Pascal — The Language and its Implementation
Edited by D. W. Barron
© 1981, John Wiley & Sons, Ltd.

10
Two 1900 Compilers

J. Welsh

Since the first definition and implementation of Pascal [1, 2], two compilers for
~ ICL 1900 series computers, known as 1900 Pascal Mk1 and Mk?2 respectively, have
been produced at Queen’s University, Belfast. This paper contrasts the techniques
used in their production, and summarizes the significant features of the Mk2
system.

I. The Mk1 compiler

The Mk1 1900 Pascal compiler was produced by a six-month project in 1971 from
the original Zurich compiler for CDC 6000 series computers, by the technique
usually known as a half-bootstrap [3]. This involved rewriting the code generation
parts of the existing Zurich compiler to produce 1900 object code. Two compil-
ation cycles on the Zurich 6000 series machine then produced a compiler which
was eXecutable on, and generated code for, a 1900 machine.

Since the hazards of this transportation method are minimized by minimizing
the changes made to the existing compiler, the structure and analysis logic of the
Mk1 1900 compiler were carbon copies of those of the Zurich original. The new
code-generation logic introduced was simple but effective, treating the 1900 as a
single-computation register machine. The resultant compiler compared favourably
with its Zurich parent in size and speed of compilation. The object code which it
produced compared equally favourably with that from ICL’s standard FORTRAN
and ALGOL 60 compilers. The compiler also proved extremely reliable. In the five
years following its creation it has been distributed to some forty other ICL 1900
installations, with only minor amendments in that time.

The most striking aspect of the Mkl project, however, was the ease with which
the original transport operation was carried out. The half-bootstrap technique was
the method adopted for most early attempts to transport Pascal to other machines,
with variable success. It has obvious disadvantages:

171

172 Pascal—-The Language and its Implementation

(a) The transport exercise takes place on the donor rather than the acceptor
machine.
(b) The information transported is (possibly untested) machine-oriented code.

The Mk1 project showed that these disadvantages can be overcome. However,
since the release from Zurich of the Pascal-P system [4], most implementors have
opted for the more convenient full-bootstrap approach, which avoids these disad-
vantages. It is worthwhile therefore at this time to point out the less obvious advan-
tages of the half-bootstrap method, which are:

{a) The effort and potential problems of implementing a fixed intermediate
code on a possibly unsympathetic architecture are avoided.

(b) The fact that the success of the transport operation depends on the correct-
ness of the code-generation logic introduced provides a powerful incentive
for the implementors to get it right!

2. The Mk2 compiler

The Mk2 1900 Pascal compiler was produced by a project spread over a much
longer period, 1974-76, with a distinctly different approach. The initial impetus to
provide a new 1900 Pascal system came from the revised Pascal-language definition
[5], but the objectives adopted for the project were considerably wider than a sim-
ple revision of the language implemented. They inciuded the following:

(a) To improve the structure and clarity of the compiler as a vehicle for experi-
ments in language design and implementation. In particular it was intended
to achieve a structure which would facilitate modification of the compiler
to generate different object code forms for different machines.

(b) To improve the quality of the object code generated.

(c) To improve the error handling and diagnostic facilities provided by the
system during the compiletime, runtime, and post-mortem phases of pro-
gram development.

It is worthwhile to examine the achievements of the Mk2 project in the light of
these objectives.

2.1 The structure chosen

The Mk2 compiler was designed and written by following the stepwise refinement
sequence outlined by Ammann [6]. At each stage existing compilers, and in par-
ticular Ammann’s own Pascal 2 compiler, were critically examined, and the best
structure and formulation chosen on this basis.

Up to the point of code generation no major departures from Ammann’s struc-

Two 1900 Compilers 173

ture were chosen, though the textual order, formulation, and in particular the iden-
tifiers used within this structure were systematically revised to improve the trans-
parency of the final code.

