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The Zurich Implementation

U. Ammann

1. Introduction

Pascal was developed by Niklaus Wirth at the Federal Instute of Technology in
Zurich (ETHZ) in 1970 [1]. During the years of 1970 and 1971, parallel with the
development and the definition of the language, the first Pascal Compiler—for the
CDC 6000 computer family—was written at the Computer Science Institute of
ETHZ [2]. This experience, on the one hand, led to the definition of a revised
language [3] and, on the other hand, to the decision to write a new compiler from
scratch. Thereby, both the language and the implementation matured from the
previous project.

The bootstrap of the original compiler was done by means of SCALLOP—a
medium-level programming lanaguage for CDC computers. First, the compiler was
written in a subset of unrevised Pascal. Then it was hand-translated into SCALLOP
and bootstrapped. Finally, the compiler was extended to accept the full unrevised
Pascal.

The second compiler was started in the summer of 1972 and completed about
two years later. It was developed with the aid of the original Pascal compiler using
the commonly known bootstrapping technique. This subdivided the whole task into
the following four phases:

(1) Programming the new compiler in unrevised Pascal.

(2) Compilation of the result of phase (1) with the old compiler.

(3) Translation by hand of the result of phase (1) into revised Pascal.

(4) Compilation of the result of phase (3) by means of the compiler obtained in
phase (2).

This bootstrap can be depicted with T-diagrams as shown in Figure 1. The com-
pilers resulting from phases (1) to (4) are therein marked with the respective num-

bers. Concerning this bootstrap, it is worthwhile to note the following:
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rev. 6000 rev 6000
PASCAL (3) code PASCAL  (4) code
rev. 6000 || rev rev. 6000 || 6000
PASCAL (1) code ||PASCAL||PASCAL (2) code code
unrev. |[lunrev. 6000 6000
PASCAL |[PASCAL code code
6000 CDC
code 6000

CDC
6000

Figure 1. The bootstrap of the new Pascal compiler

(a) The old and the new compiler differ greatly from one another. This is not
so much because of the language revisions but rather because the new com-
piler generates better code. To reach this goal a reorganization of the com-
piler in its code-generation parts was necessary and led to a more complex
program structure.

(b) The compiler resulting from phase (2) obviously compiled revised Pascal.
Nevertheless, it was in two respects not satisfying the demands, First, it had
still been written in unrevised Pascal and hence could not profit from the
language revisions. Second, it had been compiled by the old compiler, which
did not translate into sufficiently efficient code. Therefore, the compiler
speed of compiler (2) was rather moderate and its storage requirements were
quite high.

(c) Thanks to the relatively few language changes the hand-translation in phase
(3) of the bootstrap proved to be a more or less negligible task.

(d) With the completion of phase (4), the influence of the old compiler on the
new one finally vanished.

A compiler bootstrap as performed and described above usually runs into several
difficulties. Among them are:

(a) The implementation languages (in this case, revised and unrevised Pascal)
have to be powerful enough to express programs of the complexity of a
compiler with elegance and ease.

(b) The resulting compiler has to produce sufficiently good code. Otherwise it
will become a victim of its own shortcomings. To be competitive, it must be
neither slow nor spacious.

On the other hand, writing a compiler in a high-level programming language has
many advantages: a saving in programming time, a low error rate, easy error detec-
tion, especially in the case of source-oriented error messages, and self-documen-
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tation-—not to speak of (hopefully) improved reliability, modularity, and maintain-
ability.

Furthermore, when a compiler is written in the language it compiles, an addi-
tionaly advantage is that improvements in code generation often happen to pay
back after a bootstrap. In spite of a larger source text, the compiler is quicker and
uses less memory than before. This feedback is, of course, most welcome to every
implementor.

During the development of the new compiler, the author came to know with
persuasive power all of the above-mentioned advantages. In addition, it became
clear that Pascal is not only relatively easy to compile but is also a powerful lan-
guage which is perfectly suited foruse as a compiler implementation language.

