Pascal — The Language and its Implementation
Edited by D. W. Barron
© 1981, John Wiley & Sons, Ltd.

2

Ambiguities and Insecurities
in Pascal |

J. Welsh, W. J. Sneeringer, and C. A. R. Hoare

1. Introduction

On rare occasions in programming-language development there appears a program-
ming language which is widely recognized as superior, and which propagates itself
among discerning implementors and users solely by its merits, and without any
political or commercial backing. ALGOL 60 [1] was such a language; Pascal [2] is
another.

One characteristic of such superior languages is that they rapidly give rise to a
host of suggested extensions, improvements, and imitations. From ALGOL 60 came
ALGOL D [3], ALGOL W [4], ALGOL 68 [5], PL/T [6], SIMULA 67 [7], and
Pascal itself. Pascal has been followed by the critique by Habermann [8], Con-
current Pascal [9], Pasqual [10], Modula [11], and Euclid [12]. It is one of the
symptoms of the superiority of these languages that their original design remains
superior to many of their successors, and even the authors themselves can find
little to improve in formulating a revised version [13, 14, 15]. Thus the very
superiority of the language may inhibit for a while the further progress of the art
of language design.

One reason for this is that there is no immediate recognition of exactly what
constitute the merits of the language. Indeed, the merits of ALGOL 60 have only
recently been appreciated under the new name of structured programming.
Similarly, most criticism of the language is rather superficial, concentrating on
critics’ favourite ‘features” and ‘facilities’ which have been left out.

If future language designs, and indeed future users, are to benefit fully from the
significant advances made by Pascal, it is essential that its defects, as well as its
virtues, should be carefully identified and catalogued. The detailed, almost ‘petti-
fogging’ nature of the criticisms in this paper may be taken as a testimony to a
belief that Pascal is at the present time the best language in the public domain for
purposes of systems programming and software implementation. Nevertheless,
these criticisms may lead to a better understanding of the definitional problems

5

6 Pascal—The Language and its Implementation

created in Pascal and to a better treatment of these problems in the languages
which must inevitably follow it.

No consideration is given to changes in Pascal other than those necessary to
overcome the ambiguities and insecurities identified.

Throughout this paper, the abbreviations User Manual and Report are used to
stand for the first and second parts, respectively, of the Pascal—User Manual and
Report [15]. There are several earlier versions of the Repor! [14] . The abbreviation
Axiomatic Definition is also used for the formal definition of Pascal’s semantics
given by Hoare and Wirth [16] .

2. Ambiguities

Ambiguities and omissions in the Report or User Manual are not mentioned in
what follows if they can be easily resolved. The objective is to criticize the language,
not the Report or the User Manual; but insofar as the language’s features (or
apparent intentions) create problems of definition, the Report must be considered
as well.

2.1 Equivalence of types

Section 9.1.1 of the Report states that the two sides of an assignment statement

‘must be of identical type’, with certain exceptions involving reals and subranges.

The phrase identical type is not defined and its meaning is not obvious. Much of

Habermann’s criticism of Pascal hinged on the omission from the Report of similar

exception rules for other contexts in which subrange or real variables might or

might not appear. As the Axiomatic Definition shows, the subrange problem can

be resolved by the systematic introduction of implicit subrange-range transfers as .
context requires. However, the notion of type equivalence creates problems for

other Pascal types too.

In the declarations,

type T'= array[1.10] of inreger;
var A,B: array[1..10] of integer;
c: array[1..10] of integer;
D: T
E: T

consider the following two possible definitions of equivalence of types;
Name equivalence. Two variables are considered to be of the same type only if

they are declared together (as A and B) or if they are declared using the same type
identifier (as D and E). Any type specification other than a type identifier creates

Ambiguities and Insecurities in Pascal 7

a new type which is not equivalent to any other type. Thus 4, C, and D all have
different types. Notice that primitive types are specified using type identifiers, so
two variables will have the same type if they are both declared infeger. This is
called name equivalence because two variables that are not declared together can
have the same type only if they are declared using the same type name.

