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Abstract 
We present a personal perspective of the Art of Programming. We start with its 
state around 1960 and follow its development to the present day. The term 
Software Engineering became known after a conference in 1968, when the 
difficulties and pitfalls of designing complex systems were frankly discussed. A 
search for solutions began. It concentrated on better methodologies and tools. The 
most prominent were programming languages reflecting the procedural, modular, 
and then object-oriented styles. Software engineering is intimately tied to their 
emergence and improvement. Also of significance were efforts of systematizing, 
even automating program documentation and testing. Ultimately, analytic 
verification and correctness proofs were supposed to replace testing. 

More recently, the rapid growth of computing power made it possible to apply 
computing to ever more complicated tasks. This trend dramatically increased the 
demands on software engineers. Programs and systems became complex and 
almost impossible to fully understand. The sinking cost and the abundance of 
computing resources inevitably reduced the care for good design. Quality seemed 
extravagant, a loser in the race for profit. But we should be concerned about the 
resulting deterioration in quality. Our limitations are no longer given by slow 
hardware, but by our own intellectual capability. From experience we know that 
most programs could be significantly improved, made more reliable, economical 
and comfortable to use. 

The 1960s and the Origin of Software Engineering 
It is unfortunate that people dealing with computers often have little interest in the 
history of their subject. As a result, many concepts and ideas are propagated and 
advertised as being new, which existed decades ago, perhaps under a different 
terminology. I believe it worth while to occasionally spend some time to consider the 
past and to investigate how terms and concepts originated. 

I consider the late 1950s as an essential period of the era of computing. Large 
computers became available to research institutions and universities. Their presence 
was noticed mainly in engineering and natural sciences, but also in business they soon 
became indispensable. The time when they were accessible only to a few insiders in 
laboratories, when they broke down every time one wanted to use them, belonged to the 
past. Their emergence from the closed laboratory of electrical engineers into the public 
domain meant that their use, in particular their programming, became an activity of 
many. A new profession was born; but the large computers themselves became hidden 
within closely guarded cellars. Programmers brought their programs to the counter, 
where a dispatcher would pick them up, queue them, and where the results could be 
fetched hours or days later. There was no interactivity between man and computer. 
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Programming was known to be a sophisticated task requiring devotion and scrutiny, 
and a love for obscure codes and tricks. In order to facilitate this coding, formal 
notations were created. We now call them programming languages. The primary idea 
was to replace sequences of special instruction code by mathematical formulas. The 
first widely known language, Fortran, was issued by IBM (Backus, 1957), soon 
followed by Algol (1958) and its official successor in 1960. As computers were then 
used for computing rather than storing and communicating, these languages catered 
mainly to numerical mathematics. In 1962 the language Cobol was issued by the US 
Department of Defense for business applications. 

But as computing capacity grew, so did the demands on programs and on programmers: 
Tasks became more and more intricate. It was slowly recognized that programming was 
a difficult task, and that mastering complex problems was non-trivial, even when – or 
because – computers were so powerful. Salvation was sought in “better” programming 
languages, in more “tools”, even in automation. A better language should be useful in a 
wider area of application, be more like a “natural” language, offer more facilities. PL/1 
was designed to unify scientific and commercial worlds. It was advertised under the 
slogan “Everybody can program thanks to PL/1”. Programming languages and their 
compilers became a principal cornerstone of computing science. But they neither fitted 
into mathematics nor electronics, the two traditional sectors where computers were 
used. A new discipline emerged, called Computer Science in America, Informatics in 
Europe. 

In 1963 the first time-sharing system appeared (MIT, Stanford, McCarthy, DEC PDP-
1). It brought back the missing interactivity. Computer manufacturers picked the idea 
up and announced time-sharing systems for their large mainframes (IBM 360/67, GE 
645). It turned out that the transition from batch processing systems to time-sharing 
systems, or in fact their merger, was vastly more difficult then anticipated. Systems 
were announced and could not be delivered on time. The problems were too complex. 
Research was to be conducted “on the job”. The new, hot topics were multiprocessing 
and concurrent programming. The difficulties brought big companies to the brink of 
collapse. In 1968 a conference sponsored by NATO was dedicated to the topic (1968 at 
Garmisch-Partenkirchen, Germany) [1]. Although critical comments had occasionally 
been voiced earlier [2, 3], it was not before that conference that the difficulties were 
openly discussed and confessed with unusual frankness, and the terms software 
engineering and software crisis were coined. 

