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Summarys:

An attempt is made to familiarize the reader with the term error
recovery and to develop a simple but effective method of error
recovery applicable to recursive descent parsers. Examples from a
Pascal production compiler are given to illustrate the
implementation of the principles worked out in the paper.

*) From an IRIA course on the "State of the Art and Future Trends
in Compilation" held by the author in Montpellier (France) in
January 1978; appears also in the course proceedings.
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Introduction

Usually the syntax of programming languages is formally Qefined
(e.g. by means of BNF (Algol 60 [Nau63]), EBNF (Modula [Wir77]),
syntax diagrams (Pascal [JeWw75]) or thg more powerful two-level
grammars (Algol 68 [vWi69])). Programs which obey the syntactic
rules are said to be syntactically correct while programs found in
conflict with these rules are said to contain syntax errors. The
term error recovery will be used to denote the action undertaken bv
the parser to assure a sensible continuation of the syntax analysis
whenever a syntactic error has been detected.

Among the several methods of syntax analysis, recursive descent is
certainly the most elegant one. However, in order to be applicable
two prerequisites have to be fulfilled. First, the vparser
implementation language must allow for recursive procedures. Second,
the grammar underlying the language has to be LL(1). (Following
[Khu71], the LL(1) property of a grammar G = <VT,VN,S,P> can be
defined as follows:
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which means that when a sentential form , A, through the
application of a production to the leftmost non-terminal A on the
one hand leads to =,xwiz(and finally to the sentencewany) and on the
other hand tODQubgand finally to the sentence wax;, it follows that
~, and «, are equal. In other words: the incoming symbol a leaves no
doubt as to which production should be applied to the leftmost non-
terminal A (it is the production A —xy)).

Under these two conditions the implementation of a recursive descent
parser for syntactically correct programs is trivial. Each syntactic
entity (defined e.g. by a syntax diagram or a BNF non-terminal) is
associated with a parser procedure. All that is needed in addition
is an auxiliary procedure to scan symbols reading with each call the
next terminal symbol from the input. Note that the parser obtained
this way works top~down, goal-oriented, starting with the
distinguished non-terminal symbol (<program>) and applying
productions to the 1leftmost non-terminal to match the string of
incoming symbols. In contrast, the symbol scanner works bottom-up,
source-oriented. It reduces the character input to a sequence of
terminal symbols. Figure 1 illustrates this.
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Figure 1: Parsing and scanning

With the syntax analysis separated into parsina and scanning, there
are in principle two 1levels for attempting error correction:
character level and symbol level. The character-level error repair
is done in the symbol scanner. It essentially concerns the
correction of spelling errors, especially in word delimiters. We do
not cover this subject here. The interested reader is referred to
[Gri71}]. The symbol-level error recovery is done in the parser. It
will be the subject of our course. (For surveys on error recovery in
general see [Gri75] and [Hor75]).

A good error recovery is characterized by the fact that the parser
picks up immediately after the detection of an error. This means
that in general no unjustified error messages are emitted and no
error escapes 1its detection. This allows the programmer an
opportunity for a syntactically correct program after just one
compilation.

When the partial syntax tree S which has already been accepted by
the wvarser is incompatible with the incoming symbol s, an error has
been found. In such a case the parser first emits an appropriate
error message indicating exactly where the error was detected (cf
Avpendix II). Then, error recovery 1is initiated to solve the
incompatibility. This c¢an be done in one of the three following
ways.

(1) The program is skipped up to a symbol s~ which is compatible
with the actual syntax tree S.

(2) The partial syntax tree is rebuilt to form a similar tree S~
which is compatible with the incoming symbol s.




(3) A combination of (1) and (2) is used. A skip qver'the inpug up
to a symbol s’ and a reconstruction resulting in trge S are
done in tune with one another and in such a way that s° and 8
will be compatible.

Obviously, only (3) which contains (1).(for S°=S) as well as (2)
(for s’=s) is general enough to recommend 1t§e1f.for error recovery.
In recursive descent parsers, however, it 1s.p9551ble that the
syntax tree associated with a program is no@ explicitely pullt up
during parsing: This is typically the case in one-pass compllgrs, in
which the semantic actions therefore have to be 1nterleaved_w1th the
parser actions. In such a compiler the syntax Free exists only
implicitely, namely in the runtime stack of the compiler, wh}ch at
any time represents the actual branch of the syntax tree. Figure 2
gives an example. It shows the actual branch of @he syntax tree at
the moment when <expression> accepts the egual sign.
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Figure 2: The actual branch of the syntax tree

Thus, in the case of a recursive descent parser the above mentioned
reconstruction of the syntax tree is achieved by simply passing
program control.

To 1illustrate this let us assume that in the example of figqure 2 a
for follows the egual sign. Figure 3 shows how the parser might
recover from the error by passing control from <factor>, which
detects the error, to <forstatement>, thereby rebuilding the (actual
branch of the) syntax tree. .
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Figure 3: Reconstruction of the syntax tree to recover
from a syntactic error

It is to be pointed out that passing control should never be done
with a goto but rather and wultimately by using reqular control
structures.

One very important remark to close this introduction: Every
syntactically correct program must be parsed completely, no matter
how many semantic errors it contains (for example a wrong number of
actual parameters in a procedure call must not result in error
recovery to skip the surplus parameters). The danger of wviolating
this principle exists whenever syntactic and semantic analysis are
done in the same pass.

Development of a Method for Error Recovery

In the following the programmina language Pascal [JeW75] will be
used both as the 1language to be parsed and as the parser
implementation language. The simplicity of Pascal implies its
suitability in both resvects. A further advantage results from the
fact that the syntax is defined both by means of syntax diagrams and
BNF'.

We first define the symbol scanner:
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procedure insymbol; . '
begin (* reads the next Pascal terminal symbol from the input;

communication with the parser is through a global
variable SY of
type symbol =

(labelsy,constsy,varsy,... ,programsy, (a)
comma,semicolon,period,...,becomes, (b)
ident,intconst,realconst,stringconst, (c)
othersy, (d)
eop) ; (e)

The type SYMBOL consists of the word delimiters (a), the
special symbols (b), the composed symbols (c), the no-
Pascal symbol (d) and the end-of-proaram symbol (e).
OTHERSY 1is returned when an illegal character is found in
the input, EOP is returned when INSYMBOL runs out of
input.*)

end (*insymbol¥)

The treatment of syntactic errors will be based on two trivial
procedures and a set of rules every parser procedure has to obey.
Let us first define the two procedures and then the rules.

The first procedure is responsible for the output of the error
messages:

procedure error (fnr: errornr);

begin (*indicates exactly where the error associated with the error
number FNR has been detected (cf. Appendix II)*)

end (*error¥*)

The other procedure is responsible for the error recovery and has
two parameters. One of them (FSYS1) is the set of the symbols which
are compatible with the current syntax tree. The other (FSYS2) is
the set of those symbols s” for which the error recovery action (3)
described in the introduction is guaranteed to take place, should SY
not be compatible with the current syntax tree.

