Eidgendssische Institut
Technische fur
Hochschule /nformatk

ZUrich
Urs Ammann On Code
| Generation
na PASCAL

Compiler

On Code Generation in a PASCAL Compiler

by

Urs Ammann

Abstract: PASCAL has been implemented at the Swiss Federal
Institute of Technology in Zurich for the CDC 60008 computer
series. This report deals with code generation in the resulting
one-pass compiler (which is written in the 1language it
compiles). The paper gives insight into the runtime organization
of data as well as into the use of the hardware registers. It is
shown how the compiler maintains a description of the register
contents and wuses this description to generate efficient code.
Several examples of compiled code are discussed.

Author s address: Institut flir Informatik
ETH-Zentrum
CH-8092 Zlrich

Table of Contents

1. Introduction
2. The Representation of Data at Runtime
3. The Compilation of Expressions

3.1. The Data Structure Describing Partially Compiled
Expressions

3.2. The Data Structure Describing the Register Contents
3.2.1. The Contents of the X Registers
3.2.2. The Contents of the A Registers
3.2.3. The Contents of the B Registers
3.3. The Register Allocation Procedures
3.4. Loading an Expression
3.5. The Compilation of Operations
4. The Compilation of Assignments
5. The Compilation of the Control Statements

References

Appendix: An Example of the Code Generation

15
15
17
18
21
22
27
28
32
35

36

1. Introduction

PASCAL is an ALGOL-like general purpose programming language. It
was developed by N. Wirth at the Federal Institute of Technology
in Zurich (ETHZ) and was first published in [7]. In 1973 an
axiomatic definition of the language followed [4]. Compared to
ALGOL 6@, PASCAL offers essential extensions in the domain of
user defined data structures. In spite of its power of
expression PASCAL is characterized by its simplicity and ease of
implementation, thereby favourably measuring with other modern
programming languages as e.g. PL/I and ALGOL 68.

Parallel with the development and the definition of the language
the first PASCAL compiler - for the CDC 6000 computer family -
was written at the Computer Science Department of ETHZ during
the years 1978 and 1971 [8]. This experience on the one hand led
to the definition of a revised language [3] and on the other
hand to the decision to write a new compiler from scratch.
. Thereby, both the language and the implementation matured from
the previous project.

The second compiler was started in summer 1972, and completed
about two years later. It was developed with the aid of the
already existing PASCAL compiler (from now on called the o0ld
compiler) using the commonly known bootstrapping technicue. This
subdivided the whole task into the following four phases:

1) Programming the new compiler in unrevised PASCAL.

2) Compilation of the result of phase 1) with the old
compiler.

3) Translation "by hand" of the result of phase 1) into
revised PASCAL.

4) Compilation of the result of phase 3) by means of the
compiler obtained in phase 2).

The therewith completed separation from the 0ld compiler can be
figured with T-diagrams:

rev. 6000 rev. 60008
PASCAL 3) code PASCAL 4) code
rev. 6000 rev. 6000 600a
PASCAL 1) code ||PASCALJIPASCAL 2) code lcode
unrev. 6000
PASCAL||PASCAL code
6000 CDC
code 6000

cpC
6000

—4-

The compilers resulting from phase 1) to 4) are herein marked
with the respective numbers.

Concerning this bootstrap process, it is worthwhile to note the

following:

~ The 01d and the new compiler differ greatly one from the
other. This 1is not so much because of the language revisions
but is rather due to the fact that the new compiler generates
better code. To reach this goal a total reorganization of the
compiler in its code generation parts was necessary and led to
a far more complex program structure.

-~ The compiler resulting from phase 2) obviously compiled
revised PASCAL. Nevertheless, it was in two respects not
satisfying the demands. First, because it Had still been
written in unrevised PASCAL and hence could not profit from
the language revisions. Second, it had been compiled by the
0ld compiler, which did not translate into sufficiently
efficient code. Therefore the compile speed of compiler 2) was
rather moderate and its storage requirements were guite high.

- Thanks to the relatively few language changes the hand
translation in the third phase of the bootstrap proved to be a
more or less negligeable task.

- With the realization of phase 4), the influence of the old
compiler on the new one finally vanished.

A compiler bootstrap as performed and described above usually

runs into three difficulties:

1) The implementation languages (in this case revised and
unrevised PASCAL) have to be powerful enough to express
programs of the complexity of a compiler with elegance and

ease,

2) The resulting compiler has to produce sufficiently good code.
Otherwise it will itself become a victim of its own
shortcomings. To be competitive, it must neither be slow nor
spacious.

3) Unrecognized errors in the compiler will often become
perceptible after a bootstrap in an ugly way. If for example
texts of the form f are compiled incorrectly and the compiler
itself contains such texts, then, after a bootstrap, the
compiler will fail to translate not only these texts
correctly but also those texts which are translated by the
compiler making use of texts of the form f. Such errors are
sometimes very hard to find. Once detected, it can, however,
even be more cumbersome to fix them. This is typically the
case when, due to the compiler error in guestion, the
intended correction is not correctly compiled.

On the other hand, writing a compiler in a high 1level
programming language has many advantages which nowadays are
commonly accepted: saving in programming time, low error rate,
easy error detection especially in case of source oriented error
messages, and self-documentation - not to speak of (hopefully)
improved reliability, modularity and maintainability.

-5

Furthermore, when a compiler 1is written in the language it
compiles, an additional advantage is that improvements in code
generation often happen to pay back after a bootstrap. In spite
of a larger source text, the compiler is guicker and uses less
memory than before. This feed-back is of course most welcome to
every implementor.

The new PASCAL compiler compiles in one pass. The
characteristics of its syntax analysis are: top-down, one symbol
look=-ahead, no backtrack. It is implemented by means of
recursive descent. By using the method of Structured
Programming, the compiler was developed in six explicit steps
that are naturally derived from the process of compilation.

step 1: Syntax analysis for syntactically correct programs.
step 2: Recovery from syntactical errors.

step 3: Analysis of declarations.

step 4: Treatment of context-sensitive errors.

step 5: Address assignment.

step 6: Code generation.

Every step has to be understood as an enrichment of its
predecessor.

It 1is noteworthy that 'steps 1 to 4 do not depend on the machine
type for which the compiler is to generate code. Advantage was
taken of this fact during the development of the new PASCAL
compiler for the CDC 6000 computer family. Proceeding from step
4 a compiler for a hypothetical stack computer was also built

r
[11[5]. An exhaustive description of both compiler projects can
be found in [2].

This report gives a survey of the code generation part of the
CDC 60008 PASCAL compiler. Instead of producing assembler
programs as other compilers do, this compiler generates machine
code directly, therewith providing an efficient compilation
process. To guarantee full flexibility at 1load time loader
compatible relocatable code is generated.

2. The Representation of Data at Runtime

According to a commonly known organization code and data are
separated from each other at runtime. The local data of every
procedure (or function) are united in a data segment and are
therein addressed by an offset relative to the segment origin
(the so called base address). For runtime a stack containing the
data segments of all activated procedures is provided. As the
base addresses of the data segments wvary during runtime,
variable addressing is nontrivial. However, this way to organize
data guarantees maximum storage economy: Every data segment

.

exists only during the execution of the procedure to which it
belongs. It is created at procedure entry and discarded at exit.
Both of these stack operations can be implemented at relatively
low expense.

To allow stacking and unstacking of data segments, a link is
needed. It is «called dynamic link (DL) and chains every data
segment to its immediate predecessor 1in the stack. Variable
addressing is done through a second link. It is called static
link (SL) and chains only those data segments which - according
to the scope rules of PASCAL - are currently accessible. SL as
well as DL are incorporated in the head of every data segment
(as first and second word respectively).

Example:
dynamic data static
program rtst(output); chain: segments: chains:

y 3

procedure p; & SL
Y=o DL

procedure g; rtst

begin

end:;

rocedure r;
Eegln

BASE

NEXT

1
-]

program and corresponding stack
{(growing downwards)
of data segments belonging
to the calling sequence
rtst --> p -->r --> @

BASE is the base address of the most recently created data
segment. It is the head of the two chains and is hence used both
for addressing variables and for the two stack manipulations.
Stacking also requires another pointer (NEXT) defining the base
address of the segment to be stacked.

