7

The Pascal Standard from
the implementor’s viewpoint
J. Welsh and A. Hay

Introduction

The Pascal Standard (1] presents a new challenge 1o implementors. a
challenge that is reinforced by the Pascal Validation Suite. When compared
with the previous Pascal Report (2] the length and detall of the new Standard
must give an implementor cause for concern. This apprehension can only
deepen at the prospect of 400 or so programs specifically designed to find
shortcomings in any compiler. What then lies in store for an impiementor
who takes up this challenge?

This paper summarises one implementation project's experience to date
in meeting the requirements of the Standard. The project began out of
technical interest during the development of the draft standard itseif, but has
now become an NPL supported project to provide:

(1) a Standard Pascal static checker (SPSC) that will enforce all
compile-time enforceable checks on Pascal programs. and

(%) a Standard Pascal model implementation (SPMD which will demonstrate
the techniques required for implementation of all run-time error checks
implied by the Standard, albeit on an idealised P-machine architecture.

Both the SPSC and SPM! will be made available by NPL and BS! to help and
encourage other impiementars to achieve a high tevel of conformance to the
Standard and the Validation Suite. At the time of writing. the SPSC is
complete, in the sense that it passes all relevant tests in version 3.0 of the
Validation Suite. The SPMI should be complete by mid-1982. The devetopment
of the SPSC and SPM! is based on considerable previous experience of
implementing Pascal. In the case of the first author, this dates from the initial
bootstrap of a Pascal compiler to an ICL 1900 at the Queen’s University of
Beifast in 1971 [3]. Subsequent developments in Belfast led to an improved
modular structure for Pascal compilers [4], a systematic method for exploiting
compile-time range analysis to avoid the need for run-time error checks [5].
and. in conjunction with the University of Glasgow. a source-related run-time
diagnostic package [6]. The resultant 1900 Pascal system has been used as
the basis for several other Pascal implementations. and its distinctive features
have been incorporated and refined in the SPSC/SPMI development. In the
case of the second author. previous experience includes a P-code
tmplementation and maintenance of the highly successful Pascal 6000
compiter for CDC computers.

Conformant arrays

Conformant array parameters are undoubtedly the major addition to Pascal
© J. Welsh and A. Hay 46

47

from the implementor's point of view. Although strictly an optional feature,
their definition within the Standard makes their implementation mandatory for
all serious implementations of the language.

Handling variable length array parameters is not a new problem and the
basic techniques have been well established in other tanguages. Indeed, some
Pascal implementations, such as the Pascal 6000 compiier [7]. already offer
similar facilities with a somewhat different syntax. However. the Pascal
Standard’s equivalence rules for array types (which equate multidimensional
arrays (one dimensionab arrays of arrays of etc.) do create some traps for
the unwary implementor. Suppose we have declarations, as follows:

type vector = array [1..3] of real ;
var vmatrix : array [1..10, 1..20] of vector ;

The entire variable vmatrix may be passed as parameter to a procedure
P declared as:

procedure P (var a: array [ml..nl: integer; m2..n2: integer]
of vector)

Ahternatively, a single row of vmatrix, wvmatrix[i] say. may be passed as
parameter to a procedure Q declared as:

procedure Q (var b: array [m3..n3: integer]} of vector)

Within Q the parameter b may in turn be passed as a parameter to a
procedure R declared as as:

procedure R (var c: array [m4..n4: integer; m5..n5: integer]
of real)

Because of this multi-level view of array structures in Pascal. each bound
pair required to describe an actual conformant array parameter must be
constructed or copied independently. Because several actual array parameters
may share the same set of bound pairs, the base address for each must
also be passed and stored separately from the bound pairs. Within the
receiving procedure, the set of bound pairs is used [n conjunction with the
approximate base address to provide an effective array descriptor. For these
reasons. the copying of fixed—-format array descriptors is not an adequate
means of handling Pascal’s conformant array parameters.

The Standard’s definition of value conformant arrays is carefully worded
to allow the necessary copy of the actual array parameter to be made in
the calling environment where its size is known. so enabling fixed size
procedure activation records to be maintained. In practice, however,
implementations that use extensible activation records may find it more
convenient to create the copy in the cailed procedure after controi has been
transferred. so avoiding any interaction between any copies created and
further evaluation of the parameter list. and any problems with their
subsequent disposal.

