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FOREWORD 

The successful programming language is one which guides its user in the 

construction of successful programs. According to this criterion, the languages 

Simula and Pascal have proved highly successful in the past ten years. A 

combination of the merits of these languages has long been the goal of 

research of Computer Scientists at the Queen’s University. An additional 

objective has been to ensure that a program which simulates a real-time 

system can be transferred without change to an embedded computer en¬ 

vironment to control the real system in real time. 

This book reports on the achievement of both these goals. It briefly 

describes the language Pascal Plus, and then shows how it may be used 

successfully in the structuring of two systems programs, a compiler and an 

operating system. 

It is particularly appropriate that it should be published in a series which 

is dedicated to the transformation of computer programming from a craft, 

carried out in private by a programmer and his computer, to a profession, 

in which all decisions, designs, and even code, are open to scrutiny by 

professionally competent colleagues. 

C. A. R. HOARE 





PREFACE 

The purpose of this book is to demonstrate the application of structured 

programming to the construction of system programs—in particular com¬ 

pilers (which are typical of many similar text-handling programs) and 

operating systems (which are typical of many real-time systems). 

The book begins by summarizing (in Section 1) the structured program¬ 

ming style and notations to be used. Sections 2 and 3 then present the 

development of a complete compiler and a complete operating system, with 

working code for each, in a suitable high-level language. The language used 

is an extended version of the programming language Pascal, known as 

Pascal Plus. This extended language has been implemented at the Queen’s 

University of Belfast on two different computers, and the programs presented 

in this book have been compiled and run there. A portable Pascal Plus 

system is now under preparation. However a reader should be able to 

implement these programs in any suitable language on his own computer, 

thereby obtaining some practical experience, as well as theoretical under¬ 

standing, of structured system programming. 

The book should be useful to three classes of reader. 

1. For those learning structured programming the book presents two com¬ 

plete case studies of its application to larger programs, showing clearly 

the particular problems of size which large programs present and how they 

may be tackled. 

2. For those studying compilers or operating systems the book provides a 

corresponding case study of the implementation of established compiler 

or operating system techniques within the clear logical framework of a 

structured program. 

3. For professional programmers already engaged in system programming 

the book demonstrates how structured programming techniques can be 

XI 



Xii PREFACE 

applied successfully in their current area of work, and may encourage 

them to adopt these techniques if they have not already done so. 

Indeed the material of this book has been used many times in courses for 

professional programmers and for university students, both undergraduate 

and postgraduate. 
We are deeply indebted both to Professor C. A. R. Hoare, who instituted 

the work described in this book and contributed very many of the techniques 

we have used, and also to Mr D. W. Bustard, who, by his development, 

implementation and use of Pascal Plus, has provided the basis of all three 

sections of this book. In addition we have been considerably influenced in 

the first section by that classic work Structured Programming by Dahl, 

Dijkstra and Hoare, by Wirth’s excellent programming language Pascal, 

and by Brinch Hansen’s and Bustard’s extensions to Pascal. The second 

section builds upon the Pascal compiler developed by Wirth and his team at 

Zurich, while the final section shows the considerable influence of the 

T.H.E. Multiprogramming System constructed by Dijkstra and his colleagues 

in Eindhoven. To these people, and to the UK Science Research Council, 

International Computers Limited and the Advanced Computer Technology 

Project of the UK Department of Industry, which supported some of our 

work on operating systems, we offer our thanks. 

The Queen’s University of Belfast 

Northern Ireland 
J. WELSH 

R. M. McKEAG 



Section 1 
STRUCTURED PROGRAMMING 

Structured programming has been defined in many ways, with varying 

degrees of formalization. The approach used in this book is a relatively 

informal one which is close to that outlined by Dahl, Dijkstra and Hoare 

in their classic text Structured Programming. It involves three essential 

ingredients: 

1. the perception of a logical structure for the program required, which 

reflects the inherent structure of the problem and the data involved, 

and any constraints imposed on the solution; 

2. the realization of this structure by a systematic process of stepwise 

refinement, which limits the complexity to be handled at any moment to 

what can be readily comprehended; 

3. the use of a notation which assists the stepwise refinement of the struc¬ 

ture required and reinforces this structure in the final program produced. 

This section is concerned chiefly with presenting the notation to be used 

in the subsequent sections, but in doing so it also illustrates the structural 

decomposition and stepwise refinement techniques. 

The notation used is an extended version of the programming language 

Pascal, and readers familiar with this language may find detailed study of 

most of this section unnecessary. However, their attention is drawn to the 

final chapter of the section in which certain language extensions to support 

abstraction, modular programming and parallelism are introduced. 

The section is intended to provide a sufficient understanding of Pascal to 

enable programs to be read and understood, and to enable use of the language 

as a notation for program design. It is not intended to provide the precise 

and detailed knowledge required to write compilable Pascal programs. 

1 



2 STRUCTURAL PROGRAMMING 

For this the reader is referred to one of the Pascal programming texts listed 

in the bibliography. 

BASIC PROGRAM STRUCTURING 

The structured programming demonstrated in this book uses a limited 

number of basic programming constructs, each expressible in a sequential 

text notation, as a means of program design and documentation. 

The form, and limited number, of these constructs enforces a discipline 

on the structure of programs composed from them. In addition the con¬ 

structs advocated lend themselves to a programming method, called stepwise 

refinement, which helps the programmer to avoid the problems of complexity 
which can so easily arise in program development. 

The sequential text notation enables the program design to be incorpor¬ 

ated in the compilable program text itself, at little extra cost to the pro¬ 

grammer; moreover the help which this gives the programmer in debugging 
creates a positive incentive for him to do so. 

In principle there is no reason why the structured-design notation should 

not be a compilable programming language itself. In fact, the notation used 

in this book is such a language—an extended version of the programming 

language Pascal known as Pascal Plus. The advantages of using a compilable 

structured language are obvious—the design and coding processes are merged, 

and the consistency of program structure can be checked by the compiler, 

not just the programmer. However, even without such a compiler the advan¬ 

tages of designing a program in structured notation and then transcribing it 

into the available compilable code are considerable, and most of the practical 

disadvantages which an unstructured approach to coding creates are avoided. 

Basic Programming Constructs 

Basic actions 

A program is composed of basic data-manipulating actions such as assign¬ 
ment, input and output of data values. 

In Pascal an assignment of a value to a variable is denoted by 

variable : = expression 

where the expression is composed from variable and constant operands usina 
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familiar operators such as * etc. (The full range of operands appropriate 

to various types of data values is discussed more fully in subsequent sections.) 

