ONJ COMMENT BLOCK- AND ORDER=NUMBER}
INTEGER NP3} COMMENT NAME LIST POINTER 3
INTEGER MPJ COMMENT MARK-POINTER OF NAME=LIST}
INTEGER PRP3} COMMENT PROGRAM POINTER;
INTEGER WCs CC3} COMMENT INPUT POINTERS;
ALPHA ARRAY REAOBUFFERs WRITEBUFFERC[Ot141)
ALPHA ARRAY SYTB [0Q$LTJ)J COMMENT TABLE QOF BASIC SYMBOLS)
INTEGER ARRAY F, G [OtLTI3 COMMENT PRIORITY FUNCTIONS 3
INTEGER ARRAY MTB CO0$LTJ)} COMMENT SYNTAX MASTER TABLE 1§
INTEGER ARRAY PRTB (0$LP)3 COMMENT PRODUCTION TABLE}
INTEGER ARRAY § [081271} COMMENT STACK 3
REAL ARRAY V (031127} COMMENT VALUE STACK }
ALPHA ARRAY NL1 (0863)) COMMENT NAME LIST J
INTEGER ARRAY NL2, NL3, NL4 (03633
LABEL AO»sAL15A2sA35A85A55A6,AT»ABsA9S
LABEL LO, L1131, NAMEFOUND»
L1sL2sL3,L4,L55L6,L75L08sL95L10,L1850L12,0L13,L84,L15,L86,L17,L18,L19,
L20,L21,0L22,L235L24,L2550L26,0L2750L2850L29,0L.30,L312L32,L335L234,
L35sL36,L37,L38,L39,L40,L41,0L82,L83,L88,L855L86,L47,L88,L89,L505L58,
L52sL53sL535L55sL565L572L58sL59,L60,L61sL62sL63,L608,L65,L662L675L68,
L69,LT70sLT71sLT725LT3»L78sL75sLT6sLT7oL785L79,L80,0L81,L.82,L83,L84,L85,
LB6,LBT2LB8B,1L89,L90,L9150L92,L93,L04,L95,L96sL97,L98,L99,L300,L1201,
1L102,L103,L104,L105,L106,L107,L108,L109,L110,L811,0L113250L123,50L114)
L115sL116,L117»0L118,0L1192L1203

SWITCH BRANCH ¢ _
L1sL2,L3,LA45L55L6,L750L850L9,0L10,L00,0L82,L13,0L04,0L155L8620L172L188,L19,
L20,L21,L22,L23,L28,L.255L26,L2750L28,0L29,1.30sL33,L32,L33,L34,
L35,L36sL37,L38,L39,L480,L015L82,L83,5L088,0L85,L086,L47,L48,50L09,L50,L5%>
L52sL53sL582155sL565L572L58sL59sL60sL615L625L632L68sL655L662L675168)
L69sL70sLT1oL725LT3sLT0sLTSsLT6oLTTsLT78,LT92L80,L81,0L82,L83,1.84,L85,
LB862LB7sL88sLB9»L90,L91sL92sL932L08,L9Ss0L962L97sL98,L995L100,L101>
L102,L103,L1048,1105,1106,L.107,L108,L109,L110,L111,0L812sL183,L114,
L11SoL316,0L117oL118,L11950L1207

STREAM PROCEQURE ZERO (D)}
BEGIN Dle¢ D3 0S ¢ 8 LIT ™0™}
END 3

STREAM PROCEDURE CLEAR (D)3
BEGIN Dle€DjUSe 8 LIT "™ "3 SI ¢ D3 DS o 14 WDS

END 3
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STREAM PROCEDURE MOVE ¢S»0)3
BEGIN Sl ¢ SJ0IeD3DSe WDS
END 3
BOOLEAN STREAM PROCEDURE EQUAL (X»Y)}
BEGIN TALLY ¢ 1; SI ¢ X3 DI ¢Y} IF 8SC s DC THEN EQUAL & TALLY
END J

INTEGER PROCEDURE [INSYMBOL;
COMMENT "INSYMBOL™ READS THE NEXT EULER=SYMBOL FROM INPUT.4
STRINGS OF LETTERS aND DIGITS ARE RECOGNIZED AS IDENTIFIERS, IF
THEY ARE NUT EQUAL TO AN EULER=IVWORD=DELIMITER,
A CHARACTER=SEQUENCE ENCLOSED IN ™ 1S RECOGNIZED AS A SYMBOL;
BEGIN INTEGER I3 LABEL AsB»CsD,E}
STREAM PROCEDURE TRCH (S2MsDsN)} VALUE MsNJ
BEGIN Sl ¢ SJ S/ ¢SI+M} DI ¢ D3 DI « DI+NS 0OS ¢ CHR
END J
BOOLEAN STREAM PROCEOURE BLANK (SsN)J} VALUE N3
BEGIN TALLY ¢13SI ¢ SJ S! ¢SI+NJ|IFSC » " " THEN BLANK e TALLY
END J
STREAM PROCEDURE BLANKOUT (0);
BEGIN 01«03 DS ¢ 8 LIT *"3
END 3
BOOLEAN STREAM PROCEDURE QUOTE (S»N)3 VALUE NJ
BEGIN TALLY ¢ 1; Sl €S)Sl ¢ SI#N3|FSC = ®"® THEN QUOTE ¢ TALLY
END J
BOOLEAN STREAM PROCEDURE LETTER €(SaN)3 VALUE NJ
BEGIN TALLY & 13 8] ¢ SJ 9 *SI#N!
IF SC® ALPHA THEN
BEGIN IF SC € “0” THEN LETTER ¢ TALLY END
END J
BOOLEAN STREAM PROCEDURE LETTERORDIGIT (S$SsaN)3 VALUE NJ
BEGIN TALLY ¢ 1; Sl «51SleSI+N}
IFSC ® ALPHA THEN LETTERORDIGIT ¢ TALLY
END J
STREAM PROCEOURE EDIT (N» S» 0); VALUE NJ.
BEGIN S8I ¢ LOC NJ DI «03 0S ¢ 3 OECJ
S1€S) 01 ¢ 01 +133DSe¢ 10 NWDS
END J
PROCEDURE ADVANCE;
COMMENT ADVANCES THE INPUT POINTER BY § CHARACTER POSITIONS}
BEGIN IFCC & 7 THEN
BEGIN IFWC = 8 THEN
BEGIN READ (CAROFIL»10,READBUFFERL*])(EXIT))}
EOIT CPRP+i1» READBUFFER[{O0)» WRITEBUFFER(O0]))}
WRITE (PRINFIL»15s, WRITEBUFFERI*))3 WC ¢ O
END ELSE WC ¢ WC+i)
cc ¢ 0J
END
ELSE CC ¢ CC+1)
END ADVANCE J
BLANKOUT (NAME);
A, IF BLANK (READBUFFER LWC]» CC) THEN
BEGIN ADVANCE3 - GO TO A END J
IF LETTER (READBUFFER CWC), CC) THEN
BEGIN FOR |¢ O STEP 1 UNTIL 7 00

95




BEGIN TRCH (READBUFFER ([WCJ» CC, NAME, 1); AOVANCEJ
If NOT LETTERORDIGIT (READBUFFER [WCJ)» CC) THEN GO TO C
END J
B% AOVANCEJ
IF LETTERORDIGIT CREADBUFFER tWCJ)» CC) THEN GO TO BJ