Provided the implications of the Standard are understood. the
implementation of the conformant array parameter mechanism reduces to a

48

straightforward if painstaking encoding of the Standard’s carefully worded
rules. In the static checker the analysis required for conformant arrays forms
an alternative parallel path to that for handling fixed arrays and constitutes
an approximate 7% increase in the checker's overall length. The
corresponding logic to generate conformant array access code in the SPMI
is not yet complete but is expected to produce a similar increase in the
overall compiler size.

The relative speed of element access for conformant and fixed arrays
depends on the target machine involved and the indexing techniques used
on it. For some, conformant array access will be significantly slower. for
others it will not. With the mechanism used in the Pascal 6000 compiler
access to 2-dimenslonal conformant array elements is about 20% slower than
that for equivalent fixed arrays. What is generally true is that elimination of
subscript checking by compile-time range anaiysis as described in (5] is not
immediately applicable to conformant arrays, since the necessary subscript
bounds are not known at compile-time. Thus. the considerable overheads
normally associated with subscript checking in FORTRAN or Algo! will remain
for conformant arrays in Pascal. The development of some means of
eliminating such checks. at least in simple contexts such as

procedure P (var a : array [m..n:integer} of T)
var 1 : integer ;
begin
for i :=mtondo a[i}
end ;

is an obvious priority for compilers supperting conformant arrays, which we
hope to pursue in a second phase of SPM! development.

Additional compile-time requirements

The Standard imposes a number of requirements on Pascal implementations
which involve additional compile-time processing. but no change in the
executable object programs produced. These arise mainly from additional or
more precise definition of language features to enable more compile-time
detection of programming errors, but in one case from a greater freedom
of expression now permitted than that previously.

Formal procedures and functions

A significant syntactic extension introduced by the Standard is the notation
required to define the parameter list requirements of procedures and
functions which are themselves formai parameters of other procedures and
functions. At first sight. this additional feature appears to require significant
additional syntax analysis code within a compiler. but in practice this is not
so. Because the declaration of a formal procedure or function takes the same
form as a heading used in actual procedure and function declarations, a
well-structured compiler will use the same analysis code for both - giving
rise to a reduction in the overall code required rather than an increase.

49

Identifiers of arbitrary length

The Standard now makes clear that Pascal identifiers may be of any length
and that all characters of identifiers are significant in distinguishing between
them. In the past, most compliiers have followed the recommendation of the
Report in limiting significant length to 8 or 10 characters. and, therefore,
have limited the storage required for identifier speliings at compile-time. For
these compilers the new Standard demands a change. which should be
implemented to achieve the following objectives:

i to avoid any time overhead in distinguishing identifiers from word
symbols,

(i) t0 minimise the time overhead in comparing identiflers, and.
(i to minimise the storage overhead in hoiding the full identifier spellings.

In the SPSC these objectives have been realised by representing identifier
spellings as records of type alfa defined as foliows:

alfahead = packed array [1l..headlength] of char ;
alfatail = tailrecord ;
tailrecord = record
chunk : packed array [1..chunklength] of char ;
rest : alfatail
end ;
alfa = record
head : alfahead ;
tail : alfatail
end

The headlength is chosen to be greater than the length of the longest
word-symbol (procedure), so that identifiers and word symbols may be
distinguished by direct comparison of heads only. and in this way objective
() is achieved. To achieve objective (i) identifier comparison during table
searching uses an in-line comparison of heads. foltowed by a function call
to compare taiis If necessary. Because the vast majority of comparisons are
resolved by the head comparison alone the resultant degradation of table
searching speed is negligible.

The length of chunks used within identifter tails should be chosen to give
an economic balance on the particular computer involved between the chunk
storage itself and the overhead of their linking pointers. In practice.
reasonabie variations in this balance have little impact on the overall storage
requirement as the majority of identifiers used by Pascal programmers
generate little or no tail storage. The major overhead in meeting the
requirement of the new Standard Is. therefore, the additional tail pointer
(usually ni) that must be stored for every lIdentifier. For many current
implementations this represents a storage overhead of around 10% per
identifier table entry. Since identifier storage Is a significant proportion of
the total storage requirement in compiling large programs, (25% for the 1900
Pascal complier itself). the new requirement will produce a measurable
storage increase for compiling such programs.

