ETH

Eidgendssische Technische Hochschule
Zirich

Institut fur Informatik

N. Wirth
DATA STRUCTURES
AND ALGORITHMS

J. Gutknecht

ELEMENTARY PRINCIPLES
OF INFORMATICS

August 1984 60

Address of the Authors:
Institut fiir Informatik

ETH-Zentrum
CH-8092 Ziirich / Switzerland

© 1984 Institut fiir Informatik, ETH Ziirich

Data Structures and Algorithms

N. Wirth

Abstract

This article attempts to outline the basic concepts of structuring data and of constructing
algorithms in a methodical manner. The methods are explained with a few simple and
typical examples. The programmer’s principal concerns for correctness and efficiency
require precise mathematical reasoning. Predicate calculus and probability calculus emerge
as the indispensible tools for the modern professional programmer.

This is the original version of the copy-edited and improved article to be published in the
September 1984 issue of Scientific American.

Computers are data structures and algorithms. The data structures consist of registers and
memory words, and the algorithm interprets data stored in memory as a program according
to a fixed, never changing pattern of behaviour. But the programs we submit to computerg
are formulated in terms of numbers, texts, events, and structures like sequences, lists, trees,
and they represent highly individual methods for problem solutions. How can so vastly
differing problems be solved by one and the same machinery that always acts according to a
fixed algorithm?

The explanation is that a computer is a truly general purpose-device which, based on the
idea of John yon Neumann, can process and generate dala according 1o a program A, and in
the next moment interpret these data as program B. This allows us to formulate a program
in terms of notions that are familiar to us and which represent convenient abstractions to
express the problem at hand. Thereafter we let a program A - called a compiler - map
these notions automatically onto facilitics that the computer consists of. It is this very
technique which enables us to construct systems of phenomenal complexity, because their
specification in terms of hierarchically structured abstractions permit us to understand one
part at a time, and to abstract - to ignore - other parts and their details for the time being,
This contrasts sharply with the situation of a programmer being confronted with a vast,
unstructured, homogeneous mass of bits called a computer store. How can he manage to
understand their inherent meaning in the absence of any distinguishing features? But no
program should leave a programmer’s desk unless he has a fully understood it. The fact that
this axiom is often violated manifests itself in a computer’s behaviour that is - depending on
the programmer’s viewpoint - sometimes called a bug, sometimes a feature, and sometimes
is portrayed as evidence that computers have their own will,

The fact that the words notion and notation are almost the same is not incidental, We
understand a notion if we can formulate it; and for this purpose we need a notation. In the
realm of computing a precise notation is mandatory, and thercfore we require a formal
notation with a precise definition. Unfortunately, such formal notations for programming
have become known as languages. This terminlogy is mislcading; il suggests that we speak to
computers. The tendency is amplified by the modern term "interactive language,” which
reveals an unfortunate but widespread confusion between a formal notation to specify
behaviour and a mechanism which interprets texts specified in the formal notation. I prefer
to regard programming as the activity of designing a new machine (to be implemented with
the aid of an existing, general-purpose device). The design is specified in terms of the
facilities provided by the formal notation, just like an clectronic circuit is specified in terms
of symbols and lines connecling them. If we regard programming as machine design, the
necessity of precision becomes even more obvious, and thereby also the absurdity of so
called natural language programming, i.e. of using imprecise expressions of conventional
language instead of precise, formally defined symbolisms.

The notation, then, should express the abstract concepts which constitute the foundation
of programming, of data structures and of algorithms. It evolves according to the choice of
these concepts - and not vice-versa. Which are these concepls? We shall first take a look at

data structures, and then at algorithms, which are the recipes to process the data.

Al data stored in a digital computer are stored in the form of binary digits (bits). A bit has
exactly two possible values, say 0 or 1. As programmers, we prefer to reason in terms of
abstractions at a higher level, such as characters, numbers, symbols, sets, etc., because they
have useful propertics and are governed by laws that we have learnt to master and employ.
Each such value can be represented by a (small) set of bits, just like numbers, themselves
being abstractions, can be represented by (short) sequences of concrete, visible digits. Even
more significantly, that mapping can be performed automatically by the computer itself such
that the programmer need not even be aware of the internal concrete representation on the
bit-level. The programs which perform this automatic mapping are called assemblers or
compilers.

It is the characteristic of so-called high-level languages that they permit the programmer
to attribute meaningful names (ident{fiers) to the variables of his program, and to specify the
type of a variable. A type indicates, whether a variable's values will be integers, real
numbers, characters, or sets of numbers, to cite just a few examples. It holds the clue to the
interpretation of the bits representing the variable’s value (s. Fig. 1). The compiler can then
check automatically whether or not the operations on this variable are consistent with this
type declaration throughout the program. Such use of redundancy for consistency checking
is an invaluable aid in programming practice. It helps in dectecting mistakes at the design
stage instead of "in the field".

The notion of data type has been extended - primarily through the programming
language Pascal - to encompass also the description of structure. In mathematics, the notion
of type has been instrumental in resolving paradoxes, such as Russell’s paradox of the set of
all sets that are not members of themselves. In computing, the primary motivation for
introducing types is different. The association of a type (which never changes during
computation) with a variable introduces highly desirable redundancy to be used in
consistency checking, it determines the set of c-mponents (elements) in the case of a
structured variable (and thereby enables a compiler to allocate the necessary amount of
storage (bits) to the variable), and it provides information about the intended method of
access to elements.

Assume, for instance, that a certain problem postulate the existence of a variable s with
N elements 8y, §;, ... Sy.;- In solving a mathematical problem, we gladly ignore questions
about representation and how elements are accessible; in computing we cannot. Therefore,
we not only specify in the variable’s declaration the type(s) of the elements, but also their
number and method of storage.

If all elements are of identical type T, the structured type is called homogeneous, and we
declare it as a so-called array

s: ARRAY [0 ..N-1]JOF T

This permits us to denote and access individual components using a computed index, i.e.
the identification of the element will in general depend on the preceding computation: 5,
Si+}1, 5 No matter what the computed index is, we know that the element’s type is T.

And, remember, the more information we obtain without actually executing the program,
i.e. by a mere textual scan, the better we are off, because that information holds for alf
possible computations specified by the program, and not only for a test case with specific
input values (s. Fig. 2).

In the case of an array, each element requires the same amount of storage. Hence,
computation of an element’s location in store, its address, is straight-forward and efficient:

adr(s) = adr(sy) + i *size(T)

If, on the other hand, the elements are of different types, this simplicity is lost. However,
quite likely the necessity to identify an element through a computed index is now small,
because the elements, being of different types, obviously represent different attributes of s.
We therefore sacrifice the accessibility via computed index and exchange it for the
convenience to denote the elements by individual, characteristic identifiers. We say that the
variable is a record (or has record structure), and call the elements fields

s: RECORD
name; ARRAY [0..N-1] OF CHAR;
longitude, latitude: REAL;
altitude, population: CARDINAL
END

Individual elements (which evidently may themselves be structured again) are denoted as,
for example, s.name, s.population, s.name[3].

Again, their types can be determined without program execution. Furthermore, a
compiler can associate with each field an offset, such that the element’s »ddress is computed
as

adr(s;)) = adr(sy) + offset(s)

In addition to the array and the record, the structure called set is fundamental. We use it,
when not the values of elements, but only their presence (or absence) matters. In this case,
we declare a variable s as

s:SETOFT

and instead of an operation for selecting an element we introduce the membership operation
i € s yielding the logical truth value TRUE, if i is an element of 5, and FALSE otherwise.
The attractivity of this structure stems from both our familiarity with the mathematical
concept of sets, and from the efficiency with which set operations can be implemented. Tf

set values are represented by sequences of bits, where the i’th bit denotes the presence of the
i'th element (s. Fig.3), set intersection is casily implemented as a logical AND operation
executed on corresponding bits, and set union likewise as a logical OR operation.

Arrays, records, and sets are called basic structures (or structuring principles). In many
practical applications, however, more complicated structures are required. Instead of
postulating edditional, more sophisticated structures and inventing standard notations for
them, it is appropriate to introduce merely a single, general facility to build arbitrary
structures. This is appropriate, because complicated structures, unlike arrays, records, and
sets, do not remain constant during execution of the program, but grow, shrink, and alter
their topology. In contrast to the basic structures, which are called static, they are dynamic.
The size and form of such structures cannot be specified by an invariant declaration, but is
defined by the algorithmic part of the program. Therefore, the program also specifies the
allocation of storage. This appears to be a very dangerous situation, loaded with pitfalls and
difficult to master, for nothing seems to be fixed by the program text. Fortunately, there
does exist a property of such structures that can be regarded as fixed and can therefore be
specified in a dr-laration, namely the types of components of which the structure ultimately
is composed. Their number and the connections between them, however, alter during
program execution.