For code generation, however, the scattering of imbedded generative sequences
throughout the analysis logic was not considered consistent with objective (a) of
the project. Instead a structure was sought which would allow a textual separation
of the generative code within the compiler, while retaining the efficiency and flexi-
bility of a one-pass parallel analyser/generator. The overall textual and functional
structure sought for the compiler was thus as shown in Figure 1.

To meet the project objectives the analyser/generator interface had to express
the generative actions required in an object code-independent form. This was
achieved as follows:

(a) The generative attributes of whose existence the analyser must be aware are
abstracted as values of appropriate Pascal-defined types, e.g.

type type representation = :
runtime address =..... -
code label S 2

The detailed definition of these types is provided by the generator in a form
appropriate to the object code being generated. However, the analyser
requests, stores, and passes back values of these types from and to generator
procedures, without any assumptions of their detailed representation or sig-
nificance.

(b) The code to be generated is abstracted as a sequence of operations on a
hypothetical stack machine. Each operation is requested by the analyser as a
call to a corresponding generator procedure, passing relevant attributes as
paramenters when appropriate, e.g.

i]
Source — Analyser »| Listing

Generator —={ Object
program

Figure 1. Functional and textual structure of Mk2 compiler

174 Pascal-The Language and its Implementation

procedure Stackreference (address:runtimeaddress),
procedure Jumponfalse (label:codelable);

By centrolling the types and representations of these parameters the gener-
ator implementor in effect tailors the abstract interface code to the needs
of his particular machine.

In this way both storage allocation and code generation is modelled in the Mk?2 ana-
lyser source without any knowledge of the actual object machine involved. Compi-
lation of this analyser in the context of an appropriate generator which defines
the generative types and procedures required will produce a compiler for any
chosen object code. The generator can likewise be programmed without any
knowledge of the analyser’s internal functioning, beyond its interface specification.

On the basis of this interface the Mk2 project was completed by programming a
generator for absolute 1900 machine code. The resultant compiler has now replaced
Mk1 as the distributed 1900 Pascal system. The same analyser and interface is being
used by the University of Southampton to produce a Pascal compiler for the very
different architecture of ICL’s 2900 series machines [7]. While it undoubtedly
deserves some further refinement the Mk2 analyser and the generative interface
which it incorporates offers an interesting and flexible base for Pascal imple-
mentors. For half-bootstrap transportations it has the advantage of isolating those
parts of the compiler which must be rewritten, while providing a flexible abstract
model of the generators required. Equally it might be used as a base for cross-
compilers of object code for mini- and microcomputers, an avenue which is cur-
rently being explored in Belfast, or simply as a means of providing alternative object-
code options on a single machine.

2.2 The object code produced

The Mk2 generator produces absolute 1900 code maintaining parallel simulations of
the runtime states of the hypothetical stack and actual 1900 machines, delaying
generation of actual 1900 code as long as the equivalence of these simulations per-
mits. Within this general framework the following particular strategies are consis-
tently applied:

(a) All operations involving constant operands are folded or optimized when-
ever possible.

(b) All available 1900 registers are exploited to minimize the use of temporary
locations during expression evaluation.

(c) Existing register contents are exploited in certain critical contexts, e.g.
parameter passing and block entry. (A more general exploitations of previous
register contents could be supported by the simulation but has not yet been
implemented.)

Two 1900 Compilers 175

The quality of the resultant object code, compared with that produced by the
Mk1 system, has been measured for the following five programs:

(a) Three programs given by Wirth [2], which perform real matrix multipli-
cation, integer sorting, and character frequency counting, and thus typify
simple numeric and character processing.

(b) The Ackermann function, advocated by Wichmann [8] as a test of the pro-
cedure and parameter mechanisms in recursive block-structured languages.

(c) An intermediate version of the Mk2 compiler itself, which employs the full
range of Pascal’s facilities in a typical systems programming application.

The length and execution time of the object code generated for each program by
the Mk1 and Mk2 compilers (on a 19065 computer) are shown in Table 1.

The longer time taken for character counting under Mk2 is attributable to the
fact that in the Mk2 system the binding of I/O devices to program file variables is
delayed until runtime, with a consequent overhead in the file access routines. Other-
wise the results show a consistent improvement of 10-20 per cent. in the length and
execution time of the programs used.