C
END ELSE
IF QUOTE (READBUFFER ([WC)» CC) THEN
BEGIN AOVANCEJ ZERO (NAME)} NAME ¢ ® "3

EV TRCH (REAODBUFFERIWC]Y» CC, I»7),ADVANCE;
IF | #mm®  THEN
BEGIN NAME ¢ I,(4286) & NAVE (18824824])3 GO TO E END
ELSE |¢ SYMSYMJ GO TO O
END ELSE
BEGIN TRCH (REAOBUFFER (WCJls CC, NAME» 0)J ADVANCE
END J
FOR |¢ FT STEP 1 UNTIL LT DO
~1l; EQUALCSYTBLIJ)» NAME) THEN BEGIN ZEROCNAME)} GO TO O END J
1+ IDSYM)
Dt INSYMBUL ¢ 1
END INSYMBOL J

PROCEDURE P3(X)} VALUE X} INTEGER X3}
BEGIN PRP ¢ PRP+13 PROGRAM[PRP] ¢ X
END J
PROCEDURE P2(X»Y)$ VALUE XsY} INTEGER XSREAL YJ
BEGIN PRP ¢PRP+1J) PROGRAMCPRP) ¢ X3 PROGRAMIPRPI(BFIELD ¢ VYJ
END J
PROCEDURE P3C(XsYs4)} vALUE XsY¥»2Z3 INTEGER XsYsZ3}
BEGIN PHP ¢PRP+13 PROGRAMCPRP] ¢ XJ PROGRAM{PRPIBFIELD eV
PROGRAMIPRPJ CFIELD ¢ 2
END J
PROCEDURE FIXUP(lI,X)3 VALUE 1#X3 |INTEGER 1.XJ
PROGRAMLIIBFIELD ¢ X}
PROCEOURE ERROR (N)JVALUE NJ INTEGER NJ
BEGIN SWITCH FODRMAT ERR e
("'UNDECLARED IDENTIFIER"),
("'NUMBER TO0 LARGE™),
("LABEL 1S DEFINEDTWICE™),
("A LABEL ISNOT DECLARED™),
("LABEL DECLARED BUT NOT DEFINED?),
("PRUGRAM SYNTACTICALLY INCORRECT™);
ERRORFLAG ¢ TRUE;
WRITE CI[NQOJs ERRENIIJ} WRITE (<€X40,"COL+™»13>» WCX8 ¢ CC +1)

END ERROR J

PROCEDURE PRUGRAMDUMP}
BEGIN REAL TJ INTEGER I} LABEL LJ
STREAM PROCEDURE NUM (NsD)} VALUE NJ
BEGIN 01 ¢ DJ Sl «L,0C NJ OS ¢30EC
END J
READ €<A4>» T) (L)} If T # "DUMP" THEN GO TO L}
NRITEC<//"PROGRAM DUMP®2>)}
FORI¢ 1 STEP 1 UNTIL PRP 00
BEGIN CLEAR (NWRITEBUFFER(O0))}
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T ¢« PROGRAMCEI1} NUM (Is WRITEBUFFER(O0)))
MOVE (SYTB ([T.AFIELD]» WRITEBUFFER[11)}
IF TeBFIELD # O THEN NUM (T+BFIELDs WRITEBUFFER[2])3
IF ToCFIELD # O THEN NUM (ToCFIELD» WRITEBUFFERL31)}
| F TeAFIELD 3 NUMSYM THEN
BEGIN 1 ¢I+33 WRITE C[(NDJ},»<X14,E16,8>» PROGRAMLI)) END 3
WRITE (PRINFIL,» 150 WRITEBUFFERL%])
END J
L1END PROGRAMDUMP J

COMMENT INITIALISE THE SYMBOLTABLE» THE PRIORITY FUNCTIONS ANO THE
PRODUCTION TABLES WITH DATA GENERATED BY THE SYNTAX-PROCESSORJ
FILL SYTBI#IWITH On
"PROGRAM *®s"BLUOCK ","BLOKHEAD"»"BLOKBODY"»"LABDEF "y®STAT "
“STAT- ", "EXPR ","EXPR" "o"IFCLAUSE™>"TRUEPART"»"CATENA "»
"DIsJ ", "DISJHEAD","CONJ "o"CONJ= ", "CONJHEAD™»"NEGATION"»
"RELATION®»"CHOICE "»"CHOICE= "»"SUM ®y"SUMe "Hs"TERM "
"TERM= , "s"FACTOR ","FACTORw= "#"PRIMARY ","PROCDEF"»"PROCHEAD"»
“LIST* "s"LISTHEAD"»"REFERENC"»"NUMBER ","REAL* "y INTEGER#",

“INTEGER-“#'DIGIT ","LOGVAL ","VAR ", "VAR= ", "VARDECL "»
""FORDECL "™»"LABOECL"»"0 "yny ",n2 LK ",
“ 4 n,ng n,ng n,ny n,ng n,ng ",
", LPLIN L] nymy ",n@ n,nNEW ",
"FORMAL "»"LABEL  ","IDENT* ","( n,"] ","BEGIN ",
"END n,n( n,") ", Q ","RQ ","G0T0 "
"ouT Ryne ", "IF ", "THEN ","ELSE nyng ",
"OR ","AND ","NOT Myty nyny nyng ", .
L wyn> n,n> "a"MIN ", "MAX Hyng ",
L) myny nyty nomg w,*M0D nymy ",
"ABS Py"LENGTH "#"INTEGER "»"REAL “#LOGICAL "s"L1ST ",
“TAIL "y"IN ","IS8 ","1SN ®,"ISR mynlst "
"IsSLiI "an1sY ","ISP LW 11 ", nSYMBOL® “s"UNDEFINE"™»
"TEN fynyg ", "TRUE Pa"FALSE n,ng “J

FILL FC*) WITH 00
1» 40 190 1, 20 1» 28 30 4s {» 40 4,
58 50 50 6, 60 60 Ts T» 8, 9 10, 11,

11» 12, 120 13, {3, 3, 13, 3, 130 13, 13, 5,
17» 190 130 130 150 10 10 1» 190 19» 19, 190
190 19, 19, 19, 19, 100 190 16, 210 19» 13s» 148
140 140 160 3» 16, 218 58 190 13, 19, 13» 12,
48 48 30 19, 19: 120 190 190 11» 80 8s 8,
80 80 80 90 90 10, 10, 118 13s 12,

1%; 13, 13, 13, 13,
13, 13, 13, 12, 12; 12 16, 16, 13, 13» 5}

FILL GC#*) WITH 0013, 13, _
10 50 6 60 3 10 20 30 40 50 1 S,
50 60 60 60 Ts T» (&) 8s 90 13, 13, 10,

118 1%» 12» 128 138 138 138 14, 130 18, 8s 160
178 17+ 13» 13, 14, 19, 3, 19, 180 18,
18» 180 18, 180 180 180 30 1%, 1» 160 130 200
40 200 140 15, 30 60 1, 148 3, 1% 3 S,
5» 13 S» 3, 3 40 50 60 7s 7 7» Ts
7 70 14 8, 80 10, 10, 11, 110 110 11» 12,
138 13» 13» 13, 130 138 13, 13, 13, 13, 13, 13,
130 138 13» 13, 13, 130 130 160 130 130 4)