Simple examples of assignment statements are 

/ : = 7 

circumference := 3.14159 * diameter 

count := count +1 

Input and output in Pascal are based on the concept of sequential files, 

from which values may be read, or to which values may be written. Legible 

character input and output involve text files, which are sequential files of 

characters, with a superimposed line structure. 

Values for variables vl, v2, . . . may be read from an input text file by a 

statement of the form 

read (vl, v2, . . .) 

Subsequent alignment of the input text file at the start of the next line may 

be achieved by using the alternative form 

readln (vl, v2, . . .) 

or by subsequent use of the form 

readln 

When the last character of the current line of input has been read, the 

predicate 

eoln 

is true, otherwise it is false. When the input file has been exhausted the 

predicate 

eof 

is true, otherwise it is false. 
Values vl , v2 , . . . may be written to an output text file by a statement 

of the form 

write ( vl , v2 , . . . ) 



4 STRUCTURAL PROGRAMMING 

Subsequent alignment of the output file at the start of a new line may be 

achieved by using the alternative form 

writeln (vl , v2 , . . . ) 

or by subsequent use of the form 

writeln 

The number of characters written to a file for each value output may be 

controlled by a field width w following the value, thus 

write ( vl : wl , v2 : w2 , . . . ) 

Sequential composition 

The sequential execution of a number of actions A, B, C, . . . , can be written 

in sequential text simply as 

A ; B ; C ; . . . 

When the composite action is to be regarded as a single component of 

some larger structure, brackets such as begin . . . end may be introduced: 

begin A ; B ; C ; D end 

Selection 

Selection between two alternative actions A,B, on some conditions Q, can 
be written in sequential text as 

if Q then A. else B 

More complex selections can always be expressed as a combination of 

if . . . then . . . else constructs. Two special cases may be singled out for 
special notation, as in Pascal 

(a) when one of the alternative actions is null the reduced form 

if Q then A 

may be used; 
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(b) when selection between a set of actions A, B, C, . . . has to be made 

according to corresponding values a,b,c, ... of some selector expression 
Q the case notation may be used, viz.: 

case Q of 

a : A ; 

b : B ; 

c : C; 

end 

Repetition 

Repetition of some action A while some condition Q remains true can be 

written in sequential text as 

while Q do A 

More complex repetitions can be expressed as combinations of the while and 

if . . . then . . . else constructs. Pascal, however, isolates two special cases 

for which an alternative notation is provided: 

(a) when the repeated action is to be executed at least once, and the ter¬ 

minating condition may be undefined initially, the construct 

repeat A until Q 

may be used; 
(b) when the number of iterations is known at the start of repetition, and 

perhaps a corresponding counting variable is required, the constructs 

for v : = i tof&oA 

for v : = / downto / do A 

may be used. These cause the action A to be repeatedly executed while 

variable v takes successive (ascending or descending) values from 

initial value i to final value/. 

Combining the constructs 

A noticeable feature of the constructs given above is that each defines a 

control structure with a single entry and single exit point. It is this property 

that makes them simple but powerful building blocks for more complex 

S.S.P.—B 
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control structures, and ensures that the resultant structure remains com¬ 
prehensible to our limited human intellect. 

When using the sequential text notation to define a complex control 

structure, careful layout and indentation may be used to emphasize the 

structure involved. For example, the code fragment 

if . . . 

then 

begin 

end 

else 

while . . .do . . . 

clearly involves two alternative paths, one of which is a simple composition 

of three component actions, the other a repetition of a single action. 

Realizing structure by jumps 

If a structured notation such as that outlined above is not available as a 

compilable programming language the approach recommended is to design 

the program required in a structured notation and then transcribe this into 

whatever language is available, incorporating the structured text as comment 

alongside the corresponding code. The constructs described can be realized 
in any sequential programming language that provides 

(a) a conditional jump instruction, say if Q goto L 

(b) an unconditional jump, say goto l. 

For example, sequential execution of A ; B ; C .. . is achieved without 

any explicit control structure, simply by juxtaposing the code for the com¬ 
ponent actions A, B, C, . . . 

The construct 

if Q then A else B 

is achieved by a code structure 
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if Q goto F 

A 

goto E 

F : B 

E : . 

where ~Q denotes the negation of condition Q. 

The construct 

while Q do A 

is achieved by 

5 : if ~Q goto E 

A 

goto S’ 

E : . . . 

Similar coding conventions can readily be devised for the other selective 

and repetitive constructs. Transcription of a program in structured notation 

then reduces to a mechanical application of these coding templates to each 

occurrence of the corresponding constructs. 

In this book goto statements are very occasionally used to exit from a 

piece of program where there is no suitable structured notation for this 

in Pascal Plus. 

Stepwise Refinement 

In structured programming a complex program is composed by a process of 

stepwise refinement. With this technique programming proceeds from the 

initial program concept to the final program text by a series of steps. At each 

step a single program component is considered and rewritten, using one or 

more of the basic constructs and introducing new components for further 

refinement as required. Each new component is then considered in subsequent 

steps until no further refinement is required. In this way a complex program 

structure is built up in a systematic fashion, and the complexity which the 

programmer has to face at any moment is limited to the component currently 

being refined. 
The technique, and the use of the constructs introduced above, is best 

demonstrated by a simple programming example (taken, with permission, 

from Jackson’s Principles of Program Design; copyright by Academic Press 

Inc. (London) Ltd.) 
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Given a procedure write(I) which prints an integer / on the current output 

line, and writeln to take a new output line, we wish to construct a piece 

of program which will print the lower triangle of a multiplication table of 
numbers up to a given N. 

For example, if N = 4 the output should be 

1 
2 4 

3 6 9 

4 8 12 16 

We will assume there is sufficient printing width for the table required. 

Stepwise refinement starts from an initial program concept which in 
this case might be expressed as 

print multiplication table (N) 

Realizing that the required table involves N printed lines, we might refine 
this initial concept as a loop which prints lines one by one: 

lineno : = 1 ; 

while lineno ^ N Ao 
begin 

write one line ; 

writeln ; 

lineno := lineno + 1 
end 

The step write one line now has to be considered. This too is clearly a loop 

which prints values one by one. The number of values to be printed equals the 
line number, so we have 

colno : = 1 ; 

while colno sC lineno do 
begin 

write one value ; 

colno : = colno + 1 
end 

Finally we consider the value to be printed in each column. This is dearly the 
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product of the line and column numbers, so the step write one value is 
trivially programmed in Pascal as: 

write (lineno * colno) 

Putting these together we have a complete program fragment: 

lineno : = 1; 
while lineno < N do 
begin 

{write one line} 
colno : = 1; 
while colno ^ lineno do 
begin 

{write one value} 
write (lineno * colno) ; 
colno := colno + 1 

end ; 
writeln ; 
lineno : = lineno + 1 

end 

An equivalent program, using for loops rather than while loops, could 
be produced by an equivalent sequence of steps. 