As shown in the following figure a data segment is, in general,
divided into six logically distinguishable areas.

offset with respect
to segment origin:

2 segment
1 head
2 function result
3 parameter
. descriptors
n+2
n+3
. parameter copies
. local variables
anonymous values

segment head: It contains the two links SL and DL described
above.

function result: This word is reserved for the eventual function
result. In data segments belonging to procedures it is not used.
. parameter descriptors: For each of the n parameters a descriptor
word 1s reserved; thereby the descriptor of the i-th parameter
gets an offset of i+2 . The information stored therein depends
on the kind of the parameter. For those value parameters needing
at most one word of memory, the descriptor contains the actual
value. For variable parameters and for value parameters needing
more than one word of memory, the descriptor is used to hold the
(first word) address of the actual parameter. Finally, in case
of a parameter procedure the descriptor consists of its entry
point and static link.

parameter copies: Local copiles of those value parameters which
need more than one word of memory are stored in this area.

local wvariables: This area 1is reserved for the values of the
local variables.

anonymous values: In this last section of a data segment
anonymous values are temporarily stored (e.g. upper bounds of
for-loops, which - according to the definition of PASCAL - are
computed only once).

Any of the 1last four areas may be absent in a particular data
segment.

The following example shows a function declaration and the data
segment derived therefrom:

offset:

[_ _s.___ _] »

DL 1

const n = 3; scalproc 2
type inx = 1..n; | __address of a _| 3
arr = array [inx] of real; ____aggggqg_gﬁ_p__1 4

- value of k 5

function scalprod(a,b: arr;k: inx): real; 6
var s: real; i: inx; value of b 7
begin s ¢t=@¢; | 8
for i :=1 to k do s := s + a[il*b[i]; 9
scalprod := s value of a 10
end 11
T | value of s 112
value of i 13

loop bound value (k)| 14

After completion of the loading process a contiguous piece of
yet unused store remains at the upper end of the user area.
During execution this piece of storage is used for the runtime
Stack as well as for the runtime heap. The former grows from the
lower end while the latter uses the upper part and grows in the
opposite direction.

code

runtime| stack
p user area
¥

runtime| heap

3. The Compilation of Expressions

3.7. The Data Structure Describing Partially Compiled

Expressions

The gxpression or subexpression currently in compilation is
described by a global variable called GATTR (global attribute
record) of type ATTR (to be defined later). -

Wheneyer a dyadic operation has to be compiled the attributes of
the first operand are stored in a local variable LATTR after its

-G

compilation. LATTR 1is, of course, local to that one procedure
which translates the operation (e.g. for a multiplication, local
to the compiler procedure TERM). After the compilation of the
second operand, the attributes of both operands are available in
LATTR and GATTR respectively - thereby allowing the operation to
be compiled.. Besides defining the attributes of the result in
GATTR, this action generally involves code generation.

Example:

procedure term;
var lattr: attr; lsymbol: pascalsymbol;
begin factor;
while symbol in mulops do
begin lattr := gattr; lsymbol := symbol;
readnextpascalsymbol; factor;
case lsymbol of
mulop: [GEénerate multiplication code 1)
and define attributes of result
divop: ...

end (*case¥*)
end (¥Fwhile¥*)
end (*term*)

1)A rectangle [X]Joccurring in a piece of program usually stands
for a statement performing the computation which is verbally
defined by x. However, it may - as in the next example - also
stand for the declaration of data described by x.

In the attribute record ATTR the following four classes of
expressions are distinguished: constants (CST), variables
(VARBL) , conditions (COND), and other expressions (EXPR). With a
minimum of discriminations this «classification allows the
generation of efficient code.

Hence, the type ATTR has the following form:

attr = record typtr: pointertotypeentry;
case kind: attrkind of
- D

cst: tt] sta H
varbl: [attributes of the variable ;
cond: ELSEQEHEQE g% ;Eg QQQQJS!QQ B
expr: (attributes of the expression];
end
whereby attrkind = (cst,varbl,cond,expr).

The following remarks are destined to give some insight into
this data structure and its usage.

TYPTR: holds the pointer to the type entry. It is used not only

-19-

for type checking but also for code generation. On the one hand
it allows the access to size information (i.e. the number of
words and bits associated with the type). On the other hand it
makes available index and subrange bounds which are needed for
address calculations and assignment checks.

KIND = CST: The only additional attribute of a constant is its
internal value (CVAL).
In connection with some operations, constant operands give rise
to a special treatment. This applies to
a) Indexing:
The address calculation is done at compile time.
b) Integer multiplication:
If one of the operands has the form ¢ = 2**n (power of two)
and n>»2, a shift instruction is generated. However, for

multipTications by two (n = 1) an add instruction is
compiled:
ifn#@ then
T if n I then 1)
begin iIX] Xi+Xi ; i := j end
else [LXI_n] -

(¥ result register is Xi *)
1) For the CDC 6086 instruction set cf. [9].

The reason 1is that the shift destroys the other operand (in
Xi), while the add instruction leaves it untouched, thereby
enriching the register contents.

For constants of the form c = 2**n*(2%*m + 1) with m > 1 ,
i.e. for sums and differences of powers of two, the code
generation is defined by

if n # @ then |in n] ;
BXJ X1

LXJ

[IX4] XixXi

(* result register is Xj *)

These trivial optimizations reduce the execution time
considerably. While loading c and doing a multiply
instruction takes 6.3 microseconds the optimized code is
executed in @.6 to 2.3 microseconds. It is noteworthy that
only three of the integers up to 20 (namely 11, 13, and 19)
are not of one of the distinguished forms.

This code improvement is most important for the hidden
multiplications that have to be compiled in order to address
components of structured variables. Experience shows that
such code is freguently executed.

¢) The operations div and mod:
When the second operand is a power of two, both operations

-11-

are compiled with shifts,
d) Checks verifying the legality of an operation:
Example: Indexing is an illegal operation if the actual index

is out of the declared index range. Thus, given the
declaration

a: array[1..10] of integer,
af@} 1is 1[¥egal and 1is diagnosed at compile time. Similar
checks hold for such operations as assignments to variables
of subrange type and integer division (dividend # 0).

KIND = VARBL: The three kinds of access naturally given by the
language split this class into three subclasses. The
discriminating field WORDACC is of type

accesskind = (drct,indrct,inxd).
The value of WORDACC specifies the access to the word containing
the variable as follows:

WORDACC = DRCT: (direct access) The word address is
represented by the pair <declaration level, relative address>
(<VLEVEL,CWDISPL>). VLEVEL determines which data segment has

to be accessed and CWDISPL holds the offset relative to the
segment origin.

Examples: entire actual variables, entire value parameters,
and record components.

WORDACC = INDRCT: (indirect access) The word address is
obtained by adding an offset (CWDISPL) to the value of an X
register (the one with index VWDISPL).

Examples: variable parameters, file elements, variables
referenced through pointers.

WORDACC = INXD: (indexed access) The word address is composed
From an array address given by the pair <VLEVEL,CWDISPL>, and
the wvalue of the X register with index VWDISPL. The sum of
these two address components yields the word address of the
variable.

Example: actual array elements.

In the case of packed variables another field (CBDISPL) is
needed to hold the constant part of the bit address. With
indexed access to packed variables, CBDISPL has to be added
to the value of the X register with index VBDISPL to get the
bit address.

Notice that indirect access to packed variables does not
exist in this 1implementation. The reason for this |is
threefold.

First: as an implementation restriction, no component of a
packed variable may be substituted for a variable parameter.
Without this restriction either packed variables or variable
parameters could not be implemented in a sensible way.
Second: The only files for the components of which less than
one word of memory is allocated are the text files (of type
packed file of char). However, for these files the PASCAL
runtime support provides and manages a character buffer
wherein the actual file element appears in unpacked form.
Third: The memory allocation for variables created at runtime
is such that these variables always occupy an integral

-12-

multiple of words. Thus, pointers can be implemented as word
addresses.

KIND = COND: In accordance with the user defined scalars, the
constants FALSE and TRUE of the standard scalar
Boolean = (false,true)

are internally represented by the values @ and 1 respectively.
This representation is the only one that allows straight-forward
code when Boolean expressions appear in case-statements,
for-statements, index expressions, etc.

Without the case COND, every relation (e.g. i>j) would have to
be compiled up to the Boolean result ~ regardless whether this
was really necessary.

Example: For "if i > j then ..." the following code would have
to be generated

sal i
SA2 j
IX0 X2-X1
MX3 1
BXO X3*X@
LX6 1

ZR XB,.0.