The general constructor facility mentioned above then consists of a way to generate
(allocate) basic components, so-called nodes, and to establish connections between nodes. The
latter we represent by explicit values, so-called pointers, and we introduce types whose
elements are pointers. If, for example, a variable p is declared as

p: POINTER TOT

its value is either a pointer (a connection) to an element (a node) of type T, or it is NIL, in
which case it points to no element. The beauty of this solution is that it allows us to
construct data structures of arbitrary topology, complexity, and size. The elements of such
structures are usually records; some of their fields are pointers. Hence, the possibility of
recursive structures is included; but also simple lists, queues, rings, and trees are perfectly
feasible. Implementation of the concept is straight-forward: pointers are represented as
addresses. A vital property is that every pointer type is bound to a fixed referenced type.
Unlike addresses in basic machine coding, a pointer variable is known to always point to an
element of the same given type, except if its value is NIL. As an example, Fig. 4 shows
various structures built with the following record types for their nodes:

TYPE ListNode =
RECORD data: INTEGER;
next: POINTER TO ListNode;
END

TYPE TreeNode =
RECORD data: INTEGER;

left, right: POINTER TO TrecNode
END

Let us now turn our attention to algorithms. An algorithm s a recipe for a computation, It
is specified in terms of a formal notation, and hence the spccification is a formal text called
program. There exist at least as many algorithms as there are computational problems, The
first algorithms known were invented to solve rnumeric problems, such as multiplying
numbers, finding the greatest common divisor, computing a trigonometric function, or the
logarithm, for integrating an analytic function, for inverting a matrix, finding the solutiong
of a system of equations, and so on. All these algorithms stem from mathematical problems,
and they are used in scientific computations in research and engineering. In contrast to
them, we find non-numerical algorithms, e.g. for searching a minimal element in a sequence,
for searching a given word in a text, for sorting (ordering) sets of data, for converting
(translating) texts or programs, for scheduling events, etc. They are called non-numeric
because their objects, their data, are not necessarily numbers, and because no deep
mathematical ~oncepts are needed to specify, understand, and solve them. This, however,
does not imply that mathematical concept would not be essential for finding good solutions,
for proving their correctness, and to determine their effectiveness. Quite to the contrary,
rigorous, mathematical methods have recently begun to influence programming to a
considerable degree. They are providing hope that mastery of complex problems will not
remain a craft relying on the principle of trying and testing. It has become obvious that
programming is a highly mathematical discipline. The roles have interchanged, however:
instead of employing computing methods to solve mathematical problems, mathematical
methods are applied to solve computing problems.

Rather than providing a general survey over various categorics of algorithms, which
necessarily would have to remain woefully incomplete, we shall concentrate on a few
examples to demonstrate the new approach in reasoning about algorithms. We shall not
emphasize a particular methodology for constructing new algorithms, but rather present a
given solution, and show how mathematical reasoning is employed to understand an
algorithm and to gain confidence in its correctness without resorting to a computcr to "test a
few cases". In this, we shall confine our discussion to purely sequential algorithms, thereby
avoiding the additional and interesting problems that arise when several concurrent
activities have to be coordinated. We may therefore confine our arsenal of notations to
facilities describing sequencing (1), conditional execution (2), and repetition (3).

(1) so0;s1
(2) IFBTHEN S END
(3) WHILEB DO S END

Here B is a condition, also called Boolean expression. In (2), the statement S is to be
executed, if the preceding evaluation of B yields the value TRUE,; in (3) it is to be repeated,
as long as the (renewed) evaluation yields TRUE. Lvidently, S is executed enly if B is
satisfied; hence B is a protecting condition for S, called a guard

Our first, simple algorithm shall describe the multiplication of two natural numbers x and
y in terms of repeated addition. We introduce variables a, b, and c to represent
multiplicand, mutiplier, and partial sum, which ultimately becomes the product. Initially,
we sel a to x, b to y, and ¢ to zero, and our first solution is

a:=x;bi=y;c:=0;
WHILE b >0 DO

b:=b-l;c:i=c+a
END

Here we use b as a counter; in each repetition, b is decremented by 1 (observe that the
guard b > 0 allows us to do so0), and a is added to c. We have full confidence in this
straight-forward solution, because we know that, starting with ¢ = 0, adding a b times yields
¢ = asb. We are also guaranteed to reach the goal, because each decrementing of b brings
us closer to the negation of b > 0. The reader whose confidence in the proposed solution is
still shaky will probably rush to his computer to try a few cases. But he will quickly become
aware of the unsatisfactory nature of this approach to gaining confidence, for the number of
potential test cases is (at least in theory) infinite. We should like to have a method at our
disposal which caters for all cases, without "executing” even a single one.

The principal idea is that we assert certain conditions which hold at specific points of the
program independent on whatever path the computation had previously taken. If such an
assertion is placed at the beginning of a repetition (a so-called loop), then it is called a (loop-)
invariant, because it invariably holds no matter how often the repetition had already been
executed. The specification of assertions and invariants is shown below for the
multiplication algorithm, first for the specific case with initial values a = 7, b = 3, where the
loop is unfolded and specific numeric values can be specified after each repetition, then for
the general case, where an invariant assertion is indicated that holds after each repetition.
Assertions are enclosed in curly brackets and may be regarded as comments.

a:=7;b:=3;¢c:=0;
{a=TAb=3Ac=0}
b:=b-1;c:=c+a;
{a=TAb=2Ac=T7}
b:=b-1l;c:=c+a;
{fa=TAb=1Ac=14}
b:=b-1;¢c:=c+a;
{fa=7TAb=0Ac=21}

{x,y>0} a:=x;b:=y;c:=0;

WHILE{asb + c = xsy Ab >0} b>0DO
b:=b-1;c:=c+a

END

{ab + ¢ = xsy A b = 0 yields ¢ = x=y}
We now recognize this formulation to be a specific case of the more general statement

a:=x;bi=y;ci=0;
WHILEb >0DO

decrement b under invariance of P
END

where P is the invariant equation ab + ¢ = xy and decrementing is understood not to lead
to negative values. Unfortunately, the goal b == 0 is approached at minimal speed; an
efficient algorithm would require fewer steps. Multiplication, as we had learni it in primary
school, indeed functions according to the very same principle, but it reduces b in larger
steps, namely by dividing the multiplier b by 10, an operation that is notoriously easy when
using the decimal number system: the quotient is obtained by removing the last digit, and
this digit is the remainder according to the equation

10+ (x DIV10) + (xMOD10) = x

Before using division, we must remember that decrementing b must be done while
maintaining the invariant P. This is easily achieved by adjusting the other variables a and ¢
appropriately. When we divide b by 10, we also multiply a by 10, thus leaving the product
asb unchanged; if the remainder of division is not zero, we must additionally make a
correction to ¢, namely adding to it a times the remainder.

a:=x;b:=y;¢c:=0;

WHILE {asb+ c=x#y Ab >0} b>0DO
:=c¢+ (bMOD10)» a;
a:= 10*a; b:=bDIV 10

END

{ab + ¢ = x¢y A b =0 yields ¢ == xsy}

The very same algorithm is used in all computers. Instead of base 10, computers use the
binary number system, ie. base 2. Although our algorithm functions just as well if we
exchange 10 by 2, a version which takes advantage of obvious simplicfications is shown
below. Note that x MOD 2 can only resultin 0 or 1.

a:=x;b:=y;c:=0;

WHILE fasb + c=x¢y Ab >0} b>0DO
IFODD(b) THEN ¢ := c+a END ;
a:=2¢3;b;=bDIV2

END

The improvement obtained by using division instead of subtraction is very substantial.
Instead of executing the repetiton b times, it suffices to execute it log b times. The effort
required for multiplying and dividing by 10 (or 2) is negligible, because it is achieved by

shifting by one digit position. Without this improvement, computers would spend most of
their time multiplying!