Note that the intermediate abstractions have been retained in the form of 
comments, thereby enabling the program to be more easily understood and 
more readily amended. In Pascal comments are enclosed in braces { }, but 
when these are not available the delimiters (* *) are used. 

BASIC DATA STRUCTURING 

The problems of designing and documenting the data manipulated by a 
program are similar to those of programming the manipulation itself. Again 
the approach taken in this book is to use a limited set of basic data constructs, 
expressible in sequential text notation, to define a transparent logical struc¬ 
ture for the data involved. As we shall see, many of these constructs are 
direct analogs of those used in program structuring. They represent an exten¬ 
sion of the traditional concept of type, whose role in programming we first 
clarify. 



10 STRUCTURAL PROGRAMMING 

The Concept of Type in Programming Languages 

Most high-level programming languages enforce a type specification of the 

data items manipulated by a program. In Pascal, for example, variables must 
be declared before use, by declarations such as: 

var a,b,c : integer ; 

x\,x2,discriminant : real ; 

The role played by the types specified is based on the following 
principles: 

(a) The type of a data item determines the range of values which it may take, 

and the range of operations which may be applied to it. 
(b) Each data item has a single type. 

(c) The type of a data item denoted by a constant, variable or expression 

in the language is apparent, i.e. it can be deduced solely from its form or 

context, without any knowledge of the particular values it may take 
during execution of the program. 

(d) Each operator in the language requires operands of specified types and 
produces a result of specified type. 

By providing a range of types, with appropriate operators, a program¬ 

ming language enables the programmer to describe his data manipulation 

in terms natural to the data, rather than in terms of the machine representation 
ultimately involved. 

By enforcing the constraints listed above, the language (or its implemen¬ 

tation) also protects the programmer from describing illogical combinations 
of data and operations, a protection not available at machine level. 

Effective data structuring requires an adequate range of constructs for 

defining appropriate data types. The notations used in this book are intro¬ 

duced in the following sections, together with an indication of how values of 
these types may be represented in computer storage. 

Unstructured Types 

Definition of unstructured types 

Just as program structures are composed ultimately of unstructured opera¬ 

tions, such as assignment or input/output, all data are built up from un¬ 

structured components of some unstructured type. We have three useful classes 
of unstructured type. 
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1. Primitive types 

These are types which may be taken as given by a programming language 

or a computer; integer, real, character and Boolean are examples of 

primitive types. 

2. Enumerations 

When data items take a limited range of values, which do not correspond 

directly to any primitive type, it is convenient to regard them as of a 

type that we define by enumerating the names of its values. For example, 

type suit = (club, diamond, heart, spade); 

The value identifiers introduced—club, diamond, heart, and spade—act 

as constants of the type, denoting the only values which data items of 

type suit can take. 

type primary color = (red, yellow, blue) ; 

day of week = (Sunday, Monday, Tuesday, Wednesday, 

Thursday, Friday, Saturday) ; 

marital status = (single, married, widowed, divorced) ; 

An intrinsic ordering between the valuesof the type is assumed in Pascal. 

Ordering operators (<, etc.) can then be used for the comparison 

of such values. 

3. Subranges 

When a data item takes a range of values which is a subrange of the 

values described by some existing unstructured type it is useful to define 

its type as a subrange of the existing type. For example, 

type year = 1900 . . 1999; 

day of month = 1 . . 31 ; 

workday = Monday . . Friday ; 

Having introduced such types we can declare variables of these types in 

the usual way 

var trumps : suit ; 
arrival, departure : day of month ; 

y : year ; d : day of week ; 

ms : marital status 
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Manipulation of unstructured types 

Primitive types such as real and integer tend to have special operators 

associated with them (+, —, *,/, etc.) but the following are common to 
unstructured types in general. 

1. Assignment For example, 

pc : = yellow ; 

y := 1927 ; 
arrival := departure 

2. Comparison 

(a) equality testing, for example 

if arrival = departure then . . . 

if trumps f spade then . . . 

(b) ordering, for example, 

if (d ^ Monday) and (d f Friday) then . 

Because of character set limitations, the program listings in this book 

represent the three symbols < > # by < = ,>=,<> respectively. 

3. Case discriminations 

For unstructured data items that take a limited range of values the case 
construct is extremely useful. For example, 

case d of 

Sunday : ... 

Monday, Tuesday, Wednesday, 
Thursday, Friday : . . . 

Saturday : . . . 

end 

Representation of unstructured types 

1. Primitive types have in general a representation dictated by the hard¬ 
ware facilities of the computer involved. 

2. Enumerated types The standard representation is to map the values, 

in the order of their enumeration, onto machine integers 0 . . n — 1 

(where n is the number of values, or cardinality, of the type). For 
example, 

0 

1 
red 

yellow 

blue 7 
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3. Subrange types The standard representation is to give each value the 

same representation as it has in the original type. Converting values 

between these two types then involves no physical operation. 

Symbolic constants 

The enumerated type enables meaningful identifiers to be used for each 

constant value of type. It is often an aid to program clarity and adaptability 

to denote constant values of other types by identifiers as well. In Pascal this 

can be done by means of constant definitions, such as the following: 

const pi = 3.14159 ; 

terminator = ' . ' ; 

separator = ' , ' ; 

Records 

Definitions of records 

The brackets begin . . . end were introduced to denote a sequence of actions 

grouped to form a single composite action. Often we find that a number of 

data items, distinct in nature and perhaps in type, are similarly grouped 

together to form a composite data item. We may regard the latter as having a 

type which is the cartesian product of the types of its components, and we 

adopt a notation for the definition of such types as follows: 

Given types 

month = (Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec) ; 

day of month = 1 . . 31 ; 

year = 1900 . . 1999 ; 

we define a type 

date = record m : month ; d : dayofmonth ; y : year end 

Our definition specifies the type of each component or field, and intro¬ 

duces selector identifiers to distinguish between them. 

Another example, from mathematics, might be: 

type complex = record realpart, imagpart : real end 

Manipulation of records 

For the following examples assume variables day : date ; c : complex . 
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The operations useful in manipulating records are assignment plus the 

following: 

I. Selection To denote a particular component of a record variable we 

qualify the variable name by .component selector. For example, 

c.imagpart 

day.m 

2. Selective updating To denote the changing of an individual component 

value within a record variable, leaving all other components unchanged, 

we use the assignment operator with the component selector on the 
left-hand side. For example, 

c.imagpart := 2.0 ; 
day.y := 1904 

3. The with notation In processing a record value it is often necessary to 

make several references to its components within a small region of code. 