2. Syntax analysis and error recovery

Syntax analysis is done by applying the commonly known method of recursive
descent. Each syntax diagram is associated with a (generally recursive) compiler
procedure, which analyses the corresponding syntactic entity. Pascal supports this
elegant method since it can be analysed backtrack-free with a minimal one-symbol
look-ahead. However, some of the syntax diagrams [3] could not be taken as a
model for the corresponding compiler procedures. On the one hand, this is because
a distinction is made between several kinds of identifiers (constant, type, variable,
field, procedure, and function identifiers) although they do not syntactically differ
from one another. For the diagrams where these identifiers appear (i.e. in factor,
simple type, and statement) the compiler procedures are based on a slightly different
syntax. On the other hand, the somewhat overloaded diagrams, block and state-
ment, have been divided up for separate implementation. Figure 2 shows part of the
modified syntax diagram statement.

This top-down goal-oriented syntax analysis is completed by a bottom-up source-
oriented symbol scanner (called insymbol) which, with every call, returns the next
terminal symbol found in the input. Following the recommendations of Jensen and
Wirth [3] word symbols are represented by reserved words. They are actually
sorted by length and stored in a linear table. The words with equal length appear in
order of decreasing occurrence. Surprisingly, this organization allows for a suf-
ficiently efficient answer to the question of whether a letter sequence is a reserved
word or an identifier. Identifiers may be of any length but must differ amongst the

Statement identifier assignment )—-—-
[:l call |——

! |
| |

Figure 2. Modified syntax diagram statement
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first ten characters, if their difference is to be recognized. The following structure
shows the compiler program after hierarchically joining the compiler procedures:

program pascal
procedure insymbol
procedure block
procedure constant
procedure fype
procedure simpletype
procedure fieldlist
procedure labeldeclaration
procedure rypedeclaration
procedure variabledeclaration
procedure proceduredeclaration
procedure parame terlist
procedure body
procedure statement
procedure variable
procedure cail
procedure expression
procedure simpleexpression
procedure ferm
procedure factor
procedure assignment
procedure compoundstatement
procedure gotostatement
procedure ifstatement
procedure casestatement
procedure whilestatement
procedure repeaistatement
procedure forstatement
procedure withstatement

In order to keep the syntax as simple as possible, several obviously incorrect con-
structions as, for example,

if i +jthen S or var ch: ‘4’.4

are not syntactically excluded in Jensen and Wirth [3]. This is also true for the
compiler. Hence, such errors do not call for error recovery, since thisis only invoked
by syntactic errors. In a reasonable organized compiler only syntactic errors may
lead to a skip of part of the input—a rule which was strictly adopted by this com-
piler. If, for example, in a particular program a procedure is declared with fewer
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parameters than are supplied at its call, then the surplus parameters are nevertheless
analysed completely instead of simply ignoring the program text up to the closing
bracket. Unfortunately, most compilers do not make this clear distinction between
semantic and syntactic errors!

The treatment of syntactic errors can be done on two levels, namely, within the
scanner on the level of characters and, outside it, on the level of symbols. In the
implementation presented here error recovery is restricted to the second level, i.e.
within the scanner no characters are deleted or inserted. This kind of error correc-
tion would only be useful in connection with specially marked word delimiters. The
additional redundance of the distinguishing mark would then allow correction of
trivial misspellings (e.g. “BIGIN’ could relatively easily be recognized as misspelled
begin).

As to the error recovery, i.e. the error repair on the symbol level, a reliable,
systematic, and economic solution was sought. Its description follows.

Let T denote the set of all terminal symbols of the language extended by the
two symbols ‘eoi’ (end of input) and ‘other’ (characterizing a non-Pascal symbol),
both of which are also returned by insymbol:

T ={ Pascal terminal symbols} U {eoi, other}

Let S denote the set of compiler states, where each state is defined by the run-
time stack (more precisely by the return addresses to be found there) together with
the current value of the program counter. The treatment of (syntactic) errors now
consists of extending in a sensible way the state transition function st (S X T' = 5)
to become a total function. Analogously, the function pr(S X T+ - T%) which
defines the program remainder left for analysis when passing from a state to its suc-
cessor has to be made total.

The systematics of error recovery now results from associating each compiler
state s € S with a set of terminal symbols R (=r(s)), the symbols which are relevant
when the compiler is is state 5. Should the symbol ¢ returned by the symbol scanner
happen to be unacceptable in the current state, then:

(a) An error message is emitted (whereby in the listing the position of the
error is unambiguously marked with an arrow; compare Figure 3.