The two symbol sets are of
type setofsys = set of symbol
and the procedure reads

procedure testsys(fsysl,fsys2: setofsys; fnr: errornr);
var fsys: setofsys;
begin If not (sy in fsysl) then
begin error (fnr); fsys := fsysl + fsys2;
while not (sy in fsys) do insymbol
end
end (*testsys*)

With the aid of this procedure, adjusting the input string after
detection of an error degenerates to a call of TESTSYS.

However ~ and now we come to the rules - the calling parser
procedure has to guarantee that the above specifications hold for
the actual parameters it passes on. For FSYS2 this is evidently
nontrivial since we want this set to be as large as is reasonably
possible. The larger it is, the fewer symbols will be skipped, the
better is the error recovery. Note that from the definition it is
clear that OTHERSY will never be a member of FSYS2 (nor of FSYS1)
while EOP will always be in FSYS2.



In order to keep the parser as simple as possible we Ffurther
postulate that the treatment of syntactic errors should always and
ultimately be done by the called parser procedure and not by the
calling one as well. This has two implications for the called
procedure. First, it cannot make any assumption of the input
delivered to it for analysis. In particular the input can start with
an arbitrary symbol. Second, the called procedure has to guarantee
its caller to return a program remnant starting with a symbol from a
symbol set which the called procedure receives as a parameter.

Hence, everv parser procedure has a parameter (FSYS of type
SETOFSYS) through which it is informed of the so called global key
symbols. Besides the purpose mentioned above, this parameter also
serves to tell the called parser procedure which svymbols should
under no circumstances be skipped during the call. Since only
TESTSYS is authorized to skip, this demand is simply accomplished by
always calling TESTSYS with the union of FSYS1 and FSYS?2 containing
all the global key symbols.

The error recovery as defined above does not only set a standard to
the called procedure but also to the calling one which must always
pass as parameter a set of symbols containing all its global key
symbols as well as all the symbols that upon return represent a
legal program continuation. However, it should be evident that due
to this convention the «caller has full control over the error
recovery eventually taking place in the procedure it calls.

To summarize, the three recovery rules are as follows:

(1) When calling TESTSYS, respect its parameter specifications,
i.e.
FSYS1: set of currently acceptable symbols
FSYS2: set of recovery symbols (for which error
recovery is guaranteed to take place)

(2) Respect that error recovery is completely reguired from the
called parser procedure, i.e.

procedure syntentity (fsys: setofsvs);
begin (* entry: (2.1) no assumption of SY possible *)
(* body: (2.2) parse SYNTENTITY never skipping over
a symbol from FSYS*)
(* exits: (2.3) make sure SY & FSYS *)
end (*syntentity*)

(3) When P(SYS1) calls Q(SYS2) then P must guarantee that anv SY &
5YS2 will be accepted upon return from Q (it follows from (2)
that SYS2 2 Sys1),

It 1is noteworthy that the error recovery as defined in this section
is very flexible since the 1liberty of choosing the key symbols
according to the actual syntax tree opens a wide range of error
treatments. In Appendix I we give two examples of parser procedures
written along the guidelines summarized in this section. These
examples hopefully illustrate the simplicity, flexibility and
readability of our error recovery method. To show its effectiveness
furthermore, a sample output from a compiler [Amm78a,b] in which
this error recovery method has been implemented 1is also given
(Appendix II).

Swo




Conclusion

The method of error recovery described in this paper was first usegd
in the one-pass Pascal compiler [Amm78a,b] developed at ETH in 1973
and was later adopted by many of its derivatives.

The method has proved to be successful and it could well be
formalized to be wused 1in a parser generator. However, few people
ever write a compiler and nearly nobody does it more than twice.
This is why for most of us the development of a parser generator is
perhaps not very attractive. Furthermore, it is to be wpointed out
that tuning the error recovery to individual programmer errors is
still best done by hand anyway.
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Appendix I: Two Examples of Parser Procedures 5
1. The syntax of a pascal constant definition is %

Hl) PP
-~ NS

constantdefinition __,(const)—TXFdent)e{)—ﬁEEEEEEEQ—]

A parser procedure respecting our recovery rules could read

procedure constantdefinition (fsys: setofsys) ;
begin (*constsy has already been accepted*)

testsys([ident],fsys,2): (1)
while sy=ident do
" begin insymbol; testsys([equ] ,fsys+constbegsys,6); (2)

if sy=egu then insymbol else error (16);
constant(fsys+[sem1colon ident]) ;
if sy=semicolon then

begin insymbol;testsys(fsys+[ident],[],6) end
else error (14) __—

end
end (*constantdefinition*)

Remarks: |

(1) The decoding of the error messages is as follows:
identifier expected

illegal symbol

“; " expected

" expected

Vb OV N

1

1

(2) CONSTBEGSYS is the set of symbols a <constant> can
start with:

CONSTBEGSYS =
{x]<constant>™ xe and x€SYMBOL and & & SYMBOL*}

2.The syntax of a Pascal if statement is

If statement

7 th tatement]|
_~_>(:_)_ﬁexpreSSlonF9( en)‘*@ men llj(*lsé)_%statement}——j

and a straightforward implementation leads to
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procedure ifstatement (fsys: setofsys);

begin (*ifsy has already been accepted¥)
expression(fsys+[thensy,elsesy]+statbegsys); (1)
if sy=thensy then insymbol else error(52); (2)
statement (fsys+[elsesy]);
if sy = elsesy then

begin insymbol; statement (fsys)end
end (*ifstatement*)

Remarks:

(1) STATBEGSYS is the set of symbols a <statement> can
start with:
STATBEGSYS =
{x)<statement>*» xx and xeSYMBOL and y&SYMBOL*}

(2) 52 “then’ expected
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Appendix II: A Sample Output of the Pascal 6§@0-3.4 Compiler

pPAPe6 PROGRAM EASTER (QUTPUT );
pe@235 CONST 1 LIM1 = 1978; LIM2 20p0;

* %3 t2 16

@235 TYPE YEAR = LIM1..LIM2; MONTH = 3,.4; TYPE DAY = INTEGER;

HH t 18

gap235 VAR Y: YEAR; M: MONTH: D: H

* k3 1P

ppR237

pRE237 PROCEDURE MISTERY (Y: YEAR: VAR N: DAY: VAR M: MONTH):

ppRene6 VAR G ,C ,X ,Z ,D ,E: INTEGER :

gaag1a BEGIN G := Y MOD 19 + 1:

geB015 C := Y DIV 188 + 1: |
pppe23 X 1= 3%%C DIV 4 -~ 12; |
* R 458 |
ppEd23 Z := (8%¥C + 5) DIV 25 -~ 5: |
pEPP33 D :=5 Y DIV A4 - X - 10; |
¥* %% t 6 |
pARD36 E := (11%6 + 20 + Z ~ X ) MOD 30: $ |
¥ 3¢ ¢ + 6 ‘
pepoa6 IF E < @ THEN E 1= E + 30; |
peggar IF (E=25) AND (G>11) OR (E=24 THEN E := E + 1: |
* XK ta

pEOB57 N := 44 - E; |
PERE6 IF N < 21 THEN N := N + 30; g
pEpB6da N := N+ 7 - (D) MOD 7: |
gpeg74 IF N > 31 DO |
¥* 3¢ t 6 f
pppe74 BEGIN N := N - 31:

¥ [ 52‘

papga76 M := 4

BePB76 ELSE M =:= 3:

* %% t13 t59

pABI00 END (*MISTERY *);

@p@125 BEGIN

ppP125 FOR Y = LIM1 TO LIM2 DO

¥ %K 4 51

ppBR16 BEGIN MISTERY (Y ,D,M); WRITELN (Y ,D M)

preaa0 END

.BPd@a4a1 END .