This is obviously far from optimal and can easily be done
better. Instead of hastily compiling the relational operation up
to the Boolean result, only the subtraction instruction is
generated. The index of the condition register (@ in the above
example) is kept in CDR and the field CONDCD: (ZR,NZ,PL,NG) is
set to the condition code (here PL). Later, when it becomes
obvious whether the Boolean value is needed or not, the
appropriate code 1is generated. In the above example a "PL
X@,..." would replace the last four instructions. (Note that in
this implementation -@’s are eliminated by adding a +# whenever
@ -0 could possibly result. Conseguently, jumps depending on the
sign bit only are safe.)

The compilation of the Boolean operator not turns out to be
trivial for KIND = COND. No code need be generated; CONDCD has
merely to be updated.

case condcd o

f
z2r: condecd := nz;
nz: condcd := zr;
pl: condcd := ng;
ng: condcd := pl

end

It i§ worthwhile noting that not even the Boolean result of a
relation is needed when the relations appear as operands in one
of the operations and or Or. An examination of the 12 possible

-13-

combinations of CONDCD shows that in every case better code can
be produced for both operations.

Example: if (i > j) and (k # 3) then ... is compiled into

sa1 i

sA2 g } i3
IX6 X2-X)

SA3 k

sx4 3 } k # 3
IX5 X3-X4

BX6 X6—-X6
IX6 X6-X5 and
BX5 X5-X6 -
BX6 X@*X5
PL X6,...

KIND = EXPR: All other expressions fall into this class. The
only attribute is the index EXPREG of the X register, which at
.runtime contains the value of the expression.

Now, the complete definition of ATTR can be given:

attr = record typtr: pointertotypeentry;
case kind: attrkind of
cst: (cval: valueY;
varbl: (wordacc: accesskind;
vlevel: levrange; cwdispl: integer;
vwdispl: regnr;
case pckd: Boolean of
true: (cbdispl: integer;
case bitreg: Boolean of
true: (vbdispl: regnr);
false: ());
false: ());
cond: (cdr: regnr; condcd: (zr,nz,pl,ng));
expr: (expreg: regnr)
end

wherein regnr = 0..7.

A couple of examples of expressions are collected in table 1.
The first column shows the expression which is to be compiled by
a call of the compiler procedure EXPRESSION. The second column
contains the attribute record thereby <created and the third

column shows the code generated during the call. The underlying
declarations are

var i,j: integer; p: Tinteger;
as array [1..2] of char;
r: packed record fl: Boolean;
f2: packed array [(1..4] ¢f char

end

The declaration level is assumed to be 1, the relative addresses
range from 3 (for i) to 8 (for r).

-4~

resulting compiler internal description of the expression

expres-—- (to be found in GATTR after return from EXPRESSION) code generated
sion to cval/ dur ing the call
be com-|typtr kind [wordacc/]|vlevel/] cw- | vw- jpckd cb- | bit-]| vb- pf EXPRESSION
piled cdr/ condcd | displ{displ displ] reg |displ
expreg
true boolptr} cst 1 -
i intptr | varbl drct 1 3 - false -
al2] charptr| varbl drct 1 7 - false -
SA1 i
LX1 1
r.£2[i] |charptr} varbl drct 1 8 - true -5 trueleg.6 BX6 X]
LX6 1
1X6 X6+X1 (6*1)
pl intptr | varbl| indrct -) e.g.1|false SA1 p (p)
ali] charptr| varbl inxd 1 5 e.g.2|false SA2 i (i)
SA2 i
i + 10|intptr expr| e.g.3 SX0 10
IX3 X2+X0 (i+19)
SAT1 i
i > 3 |boolptr]| cond| e.g.0 pl SA2 j

IX@ X2-X1 (j-1)

Table 1: Examples of compiled expressions

Remarks:
- The register indexes are incidental. In a concrete compilation their choice depends
on the actual register contents (cf. 3.2.-3.4.).
- In the example "r.f2[i]" the value of WORDACC (DRCT) must not surprise. The word
address of this variable is independant of the value of i.

-15-

3.2. The Data Structures Describing the Register Contents

The fact that the target machine offers 24 hardware registers
represents a challenge to the compiler writer. He can expect
that book-keeping of the register contents will prevent him from
generating many superfluous instructions. Of course he must
carefully weigh for what classes of expressions book-keeping
pays off in so far as it is sufficiently manageable and code is
considerably improved.

In this one-man compiler project the simplifications in code

generation are restricted to load operations:

- The generation of 1load instructions is unnecessary when an
inspection of the description of the register contents shows
that the value of the expression in question is already in a
register.

- A load operation is reduced to a single 15 bit instruction
when an inspection of the register contents shows that a
register holds the address 1in gquestion or one of its
neighbour ing addresses.

Clearly, the compiler alsc uses this information to aim at rich
register contents. Whenever a register is needed, a run through
the description of all the registers is performed. Thereby the
compiler decides which register can be released with supposedly
least harm to further code generation (for details cf. 3.3.).

The following paragraphs intend to give insight into the
compiler data structures describing the contents of the X , A,
and B registers. With respect to the compiler complexity it was
decided that only those <classes of expressions which can be
described with at most two unstructured values are worth
remember ing.

3.2.1. The Contents of the X Registers

The simplest category of expressions are the constants. They are
completely defined by their internal value. However, for the
code generation, it is suitable to subdivide the set of all
constants into two classes: the "short"™ constants (SHRTCST), and
the "long" constants (LONGCST). The former can be loaded with
fast SX instructions while the latter must be loaded with slow
SA instructions.

No other register contents are described with the same ease. For
another class of expressions, the pair <declaration level,
relative address> met above 1is the appropriate description.
These are called the simple variables (SIMPVAR). It |is
noteworthy that not only user defined variables but also the
parameter descriptors (thus also addresses) and anonymous values
fall under this notion.

Finally, a fourth class of register contents 1is worth
remembering: the so called indirect variables (INDVAR). They are

-16—-

described by a pair <X register number, relative address>. The
first component references an X register with contents SIMPVAR
and the second represents the offset. The sum of the two address
components is the word address of the indirect variable. This
class comprises variable parameters (offset @), file elements,
and variables that are referenced through pointers.

An X register, occupied by an intermediate result not belonging
to one of the classes distinguished, is characterized by OTHER.
A free register is marked AVAIL.

Every register not being AVAIL has a counter (REFNR), which
indicates how many times the register 1is currently being
referenced. The references either originate from the description
of another X register (cf. INDVAR above), or from a variable of
type ATTR. As long as a register is referenced it must obviously
not be overwritten.

When no references exist, it is interesting to know for how long
the register has not been referenced. An easy measure for this
is the difference between the current value of the instruction
counter and the one at the moment of the expiration of the last
reference (LASTREF). The 1longer a register has not been
referenced, the less interesting it 1is to the compiler to
protect its contents from being overwritten.

Both simple and indirect variables can be packed. In such cases
it will often happen that an X register is rotated by a number
of bits because the 1last action has been the unpacking of a
component of the (structured) variable. A shift count (SHFTCNT)
is therefore added to the description of the two classes SIMPVAR
and INDVAR. This shift count tells by how many bits the register
content is actually left-rotated.

After these introductory explanations the data structure for the
description of the contents of the X registers can now be given.

-17-

type xrgclass =
xrgclassl =
xrgcont =

(avail ,shrtcst,longcst,simpvar,indvar,other);
shrtcst..indvar; xrgclass2 = simpvar..indvar;
packed record
case xcont: xrgclass of
avail: (); -
shrtcst,longcst,
simpvar,indvar,
other: (refnr: shortint;
case xrgclassl of
shrtcst: (cstval:
longcst: (cstptr:
simpvar,
indvar:

lastref: icrange;
shortint);
Tcsttable) ;

(shftcent: 0..59;
case xrgclass2 of
simpvar:
(xlev:
xaddr :
indvar:
(xreg: regnr;
xdispl: addrrange);

levrange;
addrrange) ;

end;
array [regnr]

xrgconts

Xrgconts =
var Xrgs:

of xrgcont;

XRGS always describes the register contents corresponding to the
actual state of the code generation.

Example: The compiler internal descriptions of expressions given
in table 1 reference (among others) the registers X2 and X6. The

descriptions of the contents of the two registers are given
below.
register content description in XRGS
xcont refnr shftcnt xlev xaddr
X2 i simpvar 1] 1 3
X6 6%1 other 1
Note that with this kind of description the compiler remembers

not only unstructured variables (i.e. those of scalar, subrange,

or pointer <type) but also structured ones (i.e. those of set,
array, or record type). For example as soon as a field of the
record r (cf. the declarations underlying table 1) has been

loaded, the whole record is in a register. Any succeeding access

to one
reference.