(b) The program remainder is skipped until a symbol #' € R is reached. The com-
piler and the function # (S = P(T)) are tuned in such a way that the com-
piler will, without skipping ¢’ advance to a state 5" in which ¢’ will be accep-
ted. On the way to s', the compiler may possibly emit further error
messages.

Hence, each phase of skipping is followed by the acceptance of at least one
symbol and the compiler recovers immediately from any syntax error.
The quality of error treatment obviously stands and falls with the choice of the
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function r and the state s’ to be reached after the syntax error. Any choice of r will
necessarily find itself between the two following extremes:

(a) 7(s) = A(s) U {eoi }'Vs where A(s) is the set of symbols which can be accep-
ted in s. Error repair in this case consists of ignoring the program remainder
until an acceptable symbol (or eoi) follows (s’ = s).

() r(s) = T — {other} Vs. In this method no symbol will ever be ignored. How-
ever, reaching state s', in which # (=¢") will be accepted, is very problematic.

Clearly, neither of the two extremes is of any importance in practice. They
would both lead to a catastrophic error recovery. In this implementation R is
always composed of a set R' of global relevance—which is passed by parameter to
the called procedure—and a set of locally relevant symbols L depending on the local
error situation: R =R’ U L. Hence, no globally relevant symbol is ever skipped. R is
initially equal to the set eoi, label, const, type, var, procedure, function, begin,
goto, if, while, repeat, for, with. Besides eoi which necessarily belongs to this set, it
contains all the word symbols that unambiguously open a declaration or a statement.

In order to keep the compiler as simple as possible, error recover is always com-
pletely up to the called procedure (rather than to the calling one). For the called
procedure this means:

(a) It cannot make any assumption regarding the program remainder which was
left to it for analysis.

(b) It has to guarantee to the calling procedure to leave a program remainder
which starts with a globally relevant symbol (i.e. a symbol R .

In this way, the task of the calling procedure is much simplified. The treatment
of the errors does not take place at the calling site but rather completely within the
called procedure. This simplifies the compiler considerably, since the number of
calls significantly exceeds the number of procedures.

The compiler procedure ifstatement, giving an idea of the simplicity of this kind
of error recovery, is shown below in the treatment of syntactic errors (pseudo-Pascal
Notation). It is to be noted that, due to the one-symbol look-ahead, the first
symbol of every syntactic entity is already read at entry to the associated compiler
procedure. Analogously, the first symbol not belonging to the entity has been read
at exit.

procedure ifstatement (R': set of T):
begin expression (R’ +{then, else});

if symbol = ‘then’ then insymbol

else error(20); (xthen expected)
statement (R' + {else });
if symbol = ‘else’ then
begin insymbol; statement(R") end

end
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pPPPO6 PROGRAM SYNTAXERRORS (OUTPUT)

BBB235 VAR I: INTEGER;

* kK T14

000236 FOR I := 1 TO 14 DO
il T18,17

P0pB16 WRITELN (SIN(I);

* k% T4

p@PB34 END.

ERROR SUMMARY :

kdkkkhkkhkkkhkhkhkkk

4: ')’ EXPECTED

4: “: ° EXPECTED

7 ‘BEGIN  EXPECTED

8 ERROR IN DECLARATION PART

Figure 3. Compilation of a syntactically in-
correct program

In the compiler, every error message is coded by a number. The numbers of the
errors encountered during compilation are retained in an error list (a packed Boolean
array). At termination of the compilation of erroneous programs, the compiler calls
an external routine with the error list as parameter. This routine overlays the com-
piler code with a procedure also written in Pascal. This procedure now writes
out the error messages associated with the respective error numbers. This allows the
output of arbitrarily detailed error messages without affecting the storage require-
ments of the compiler. Figure 3 shows the output resulting from the compilation
of a syntactically incorrect program.

3. Semantic analysis and treatment of context-sensitive errors

The task of the compiler with respect to semantic analysis is threefold. First, it has
to build up internal descriptions of the data structures defined in the user program.
Second, the identifiers occurring in the program have to be retained together with
their attributes. Third, the information obtained in this way has to be used to check
the program for semantic errors.