Structural equivalence. Two variables are considered to be of the same type when-
ever they have components of the same type structured in the same way. Using
this definition, all of the variables in the example above have the same type.

Name equivalence is quite a nuisance to the programmer, since he or she must
often make up extra type names. On the other hand, name equivalence provides
extra protection against type errors. Furthermore, structural equivalence causes
a logical problem, Consider this example using structural equivalence:

var K: (male,female);
L: (male,female);

Clearly the types of K and L are equivalent, since they have the same structure.
However,

var M: (male,female);
N: (female,male);

is illegal because the identifiers /male and female are not unique. Distinguishing
between these two cases will be difficult for the compiler. It cannot simply consider
the construct (male,female) to be a declaration of the identifiers male and female as
it could in the case of name equivalence, If it did, it would reject the legal declaration
of identifier L.

Even worse, suppose that the type (mmale,female) is created and then the identifier
male is used for an unrelated purpose in an inner block. Then, in a block inside
both of these, the construct (mmale,fermale) is used again. Is it a reference to the first
type? A new type? An error? There seems to be no good answer.

The use of structural equivalence also creates a problem with record types,
which is illustrated by the following:

var F:record T,U: real end;
G:record V,W: real end;

Do F and G have the same type? Either answer seems reasonable and consistent.
Structural equivalence creates a further dilemma for the implementor in relation
to the packed prefix for structured types. Section 6.2 of the Report states that the
prefix ‘has no effect on the meaning of the program but is a hint to the compiler
that storage should be economised even at the price of some loss in efficiency of

8 Pascal-The Language and its Implementation

access’. Presumably, therefore, a packed type is equivalent to an otherwise struc-
turatly equivalent unpacked one, and the compiler must permit, and generate code
for, assignment or, worse still, actual-formal parameter cotrespondence between
them. This problem does not arise with name equivalence since the syntax of
{type} excludes the form packed (type identifier).

Name equivalence is not, however, without its problems. It precludes, for
example, the assignment of a string constant to a variable of a corresponding
string type. Section 4 of the Report states that a string constant of n characters
has an implicit type

packed array [1..n] of char

With name equivalence this implied type cannot be equivalent to any other, so the
string may only appear in certain limited contexts such as calls on the built-in
procedure write. A similar problem arises with constructed sets, whose type is also
implicitly specified; this problem is considered further in a later section of this
paper.

Name equivalence also creates a potential confusion for the user of the type
definition

type T1 =T2;

where T2 is the name of a type defined elsewhere. With name equivalence this will
not produce a convenient local synonym for type T2 as might be expected, but a
new type 71 which is not equivalent to type T2 in any context.

Clearly the current features of Pascal do not permit a simple choice between
name or structural equivalence as defined. Somealternative orcompromiseequivalence
definition must be adopted. In practice, of course, each implementation of Pascal
has already made some choice. The ETH compiler (the compiler described by the
User Manual) uses structural equivalence in most cases [17]. However, a scalar
type declaration such as (male female) is taken to be a declaration of the identifiers
male and female, and therefore causes a message about a duplicate declaration if
repeated in the same block. (It will create a new type equivalent to the first if used
in an inner block.) Record types are equivalent if the corresponding field types are
the same, but packed structured types are not equivalent to corresponding unpacked
ones.

It is unsatisfactory that implementors should be left to make such decisions,
since any diverenge in their choice imperils the portability of Pascal programs.
The authors of Euclid, Pascal’s most recent derivative, were clearly conscious of
Pascal’s deficiencies in this area. Although the definition of Euclid has been modelled
on the Pascal Report, it incorporates an explicit definition of type equivalence
based on the repeated replacement of type identifiers by the sequence of symbols

Ambiguities and Insecurities in Pascal 9

appearing in their definition. Two types are equivalent if, in the sequences of
symbols which they produce,

() corresponding occurrences of free constant identifiers (i.e. those not declared
by these types) denote the same value, and
(b) corresponding symbols are otherwise identical.