3.2.2.

The Contents of the A Registers

The
variables
are

addresses

which

are

those

(INDADDR) ,

of

remembered
which are remembered.
distinguishable,
indirect variables

Hence

simple

of its fields can therefore be performed without memory

are exactly those of the
, three kinds of addresses

variables
and others (UNSPECADDR) .

(SIMPADDR) ,

~18~

type argclass = (simpaddr,indaddr,unspecaddr);
argcont = packed record
case acont: argclass of
simpaddr: (alev: levrange;adispl: addrrange);
indaddr: (areg: regnr; adispl: addrrange);
unspecaddr: ()
end;
argconts = array [regnr] of argcont;
var args: argconts

ARGS also describes the register contents as they correspond to
the actual state of the code generation.

3.2.3. The Contents of the B Registers

The uses of the B registers are manifold. Their usage as base
registers for the data segments is of course the most important
one. In this connection the gquestion arises as to which of all
possible methods of access to data segments should be
implemented. In principle, access is possible through the static
link. However, for any nonlocal variable this kind of access is
indirect and therefore inefficient. A better solution consists
in having all active base addresses directly accessible. This
was done in an earlier implementation of ©PASCAL [8] in an
extremely effective way by using the B registers as a hardware
display. The overhead of this method is modest: at procedure
entry, a B register has to be saved before it is loaded with a
new value; at procedure exit, the o0ld value has to be restored.
The disadvantage is rather that the limited number of available
B registers imposes a severe restriction on the degree of
procedure nesting. In a high level programming language
implementation this is absolutely undesirable.

In this implementation access to the data segments is therefore
organized differently. Register B2 is permanently used to hold
the base address of the main program variables. Besides this,
only the base address of the data segment belonging to the
procedure actually in execution resides in a B register, namely
in B5. To insure fast stack and unstack operations of the data
segments B6 is reserved for NEXT(cf. 2.). Again, for reasons of
efficiency B4 always points to the "first" word in the heap.
This eases the test on an eventual overlap of stack and heap as
well as the implementation of the standard procedure NEW.

-19-

code

data segment of the | &—— B2
main program

runtime J
stack

EXY
\ 2
LY
. Y

user data segment of the | €—— B5 (BASE)
area procedure actually
in execution

&«—— B6 (NEXT)

&«—— B4
runtime heap elements
heap created by NEW
The remaining three B registers - except for Bf - are used as

follows:

Bl always contains the constant 1. This allows a considerable
condensation of the generated code in so far as in many places a
15 bit instruction can be generated instead of a 38 bit
instruction. In such cases not only the length of the code is
reduced to half but also the probability that f£ill instructions
have to be generated is diminished.

The advantages of letting Bl = 1 are manifold:
- It happens relatively often that variables which are declared
together - and therefore get adjacent addresses - are used in

the same context. Obviously, this leads to the usage of
neighbour ing addresses in these program parts.

- Count variables are usually incremented or decremented by 1.
In for-loops this happens even implicitely.

- Except for @, 1 is the most frequent initial value.

- Comparisons and assignments of storage areas are done word by
word using an address increment of 1.

- The constant 2 (=B1+B1) is another freguently used constant.

Finally, B3 and B7 are used for miscellaneous purposes but
particularly for variable addressing. It was menticoned above
that the main program variables are always directly accessible
(through B2) just the same as are the 1local data of the
procedure in execution (through B5). Now, whenever access to a
data segment of intermediate level first occurs, it is achieved
by following the static link. However, if one of the registers
B3 or B7 1is currently available, this register is immediately
used to point to the origin of the data segment in question.
Subsequent accesses to tlis data segment are then direct, i.e.
without the detour along the static link. There is a good chance
that indirect accesses can thereby be considerably reduced, if
not nearly eliminated.

To implement this method of segment addressing the following
variables were introduced

-20-
levels: set of levrange;
brg: array [Tevrange] of regnr
LEVELS is the set of those declaration levels of which the data
segments are currently accessible through B registers. Thus, it
always contains the set [1,LEVEL]. BRG maps these levels into
the corresponding B register 1ndexes and is initialized by

brg{1] := 2; brg[level] := 5.

Access to a data segment of level 1 is now as follows:

if 1 in levels then[direct access through Bbrgf[l]]
else ftor k := 1 + 1 to level do

1f k in levels then

[indirect access through BDbrg[K]
down the static link., If a B re-
gister (Bn) is free, let it hold
the base address of the accessed
data segment and update LEVELS

and BRG:
levels := levels + [1];
brgfl] :=n

This kind of organization of variable addressing is quite
modular. For example, it would be very easy to return to the
hardware display method (levels := [1..level]; for 1 :=1 to
level do brg[l] := 1) implemented in the earTier compiler
version. As a consequence, L in LEVELS would be true for all L.
Hence the else-part of the above statement would never have to
be executed.

To distinguish between the several uses of the B registers, the
type

brgclass = (free,basaddr,specpurp)
was introduced in the compiler. FREE characterizes a B register
which is currently not used. B registers containing nonpermanent
base addresses are described by BASADDR, and SPECPURP indicates
a special mode of use that forbids overwriting.

The complete declaration of the variable BRGS, describing the
actual state of the B registers, follows.

type brgcont = packed record
case bcont: brgclass of
free: (); -
basaddr: (blev: levrange);
specpurp: ()
end;
brgconts = array Tregnr] of brgcont;
var brgs: brgconts

For the registers B#, Bl1, B2, B4, B5 and B6 the field BCONT
alwgys has the wvalue SPECPURP while for B3 and B7 its value
varies according to the actual mode of use.

-21~-

3.3. The Register Allocation Procedures

The procedures involved in code generation must be given the
possibility to require registers. As to the A and X registers,
which are coupled (cf.[9]), one procedure (NEEDX) is sufficient.
Its input parameters define the interval in which the output
parameter, i.e. the index of the disposed register, has to lie.
Four kinds of calls have to be distinguished:

needx(6,7,1i): A call asking for an arbitrary X register.

needx(1,5,i): A call asking for an A/X register pair to
compile a load operation.

needx(6,7,1): A call asking for an A/X register pair to
compile a store operation.

needx(i,i,i): A call asking for the register Xi (e.g. X6
to pass a function result to the calling
procedure) .

Similarly, B registers are requested through a call of NEEDB.
This procedure . however, has only one parameter, the index to
be returned.

Both NEEDX and NEEDB choose the register to be disposed
depending on the actual register contents as described by the
variables XRGS and BRGS. These variables are updated immediately
after the choice in order to mirror the new register contents
correctly.

In the case of NEEDX the selection algorithm depends only on the
contents of the X registers which are considered to be far more
valuable than the corresponding A register contents. If among
the registers in question there is one with XCONT = AVAIL, its
index is returned. Otherwise that one register (with REFNR = 0)
for which the value of BONUS[XCONT]-LASTREF is a maximum is
disposed.

For this register the field XCONT is set to OTHER and REFNR is
set to 1.

The array BONUS is defined as follows:

bonus{shrtcst] :

2¢: bonus|[longcst] := 10;
bonus[simpvar] 4;

bonus [indvar] := 3;

This initialization assigns to the short constants the least
importance. The reason for this is that their occurrences are
rarely clustered, and they can be 1loaded with fast SX
instructions. The long constants are weighed more heavily, but
still subordinated to the variables. This is because the
probability of frequent use of the same long constant is
expected to be much lower than frequent wuse of the same
variable.

Among registers containing simple or indirect variables the
choice depends heavily on the "time" of the last reference

-22-

(LASTREF) .

A register which has been reguested and is not used any more has
to be released. In the case of the X registers this is done by
calling the procedure DECREFX. Its parameter is the index of the
register to be returned. DECREFX decrements the number of
references REFNR by one. Once it has reached zero, LASTREF is
set if XCONT # OTHER, otherwise XCONT gets the value AVAIL.