For this purpose a with construction is used of the form 

with r do S 

Within statement S' any occurrence of an appropriate component 

selector is taken to refer to the corresponding component of record 
value r. For example, 

with c do 

begin 

realpart := 0.0 ; 

imagpart : = — imagpart 
end 

means the same as 

begin 

c.realpart : = 0.0 ; 

c.imagpart := — c.imagpart 
end 
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Representation of records 

The standard method juxtaposes values of components in consecutive 
storage regions, either 

1. unpacked— each component occupying an integral number of words: 

(Mar, 7, 1908) m 

d 

2 

7 

1908 

or 

2. packed—each component occupies only enough bits for its representa¬ 

tion and components are directly juxtaposed: 

(Mar, 7, 1908) 2 7 1908 

4 5 11 

In Pascal a packed representation is denoted by preceding the word 

record by the word packed in the record type definition. For example, 

type date 1 = packed record 

m : month ; 

d : dayofmonth ; 

y : year 
end 

Whereas a value of type date would usually occupy three words in 

memory a value of type date 1 would occupy only one or two. 

Unions 

Definition of union types 

The if. . . then . . . else construct expresses an action as one of two (or more) 

alternative actions. We sometimes find a data object which takes two or more 

alternative forms during its lifetime. It is useful to regard such an object as 

having a type which is the union of the types of its alternative forms. 

Consider for example the register of all cars in a country. Cars are 

distinguished either as local cars owned by residents of the country, or as 

foreign cars currently visiting the country. For local cars the data recorded 

are as follows 
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type localcar = record make: manufacturer ; 

regnumber'.carnumber ; 

owner'.person ; 

firstreg'.date 

For foreign cars the data recorded are as follows 

type foreigncar record make '.manufacturer ; 

regnumber'.carnumber ; 

origin '.country 
end 

A data type covering both kinds of car may be regarded as the union of 

these two types. Such unions are catered for in Pascal by extension of the 

record concept to allow variant parts. A variant part consists of an 

explicitly declared tag field followed by field lists corresponding to possible 
values of this tag field. 

For example the union type car would be defined in Pascal as follows: 

carkind = {local,foreign) ; 
car = record 

make : manufacturer ; 

regnumber : carnumber ; 

case kind : carkind of 

local : (owner : person ; 

firstreg : date) ; 

foreign : {origin : country) 
end 

Manipulation of union types 

Manipulation of union types, or records with variant parts, may be expressed 

in the same notation as for simple records. For example, the tag field kind of a 

variable c of type car and the variant fields owner etc. can be denoted by 
c.kind, c.owner, etc. 

However, reference to a variant field c.owner is valid only when c has the 

corresponding variant form, i.e. when c.kind = local. Use of the case state¬ 

ment with the normal with statement does reduce the likelihood of error in 
this respect. For example, 



with c do 
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BASIC DATA STRUCTURING 17 

case kind of 

local : begin 

owner := . . . 

Jirstreg : = . . . 

end ; 

foreign : origin : = . . . 

end ; 

end 

Representation of union types 

Representation of unions or variant records is the same as that for simple 

records, except that the fields of alternative variants share the same storage, 

since only one variant exists at any moment. 

The values of the alternative types may occupy different amounts of 

storage. It may sometimes be necessary to pad out shorter values to equalize 

the lengths. For example, 

a local car a foreign car 

make Mini make Fiat 

regnumber GOI 4030 regnumber 37-27-193 

tag local tag foreign 

owner BLOGGS origin Italy 

jirstreg Sep 1 1973 {padding) 
_ 

Arrays 

Definition of arrays 

We often find that a number of data items, identical in nature and type, are 

grouped to form a composite data item. When the number of items is pre¬ 

determined, and the individual items are distinguishable by a corresponding 

subscript value, the composite data item may be thought of as an array, whose 

component items are called elements. An array type may be defined in the 

general form 
array [subscript range] of elementtype 
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For fexample, 

type vector = array [1 . . 30] of real ; 

punch card = array [1 . . 80] of char ; 

hoursworked = array [dayofweek] of 0 . . 24 ; 

Manipulation of arrays 

Besides assignment, arrays may be manipulated by 

1. Selection The element of an array A corresponding to a subscript 
value x is denoted by A[x], 

The selection operation is called subscripting. 

2. Selective updating To change the value of the array element corres¬ 

ponding to a particular subscript value, leaving other element values 
unchanged, we write 

A[x] : = r 

Representation of arrays 

Standard unpacked representation allocates one or more whole words to each 

element of the array. The address of a particular element is then given by 

(a) reduce subscript by value of its lower bound 

(b) multiply by number of words for each element 

(c) add address of first element. 

Packed representations in which more than one element share a word 
may be devised with more complex addressing mechanisms. 

In Pascal a packed representation can be requested by preceding the 
word array with the word packed, e.g. 

name = packed array [1 . . 12] of char 

Strings 

Packed arrays of characters are given special status in Pascal and known as 

strings. Certain additional operations are provided for string types as follows: 

1. Construction of string constants is denoted by enclosing a sequence of 
characters in quotes 

'JOHN P SMITH' 
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A sequence of n characters thus denoted is assumed to be of type 

packed array [1 . . n] of char. 

2. Tests of equality and ordering are allowed on string types by the 

operators =, <, <, >, >. For example, 

if name 1 = 'JOHN P SMITH' then . . . 

Ordering is by normal lexicographic conventions. 

3. Output of strings is accomplished by the standard procedure write. 

These operations are not allowed on any other array types. 

Sets 

Definition of sets 

We have defined the concept of type as the set of values which an object of 

that type may take. In mathematics the powerset of a set is the set of all 

subsets of that set. Correspondingly we can define a powerset type as a type 

whose values are all possible sets of values of some other type, the base type. 

For example given 

type primarycolor = {red,yellow,blue) 

we can define 
color = set of primarycolor 

The type color then has values 

[red,yellow,blue] (the universal set of colors) 

[red,yellow] 

[red,blue] 

[yellow,blue] 

[red] 
[yellow] f (unit or singleton sets) 

[blue] J 
[ ] (the empty set) 

Another example of data of set type is the outstanding calls on an 

elevator in a multistorey building. For example, 

type floor = {first,second,third, fourth); 

elevatorcall = set of floor 
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Manipulation of sets 

Apart from assignment and test of equality a wide variety of basic operations 

is available for sets. 