ERROR BUMMARY :
HH R REHHHRRH

2: IDENTIFIER EXPECTED
4: "} EXPECTED
6: ILLEGAL SYMBOL
1#: ERROR IN TYPE
13: °‘END’ EXPECTED
16: ‘=" EXPECTED
18: ERROR IN DECLARATION PART
51: “:=" EXPECTED
52: "THEN® EXPECTED
58: ERRDR IN FACTOR
59: ERROR IN VARIABLE
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Summary

The introductory part deals with abstract data types and their
representation. In the main part a survey of the principles of run-
time storage organization is given and possible solutions to the
occurring problems are described. First, we concentrate on the run-
time stack and summarize the implications to data organization
resulting from the classical block structure in Algol-like
procedure-oriented languages. A description of the implementation of
random-order dynamic storage allocation by means of a run-time heap
follows. We conclude with a few remarks on storage allocation in
multiprograms. To support comprehension many examples are given.

*) From an IRIA course on the "State of the Art and Future Trends
in Compilation" held by the author in Montpellier (France) in
January 1978; appears also in the course proceedings.
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1. Introduction

One of the most important tasks a compiler system is faced with is
the organization of the data in the user program. The high level of
abstraction offered in languages such as PL/I, Simula, Algol 68, and
Pascal implies a considerable overhead in storage management. The
main proplems in this respect are storage allocation, storage
deallocation and access to objects which is of course highly
influenced by their representation.

Therg are basically two approaches to storage management. The first
possibility - since Algol 60 the classical one - consists in the
declaration of data local to a block. The associated allocation and
deallocation of memory is done automatically at block entry and

block exit respectively. We shall also refer to these objects as
stack objects.

The second possibility is due to the so-called dynamic objects. By
means of a special-purpose language construct dynamic objects can be
created under full programmer control. Deallocation of storage
occupied by dynamic objects follows either one of two philosophies.
According to the first philosophy the user is required to return the
object to the run-time system - again through the use of the
appropriate language construct. With the other philosophy it is up
to the run-time system to find out when a dynamic object can no
longer be accessed. It must then liberate the associated memory. We
shall use the term heap object as a synonym to dynamic object.

Since block-local objects can be managed in a last-in-first-out
order, storage management is not very difficult with stack objects.
However, access to the objects is quite difficult especially as
recursive calls allow for several instances of local data.

The opposite proves right for dynamic objects. The unpredictable
order in which objects come into existence and vanish makes storage
management quite difficult while access to heap objects is generally
no problem. It only becomes a problem when these objects are moved
in memory to realize a so-called storage compaction.

Further complications with storage administration arise when
process— (task-) oriented multiprograms are to be compiled.

These are the main topics we shall elaborate in our course.

2. Abstract Data Types and their Representation

Abstract data types define a set of values an object of such a type
can take on, and usually a set of operators which operate on objects
of these types.

The most elementary data types are those which have unstructured
values such as

type: representation:

integer Usually one’s or two s complement binary representation
(one or a few words in length, depending on the
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underlying machine and the application). ‘

In commercial applications an integer type is known
whose values are represented by binary coded decimal
digits (BCD representation, 4 bits per decimal digit).

real Usually represented by a pair <m,e> (@antissa and
exponent) of binary coded integers in one’'s or two’'s
complement representation, one or a few words in length,
mainly depending on the instruction set of the
underlying machine. The base b of this exponential
representation is usually 2, 8, or 16. Real values x are
then approximated by mrb® and represented by <m,e>.

Boolean It consists of the Boolean values false and true, for
whose representation one bit is sufficient. However, for
convenient access, a less tight byte (or even word)
representation is used. In order to allow for efficient
compilation of Boolean expressions and conditional
branches, false is often represented by a zero value
while a non-zero value (sometimes a one) signifies a
true value.

character Its representation 1is normally through binary coded
integers in the range of @..2**k-1, where k is 6,7,o0r 8,
depending on the character set in use.

Besides these standard types, the so-called enumeration types are
very important. In Pascal notation they write (<idl>, <id2>, ...,
<idn>). Depending on the operations allowed one can either represent
these n values by the binary coded integers ¢..n-1, (which e.q.
allows for an easy step through the elements), or take the internal
representation of the id’s (which allows for easy read-in/write-
out).

The best-known structured data type is the array. It allows random
access to its components through a computable index. We shall use
the term static array if the number of elements is known at compile-
time and dynamic array if the number of elements is only known at
run~time. But, as usual, the number of elements will be limited in a
way to allow the representation of the whole array in the main
memory of the computer.

Mapping multidimensional arrays into the linear memory is done
either row-wise or column-wise. With row-wise mapping the elements
of each (hyper-)row follow one another in sequence. With column-wise
mapping the same is true for every (hyper-)column. Our remarks will
be based on row-wise mapping.

Let us suppose the following declaration of an array variable
(Pascal notation):

VAR a: ARRAY [11..ut,12..u2,13..u3] OF integer

On the assumption that the representation of an integer needs one
word, the address of the element a[i,j,k}] is

addr(ali,j,k]) = addr(a) + ((L-11)*(u2-12+1)
+ (J-12))*(u3-13+1) + (k-13)

If the _index limits are known at. compile-time, this address
calculation can be simplified in that most of it can be done at
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compile-time.

]

addr (al[i,j,k]) addr (a) = ((1l1*(u2-12+1) + 12) * (u3-13+1

) +
+ (1% (u2-1241) + J)*(u3-13+1) + k
= addr(al8,0,6]) + (i*cl + j)*c2 + k

13)

This shows t@at an element of such an n-dimensional array can be
addressed with an easily calculable offset from the imaginary array
origin addr(a[8,¥,...,6]). The calculation of the offset needs n
additions and n-1 multiplications. Note that no additional memory is
required to represent a static array, i.e. an array with index
bounds known at compile-time.

This contrasts favourably with the representation of dynamic arrays,
i.e. arrays whose index bounds are not all known at compile-~time.
These arrays are usually described by what is called a dope vector.
It contains the imaginary array origin (or sometimes
addér(11,12,...,1n])) and for each dimension its low bound 1i, its
upper bound ui and the value of wui-li+1 used in the address

calculat@on.‘ These values are calculated upon block entry and are
then copied into the dope vector

addr(a(6,0,...,06])
or addr(afll,12,...,1n])

11
ul

ul-11+1
In
un

un-1n+1

Access to array elements is ultimately accomplished by using
information from the dope vector. The ui’s are part of this
information area in order to allow for inrange tests on actual
subscripts.