FILL MTBC*) WITH O»
1» 2. 5» 16, 258 298 30, 338 390 42, 470 48,
558 958, 62: 68, 71, 715, 81, B84, 111s 122, 125 136,
1398 158, 1610 168« 1710 174,183, 186, 198,201, 204» 2160
2238 2298 232s 235, 245, 256, 257, 258, 259s 2620 2650 268,
271227452772 280, 283, 2860 289, 2908 291»292s 2930 297,
3018 305, 3098 315, 320, 321, 324, 325, 328, 329, 332» 3330
3370 3410 3428 347, 348, 3498 350, 351» 3528 3568 3570 358,
3590 360,3631» 362, 3638 3648 368, 372» 3730 374,375, 3740.
3770 381,385, 389, 3930 3978 401, 405, 4080 412s» 4160 420,
424, 428,432» 4360 440, 4438 446r 454, 4558 4845824613
FILL PRTBIL«*) WITH 0,
02,=303, 98 0, 42, 57,=115, 38 48, 87s*116s 3,
=117» 40 0, 68 S57»,=118, 4, 6» 6T»"119, 20 0,
7»°110» T 0, 0,=112» 68 0, 770’1010 11s=i11,
T» 0,109, 80 0, 11, 9,=108, OO0 0, OO0 78,
13» -990 12,-108, 9, 0,=100, 12, 0» 138 -970 138
0s» 79» =96» 140 -988 138 0s ‘O50 150 Os 165 =93,
165 05 80» =92, 178 “940 168 -0, =90, 180 0» =83,
19, 82, 20, =84, 19, 83, 200 -850 198 84,20, -860
190 85, 20s =87, 19, 868 20, =88, 19, 870 200 =89,
19, 0, 88, 22, =80, 21, 89, 290 -810 21» =82, 20,
0sr =79» 21%» 0, 90, 24, =76, 23, 0910 24, =T7s 238
=78, 220 08 =73, 238 08 92, 26, *68» 258 930 26,
#69, 25, 940 26, =70, 25, O50 26, =T4§s 252 °72» 248
Or =67, 25 0, 965 28, =65, 27, =662 26» 0 8 =64,
27, 08 =462 280 08 438 57» -350 300 88 710 =37,
298 08 “448 28, 08 8» 550 *31» 328 80 690 =33,
310 69» -340 310 08 "430 28, 0»*41s 280 0» =25,
340 115, 360 ®26, 348 1150 1§16, 38, -270 340 0» 560
360 -230 350 =24, 350 0, 38, -210 370 '"220 360 0,
=20, 370 0» -400 280 08 -380 28, 310 *39» 280 740
9»,=105%, 90 0, 640 80 65, %, A1, 56, =65 418

7 400 08 0, 0s 0, =10, 38, 08 *1t. 380 0,
*120 38, 0, =13, 38, 0, =~ia, 380 0s» *1%» 380 0,
-160 38, 08 =tT, 38, 0, -180 38, 0, =19» 380 0 8

08 08 0» 0p 400 =30, 330 0 8 630 ‘18 420 08
638 "20 438 0, 63, =3, 440 0» =8, 410 508,=113,
50 08 80 650 =48, 28, 0, 0r*1184» 3 0 0, 0,
=32, 32, 0o 0, =36, 300 0, 0, 28,%106» 90 0,
9s=407>» 9 0, 0, 80 T6,=102, 10, 0, 0» 0,

08 08 0, 19, =94» 180 0» 0, 08 0» 0» 0,
0, 0, 0» 340 =74, 230 .. 240 -750 238 0» 0,
0» 08 Or 0, 280 ""580 28, 08 400 9590 28, 0,
280 -600 280, 280 =631, 28, 08 280 -620 28» 0,

280 =63, 280 on 280 “45, 28, 0» -490 280 08 40,
-500 280 0s 408 =51, 280 0, 400 *52» 280 08 408
-530 280 0» 400 <54, 280 0, 400 “558 280 0s 408
"560 28, O» 400 37, 280 0, =492, 280 08 =47, 28,

0» 360 -280 34, 1168 36, =29, 348 0, 0, =8, 39,
0» *=9» 390 0, 2> 119,=120, 1» 0}

WC ¢ 8; CC ¢ 7; CLEAR (WRITEBUFFERCLO0})3 CLEAR (READBUFFER(01))

S{0) ¢ MARK} ERRORFLAG ¢ FALSE;
I¢ J ¢ BN ¢ ON ¢ NP « PRP ¢0J}
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COMMENT ALGURITHM FOR SYNTACTIC ANALYSISS
COMPARE THE PRIORITIES OF THE SYMBOL R ANO OF THE
SYMBOL UN TOP OF THE STACK 8, IF SCJ),,4SL1) CONSTITUTE A RIGHT=
PART OF A PRODUCTION, THEN REPLACE THISSEQUENCE BY THE
CORRESPONDING LEFT-PART AND BRANCH TO THE INTERPRETATION-RULE
BELONGING TO THE PERFORMED PRODUCTION;