1. Construction 

(a) By enumeration of members. For example, 

[red,yellow] 

[first] 

[ ] 

(b) By subrange. For example, 

[first . . third] 

2. Membership testing 

(a) a in s gives true if a is a member of s, 

false otherwise 

(b) si <s2 gives true if all members of si are members of s2, 

false otherwise 

3. Set arithmetic 

(a) si + s2 denotes the union of si and s2, i.e. the set of all values 

which are either in si, or in s2, or in both, 

(b) si * s2 denotes the intersection of si and s2, i.e. the set of all 

values which are in si and s2 ; 

(c) si — s2 denotes the relative complement, i.e. the set of values 

which are in si but not in s2. 

Representation of sets 

Provided the base type is not too large, powerset types are conveniently 

represented by bit patterns containing one bit for each potential member of 

the set. This bit takes value 1 if the base value is a member, value 0 if it is not. 
For example, 

type color (see p. 19) is representable by 3 bits 

101 represents [red,blue] 

010 represents [yellow] 

000 represents [ ] 
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This representation allows efficient implementation of most of the basic 

operations postulated, by use of the logical and shift instructions provided 

on most machines. 

Dynamic Structures 

A simple example 

The constructs already introduced enable the description of data structures 

whose form and size are predetermined, and remain fixed throughout their 

lifetime. As such the constructs are easily and efficiently incorporated in a 

compilable programming language such as Pascal. In other languages they 

can be realized by fixed storage structures and appropriate code based on 

the representations suggested. 

Other data structures vary in size and form during their lifetime. These 

too can be described and manipulated in an appropriate abstract notation. 

For example we might define a stack S, of items of some given type, by a 

declaration of the form 

S : stack of itemtype 

The only operations permitted on this stack might be 

(a) the addition, or “pushing”, of a new topmost item i, which we denote by 

S.push(i) 

(b) the removal, or “popping”, of the topmost item to a variable which 

we denote by 

S.pop{i) 

(c) testing if the stack is empty, which we denote by 

S. empty 

The way in which these operations are best realized depends critically 

on the nature and size of the items to be stacked and whether any useful 

upper bound can be placed on the maximum length of the stack. 
The same is true of other dynamic structures, trees, lists, etc., which 

arise in programming. An abstract notation for them is readily devised, but 

the most appropriate implementation will depend on characteristics of each 

particular application. 
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It is therefore impractical to build the abstract description of such 

structures into a general-purpose compilable programming language. Any 

general implementation chosen is likely to be unsatisfactory for particular 

applications. Instead a general-purpose language should provide facilities 

for the realization of such structures by the programmer himself. 

To this end Pascal provides the pointer mechanism, which allows the 

creation of chained representations of structures in dynamically allocated 
storage. 

Pointers in Pascal 

A Pascal program may define a pointer type by a type declaration of the 
form 

P = t T 

where T is the type of object which values of type P may reference, or point 

to. Since these objects themselves usually contain pointers of type P, so 

allowing chaining, the definition of Tis allowed to follow that of P 

type P = t T ; 

T = record 

I : item ; 

Next : P 
end 

The declaration of a pointer variable thus 

var p : P 

does not itself create an object to which p points, only the capability of 

doing so. Creation of such an object is achieved by use of the built-in pro¬ 
cedure new, called as follows 

new (p) 

The effect is to create, in available storage, an object of type T, and set the 

pointer variable p to point to it. Thereafter this object, or dynamically 
allocated variable, may be referenced by writing p t . For example, 

p t ./ := 71 

Apart from creation by means of new, and the use of the f notation, 

pointer values may be copied, and tested for equality. To indicate that a 
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pointer does not point to anything a special value nil is provided, and this 

can be assigned to variables of any pointer type. For example, 

P : = nil ; .. . 
if p A nil then . . . 

Once created by new, a dynamically allocated variable remains in 

existence until it is explicitly destroyed by a call to the built-in procedure 

dispose, thus: 

dispose (p) ; 

where p is a pointer value currently referencing, or pointing to, the variable 

to be destroyed. Note that the lifetime of dynamically allocated variables is 

not related either to the block in which they are created or to the block in 

which pointer variables referencing them are declared. It is the programmer’s 

responsibility to ensure that all dynamically allocated variables are disposed 

of, if storage economy is to be maintained. It is also his responsibility to 

ensure that a variable that has been disposed of is never referred to again. 

The listings in Sections 2 and 3 are limited to a restricted character set 

and use the symbol A in place of t . 

Implementing a stack in Pascal 

The use of the pointer facility to implement the abstract stack structure 

outlined above would be as follows. 

A pointer type enabling the representation of a chain of items is intro¬ 

duced thus 

type stackp = t stackr ; 

stackr = record 

item : itemtype ; 

previousitem : stackp 

end 

A stack is then represented by the pointer to its topmost item, which we 

shall declare 
var topmost : stackp 

The operation push(i) can then be realized by the following code, 

where p is a working variable of type stackp 
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new(p) ; 
with t do begin 

item : = / ; 

previousitem : = topmost 

end ; 

topmost : = p 

The operation pop(i) is realized as follows 

p : = topmost ; 

i : = topmost t .item ; 

topmost := topmost t .previousitem ; 

dispose(p) 

The emptiness of the stack at any moment can be tested by 

topmost = nil 

Initially, of course, the stack must be empty; this is accomplished by the 
initializing code: 

topmost : = nil 

and, when use of the stack is complete, the storage occupied by any residual 

“unpopped” items should be recovered by the following code: 

while topmost ^ nil do 

begin 

p : = topmost ; 

topmost := topmost t .previousitem ; 
dispose(p) 

end 

BLOCK STRUCTURING 

The basic tenet of structured programming is that the structure of a program 

and its data should reflect the structure inherent in the problem that the 

program is designed to solve. It follows that in the stepwise refinement of a 
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program we should seek to develop both code and data together in such a 

way as to reflect the structure of the component we are refining. The unit of 

construction that we use is the block, which introduces some data and also 

the actions that are performed on it. There are several forms that blocks can 

take. 

Procedures 

A procedure consists of a block preceded by a heading which associates a 

name with the block. Thus the finalization associated with the stack in the 

last example can be defined as a procedure. 

procedure release ; 

var p: stackp ; 

begin 

while topmost ^ nil do 

begin 

p := topmost ; 

topmost : = p t .previousitem ; 

dispose(p) 

end 

end 

Executing a statement consisting of the procedure name 

. . . ; release ; . . . 

has the effect of executing the procedure block and is known as invoking or 

calling the procedure. 

Value parameters 

The operation push, from the example of the programmer-defined stack, can 

also be implemented as a procedure but in this case the value of the item to 

be pushed onto the stack must be supplied to the procedure. This is achieved 

by specifying a formal parameter i in the definition of the procedure 

procedure push (i: itemtype) ; 

var p: stackp ; 

begin 

new(p) ; 
with g t do begin item :=/; previousitem := topmost end ; 

topmost := p 

end 
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and by supplying a corresponding actual parameter in the call of the procedure 

• • • ; push(j) ; . . . 