Hence, in the compiler, typical code generation sections using
an X register have the form

needx(ﬂ,7,i);[§ode generation involving Xi]; decrefx (i)

Returning a B register is even more trivially accomplished by
assigning the value FREE to BCONT. Code generation sections
making use of a B register therefore show the following pattern:

needb(k);[ﬁode generation involving Bkl; brgs{k] .bcont := free

3.4. Loading an Expression

Generating code to 1load the value of an expression into an X
register 1is a fundamental operation and has to be done in many
places in a compiler. This fact evidently calls for the
introduction of a procedure (LOAD) to perform the necessary code
generation and the associated updating of the register contents.
Therein, the description of the expression to be loaded appears
as an input vparameter, and the index of the X register
containing the value at completion of the load operation is the
output parameter. The global register content descriptions ARGS,
XRGS, and BRGS are transient. The structure of the variable
FATTR (describing the expression to be loaded) determines the
layout of LOAD:

procedure load(fattr: attr; var fi: regnr);
var 1: regnr; -
begin
with fattr do
if typtr # nil then
case kind of
cst: —
ither find a register Xi containing the value described
by CVAL or generate code to load that value into Xi; up-

date the register content description accordingly
varbl:

begin
case wordacc of
drct:

either find a register Xi containing the value of
the memory word described by <VLEVEL,CWDISPL> or
generate code to load that word into Xi; update
the register content description accordingly
indrct:

-23-

either find a register Xi containing the value of
the memory word described by <CWDISPL,VWDISPL> or
generate code to load that word into Xi; update
the register content description accordingly
inxd:
Jgenerate code to load the memory word described
by <VLEVEL,CWDISPL,VWDISPL> into Xi; update the
register content description accordingly
end (*case*);
If pckd then
" begin
by consulting the fype of the variable deter-
mine:
= the number of bits occupied by the variable
— whether a sign bit has to be extended
- whether the value has to be left or right
justified (the former in case of record
and array variables)
if bitreg then
generate code rotating the value with the bit
address <CBDISPL,VBDISPL> into the appropriate
osition for unpacking
else
generate code rotating the value with the bit
address CBDISPL into the appropriate position
lEor unpacking

lgenerate code unpacking the value OFf the

variable into another X register and store
its index in i
end (*pckd¥*)
end (*varbl*);
cond:
depending on the value of the condition code CONDCD
generate code to compute the Boolean value from the
value of the condition register Xcdr
expr:
i := expreg
end (*case¥*)
else needx(@,7,1);
fi =1
end (*load*)

As a further refinement would be too detailed, the description
of the procedure LOAD is concluded by summarizing the code which
- depending on FATTR - is generated. It is to be noted that

since the different cases are not mutually exclusive, their
order is relevant.

KIND = CST:

1. abs(cval) > 2*%17 SAi @cval

2. cval =g ~ BXi Xi-~Xi 1)
3. cval =1 SXi Bl

4, cval = 2 SXi B1+4B1

5. else SXi cval

—24-

KIND = VARBL, WORDACC = DRCT:

address already in Aj SAi Aj

neighbouring address

already in Aj SAL Aj+BI1

vlievel in levels SAi Bbrgl[vlevel]+cwdispl 2)

else Code to load the base addresg
of the data segment with 3)
level VLEVEL into Xi
SAL Xi+cwdispl 2)

KIND = VARBL, WORDACC = INDRCT:

1.
2.

3.
4.
5.

address already in Aj SAi Aj

neighbouring address

already in Aj SAi Aj+ BI

cwdispl = @ SAi Xvwdispl

cwdispl = 1 SAi Xvwdispl+B]

else SAi Xvwdispl+cwdispl

KIND = VARBL, WORDACC = INXD:

1.
]

1

2.

vlevel in levels
.1 three guarters of the

actual code word SXi Xvwdispl+Bbrg[vlevel] 4)
are filled : SAl1 Xi+cwdispl 5)
.2 else SXi Xvwdispl+cwdispl 5)
SAi Xi+Bbrglvlevel]
else code to load the base address
of the data segment with 3)
level VLEVEL into Xi
IXi Xi+Xxvwdispl 6)
SAi Xi+cwdispl 5)

KIND = COND:

1. condcd iﬂ [pl,ng] MXK 1
BXi(~)Xcdr*Xk 7)
LX1i 1

2. condecd in [zr,nz] BXi Xi-Xi
IXi Xi-Xcdr
BXi(-)Xi-Xcdr 8)
MXk 1
BXi Xi*Xk
LXi 1

Remarks:

1)

2)

3)

The execution time for BXi Xi-Xi is #.5 microseconds compared
to 8.6 microseconds for a SXi BS# (CDC 6404).

CWDISPL in [@,1] 1is impossible because the first relative
gddress assigned in every data segment is 2. Therefore this
instruction is always 30 bits.

The procedure LOADBASE performs this task. Therein a search
through BRGS is done to find the index k of the B register

-25-

containing the base address of the data segment with level 1
for which 1 - VLEVEL is a minimum. Then the following code is
generated:

SAi Bk
SAi Xi

. 1 - vlevel - 1 instructions
sAi Xi

which is succeeded by a SBn Xi when there is an n with
BRGS [n] .BCONT = FREE.
4) This avoids the generation of a fill instruction (NO).
5) CWDISPL in [@,1] 1is ©possible but improbable. A special
treatment to prevent a NO instruction would hardly pay off.
6) Alternative code would be
SBk Xi+cwdispl
SAi Xvwdispl+Bk.
7) The minus is valid for CONDCD
8) The minus is valid for CONDCD

NG.
NZ.

In case of a packed variable further code is necessary to unpack
the relevant bits from Xi into another X register. To achieve
this, a variable

Imode: (usradj, sradj, usladj)

is introduced to distinguish between three possibilities.

LMODE = USLADJ: The variable is of record or array type. Hence,
the value 1is structured, therefore unsigned, and has to be
left adjusted. It is not necessary to mask out the bits not
belonging to the value.”

LMODE = SRADJ: The variable is of subrange type, the lowbound of
which is 1less then zero. The value is signed and has to be
right adjusted. -

LMODE = USRADJ: The variable has another type. The value in this
case is unsigned and has to be right adjusted.

The corresponding code generation is defined by the next program
piece. Reguest and release of the registers as well as the
updating of the register content description are intentionally
left out for easier reading.

with fattr do
begin -
with typtr] do
begin -
ii form = subrange then
if min.ival < @ then lmode := sradj
- &lse lmode := usradj
else if form in [arrays,records] then lmode :
- - else lmode :

bitsz := size.bits
end;
with xrgs[i] do
if xcont in [simpvar,indvar] then shift := shftcnt
- - elsé shift := 0;
mask := wordsize - bitsz; cshft := cbdispl - shift;
if lmode = usradj then cshft := cshft + bitsz

-26-

end ;
if bitreg then
“begin
1f shift # @ then '
" begin [LXi wordsize-shift]; cshft := cshft + shift end; 1)
if cshft in [@,1) then [SBK Xvbdispl+Bcshf

else [SBk Xvbdispl+cs ;
en
else
Begin

with xrgs[i] do
if (xcont jip [simpvar,indvar]) and (lmode = sradj)
“then BXT-RT
else J := 1i;
if cshft # @ thenILXj cshft]
end;
case lmode of

usradj: begin[MXk mask|; [BXk -Xk*X7j| end;
sradj: [AX] masK] ;
usladj:

end

2)

Remarks:

1) This shift 1is necessary as otherwise Bk could be set to a
negative value. According to the CDC 600@ hardware
Specification the succeeding shift would then become a (sign
extending) arithmetic right shift and would lead to a wrong
result.

2) The register contents are copied to avoid destruction in the
succeeding shift operation.

Table 1 showed the effect of a call of EXPRESSION for the
variable r.f2[i]. The internal description produced and the code
generated were therein given as summarized below.

internal des- |generated|jdescription of the register contents

cription in code X reglsters | A registers
GATTR X | xcont | refnr | Alacont |alev [aaddr

typtr: charptr 1)

kind: varbl |[SA1 B2+3 1| avail 1 |simp—| 1 3

wordacc: drct|LX1 1 : addr

vlievel: 1{BX6 X

cwdispl: 8|LX6 1 !

vwdispl: -|[IX6 X6+X1{| 6 | other]

pckd: true

cbdispl: -51] i.e.

bitreg: truellx6 := 6*i

vbdispl: 6

A succeeding LOAD(GATTR,I) would have the following effect:

-27-

interpal des- ||generated description of the register contents
cription in code X registers A regilsters
GATTR X |xcont|refnr|xlev|xaddr|[A]Jacont[alev [aaddr
1) avall

SA2 B2+8 ||1 |avail 1|simp- 1 3

SB3 X6+B] addr
typtr: charptr|[LX® B3,X2||2|simp-] 1 8 2 |simp- 1 8
kind: expr||MX3 54 var addr
expreg: 3||IBX3-X3*X@}| 3jother 1

i.e.X3:={|6]avail

r.£2[1]

1) if not already loaded.