As to the compiler-internal description of identifiers and data structures, the
following is worth saying beforehand. Tables of fixed length have the decisive dis-
advantage that they are too big for most of the programs, but are too small for a
few of them. In the former case they are uneconomical while in the latter case they
even forbid compilation! Therefore entries for identifiers and data structures are
dynamically created when needed (through a call of new).

At the end of the compilation of each block, the entries which have been made
during compilation of the block are no longer needed. They are therefore elimin-
ated from the heap by a call of the (non-standard) procedure release. Of course, this
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file of array  [1..40, 787 72Z7] of get of 0.3
element index element index element base
type type type type type type
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Figure 4. Example of compiler-internal description of data structures

could also be done by repeatedly calling the standard procedure dispose, but since
the compiler uses the runtime heap as a second, explicit stack, the former solution
is advisable.

To retain the attributes of standard and user defined identifiers and data struc-
tures within the compiler, a record is the appropriate data structure. It allows a
suitable representation of the information collected during declaration analysis. The
entries describing the standard identifier and data structures are made in an initializ-
ation phase preceding the declaration proper.

4. The internal representation of Pascal data structures

According to the three simple types and the four structuring possibilities, seven
kinds of entries are distinguished: scalar, subrange, pointer, set, array, record, and
file entries. The data structure chosen for their representation is therefore a variant
record uniting seven variants. Combinations of the structuring concepts are quite
naturally represented by linked entries. In this overview the exact definition of the
variant record cannot be given. For details, the interested reader is referred to
Amman [4, 5]. Here a hopefully self-explanatory example may suffice (Figure 4).
Each entry is therein represented by a box, the partitions of which each stand for a
field of the record variant. The appearance of the tag field as the first field of the
variants should not confuse the reader. In fact, there exist fields common to all
variants (as well as further fields specific to the variants); they are left out for the
sake of simplicity. For example, common to all variants is a field defining the
storage requirements associated with the data structure in question. This field will
be discussed later.

5. The representation of identifiers and their associated attributes

As mentioned earlier, six kinds of identifiers can be distinguished. These are the
constant, type, variable, field, procedure, and function identifiers. Accordingly, the
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record for internal description of identifiers and their associated attributes contains
six variants.

The character code (of the first ten characters) of a name and the reference to its
type entry are two obvious fields of this record and are common to all variants. The
type reference is a pointer to the description of the data structure associated with
the identifier (for function identifiers it points to the result type; for procedure iden-
tifiers the pointer is nil).

To satisfy the demands for a fully dynamic name table, all name entries on the
same declaration level are united to form an alphabetically ordered binary tree (in
post-order). In this data structure, making entries and searching for a particular
entry are both quite efficient operations. As experience shows, it is not even neces-
sary to balance the trees (during or after completion of the analysis of a declaration
part) since degenerated trees are rare—especially in large programs where they really
might affect compile speed. Eliminating a whole tree is done in the trivial way des-
cribed earlier.

Hence, two further fields of each name entry contain references to the left and
the right subtree respectively. The roots of these binary trees are stored in a com-
piletime display. During declaration analysis, the attributes associated with each
name are first united in an appropriate record variant. Then this record variant is—
under preservation of the alphabetical order—entered as a leaf into the tree of the
local entries. When the attributes of a name are requested, the display is used to
access the roots of the trees in the right order. First, the tree containing the local
names is searched; there then follow the trees containing the global names and
finally the one in which the descriptions of the standard names are stored.

During compilation of a with statement the root of the binary tree in which the
entries of the fields of the selected record are united is loaded on top of the display.
(This root is a variant-specific field of the structure entry describing the record.)
Thus it is guaranteed that during the compilation of a with statement names are
always first searched in the record opened last.

Figure 5 shows by example how names and their attributes are retained in the
compiler. As in Figure 4, the attribute records are symbolized by boxes. Again only
the attributes which are relevant in this context are displayed. For details the reader
once more referred to Ammann (4, 5].

In one-pass compilation, names usually have to be completely defined before the
first usage. Two cases of non-removable forward references in which it is impossible
to observe this rule are given below:

type a = record pb: 1b; procedure p;
end; begin g end;

b =record pa; Ta; procedure q;
end begin p end;

begin p; g end
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Figure 5. Example of the representation of names and their attributes

Therefore, the following two exceptions are provided:

(a) Pointer type declarations are allowed to reference type names which are
defined later—but have to appear in the same block and on the same declar-
ation level.