In this first example we have seen that a program is a formal text expressing an algorithm,
and that this text can be subjected to mathematical manipulations. These are needed to
convincingly demonstrate the program’s correctness under all specified circumstances. They
are much more powerful than empirical testing with the aid of even the fastest computer,

Our second example is from the non-numerical variety, bul it is equally fundamental as
the first. Assume a texL t, given as a sequence of characters, and a word w, being a (shorter)
sequence of characters. Let us [ind the first occurrence of w in t. (We could just as well use
other elements in the sequences; characters are used because searching a text is such an
intuitive example). First, we wish to specify the desired result in a precise, formal manner.
We begin by declaring the involved variables:

t: ARRAY [0 .. M-1] OF CHARACTER
w: ARRAY [0 .. N-1] OF CHARACTER

We shall assume 0 < N <M (usually N << M), and will make use of some additional
index variables i, j, and k. The result is to be the position (index) i of the first matching
subsequence, i.e. the result R shall be

R:vk: (0 <k<N):wy = by

(Note: we use the quantified predicate vk: (x < k < y): P, to mean that for all values of k
between x and y the predicate P, holds). Remember, however, that we are supposed to find

the first occurrence of w in t. This implies that all subsequences of t to the left, i.e. with
lower index i, must not match. A mismatch at position i is established, if there exists at least
one unequal pair of characters in t and w. We denote a mismatch at position j by

Pj: 3k: (O <k« N): Wy & ti+k

(Note that this results immediately from de Morgan's theorem: 3k: NOT P, = NOT vk:
P,). We introduce the predicate Q; to denote mismatches at all positions to the left of i:

Qi: Vj: (0 Sj < i): PJ

and can now specify the complete result R’ = NOT P; A Q,. But now we have forgotten to
specify the result in case that no match exists at all. Such an oversight in specification is
indeed a frequent source of program failures. We correct this by specifying that in this case
the index value i be greater than the largest possible value for a match:

R": (i>M-NVNOTP) A Q

The obvious approach to establish this result is by a repetition. Each step consists of

10

checking for a match at the next position i, maintaining the loop-invariant Q.

i:=0;
WHILE {Q} (< M-N) AP, DO i:=i+1 END

Since the terminating state is Q; combined with the negation of the continuation
condition between the symbols WHILE and DO, the state afier termination is indeed the
requested R"”. Here, P, suddenly occurs not only as an assertion, bul as a condition to be
evaluated during execution of the algorithm. Tt is therefore our duty to decompose it
further until the expression consists of individual character comparisons. Again, the
approach is stepwise; we repeat comparing individual characters until a mismatch is
established. Asinvariant we use EQ;: vk: (0 <k <) wy = tiyy

ji=0
WHILE{EQ} (i< N) A (w; = t;;,) DO j:=j+1 END
{EGAWG2N)Vw=t, D}
Notice that j = N implies EQy, i.e. a match at i, and that j < N implies termination due to

an unequal pair, i.e. a mismatch ati. Hence, our complete algorithm to find a word w in a
texttis

i:=0;j:=0;
WHILE {Q;} (j < N) A (i< M-N) DO
ji=0

WHILE {EQ} G<N) A (w; = t,,) DO j:= j+1 END;
IFj<NTHEN i:=i+1 END

END

{R": Q;AMNOTP,; vi=M-N)}

This algorithm is straight-forward, but relatively inefficient. One begins to wonder,
whether a faster solution could be devised. The focus of our search for an improvement
must be on the incrementation of i. But how could we increment i by more than 1 without
checking for mismatches in between? At first sight this seems impossible indeed, but in 1976
R.S. Boyer and J.5. Moore have nevertheless found a faster way. We shall here present a
simplified version of their technique with the main purpose to demonstrate the reasoning
employed to establish the correctness of the solution. In passing we note how seemingly
well-known problems are still amenable to the search for better solutions.

The clever idea is the following: First, instead of starting the comparisons at the
beginning of word w, start at its end proceeding backwards; second, if a mismatching pair is
found (and mismatches are highly likely), immediately advance the word up to the last
character in the word which matches.

For reasons of simplicity, we shall let i point to the end of the word rather than to its
beginning:

11

i:=N-1;j:=N-1;
WHILE {Q;. .y} (<M) A (j>0)DO

j:= N-1;
WHILE(> 0) A (w; = ;) DO j:=j-1 END;
ir=i+?

END

Of course, there is always a price for every advantage gained. Here it is the need for
additional information about the character positicns in the word. However, this information
can be established once only, namely before starting the actual search. If the text is long
enough, it will pay off. Let the information be represented in the form of a table of
positions

d: ARRAY CHARACTER OF INTEGER

For each character x in the alphabet (character set), let d, be the distance from the end of

the last occurrence of x in the word. If x does not occur at all, let it be N, the length of w.
We express these facts formally as

vx: NE(x) A (Wn.g,1 = X) V (d = N))
NE(x) = vk:(N-dy <k<N-1):wy=x

Fig. 5 shows an example with N = 5 and a word w = "DEFAB". Note that the last
character forms an exception; it does not obtain the value dy = 0 but, since there is no
reoccurrence, dg = N.

In the straight-forward search algorithm we had cautiously incremented i by merely 1,
and therefore, in order to guarantee invariance of Q;, had to establish the single term P, only.
Now we intend to increment i in the larger step d,, where x = t;. Hence we must, in order
to maintain Q;, demonstrate that P; holds for j = i-(N-1), i-(N-1)+1, ... , i-(N-1)+(d,-1).
To this end, we use the fact that w, = t; implies P,,. Then the specification of d tells us
that

vk: (N-dLi <k <{N-1): P,
and a simple substitution of the bound variable k yields
vj: (iF(N-1) <j < i+(N-d,)): P

This is almost the required result with the exception of the term Py.y.y. T7otice, however,
that if none of the P; were established, we would reach j < 0, ie. we find a match and
terminate the search.

12

Correctness and efficiency are the principal concerns of programmers. We have shown that
an analytic treatment can and must be used to establish correciness, because an exhaustive
empirical test would take far too long for even simple problems.

Whereas the tool for demonstrating correctness is the first-order predicate calculus, the
tool for analyzing efficiency and performance is the probability calculus. These two calculi
indeed form the mathematical basis on which programming rests. Why should probability
come into play? An example may help to find an answer.

Assume an array a of n numbers. Let us find the maximum among them. The obvious
way is to scan the array sequentially, in each step comparing the next element with the
previously found maximum:

max :=ay i:=1;

WHILE {vj: (0 <j<i):a<max A i<n} i<aDO
IF a; < max THEN max : = a END
{vi:(0<j<i) a,<max}
ir=i+l

END

{vj: (0 <j<n): a;< max}

Quite evidently, the step is repeated n times. But how often is a value assigned to max? If

y chance the maximum is gy, the assignment is done once only. If, on the other hand, ais a

strictly increasing sequence, it is executed n times. Hence, 1 and n are the extremal values;

what is the average? Let it be clear that this average cannot be determined experimentally,

because even for small n examining all n! cases would take too much effort. Assuming that

a single test take 1 us, examining all permutations of 16 elements would require more than
half a year's time!

The analytic method to determine the average is, on the other hand, quite simple: The
initial assignment to the variable max is always executed once, setting our count to 1. The
chance that the second element is larger than the first is 1/2, always assuming that all
possible permutations are equally likely. max is replaced a third time, if a, is larger than
both g, and a,; the chance for this is 1/3. Continuing this argument, our weighted count
becomes the sum

ave = 1+ 1/2+1/3+ ... +1/n

which is known as the harmonic series, for which the mathematician L. Euler (1707-1783)
had computed the approximation H(n) = In(n) + g, where g is Buler's constant 0.577...
Evidently, the effort required for the replacement of max is entirely negligible compared
with the effort for the comparison and repetition count. It is therefore fair to say that the
effort to find the maximum among n numbers is proportional to n.

13

Most practical problems do not yield to an analytic treatment so readily. Therefore, the
analysis of algorithms is a field of active research. Often it suffices to know the order of
magnitude of required effort, for instance whether it grows proportionally with some
parameter, with the square, or even exponentially. In the latter case, the algorithm is useless
for all practical purposes. This field cf research is called complexity analysis. We shall now
demonstrate such analysis on hand of a simple, yet eminently practical example, namely the
construction of binary trees.

Binary trees characterize an arganization which is frequently used to store sets of data for
quick retrieval. For example, Fig. 6 shows a binary tree with twelve elements, each being
identified by a so-calley key. The characteristic property of an ordered binary tree is that,
for each node, elements having a smaller key are to be found in its left, those having a larger
key in its right subtree. This makes a search very effective, for every comparison halves the
sel of potential candidates. The expected number of required key comparisons is equal to
the average path length, the path length to a node being the number of nodes encountered to
reach. The sum of all path lengths in Fig. 8 is 40, the average therefore 40/12. In the
optimal case of a perfectly balanced tree with n nodes, the average is about log; n; in the
worst case of a tree degenerated to a list itis n/2.

When constructing the tree, we therefore might take care to keep it balanced. But this in
itself takes a considerable effort, and the question must be asked, whether this extra effort
will pay off in faster searches later on. Surprisingly, in most cases it does not.