The resultant definition of type equivalence is close to the structural equivalence
suggested above. Whether this particular definition is the best for the language
remains an open question, but the provision of some such explicit definition is an
important requirement, both for Pascal and for any language which imitates its
repertoire of data types.

2.2 Scope rules and one-pass compilation

One of the design objectives stated for Pascal was to enable efficient compilation of
its programs. Although the Report does not say so explicitly, the language features
appear to favour one-pass compilation as a means to this end, and implementors
have assumed this to be the designer’s intent. However, this implicit one-pass
compilation capability creates some traps for the unwary, into which implementors
have duly fallen.

In general, one-pass compilation requires that the declaration of an identifier
precede all other references to that identifier. The Pascal Report does not specify
at any point that an identifier’s declaration must precede its use. It does, however,
impose a rigid order on the different classes of declaration which are made within a
block, thus:

{block) ::= (abel declaration part)
{constant definition part)
{type definition part)
{variable declaration part}
{procdeure and funcrion declatation part)
{statement part)

This has the effect of ensuring that constant identifiers are defined before they can
be used in type definitions, that type identifiers are defined before they can be used
in variable declarations, and that variable identifiers are declared before they can be
used in the statement part as non-locals in nested procedures and functions. How-
ever, it does not guarantee declaration before use wirhin the type definition or
procedure declaration parts. For example, the following program segment is unac-
ceptable to a one-pass compiler because the use of the identifier complex to declare
type matrix precedes the declaration of complex:

10 Pascal—The Language and its Implementation

type matrix array [1..10,1..10] of complex;
complex = record realpart jmagpart: real end;
var i matrix;

write(m{2,2] realpart);

Now consider the same program segment and assume that this declaration is in
the containing block:

type complex = record re,im: real end;
There are at least two possible interpretations of this program by a one-pass system:

(1) The elements of m each have two real components with names re and im,
since the outer declaration of complex was current when the declaration of
matrix was scanned.

(2) The program is in error because the inner declaration of complex is one that
should apply, and it follows the declaration of matrix.

This program is incorrect in either case. Under interpretation (1), the call to
write is incorrect because the realpart is not the valid field name for the variable m1.
We are not just haggling over which statement receives the crror message, however.
If the field name realpart in the call to write were replaced by re, the resulting
program would be correct according to interpretation (1) and incerrect according
to (2).

Notice that (1) is the easier interpretation to implement. Each reference to an
identifier is simply bound to tbe most recent declaration of that identifier. One
way to implement (2) might be to bind the element type of matrix to the outer
definition of complex, but record this binding so that an error can be declared
when the inner definition of complex is scanned. The recorded binding has to be
applied not only in the current scope but also in any enclosing scopes between it
and the outer definition.

Unfortunately, interpretation (1) has some problems involving pointer types and
(2) is the better interpretation. Consider the following examples:

type flight=
record
number: 0..999;
firstpas: passenger;

end;

Ambiguities and Insecurities in Pascal 11

passenger =
record
flightbooked: flight;
nexipas: passenger

end;

Each of the two types in the example refers to the other, so whichever type is
declared second in the program will have its identifier referenced before it is declared.
This is a case where the rule that identifiers must be declared before they are used
is too restrictive to be practical, and Pascal implementations make an exception to
accommodate this case. Pointer declarations, such as passenger, are allowed to
precede the declaration of the identifier used. Fortunately, the compiler can allocate
storage for a pointer without konwing what type of thing it will reference, since the
size of a pointer does not depend on what it points at.

The problem with interpretation (1) is iflustrated by the example above if there
happens to be a type passenger declared in an outer block. In that case, interpre-
tation (1) demands that the name passenger in field firstpas be bound to the outer
definition of type passenger. This is very bad, because the meaning of a valid block
can be changed by declaring an identifier in an outer block.

In fact the Report does exclude interpretation (1) since section 4 states that the
‘association (of identifiers) must be unique within their scope of validity, i.e. within
the procedure of function in which they are declared’. (No explicit definition of
scope for main program identifiers is given.) However, the significance of section 4
is clearly not apparent to its implementors, since the ETH compiler itself follows
interpretation (1), even to the extent of binding the pointer type passenger to a
non-local instance of passenger if one exists.