Programming as a Discipline 
In the academic world it was mainly E.W.Dijkstra and C.A.R.Hoare, who recognized 
the problems and offered new ideas. In 1965 Dijkstra wrote his famous Notes on 
Structured Programming [4] and declared programming as a discipline in contrast to a 
craft. Also in 1965 Hoare published an important paper about data structuring [5]. 
These ideas had a profound influence on new programming languages, in particular 
Pascal [6]. Languages are the vehicles in which these ideas were to be expressed. 
Structured programming became supported by a structured programming language. 

Furthermore, in 1966 Dijkstra wrote a seminal paper about harmoniously cooperating 
processes [7], postulating a discipline based on semaphores as primitives for 
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synchronization of concurrent processes. Hoare followed in 1966 with his 
Communicating Sequential Processes (CSP) [8], realizing that in the future 
programmers would have to cope with the difficulties of concurrent processes. 
Obviously, this would make a structured and disciplined methodology even more 
compelling. 

Of course, all this did not change the situation, nor dispel all difficulties over night. 
Industry could change neither policies nor tools rapidly. Nevertheless, intensive training 
courses on structured programming were organized, notably by H. D. Mills in IBM. None 
less than the US Department of Defense realized that problems were urgent and growing. 
It started a project that ultimately led to the programming language Ada, a highly 
structured language suitable for a wide variety of applications. Software development 
within the DoD would then be based exclusively on Ada [9]. 

UNIX and C 
Yet, another trend started to pervade the programming arena, notably academia, pointing 
in the opposite direction. It was spawned by the spread of the UNIX operating system, 
contrasting to MIT’s MULTICS and used on the quickly emerging minicomputers. UNIX 
was a highly welcome relief from the large operating systems established on mainframe 
computers. In its tow UNIX carried the language C [8], which had been explicitly 
designed to support the development of UNIX. Evidently, it was therefore at least 
attractive, if not even mandatory to use C for the development of applications running 
under UNIX, which acted like a Trojan horse for C. 

From the point of view of software engineering, the rapid spread of C represented a great 
leap backward. It revealed that the community at large had hardly grasped the true 
meaning of the term “high-level language” which became an ill-understood buzzword. 
What, if anything, was to be “high-level”? As this issue lies at the core of software 
engineering, we need to elaborate. 

Abstraction 
Computer systems are machines of large complexity. This complexity can be mastered 
intellectually by one tool only: Abstraction. A language represents an abstract computer 
whose objects and constructs lie closer (higher) to the problem to be represented than to 
the concrete machine. For example, in a high-level language we deal with numbers, 
indexed arrays, data types, conditional and repetitive statements, rather than with bits and 
bytes, addressed words, jumps and condition codes. However, these abstractions are 
beneficial only, if they are consistently and completely defined in terms of their own 
properties. If this is not so, if the abstractions can be understood only in terms of the 
facilities of an underlying computer, then the benefits are marginal, almost given away. If 
debugging a program - undoubtedly the most pervasive activity in software engineering – 
requires a “hexadecimal dump”, then the language is hardly worth the trouble. 

The widespread run on C undercut the attempt to raise the level of software engineering, 
because C offers abstractions which it does not in fact support: Arrays remain without 
index checking, data types without consistency check, pointers are merely addresses 
where addition and subtraction are applicable. One might have classified C as being 
somewhere between misleading and even dangerous. But on the contrary, people at large, 
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particularly in academia, found it intriguing and “better than assembly code”, because it 
featured some syntax. 

The trouble was that its rules could easily be broken, exactly what many programmers 
cherished. It was possible to manage access to all of a computer’s idiosyncracies, to items 
that a high-level language would properly hide. C provided freedom, where high-level 
languages were considered as straight-jackets enforcing unwanted discipline. It was an 
invitation to use tricks which had been necessary to achieve efficiency in the early days 
of computers, but now were pitfalls that made large systems error-prone and costly to 
debug and “maintain”. 

Languages appearing around 1985 (such as Ada and C++), tried to remedy this defect and 
to cover a much wider variety of foreseeable applications. As a consequence they became 
large and their descriptions voluminous. Compilers and support tools became bulky and 
complex. It turned out that instead of solving problems, they added problems. As Dijkstra 
said: They belonged to the problem set rather than the solution set. 