While any improvements in object-code efficiency are welcome, the relative
modesty of those achieved clearly demonstrates that a multiplicity of registers for
expression evaluation does not radically improve the performance of most programs.
One may in turn question the justification of the more complex code-generation
strategy incorporated in the Mk2 compiler. However, this strategy should not be
evaluated on the basis of these measurements alone since:

(a) it is capable of further exploitation in code optimization and
(b) it readily supports other generation features such as the runtime error
checking described in the following section.

2.3 Runtime error checking

The third objective of the Mk2 project, namely to improve the error-handling and
diagnostic facilities provided, has been tackled in three ways:

(a) The syntax and semantic error-recovery techniques used by Ammann in the
Pascal 2 compiler has been incorporated with minor medification, to pro-
vide improved recovery with few repetitive or spurious messages.

(b) The runtime error-checks option has been implemented in a way which
exploits the information provided by the program as to the values which
may occur, in the manner cutlined below.

(c) The provision of a diagnostics package implementing execution profiles,
traces, and symbolic post-mortem dumps has been undertaken by the Uni-
versity of Glasgow [9].

8L°0 Sy 8¢ 060 A¥'CT A8PT Rrdwos 7N

£8°0 0TIl el 980 LE £y [8 ¢} uweunayoy

601 9l STl £8°0 T 6T SI2108IBYD 000000 [Sununo)
L80 I't L' +8°0 (%4 8¢ sze8ajur 0QQ | JunIoS

[6°0 9'1 9L 6.0 $9 Z8 SIJLIBUL 06 X 0S

Jo uvoneondniny

TN/ TN 1N TIN/TIN TIN 3N wergorg

QW) UOTINOIXY y38us[apo) :

s1oTidwod W pue [N Aq paanpoid epod 193lqo jo uosuedwo) ' Jqel

Two 1900 Compilers 177

A significant feature of Pascal is the increased precision with which the range of
values to be taken by program variables can be specified—as enumerated or sub-
range types. The programmer may expect that the system ensures that this speci-
fication is observed, either by compile-time or (possibly optional) run-time checks.
Provided these checks are made, however, the compiler may in turn exploit these
guaranteed properties at other points where the variables occur.

In the Mk2 compiler an assertion is constructed about each operand in an
expression indicating the range of values it may take, and hence whether overflow
may occur in its evaluation. For constants the assertion is trivially determined by
the value itself; for variables it is derived from the declared type of each variable;
for operands which are themselves the result of some operation, the assertion is
computed from the operation and from the assertions for the operands to which it
is applied.

In this way an assertion is available to the compiler about the value of each
expression compiled. Where this expression occurs in a context where a limited
range of values is acceptable, e.g. as a subscript, a case index, or a valuc for assign-
ment to a subrange variable, this assertion can be used to determine whether a run-
time check is necessary, and what form it should take. The need for checks against
arithmetic overflow are decidable in the same way.

Thus the amount of runtime checking which is incorporated in a program
depends on the precision with which the programmer declares the variables invol-
ved, and in general the checks may decrease, rather than increase, as more precise
declarations are used.

To demonstrate this the text programs given earlier have been remeasured, with_
the runtime check options selected, to determine the degradation in code length
and execution time which these checks introduce. Where appropriate the programs
have been run in two forms—the first using variable declarations without particular
regard to the range of values taken, the second using the most precise subrange
declaration possible for each variable. The resultant degradation factors are shown
in Table 2.

The results for the first two programs, which depend heavily on subscripted
variable access, show that while careless declaration of index variables produces a

Table 2. Degradation factors produced by Mk2 check option (a) with
careless variable declarations, (b) with careful variable declarations

Code length Execution time
(a) (b) (a) (b)
Matrix multiplication 1.60 1.03 2.68 1.04
Integer sort 1.67 1.04 2.24 1.07
Character counting 1.08 - 1.04 -
Ackermann function 1.24 - 1.11 -
Mk?2 compiler - 1.03 - 1.09

178 Pascal-The Language and irs Implemenration

two- or threefold increase in execution time when error security is requested, the
same security can be achieved at very little cost by careful declaration of these
variables and the use of a compiler which exploits the information provided.