(b) Procedures (and functions) may be declared forward. In such cases, the
block of the procedure is replaced by the letter sequence ‘forward’. Later,
the declaration proper has to follow—again in the same block and on the
same declaration level as the forward declaration. The declaration proper
must neither repeat the parameter list nor a possible function result type.
These forward declarations follow the expositions in the User Manual but
are not included in the Report [3].

6. The treatment of context-sensitive errors

Pascal is a type-oriented language. Its strong type concept—an established means to
improve security in programming—gives the compiler the opportunity (and the duty)
to recognize a variety of context-sensitive errors. It was tried to achieve the follow-
ing three main goals:

(a) Recognition of as many errors as possible at compile time and concise indi-
cation of these errors to the user.

(b) Sensible reaction of the compiler to the use of undeclared identifiers and
multiple declarations of the same name.

(c) User-friendly interpretation of the rules of type compatibility within the
limits imposed by the report.

To illustrate these three points a program containing a few semantic errors is
given in Figure 6. A bad compiler would probably not report all of these errors or
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Figure 6. Example of the treatment of context-sensitive errors

would postpone their: recognition until runtime (102,300,302,303). The unde-
clared name K gives rise to only one error message (104), since the operations of
indexing and field selection could well be legal if an appropriate declaration of K
was supplied. This is why they are—in dubio pro reo—not diagnosed. Also, in both
places in which the doubly defined identifier P is used, the right declaration is
eventually supplied. As a consequence, the parameter list is completely analysed.
Particularly, in the third parameter which is accurately recognized as being super-
fluous (126), two additional errors are found (104,300). As an example for the
user friendliness in the interpretation of type compatibility the assignment between
two records is given (R1 :=R2). It is tolerated since the assignments between corres-
ponding components (R1.F1 :=R2.G1;R1.F2 :=R2.G2) are legal. Again, the exact
marking of errors is to be noted which allows for rapid location and correction of
each error.

7. Address generation

In the preceding sections those aspects of compilation have been treated which are
independent of the target machine. What has been said so far therefore permits
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program r/s/ (oulput ) Dynamic Data Static
chain: segments:  chains:
procedure g ;
procedure 7; =L Skt
: i—H— DL
begin rtst
end ; e
procedure r; r DL
begin
q p
end; SL
begin — EL
e SL Ae——
end; g'—
begin
o
end. Stack of data segments belonging to the

calling sequence rfst—=p—=r—=q
Figure 7. Dynamic and static link

unrestricted comparison with other implementations of Pascal. This is now no
longer the case since all decisions concerning the design of address and code gener-
ation are dominantly influenced by the architecture of the target machine.

The local data of every procedure (and function) are united in a data segment.
Addressing is relative to the segment origin. For run time a stack containing the
data segments of all activated procedures is provided. Pushing and popping of data
segments (at procedure entry and exit) is achieved by means of the dynamic link
(DL) which chains every data segment to its immediate predecessor in the stack.
Variable addressing is done through the static link (SL). It chains only those data
segments which—according to the scope rules of Pascal—are currently accessible. SL
and DL are incorporated in the head of every data segment (in the first and second
words respectively; see Figure 7).

As Figure 8 depicts, every data segment is in general dividend into six logically
distinguishable areas: segment head (containing SL and DL), function result, para-
meter descriptors, parameter copies, local variables, and ‘anonymous’ values—which
appear in this order of succession.

The main store memory of the CDC 6000 series (as well as the 7600, Cyber 70,
and 170 models) has 60-bit words and no provision for partial word addressing.
Hence, efficient packing of data structures which are declared packed is a neces-
sity, particularly with respect to the fact that the compiler itself profits much from
such a storage economy (mainly with name and structure entries).

A field common to all seven variants of a structure entry is a record defining the
storage requirements associated with the structure described by the entry.
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Figure 8. Function declaration and data segment derived therefrom

size: packed record words: addressrange; (#0..131071+)
‘ bits: bitrange (%0..59%)
end

Within packed arrays and records as many elements as possible are packed into
one word. However, elements using less than one word of memory never cross word
boundaries. This restriction simplifies address calculation without influencing the
packing density too much.