3.5. The Compilation of Operations

In chapter 3.1. the compiler procedure TERM, in which the
operations *, /, div, mod, and and are compiled was introduced.
. At that time, the associated code generation was not given since
the prerequisites for understanding it were missing. This is no
longer the case, and multiplication can be taken as an example.

Under the assumption that neither of the factors is a constant,
which would give rise to optimized code (cf. 3.1.), the
following program piece compiles the multiplication operation:

load(lattr,i); load(gattr,j);

decrefx(i); decrefx(j); needx(0,7,k);

EXk XI¥X7];

with gattr do :

begin typtr := intptr; kind := expr; expreg := k end

The Tirst factor (described by LATTR) 1is loaded into an X
register. By means of the variable i its index is passed to
TERM. Analogously the second factor (described by GATTR) is
loaded into Xj. If a factor is recognized as being already
loaded, LOAD does not, of course, generate code.

From the 1load operation each of the registers Xi and Xj gets a
reference (REFNR = 1). However, both of them are immediately
erased through calls of DECREFX because the contents of Xi and
Xj need not be protected any longer. With the subsequent call of
NEEDX the result register for the multiplication is required.
Due to the previous erasure of the references to Xi and Xj, it
is well possible that the returned register index k is equal to
i or j. The above calling sequence is therefore preferable to
... needx(@,7,k); decrefx(i); decrefx(j); ...

which restricts the freedom of choice of the selection algorithm
in NEEDX.

Finally, the multiplication instruction is generated and the
internal description of the result GATTR is defined.

A second example shows the process of code generation for the
expression (i > j) and (i >= 16). First, the left hand factor of
this term is compiled (cf. table 1).

-28-

generated code: internal desciption of the result:
SA1 B2+3 typtr: boolptr
SAZ Al+BI] kind: cond
IXP X2-X1 cdr: 8
condcd: pl

Then, the right hand factor:

SX3 10 typtr: boolptr
IX4 X1-X3 kind: cond
cdr: 4
condcd: ng

Finally, the two factors are disjunctively joined in TERM.

BX@ ~-X4*X@ typtr: boolptr
kind: cond
cdr: @
condcd: pl

This terminates the compilation of the conjunction. The
resulting register contents are described by XRGS and ARGS as
follows:

Xrgs args
X[xcont refnr {lastref|xlev/ | xaddr A lacont alev{aaddr
cval
@] other 1
1| simpvar @ 1 3 1 |simpaddr 1 3
2| simpvar @ 1 4 2 |simpaddr| 1 4
3| shrtcst] 10
4| avail

Of course, TERM could load the two factors with a call to LOAD.
In that case code would be generated to determine the associated
Boolean values (@ for FALSE, 1 for TRUE). However, this code
would be very inefficient. Instead of a single instruction seven
would be necessary to compile the and.

MX5 1 Boolean value

BX5 XS*X@} of 1. factor

LX5 1 into X5 typtr: boolptr
MX@ 1 Boolean value kind: expr
BX@ —X4*X0} of 2. factor expreg:]
Lxe 1 into X0

BX# X5*X@ and

4. The Compilation of Assignments

In addi;ion to the procedure LOAD, a procedure STORE is needed
to compile assignments. STORE has two input parameters, namely

-29-

the. description of the variable to which a new value has to be
assigned, and the index of the register containing the new
value. The procedure head hence takes the following form:

procedure store(fattr: attr; fi: regnr)

In analogy to LOAD the global variables ARGS, BRGS, and XRGS are
transient to the procedure.

The duality of the 1load and the store operation implies a
certain similarity., in the structure of the procedures LOAD and
STORE. This manifests itself in a very similar code generation.
However, despite these analogies, new problems arise with the
compilation of assignments. They all originate from the update
of the description of the register contents.

First of all it has to be decided which description should be
preferred when alternatives are possible.

Example: i := 1 be compiled to SX6 BI]
SA6 i

Should,in the description of X6, XCONT be set either to SHRTCST
(1) or to SIMPVAR (i)? From a theoretical point of view it would
be nice if the register description reflected that the constant
1 as well as the actual value of i can be found in X6. However,
this would imply that the contents of every register would have
to be described by a whole list of entries. Both searching for a
particular content and the wupdating procedure would be more
expensive by a factor. For these reasons it was decided not to
maintain lists.

When an assignment of the form V := E has to be compiled, three

questions are interesting and influence both code generation and

the updating of the register descriptions:

- Does a copy instruction (BXi Xfi) have to be generated (fi in
[#..5]) or not (fi in [6,7])?

- Is the variable V worth remembering (in the sense of 3.2.1.)7?

- Is the expression E worth remembering (in the same sense)?

Depending on the associated answers, the description of the X
register contents are updated in STORE as shown in the table
below.

a short con-|a long con- |[a variable vl| another

E is stant (s) stant (1) worth remem- | expression
bering
fi in fi in fi in fi in
V is {6,711 T@..51| (6,71 1T@..51} [6,7)1|T8..5] |[6,711[0..5]
Xf1 [X1fXfi} Xfi |X31[Xfif Xfi [Xi|Xfi | Xfi [Xi]|Xfi
worth re- 1) 2) 3) 2)
member ing v s| v v 1| v v vi|{ v v - v
not worth 2) 2)

remembering s st s 1 -1 1 v -l vl - -1 -

i
|
]
<
;

-3¢~

Remarks:

1) Applied to the above example, this means that the variable i
is preferred to the short constant 1.

2) And not the inverse as the probability for overwriting Xi
before Xfi is estimated to be greater than the probability to
overwrite Xfi before Xi.

3) The "new" variable is preferred to the "old" one.

Evidently, this more or 1less trivial updating of XRGS is not
sufficient. Through an assignment, certain register content
descriptions can become invalid when they do no longer
correspond to the actual state of the code generation. Three
kinds of assignments must be distinguished:

1. A simple variable (WORDACC = DRCT) is assigned a new value.

2. A simple pointer variable ((WORDACC = DRCT) and (TYPTRT.FORM=
POINTER)) dgets a new value.

3. An indirect variable (WORDACC = INDCRT) is assigned a new
value.

For each of these cases an example is given in the table below.

example |register content des- {assignment |[register content des-
for caselcription valid before cription valid after
the assignment the assignment
1 args[i]: @v Vo= ... args[i]: @v
xrgs[i]: v Xxrgs[i]: -
2 args[i]: @p] P T cas args[i]: -
xrgsf[il: pl xrgs[il: -
3 args(i]: @p] pT = ... args(i]: @p}
xrgs[i]: pT xrgs([i]: -

The detection of these obvious coincidences and the
corresponding updating of the register content descriptions
poses no problem. However, things become worse if the same
variable is accessed in two or more different ways. For example,
a variable parameter may coincide with either an actual variable
or another variable parameter. Similarly, two pointer variables

can have the same value whereby the referenced variables
coincide.

There are several ways of overcoming this difficulty.
Sufficient, but not necessary, conditions for the exclusion of
coincidences between two variables are:

- one of them resides in the stack, the other in the heap.

- their types are not compatible.

The former of these criteria is not very selective, while the
latter runs into difficulties in the implementation. For matters
of simplicity, a third solution was implemented. It

distinguishes between two cases, one of them consisting two
subcases:

-31-

case 1: A simple variable is assigned a new value.
Coincidence with another simple variable (XCONT =
SIMPVAR) can be excluded. Coincidence with a variable
parameter, however, 1is possible. Now, the variable
parameters are a subclass of the indirect variables
(XCONT = INDVAR). In order to be able to distinguish
them from the other indirect variables, the variant
SIMPVAR in XRGSTAT has yet another field

vpaddr: Boolean

telling whether the variable is the address of a
variable parameter (VPADDR = TRUE) or not.
Closer inspection of case 1 indicates that it is not
necessary to erase the description of all variable
parameters in XRGS. It is sufficient to erase those
which have a level that is greater than the level of the
simple variable. Otherwise coincidence is impossible.

case 2: Another variable is assigned a new value.