When the procedure is called, a variable i is created, corresponding to the 

formal parameter, and is assigned the value of the corresponding actual 

parameter j, which may be any expression that yields a value of type itemtype. 

An actual parameter, such as this, that must yield a value, is called a value 
parameter. 

Variable parameters 

The operation pop may also be written as a procedure but, as the purpose of 

this operation is to return a value to the calling program, the latter must 

specify as an actual parameter the name of the variable to which the result is 

to be assigned; such a parameter is called a variable parameter. The declara¬ 

tion of the corresponding formal parameter is prefaced by var as in the 
following example. 

procedure pop (var i: itemtype) ; 

var p: stackp ; 

begin 

p : = topmost ; 

with/? t do begin / : = item ; topmost : = previousitem end ; 
dispose(p) 

end 

When the procedure is called, 

. . . ; pop(j) ; . . . 

all operations referring to / within the procedure in fact operate on the variable 

j in this case the actual parameter must be a variable of type itemtype 

Functions 

The stack operation empty, which returns a Boolean value when it is executed, 

may be defined as a. function which in form closely resembles a procedure but 
returns a single value as the result of its execution. 

function empty. Boolean ; 

begin empty : = (topmost = nil) end 

The function is called by using its name as an operand in an expression, e.g. 

... ; if empty then . . . ; 
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Evaluation of an expression containing a function call causes the function 

block to be executed. The value assigned to the function name during this 

execution is then used as the corresponding operand value in the expression 

evaluation. Functions, like procedures, may have parameters. 

Lifetime and scope 

In each of the procedures release, push, and pop programmed earlier, a 

variable p is declared within the procedure block itself. This indicates that 

the variable is used only within the procedure and is of no significance outside 

the procedure block. The variable is said to be local to the procedure in this 

case. Using the same name, p, for the local variables of the three procedures 

does not imply any relationship between the variables themselves. 

In contrast, all the procedures make use of the same variable topmost, 

which points to the top of the stack on which they operate. The declaration 

of this variable must be such that the name topmost denotes the same 

variable in all the procedures. 

The definitions of blocks as they appear in the program text are nested— 

the definition of any block may contain further block definitions within it. 

This textual or static nesting is used to determine the accessibility of the 

identifiers introduced in blocks, as follows. The accessibility or scope of each 

identifier is limited to the block in which it is defined or declared, including 

any local blocks. Thus no identifier may be used outside the block in which it 

is defined or declared. 

In each of the procedures release, push and pop above, the variable p 

is declared within the procedure block and can be used only within that 

procedure—it is not accessible to the enclosing block. However, the variable 

topmost is presumably declared in the enclosing block and is therefore 

accessible within the procedure release, and within any other procedures that 

manipulate the stack which topmost represents. 

When an identifier is defined in two or more nested blocks, the innermost 

accessible definition applies to each particular use of that identifier. 

On entry to a block, the variables declared there come into being, and 

the compound statement that constitutes the body of the block is executed; 

then, on exit from the block, the variables cease to exist. Thus the lifetimes of 

the variables declared within, or local to, a block are limited to the lifetime 

of that block. Also, within one block other blocks may be entered, perhaps 

by procedure calls, and the lifetimes of the latter are nested within the life¬ 

time of the former. This nesting of lifetimes, which depends on the sequence 

in which blocks are invoked, is known as dynamic nesting. 

Recursion 
The body of a procedure may contain calls on that procedure and this 

recursive use of a procedure, or of a function, can be very valuable when 
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programming a problem that is inherently recursive. As a simple example 

consider a procedure to reverse a sequence of characters terminated by an 

asterisk. 

procedure reversesequence ; 

var c: char ; 

begin 

readme) ; 

if c / V then reversesequence ; 

write(c) 

end 

When this procedure is called to reverse a sequence 'xyz*' a variable c comes 

into being and the compound statement reads 'x' into c and then calls the 

procedure again to reverse the remaining sequence 'yz*'\ when this has been 

done the string '*zy' will have written been out and finally the 'x' can be 

written out from the variable c. Thus when the asterisk is being processed 

there will be four nested instances of the procedure in being, each with its own 

local variable c holding one of the four characters of the string. 

In the example above, the recursive procedure reversesequence calls itself 

directly. In some cases two procedures A and B are mutually recursive, i.e. 

procedure A calls procedure B which in turn calls procedure A. . . . Most 

Pascal compilers require that the parameter list of a procedure is specified 

before any call of the procedure in the program text. For mutually recursive 
procedures this is accomplished as follows: 

procedure B (parameter list of B) ; forward ; 

procedure A (parameter list of A); 
begin 

B( ) 

end ; 

procedure B ; 

begin 

’A( ) 

end ; 

The first declaration of B defines its parameter list and indicates that 

the definition of its action will be given later. The second declaration of B 

provides this definition, but the parameter list details need not be repeated. 
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Envelopes 

Returning to the example of the stack we may illustrate another use of block 

structure. The realization of the stack that we have programmed so far has 
the following overall form. 

type stackp = . . . 

var topmost : stackp ; 

procedure push (i: itemtype) ; 

procedure pop (var i: itemtype) ; 

function empty : Boolean ; 

procedure release ; .. . 

While the implementation details of the stack operations are hidden within the 

procedures, the realization still has the following disadvantages. 

(a) The variable topmost and the types defining it are shared by all the 

procedures and must be declared in a block enclosing their definition. 

This means that topmost is also accessible to the code that uses these 
procedures. 

(b) These procedures depend on some initialization of topmost being made 
before they are used by that code. 

(c) To ensure that any residual storage used by the stack is recovered, the 

procedure release must be called after the user’s code has been executed. 

Ideally we should like to define our stack by a block that would hide com¬ 

pletely the data used to implement the stack from the using code; this block 

would guarantee its initialization and finalization before and after the using 

code has access to the visible operations. 

For this purpose, we introduce a further block structure to our notation, 

and to Pascal, called an envelope. An envelope defines 

(a) a data structure; 

(b) the operations that can be applied to the data structure, as procedures 

and functions; and 

(c) the initial and final actions that must be applied to the data structure 

at the moments of its creation and destruction. 
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For the stack example the appropriate envelope would be as follows: 

envelope stack ; 

type stackp = t stackr ; 

stackr = record 

item\ itemtype ; 

previousitem: stackp 
end ; 

var topmost: stackp ; 

procedure *push (/': itemtype) ; 

. . . defined as before . . . ; 

procedure *pop (var i: itemtype) ; 

. . . defined as before . . . ; 

function *empty: Boolean ; 

. . . defined as before . . . ; 

procedure release ; 

. . . defined as before . . . ; 
begin 

topmost := nil ; 
* ** * 

release 

end 

An envelope may be thought of as being a data type with associated code, 

instances of which can be declared at the head of a block as follows. 

instance S: stack 

The effect of this is that the variable topmost comes into being and the 

compound statement that forms the body of the envelope is executed. 