A similar difficulty arises with mutually recursive procedures and functions.
To retain one-pass compilation with checking of parameters the ETH compiler
requires a forward declaration, which is not described in the Report or included in
the syntax diagrams or BNF. It is described only in section 11.C of the User Manual,
from which we take the following example:

procedure g(x:t); forward;
procedure p(y:1);
begin
q(a)
end;
procedure q; (¥parameters not repeated™)
begin
p(b)
end;

auIOS }5BOT 38 UL TeSo[ST ojdwrexe oyl JBY) opNOU0co JYSIW U0 ‘JTWI] S[qEUOSEaI
Aue uet)) 1981ey ST 4282727 2dAY JO 9718 91} pur 4oy ST opdwexs) ur adAy aseq
juaredde ay) 9ows (‘195 10) pesn 9q Ajqeuoseal Aew uonelussaidar urened 3iq B
‘Appuanbasuo)) *poulyep 9q UeBd 195 B YITM 10A0 9dA} 0SBQ B JO SZIS 23 01 ITWI] B 108
Aewr rojuswra[dwr oy, :1BY1 SA1BIS Liodsy 91} JO { UOND8S ‘10A0MOY] "42531U1 918
€Z Pue ‘g1 ‘01 ‘S ‘T Jo sedA) ey} 1BY) IR II SANBWI Li0d2y Sl JO 4 UCTIOS DU
‘4982717 J0O 138 ST [€T°6101°G 1] 1o10onuIsuoo 105 ay3 jo adA1 oyl 1BY3 UOIST[OUOD
9y} 01 SPBO[SMT, 105 oy} Jo odA} aseq 12 ST Yomyam ‘adA) owes o] JO aq B ISNW
188 B JO SIAQUISUI 21 UOTUM Suossardxy, ‘aModay a13 Jo § HOIoes o} SuIpiosoy
*5195 Jo uonelussardar oy} uT swe[qold [BUOTIIPPE SA1BAID
uonuysp adA) aordw ays ‘1eAemo] -eouseamba odAy Sutuep ur swejqoid 9jeaId
$18S PAIONIISUOD PUE SIUBISUCD SULns Jo sedA) jondurr o1} ‘IeIIBe POIBOIPUI SBM SY

SIOJONIISUOD 13 €T

"[BOSEJ PUB-—2INoNIs 3oo[q a[dwrs jo sejni adoas yoiduwt
a1 puoAaq [fom pasow aaey SupuwrerSoid Jo Spasu JUAIIND A} 1B} UOT)EIIPUT 1BA[O
B SI 19]JO saBendue] asoy] UOTUMm SISIJIIUSPI JO 9S1 8] ISAO JOIIUOD Y], "9[qBIISap
AJ1eo[d> o1e opraold prong puR BINPON UYOM[M 2SOYI SB UONS UOMIBIAUT [enjnul
II3Y] U S[ONUOD TRUCTIPPE 2Y] 281n02 Jo ‘sempowr Jo ‘s§urdnoid yons ueArn

"SuUon B

Sunexsniy jsour s Jeosed Jo auo st swerSord o8ref Sunnionns ur sSurdnoid gons axyew

01 ANQIqeur Y7, ‘wayl seindiwewr Yorym sarnpedoid pue ‘se[qeliea ‘sadA} ey Jo

s3urdnois [ernyeu Suimore ‘pexefel aq pInoo spred UOTIRIRSD 2Inpadoid pue ‘o[qrLIBA
‘ad£1 ‘quesuod 911 uo sesodun [EOSEJ UYOTUM IopIo PISU Ay} oI ¥ YOns YiIm

*a1rnbar Aew sarnjes] a8endue] a1} suondooxa

Ieadjeym s ‘pardope oq pInoOYS A[NI 9SN-0I0JeQ-UONBIR[OSp JONdXe Ue pue

uoruLyap sgenguef o1y} ul 1ofdxa apew aq pInoys 1 2An2slqo adensue] B aq 01 ST UOHE