AO3 R ¢ INSYMBOLJ
Als IF FESCI11 » GERY THEN GO TO A2}
IF R # MARK THEN GO TO A9}
I ¢ J ¢ 1+13 SUI) ¢« R} MOVE C(NAMEs VLI1)3 GO TO AO0J
A21 IF FIS[J=1)]1 = G{S(J)J THEN BEGIN J & Jwi} GO TO A2 ENDJ
M ¢ MTBIS[JVI1]}
A3 IF PRTBIM) = 0 THEN BEGIN ERRQR(5)3 GO TO EXIT ENOD}
N ¢ J3
A4 N ¢ N+1}
IF PRTBLM] € 0 THEN GO TO A83
IF NS 1 THEN GO TO AT}
ASs M., ¢ M1}
IF PRTBIM]} 2 O THEN GO TO A5}
A6l M ¢« M2} GO TO A3}
AT IF PRKTBCM) # SCNJ THEN GO TO AS3
M e M$13 GO TO A4S
A8 IF N 4 1 THEN GO TO A61
GO TO BRANCH[=PRTB(M1]}
LO: SCJJ ¢ PRTBIM+1)3 I ¢ J3 GO TO All"
COMMENT THE FOLLOWING ARE THE INTERPRETATION=RULESS
L1t
L2s P1¢SEJI)3 NP ¢ Np+i} MOVE CVIIJ.NLICNPI)S ZERO (VLIS
NL2CNP) ¢ BNJ NL3INP) ¢ ON ¢ON+1J NLALINP) ¢ SCJIS GO TO LOJ
L3s NP ¢ NP+13 MOVE CVIII»NLLLNPI)} ZERO (VL11)}
NL2INP] ¢ BNJ NL3CNP] ¢ NLAINP) ¢ UNOEFJ GO TO LOJ
L4s FOR T ¢ NP STEP =1 UNTIL { DO
IF EQUAL (NL1CT), VEI)) THEN GO TO NAMEFOUNDJ
ERROR €0)3 GO TO LOJ
NAMEFOUND
IF NL4CT) ® NEWSYM THEN
PICREFSYMy NL3CTI» NL2LT)) ELSE
IF NL4LT) = LABSYM THEN
PICLABSYM, NL3CT)» NL2[T)) ELSE
If NL4LT) 8 FORSYM THEN
BEGIN P3ICREFSYMs NL3{T)» NL2LT))) PICVALSYM) END ELSE
BEGIN P3CLABSYM» NL3ICTJI» NL2ETI)S NL3LT] ¢ PRP END J
GO TO LOJ
LS4 P1¢SCI))3 GO TO LO3
L6 PL1CVALSYM)3 GO TO LOJ
L10}
Lo VEJ) ¢ 03 GO TO LOJ
L1t
163 ViJl ¢ {13 GO TO LOS
Li2s VEJ) €23 GO TO LOJ
L13t V(J) ¢ 33 GO TO (03
L1461 VIJ) ¢ 43 GO TO LO,
LISt VCJJ ¢ 53 GO TO (03
Li6s vCIJ € 61 GU TO LO3
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L1738 V(Jl ¢ 73 GO TO LOJ
L181 VIJ]) ¢ 83 GU TO L0OJ
L198 V(J) ¢ 93 GO TO LO}
L208 SCALE €13 GO TO L0}
L2813 VCJ) ¢ VIJ) x 10 +VLI1} SCALE e SCALE*1}
IF SCALE > 11 THEN ERROR (13} GO TO LOJ
L238 VLJ) ¢ VII) x [O* (“SCALE) + V({J1}60 TO LOJ
L26% VIJ] € V[{J) x 10 o VIII} GO TO LOS
L2738 VIJ) ¢ V{J] x ,1#V(I]} GO TO LO}
L28s V({J) ¢ 10 * VII13 GO TO LOJ
L29%  VIJ] ¢ o1 * V(113 GO TO LOJ
L31s VJ) €VIJI*I3 G O TO LOJ
L32t V(J) ¢ 03 GO TO LOJ
L331 P2(SCIYs VIVI*1)3 GD TO LOJ
L3448 P2¢(S{I)» VEVIIX3 GO TO LOJ
L361 BN ¢ BN+#13 UN e« 03 P2¢(SCJ)» UNDEF)3 v[Jle PRP)
"NP & NP+1J} ZERO (NLI1CNPJ)} NL2CNP) « MP3 MP ¢ NP3 GO TO LOJ
L373P1CSII1)3 FIXUP (VLJls PRP41)J NP. ¢ MP=13 MP ¢ NL2(MPI}
BN ¢ BN=13 GO TO LOJ
L3881 P1(VALSYM)} GO TO LO,
L39s P1(CALLSYM)S GO TO LO:
L40s P2(BOOLSYM»VII)I} G O TO LOJ
L4811 PI1CNUMSYM)} PHP ¢ PRP+13 PROGRAM{PRP) ¢ V(I)}} GO TO LOJ
L&2s P2¢SEI)» VLIS GO TO LOJ
L7581 PL1CUNARYMINUS)S GO TO LOJ
L92s [96: L1013L1023 P2¢(SLI)» UNDEF)S VCLJ) ¢ PRP} GO TO LOJ
L93: L97TY FIXUP (V{J)» PRP#+1)3 GO TO LOIJ
L1043 FIXUP (V[J)ls VIJ+11+1)3 FIXUPCVIJ+1),PRP+1)3G0T OLOJ
L1138 FOR T ¢ NP STEP =i UNTIL MP+1 DO
If EQUAL C(NLICTI»VIJVI) THEN
BEGIN IF NL4{T) # UNDEF THEN ERRORC2)}
Tl ® NL3CT)S NL3CT) ¢ PRP+#1J NLACT) ¢ LABSYM} ZERO (VLJ1)3
L11318 IF TI # UNDEF THEN
BEGIN T ¢ PROGRAMITY).BFIELDS FIXUP (Ti» PRP+1)}
T1e¢T3 GO TO L1131
. END 3 GO TO LOJ
END 3
ERROR(3)} GO TO LO;
L1143 BN ¢ BN+13 UN ¢ 03 P1CSC13)3
NP eNP+#13 ZERO (NLL1CNPJ)3 NL2CLNP) ¢ MP} MP e NP3 GO TO LOJ
L1183P1CS(II3G0 TO O3
L1198 FOR T ¢ MP+#1 STEP 1 UNTIL NP DO If NL4(T) = UNDEF THEN ERROR(C4)}
NP eMP=1} MP ¢ NL2(MP)JP1(¢(SCLI1)3 BN ¢ BN=1) GO TO LOJ

L45t | 47- L498 L508 L5918 523 LS3¢ LS4t L5558 L568 LS71 L58s L5911 L6O!?
L618 162: L63: L9918 L1063 LIOTIP1(SLJIIIGOTOLOS

L65t L6838 | 69: L70% L74s L763 L77s LBOY LBYLs LBGS 185: LB6: LBTs L8BS
L89:- L99- L10SIP1(SLJ+1))I GO TO LO)

L7: L22: L24% L25% L30% L351 L4338t LA44s 46t Lads L6441 |66 L67s L72¢
L73: L74% L7688 L79% LB23 1 83: L90t L9at L9Ss L98: L1003 L103s L1086
L1098 L1108 L1y L1123 L1158 L1168 L1478 L1208 G O T0LOJ

A9 P1(MARK)S PROGRAMDUMP} If ERRORFLAG THEN GO0 TO EXIT
END « )
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BEGIN COMMENT E U L E R _ 1V INTERPRETER MCKEEMAN & WIRTH 3
HEAL ARRAY S, SIs F» FI1 [011022)) COMMENT STACK}

INTEGER I1s I2» LVL» FURMALCOUNT)

INTEGER 5P} COMMENT TOP=STACK POINTER}

INTEGER F Pi COMMENT FREE STORAGE SPACE POINTER;
INTEGER MP3} COMMENT BLOCK- OR PROCEDURE-MARK POINTER;
INTEGER PP} COMMENT  PROGRAM  POINTER)

LABEL ADD» SUB» MUL» DIVIDE, IDIVs REMAINDER, POWERs NEG» ABSV»
INTEGERIZEs REALL» LOGICAL, MIN, MAX, EQLs NEQ,» LSS, LEQ, GEQ» GTR»
LENGTH, ISLOGICAL» ISNUMBER» ISREFERENCE, ISLABEL» ISSYMBOL.»

ISLIST, ISPROCEDURE, ISUNDEFINED» LAND» | OR» LNOT, LEFTQUOTE,
RIGHTQUOTE, RIGHTPARENs, REFERENCE, PROCEDURECALL, VALUEOPERATOR,
GOTO, NEW» FORMAL, BEGINVs ENDV, STOREs» THENVs ELSEV,» NUMBER, LOGVAL»
LABELL» SUBSCRIPT» SEMICOLON, UNDEFIND» OUTPUT, INPUTs TAIL,
CATENATE, LISTT» SYMBOL» DONE» UNDEFINEDOPERATORs NEXT» TRANSFER;

COMMENT 81 AND FI FIELD ODEFINITIONS

' 14 8=17 18=27 28=37 38=ay7 48=97
NUMBER TYPE VALUE
BOOLEAN TYPE VALUE
SYMBOL TYPE VALUE
UNDEFINED TYPE
LIST TYPE LENGTH ADDRESS
REFERENCE TYPE MARK ADDRESS
LABEL TYPE MARK ADDRESS
PROCEDURE TYPE BLOCK NQs MARK ADDRESS
BLOCKMARK TYPE DYNAMIC BLOCK NOe STATIC ADDRESS L1ST3

-DEFINE

TYPE=[114)#,

WCT=[281101¢#,

‘ADORESS=[381101¢#,

STATIC=(281101¢%,

DYNAMIC=[81101%,

BLN=[181101%,

NSA=([18:10)%, COMMENT NEW STARTING ADDRESS FOR FREE}

UNDEF INED=0#,
NUMBERTYPE=1#)
SYMBOLTYPE=Z#,
BOOLEANTYPE=3#,
LABELTYPE®4#,
REFERENCETYPE=®S#,
PROCEDURETYPE=G6#,
LISTTYPE=T7#)
BLOCKMARK=8% }