Firstly topmost is initialized; secondly the inner statement (represented by ***) 

is encountered; and finally the procedure release is invoked. The effect of 

the inner statement is to execute the rest of the block in which S, the instance 

of the envelope, is declared; during the execution of this block the starred 

identifiers of the envelope are accessible using the normal dot notation or 
with notation. 

if S.empty then . . . else . . . 

with 5" do begin . . . ; push(j) ; ; pop(j) ; ... end 

Starred variables of an envelope may be accessed but not assigned, thereby 

protecting their integrity. Envelopes, like procedures and functions, may have 

parameters; however they may not assign values to any global variables. 
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It is often convenient to be able to declare several instances, thus: 

instance S,T : stack ; 

or even an array of envelope instances, thus: 

instance A : array [1 . . 10] of stack ; 

If just one instance of an envelope is required, the definition and declaration 

may be combined into a single module using the notation: 

envelope module S ; 

type stackp = t stackr ; 

stackr = record 

item: itemtype ; 

previousitem: stackp 
end ; 

var topmost : stackp ; 

. . . procedures defined as before . . . 
begin 

topmost := nil ; 
** * * 

5 

release 

end 

The attraction of the envelope structure is that it enables us to distinguish 

between, on the one hand, the declaration and use of an abstract data struc¬ 

ture such as a stack, and, on the other hand, the concrete representation of 

that data structure as a linked list, or whatever representation has been 

chosen. The block which declares and uses an instance of the envelope has, 

and needs, no knowledge of that representation. It manipulates the instance 

purely in terms of the abstract properties presented by the starred identifiers. 

The Program 

A complete Pascal program is a block preceded by a heading and followed 

by a full stop. For example, the complete program to reverse a sequence of 

characters using recursion is as follows. 

program reversal (input,out put) ; 

procedure reversesequence ; 

var c: char ; 

begin 
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read{c) ; 
if c ^ V then reversesequence ; 

write(c) 

end ; 

begin 

reversesequence 

end. 

The same program, but using an explicit stack of characters, is as follows. 

program reversal {input,output) ; 

type itemtype = char ; 

var c: itemtype ; 

envelope module S’ ; 

... as already programmed . . . 

begin 

repeat read{c) ; S.push(c) until c = ; 
repeat S.pop(c) ; write{c) until S.empty 

end. 

Processes 

To design an operating system we need to extend our notation further; 

unlike most programs, which are sequential, an operating system involves a 

fair degree of parallelism: at any moment there may be in the computer several 

users’ programs and also a number of other programs performing such ser¬ 

vices as controlling peripheral devices: all these programs may be proceeding 

in parallel (if there are enough processors, and in quasi-parallel otherwise) and 

each of these programs we term a process. We therefore extend our sequential 

programming language with notations to define processes and to declare 

instances of them. Each process is defined as an ordinary Pascal block pre¬ 

ceded by a heading, which may have parameters: 

process producer ; 

var i: itemtype ; 

begin 

repeat 

produce item i ; 

put i into buffer 

until switch off 

end 
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and instances of a process may be declared as follows: 

instance P : array [1 . . 3] of producer 

If only one instance is required, the definition and declaration may be 

combined into a single module: 

process module P ; 

var i: itemtype ; 

begin 

repeat 

produce item i ; 

put i into buffer 

until switch off 

end 

If, for example, we wish to simulate the actions of three producers, 

which are producing items to be put into some common buffer, and four 

consumers, which are getting items from the buffer for consumption, we may 

define a process to model a producer and declare three instances of it (as 

above), and we may declare four instances of a process that models the 

actions of a consumer. 

program producers and consumers ; 

{declaration of a data structure to represent a buffer} ; 

process producer ; 

var /: itemtype ; 

begin 

repeat 

produce item i ; 

put i into buffer 

until switch off 

end ; 

process consumer ; 

var i: itemtype ; 

begin 

repeat 

get i from buffer ; 

consume item i 

until switch off 

end ; 

instance 
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P : array [1 . . 3] of producer ; 
C: array [1 . . 4] of consumer ; 

begin 
{initialization of program} ; 
*** • 

{finalization of program} 
end. 

The seven producer and consumer processes are activated when the inner 
statement of the program block is encountered. They then proceed in 
parallel with one another until they terminate, whereupon the finalization 
of the program block is performed. 

Associated with each process is a priority represented by a non-negative 
integer value; this is used to determine which process should run next if 
there are insufficient processors to run all the processes simultaneously. A 
process may set its priority to some value, p say, by a call on a procedure 
setpriorityip); the smaller the value of p the higher is the priority. 

Monitors 

The processes of a program are not usually entirely independent of one 
another: in the previous example the seven producers and consumers all 
accessed the common buffer. Chaos would result if processes were able to 
access such global data in an unregulated manner and so we define the buffer, 
together with the operations, put and get, that may be performed on it and 
also its initialization and finalization, in the form of an envelope—but this 
envelope, being shared, must have the property, termed mutual exclusion, 
that only one process at a time may be executing one of its procedures: this 
form of envelope is called a monitor. Monitors are defined and declared in 
the same way as envelopes. 

monitor module buffer ; 
var item: array [1 . . 100] of itemtype ; 

putcount, getcount: integer ; 
procedure *put (i: itemtype) ; 

begin 
if putcount — getcount = 100 then wait until not full; 
item [putcount mod 100 + 1] : = j ; 
putcount : = putcount + 1 

end ; 
procedure *get (var /': itemtype) ; 

begin 

if putcount — getcount = 0 then wait until not empty ; 
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/ := item [getcount mod 100 + i] ; 
getcount := getcount + 1 

end ; 

begin putcount : = 0 ; getcount : = 0 ; *** end 

Now put i into buffer and get i from buffer can be replaced by buffer.put{i) 

and buffer, get (i) respectively. Thus the only way in which a process may 

access global variables is indirectly, through a procedure or function of a 

monitor. Mutual exclusion can be enforced by suitable code on entry to and 

exit from monitor procedures and functions. 

To ease implementation, instances of monitors and processes may be 

declared only within monitors (and the complete program block is deemed to 

be a monitor). Thus there is no dynamic creation of processes and so each 

process can be assigned enough space for its stack before execution, providing 

a limit is placed on the depth of procedure and function recursion allowed. 