Progress in software engineering seemed to stagnate. The difficulties grew faster than 
new tools could restrain them. However, at least pseudo-tools like software metrics had 
revealed themselves as being of no help, and software engineers were no longer judged 
by the number of lines of code produced per hour. 

The Advent of the Micro-Computer 
The propagation of software engineering and Pascal notably did not occur in industry, 
but on other fronts: In schools and in the homes. In 1975 micro-computers appeared on 
the market (Commodore, Tandy, Apple, much later IBM). They were based on single-
chip processors (Intel 8080, Motorola 6800, Rockwell 6502) with 8-bit data busses, 
32KB of memory or less, and clock frequencies less than 1 MHz. They made 
computers affordable to individuals in contrast to large organizations like companies 
and universities. But they were toys rather than useful computing engines. Their 
breakthrough came when it was shown that languages could be used also with 
microcomputers. The group of Ken Bowles at UC San Diego built a text editor, a file 
system, and a debugger around the portable Pascal compiler (P-code) developed at 
ETH, and they distributed it for $50. So did the Borland company with its version of 
compiler. This was at a time when other compilers were expensive software, and it was 
nothing less than a turning-point in commercializing software. Suddenly, there was a 
mass market. Computing went public 

Meanwhile, requirements on software systems grew further, and so did the complexity 
of programs. The craft of programming turned to “hacking. Methods were sought to 
systematize, if not construction, then at least program testing and documentation. 
Although this was helpful, the real problems of hectic programming under time-
pressure remained. Dijkstra brought the difficulty to the point by saying: Testing may 
show the presence of errors, but it can never prove their absence. He also sneered: 
Software Engineering is programming for those who can’t. 

Programming as a mathematical discipline 
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Already in 1968 R.W. Floyd suggested the idea of assertions of states, of truths always 
valid at given points in the program [10]. It led to Hoare’s seminal paper titled “An 
Axiomatic Basis of Computer Programming”, postulating the so-called Hoare logic 
[11]. A few years later Dijkstra deduced from it the calculus of predicate transformers 
[12]. Programming was obtaining a mathematical basis. Programs were no longer just 
code for controlling computers, but static texts that could be subjected to mathematical 
reasoning. 

Although these developments were recognized at some universities, they passed 
virtually unnoticed in industry. Indeed, Hoare’s logic and Dijkstra’s predicate 
transformers were explained on interesting, but small algorithms such as multiplication 
of integers, binary search, and greatest common divisor, but industry was plagued by 
large, even huge systems. It was not obvious at all, whether mathematical theories were 
ever going to solve real problems, when the analysis of even simple algorithms was 
demanding enough. 

A solution was to lie in a disciplined manner of programming, rather than a rigorous 
scientific theory. A major contribution to structured programming was made by Parnas 
in 1972 with the idea of Information Hiding [13], and at the same time by Liskov with 
the concept of Abstract Data Types [14]. Both embody the idea of breaking large 
systems up into parts called modules, and to clearly define their interfaces. If a module 
A uses (imports) a module B, then A is called a client of B. The designer of A then need 
not know the details, the functioning of B, but only the properties as stated by its 
interface. This principle probably constituted the most important contribution to 
software engineering, i.e. to the construction of systems by large groups of people. The 
concept of modularization is greatly enhanced by the technique of separate compilation 
with automatic checking of interface compatibility. 

Just as structured programming had been the guiding spirit behind Pascal, 
modularization was the principal idea behind the language Modula-2, the successor of 
Pascal, published in 1979 [15]. In fact, its motivation came from the language Mesa, an 
internal development of the Xerox Research Lab in Palo Alto, and itself a descendant of 
Pascal. The concept of modularization and separate compilation was also adopted by 
the language Ada (1984), which was also based largely on Pascal. Here, modules were 
called packages. 

The Era of the Personal Workstation 
However, another development influenced the computing field more profoundly than 
all programming languages. It was the workstation, whose first incarnation, the Alto, 
was built, once again, in the Xerox Research Lab in Palo Alto (1975) [16]. In contrast 
to the mentioned micro-computers, the workstation was powerful enough to allow 
serious software development, complex computations, and the use of a compiler for an 
advanced PL. Most important, it pioneered the bit-mapped, high-resolution display and 
the pointing device called mouse, which together brought about a revolutionary change 
in computer usage. Along with the Alto the concept of local area network was 
introduced, and that of central servers for (laser-) printing, large scale file storage, and 
e-mail service. It is no exaggeration at all to claim that the modern computing era 
started in 1975 with the Alto. The Alto caused nothing less than a revolution, and as a 
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result people to-day have no idea, how computing was done before 1975 without 
personal, highly interactive workstations. The influence of these developments on 
software engineering cannot be overestimated. 