50

Identifier Scope Rules

The rutes of scope in the new Standard now make clear that a use of
a non-jocal definition of an identifler in a block B (or any nested block) must
not precede its redefinition in block B.

Thus. in the following fragment both N and X are redefined illegally within
procedure P:

const N = 10 ;

X = 100 ;
procedure P ;
type T = 1..N ; {using constant N}
var N : integer ; {redefining N}
procedure Q ;
begin
write (X) {uging constant X within Q}
end {a} ;
procedure X ; {redefining X in P}

in the past. most Pascal compilers aliowed such programs by considering
the scope of a new definition to start from its defining point - an easy
implementation option. Sale [8] has described a simple atgorithm for enforcing
the new rules but it involves numbering all scopes encountered in the
program in order of their opening. and recording in each identifier table entry
the number of the latest scope in which it is used. The algorithm produces
no significant overhead in compilation-time but does mean the storage of
one new field in each identifier table entry. The precise impact of this
additional field on the total storage will depend on the limit set for the total
number of scopes in any program, and on the packing possibilities within
the existing identifier table entries. but in general it may lead t0 a measurable
Increase in tabie storage of the arder of that described for the implementation
of identifiers of arbitrary length.

For-statement restrictions

The Standard imposes new restrictions on the control varlable of a
for-statement which makes iliegal any assigning reference that threatens to
alter the value of the control variable within the body of the for—statement,
or within any procedure or function declared In the same block. To enforce
these rules the compiler must create and examine two sets of variables for
each block B:

() the set Ty of iocal variables that are threatened by any local procedure
or function,

(ii} the set CB of local variables currently in use as control variables of
for-statements.

The set Ty is constructed during compilation of the nested procedures
and functions of B. and examined during comptiation of the statement part
of B. so it exists throughout the compilation of B. The set CB exists only

51

during compilation of B’'s statement part.

Each set may be represented either as a corresponding boolean flag held
In the table entry of each variable identifier. or as a chained tist of pointers
to reievant table entries. If the additional boolean flags can be accommodated
within existing packed identifier table entries without increasing the overall
entry size the first method is preferable. otherwise the second may be more
economic. When using the latter it should be remembered that only those
variables that can occur as control variables, i.e. those of ordinal type. need
to be recorded in the threatened set T of any block.

The processing required on meeting any assigning reference to an entire
variable v declared in block B to be of ordinal type is as foliows:

if B is not the local block
then Ty = Tg + V]
else if v in CB
then error {assigning control variable
within for statement)

On encountering a for statement for v = ... the compile-time processing
required is:

if v is not of ordinal type
then {control variable must be of ordinal type}
else if v is not local to B
then error {control variable must be local}
else if v in TB
then error {control variable is threatened
by procedure or function)

else if v in C
then error {same control variable in nested fors)}
else CB 1= CB + [v]

and at the end of the statement the processing required is simply:
Cg = Cg - [V]

With either of the set representations suggested. implementation of this
logic does not resuit in a significant increase in the compiler code length
or in the compiation time for typical Pascal programs. Measurements with
the SPSC indicate that even with the chained representation of identifier sets
the storage overhead for maintaining the sets is not significant.

Label/Goto Restrictions
The Standard requires the enforcement of checks on the accessibility of
labels by goto statements. with an additional specific restriction on the

non-local goto statements allowed.

To enforce the checks each declared Is represented by a record defined
as follows:

52

labeldepth = 1..maxint ;
labelrec = record

A
RIS |

case sited : boolean of
false : (maxdepth : labeldepth}) ;
true : (case accessible : boolean of
false : () :
true : (depth : labeldepth))
end
At the declaration of a label its record L is initialised as follows:

with L do
begin
sited := false ;
maxdepth := maxint
end

At an occurrence of a goto statement that references a label with record
L the checking required is as follows:

with L do
if L is non local
then maxdepth := 1
else if sited

then begin
if not accessible then error {label too deep
this goto}
end

else if maxdepth > depthnow
then maxdepth := depthnow

At an occurence of a statement labelled with the label with record L. the
checking code required is

with L do
if sited
then error {doubly sited label}
else begin
if maxdepth < depthnow
then error {label too deep for previous goto} ;
gited := true ;
accessible := true ;
depth := depthnow
end