It is noteworthy that the length of a dope vector is known at
compile~time (3*n+1 in the above unpacked form), since the
dimensionality of a dynamic array is known from its declaration.
This will later be of importance.

Another possibility to represent arrays - which can be quite
effective as far as access to elements is concerned - is through
what is sometimes called Iliffe vectors. Address calculation is then
free of multiplications at the expense of increased storage

requirements. The idea behind this method to represent arrays is to
have a pointer to each (hyper-)row (or hyper-column) stored along
with the array thereby providing indirect access. Figure 1 shows
the representation of the array given above.
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Figure 1: Iliffe vectors

Address calculation leads to
addr (a[i,j,k]) = cont(cont(cont(a)+i)+j)+k

i.e. access to an element of an n-dimensional array is n times
indirect, but needs no multiplications. The additional storage

requirement in our example is
1 4+ (ul=-1141) + (ul=1141)*(u2-12+1)

If the index bounds are not known at compile-time, this method risks
to be very storage-inefficient. It also has the disadvantage of the
overhead to set wup the 1Iliffe vectors. But there are also
advantages: the elements need not be stored contiguously and their
access is quite efficient.

Another very well-known structured data type 1is what Hoare in
[DDH72] calls a Carthesian product, PL/I and Algol 68 call
structure, and what we shall call record (adopting the Pascal
nomenclature). It allows to wunite several so-called fields (of
unstructured or structured type) to form an entity. Access to the
fields is through the unique field names.

The representation of records most naturally uses a contiguous piece
of storage.

For example, given the declaration

VAR r: RECORD fl: integer;
f2: ARRAY [0..n] OF integer;
£3: Boolean
END
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a possible representation is

r. g4

¢ r. 2 ( K—‘nxeck- Sie C\rrcuj)

r 43

and access to the fields is relative to the record origin:

addr (r.£f1) addr (r)

addr (r.f2)

addr (r) + 1

|1

addr (r.f3) addr(r) + n + 2

However, if not all field sizes are known at compile~time, it 1is
best to split the dynamic fields into a fixed part and a dynamic
part, whose fixed part only (i.e. the descriptor) is stored in the
record area. The dynamic part is allocated elsewhere and is
referenced by the fixed part.

addr (m34) = addr (1)

prmm— S YA £

0 cout Laddr(r +1)

oddr(r §3) = adds () + Y

d’j nawic
areay

In this way the fields with a size known at compile-time can be
accessed relative to the record origin and with an offset known to
the compiler while for the dynamic fields the same proves at least
correct for their descriptors.

Note that records can be nested. To the compiler this poses no
problems and involves no further run-time inefficiency in accessing
the fields. Calculation of a field address relative to the record
origin can still be done at compile-time as long as the field is not
of variable size.

A generalization of the record is what Pascal calls the variant
record (Hoare [DDH72] and Algol 68 use the term union instead, while
PL/I calls it a cell attribute). It allows to unite several variants
in one record.
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Example:
VAR r: RECORD fl: integer;
CASE f2: Boolean OF
true: (£31: integer; f41: real);
false: (£32: Boolean)
END

The representation and access of fields is exactly the same as in
the non-variant case of a record.

s
. f2
r 2 2 ‘-’5’2.
. fu
3 r
false r.f2 truwe rt
r {3 o
P (L

Hence, record variants impose no run-time inefficiency if we neglect
the fact that a safe implementation has to check at run-time that
any field access be consistent with the current value(s) of the tag
field(s).

Other structured data types in modern programming languages such as
Pascal are sets and files. We do not treat them here since this
would be too far-leading.

However, a few words should be said to what Hoare calls recursive
data structures (such as 1linear lists, seguences, queues, binary
trees and others). Pascal for example allows recursive data
stuctures to be defined through just one other unstructured data
type, the pointer. The same proves right for PL/I and Algol 68.

By providing explicit pointer declarations Pascal makes no attempt
to hide the implementation of recursive data structures (which is
always through pointers) from the programmer.

Example:
TYPE ptrtobinarytree = T binarytree;
binarytree = RECORD i : information;
l,r: ptrtobinarytree
END;
VAR root: ptrtobinarytree

Figure 2 gives a possible representation of an instance of a binary
tree.
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Figure 2: Binary tree representation

Since recursive objects grow and shrink dynamically during run-time,
they are to be heap objects. The difficulties recursive objects
involve in this respect contrast unfavourably with their
unproblematic representation through pointers. We shall come back to
this later.

To close this chapter, another aspect of data representation that
goes across all structured data types should be mentioned. It is the
question about the density of element packing.

The most efficient method with respect to access time is of course
achieved by letting elements occupy easily addressable storage units
(bytes, words, double words) or multiples thereof. However, this is
not very efficient with respect to storage requirements.

In order to let the programmer have a certain control over what has
precedence - access efficiency or storage economy - some PL s allow
to declare structured data either packed or unpacked. Pascal does so
by allowing the symbol PACKED precede the declaration of a
structured type. This packing option has to be seen as a compiler
directive with no influence on the program itself with respect to
what it computes.

Examples:
PACKED ARRAY [1..4,1..4]) OF Boolean

can be packed to need 16 bits instead of 16 words, and a record
such as

PACKED RECORD fl: Boolean;
£2: (red, blue, green)
END
could be packed to occupy not more than 3 bits.

It 1is noteworthy that data packing not only saves memory space, but
also speeds up certain operations such as assignments between packed
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variables since fewer storage units have to be transferred.

For an excellent survey of abstract data types and their
implementation the interested reader is referred to [DDH72].

At this point we pass directly over to dynamic storage allocation
since static storage allocation is untypical for modern p;ogramming
languages and - an even more convincing argument - there is nothing
non-trivial to be said about it!

3. Dynamic Storage Allocation

For execution, the computer operating system places a contiguous
block of memory at the disposal of every user program. Usually the
program is loaded into the lower part of the area, leaving the upper
part to hold the data.

code

da ta

This data area is itself divided into two subareas. From the lower
end grows the run-time stack containing the block-local data which
can be administrated in a last-in-first-out order. The run-time heap
grows from the upper end in the opposite direction. It holds the
dynamic objects which are created and destroyed in a random order.

code

|

run ~-time stack

run-time heap

Obviously, a run-time test must be provided to check whether stack
and heap overlap.

We shall first look at the data organization in the run-time stack.

3.1 The Run-Time Stack

It is fair to say that the classical block structure of Algol 60 has
had a strong influence on modern programming languages, many of them
having adopted this scheme with little or no changes. In a block-
structured language we distinguish between proper blocks which are
~unnamed and the named parameterized blocks, the procedures. The
strict static nesting of the blocks guarantees that at any time the
block entered last is the one to be first left. This is the key to
the last-in-first-out storage administration of block-local data,
which in fact is very economical. Memory is only reserved when the
associated objects come into existence (at block entry) and is
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released as soon as the objects die (at block exit). In this way
using the same storage locations for distinct objects becomes
possible if they are not declared in nested blocks but rather in
parallel blocks.