Assume that n values will be read sequentially and, starting with an empty tree, inserted
in the tree. We postulate that insertions will be such that the tree always remains ordered.
Hence searches will always be possible in an efficient manner. Typically in such
applications, only a single operation is made available: a search which, if unsuccessful,
inserts the new element at the place where it belongs. Such an algorithm is conveniently
formulated in recursive fashion. The tree consists of nodes as declared in the examples of
Fig. 4 and starts out with the value t = NIL.

PROCEDURE search(VAR t: TreeNode);

(» search key x in t, insert it if not found »)

BEGIN
IF t = NIL THEN insert new node with key x
ELSIF x < t+.key THEN search(t.tleft)
ELSIF x > t+ key THEN search(t.tright)
ELSE (= found: tt.key = x *)
END

END search

Since we do not bother to balance the tres, but insert elements just as they come, this
method is also called random insertion. The question then arises, what the average path
length of such trees will be. We know that it will at best be log, n and at worst n/2. Once

14

again, empirical measurements are out of the question, because the number of possible trees
is beyond imagination even for modsrate numbers of nodes.

In the following we shall, without impeding con generality, assume that the keys will be
the integers 1, 2, ... , n, and that all n! permutations will be equally probable. We denote
the path lengths of the tree with n nodes by p,- Assume, then, that the key i arrives first and
therefore will be at the root of the tree, The chance for this to happen is 1/n, and the tree
can be depicted as in Fig. 9. The left subtree will have i-1 nodes (remember that all nodes
with keys less than i must be there). Its palh length is by definition p;.;. The right subtree
has n-i elements and therefore path length p,;. This yields the formula for the total path
length as the sum of the contributions of the left subtree, the root, and the right subtree.

P = ((-D*(pia+1) + 1 + (n-i)*(py+1))/ n

with p; = 1, py = 0. The recursiveness of this definition should not surprise, because both
the algorithm and its underlying data structure are recursive. We now must average this
value over all i from 1 to n. With the aid of some formula manipulation we obtain a simple
recursive definition

pn = ((0*1)p,y + 20-1)/0?
and this can be expressed explicitly as
Pn = 2(n+1)H,/n-3

where H, is again the harmonic series. Using Buler’s formula, we approximate p, = 2Inn
- 1.845...

The beauty of this result is that the path length of the average tree constructed without
regard to balancing is also logarithmic and differs from the optimal case only by a constant
factor of 2+Inn / log, n = 1.386... . This fortunately tells us that the average case is much
closer to the optimum than to the worst case; in fact it is "only" 38% off.

The two principal concerns of programming, correciness and performance, were
exemplified by a few simple, elementary cases. The programs discussed, although
non-trivial, were very short. This contrasts sharply with programs in common use which are
complicated, involved, and grow as fast as new memory devices shrink. Can the reasoning
thus demonstrated be applied profitably to these "real-world” monsters? It is my conviction
that they rmust, for complex systems require exact reasoning most urgently. Of course, they
may not be verified at the same level of detail; the proofs will be built on higher-level
abstractions; and if a large system includes 100 search procedures, we need not conduct the
same verification 100 times. In fact, most complicated systems contain astonishingly few
"deep” algorithms; they all rely on multiplication, scarches, and a few others, interacting in
all sorts of variations and combinations. The same method can be applied to understand

15

these variations and their interactions: formal, precise reasoning.

Whereas complex programs, such as operating systems, compilers, data base systems, text
editors, process control systems, usually contain few sophisticated algorithms, they
characteristically employ complex data structures, whose management is often complicated
by the fact that the data are stored on media with widely differing characteristics. Much
attention is therefore devoted to the organization of data under these apgravating
circumstances, to their allocation and access methods. Very frequently, the right choice of
data representation is the key to successful programming, and it may be much more
influential on a system’s performance than the details of the employed algorithm. But we
would be ill advised to expect a General Theory for choosing data structures. Itis therefore
mandatory to understand the elements of structuring, the basic building blocks and their
properties, just as we learn about the fundamental algorithms and methods of effective
reasening about them. The ability to successfully apply this knowledge in constructing large
systems is above all a matter of individual engineering skill and experience. In gaining this
skill, the programmer must constantly fight complexity, never be satisfied with a solution
that he does not fully understand, abhor shoddy workmanship, and never give up the search
for simpler, more elegant solutions.

16

sfo]
s{1]
s[2]
s[3}
s[4}
s[5]
s[6)
sl7}

1010011 l""‘_‘

- 83 GCARDINAL

——{ 45 | mTEGER
—[s | cHARACTER
{0146 | SET

Fig. 1: Interpretation of 7 bits as values of ditferent types

2
3 s.name Z|u r:;:[c_m
5 s.altitude
7 s.longitude

11 s.latitude

13 s.population | 4 §99_0

17

19

Fig.2: Representation of array and record structures

x = {0,1,4,6)
y = {3, 4,6)
xsy = {4,6}

x+y = {0,1, 3,4, 6}

1010011
1011000

1010000
1011011

Fig. 3: Set intersection and union computed by AND and OR

13

208 r’

o

J"’ c\QE‘) r’ 65

list

-

NIL

13
L [o] &
78 a9
o) (o}
A :
52 85
o] % (o)
ring
4
(o} o]
A 4 l
2 6
o [o oo
l | l
1 3 5 7
NIL [NIL NIL| NIL NIL[NIL NILNIL
tree
356 267 811 13
o » o —» O > NIL
NIL <+ [a] e} < (=]

doubly linked list

Fig.4: Dynamic data structures

17

18

X dx
A 1
DEFAB B 5
o] 5
}c~
1 D 4
]
2 E 3
3 F 2
4 G 5
H 5

Fig. 5: Table denoting distance of letter from the end

I:
nEan

s=132 $=231 s=4,285,1

Fig. 8: Trees constructed by "random insertion™

EI e R R)

Ot
Fig. 8: Tree with root node i

Fig. 6: Binary tree with 12 nodes has i-1 and n-i nodes in subtrees

=1

19

Elementary Principles of Informatics
J. Gutknecht

Abstract

This article takes a reader who is familiar with the mathematical way of thinking for a
kind of expedition through the realm of elementary informatics. Mainly, the logical
principles of computers and the essence of rigorous programming are explained by
numerous examples, partly being lighted from a new side.

20

State

Tnformatics is in a curious state at the present time: while its fundamental gign_iﬁcance is
largely undisputed, the opposite is true with respect to its actual malter. This situation is
particularly pronounced in the field of education. While the discipline of 1111'9rmaL105 is being
introduced throughout in school curricula, the opinions about the subject matter and
standards of achievment radically diverge.

Alter all, two basic tendencies have crystallized out: the first fights for the position of
informatics as an instrument of mathematics and the second establishes a close connection
between informatics and commercial and economical applications. It is the purpose of this
article to show that neither of these views is essentially appropriate.

Undoubtedly, informatics has grown out of mathematics. The notion of computer -
denoting the most important instrument of informatics - is a witness for that. Computers
were originally meant to relieve mathematiciens of performing calculations which are costly
in terms of time but in principle uninteresting.

On the other hand, today, the non-numerical applications of informatics are by far
predominant, What made such a drastic widening of the spectrum of applications possible?
Foremost, it is the brilliant simple and universal concept of the "computing machines”.
Actually, computers are universal devices rather than machines in the customary sense.
Ordinary machines are a priori geared to a specific application. In contrast, computers were
inhcrently designed to process potentially all kind of data in potentially any sense.

A second characteristic of computers is of no less importance for the opening up of new
horizons. It is their capability to store data. Indeed, for numerous applications, processing is
equivalent to storing and retrieving of (typically enormous amounts of) information,

Computers as universal devices

To explain in more detail let us now turn to the major components of a computer. There
are essentially two: the so called processor and the storage. The processor masters a
well-defined repertoire of elementary instructions. The storage is subdivided into an array of
elementary cells and serves as a memory of the computer. Both, processor and storage are
actually realized in the form of electronic components and circuits, i.e. in the form of
hardware.

By executing instructions, the contents of the storage cells can be inspected and modified.
So, in a sense, the storage cells can take the role of variables. 1t is crucial that the data within
a certain cell can be interpreted in very different ways. More precisely, data is coded as a
sequence of binary digits (bitg) and must be decoded according to the current context. For
example, arithmetic instructions interpret the contents of involved storage cells as rumbers.

Our sccond example of how data can be interpreted is known as principle of John von
Neumann. 1t is just this principle which helped the combination of processor and storage on
the road to success. A program P is a sequence of instructions operating on a sct of data,
Now, if a code is assigned lo each instruction, the program itself, i.e. the sequence of
instruction codes can be stored as data within the memory.