For all of the programs measured the degradation produced by the Mk2 sys-
tems’s check option, used on well-coded programs, is a small price to pay for the
additional error security achieved. Indeed for four of the five programs tested, the
degradation is less than the improvement in execution speed which the Mk2 object
code showed over that of its Mk1 predecessor, so that the Mk2 programs wirh ervor
security are more efficient than the equivalent Mkl programs without!

2.4 Counting the cost

As the preceding sections show, the Mk2 system offers some significant advantages
over its predecessor in terms of structure and adaptability, object-code quality, and
cost of error security. At what price are these advantages obtained? Table 3 shows
the compiletime requirements of the Mkl and Mk2 systems in compiling an inter-
mediate version of the Mk2 system.

" The significant increase in the object-code length of the Mk2 compiler is its least
attractive feature. It is attributable to:

(a) the additional language features implemented, in particular packed data
structures;

(b) the structural separation of analysis and code-generation logic within the
compiler; and

{c) the more structured and more powerful code-generation logic used.

The lack of reduction in working storage, despite the use of the new packed facility,
is also attributable to these factors.

The increased storage requirement may, however, be offset against the consider-
able increase in compilation speed. If compilation cost is measured as a space X
time product then the appropriate formulae for the cost of compiling 100 lines of
Pascal source under each system are of the form

Table 3. Comparison of compiletime requirements of Mk1 and
Mk?2 systems

Compiletime requirement Mkl system Mk?2 system
Fixed object code and data storage 20.5K 30.3K
Working storage 12.6K 12.7K

Time taken to compile (9000 lines) 76 sec 45 sec

Two 1900 Compilers 179

Mkl : (17.3 +0.84T) Kwords X sec
Mk2 : (15.2 + 0.507) Kwords X sec

where T is a measure of the working storage requirement of the source program
determined chiefly by the program’s complexity or depth of nesting and the
number of identifiers used. Thus the Mk2 system has a basic advantage in cost of
compilation over Mki and this advantage increases with program complexity.

3. Conclusions

While the first generation of Pascal implementations represented a significant break-
through in language implementation and portability, second-generation systems
show clearly that further advances can be made. The Mk2 1900 system’s error-
checking strategy only indicates that the low or zero cost error security, which
Pascal makes possible in principle, can become a practical reality; but much remains
to be done. Likewise there is much that can be done in other directions, and the
language Pascal is likely to remain both a challenge and a source of guidance for
language implementors for some time to come.

Acknowledgements

The author is deeply indebted to Colum Quinn and Kathleen McShane, without
whose design and programming skills neither 1900 Pascal system would have come
to fruition.

References

1. Wirth, N., The programming language Pascal, Acta Informatica, 1, No. 1, 35-63
1971.

2. Wirth, N., The design of a Pascal compiler, Software—Practice and Experience, 1,
No. 4, 309-333, 1971.

3. Welsh, J., and Quinn, C., A Pascal compiler for ICL 1900 series computers, Soft-
ware—Practice and Experience, 2, no. 1, 73-77, 1972.

4. Nori, K., et al., Pascal-P implementation notes, Chap. 9 in this volume.

5. Wirth, N., The Programming Language Pascal (revised report), Nr. 5, Berichte des
Instituts fur Informatik, ETH, Zurich, November 1972.

6. Ammann, U., The Method of Structured Programming Applied to the Develop-
ment of a Compiler (Eds. A. Guenther et al.), International Computing Sympo-
sium 1973, pp. 93-99, North Holland, 1974.

7. Rees, M. J., et al., Pascal on an advanced architecture, Chap. 13 in this volume.

8. Wichman, B. A., Ackermann’s Function, A study in the efficiency of calling pro-
cedures.

9. Watt, D. A., and Findlay, W., A Pascal diagnostics system, Chap. 11 in this
volume.