STREAM PROCEDURE MOVE(F1s Tis» W)}

BEGIN LOCAL Ri, R23
SI ¢« W} S1 ¢ S + 63
DI ¢ LOC RYJ) DIl ¢ DI « 73 DS ¢ CHRJ
Dl ¢ LOC R23 D] ¢ 01 + 75 DS ¢ CHRS
SI ¢ Fi} DI ¢ T4
R1¢2¢DS ¢ 32 WDS))3 DS ¢ R2 WDS3

END3
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PROCEDURE OUMPUUT(XI» X)3 VALUE XI» X} REAL X1, X3
BEGIN INTEGWER T» Ii

PROCEDURE LISTUUT(XI)} VALUE X113 REAL XI;
BEGIN COMMENT RECURSIVE LIST OUTPUT;
INTEGER I» NJ
SWITCH FURMAT LPAR ¢
CMCM ) (™0™l CM) e eal™) ol eoaoal™)sCMeneeelM™)rlMeqoaeel™))
SWITCH FURMAT RPAR ¢
(")”)!("o)")p(”oo)")’("-oo,/‘)")’("ooo.)”)l("oooca)")""uoo.'o)",’
WRITEC<X9»"LIST"»110>» XI,ADDRESS)} WRITE (CNOJ» LPARCLLVLI])}
LVL ¢ LVL + 1; N ¢ XIADDRESS ¢ XI WCT =¢}
FOR I ¢ XI.ADDRESS STEP 1 UNTIL N 00 DUMPOUT (FICIJ)s FC11)}
LVL ¢ LVL = 13 NRITE CRPARCLVL)}
END LIST OUT;

T ¢ XI.TYPES

IF T = UNDEFINED THEN WRITE(<X9, "UNDEFINED">) ELSE

IT T = NUMBERTYPE THEN

BEGIN
IT X # ENTIERC(X) THEN WRITE(<X9»"NUMBER"»E20,30>» X) ELSE
WRITEC<X9» "NUMBER"O 120>s X)

END ELSE

IF T & BUOLEANTYPE THEN WRITEC<X9,"LOGICAL"™» 14Xi» L5>» BOOLEAN(X))

ELSE

IF T ® LISTTYPE THEN LISTOUT(XI) ELSE

IF T ® |ABELTYPE THEN WRITE(<X9, "LABELO ADDRESS =", 14,

" MARK""O I4>» XI+ADDRESS» XI,STATIC) ELSE

If T s REFERENCETYPE THEN WRITE(<X9,"REFERENCE» ADDRESS=",]a,

" MARK®",14>,XI+ADDRESSaXI.STATIC) ELSE

If T ® PROCEDURETYPE THEN

WRITEC(<X9»"PROCEOURE DESCRIPTORO ADDRESS=™, I4», " BN®", ]4,

" MARK"'0 I4>» X1.,ADORESS» XI.BLN» XI,STATIC) ELSE

IF T » BLOCKMARK THEN
WRITEC<X9» "BLUCKMARK, BN=", I4, " DYNAMIC™O 140 " STATICs"»
I4» " RETURN"™™O 18> XI4BLN» XIDYNAMIC»XIoSTATICsXI,ADDRESS)

ELSE IF T#® SYMBOLTYPE THEN

WRITE(<X9» "SYMBOL "rA5>s X))

END DUMPQUT)

PROCEDURE ERROR(N); VALUE N; INTEGER N3}

BEGIN INTEGER 13
SWITCH FORMAT ER ¢
(“ILLEGAL INSTRUCTION ENCOUNTERED"10
("IMPROPER OPERAND TYPE"),
('CANNOT DIVIDE BY 0%)»
('CALL OPERATOR DID NOT FIND A PROCEDURE™)O
("'REFERENCE OR LABEL OUT OF SCOPE™),
(*QUT Of SCOPE ASSIGNMENT OF A LABEL OR A REFERENCE')O
(““SUBSCRIPT IS NOT A NUMBER™),
('SUBSCRIPT NOT APPLIED TO A VARIABLE™)O
('SUBSCRIPTED VARIABLE IS NOT A LIST"),
(''SUBSCRIPT 1S OQUT OF BOUNDS™),
('CANNOT TAKE TAIL OF A NULL LIST™),
('STACK OVERFLOW"),

102



"“STACK OVERFLOW DURING GARBAGE COLLECTION"™).»
"ASSIGNMENT TO ANOWN=VARIABLE ATTEMPTED"),

("FREE STUKAGE AREA 1S TO0 SMALL™);
WRITE (CLDBLI» ERIN])}
WRITE (</ "SP=a"s14," FPan,I14," PPa",14," MPa",14," SYLa",14/>),
SP» FP» PP» MP» PROGRAM[PPILAFIELD)}
FOR I ¢ 1 STEP 1 UNTIL Sip DO
BEGIN WRITECINOl» <14>» I)3 DUMPOUT (SICI)»SCI)) END
GO TO DONE
END ERROR;

PROCEDURE FREE(NEED)3? VALUE NEED3} INTEGER NEED;

COMMENT "FREE"™ 1S A "GARBAGE COLLECTION" PROCEDURE. |IT IS CALLED
WHEN FREE STORAGE f IS5 USED UP» AND MORE SPACE 1S NEEDED.
GARBAGE COLLECTION TAKES THE FOLLOWING STEPSH
1+ ALL BLOCKMARKS, LIST DESCRIPTORS AND REFERENCES IN STACK
POINT TO VALID INFORMATION IN FREE STORASGE. LIKEWISE, ALL

- LIST DESCRIPTORS AND REFERENCES THAT ARE POINTED TO ARE VALID,

ENTER INTO THE STACK ALL SUCH ENTITIES,
2., THE GARBAGE COLLECTOR MUST KNOW IN WHICH ORDER TO COLLAPSE THE
FREE STURAGEs THUS SORT THE LIST BY FREE STORAGE ADDRESS,
3, MUVE EACH BLOCK DOWN If NECESSARY,
4, NUW THE ADDRESSES ARE WRONG==MAKE ONE MORE PASS THROUGH THE
SORTED LIST TO UPDATE ALL ADDRESSES;

BEGIN OWN INTEGER Gs Hs I» J3 OWN REAL T3

INTEGER PKOCEDUHE FINDC(W)3 VALUE W; REAL W3

_ BEGIN COMMENT BINARY SEARCH THROUGH ORDERED TABLE)

INTEGEK T» Ns» B» KEY, K3

LABEL FOUND»s BINARYS

T ¢« Ge¢i3 B e SP + 1;

KEY ¢ WeADDRESS}

BINARY: N o (B*T) DIV 2;

K ¢ SIITN),ADDRESS)

If K2 KEY THEN GO TO FOUND;

IF K € KEY THEN B ¢ N ELSE T ¢ N3

GO TO BINAKY;

FOUND: FIND ¢ SIINJ,NSA
END FIND;

PROCEDURE RESET(W» Z)3 REAL W» 2}

BEGIN INTEGER TvY}
TY ¢ WTYPES -
If TY 8 REFERENCETYPE OR TY = LISTTYPE THEN W,ADDRESS ¢ FIND(W) ELSE
IF TY = BLOCKMARK THEN Z+ADORESS ¢ FIND(Z)

END RESET;

PROCEDURE VALIDATE(P); VALUE P3 REAL P}
BEGIN COMMENT TREE SEARCH FOR ACTIVE LIST STORAGE;
INTEGER Is U:
G ¢ G + 1;
IF G > 1022 THEN ERRQOR(12)}
SITG) ¢ P}
U ¢ PJADURESS ¢ PJWCT =13 .
IF PoTYPE ® LISTTYPE THEN FOR | ¢ P,ADDRESS STEP § UNTIL U Dgo
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| FFICI)eTYPE 3 LISTTYPE OR FI[I1)eTYPE = REFERENCETYPE THEN
VALIDATECFI(1))}
END VALIDATION}