From this point of view, executing a program P is a universal process. The corresponding
universal program U'can be formulated as a continual repetition of the sequence

Interpret next instruction code; Bxecute instruction

The hardware of a computer clearly depends on the set of elementary instructions and
hence on the universal program U. The execution of U is usually controlled by hardware. It
is noteworthy, however, that hardware depends on nothing else, in particular not on the

21

program P. P plays the role of a parameter for U and can thus be substituted by an arbitrary
program P’ withoul any need for adjusting the hardware, Programs as P and P’ are therefore
said to belong to the calegory of sofiware.

Obviously, the universality of computers is much a consequence of the software concept.
Let us lake up a scemingly detail in the universal program U. What means next instruction?
Normally, this is the instruction in the next storage cell. But it is perfectly possible and in
fact inevitable that this rule is occasionally broken.

Assume, for example that the next instruction depends on the current state of the
program. Then, the processor has possibly to "jump" to a new location and there to resume
the linear interpretation process. Or, look at the repetilive universal program itself, Having
exccuted an instruction, the next code must be interpreted, i.e. the processor has to Jjump
back to the beginning of the loop.

As we shall see, alternatives and repetitions are essential components of a program. Hence,
jumps are indispensable members in the set of elementary instructions. It is the pecularity of
jump instructions that they provide a means for the processed program to direct ils
ProCessor.

External devices complete a computer to a computer system. We can distinguish two
classes: devices facilitating communication (typically a keyboard to accept input data and a
display to write messages and results) and devices serving as mass storage (e.g. magnetizable
disks). External devices are usually connected with the computer storage. Hence, data can
directly be read into and written from storage cells.

Programming

It follows from the foregoing section that a computer U can and in fact must be tailored
to a specific application by providing an appropriate program P. It turned out that the
activily of programming obeys certain thought processes which are law-governed and
greally independent of the specific application aimed at.

As a conscquence, laws, rules and methods concerning the discipline of programming
have been formulated. Programming in its most general sense has developed into the core of
information processing or informatics. So, what is programming?

We have already declared a program as a sequence of instructions operating on a set of
data. Of course, one thinks of a program to be executed. Therefore, programming amounts to
formulate a dynamic process as a static text. But things get even more complicated. In general,
a program accepts input data on which its execution may depend (remember the universal
program U accepting program P as input).

Hence, a program text describes in general a vast class of processes rather than a single
process. To say the program is correct obviously means that each of these processes runs
correctly, i.e. produces the correct output data (in a finite amount of time). Writing a
program correctly is not only a noble goal but necessity, if the program is intended to control
an aircraft or an atomic power station.

In most cases "unfolding" a program into all processes which it describes is hopeless. A
more promising way to prove its correctness is safeguarding the (static) text itself,
Programming in this rigorous sense is a strongly mathematical activity. Notice the
remarkable fact that the roles of mathematics and informatics have been reversed in the
course of time: mathematics has become an instrument of informatics!

Before we can illustrate these concepts by examples, we have to make a few remarks on
programming notations or programming languages. Although the program P will finally be

22

stored in the computer’s memory as a sequence of binary digits, this representation is
certainly inappropriate for humans.

Assume that each elementary instruction had assigned a mnemonic code, i.e. an identifier
which suitably abbreviates the name of the instruction. Assurme further that a name could be
assigned to each memory cell. Then, the program could be written as a text in readable form.

But how would this text be translated into the scquence of binary digits? Of course, this
translation process obeys well-defined rules. Hence, we could provide a program C that
translates any program P. We shall call such a transiation program a compiler. The idea of
compilers has proven to be extremely productive.

It has initiated a development which is not yet terminated. Probably the most obvious
step in this development was the introduction of programming' notations which are
independent of the underlying machine. These programming notations, or programming
languages as they are conventionally cailed, opened a door for the so called application
oriented prograrmming. In contrast, the compiler C for such a programming language, being
inherently machine dependent, is counted to the class of system software.

The next steps in the development of programming languages can best be characterized
by "increasing the level of abstraction”. The essence of abstraction is - in this context - the
usage of self-defined entities ("molecules") of possibly different type and complexity. Let us
point out here an interesting duality between the data operaled on by instructions and the
instructions operating on the data. The former represents the data structures of a program
and the latter the so called algorithms.

Elementary storage cells are the "atoms" of data structures, clementary instructions the
"atoms" of algorithms. While the process of abstraction for the notation of algorithms has
started at the very beginning in the development of programming languages (by necessity,
for there is no general set of elementary instructions), the inclusion of data structures is
greatly the merit of Pascal [1]. Notably, Pascal has introduced the notion of fype of a data
entity. A type is a rule according to that the dota entity is interpreted. Numbers and
characters are examples of basic types.

Pascal has also popularized the method of structured programming, i.e. the method of
successively refining the individual actions of an algorithm. This brought a new aspect of
programming languages into play: the aspect of the programming language as a tool which
supports the programmer in the design (not only formulation) of his programs.

Modern languages like Modula-2 [2] or Ada [3] go cven one step further. The key idea
behind is a clear separation between the definition of the functions of a program part and the
methods and techniques used to implement them. So, in a large software project where
several programmers are involved, the interfaces between the various program parts can be
laid out in detail centrally and a priori.

A first set of examples

We have previously stated that the discipline of programming is governed by
fundamental rules and laws. We can best explain these and the kind of arising difficulties
and methods to surmount them by simple but typical examples.

We shall now introduce a programming notation due to E W. Dijkstra [4]. Let us first
define its "instructions", in the sequel called statements. A statement list is a sequence of
statements, separated by ";". Variables (for the time being of an arbitrary type) are denoted
as al, a2, ..., expressions as E1, E2, ..., conditions as C1, C2, ... and statement lists as S1, S2,

23

The skip statement
skip No operation, skip

The assignment statement

al,a2,..,an:= E1,E2,..,Bn Assign (simultaneously) the value
of Eltoal,.., of Entoan

The alternative statement

IFC1->8S1 If no condition is valid at all, then halt with error
| C2->82 else select any valid Ci and execute statement list Si
| Cn->8n
FI
The repetitive statement
DO C1-> 381 While any of the conditions is valid,
| C2->82 select any valid Ci and execute statement list Si
"] Cn->sn
oD

Notice that this notation, although looking harmless, it is not! The fact that statements or
even sequences of statements occur within an IF- and DO-statement has far reaching
consequences. Complex hierarchies of nested alternatives and repetitions can thus be
constructed.

The conditions Ci somehow serve as guards. Si can be executed only if the guard Ci has
been passed. Thal’s why the list of Ci’s and Si's is sometimes called a guarded statement.

In our first programming example we shall deal with the problem of laying out a
rectangular area of width a and height b (2 and b natural numbers) with squares of a
maximal extent w.

Assume that one of the sides of the rectangle is greater than the other, say a>b. The
original problem is obviously equivalent to laying out the reduced rectangle with sides a-b
and b (see. Fig. 1). This step can be repeated to get a still smaller rectangle.

Does the process of reduction come to a natural end? At the most, if no side of the
rectangle is greater than the other, i.e. the rectangle has become quadratic. But, if initially
a>0 and b>0, this constellation must always come after a finite number of reduction steps. At
each repelition step, a and b are namely reduced by a positive integer under invariance of
the condition a>0 and b>0. (What happens, if the initial value of a or bis 07)

What have we gained by this successive reduction? In fact, the result! To see that, apply
the problem to the final rectangle which is a square. In this case, the maximal square
coincides with the rectangle.

We can now formulate our algorithm in the notation of Dijkstra. We add (in curled
brackets) the so called assertions in the form of logical predicates.

{a>0 and b>0}

DO a>b->a:= a-b{a>0 and b>0}
[o>a->b:= b-a{ad>0 and b>0}

oD

{a=b=extent-of desired square}

24

Figure 1. Laying out a rectangular area with squares

We emphasize that the success of this procedure is crucially based on the fact that the
extent of the desired square is not changed during a reduction step. Thus, the predicate "a>0
and b>0 and w=extent of desired square" serves as an invariant of the repetition. If its
validity is guaranted as a precondition at the entry point, then the postcondition (implying the
result) is the conjunction of the invariant and the negations of all guards.