The variable depthnow is Initialised to 1 at the start of each statement part.
and Is increased by 1 at the start of each unlabelled statement. te. after
processing the statement label. if any, as above. At the end of each statement
the following processing Is applied to all label records for the current block.

for all label records L do
with L do
if sited
then begin

53

if accessible
then if depth = depthnow
then accessible := false
end
else if maxdepth = depthnow
then maxdepth := maxdepth-1 ;
depthnow := depthnow-1

The cost of this label processing at the end of each statement is insignificant
only because the number of labels deciared In any Pascal block Is usually
very small, if not zero.

Additional run—time requirements

Apart from its introduction of conformant array parameters, the Standard
impinges on the run-time behaviour of Pascai programs in two ways:

(13 A number of minor adjustments and clarifications of the executable
effect of existing Pascal features may require corresponding changes in
the generated code or run-time support routines of existing Pascal
implementaticns. The changes required are clearly dependent on the
existing implementation concerned and cannot be catalogued in any general
way. but typical examples are the code generated for the div and mod
operators, or the conversion routines used for numeric output.

(2) The Standard now provides a preclse definition of those run-time events
that are designated errors and should be treated as such. Although
compliance with the Standard does not require the detection of errors at
run—time, their clear definition now makes it possible, and highly desirable,
for impiementors to provide such detection. at least as a user option.

Appendix D of the Standard catalogues 59 errors whose occurrence at
run—time should be detected. In the following sections we summarise the
problems and run-time cost of detecting these errors under six general
headings.

File errors

GOf the 59 errors listed. 14 relate to the state of file variables during
operations on them. or the values of parameters involved in such operations.
None of these errors is difficult to detect within the file processing code
involved, and most are already handled by existing implementations or require
only minor adjustment of these. Because of the nature of file processing and
the way it is implemented. the cost of implementing the detection of these
errors is not significant, either within the compiler or within the programs
generated. There seems no justification for an implementation that fails to
provide such detection. or for providing it on an optional basis.

Range errors

Almost haif the errors listed (29) relate to limits on the range values taken
by scalar variables and expressions in certain contexts. These include the

54

famiiiar array subscript error, case Index error and subrange variable
assignment error, but also inciude overflow during real or integer arithmetic.
which are also range variations of an Implementation—defined kind. These
errors have always been well-defined in Pascal, and their detection is
supported by most implementations. at least on an optional basis. The
significant feature of Pascal in comparison with other languages is that the
careful use of subrange declarations can enable the complie-time elimination
of run—-time range checks in many cases [5]. and so avoid the high run—time
overheads traditionally associated with range checking. In the case of the
1900 Pascal compiler the compile-time analysis to achieve this elimination
of run—time check led t0 a 8% increase in compiler code with a decrease
in compilation speed of less than 1%. Such costs are negligible when
compared to the benefits obtained. and the adoption of similar range analysis
techniques in other Pascai compilers is strongly recommended. The difficuities
in exploiting the technique for conformant array Indices does not diminish
its effectiveness in other areas.

Undefined values

Six errors are listed which involve the use of undefined (i.e. unassigned)
variables or function results. These errors have always been clearly
recognised. but few implementations have attempted to detect them because
of the prohibitive run-time overheads invoived.

In principle, each possibly undefined variable v of type T must carry with
it a defined tag. if undefined value errors are t0 be detected. in effect, the
required representation has the form

v : record
case defined : boolean of
false : () :
true : {(value : T)
end

The defined tag is set faise at the creation of v, becomes true when v
is assigned a value., and must be checked in each context where v is required
to have a defined value.

In practice. the defined tag can often be accommodated within the
representation of the value itself without additional storage overhead. but the
high cost of setting up the undefined value representation and of checking
for it subsequently still remain.

For variables of structured types the error detecting requirements are even
more demanding. Since each component of a variable of (unpacked)
structures type may be passed as a variable parameter and maniputated
without any awareness of its surrounding structure. it follows that each
component must carry it own defined tag with it. This in turn means that a
(partially) undefined test for a structured variable invoives inspecting the
defined tags of each of its components in turn. For varlables of a packed
structured type. the components are not independently accessible. and for
these an alternative strategy of grouping defined tags together for easier
inspection could be considered. it is not clear. however, that in general the
advantages of doing so would ocutweigh the disadvantages for individual

55

component updating.