-[rdwod ssed-ou0 Jf *2A0qE PAULINO $1097J2 UOTIRIUSWRIdWT A1010BISIIESUN A1) 918210

10 uonruep as3endue] 913 UO SUONOMISAI [eUOIPPE asodun jsnur siepdwos ssed

-3U0 JO SIOJUSWIA[AW] “SISJIIUSPI JO 95N PUR UOTIBIRIIAP Y2 JO suonisod dArie[sl ay}
10] sajni astoard Aue aurjep 10U S0P Lioday 9} Isnedaq osue swiojqoid esayl,

"pondwod aq URY d UMM WoIy b 0)

[1e2 3y} 7211 08 uonewWIOUT Yy3nous sapiaold ‘d arnpadoid oty apadard Isntr goTyM

premioy (7: x)b ampazoid
Uy ey,
pud
(@b
(n)d
uraq

UOIIDIUUDAU] $11 pUD 2SINSUDT 2Y [—[DIST] 71

Ambiguities and Insecurities in Pascal 13

implementations. The example comes from section 8 of the Report, so it seems
fair to say that the Report is confusing, if not ambiguous.

In practice the conflict is yet another which is resolved by an implicit range to
subrange transfer. Given that a limit on the size of base types exists, the compiler
may assume that the intended base type of (1,5,10..19,23] is some subrange of the
integers, and apply an implicit range to subrange transfer to its member values, The
problem is that the intended subrange i3 not apparent, which in turn has conse-
quences for the representation of the set.

Using a bit pattern representation for sets, the type

set of 20..29
is represented by a bit pattern very much like the type

packed array [20..29] of boolean

where the element n of the array is frue if and only if 7 is in the set. The trouble is
that the base type of [1,5,10..19,23] has not been specified, so the compiler does
not know what the bounds of its Boolean array should be.

Implementations overcome this problem by imposing an additional limit on the
base types of sets. For example, in the ETH compiler the limit of the size of a base
type is 59, so the compiler knows that the Boolean array can be no larger than 59.
However, the compiler also needs its upper and lower bounds. The ETH compiler
therefore adds the restriction that each element of any set of integers must be
between 0 and 58. This rule allows any set of integers to be represented by an array
with bounds 0 and 58. A similar rule applies to sets of non-integers. In that case, no
element e is allowed unless ord(e) <=58. This solution has the consequence that
apparently representable set types such as

dates = set of 1939..1945

are excluded by current implementations.

For implementations which choose, or are forced by short word lengths or byte
orientation, to use multilength representations of sets, the implicit type fo the set
constructor presents an additional problem. Either all sets over subranges of a given
type must use the same length of representation or the required length of a con-
structed set must be deduced from context. The extreme case occurs when the
empty set [] (which has no implicit base type at all) occurs as an actual parameter
of a formal procedure or function (which provides no contextual indication of the
representation required).

All these problems can be avoided by requiring an explicit specification of the
base type of every set constructor. For example, given a set type

14 Pascal-The Language and its Implementation
digits = set of 0.9

the constructor notation used might be
digits(1,3,5)

This makes the programmer write a bit more, but allows the base type of a set to
be any scalar type that does not have too many elements. Not only are the restric-
tions simpler and less constraining, but the language is cleaner because every set
constructor has a type which can be determined during compilation without any
use of context. A version of Pascal using such a constructor, and a multiword
representation of sets, has been implemented [18] and shown to provide a more
flexible, and more efficient, set-manipulation facility. A similar notation has now
been adopted in Euclid.

This notation also reconciles the set constructor with the name equivalence
convention for types discussed earlier. A similar solution for string constants
might be considered. Given a string type

message = packed array [1..16] of char
a constant of the type might be written thus
message (‘illegal operands’)

In this case the additional burden on the programmer may be unacceptable in
contexts where named type specification is unnecessary, e.g. in calls to the built-in
procedure write, and some default for omitting the type name and parentheses may
be appropriate.