Unfortunately, there is no simple criterion to decide
whether coincidence with an indirect variable |is
possible. All INDVAR descriptions in XRGS are therefore
deleted. If it is a variable parameter that gets a new
value, then the description of all simple variables with
a level 1lower than the level of the variable parameter
are also deleted.

Besides the updating of the register content descriptions,
another interesting topic comes into view. Should one not -
analogously to the load instructions - try to reduce the store
instructions? This idea is certainly tempting and was therefore
carefully examined during the development of the compiler. An
experimental version was built, in which the generation of store
instructions was delayed in the case of assignments to SIMPVARS
and INDVARs. This could be done by adding a Boolean field to
these variants in XRGS telling whether the register contents in
guestion still had to be stored.

It follows that store operations can be eliminated in two cases:

- When a new value is assigned to a variable and the old value
has not yet been stored, the generation of the associated
store instructions becomes unnecessary.

For unstructured or unpacked variables this rarely happens.
However, with packed structured variables it has some
importance, namely when the components of the variables are
assigned values one after the other.

Example (cf. the declarations underlying table 1):

with r do
begin £l := true; f2 := “abcd’ end

- When the end of a procedure body is reached and there are
store operations of local variables pending, these store
operations are no longer necessary.

-32-~

Unfortunately, delayed store instructions complicate the
compiler considerably and do not bring much in return, if no
additional investments are made (as for example removing store
operations from loops).

The principal difficulty originates in the fact that the memory
is in general not wup to date. This implies that special care
must be taken when loading a variable. As soon as there is a
chance that the variable to be loaded coincides with a register
which has yet to be stored, the delayed store operation must
take place before the loading.

In addition, it 1is to be stressed that delayed storing could
only be considered for implementation as a compiler option.
Otherwise the post-mortem dump facility offered by this
implementation would have become a farce as the values printed
would never have corresponded to the actual state of the
computation. .

For these reasons the idea of implementing delayed store
operations was finally given up.

5. The Compilation of the Control Statements

It 1is characteristic of all control statements that they have a
"distributor” D (from which the computation flows out in several
directions) and a ‘“concentrator" C (in which the computation
flows together from several directions). This applies to

Dy + o Dl + Dl »

¥ v
if: if-else: case:f --- ..
c . Qe ¥ i R |
v c '1 C
D
while/for: repeat:
D
I A 4

Distributors and concentrators are of great importance to the
book-keeping of the register contents. When the compiler reaches
a distributor, it must locally store the actually valid register
content description in order to be able to reload it when
needed. This is necessary because the compilation is strictly
sequential, while the execution of these statements is not.
Nevertheless the compilation of any stream with distributor D

-33-

should profit from the register contents which are valid when
the distributor is reached. Therefore the register content
descriptions are reloaded in the nodes subsequently marked with
an r.

i
: + — hs
m' 'r-""'r'%-—--\l
| | ! 1
if: I| if-else: | ' i| case:
1 i ==
.' ! ! .
ge=—-J] 1 st —)
wc C
% ﬁ

while/for: repeat:

é_______-
1a

e R I

|l
()
—-+~=-- compilation sequence
—Se- » Store o
~lpo- -+ reloadlof register content descriptions
—So . Clear
When the compiler gets to a concentrator, the descriptions of
all register <contents are cleared since the trade-offs are too
heavy to do otherwise:

After compilation of a selective statement, the register content
descriptions which are valid at the end of the compilation of
every stream would have to be compared to each other. Thereby a
description could be derived which would be valid when reaching
the concentrator, regardless of how it was reached.

In the case of a repetitive statement the overhead would even be
greater. During compilation of the repeated statement, one would
be forced to keep track of how code generation depends on the
register content description which was wvalid when the
concentrator was reached. This relevant part of the register
status would have to be restored at the end of the loop - and
this would generally involve code generation.

The compiler procedure WHILESTATEMENT is shown below as an
example for the operations of register clear, -store,.and
-reload.

-34-

procedure whilestatement;
var largs: argconts; lbrgs: brgconts; lxrgs: xrgconts;
T 1brg: array [levrange] of regnr; llevels: set of levrange;
laddr: addrrange; lpl: place:
begin noop; laddr := ic;
clearregs;
expression;
genfalsejump(d); 1lpl
largs := args; lbrgs
lbrg := brg; llevels
readnextpascalsymbol;
statement;
gen3@(04b,0,0,1laddr) ;
noop; insert(ic,1lpl);

1;
rgs; lxrgs := xrgs;
evels;

U W=
— e

oo

p
b
1

W oodod
—

args := largs; brgs
brg := 1lbrg; levels
end (*whilestatement#¥)

brgs; xrgs := lxrgs;
levels

bt

Remarks:

1) The current code word is filled up with NO instructions and
the current value of the "instruction" counter IC is saved in
LADDR (cf. remark 7) below).

2) The concentrator is reached: the descriptions of the register
contents are cleared.

3) The controlling expression is compiled.

4) A false-jump - on the value described by GATTR - is
generated. The "pointer" to the involved branch instruction
(PL) is saved =~ thereby allowing a later fix-up of the vet

unknown destination address (cf. remark 8) below) .

5) The distributor is reached: the descriptions of the register
contents are saved.

6} The controlled statement is compiled.

7) The 1loop 1is closed: an unconditional jump to LADDR is
generated.

8) The current code word is filled up with NO instructions and
the branch instruction at LPL is completed with the current
"instruction" counter IC.

9) The actually valid register content descriptions are
reloaded.

The most elementary control statement is of course the

goto-statement. Here is another argument to support those who
consider it harmful:

In the terminology introduced in this chapter, labels represent
concentrators. These concentrators are, however, far more
awkward than the concentrators in "regular" control statements.
The reason for this is that, at the labels, computation can flow
together from arbitrary directions. Hence, it is impossible,
without a complete analysis of the computation flow, to find a
nontrivial register content description which is valid when a
particular label 1is reached. Thus, it should not be surprising

that in this one-pass compiler the descriptions of the register
contents are cleared whenever a label is compiled.

(1]

[6]

(7]

(8]

[91]

~35-

References

Ammann, U., "The Method of Structured Programming Applied to
the Development of a Compiler", International Computing

Symposium 1973,93-99, A, Guenther et al. (eds.), North-
Holland (1974)

Ammann, U., "Die Entwicklung eines PASCAL-Compilers nach der
Methode des Strukturierten Programmierens", Juris-Verlag
Zlrich (1975)

Jensen, K. and Wirth, N., "PASCAL - User Manual and Report",
Lecture Notes in Computer Science, No. 18, Spr inger-verlag,
Berlin-Heidelberg-New York (1974)

Hoare, C.A.R. and Wirth, N., "An Axiomatic Definition of the

Programming Language PASCAL", Acta Informatica 2, 1973,
335-355

Nori, K.V. et al., "The PASCAL P-code Compiler:
Implementation Notes", ETH Zfirich, Berichte des Instituts
fir Informatik, No. 18, 1975

Knuth, D.E., "The Art of Computer Programming", 1, Addison-
Wesley, 1968

Wirth, N., "The Programming Language PASCAL", Acta
Informatica 1, 1971, 35-63

Wirth, N., "The Design of a PASCAL Compiler", Software -
Practice and Experience, 1, 4 (1971), 309-334

Control Data 6400/6500/660¢ Computer Systems Reference
Manual

-36—-

Appendix: An Example of the Code Generation

Knuth [6] gives an algorithm to compute the date of Easter. The
following implementation of this algorithm is intended to
facilitate 1insight 1into the code generated by the new PASCAL
compiler.

program easter (output);
const liml = 1976; lim2 = 2000;
type year = liml..lim2; month = 3..4; day = integer;
var ye: year; mo: month; da: day;
Efacedure dateofeaster (y:year; var n:day; var m:month);
var g,c,x,z,d,e: integer;
go00a2 be§Tﬁ

0000810 g := y mod 19+1;

g00613 c := vy div 146+1;

goeB16 X = 3*E—§iz 4-12;

00621 z := (B*c+5) div 25-5;
pago26 d := 5*y div 4-x-10;
g08832 e := (11*g+20+z-x) mod 30;
6p00640 if e < @ then e := e+30;
000042 If (e=25)"and (g>11) or (e=24) then e := e+l;
008852 n := 44-e;” -
p00@54 if n < 21 then n := n+30;
200057 n := n+7 - (d+n) mod 7;
200065 if n > 31 then 7
000067 begin n := n-31;

000067 m := 4

goe0a70 end

200071 else m := 3

20086872 end (*dateofeaster*) ;
000802 begin

goe021 for ye := liml to lim2 do

200024 " begin dateofeaster (ye,da,mo);

0000626 (*output of ye,da,and mo here*)
g00826 end (*for¥)

PPBg32 end.