We shall first draw our attention to proper blocks and then to
procedures.

3.1.1. Blocks

The block structure 1is a static property of programs. It |is
therefore known to the compiler which wuses this information to
overlay variables declared in parallel blocks by assigning them the
same address.

Example (Algol 60):

BEGIN INTEGER a,b;

BEGIN INTEGER c;

Address assignment done by the
compiler
BEGIN BOOLEAN d;
: Variable:|address relative to
END; run-time stack origin
END; a [
: b 1
BEGIN INTEGER e,f; c e 2
: d £ 3

END;

END

Instead of 6 only 4 memory words are needed since for e/f the same
storage locations can be used as for c/d.

This nearly complete resolution of blocks at compile-time is
possible as long as the local data are restricted to objects with a
size known at compile-time. Particularly, arrays can only be treated
in this way if the bounds are fixed.

Thus, blocks with such completely static declarations involve very
little run-time overhead. Only the top-of-stack register (if any)
has to be updated. At block entry it has to be incremented by the
number of memory words used to represent the local data, and at
block exit the register has to be reset. The top-of-stack register
serves both to delimit the run-time stack and to allow for push and
pop operations. Figure 3 illustrates these actions.
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Figure 3: Stack operations

It is noteworthy that the compiler can compile implicit blocks
exactly in the same way as the explicit blocks. For example an Algol
68 for loop will result in an implicit block including memory space
for the loop variable, the loop bound and eventually a few auxiliary
variables necessary for loop optimization.

As long as the size of each declared object is known at compile-time
it is possible to assign fixed addresses (relative to the run-time
stack origin) to all objects. However, one single dynamic array will

imperil the quick and easy access of the data further down in the
stack.



Example:

BEGIN INTEGER n;
read(n);
BEGIN INTEGER 1ij;
INTEGER ARRAY all:n};

INTEGER j; variable: | relative address:
BEGIN INTEGER k,l; n (4]
: i 1
END; a 2
: j n+2
BEGIN INTEGER m; k m n+3
: 1 n+4
END;

END;
END

There are two solutions to this problem, depending on whether run-
time efficiency or storage economy has higher priority. If
efficiency 1is important, the compiler will always allocate dynamic
arrays at the top of the stack to assure that at least all static
variables have fixed relative addresses. For the above example this
leads to

variable: relative address:
n 14}

i 1

3 2

k m 3

1 4

a 5

The penalty we pay in this example is that when we enter the second
block locations 3 and 4 are reserved although they are not yet used.

If storage economy has higher priority, one should avoid addressing
all the static variables by a fixed relative address from the run-
time stack origin. Instead, the compiler should provide a so-called
data segment for the local variables of those blocks which are
declared in blocks containing variables whose size is not known at
compile-time. Local variables are then addressed relative to the
segment origin.

As a consegence, data segments generally consist of a lower part
provided for the static variables and an upper part provided for the
dynamic variables. This allows the static variables to be addressed
with fixed relative addresses from the segment origin. The variables
with varying size are addressed through their descriptors which have
fixed size and therefore reside in the lower part of the data
segment.,

In case of our example this data organization leads to two data
segments and the address assignment is as follows.




variable: data segment number: relative address:
n ]
i 1
3 1 2
a 3
k m %
1 2 1

If a sufficient number of index registers is available, the compiler
should in general provide variable access through these registers,
This means when a block is entered to which a new data segment
belongs, not only the top-of-stack register T has to be incremented,
but in addition the associated index register has to be loaded with
the segment origin. In our example the run-time stack shows as
follows when execution 1is within the first of the two innermost
blocks. '

o U3

[ |

% R2
<« T

-

If registers are rare - which is usually the case - it is suitable
to eliminate the T register by simply reserving a word in every data
segment to store the appropriate value at block entry. This also has
the advantage that at the corresponding block exit no action is
necessary to reset the top-of-stack address since the data segment
is erased anyway. Note that this is also true if the block is left
through the execution of a goto.

Associating every data segment with an index register is still a
luxury one can usually not afford. Therefore we may use only one
register (R) to point to the data segment created last. In order to
still be able to address non-local variables, another word is
reserved in the lower part of every data segment. This word is used
to hold a pointer to the origin of the predecessor segment in the
stack. With the aid of this chain it is possible to access any data
in the stack. \

For our example, the following run-time stack results:
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This might be the place to 1look somewhat more carefully at the
problem of assigning address attributes to variables. So far the
only attribute has been the relative address with respect to the
data segment origin. But evidently it needs to be completed by the
static level of nesting of the associated hyper~block (the term
hyper 1is wused to reflect the fact that such a block can consist of
several blocks). The complete address attribute therefore is a pair
<static level of nesting, relative address>, where the nesting level
of the outermost hyperblock is defined to be one, and a hyper-block
local to one of level n is of level n+l.

In our previous example this 1leads us to the following complete
address attributes:

n: <1,2> i: <1,3> 3Jj: <1,4> a: <1,5> k,m: <2,2> 1: <2,3>

Access to a non-local variable v is obviously achieved by following
the chain x-y times, where x is the level of access to v and y is
the level of declaration of v.

To <close this section, let wus describe the run—time stack
manipulations for this data organization more formally (M[x] denotes
the memory word with address x):

(a) block entry with creation of a new data segment:
M[M[R+1]1+1] := R;
R := M[R+1]+1;
M[R+1] := size + R + 1

(b) Block exit with liberation of a data segment:
R := M[R]

(c) Block entry without creation of new data segment:
M[R+1] := M[R+1] + size

(d) Block exit without liberation of a data segment:
M[R+1] := M[R+1] - size

(e) goto outofblock

FOR i := 1 TO segments to leave DO R := M[R];

blocks to leave
M[R+1] := M{R+1] - :EE size;
i =1

Obviously, access to non-local variables has now become indirect and
therefore quite slow. We shall later consider solutions to this
problem.



3.1.2 Procedures

Procedures are "named" blocks that can be parametgrized. Since
procedures are usually called from several blocgs, it is necessary
to collect the local data in a data segment of its own.

When a procedure P has been called, its data segment will be on top
of the run-time stack. Below it is the data segment belonging to the
block B2 that called the procedure. However, this block need not be
the block Bl in which the procedure was declared (cf. figure 4)!

Bleek B1:

P rocedlure P

Ricek 82
2 Aﬁmawwu; ?rcAch&Scr o?
P (B2) ig wok s\abic %—o -
ther (\3'\)
\'D; d,\jV\LL\AAi‘C P‘.‘ec\ecwc'\\ O'ﬁ- P L\Z\)

¢ alle Stabic %ﬂbht?

Figure 4: Dynamic predecessor and static father

Since P must have access to the variables of Bl, it is up to the
compiler to provide for it. This means that in the run-time stack we
must now distinguish between a dynamic chain and a static chain. The
dynamic chain 1links each data segment to its predecessor in the
stack. It reflects the dynamic sequence of block entrance and is
used to push and pop data segments. The static chain links the data
segment of a procedure P with the data segment of the block in which
P was declared. Thus, the static chain mirrors the static block
structure and is used to access non-local variables.