3. Insecurities

For the purposes of this discussion, an insecurity is a feature that cannot be imple-
mented without either (a) a risk that viclations of the language rules will go un-
detected or (b) runtime checking that is comparable in cost to the operation being
performed.

Pascal has fewer insecurities than most comparable languages. For example, it is
not possible to use a pointer to access a dynamic variable of the wrong type. This
error is caught during compilation because each pointer can only point at variable
or a single type. The remarkable thing about Pascalis that the number of insecurities
is small enough to make it worthwhile to prepare a list in the hope that future
research will lead to languages with even fewer or perhaps no insecurities.

Ambiguities and Insecurities in Pascal 15

3.1 Variant records

Pascal allows variant records with and without tag fields. An example of a variant
record with a tag field is

v: record area:real;
case s:shape of
triangle:(side real,
inclination anglel angle2:real);
circle: (diameter:real)
end

The field area always exists, but whether digmeter exists or not depends on whether
the value of the tag field s is cirele or not. A version of this record without a tag
field can be created by omitting ‘s:’ after the symbol case.

If there is no tag field, then the variant record is inevitably insecure. Either
anglel or angle? could be referenced when it is not present and there is no way to
catch the error, even at run time. This is bad, because such an error is likely to be
difficult to find.

The compiler could insert a tag field even when the programmer does not
request it, but it would be misleading and pointless to allow the programmer to
omit the tag field if the compiler included it anyway. The introduction to Pascal of
variant records without tag fields must be regarded as a retrograde step, to be
regretted by Pascal users and avoided by the designers of future languages.

Given that a tag field is present in all variant records, a runtime check is still
required to achieve security. However, the runtime check can be avoided when code
like the following is used to reference the variant part:

case ».sof
triangle: begin (references to v.side, etc.) end,;
circle: begin (references ro v.sigmeter) end
end

since the value of the tag field when the references occur is known when the
program is compiled. This is done in SIMULA 67 with an inspect when statement,
which is similar to the case statement above. A similar modification to Pascal has
been investigated [19], which showed that direct violations from within the case
construct were easily detected, but that detection of indirect changes of the variant
by reassignment of the entire record variable, possibly during procedure calls from
within the case, was impractical. The Reporr (section 9.2 .4) does outlawsuch changes.
with a with statement but this restriction is equally impractical to enforce by
compiletime or runtime checking.

16 Pascal-The Language and its Implementation

Euclid incorporates an explicit construct which enables direct variant violations
to be detected at compile time. For more general reasons of program verification
Euclid’s definition also goes to considerable lengths to enable variable overlaps,
such as might cause an implicit change of variant, to be detected. Whether the
added complexity of the rules required and the added restrictions which they
impose on the programmer are an acceptable price to pay for variable access security,
may be shown by experience of implementing and using Euclid. The rules and
restrictions involved cannot be readily added to the current framework of Pascal.

3.2 Functions and procedures as parameters

When a Pascal formal parameter is a function or a procedure, the language does not
require or even permit the programmer to specify the number and types of any
parameters. The following example, which is due to Lecarme and Desjardins [20],
illustrates a program which contains an error that cannot reasonably be detected
at compile time:

procedure p (procedure g);
begin ¢(2,'2’) end;
procedure 7(x :boolean);
begin write(x) end;
begin p(r) end.

The apparent solution is to allow full specification of parameters in this case, as
is done in ALGOL 68. The normal syntax for parameter specification is excessive
for this purpose since it includes specification of names of the formal parameters,
and these names are not required. Lecarme and Desjardins proposed a syntax for
specifying the types without giving names; With their syntax, the first line of the
example above is written

procedure p (procedure g(inreger char));
begin ¢(2,'a") end;

which gives enough information for the error to be detected during compilation.