PROCEDURE SURT(LB» UB)S VALUE LB» uUB} INTEGER LB» UBJ
BEGIN COMMENT BINARY SORT)
INTEGER M3}
PROCEDURE MERGE(LB» My, yB)J) VALUE LBs My U8} INTEGER LB» M» UBJ
BEGIN INTEGER KsbsUsKls K25 LABEL As B}
K ¢ UB = LB}
MOVECSICLLB)s SCLBYY K)IIJ
L ¢ K ¢ LB} U ¢ M3 GO TO B
At Ki ¢ SCLJI.ADDRESS) K2 ¢ S[U),ADDRESSS
IF KI € K2 UR (K1 8 K2 AND SCL)+TYPE » LISTTYPE) THEN
BEGIN SIIKIeSILIIL e Lot
END ELSE
BEGIN SI{Kle SLUJJ U ¢ U+l
ENDJ
K ¢ K ¢+ 13
Bt IF L M THEN ELSE IF U ® UB THEN
BEGIN K ¢ Me=L} MOVECSILI,SILUB®*K), K)
END ELSE GO TO A
END MERGE}

IF LB < UB THEN
BEGIN M ¢ (LB+UB) DIV 2}
SORTC(LB»s M)} SORT(M*+1» UB)S MERGE(LB, M41» UB+1)
_ END
END SORT)

INTEGER LLAs LLW}
G ¢« SP}
FOR Hel STEP 1 UNTIL SP DO
BEGIN CUMMENT LOCATE ALL ACTIVE LISTS AND REFERENCES)
IFSICH)ZTYPE » LISTTYPE OR SICHI,TYPE . REFERENCETYPE THEN
VALIDATECSII[H)) ELSE
IF SICH].TYPE = BLOCKMARK THEN VALIDATEC(SCH])}
ENDJ
COMMENT SORT THEM IN ORDER OF INCREASING ADDRESS)
SORT(SP+1, G)}
I t 1} COMMENT COLLAPSE THE FREE STORAGE?
FOR J ¢ SP ¢ 1 STEP 1 UNTIL G DO
IF SITJI+TYPE o LISTTYPE THEN
BEGIN CUMMENT IFGsCe OCCURS DURING ™COPY™ THEN WE MUST AVOlD
THE CREATION OF DOUBLE LIST ENTRIES FROM DUPLICATED OESCRIPTORS?
IFSICJInSICU+1) THENSILJU*#1)TYPE t UNDEFINED)
LLA ¢ SITJ)JADDRESS) LW e SICJINCTS
IF LLA # | THEN
BEGIN
MOVECFELLAY, FLI)2 LLW))
MOVECFICLLAI,FICLYs LLWY)
ENDJ
SICJI«NSA ¢ 1Ii
| ¢ ¢ LLWJ
END ELSE SICJ)sNSA ¢ | = LiW ¢+ SILJI.ADDRESS = LLAJ
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FP ¢ 1)

COMMENT RESET ALL AFFECTED ADDRESSES)
FOR 1 ¢ 1 STEP 1 UNTIL SP DO RESETCSICI,SCI1)}
FOR I ¢ 1 STEP 1 UNTIL FP=1 DO RESETCFICI)»FL1))}
IF FP ¢ NEED » 1022 THEN ERROR(14)}

END FREE 3}

PROCEDURE MOVESEG(LD)3 REAL LDJ
BEGIN COMMENT MOVE ONE LIST SEGMENT}
INTEGER W» X}
W e LDe WCTS
IF FP # W > 1022 THEn FREE(W))
X ¢ LDJADDRESS)
MOVECFCX)s FCFPIs W)}
MOVECFICX)» FICFP)s W)}
LD.ADDRESS ¢ FPJ
FP ¢ FP ¢ W3
END MOVE SEGMENT)}

PROCEDURE CUOPY(LD)} REAL LD}
BEGIN INTEGERI, J3 COMMENT RECURSIVE LIST COPY}
MOVESEG(LD))
J ¢ LDJWCT . 1J
FOR I ¢ O STEP 1UNTIL J DO A
IF FICI+LD+ADORESS]<TYPE = LISTTYPE THEN COPYC(FICI¢LD.ADDRESS))
END COPY;

PROCEOURE BOOLTESTS IF SIUSP),TYPE # BOOLEANTYPE THEN ERROR(1)}
INTEGER PROCEDURE ROUND(X)} VALUE X3 REAL XJ ROUND e X}

PROCEDURE BARITH}

BEGIN If SICSPI.TYPE # NUMBERTYPE OR SI[SP={),TYPE # NUMBERTYPE THEN
ERRORC1) ELSE SP ¢SPej

END BARITH}

PROCEDURE FETCH3
BEGIN INTEGER i
IF SICSP)oTYPE 3 REFERENCETYPE THEN
BEGIN 1| ¢ SILSP),ADORESS) SILSP) ¢ rFICI)) SISP)e FLIJ END
END FETCH

INTEGER PROCEDURE MARKINDEX(BL)J} VALUE BLJ INTEGER BLJ
BEGIN COMMENT MARKINDEX 1S THE INDEX OF THE MARK WITH BLOCKNUMBER BL3S
LABEL U1J INTEGER I}
1 ¢ MP}
ULt | FSICI)4BLN>BL THEN
BEGIN | *SICIJ«STATICI GO TO WVILENDS
IT SILIJ«BLN < BL THEN ERRQR(4)3
MARKINDEX ¢ I
END MARKINDEX J

PROCEDURE LEVELCHECK(Xs Y)} VALUE Y} INTEGER YJ REAL X}
BEGIN INTEGER T» 18 ts U3 T ¢ X,TYPES
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If T2 REFERENCETYPE OR T = LABELTYPE THEN
BEGIN IF X«STATIC > Y THEN ERROR(S) END ELSE
IF T = PROCEDURETYPE THEN X+STATIC ¢ Y ELSE
IF T = LISTTYPE THEM
BEGIN L ¢ XeADORESSS U ¢ L 4 XoWCT =1}
FOR 1 ¢ L STEP 1 UNTIL U DO LEVELCHECK(FIL1)»Y)
END
END LEVEL CHECK}

PROCEOURE SPUPJ IF SP 2 1022 THEN ERROR(C11) ELSE SPe SP ¢+ 1}

PRDCEOURE SETIS(V)} VALUE V3 INTEGER VJ
BEGIN FETCH3
SCSP) ¢ REAL(SIISPILTYPE s V)]
SICSP)+TYPE ¢ BUOLEANTYPE)
END SET 183

SWITCH EXECUTE e
PROCEDURECALL» VALUEOPERATOR SEMICOLON, UNDEFINEDOPERATOR,
REFERENCES NEW8 FORMAL»s LABELL,» UNDEFINEDOPERATOR, LOGVAL,
SUBSCRIPIT» BEGINV, ENDVs NUMBERs RIGHTPAREN» LEFTQUOTE» RIGHTQUOTE»
GOTO8 OUTPUTS STOREs UNOEFINEDOPERATOR» THENVs ELSEV» CATENATES
LOR» LAND» LNOT» EQL, NEQ,LSS,»LEQ, GEQ, GTRsMIN» MAXS
ADD8 SUB» MUL» OUIVIDE» IDIV, REMAINDER, POWERs ABSVs LENGTH»
INTEGERIZE» REALL, LOGICAL, LISTT» T A I L ; INPUT»
ISLOGICAL» ISNUMBER» ISREFERENCE» ISLABEL,ISLIST,»ISSYMBOL»