Let us extend our problem to the more complicated region in Fig. 2. If we assign numbers
a, b, ¢, d as indicated in Fig. 2, we can see that the idea of reduction to find the maximal
square can be carried over.

a) a-b a-b

Figure 2. Laying out a horizontally and vertically bounded area

with squares

25

The reduction process now continues as long as at least two of the four numbers are
different. We must arrange the guards so that the validity of all their negations implies that
all numbers are equal. The following program shows a simple solution. I stands for the
invariant

I: a>0 and b>0 and ¢>0 and d>0 and w=extent of desired square
{1}
DOa>b->a:=ab {I}
|b>c->b:=bc{I}
Je>d->c:=cd {1}
|d>a->d:= d-a {I}
oD
{a=b=c=d=extent of desired squarc}

It is clear that the same procedure will work for even more complicated areas and also for
three-dimensional objects to be filled out by maximal cubes. The reader who is familiar with
elementary mathematics certainly has recognized that the mathematical solution of our
problem is just the greatest common divisor (gcd) of the numbers involved. ’

It is this mathematical interpretation which underlies the next extension of our algorithm.
It is a well-known but noteworthy fact that ged(A,B) can always be represented as an
integral linear combination of 4 and B:

gcd(A,B) = xA + yB

The key idea in the development of an algorithm which determines integral coefficients x
and y is to extend the invariant by two equations which, finally, coincide with gcd(A,B) =
xA + yB.

These invariant equations are a = xA + yB and b = uA + vB, where a and b are
auxiliary variables corresponding to the constants A and B. Qur program now read as

a,b,xyuv:=AB1001;
DOa>b->a:=ab;x:=xu;y:=yv
|b>a->b:=b-ajui=ux;v:i=v-y
oD
The guarded statement preserves the predicate
a>0andb>0anda =xA + yBand b = uA + vB

which is therefore an invariant. This invariant and the final condition a=b=gcd(A,B) imply
that (x,y) and (u,v) are solutions. Having already seen that the algorithm terminates after a
finite number of repetition steps, we have actually provided a mathematical proof for our
initial claim.

With the next example we will enter a field which plays a dominant role primarily in
non-numerical informatics, namely that of searching and retrieving data.

Let us start with an extremly simple problem. Given a list a[0], a[1], ..., a[n-1] and a value
x. Write a program to find an element afi] whose value equals x. The most obvious way to
search for such an afi] is to scan the list, say from left to right, until the value of a[i] equals x.
We shall call this procedure linear searching:
i:=0;
DO gfij#x ->i:= i+10D
Notice that "# " abbreviates "not equal” and that i := i+1 states that i is to be increased
by 1. The postcondition is just the negation of the guard, i.e. afi]=x. Thus, if our program
properly terminates, it has certainly found a desired element. Is the program correct?

26

Suppose that the value x is not contained in the list at all. Then, the guard of the repetition is
never false. But it is undefined if i>=n. Hence, the process will halt with error.

We can remedy our program by strengthening the guard:
i:=0;
DO i#nand afi]#x->i:=i+10D
{i=n or afij=x}
According to de Morgan’s law, the postcondition is now a disjunction. If i=n, then no
element with value x is contained in the list, otherwise i is the index of a desired element.

But a new difficulty has arisen. If i=n, then the sccond part of the guard is undefined. Thus,
from the point of view of ordinary logic, the whole conjunction is undefined in this case.

Modern programming languages (like Modula-2) circumvent this type of difficulty by
interpreting the and- and or-operator as conditional and and conditional or. The conditional and
assigns the value false, if the first argument has the value false, independent of the second
argument. Dually, the conditional or assigns the value frue, if the value of the first argument
is true, independent of the second argument. Of course, the "conditional"-operators are not
commutative!

The reader may find a correct guard for the conventional logic. We shall follow now a
new avenue. Correctness is an essential but not the only quality a program must have,
Efficiency is equally important. It is somehow unsatisfactory that the check if i#n must be
done at each repetition step. An elegant and typical way out is to suitably modify the data
structure instead of the algorithm. If we add a list element a[n] containing the value x, then
we exclude definitely the case which caused all our problems.

Hence, the first variant of our algorithm, being extended by the statement a[n] := x
proves to be optimal. An element with value x is not contained in the original list if and only
if the repelition terminates with i=n. The element a[n] acts also as a kind of guard; it is
occasionally called a sentinel.

In most cases it is desirable that a searching algorithm finds all occurrences of a value
within a list. So, we extend our program to respect this.
aln] 1= x;i:=0;
DO i#n+1-> DO afij#x->i:=i+10D;
{Process a[i} i := i+1
oD

Assume now that the elements of our list a[0], afl], ..., a{n-1] represent measurements. We
want to develop a program that finds the lowest and the highest measurement. Let us first
concentrate on the lowest value. We shall maintain a variable /Jow representing the current
minimum. Thus, the invariant of the repetition is

I: low=min(a[0], ..., a[i-1})
Together with i=n, Iyields the result.
low := a[0]; i := 1; {1}
DO i#n->IF a[iKlow -> low : = a[i} | a[i]> =low -> skip FI;
ir=i+1{1}
oD
{I andi=n}
If we include analogous actions for a variable high, we get the following solution of our
problem:

I: low=min(a[0], ..., a[i-1]) and high=max(a[0}, ..., a[i-1])

217

low := a[0}; high := a[0];i:= 1; {I}

DO i#n -> IF a[iKKlow -> low := afi] | a[i>=1ow -> skip FI;
IF a[iPhigh -> high : = a[i] | afil<=high -> skip FT;
ir=i+1{I}

oD

{I and i=n}

Two comparisons per list element are performed by this algorithm. Hence, altogether, the
process requires 2n comparisons. One might wonder if this is a minimum. Clearly, if a[i] is
smaller than the current value of low, a[i] cannot be greater than high at the same time. But
optimizing this rarely occurring event does not much improve.

If we knew the relation between two elements afi] and afj] of our list, then it would be
sufficient 1o test the lower of them against low and the higher against high. For we can find
the relation between ali] and alj] by one comparison, we need three comparisons for each
pair by this method, i.e. totally 3(n/2) comparisons, if n is even. We shall therefore consider
the pairs a[i], a[n1-i], where nl denotes the constant n-1. The invariant is now

I: low=min(a[0], ..., a[i-1], a[n-i], ..., a[n-1]) and
high=max(a[0}, ..., a[i-1}, a[n-i}, ..., a[n-1])

Together with /, the result is established as soon as i>=n-i, i.e. when i = (n+1) DIV 2,
where DIV denotes the integer division (non-integral part truncated). We shall denote by n2
the constant (n+1) DIV 2. The gain in efficiency has obviously to be paid with a loss of
simplicity. Notice, however, that the following program does not depend on the parity of n:

IF a[0]<=a[nl] -> low := a[0]; high := a[nl]
| a[0]>=a[n1] -> low := a[nl]; high := 2[0]

FI;

i:=1;{1}

DO i#n2 -> IF afiK=a[nl-i}->
IF a[i[<low -> low := ai} | a[i> =low -> skip FI;
IF a[n1-i]>high -> high : = a[nl-i] | a[n1-i}< =high -> skip FI

| alip>=a[nl-i} ->

IF a[nl-i[Klow -> low := a[nl-i] | a[n1-i]>=1ow -> skip FI;
IF a[i>high -> high : = a[i] | a[iK =high -> skip FI

F1;
i:=i+1{I}
oD

Let us turn now to a variant of the problem of finding an element a[i} with a given value
x. Interpret the afi] as departure times of railway trains. The problem is to develop a program
which returns the time of the next departure. Here, the reference value x is the current time,
Try to solve this problem without further assumptions about the list a[0), a[l], ..., a[n-1]. The
problem becomes much simpler, if we require the list to be ordered, i.e. a[0)X=aflK=...
<=a[n-1].

The desired result is a[i-1]<x<=a[i}, where we have added an element a[-1] of value
-infinity (in thought) and an element a[n] of value infinity. We try to keep I: afi-1Kx
invariant. Then, if we declare the guard to be afiJ<x, the postcondition implies the result:

a[n] : = infinity; i := 0; {I}
DO afikx->i:=i+1{I} OD
{I and x<=14[i]}

The solution turns out to be just a variant of the linear search algorithm presented above,
It solves as well our original problem of finding an element afi] of value x.

28

However, under the assumption of an ordered list a[0], a[l], ..., a[n-1}, there exists a
method which significantly outdoes the linear search algorithm. It is called binary searching.
The key idea is to succesively halve the number of elements which possibly coincide with x.

Thus, we may take as invariant a relation of the form a[i]<x<=aj]. But, unfortunately, we
cannot anchor this relation, for x is not necessarily contained within the interval Ja[0}, a[n-1]].
We therefore extend the list (in thought, as they are not really accessed) by two elements
af-1] and a[n] which are initialized as -infinity and infinity. So, if we seti:= 0 and j := n-1,
we get as a precondition I: afi-1Kx<=alj+1]. This predicate implies the result, if j-i<0.
(Notice that I and j-i<0 implies that j+1=1). So, we Lry to successively reduce the difference
j-i by keeping the relation [invariant:

it=0;j:=n-1; {1}
DO j->=0->m:=(i+j) DIV 2;
IF a[m)<x -> i:=m+1 {I}} afmP=x->j:=m-1{I} FI
oD
{I and j-i<0}
The postcondition states that a[i-1]<x<{=a[i]. Hence, a final test distinguishes the two

outcomes: if x=2[i], then an element with value x was found, if not, x is not contained in our
list and the list elements a[i-1} and a[i] are closest to x.