To enable the correct parameter passing code to be generated for their calls,
Pascal currently allows procedures and functions passed as parameters to take
value parameters only. Given an adequate notation for expressing the parameter
requirements of formal procedures or functions, this restriction can in principle be
relaxed. The notation required is more complicated than that of Lecarme and
Desjardins, however, since it must distinguish between variable and value parameters.
If procedure parameters which themselves take procedure parameters are allowed,
the notation must aiso provide a nested, and potentially recursive, specification of
parameter requirements.

Ambiguities and Insecurities in Pascal 17

The Pascal compiler for UNIVAC 1100 computers, developed at DIKU in
Copenhagen, incorporates an extension which meets these requirements [21].
Formal parameter lists can be defined and named in a separate parameter declaration
part of each block. The parameter requirements of actual procedures may then be
specified by reference to a named parameter list, and those of formal procedures
must be specified in this way. In the DIKU system formal parameter names are
always included in the parameter list specification, so that procedures sharing a
parameter specification must use the same formal parameter names as well.

3.3 Range violations

As in most compiled languages, accessing an element of a Pascal array is insecure if
an index is out of bounds. Since all languages have this problem, it is appropriate to
try to solve it with hardware. The extra hardware cost is quite small. The descriptor
mechanism of the ICL 2900 series computers provides an implicit bound check
during array access but, while it works well for the arrays allowed in languages
such as FORTRAN or ALGOL 60, it is inadequate for some of the array structures
permitted in Pascal [22] .

Array access is just one of a number of contexts in which a value outside a
permitted range can arise in Pascal. Others are assignment to a subrange variable,
case selection, set membership creation and testing, and indeed overflow in integer
and real arithmetic. While it is unreasonable to hope to exclude by language design
the possibility of all such violations, designers must aim to reduce the cost of their
runtime detection. It should be noted that Pascal’s provision of enumerated and
subrange types is a significant step in this direction. Each use of a variable of an
enumerated type removes a potential insecurity by ensuring that the finite set of
values which the variable may take is verified at compile time. For a subrange
variable runtime verification of the values taken may be necessary but, assuming
thses checks are made, other more frequent and hence more expensive checks may
be avoided at each point where the variable value is used. A Pascal compiler which
exploits this technique has been constructed [23] for ICL 1900 computers, and has
shown that for simple array manipulations runtime subscript checking can be
eliminated, or reduced to insignificance.

3.4 Uninitialized variables

Uninitialized variables are also difficult to detect, and all hardware detection
mechanisms known to us are quite expensive. Possible sclutions are to require
that every variable be initialized when it is declared or that every variable be assigned
in such a way that the compiler can easily verify that there are no references to
uninitialized variables. The latter might work very well in a language without jumps,
and deserves further investigation.

18 Pascal—The Language and its Implementation

3.5 Dangling references

Accessing of dynamic variables (those found via pointers) is not secure because the
storage for the dynamic variable may have been released. This is a very common
insecurity for which Pascal allows no obvious solution.

It can be argued that Pascal’s pointer is a low-level facility provided for use in
those situations for which the high-level data constructs are inadequate and that it
is unreasonable to expect security from a low-level facility. Whatever the philo-
sophical validity of this argument it is little consolation to a programmer whose
pointers go wrong!

Euclid offers an optional security against such errors by enabling reference
counts to be maintained for collections of dynamically allocated variables. Storage
release is then an implicit operation occuring when a reference count reaches zero,
rather than an explicit programmable action. Maintaining reference counts is, of
course, a considerable overhead if applied to every pointer variable assignment. The
success of the Euclid proposal depends on the degree to which the compiler can
detect those program segments which use local pointer variables to trace a dynam-
ically allocated structure without altering the non-local reference pattern in any
way. Reference counting code can then be avoided for the pointer manipulation
within the segment.

4. Conclusion

At the time that Pascal was first designed and developed, the most fashionable
languages in the learned and practical world were ALGOL 68 and PL/I. The
discovery that the advantages of a high-level language could be combined with high
efficiency in such a simple and elegant manner as in Pascal was a revelation that
deserves the title of breakthrough. Because of the very success of Pascal, which
greatly exceeded the expectations of its author, the standards by which we judge
such languages have also risen. It is grossly unfair to judge an engineering project
by standards which have been proved attainable only by the success of the project
itself, but in the interests of progress, such criticism must be made.