ISPROCEDURE ISUNDEFINED» SYMBOL8 UNDEFIND» UNDEFINEDOPERATOR» NEG?
UNDEFINEDOPERATOR, UNDEFINEDOPERATOR, DONE}

WRITE C[PAGE])}
SPeMPe PPe 03 FP ¢ 13 LVL ¢ 0} FT ¢ FT+9}

NEXTt PP ¢ PP+}}
TRANSFERY co To EexecuTe (PROGRAMLPPI,AFIELD * FTI)

UNDEFINEDOPERATORS
ERRORCO)}
SEMICOLON:
se ¢ SP = 1) GO TO NEXTS
UNDEFIND:  SPUPJ
SICSP).TYPE ¢ UNDEFINEDS GO TO NEXT}
NUMBER :
PP ¢ PP ¢ 13 SPUP) .
SILSP1+TYPE ¢ NUMBERTYPE} SCSPJ ¢ PROGRAMCPP)J GO TO NEXT)
SYMBOLY SPUPS
SICSP).TYPE ¢ SYMBOLTYPES SCSPJ ¢ PROGRAMCPP).BFIELDI GO TO NEXTJ
LOGVALY SPUPJ
SICSPJ«TYPE ¢ BOOLEANTYPEJ SCSPJ ¢ PROGRAMIPP1.BFIELDS
GO TO NEXTJ
REFERENCE:  SPUPJ
SICSP) ¢ 03
SICSP)<TYPE ¢ REFERENCETYPES
SICSP1¢STATIC ¢ 11 ¢ MARKINDEX(PROGRAMELPP).CFIELD)}
SICSP)oADDRESS ¢ S[{I1).ADDRESS ¢+ PROGRAMLPP)+BFIELD _ §)
GO TO NEXT}
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LABELLY SPUPJ
SICSP)sTYPE ¢ LABELTYPE}
SI{SP1,STATIC ¢ MARKINDEX(PROGRAMLPP],CFIELD)}
SI{SP1,ADDRESS ¢ PROGRAMLPP).BFIELDS GO TO NEXT)

CATENATE;
If SICSPIoTYPE # LISTTYPE OR SICSP=11,TYPE#LISTTYPE THEN ERROR(1)}
|F SICSP=1)¢ADDRESS ¢ SICSP=1) WCT # SI{SP),ADDRESS THEN
BEGIN CUMMENT MUST HAVE CONTIGUOUS LISTS}

MODVESEG(SI(SP=1])}
MOVESEG(SICSP))}

ENDJ
SP ¢ SP = 1}
SI[SPI,HCT ¢ SIISPI.WCT 4 SI{SP+1],WCT}
GO TO NEXT)

LOR| BOOLTESTS
IF NOT BUOLEAN(SISP)) THEN BEGIN SP ¢ SP = 13 GO TO NEXT END}J
PP ¢ PROGRAMCPP),BFIELD} GO TO TRANSFER;

LANDS BOOLTEST)
IF BOOLEANCS[{SP)) THEN BEGIN SP ¢ SP @ {3 60 TO NEXT END;
PP ¢ PROGRAMIPP).BFIELD} GO TO TRANSFER;

LNOT 1 BOOLTESTS
SCSP) ¢ REAL(NOTBOOLEANCSESP)))3 GO TO NEXT:

LSSt BARITHJ
SCSP) ¢ REAL(SCSP] < S[SP+11)}
SICSP).TYPE ¢ BUDLEANTYPES GO TO NEXTS

LEQ1 BARITH}
SCSP) ¢ REALCSISP] S S{SP+11)}
SILSP).TYPE ¢ BOOLEANTYPES GO TO NEXT;

EQLt  BARITH}
SISP] ¢ REAL(SLSP] = S[SP+1))}
SICSP).TYPE ¢ BUOLEANTYPES GO TO NEXT;

NEQS BARITHJ
SLSP) ¢ REALCS[SP) # S{SP+11)}
SICSP),TYPE ¢ BUOOLEANTYPES GO TO NEXT;

GEQ1 BARITHJ
SCSPJe REAL(S[SPI2S[SP+11)}
SICSP1,TYPE ¢ BUOLEANTYPES GO TO NEXT;

GTRY BARITH}
SCSP) ¢ REALCSISP) > S[{SP+1))}
SICSP14TYPE ¢ BDOLEANTYPEJ GO TO NEXTS

MINI  BARITHJ
IF S{SP+1) <S[SP) THEN SCSPJ e SUSP+133 GO TO NEXT;

MAX, BARITHJ
IF SESP+1)> SCSPJ THEN SCSP1¢SCSP+1)3 GO T O NEXTS

ADDt BARITH}
SCSPJ ¢S[SP1+S(SP+1)3 GO TO NEXT:

SUs 1 BARITHJ
SCSPJ ¢S[SP] *SISP+113 GO TO NEXT;

NEG: [FSI{SPI.TYPE # NUMBERTYPE THEN ERROR(I);
SCSP] ¢ = SISP)S GO TO NEXTS

MULS BARITHJ
SCSPle S[SPIXSCSP+1)3 GO TO NEXT;

DIVIDE: BAKITH}
IF SESP+1) = 0 THEN ERRUR(C2)}
SCSP] « S(SP) / SUSP+1)) GO TO NEXT;
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IDIVE BARI TH3
IF ROUNDCSLSP+1)) = 0 THEN ERROR(2)}
S{SPI¢ROUNDCSLSPIIDIVROUNDCSISP+33)3G0 TO NEXT;
REMAINDER: BARITH3
IF S{SP+1) = 0 THEN ERRUR(2)}
SESP) ¢ SCSPIMUD SLSP+1)3 GO TO NEXT;
PUOWERY BARITHJ
SESP) ¢ SESP) » S[ISP+1)3 GO TO NEXTJ
ABSV 1 IF SI{SPl.TYPEANUMBERTYPE THEN ERRORC1)}
SESP) ¢ ABS(SLSP1)S GO TO NEXT;
INTEGERIZE?
IF SI[{SP)sTYPE > BOOLEANTYPE THEN ERROR(I);
SCSP] ¢ ROUNDCSC(SPI)IGO0 T O NEXT)
REALL?
IF SI[{SPl.TYPE > BOOLEANTYPE THEN ERROR(I);
SI{SPI+TYPE ¢ NUMBERTYPE3 GO TO NEXT;
LOGICAL1
IF SICSPl TYPE # NUMBERTYPE THEN ERROR(C1)3
IF St{SP) 8 0 OR SISP1 = 1 THEN SICSPl.TYPEe BOOLEANTYPE ELSE
SILSP),TYPEe¢ UNDEFINEOJ
GO TO NEXTS
LISTTS
IF SICSP).TYPE # NUMBERTYPE THEN ERROR(1)J
1 2 e¢S[SP))
IF 12 ¢+ FP » 1022 THEN FREE(CI2)}
FOR 11 ¢FP STEP 1 UNTIL FP+1I2=t DO FIC111,TYPE « UNDEFINED)
SICSPIJrTYPE ¢LISTTYPEISILSP)«WCT ¢ (2 SILSPI+ADDRESSe¢FP}
FPe FP +I23 GO TONEXTS

ISLOGICALS SETISC(BOOLEANTYPE)) GO TO NEXTJ
ISNUMBERS SETYIS(NUMBERTYPE)S GO TO NEXTS
ISREFERENCE: SETISCREFERENCETYPE)S GO TO NEXTS
ISLABELS SETISCLABELTYPE)S GO TO NEXTJ

ISLISTE SETISCLISTTYPE)S GU T O NEXT)

ISSYMBOLS SETISCSYMBOLTYPE)S GO TO NEXT:
ISPROCEDURE: SETISCPROCEDVRETYPE)S GO TO NEXT;
ISUNDEFINEDS SETISCUNDEFINED)) GO TO NEXTJ

TALL?