Investigaling now termination of our algorithm, we state that, if j>=i, then m>=i and
m<=j, ie. j-(m+1)<j-i and (m-1)-i<j-i Hence, j-i is strongly decreased at each repetition
step.

What is the gain in efficiency when using the binary search in place of the linear search
algorithm? Linearly searching an element in an ordered list of n elements requires n/2
comparisons in average. If our variant of binary searching is used, then log n comparisons
are always required (log is the logarithm with respect to base 2). Here, we have assumed n to
be a power of 2. To visualize the gain, remember that if n=1024, then n/2=>512 and log
n=10.

With the examples of linear and binary searching we have illustrated that programming is
a goal oriented activity. It was the result which suggested the invariant and the guard and it
was the invariant which practically fixed the repetition step, except the definition of m.
Indeed, the binary search algorithm is correct and terminates afler a finite number of
repetition steps whenever it is assured that, if j>=i, then m>=i and m<=j.)

Goal oriented proceeding will pay also in our next example which is due to D. Gries [5]
and is called the welfare crook. In contrast to the searching problems discussed so far, the
searching argument is here not explicitly known. Three ordered lists af0], a[1], ..., a[n-1], b[0],
b[1]}, ..., bfm-1] and <[0}, c[1]}, ..., c[I-1] are now involved. The first contains the names of all
students of the New York university, the second the names of all employees of IBM New
York, and the third the names of all welfare recipients in New York. The problem is to
develop a program which searches for a person who is registered in all three lists.

Notice that the list elements are now strings of characters instead of numbers. We assume
them to be lexicographically ordered. The postcondition must be of the form a[i]=b[j}=c[k}
for some indices i, j, k.-Hence, to establish the guards we follow the well tried scheme of an
earlier example. Furthermore, we include three sentinels a[n], b{m] and ¢[l]: '

a[n}], b{m}, ¢[l], i, j, k := infinity, infinity, infinity, 0, 0, 0;
DO a[ipbli] ->j:=j+1

| bliP>clk] >k := k+1

| clkPafi]->i:=i+1

D

29

The postcondition alil< =b[jlK =c[k]<=a[i] implies the result. The invariant is here empty,
if not the technical condition 0<=i{=n and 0(=K=m and 0K=k<{=1 is interpreted as
invariant. Clearly, the algorithm terminates after at most n-+m+1 repetition steps, for one
index is increased at each step.

We have scen that ordering of lists is an appropriate means to accelerate and simplify
searching processes. We shall now study ordering algorithms. Ordering algorithms belong to
the class of the most interesting and most subtle algorithms at all.

Let us start with an easy question, Write a program to order two elements a and b. If b,
then we must swap the two variables. A first try to swap aand bis

b:=a;a:=b;

This, of course, fails. The postcondition is namely a=b. Swapping necessitates an
auxiliary variable u:

u:=aja:=b;b:=u;
If we abbreviate this action as swap(a,b), then our program is
DO a>b -> swap(a,b) OD

The repetition obviously terminates after zero or one step. We now increase the number
of variables to be ordered, say to six: 4, b, ¢, d, e, £ We want to order them in sity, i.e. no
other variable (except 1) should be involved. The ordering repetition must certainly not stop
as long as any two neighbouring variables are in the wrong relation:

DO a> b ->swap(a,b)
| b>c->swap(b,c)
| ¢>d->swap(c,d)
| d>e->swap(d.e)
| e> ->swap(e,f)

oD

We claim that this is already the correct program. First, the termination condition, i.e. the
conjunction of the negations of all guards is a{=b<=c{=d<{=e<=f. Notice that the
sequence of swappings is not determined by this program; remember the definition of the
repetition statement!

Four szenarios of how the process could progress with a given setup:

abcdef abcdef abcdef abcdef

(=
(%]
8]
f—

it et et DI DI DO DN DN LA A A
NN~ =LAWL DN
Dt (D D LA bk et et bt AN
S LA LA L o ONCN O et
E- W W W= UL .
O\ D DWW
bk ok ek pd fd NN NN NN
NN~ NRNN WL
W W N DI NI DD e bt A DD
DN LI WD D D D DN
ON B D DWW DD
A LA AWL W WL W W
Pt bt et ek ot et hmd LA LA N N N
NN ULWnnE-= ALK
WWLARMNNAN =N
BN WR W AN NN -
NWHDDANWWRWWW DD
[= 2 R A
Pk pd ok ok ek ek NN NN NN
DNOB BRI NN O\ et d b LA LA LA
WIWWLW ANV
DA LA YW LWL R N e
AB AN NIAWWW WS
AN SS DA DDA W

(]
(=2

123456

Does the process always terminate after a finite amount of time? It is sufficient to find an
integer valued function which is bounded from above and strongly increased at each
repelition step. The ordinary sum of all elements being constant, consider the following

30

weighted sum: s 1= 0a+1b+2c+3d+4e+5f. The upper bound is s, being evaluated for the
ordered list.

The number of repetition steps clearly depends on the degree of the initial ordering of the
list. The reader may try to find out, if it is pure chance that in our example all szenarios
result in the same number of steps.

Similar to the situation with searching, algorithms have been developed which are an
order of magnitude more efficient than straightforward solutions. One of the most successful
is Quicksort [6] which we will now roughly discuss.

We can best explain the method of working of Quicksort, if we suppose that our processor
wants to delegate two colleagues to do the ordering of the list a[0], a[1), ..., a[n-1}. For that,
the processor has to prepare the list, i.e. to divide it up into two "independent" parts.
Independent means that each of the colleagues is able to do his part without involving the
other. This is effectively the case, if the processor divides up the list into two sublists a[0], ...,
a[i-1] and afi], ..., a[n-1], such that each element of the first sublist is not greater than each
element of the second.

This dividing process is not much involved. It is best done by succesively exchanging
unmatching elements as we shall subsequently demonstrate. It is surely desirable that both
sublists have about the same extent. So, the key problem is to find an appropriate reference
element x, according to that the splitting up can be done. It is a solution of embarrassment
to take for x the value of an element around the middle of the list.

X
a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

22 56 31 75 49 19 87 38 17 54
22 1’; 31 75 49 19 87 38 5T6 54
22 17 31 ;8 49 19 87 7'5 56 54
22 17 31 38 1?9|4T9 87 75 56 54
a[0] afi-1} | afi] a[n-1]

As in real life, each of our two colleagues will have two own assistants who he delegates lo
do the job. Hence, the original situation recurs. If a sublist consists of one element only,
then, clearly, the job is already done and nobody has Lo be delegated. It is a characteristic of
such recursive algorithms that the problem is never actually "solved” but merely reduced until
it has disappeared.

Ordering is thus carried out by several autonomous processes. In fact, delegating an
assistant corresponds to creating a new and independent process. In principle, all existing
processes could run simultaneously. This would obviously result in a saving of time for the
ordering of the whole list. But that property of the algorithm can be fully exploited only if
the underlying computer is equipped with an appropriale number of hardware processors.
Considering the progress in hardware technology, especially in VLSI (very large scale
integration (of electronic components)), such computers can be expected in the near future.

But the Quicksort algorithm is attractive even if only one hardware processor is used. If
we are lucky with our reference elements, then with each delegation, we can halve the extent
of the list to be ordered. And it turns out that ordering two lists of the half size is more
efficient than ordering the original list (even if one includes the preparation).

31

A second set of examples

Having emphasized the algorithmic aspect of computer programs in Lhe previous section,
data structures will be in the foreground in this section. Normally, a data bank which is
processed by a computer program is not a stalic entity. New items may have to be included
or cxisting items may have to be deleted.

Suppose that we are confronted with the problem of developing a program to maintain a
table of results for a downhill race. Let each participant be characterized by his data record
containing as components his name and the time he has achieved in the race.

Then, accepting a maximum of n participants, we declare the array p[1], pl2), ..., p[n] of
records as base of our data bank. Let us denote the name and the time of participant i by
plil.name and pli].time respectively. We shall design our program to accept two commands:
"insert new participant” and "display current results table”. Putting ourselves in a position
to insert a new item, we can make out the principal difficulty. Either we insert the items into
our array in the sequence of their arrival or in the sequence of the achieved times.