Of course, access to elements of packed data structures is somewhat slower and
needs more code. However, it allows a considerably more compact representation
of data. For example, the compiler requires 16.5K words of code and when it com-
piles itself (in sixty-four central processor seconds) it needs up to 4.5K words of
heap (besides maximally 2K words of stack). With unpacked entries the compiler
code is 16K words in length, and to compile itself the compiler needs 65 CP
seconds and up to 9.5K words of heap! Figure 9 shows an example of the mapping
of a packed data structure into the memory.

Hence, record field addresses in general consist of a word address and a bit
address (e.g. {1,17) for f4). Both of them are stored as attributes of the field name.
The address attribute of a varizble name is a pair {declaration level, relative word

packed record 71: boolean; £1 F2
72 packed array [1..4] of 6l5(6:5]615,615F15
packed record £21: char; 47 e 37
£22:-15..15 3 4
end;

¥3: Vinteger;, 4: char
end

Figure 9. Memory assignment of packed data structures
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address). The declaration level determines the access of the data segment in which
the variable is located; the relative word address gives the offset from the segment
origin.

As a consequence of theis kind of packing, elements of packed structures must
not be substituted for variable parameters. Without this restriction variable para-
meters could only be implemented in an extremely inefficient way.

8. Code generation

The compiler generates standard loader compatible, relocatable code. This saves an
assembly phase following the compilation proper and makes it truly one-pass. After
the compilation of every procedure (function) the code is written onto the code
file. At that moment, the code is nearly complete, the only exceptions being
references to other procedures and jumps leading out of the procedure. How-
ever, both of these kinds of external references are satisfied at load time by the
loader/linker. All other fixups to the code, in particular forward jumps within the
procedure, are done by the compiler. But since the code file (as any other Pascal
file) is strictly sequential, the code of every procedure must be retained in core
until completion of the compilation of its body. Again, in order to allow for a fully
dynamic solution, code segments (for 150 words of code each) are allocated in the
heap when needed and are chained to a linear list. The code stored in this list is
written out at the end of the procedure declaration and the memory so far used by
the list elements is returned to the Pascal system.

9. Descriptions of the register contents

The CDC 6000 hardware offers three classes of eight registers each: index (so-called
B) registers, address (4) registers, and operand (X) registers. 4 and B registers con-
sist of 18 bits; X registers are 60 bits each. 4 and X registers are coupled in a rather
strange way, in order to load the contents of a memory location into register X7
(1 < i<5). Ai is set to its address. To store the contents of a register Xj 6<j<T)
in a memory location, Aj has to be set to its address. Solely A0 and X0 are inde-
pendent of each other. Since there are no other instructions addressing the
memory, even the simplest assignment needs three instructions: loading into Xi,
copying from Xi to Xj, and storing of Xj. This fact obviously calls for a preventive
measure to reduce the number of memory references. To this end the compiler con-
tains three variables (of type array [0.7] of packed record) which describe the con-
tents of all registers as they will present themselves at runtime of the program cur-
rently in compilation. Now, when code should be generated to load a register (with
a value), the descriptions of the register contents are first inspected in order to
determine whether loading can be suppressed becuase one of the registers already
contains the value in question.

The compiler only remembers those register contents which are easily described.
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|In the case of the X registers these are the constants and two classes of ‘variables’.
The first class includes the variables that are directly accessible from the data seg-
ment origin, i.e. they have a relative address known at compile time (e.g. i, a[2],
r.x.f, but also function results, parameter descriptors, and anonymous values; (com-
pare Figure 8). The second class consists of the variables addressed through one
level of indirectness. The relative address results from the addition of the value of a
directly accessible variable and an offset known at compile time (e.g. inpuzt, pt,
p1.f[2], but also variable parameters). In all other expressions (as for example, a[7]
pt.gt, i +r.x.f) the compiler remembers only those subexpressions which are of one
of the above-mentioned distinguished forms.

It is noteworthy that in packed structures the number of items remembered is
multiplied by the number of fields packed into one word. When for example, the
first word of a variable of the type given in Figure 9 is loaded, f1 and f2 are in-
register. Every succeeding reference to any of the nine components can then be
established without memory reference. Register bookkeeping pays back much more
in the presence of data packing!