Instead of only one we now need two pointers in the head of our data
segments, the static link SL and the dynamic link DL.
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Example (Pascal):

program rtst(output); dyga¢ic data static
procedure p; ¢hain: segments: chains:
Tt Al
procedure gj » _SL
begia e
end; fi
. > St
procedure r; L
begin
d P /
€na; > 351,
begin DL
- L
L ST (—
ena; oL
begin 1.
p ,
€na. stack of data segments belonging to the

calling sequence rtst -> p ~-> r => g

Considering that the return address also has to be stored in the
run-time stack, a procedure data segment takes its final form:

static link
dynamic link
top of stack
return address

local data of
fixed size

local data of
variable size

Let us again describe the stack manipulations somewhat more

formally.
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(a) Procedure call: Rl := "Static Link";
R2 := "Return Address";:
"jump to procedure entry"
(b) Procedure entry: M [M[R+2]+2] := R;
R := M[R+2]+1;
M[R} := R1; M[R+3] := R2;
M[R+2] := R+3+size

(c) Procedure exit: Rl := M[R+3]; R := M[R+1];
"jump to R1"

If non-local variables are ultimately addressed by following the
static chain, a considerable inefficiency will result. It 1is
therefore wise to hold at least the origin of the run-time stack in
another register to allow direct access to the global variables.
Furthermore, when consecutive accesses to variables of intermediate
level occur, the static link should be followed only once. This can
be achieved by immediately copying the origin of the intermediate
segment into a register. Subsequent accessses will then be direct as
well. This technique reduces indirect accesses considerably. A
compiler in which this addressing strategy is used is described in
[Amm77] .

Another possibility for addressing variables - the display method -
avoids multiple indirectness completely. In this method the origin
of the <currently accessible data segments are copied 1into a
contiguous piece of memory, the so~called display, where they are
directly accessible. This limits the access of variables to one
indirectness (using the appropriate display entry). The penalty one
has to pay for this gain in efficiency is the update of the display
at procedure entry and exit, which in case of a formal call is non-
trivial.

To avoid updating the display, other implementations give each
procedure its own display. It is put into the local data segment and
is initialized at procedure entry. However, this overhead may well
not pay back, especially if only few non-local variables are
subsequently accessed.

Procedure Parameters

They are the means to parameterize named blocks. The implementation
of procedure parameters is done by passing for each actual parameter
a so-called parameter descriptor. These descriptors are either
passed in registers or on stack.

Sometimes - especially in FORTRAN implementations - a descriptor
area is set up. This can be done at compile-time, if descriptors are
addresses and these addresses are constant as they usually are with
purely static storage allocation. Upon call, the first word address
of the descriptor area is then passed to the called procedure.

The more compact the descriptors, the more efficient is the call.
Parameter descriptors are therefore normally one word quantities.

The following parameter mechanisms can be distinguished:

(a) Call by reference: The actual parameter must be a variable whose
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address is evaluated once upon the call and passed as a
descriptor to access the actual parameter indirectly.

Call by result: The actual parameter must be a variable whose
address 1s evaluated once upon the call and passed as
descriptor. The formal parameter is treated like a local
variable, the only difference being that upon exit its value is
assigned to the actual parameter (through the descriptor).

Call by wvalue: Such a parameter is nothing else than an
initialized local variable. The actual parameter merely serves
to determine the initial value of the local variable. There is
absolutely no way for the procedure to change the value of the
actual parameter.

If the size of the parameter is only one word, the descriptor
can well be the value itself. Otherwise it is better to let the
descriptor be the address of the actual parameter. For example
if the actual parameter is a static array, we would pass its
first-word-address, if it is a dynamic array, we pass the
address of the array descriptor (dope vector) and in case of a
string constant we would pass the address of where it is stored.

Passing only an address allows us to generate the necessary and
sometimes cumbersome copy code just once - within the procedure
- instead of with each call.

A variation of this kind of parameter is the so-called constant
parameter which 1is more restrictive in that it forbids
assignments to the formal parameter.

Call by name: This 1is by far the most inefficient parameter
mechanism. Every occurence of the formal parameter is textually
substituted by the corresponding actual parameter expression.
For the implementation this means that the actual parameter has
to be evaluated each time the corresponding formal parameter
occurs. Implementation is through something very much 1like a
function procedure, the so-called thunk, which is called on
every time the name parameter is referenced.

The difference between the messy name parameter and the reference
parameter 1s nicely illustrated by the well-known example of
swapping the values of two variables:

PROCEDURE swap (VAR x,y: real);
VAR z: real;
BEGIN =z := x; X :=y; Yy := 2 END;

{assume 1i=3 AND al[3] = 5}
swap (i,afi])
{is now 1i=5 AND a[3] = 3?1}

With reference parameters x,y the procedure body interpretes

BEGIN =z := 1i; 1 := a[3])]; al3] := z END

which in fact leads to i=5 AND a(3]=3, while with name parameters
the interpretation is

BEGIN =z := i; i := a[i]; ali] := z END

which leads to i=5 AND af5]=3!

In

most programming languages the parameter kind is bound to its

formal parameter and cannot be altered during execution. However, in
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PL/I this is not the case. In this programming language the
programmer can choose upon call which kind of parameter should be
applicable during the call. For example p(i) implies a reference
kind parameter while p((i)) implies a value kind parameter. Needless
to say that such a flexibility 1leads to considerable run-time
inefficiency and insecurity!

The above enumeration of parameter kinds 1is not complete. A
parameter can also be a procedure. Its descriptor consists of entry
address and static link and allows to compile a call to the formal
procedure very much the same way as a call to an actual one.

The following example shows how a parameter procedure (formally p,
actually t) accesses - within another procedure (r) - a variable (i)
declared in a parallel block. It also gives a picture of the state
of the run-time stack during execution of the parameter procedure.

_ Dis < Su's
EROGRAM maln(output);
PROCEDURE r (PROCEDURE q): wawn
q L ]
L
PROCEDURE s: S |
B VAR i: integer; N px I B
PROCEDURE t;
A . >
i o= i+41 k—ﬁ“
. - r
i = 1; r(t) ¢ BT =
. =
. t

Some programming languages allow formal labels. They are usually
implemented through a thunk which passes control to the actual
label. The side-effect of the execution of the thunk is that the
run-time stack is updated appropriately.

To close this chapter on the organization of the run-time stack, the
most general form of procedure data segment is given below:
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segment head contalining:
- static link SL

- dynamic link DL

- return address RA

top of stack pointer
(- local display)

parameter descriptors
depending on kind and
type of parameters

local data of fixed
size (including
descriptors for
dynamic arrays)

local data of
variable size

3.2 The Run-Time Heap

As mentioned in the introduction the purpose of the run-time heap is
to hold the objects created during execution under programmer
control. In Algol 68 such objects are identified by the generator
HEAP, in PL/I they have the storage allocation attribute CONTROLLED
and are called into existence by the command ALLOCATE. In Pascal the
standard procedure NEW serves the same purpose.