As the demand of ever more complex software grew persistently, and as the difficulties 
became more menacing, as some spectacular failures demonstrated that problems were 
serious, the search for panaceas began. Many cures were offered, sold, and soon 
forgotten. One of them, however, proved fruitful and survived: Object-oriented 
programming (OO). 

Up to 1980 the commonly accepted model of computing was transforming data from 
their given state to the result, gradually transforming input into output. In its simplest 
abstract form this is the finite state machine. This view of computing stemmed from the 
original task of computers: Computing numerical results. However, another model 
gained ground in the 1960s: It originated from the simulation of complex systems 
(supermarkets, factories, railways, logistics). Their abstraction consists of actors 
(processes) that come and go, that pass phases in their lifetime, and that carry a set of 
private data representing their current state. It proved natural to think of such actors 
with state as a unity, as an object. Some programming languages were designed on the 
basis of this model, their ancestor being Dahl and Nygaard’s Simula in 1965. But they 
remained confined to the field of simulation of discrete event systems. Only after the 
emergence of powerful personal computers did the OO-model gain wider acceptance. 
Now, computing systems would feature windows, icons, menus, buttons, toolbars etc., 
all easily identifiable as visible objects with individual state and behavior. Languages 
appeared supporting this model, among them Smalltalk (Goldberg and Kay, 1980), 
Object-Pascal (Tesler, 1985), C++ (Stroustrup, 1985), Oberon (Wirth, 1988), Java 
(Sun, 1995) and C# (Microsoft, 2000). Object-orientation became both a trend and a 
buzzword. Indeed, choosing the right model for an application is important. 
Nevertheless, one must not overlook the fact that there exist applications for which OO 
is not the appropriate model. 

Abundance of Computer Power 

The period since 1985 up until a few years ago has chiefly been characterized by 
enormous advances in hardware technology. Today, even tiny computers such as 
mobile telephones, have a hundred times more power and capacity than those 20 years 
ago. It is fair so say that semiconductor and disk technologies have recently determined 
all advances. Who, for example, would have dreamt in 1990 of memory sticks holding 
several gigabytes of data, of tiny disks with dozens of gigabyte capacity, of processors 
with clock rates of several gigahertz? 

This speedy development has vastly widened the area of computer applications. This 
happened in particular in connection with communication technology. It is now hard to 
believe that before 1975 computer- and communication technologies were considered 
separate fields. Electronics has united them, and has made the Internet pervasive. It 
features a bandwidth that appears to be unlimited. I am overwhelmed, when I compare 
this with the first, stand-alone minicomputer that I worked with in 1965, a DEC PDP-1: 
Clock rate, < 1 MHz, memory of 8K word of 18 bits, drum storage of some 200 KB. It 
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was time-shared by up to 16 users. It is a miracle that some people insisted in believing 
that one day computers would become powerful enough to be useful. 

In the 1990s, a phenomenon started to spread under the name of Open Source. The 
distrust against huge systems designed in industrial secrecy became manifest. A wide 
community of programmers decided to build software and to distribute their products 
for free through the Internet. Although it is difficult to recognize this as a sound 
business principle – making the idea of patents obsolete – the bandwagon turned out to 
be rather successful. The notions of quality and responsibility in case of failure seemed 
irrelevant. Open Source appeared as the welcome alternative to industrial hegemony 
and abrasive profit, and also against helpless dependence. 

It is often difficult in software engineering to distinguish between business strategies 
and scientific ideas. On the latter ground, Open Source appears to be a last attempt to 
cover up failure. The writing of complicated code and the nasty decryption by others is 
apparently considered easier or more economical than the careful design and 
description of clean interfaces of modules. The easy adaptability of modules when 
available in source form is also a poor argument. In whose interest would a wild growth 
of varieties of variants ever be? Not in that of high-quality engineering and 
professionalism. 