Part of the description of every non-free X register is a reference counter which
contains the current number of references to the register. The references originate
from the descriptions of the subexpressions currently in compilation; e.g. right
before the compilation of the miltiplication in @[#] #i, the description of the regis-
ter containing the value of 7 has a reference counter of 2. When no references exist,
it is interesting to know for how long the register has not been referenced. The
measure for this is the value of the compiler-interval instruction counter at the
moment of the erasure of the last reference. The longer the register has not been
referenced, the less interesting it is to the compiler to preserve its contents from
being overwritten. When an X register is needed for code generation, the compiler
scans through their descriptions trying to find a free one. If none exists, a register,
the contents of which are known to the compiler, has to be released. The decision
as to what register’s contents should be destroyed depends, on the one hand, on
the time elapsed since the erasure of the last reference and, on the other, on the
kind of contents. Constants are regarded to be of less importance than the variables
which generally cannot be reloaded with the same ease.

Two things are worth noting in connection with the effort to reduce memory
references by the aid of register content descriptions:

(a) The intention to reduce the number of store instructions, as was done with
the load instructions, was given up. The principal difficulty with delaying
the generation of store instructions lies in the fact that the memory is in
general no longer up to date. This, on the one hand, forbids a post mortem
dump facility and, on the other hand, forces the compiler to take special
care when generating code to load a variable. As soon as there is a chance
that the variable to be loaded coincides with a register which has yet to be
stored, the delayed store operation must take place before the loading.



78 Pascal—The Language and its Implementation

(b) The parameter descriptors of the first four parameters are always passed in
X registers (and not in memory). This has not only the advantage of pro-
viding for more compact code at the calling site but also allows the compil-
ation of every procedure (or function) to start with non-empty register
contents.

In the case of the A registers, the compiler remembers exactly those addresses
which belong to the variables that are remembered.

The B registers are mainly used as base addresses for the data segments, namely
B2 for the main program variables and B5 for the local variables of a procedure (or
function). Hence, access to these data segments is always direct (using B2 and B5
respectively). Whenever access to a data segment of intermediate level first occurs,
it is achieved by following the static link. However, if there is a B register which is
currently available, this register is immediately used to point to the origin of the
data segment in question. Subsequent accesses to this data segment are then direct
too, i.. without the detour along the static link. There is a good chance that
indirect addressing of data segments is thereby considerably reduced.

The old Pascal compiler, which had no register content descriptions, obviously
generated much superfluous code. When compiling the new compiler, it generated
approximately 23K words of code. This number was reduced to about 16.5K words
when the new compiler was used to compile itself.

10. The compilation of control statements

It is characteristic of all control statements that they have a distribution point D
(from which the computation flows out in several directions) and a concentration
point C (in which the computation flows together from several directions). Dis-
tributors and concentrators are of great importance to the bookkeeping of the
register contents. When the compiler reaches a distribution point it must locally
store the currently valid register content description in order to be able to reload it
when needed. This is necessary because the compilation of these statements is
strictly sequential while the execution is not. Nevertheless, the compilation of any
branch starting in D should profit from the register contents which are valid when
the distributor is reached. For matters of simplicity the descriptions of all register
contents are cleared when the compiler reaches the concentrator. Figure 10 depicts
the maintenance of the register content descriptions during the compilation of an
if statement.

The most elementary control statement is, of course, the goto statement. Here is
another argument to support those who consider it harmful. In the terminology
introduced in this section, labels represent concentrator points. These concentrators
are, however, far more awkward than the concentrators in regular control state-
ments. The reason for this is that, at the labels, computation can flow together
from arbitrary directions. Hence, it is impossible, without a complete analysis of
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Figure 10. Compilation of an if statement

the computation flow, to find a non-trivial register content description which is
valid when a label is reached. Therefore, all contextual knowledge has to be dis-
carded at a label, making jumps to these labels inherently expensive operations.