The reasons for choosing this program are manifold. It contains
a procedure with value and variable parameters, a for-loop,
several conditional statements, and nontrivial arithmetic.

-27-

The addresses associated with the variables occurring in this
program are:

Variable: aAddress:
ye B2+151
mo B2+152 }
da B2+153

main program variables

B5+3
B5+4 } parameter descriptors
B5+5

B5+6

B5+7

B5+8 variables local to
B5+9 DATEOFEASTER

B5+18

B5+11

O XNOGLODI3 I3

The compiler’s internal description of the register contents
during compilation of the procedure DATEOFEASTER is summarized
below. Each 1line shows the register contents between two
statements.

program X registers: A registers:
address X@ X1 X2 X3 X4 X5 X6 X7 Al A2 A3 A4 A5 A6 A7
peRBn2 y @n @m

0p0e18 y @n @m @m
000013 y @n @m 19 1 g g
goag1e6 y @n @m 168 1 g <c g ¢
000021 y @n @m 12 1 x ¢ X C
000026 y @n @m 25 5 z c zZ C
000032 y n @m x 16 =z d X z d
nooo4n g 30 X z e g X z e
pooaa2 g g 30 X e g X e e
poRas2 25 1T g 11 24 e e g e
000354 44 @n e n @n n
aaces7 44 @n e 21 390 n @n n
000065 7 @n d n @n n d n
go0ae6e7 7 @n 31 n d @n n d n
PPeo67 7 @n 31 d n @n n a n
ga00871 7 @n 31 @m d n m @n n @m 4 n m
06ae72 7 @n 31 n d @ém m @n n d @m m

With the help of this information, the compiler generates the
following code:

DATEOFEASTER: Remarks:
000@02 SX6 BS procedure entry code
LX6 18
BX7 X7+X6 1) stores dynamic link (B5) and return
SBS B6 address (X7); the static link is not
1) used and therefore not set. B5 (BASE)

and B6 (NEXT) are updated.

pAEBB3 SAT7 B5+B]

pooeo4

000005

00006

poees7

06018

0oee1

0B0B12

600032

000033

peop34

2000835

200036

SB6
NO

SB7
SAQ

GE
BX6
NO

SA6
BX6
SA6

BX6
SA6

SX3

PX5
PX4
NX4
FX4

ux4
LX4
DX 4
IX4

SX5
IX6
SA6

SX3
SA1

SX2
SX5
IX2

IX2
IX2
SX3

PX@
PX5
NX5
FX5

UX5
LX5
IX?

B6+12

B6+108
ppoBas5 2)

B7,B4,080085]
X0

B5+3
X1 3)
A6+B1

X2
A6+B1

19

X0 1)

X3

X4

X5/%x4 2)

B3,X4

B3,X4

X3*X4 }
X@-X4 3)

B1 4)
X4+X5
B5+11

11
B5+11

X3*X1
20
X2+X5

X2+X6 1
X2-X4 2
30

X2
X3
X5
X0/X5

B3,X5
B3,X5
X5+X5 1

3)

-38-

Tests whether stack and heap risk
overlapping (error address in A®@).
Saves the parameter descriptors

passed in X registers, i.e. the

value of y (in X@) and the addresses

of n and m (in X1 and X2 respectively).

g := y mod 1941

1) The value of y is already in X#.

2) This is the CDC 6008 standard
instruction sequence for integer
divisions [9].

3) y mod 19 = y-y div 19*19

4) makes use of Bl = 1.

e := (11*g+20+z-x) mod 30

1) The value of z is already in X6.

2) The value of x is already in X4.

3) The hidden multiplication by 30
is optimized: 3@=2%*1%(2%%x4-17),

4) The address of 4 , which is
adjacent to the address of e ,
is already in A7.

e00B37

$e0065

poPO66

peBB67

00070

000072

PRBa73

-

pee021

000022

pe0B23

BX5

LX5
IX5
IX7
SA7

BX3

SX2
IX5
NO

X4

X5-%X0
X2-X5
A7-B1 4)

X6 1)

31
X2-X6 2)

PL X5,000070

IX6
SA6

SA3
SX7
SA7

EQ

SA1
SB6
SB7
LX1

SB5
JP

X3-X2
A2

=W
-~

Al1+B1 5)
4
X3

2000872

B5+B1
B5
X1
42

X1
B7

EASTER:

SX6
SX@

IXP
BX#@

SA6

SX1

1976
2000

X0-X6 1)
X0,000030
X6 2)

B2+15]1

B2+153
2)

-39~

:=n - 31; m := 4 end

1) Copying one of the bottleneck
registers X6/X7 is expected to
be more fruitful than generating
a NO instruction.

2) The value of n is already in X6.

3) 31 was found in X2, the value of n
was found in X3.

4) The address of n is already in A2.

5) An address adjacent to the one of m
was found in Al.

procedure exit code

restore B5 and B6 and return

for ye := liml to lim2 do

1) Here the loop is closed. The in-
variant is: X@ contains the value of
the upper limit and X6 contains the
"new" value of the control variable.

2) Again, to avoid a NO instruction.

dateofeaster (ye,da,mo)

1) The value of ye was found in X#@.
2) Up to 5 parameter descriptors are

-40~

000024 SX2 B2+152 passed in X registers (X@-X4). This
SX7 0080026 shortens the calling sequence and
allows starting the compilation of
000025 EQ DATEOFEASTER many procedures with a nonempty
NO register status.
NO
P0@026 SA1 B2+15]1 end (*for¥)
SX@ Bl
IX6 X1+X0 The invariant is established

and the loop is closed.
0000627 SX§ 2000
EQ 900022

000030

In the whole of this example the compiler uses 12 times the fact
that the value of a simple variable is already in an X register;
and 5 times, it finds the value of a variable parameter in a
register. In addition, it realizes 3 times that the address of a
variable parameter (i.e. the value of its descriptor) happens to
be in a register. Hence, the number of load instructions is
reduced from 37 to 12, thereby saving 25 (=12+5*2+3) - i.e. a
saving of more than 2/3.

Several of the numerous occurrences of a constant give rise to
improved code generation. Five multiplications (3*c, 8%*c, 5*y,
and the two hidden ones in ... mod 30 and ... mod 7) are
compiled to shifts and additions, and for two divisions (both of
the form ... div 4) shift instructions are generated.

In fifteen places a 15 bit instruction can be generated instead
of a 30 bit instruction. Two times the address of a local
variable and ten times a neighbouring address is found to be in

a register. Three times the compiler can generate code to load
the constant 1 from B1.

To compare the efficiency and the tightness of the code produced
by the new compiler this sample program was also input to the
old PASCAL compiler. It turned out that the code generated by

the o0ld compiler was about 3¢ % less tight and about 25 % slower
in execution,

Berichte des Instituts fir Informatik

Nr. 1
Nr. 2
Nr. 3
Nr. 4
Nr. 5
Nr. 6
Nr. 7
Nr. 8
Nr. 9
Nr.10
Nr.11
Nr.12
Nr.13

Niklaus Wirth:

Niklaus Wirth:
Peter Lauchli:
Walter Gander,
Andrea Mazzario:
Niklaus Wirth:
C.A.R. Hoare,

Niklaus Wirth:

Andrea Mazzario,
Luciano Molinari:

E. Engeler,

E. Wiedmer,

E. Zachos:
Hans-Peter fFrei:
K.V. Nori,

U. Ammann, K.
H.H. N&geli:

G.I. Ugron,
F.R. Lithi:

Niklaus Wirth:

Urs Ammann:

The Programming Language Pascal (out of print)

Program development by step-wise refinement
(out of prinmt)

Reduktion elektrischer Netzwerke und
Gauss'sche Elimination

Numerische Prozeduren I
The Programming Language Pascal (Revised
Report)

An Axiomatic Definition of the Language
Pascal (out of print)

Numerische Prozeduren II

Ein Einblick in die Theorie der Berechnungen

Computer Aided Instruction: The Author
Language and the System THALES

The PASCAL 'P' Compiler: Implementation Notes

Jensen,

Das Informations-System ELSBETH

PASCAL-S: A Subset and its implementation

On Code Generation in a PASCAL Compiler