In the former case, we simply fill up the array successively. But then, the array must be
timely ordered whenever the "display”-command is given. In the latter case, however, we
must rearrange the whole array to correctly insert a new item. Rearranging means moving
present items within the array to make room for the new item. In the worst case (if the new
participant has achieved the lowest time), each entry would have to be moved to the back.

This is obviously not an effective solution (although, in our present example, the damage
is limited). As a way out we shall introduce the concept of chaining. For that, we add a
component next to the data record pl[i] which contains the index of the (timely) successor of
pli]. We shall interpret next as a pointer to the next element in the chain. We agree that 0
indicates the end of the chain. Further, we need a variable head which points to its
beginning.

Physically, the items can now successively be inserted into the array. An index i is
maintained to indicate the next free location. Additionally, however, each new item must be
properly linked into the chain. Suppose the data of the new participant to be registered in
variables newname and newtime. Qur program has to scan through the chain until an item xis
found of which the time is greater than newtime. Let the scan process look one entry ahead
and call cur the currently scanned entry. Then, finally, p[cur].next is x. The new element pfi]
must afterwards immediately precede this item. The correct linkage is thus established by
adjusting the next-components as follows: p[i] points to x and p[cur] points to pli].

So, our insertion algorithm becomes

{read newname and newtime from keyboard}

pli}.name : = newname; pli}.time : = newtime;

cur ;= head;

DO plplcur].next].time <= newtime -> cur := pfcur].next OD;

plil.next := plcur].next; pleur].next := i;

ir=i+1

Is the program correct? It is in general recommandable to consider extreme cases. Here,

there are two. They correspond to the situations where the new item becomes the head,
respectively the tail of the chain. The former case is certainly incorrectly handled for the
element head is not inspected at all. But the program also fails in the latter case. The
next-component of the last item being 0, the guard becomes undefined.

We could try to correct the algorithm, but, like in our very first example of the last

32

nex{ nexn name

—
j—

time

126

123

124

121

ot wlie]

128

R

127

129

125

Yk
R W NN 00D
N[O [tajwaioo il
Oiov oo o~ juai|N

9999

head (=tail)

next nexn name
i

it
—

time

b
(=}

vy

126

123

124

121

128

cur

127

129

125

(V-1 I-N [P T NG AN [~ V] R £

TR T - -
' Q
o= [Siwic ||

Nla|=|=lojmim|c=iz

9999

head (=tail)

Figure 3. Inserting a new item into time- and name-ring-chain

33

section, it is preferable to adjust the data structure. We will introduce a definitely last
"pseudo-participant”. Furthermore, we will link this pseudo-participant to the currently first
in the chain, closing in this way the chain to a ring.

Thus, the initialization of our program is
p{ll.next := 1; p{1].time : = infinity; head ;=1

Let us now turn to the handling of the “display results table” command. It is a running
through the chain:

cur ;= p[head].next;
DO pleur].time #infinity -> {write p[cur].name onto display} cur := plcur].next OD

The method of chaining has proven to be extremly helpful in disentangling the conflict
belween the succession of inserting items and the succession of achieved times. It is
practically indispensable if a data bank has to be ordered according to several different
criteria at the same time.

In our case, an additional ordering according to names comes in question. For that, we
have simply to add a second component to pli], say nexn The insertion algorithm must be
extended by a corresponding statement sequence (next by nexn) and p{l].name has to be
initialized with an "infinitly large name".

The display procedure for the name chain is the same as that for the time chain, where
again next is replaced by nexn. The reader may try to develop a procedure to remove a
(disqualified) participant from the results table (but not from the name chain).

Figure 3 shows the dynamic data structure that we have just discussed. The two ring chains
vary in size and ordering structure during the process. The next illustration which concludes
our collection of examples goes even a step further. Text editing has become an important
application in non-numerical computing. A logically connected sequence of data elements is
called a file. So, a text is simply a file of characters. A text-editor is a program that shows a
text on the display and interprets commands to edit this text.

Let us restrict to the commands "insert a piece of text” and "delete a piece of text”. The
source of the text to be inserted might be the keyboard or an existing text file. Suppose first
that these commands operate directly on the text, i.e. on the respective sequence of
characters. Then, the previous ditemma stemming from the discrepancy between the logical
sequence and the sequence of entering data recurs. Indecd, the insertion or deletion of a text
piece necessitates in general moving a possibly large part of the original text.

The concept of chaining turns again out to be an appropriate solution. Our data structure
will reflect the interpretation of the text to be ediled as a sequence of pieces. A piece is a
sequence of logically successive characters which are stored on the same text file. We assign
to each piece its descriptor. The descriptor indicates the respective text file, the starting
position within the file and the length (number of characters). As the text to be edited will
be represented as a chain of piece descriptors, we also include a pointer to the next
descriptor.

Thus, our data base is an array di1], d2], ..., d[n] of records d[i] with components d[i].file,
d[i}.pos, dfil.len and d[i].next. Initially, the text to be edited consists of a single piece. Figure
4 shows the development of the chain during the editing process. Note that, in contrast to
our previous example (apart from removing disqualified participants), the chain here can
grow and shrink depending on the operations.

Hence, we will introduce a pool of currently free descriptor records. Most simply, this pool
is also organized as a chain. The variable free might point to the head of this chain. The chain
of free records is initialized as follows:

34

delete text part between marks

by -] a e K

Insert text from keyboard kb at marked position

o -] a1 f—{a ol

A

copy text piece from a second text file £ to marked position

o o a1 J—[a -{m -{e o] ¢ f—f{e2 |

Id |

delete text part between marks

9 —lan |—|aon |-

Figure 4. Sample editing sequence on text file f

and development of the descriptor chain

35

free ;= 1;i:=1;
DO i#n-> dlilnext ;= i+10D;
next[n}:= 0

The operations get(i) and return(i) to get a descriptor (with index i) from and return a
descriptor (with index i) to the pool are inverse to cach other:

gel(i): IF free#0 -> i : = free; [ree : = dfi].next FI
return(i): dfil.next 1= free; free ;= i

As a final example let us program out the algorithm te delete a part of the edited text. Let
this part be specified by its beginning position A and its length L. Assume further that A>0
and A+ 1.<position of last character in the text. This is practically guaranteed, if the first and
the last character of the text are declared as sentinels (start of text and end of text). Let the
variable first point to the first piece of the text.

B:= A+L:sum:= 0; a:= first; {sum<A}
DO sum +d[al.len < A -> sum : = sum--d{allen; a := d[a].next {sum<A} OD;
{sum<A<=sum+dfa].len}
get(b); d[bl.next := d[al.next; d[a].next := b;
d[bl.len := sum-+d[al.len-A; d[a].len := A-sum >0},
d[b).file : = d[a].file; d[b].pos : = d[a].pos+d[al.len;
{sum¢=B and b=d[a].next}
DO sum-+d[bl.len <= B -> sum := sum+d[b].len;
d[a).next : = d[b].next; return(b); b := d[a].next {sum<=B and b= d[a].next}
OoD;
{sum< =B<sum+ d[b].len and b=d[a].next}
dbllen : = sum-d[b].len-B {>0};
d[b].pos := d[b].pos+B-sum;

Notice that this algorithm creates no pieces of length 0. Also, the first piece pla] which is
involved in the delete operation is explicitly split up (between the two repetition statements)
into two pieces pla] and p{b]. Hence, the algorithm is not optimally efficient, if the deleted
part is not contained in one piece.

Summary

We have scen that computers are universal devices to process information of very different
kind. Their universality is founded on the concepl of software or programs. The development
of correct programs is a highly mathematical activity, even if the application is non-numeric.
Programming-methods and -techniques have been developed which are of a very general
nature. Programming languages facilitate the abstract formulation of a dynamic process as a
static text. Modern representatives even support the programmer in the design of a possibly
large program system.

Although programming is a central discipline of informatics, it is not alone. The design of
data banks and of hardware architectures for computer systems are further cornerstones. Both
of these branches have recently gained in significance: the former due to the opening up of
new applications (c.g. data bases of geometric objects) and the latter due to the terrific
progress of the clectronic technology (VLSI).

It is a noteworthy fact that computers are not only objects but also tools in all of these
branches. So, things have come full circle.

36

References

[1] K.Jensen and N.Wirth, Pascal User Manual and Report, Springer Verlag, 1975

[2) N. Wirth, Programming in Modula-2, Springer Verlag, 1982

[3] The Ada Programming Language, ANSI/MIL-STD-1815A, Amer. Nat. Std. Inst., 1983
[4} B.W. Dijkstra, A Discipline of Programming, Prentice Hall, 1976

[5] D. Gries, The Science of Programming, Springer Verlag, 1981

[6] C.A.R. Hoare, Quicksort, Comp. Journal 5, No. 1, 1962, 10-15