To take an example from Algol 68 let us assume the declaration
HEAP [1:3] REAL y.

When the block 1is entered to which this declaration is local, an
area will be reserved in the run-time heap to hold the three
components of the real array. At the same time its descriptor will
be allocated in the run-time stack and will be initialized:
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A second example is taken from Pascal. We assume the declaration

TYPE ptr = Tbtree;
btree = RECORD i: info;
l,r: ptr
END;

VAR root: ptr

When the block is entered to which this declaration is local, memory
will be allocated to hold the value of ROOT. A later call NEW(ROOT)
will then reserve a record of type BTREE in the run-time heap and
will initialize ROOT to reference this record:

code
T
fa " Sl Ei w
Shacc o
A
un -Gime o
heap Lt | r

Obviously, access to the heap objects is always indirect.

When a block is left the local stack objects vanish. In our examples
this would be the «case for the descriptor of Y and ROOT
respectively. However, this does not necessarily imply the
disappearance of the heap objects, since meanwhile copies of their
references might have been made.

As to the deallocation of heap objects, there are basically two



philosophies:

philosophy 1: The deallocation of heap objects is explicit through

specii} purpose language constructs (e.g. FREE in PL/I, DISPOSE in
Pascal).

philosophy ?: The degllocation of heap objects is done implicitly by
the supporting run-time system as soon as it realizes that an object
cannot be accessed any more (e.g. in Algol 68).

We shall first draw our attention to philosophy 1 and 1later to
philosophy 2.

After a program has been in execution for a while, its associated
storage area would probably look as illustrated in figure 5.

code
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Figure 5: The run-time heap

It shows a run-time heap full of holes that risks to run into the
run-time stack. Two questions now arise

i) How do we keep track of the holes within the heap?

ii) What is a good algorithm to find a block of n consecutive free
words in the run-time heap and to reserve it (to be wused with
ALLOCATE and NEW)?

The answer to the first guestion is quite simple. We keep a list of
available space, most conveniently and economically by wusing the
available space itself:
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This list can be in random order or it can either be sorted with
respect to the size of the free blocks or with respect to their
memory addresses.

As to the second question, one is tempted to go through all the free
blocks and choose the one for which size-n 1is a non-negative
minimum. However, this so-called best-fit method 1is considerably
less efficient than the first-fit one. With this latter strategy the
search is ceased as soon as a block with size>n is found. TIts size
is decreased and if it is now zero, the block is removed from the
list of available space.

The serious advantage of the first-fit over the best-fit -~ besides
its efficiency = 1is that there is less tendency to favouring the
creation of small blocks (which can later hardly be used).

However, the first-fit clearly tends to cluster the small blocks
right in front of the list. A significant improvement is therefore
achieved by making the list of available space circular and starting
the search always where it had been terminated the previous time.

When Dblocks are returned to the system a collapsing problem can
arise. If the block to be returned is adjacent to one already in the
free list the two blocks must be merged into one:
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A possible 1liberation algorithm is 1illustrated in figqure 6. It
searches through about half of the free list, which must be 1in the



order of increasing addresses.
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Figure 6: Liberation algorithm

Starting at FREE we go down the list of available space with two
pointers P and Q, where P immediately preceeds Q. When P has become
greater than the address R of the block to be returned, the place of
insertion (between Q and P) is found. Now, the upper bound
collapsing condition R + n = P is checked and eventually the two
blocks are merged. Then we check for a lower bound collapse (Q +
size(Q) = R) and eventually merge again.

Searching through approximately half the list makes this algorithm
rather inefficient and leads to the guestion whether there is a way
to maintain a. list that allows liberation without searching.

In fact there is such a solution, the so-called boundary tag method.
The penalty in space one has to pay for is two "words", one in front
of each block and one at the end. This storage inefficiency is
sometimes immaterial, but all too often unacceptable.

Used blocks are marked with a "+" and have their size in the front
word while wunused blocks are marked with a "-" and have their size
in both head and tail word. Unused blocks form a doubly linked list.

A Uwk ko previews iulik

‘TI Site r///// —IS\?.é l Ll
1 Live r  waxk iuw Lisk
v ~[sie 2
ueA  block Wauged black

Given this organization of the run-time heap, the boundary tag
algorithm is straightforward. For details, the interested reader is
referred to Knuth’'s excellent survey on Dynamic Storage Allocation
in [Knu71].

There remains the guestion as to what should be done when the user
asks for an area whose size exceeds the size of any element in the
list of available space. Since the main point behind philosophy 1 is
that the run—-time system does not have to know the references to the
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heap elements, it would not be consistent with this philosophy to
expect that elements be moved in the heap. Instead, the above case
should preferably result in a run-time error indicating heap
overflow.

With philosophy 2, however, the situation is quite different. In
order to be able to do the garbage collection, the run-time system
needs to know where the references to the heap objects are located.
It can therefore also move the alive objects with modest additional
overhead. Hence, a possible three-stage cycle for storage allocation
in the run-time heap based on philosophy 2 would be:

(1) Use run-time heap as second stack until no memory is left
between stack and heap.

(2) Do garbage collection.
(3) Compact alive objects at the bottom of the heap.

An illustration of this allocation cycle follows.

Code code

I wrer

RTHP //////////
E» ) (2

Every garbage «collection has at least two phases, a marking phase
and a collection phase. During the marking phase accessible objects
are all marked. This is done by following the alive references to
the heap objects. In the collection phase the garbage (i.e. unmarked
objects) is collected and the mark bits of the alive objects are
reset.

wTHP

The problems with garbage collection can be summarized as follows:

- It is non-trivial, especially if the heap objects are not of a
unified type and can themselves reference heap objects. Under
such circumstances GC may be very time consuming. In addition,
its success can never be guaranteed.

- GC uses memory (for code as well as for data) exactly at a moment
at which memory is extremely rare.

- At run-time, a complete list of the locations containing the
references to the heap objects is needed. In general this list
changes dynamically.

- Mark bits are needed, either along with each object or,
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preferably, one bit per storage entity in a special mark table.

- At any time, the references to the heap objects must be well

defined. Otherwise, the effect of the GC algorithm is not
predictable.

This list indicates that there are a couple of guite annoying

problems in connection with GC the solution to which varies from
application to application.

In order to give an impression of how a GC algorithm could work in a
Pascal environment, we shall apply a four phase GC algorithm to a
trivial sample program. The four GC phases are the following:

(1) Marking phase: By following the dynamic chain 2ll data segments
in the stack are wvisited. In the head of each segment a
reference to a list (which was constructed at compile time) is
found (cf figure 7). This list tells where in the segment the
pointers are located and to what type of objects they point.
These pointers are traced one after the other under careful
prevention of getting into a loop (due to a cycle). For every
heap element reached in this way, the corresponding entries in
the mark bit map are set.

(2) Map phase: Using this bit map a table is constructed which maps
0ld addresses of objects onto new ones.