11. The post-mortem-dump facility

When-a runtime error is detected in a user program, a post-mortem dump (PMD)
procedure is optionally called. This procedure not only informs the user about the
exact place in his program, where the error was detected, but also about the kind of
the error (e.g. division by zero, cost limit exceeded). In addition, all activated pro-
cedures of the user program are traced. First, the name of the procedure is written
out together with an indication of the source line on which it was called. Then the
names of all unstructured local variables and parameters appear with the values they
had when the error was detected.

Figure 11 gives an example. It shows a program containing an infinite loop.
When this program is executed and runs into cost limit, the CDC operating system
will emit an appropriate dayfile message. Control then returns to the Pascal runtime
system which calls PMD.

To allow for a correct interpretation of the runtime stack, local variables and
parameters of every procedure p are each described by two-word entries. The first
word contains the (display code of the) name of the variable; the second word
includes its address relative to the segment origin and information on its type.
These two-word items are optionally appended to the code of p. A zero entry acts
as a terminator. To make this data available to PMD, the code of p is preceded by
another two-word entry, the first of which contains the name of the procedure
while the second points to the entries described above (see Figure 12).

When PMD is activated it follows the dynamic chain and interprets the data
segments one after the other. A field in the segment head allows PMD to decide
whether the associated procedure p was called formally. If so, its entry address is
found in the head of its data segment (it was stored there when p was called).
Otherwise the return address is extracted from the segment head. It points to a
(code) word which is naturally preceded by the word containing the instruction
calling p. From this instruction the entry address can be obtained.

After determination of the entry address the name of p and the pointer to its
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Loop:

PMDtest:
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fPPP06 PROGRAM PMDTEST (OUTPUT) ;

680235 VAR CH: CHAR; R: REAL; I: INTEGER;
G00240

000240 PROCEDURE LOOP;

PE0003 VAR N: INTEGER;

900004 BEGIN N := 8;

900007 WHILE TRUE DO N := N + 13
900012 END;

880017

0000817 BEGIN CH := '‘A"; R := 1E-20; I := 20;
Ge00620 LCOP;

Ge9021 END.

- PROGRAM TERMINATED AT: Q00067 IN LOOP

LOOP AT: 000020 PMDTEST
N = 385101
PMDTEST
I = 20
R = 1 000000P0PAORORE-20
Ul = A
Figure 11. Post-mortem dump

loop i

=
il + 235 A
int 3 + 236 1E=20
... D + 237 20
PMDtest

= IDL__|RA

3 280047

i
int 237
ch Runtime stack
char 235
1§
real 238
B ks

Code

Figure 12. Interpretation of data segments by PMD



The Zurich Implementation 81

post-mortem dump information are easily found in the two preceding words. This
allows PMD to interpret the local data segment appropriately. After commpletion
PMD passes to the next data segment (if any).

12. Concluding remarks

The overview given in this paper is incomplete. For more details the interested
reader is referred to Ammann [4, 5, 6].

Currently the compiler described here is running on about 150 installations all
over the world. Its user community is steadily growing. Except for the kernel of the
runtime support (0.5K words including data) the whole system is written in Pascal.
This comprises

(a) the compiler (nearly 7400 source lines),

(b) the I/O procedures performing the conversion between character strings
and the internal representation of numbers,

(c) the procedure which writes out the compilation error messages, and

(d) the post-mortem dump procedure.

The fact that all these system components could be written in Pascal within
about fourteen man-months shows that this language is very well suited for systems
implementation. However, the experience gained in this project with one-pass com-
pilation was somewhat contradictory. On the one hand, it proved to have its merits,
above all ease of implementation amd modest I/O activity. On the other hand, it
imposes severe restrictions on the quality of the generated code and suffers from
relatively high storage requirements. In this respect a multipass compiler represents
a better solution: the passes can easily be overlayed and an optimization pass
provides for a really efficient code. Unfortunately, Pascal does not support overlay
structures! Comments from users of the implementation are generally positive.
Amongst the most frequently cited advantages are modest compilation time, sen-
sible error messages, comparatively efficient code, (optional) post-mortem dump,
and dense, user-controllable packing of data. Occasional complaints mostly concern
the absence of certain runtime tests (e.g. the tag-field test), the restriction of sets to
single machine words, the suppression of structured variables (notably records) in
the post-mortem dump, and the unsafe connection to externally compiler routines.
Future releases will hopefully improve the system in these respects.
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