Some reduction of the high run-time cost of undefined checks may be
achieved at compile—time, by maintaining a record of the accessible variabtes
in any block that have definitely been assigned values at or since block entry.
For value parameters. and for simple local variables which are often assigned
values before any conditional control statements are encountered, this
technique should enable the elimination of the corresponding undefined
checks, with a significant reduction in the code storage overheads incurred.
Unfortunately. however, the highest time overheads result from checks applied
during repetitive processing. usually of data accessed either by array indexing
or via pointers. The dynamic nature of this access often preciudes elimination
of the corresponding checks by any simple compile-time analysis. in such
cases, hardware assistance in implementing the checks is the most likely
means of reducing the overheads involved.

Variant errors

The Standard provides a precise definition of the rules governing variant
records with and without tag fields. These rules give rise to six detectable
errors that occur through Illegal variant field manipulation or through
inconsistent use of the extended form of new and dispose. The checks for
these errors are the most complex of those required by the Standard., both
in the compile-time processing required for their generation and in the
run—time processing that their application involves. A tentative model for their
implementation within the SPMI has been defined. but it would be foothardy
to describe it in detail in advance of its implementation and testing. Its
essential ingredients are the maintenance of a variant check record for each
active level of variant nesting within each record together with a cascade
of variant checks, from the outermost variant level Inwards. to establish the
validity of variant manipulaton at any level.

Whatever the precise form of the checks invoived. it is cilear that their
introduction will put considerable overheads on the processng of variant
record data. The scale of these overheads makes it imperative that
compile-time techniques for the elimination of some of these run-time checks
be investigated. The with—statement in Pascal gives a basis for a limited
reduction in such checks — by propagating local assertions about the currently
established variant status of the record within the with-statement it should
be possible in suitable cases to perform the necessary varlant checks once
per with-statement rather than once per variant field access. If a
case-statement with the tag field as case-index is used within the
with—statement it may be possible to eliminate the checks altogether. In
general. however. the dynamic access (via pointers) used for many variant
records will make elimination of variant checks difficult to achieve on any
global basis.

Pointer errors

The new Standard lists only two errors speclfically relating to pointers,
other than those concerning undefined values or the creation and disposal
of variant records. These errors involve the occurrence of the special pointer
value nil in an identified—-variable access or in a dispose operation. and as

56

such are easily detected.

However, the undefined value arror for pointers Is a more significant
problem than it is for variabies of other types. The Standard states than when
an identified variable is disposed ali pointer variables pointing to it become
undefined. but it is impractical for an implementation to locate such variables
and adjust their values at that point. Thus ’‘dangling’ pointers are created
whose subsequent use must be detected and reported as an undefined pointer
error.

To implement these checks the technique described in [9] seems the
logical choice. This relies on the incorporation in each pointer value created
by a new operation of a unique key value which Is also stored within the
identified variable storage allocated. The representation of a pointer is thus
equivalent to that of the following record type :

pointer = record

case defined : boolean of

false : ()

true : (case nilvalue : boolean of
true : () :
false : (key : keyvalue ;

address : heapaddress))
end ;

and the representation at every heap variable allocated has the form :

record
key : keyvalue ;
variable :
end

The check required for each identified variable pt, and for each dispose(p)
operation. is then as follows:

with p do
if not defined
then error {use of undefined pointer}
else if nilvalue
then error {use of nil pointer}
else if p.key <> pt.key
then error {use of dangling pointer}

Since the key value allocated by each call of new is unique and the stored
copy of it in a disposed variable is destroyed in the dispose operation, the
above logic is sufficient to detect most dangling pointer errors. it is not totally
secure because subsequent re-partitioning and re-use of the storage
addressed by a dangling pointer may accidentally recreate the exact bit
pattern of the original key! In addition, if the storage set aside for keys within
pointers and heap variables is to be fixed in size, some limit must be imposed
on the number of unique key values available. and hence on the number of
new operations that can be carried out by any program. Such a limit, however
targe. may be unacceptable for some application programs. With these
provisos, the unique key technique provides a practical means of detecting

57
the vast majority of dangling pointer errors.