(3) Update phase: The paths of (1) are followed again to update each
reference according to the address mapping table (2).

(4) Compacting phase: The objects are moved as defined by the
address mapping table.

The data structures and variables underlying our example are

TYPE inforec

It

RECORD i: info; (*size = 2 storage units¥*)
p: Tinforec;

END;

RECORD ir: inforec;
nxt: Jlistel;

listel

END;
VAR fst: Tlistel; k: integer; lst: Tlistel;

Furthermore, we assume that, after our program has been in execution
for a while, its associated storage area looks as depicted by figure
7.
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Figure 7: GC example

It shows a circular list of actually three elements hanging from its
root FST. The element type is LISTEL. One of these three elements
has a two element extension, each of type INFOREC. The linear list
of the descriptions of the local pointer variables can be reached
from the ©pointer stored in the segment head (relative address 3).
For each pointer, its name, 1its offset relative to the segment
origin and a pointer to the description of its type are given. Note
that this information - which is assembled completely at compile-
time - is not only vital for GC, but also for any sensible post
mortem dump facility. The existence of a dynamic <chain allows the
garbage collector to visit all the date segments in the run-time
stack. In each segment the entry with relative address 3 points to
the description of the local pointers. It allows the garbage
collector a correct interpretation of the user data area, hence also
the generation of a bit map distinguishing between used and unused
storage entities. In the case of our example, the following bit map
would result from GC phase (1). :

bit map:
memory address H10648 16011 ... ce. |1028
bit map elementf 1 1 1100681111961116881117111100 ) @

Ones characterize used storage entities while zeros indicate unused
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locations.

In GC phase.(2), this map is now processed backwards to generate a
table mapping o0ld heap addresses onto new ones. This leads to the
following table:

number of
old new words
address (oa) adress to be moved
> 1024 oa+3 7
> 1014 oa+6 3
> 19808 0a+8 4
> 10080 oa+12 4

With the aid of this information the o0ld pointer values are now
updated in GC phase (3). This leads to the storage area depicted in
figure 8 (left).

Finally, the alive heap elements are copied towards the higher end
of the heap in GC phase (4) (figure 8, right). Again bit map and
mapping table provide for the necessary information.
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Figure 8: Example of GC phases (3) and (4)

Execution of the interrupted program can now continue with a heap
which is completely free of garbage.

Obviously, such a garbage collection can be very time and memory
consuming. The above example of a four phase GC should therefore not
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be misunderstood as a "real life" algorithm. It was reported here
just to give an impression of what GC and its problems are. In fact,
garbage collectors are always tailored to their specific
applications. This results in very different and sophisticated
algorithms, whose description would burst the scope of this survey.

3.3 Multiprograms

Several modern programming languages allow for the possibility to
specify parallel computations (e.g. Algol68 through the par clause,
PL/I through the CALL attribute). Adopting the philosophy of Modula
[Wir77] we say that in such a multiprogram several processes run in
(pseudo-)concurrency. Processes are declared in the same way as
procedures. However, the effect of their activation 1is gquite
different from the activation of a procedure. In the former case we
speak of starting a process, while the latter case is known as
calling a procedure. Calling a procedure implies a temporary
transfer of control only, while activating a process calls for an
additional processor to execute the started process - or at least
asks for splitting up the available processor capacity to serve the
new process pseudo-concurrently with the other processes:

ca Lwaﬁ o Frc:.ec\.ure.-. Skarking a process:
called called
> ?n—.cu\uwe_ T prwcess
A% . |
\\\:ro\«sﬁuj o SpLik-up, of
y ceubrely precesser | ca-
\ N ]
N/ peiy |
s > caller : > calle
f—_-._.)—.————"\ /____-__/\______ﬂ
precedure el process S\:a‘.“\:

When a procedure comes to its end, control simply returns to its
caller. In contrast, a process reaching its end goes out of
existence (it dies) and leaves the associated processor at the
disposal of the remaining processes.

Every process in a multiprogram can be viewed as a monoprogram of
its own, requiring a run-time stack and a run-~time heap. The "sum"
of all these process-associated run-time stacks results in a forked
stack. Starting a process forks the stack. Obviously, the image of
this cactus stack in the linear computer memory is £far from being
last-in-first-out. When a process dies, it is in general not even
possible to release the associated data segment, since a son process
(i.e. a local process started either directly or indirectly by it)
might still refer to the data of the dead process. For an example
see fiqure 9: If the first instance of p dies before g, the data
segment of p must not be discarded from the (forked) stack, because
this segment is not only a member of the stack belonging to p, but
also a member of the stack of its son process g. Clearly, data
segments must be discarded from the forked stack only if there is no
alive reference to the segment. With this respect the process data
segments of a multiprogram resemble the heap elements of the
previous chapter very much. It is therefore quite natural to use the
storage allocation and liberation principles described earlier not
only for heap objects, but also for the data segments of a



multiprogram.

To this end processes could be described by the following process
descriptors (for the description of a concrete implementation cf.
(Wir77]) :

Poivter ko uext descriptor

cess o
pre Stakus process

Poinker to tep data Sepment desesiptoe

P tocesgs
Jata &’ef)wud: :

Local process

Aata

The descriptors are linked to form a circular list, the process
ring. One descriptor entry therefore is a pointer to the next
descriptor. Another entry defines the status of the process and
distinguishes for example between running, ready (to run as soon as
a processor becomes available), waiting (for an event to occur), and
terminated (i.e. dead). A third entry points to the top segment of
the process 1in gquestion and hence is the head link of its dynemic
and static chains.

Figure 9 gives an example of a user program with four concurrent
processes and depicts the state of the associated data area after
the second instance of p has been created and started. The first
instance of p is currently executed by the single processor.
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Figure 9: Example for the data organization in a multiprogram
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Let us assume that this process now dies (after returning from its
call to r). As mentioned before, its data segment must not be
returned to the system since its son process g still refers to it.

In general, the deallocation of process segments will follow either
one of the two philosophies described in the previous chapter. If
philosophy 1 is chosen, a system support routine will be called each
time a process dies to decide whether sons still refer to it. If
none refers to it, an implicit call to the free list algorithm will
return the segment to the free 1list. Previously dead father
processes which thereby lose their last reference will be treated in
the same way. With philosophy 2 the GC algorithm will have to decide
which process data segments are no longer referenced. BAs a
prerequisite the GC algorithm must have access to all the process
descriptors, which is guaranteed since they form a circular list.

Conclusion

Data and storage organization in user programs is one of the most
important tasks a compiler writer is faced with. It is his
responsibility to £ill the considerable gap between the high level
of abstraction present in modern programming languages and the all
too often primitive hardware on which the compiled program has to
run.

However, the problem is not just to find a possible implementation
for abstractions such as data structures, block-local data, dynamic
data allocation, recursion, and multiprogramming. The problem is to
find efficient implementations, efficient both with respect to run-
time and storage requirements. Succeeding in finding whem mean not
less than blowing away the last argument in favour of assembly
language programming!
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