IF SILSPJ TYPE#LISTYYPE THEN ERRORC1)}

IF SICSPJWNCT = 0 THEN ERROR(C10))

SI{SPIWCT & SICSPI4HCT = 13

SICSP).ADDRESS ¢ SI[{SP1.ADDRESS + 13 GO TO NEXT)
THENVS

BOOLTEST) SP ¢SpPei}

IF BOOLEANCSCSP+1)) THEN GO TO NEXT3S

PP ¢ PROGRAM[{PP)BFIELDS GO TO TRANSFER;
ELSEV?S

PP ¢ PROGRAMLPP)BFIELDS GO TO TRANSFER)
LENGTHS

FETCHS

IF SICSP)TYPE # LISTTYPE THEN ERRORC1)}

SICSPIZTYPE ¢ NUMBERTYPE) S[SP] ¢ SILSPI . WCT3 GO TO NEXT3
GOTO

IF SILSP).TYPE # LABELTYPE THEN ERROR (¢ 1))
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MP ¢SICSP1.STATICS
COMMENT WE MUST RETUIN TO THE BLOCK WHERE THE LABEL IS DEFINED}
PP ¢ SILSP),ADDRESS} SP ¢ MPJ GO TO TRANSFERS
FORMALS
FORMALCOUNT ¢FURMALCOUNT +13
| F FORMALCOUNTSSCMPIoWCT THEN GO TO NEXTELSEGOTONEW ;
NEW 1
SIMPIWNCT ¢ SCMPI.WCT +1)
FILFPISTYPE ¢ UNDEFINED)
FP & FP +1}
IFFP > 1022 THEN FREE(1))
GO TO NEXT}
STORE
IFSILSP=1)4TYPE # REFERENCETYPE THEN ERROR(13)}
LEVELCHECKCSICSP)s SILSP=1],STATIC)}
SP ¢ SP =1} COMMENT NON=DESTRUCTIVE STORE)
I1 ¢ SICSP1.ADDRESS)
SUSP) ¢ FUIL) ¢ SESP+1)3  SILSP) ¢ FILI1] ¢ SILSPe11}
COMMENT THE NON=DESTRUCTIVE STORE ISNOT APPLICABLE TO LISTSS
| F SICSP)oTYPESLISTTYPE THEN SICSP),TYPE « UNDEFINED)
GO TO NEXT)
SUBSCRIPTH
If SICSP1oTYPE # NUMBERTYPE THEN ERROR(8)S
SP ¢ SP =1}
IFSICSPJ+TYPE # REFERENCETYPE THEN ERROR(7)}
| | SICSPI+STATICI SITSP] ¢ FICSICSP).ADDRESS)S
IFSICSP)oTYPE # LISTTYPE THEN ERROR(B);
“IF SCSP +1] <1 0F? SISP+#1) > SIISPIWCT THEN ERROR(9))
SICSPJ.ADDRESS ¢ SI(SPJ+ADDRESS + SLSPe1) . 1}
SIISP1.TYPE t REFERENCETYPES COMMENT MUST CREATE A REFERENCES
SICSPI,STATIC¢I13GO TO NEXT;
BEGINVS SPUPJ
SICSP) ¢0 J
SICSP)TYPE ¢ BLOCKMARK)
SICSP1.BLN ¢ SITMP).BLN ¢ 13
SICSPIJDYNAMIC ¢ MP}
SICSP1.SIATIC ¢ MPJ
SLSPILTYPE ¢ LISTTYPE)
SESP1JADURESS ¢ FPJ

SESPJNCT ¢0 J COMMENT A NULL LIST3
MP ¢ SPJ GO TO NEXT}
ENDV

11 ¢ SI{MP).DYNAMIC) .
LEVELCHECK(SI(SP), sxtMPJ.smTIcn
SIIMP]e SICSPJJ SIMP) ¢ S(SP)}
SP ¢ MPJ MP ¢I313 GO TO NEXTS
LEF TQUOTE 1 COMMENT PROCEDURE DECLARATION)
SPUPJ
SICSPI,TYPE ¢ PROCEDURETYPEJ
SI(SP),ADDRESS ¢ PPJ
COMMENT THE PRUCEDURE DESCRIPTOR MUST SAVE ITS OWN LEXICOGRAPHICAL
LEVEL AS WELL AS THE STACK MARKER FOR UPLEVEL ADDRESSED VARIABLES;
SI[ISP).BLN ¢ SIIMP) BLN + ¢}
SICSP),STATIC ¢ MPJ
PP ¢ PROGRAMLPP)«BFIELDS GO TO TRANSFER)
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RIGHTQUOTE?®
PP o SI[{MP)+ADDRESS} COMMENT A PROCEDURE RETURN}

1 1¢SIIMPI.DYNAMIC)
LEVELCHECK(SILSP)» SITMP),STATIC))
SIIMP) ¢ SI[SP)} SIMP) ¢ SCSPJJ
SP ¢ MP3 MP ¢l§3 GO TO NEXT;
VALUEOPERATOR Y
IF SILSP) TYPE = LISTTYPE THEN GO TO NEXT)
FETCHJ
| F SICSPI+TYPE ® PROCEDURETYPE THEN
BEGIN FORMALCOUNT ¢ 0)
1 1e¢SI{SP].ADORESS}
SICSP].TYPE ¢ BLOCKMARK)
SICSP]+ADDRESS ¢ PP}
SILSP) DYNAMIC ¢ NPJ
SCSPITYPE ¢ LISTTYPE}
- SLSPI«NCT ¢ 0 ;
MP ¢ SP} PP ¢l1s
END ELSE IFSICSP) TYPESLISTTYPE -THEN COPY(SI(SP))}
GO TO NEXT
PROCEOURECALL:
SP ¢ SP =1J FETCH»
IT SICSPI+TYPE # PROCEDURETYPE THEN ERROR(C3)}
FORMALCOUNT ¢ OJ
1 1¢SI{SP),ADDRESS)
SICSP]TYPE ¢ BLOCKMARKJ
SI(SPl,ADDRESS ¢ PPJ
SICSPIDYNAMIC¢ WMPJ

SLSP) ¢ SILSP+1)s COMMENT THE LISY DESCe FOR PARAMETERS;
MP ¢ SPJ PP e 113 GO TO NEXTS
RIGHTPAREN?

11 ¢ PROGRAMIPPIBFIELD) .
If 11 +FP> 1022 THEN FREECI1)}
S$P ¢ SP = 11 + 1}
MOVECSCSPl» FCFPY» I1)) MOVECSICLSPI» FICFP)» I1)3
SI(SPI«TYPE ¢ LISTTYPE)
SICSPINCT ¢ 1%}
SI{SPl1.ADDRESS ¢ FP}
FP ¢ FP +I13GU TO NEXTS
INPUT: SPUPJ .
READCSISPIIIEXIT)) SILSPI.TYPEe NUMBERTYPES GO TO NEXT;
OUTPUT ¢
DUMPOUTCSILSP)»SISP)YI ‘GO TO NEXT;
DONE $
END INTERPRETER;

EXIT
END .
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