Of the criticisms made in this paper, some identify shortcomings of Pascal
which can readily be made good by minor changes to the language or its definition.
Others indicate problems for which there is no easy solution within the current
framework. As a language which attempts to overcome most of the problems listed,
Euclid deserves a special mention, though it should also be pointed out that no
implementation of Euclid has yet been reported. Unfortunately, Euclid achieves its
goals at the expense of a significant loss of simplicity and elegance in the language
definition. Whether this trade-off is inevitable or whether some future breakthrough
can restore elegance and simplicity without loss of security is a question which
language designers must ponder for some time to come.

Acknowledgement
The research on this paper was supported in part by a grant from the Science
Research Council of Great Britain.

Ambiguities and Insecurities in Pascal 195

W o

o~ Oh

10.

L1.
12.
13:
14.
is.
16.

17
18.

19.
20.
21.

22.
. Welsh, J., Two 1900 compilers, chap. 10 in this volume,

References

. Naur, P. (Ed.), Report on the algorithmic language ALGOL 60, Communi-

cations ACM, 3, 299-314, 1960.

. Wirth, N, The programming language Pascal, Acta Informatica, 1,35-63, 1971.
. Galler, B.A,, and Perlis, A, J., A proposal for definitions in ALGOL, Communi-

cations ACM, 10, 204-219, 1967.

. Wirth, N., and Hoare, C. A. R., A contribution to the development of ALGOL,

Communications ACM, 9, 413-432, 1966.

. van Winkngaarden, A. (Ed.), Report of the algorithmic language ALGOL 68,

Numerische Mathematick, 14, 79-218, 1969.

. IBM, PL/I(F) Language Reference Manual, Order No. C28-8201, IBM, 1969.
. Birtwistle, G., et al., Simula Begin, Auerbach, 1975.
. Habermann, A. N., Critical comments on the programming language Pascal,

Acta Informatica, 3, 47-57, 1973.

. Brinch Hansen, P., The programming language concurrent Pascal, IEEE trans-

actions on Software Engineering, 1, no. 2, 1975.

Tennent, R. D., Pasqual: A Proposed Generalisation of Pascal, Technical Report
No. 75-32, Dept. of Computing and Information Science, Queen’s University,
Kingston, Ontario, Canada, 1975.

Wirth, N., Modula: A language for modular multiprogramming, Software—
Practice and Experience, 7, 3-35, 1977,

Lampson, B. W., et al., Report on the programming language Euclid, ACM
Sigplan Notices,12,n0.2,1977.

Naur, P.; Revised report on the algorithmic language ALGOL 60, Communi-
cations ACM, 6,no. 1, 1963.

Wirth, N., The Programming Language Pascel (revised report), Berichte der
Fachgruppe Computer-Wissenschaften Nr.5, ETH, Zurich, 1973.

Jenson, K., and Wirth, N., Pascal—User Manual and Report, Lecture Notes in
Computer Science, no. 18, Springer-Verlag, Berlin, 1974,

Hoare, C. A. R., and Wirth, N., An axiomatic definition of the programming
language Pascal, Acta Informatica, 2,335-355,1973.

Ammann, U., The Zurich implementation, chap. 7 in this volume,

Copeland, C. J., Extensions to Pascal, M.Sc. dissertation, Queen’s University,
Belfast, 1975.

Sinte, P. W. C., Recursive Data Structures in Pascal, M.Sc, dissertation, Queen’s
University, Belfast, 1975.

Lecarme, O., and Desjardins, P., More comments on the programming language
Pascal, Acta Informatica, 4, 231-243, 1975,

Steensgaard-Madsen, J., Procedures as Monitors in Sequential Programming,
DIKU, Copenhagen, Denmark.

Rees, M., et al., Pascal on an advanced architecture, chap. 13 in this volume.