The cost of achieving this pointer security is significant, in terms of both
run—time storage and execution speed. and all means of reducing it must
be considered. Unfortunately, the nature of pointer processing makes it
difficult to achieve much reduction by additional compiie-time analysis. Even
in programs areas of passive pointer inspection, involving no modification
of the data structures represented by pointers. it is difficult for a compiler
to establish that any pointer value is ‘safe’ and not in need of checks. If
significant reductions in the cost of checking Pascal pointers are to be
achieved it is likely to be by hardware assistance that makes the checks more
efficient. rather than by compile-time analysis that eliminates the need for
them.

Existence errors

The Standard requires that & variabie must continue to exist as long as
any reference to it exists. Many references are transient and pose no
problems in this respect. but references of extended duration do arise from
passing a variable as a variable parameter, or from a with-statement in the
case of a record variable. Assignment statements and even indexed variables,
may also give rise to extended references depending on the implementation
chosen.

Appendix D of the Standard explicitly identifies two ways in which this
requirement may be violated - by performing a file operation when a
reference to the file—buffer exists and by disposing of a heap variable when
a reference to it exists. However. the same error may arise through a change
of variant in a variant record and is a special case of a more general variant
record error.

To detect these errors requires the association of a reference history with
each file-buffer variable, heap-variable and variant part. This history must
be updated when an extended reference is established and checked when
a flle operation. dispose or change of variant occurs. Resetting the history
must take place on leaving the procedure. with—statement or assignment that
established the reference, elther normally or abnormally via a goto statement.
To do so seems to require the maintenance of a stack of extended references
at run-time. Code to unwind this stack (to compile~time determined levels)
must be inserted at all points where the history may have to be reset,
including all statement iabels that may be used for abnormal exit from
procedures or statements.

A preclse moel for the implementation of these checks has not yet been
defined. but for straightforward one—pass compilers. it appears that they will
impose some storage overhead on all varlant records. heap variables and
file buffers, and an additional overhead. in storage and time. on many
procedure calis. The extent to which these overheads can be avoided by
compile-time analysis requires further investigation.

Conclusions

Experience to date on the SPSC/SPMI project suggests that the new Pascal

58

Standard can be fully comptied with, both in its mandatory compile-time
requirements ang in its optional run-time error detection. The new conformant
array facility is a significant addition for many existing implementations, but
is clearly impiementable at a reasonable cost. The other additional
compile~time requirements are easily met. and the cost of doing so is
significant only in the increased symbol table storage that may result. The
additional run—time checks. some of which were not previously well defined.
are also implementable, but at a significant cost in the running time of the
resultant programs. The benefits of retaining such checks In running
programs, not just during development but throughout the programs’ useful
lifetime, more than justify further investigation of techniques to reduce the
cost involved by some judiclious blend of additionat complle-time analysis and
run—time hardware assistance.

References

{1] Specification for the Computer Pragramming Language Pascal. SO
7185.

[2] Jensen K and Wirth N, ‘Pascai~User Manuval and Report’. Lecture
notes in Computer Sclence. 18. Springer-Verlag (1874).

{3] Welsh J and Quinn C. 'A Pascal Compiler for ICL 1900 Series
Computers’. Software - Practice and Experience. 2 Vol. 1. 73-77. 1972

4] Welsh J. ‘Two ICL 1900 Pascal Compiters’. in Pascal - the language
and its implementation (ed. D W Barron), John Wiley & Sons, 1981.

[5] Welsh J. ‘Economic Range Checks in Pascal’. Software - Practice and
Experience, 8. 85-97, 1978.

(6] Watt D A and Findlay W. ‘A Pascal Diagnostics System’, in Pascal —
the language and its imptementation (ed. D W Barron). John Wiley & Sons.
1981..

{71 Strait J P and Mickei A B. ‘Pascal 6000 Release 3'. University
Computer Centre, University of Minnesota. Minneapolis. USA (1979).

[8] Sale A H J. ‘A Note on Scope., One-Pass Compilers and Pascal’,
Australian Computer Science Communications. 1. 1. 80-82, 1979.

[9] Fischer C N and LeBlanc R J. ‘The Implementation of Run-time
Diagnostics in Pascal. IEEE Transactions on Software Engineering. 6.4,
313-319, 1980.