Wasteful Software 
Whereas the incredible increase in the power of hardware was very beneficial for a 
wide spectrum of applications (we think of administration, banks, railways, airlines, 
guidance systems, engineering, science), the same cannot be claimed for software 
engineering. Surely, software engineering has profited too from the many sophisticated 
development tools. But the quality of its products hardly reflects signs of great 
progress. No wonder: After all, the increase of power was itself the reason for the 
terrifying growth of complexity. Whatever progress was made in software methodology 
was quickly compensated by higher complexity of the tasks. This is reflected by 
Reiser’s “law”: “Software is getting slower faster than hardware is getting faster”. 
Indeed, new problems have been tackled that are so difficult that engineers often have 
to be admired more for their optimism and courage than for their success. 

What happened in software engineering was predictable and inherent in a field of 
engineering, where the demands rise, work is done under time pressure, and the cost of 
resources are almost disappearing. The consequence is waste of cheap resources – 
processor cycles and storage bits – resulting in inefficient code and bulky data. This 
waste has become ever-present and represents a grave lack of sense for quality. 
Inefficiency of programs is easily covered up by obtaining faster processors, and poor 
data design by the use of larger storage devices. But their side effect is a decrease of 
quality – of reliability, robustness, and ease of use. Good, careful design is time-
consuming, costly. But it is still cheaper than unreliable, difficult software, when the 
cost of “maintenance” is not factored in. The trend is disquieting, and so is the 
complacency of customers. 

Personal Reflections and Conclusions 
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What can we do to release this log-jam? There is little point in reading history, unless 
we are willing to learn from it. Therefore, I dare to reflect on the past and will try to 
draw some conclusions. A primary effort must be education toward a sense of quality. 
Programmers must become engaged crusaders against home-made complexity. The 
cancerous growth of complexity is not a thing to be admired; it must be fought 
wherever possible [17]. Programmers must be given time and respect for work of high 
quality. This is crucial and ultimately more effective than better tools and rules. Let us 
embark on a global effort to prevent software from becoming known as softwaste! 

Recently I have become acquainted with a few projects where large, commercial 
operating systems were discarded in favor of the Oberon System, whose principal 
design objective had been perspicuity and concentration on the essentials [18]. The 
project leaders, being obliged to deliver reliable, economical software, had recognized 
that they were unable to do so as long as they – even most carefully – built their work 
on top of complex base software – a platform - that was neither fully described nor 
dependable. We know that any chain is only as strong as its weakest link. This holds 
also for module hierarchies. Systems can be designed with utmost care and 
professionalism, yet they remain error-prone if built on a complex and unreliable 
platform. 

The crazy drive for more complexity – euphemistically called sophistication – long ago 
had also seized the most essential tool of the software engineer. Modern languages like 
Java and C# may well be superior to old ones like Fortran, PL/I, and C, but they are far 
from perfect, and they could be much better. Their manuals of several hundred pages 
are an unmistakable symptom of their inadequacy. Engineers in industry, however, are 
rarely free from constraints. They supposedly they must be compatible with the rest of 
the world, and to deviate from established standards might be fatal. 

But this cannot be said about academia. It is therefore a sad fact that it has remained 
inactive and complacent. Not only has research in languages and design methodology 
lost its glamour and attractivity, but worse, the tools common in industry have quietly 
been adopted without debate and criticism. Current languages may be inevitable in 
industry, but for teaching, for an orderly, structured, systematic, well-founded 
introdution they are entirely mistaken and obsolete. 

This is notably in accord with the trends of the 21st century: We teach, learn, and 
perform only what is immediately profitable, what is requested by students. In plain 
words: We focus on what sells. Universities have traditionally been exempt from this 
commercial run. They were places where people were expected to ponder about what 
matters in the long run. They were spiritual and intellectual leaders, showing the path 
into the future. In our field of computing, I am afraid, they have simply become docile 
followers. They appear to have succumbed to the trendy yearning for continual 
innovation, and to have lost sight of the need for careful craftsmanship. 

If we can learn anything from the past, it is that computer science is in essence a 
methodological subject. It is supposed to develop (teachable) knowledge and 
techniques that are generally beneficial in a wide variety of applications. This does not 
mean that computer science should drift into all these diverse applications and lose its 
identity. Software engineering would be the primary beneficiary of a professional 
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education in disciplined programming. Among its tools languages figure in the 
forefront. A language with appropriate constructs and structure, resting on clean 
abstractions, is instrumental in building artefacts, and mandatory in education. Home-
made, artificial complexity has no place in them. And finally: It must be a pleasure to 
work with them, because they enable us to create artefacts that we can show and be 
proud of. 
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