Conditions 

Because a monitor is used by more than one process it is feasible for a 

process that is unable to continue (e.g. a producer that finds the buffer full) 

to wait until it is enabled to continue by some other process (e.g. a consumer 

that removes an item from the buffer). Therefore, for each condition (e.g. 

that the buffer be not full) that must hold before a process can continue, 

we introduce a queue on which processes can wait until signaled to continue 

by other processes. In our example we declare two such condition queues: 

instance notfull, notempty: condition 

and we replace wait until not full and wait until not empty by notfull.wait and 

notempty.wait respectively, and at the end of put and get we add notempty. 

signal and notfull.signal respectively. When a process waits, it is appended to 

its condition queue and the exclusion on the monitor is released. When a 

process signals, it immediately passes control to the process at the head of 

the condition queue and is delayed until the awoken process has released the 

exclusion on the monitor; a signal has no effect if no process is waiting on 

the condition queue. 
Normally a signal will cause the longest waiting process to be resumed 

and this is a good simple scheduling strategy that prevents a process from 

being overtaken indefinitely often. However, there are many cases where this 

is inadequate and so, to give closer control over the scheduling strategy, we 

introduce a version of the wait operation, pwait, that specifies a priority in 

the form of a non-negative integer parameter so that processes are queued 

in order of decreasing priority (the smaller the integer, the higher the 
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priority). We also permit a process to determine the length of a condition 

queue and, if the queue is not empty, the priority of the process at the head 

of it. For example, a process might wish to wait on a condition queue, c, only 

if its priority, represented by p, is lower than that of the process (if any) at 

the head of the queue. 

if c.length > 0 then if c.priority < p then c.pwait(p) 

As an example of a very simple operating system scheduler, consider a 

monitor to schedule the use of a single lineprinter which different processes 

wish to use from time to time. To record the availability of the device we 

need a Boolean variable, free, and to delay processes wishing to use the 

printer when it is unavailable we require a condition queue, released; we 

provide the processes with two procedures, acquire and release. 

Our scheduler is programmed as follows: 

monitor module Ipscheduler ; 

var free: Boolean ; 

instance released: condition ; 

procedure *acquire ; 

begin 

if not free then released, wait ; 

free : = false 

end ; 

procedure *release ; 

begin 

free := true ; 

released.signal 
end ; 

begin 

free : = true ; 

end 

Each process can then bracket its use of the lineprinter between calls on 

Ipscheduler .acquire and Ipscheduler .release. 



Section 2 
A STRUCTURED COMPILER 

The primary objective of this section is to illustrate the application of struc¬ 

tured programming techniques to the construction of a compiler for a small 

programming language. Where specific compilation techniques are used they 
are introduced in simple terms. 

The first chapter presents an informal specification of the compiler to 

be constructed, and serves both to define the nature of a compiler and to 

identify the significant factors that influence its construction. Subsequent 

chapters trace the step-by-step refinement of a compiler program which meets 

these requirements. 

There is a gradual increase in “pace” in the discussion of design and 

programming decisions throughout the section. In the early chapters the 

pace is gentle, allowing the reader to become accustomed to the problems of 

compilation and the style of programming in use. In later chapters the pace 

quickens with only some of the programming decisions being discussed in 

detail. However the program listings incorporated in each chapter show the 

complete final outcome of the design and programming strategy. 

THE COMPILER SPECIFICATIOIM 

A compiler is a computer program which accepts as input another 

program expressed in a given language (which we call the source language), 

and produces as output an equivalent program in another language (the 

object or target language), together with a listing of the source program input. 

S.S.P.—D 
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The Input 

At first sight the input which a compiler is required to handle is perfectly 

defined, since the source-language definition determines exactly the set of 

programs for which the compiler may be asked to generate equivalent object 

code. However a practical compiler is expected not only to generate object 

code for the correct programs of the source language, but also to diagnose 

faults in incorrect ones. In practice therefore all inputs to a compiler must be 

accepted and treated in some appropriate manner. 

The source-language definition remains the central component of the 

compiler writer’s specification. Definition of the structure or syntax of 

programs is well understood and a standard notation—the so-called Backus- 

Naur Form or BNF—is widely used in language definitions. Formal definition 

of the meaning or semantics given to programs, and the semantic constraints 

which the language rules impose, is a more difficult problem and no generally 

accepted method has so far emerged. 

A definition of the model language whose implementation we shall 

consider is given in the next chapter. The definition takes the form of a 

formal syntax description, using an augmented BNF notation, accompanied 

by an informal semantic description in natural language. The language 

defined, which we call Mini-Pascal, is a small subset of the Pascal language 

and its definition is derived directly from the Pascal Report. As we shall see the 

formal syntax definition greatly assists the compiler writer in determining 

the structural framework of the compiler, while the informal description of 

semantics leaves a much greater burden on him in the realization of semantic 

analysis and object-program generation. 

The Output 

The output from a compiler comes in two parts—the object program gener¬ 

ated and the program listing. Remembering that the compiler will deal with 

more incorrect than correct programs, the qualities of the program listing 

and error messages produced may be as important as those of the object code. 

The program listing 

The source-program listing output by the compiler provides 

(a) a confirmation, and permanent visual record, of the source program 
compiled; 

(b) an indication of all errors detected by the compiler. 

The exact form in which these are provided is usually left to the compiler 

writer to determine. Doing so is a straightforward, if sometimes neglected, 
exercise in man/machine engineering. 
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The user programmer expects the compiler 

(a) to enforce every language rule; 

(b) to find all violations of the language rules in a single compilation run; 

(c) to generate no spurious or misleading error reports due to preceding 
errors. 

Achieving (b) and (c) implies that the compiler must resume compilation 

immediately after detecting each error as if the error had not existed. Clearly 

this is an impossible task in some situations. However, this need for error 

recovery is a dominant influence on the compiler design. 

The object program generated 

The object program output by the compiler is expressed in a precisely defined 

language, e.g. the machine language of the object machine, but the compiler 

writer is left the freedom to choose the way in which source-language features 

are expressed in the object language. He does so subject to specifiable 

requirements of the object program produced, e.g. 

(a) its compactness or storage economy; 

(b) its speed in execution; 

(c) the security against run-time errors which it provides; 

(d) the run-time diagnostic facilities which it provides. 

It is soon apparent, however, that some of these desirable characteristics of 

the object program are mutually conflicting, and cannot all be realized in a 

single object-program form. The code generated by any particular compiler 

represents some compromise between them, according to the particular 

priorities adopted in its construction. In the Mini-Pascal compiler the genera¬ 

tion of compact, reasonably efficient machine code for a realistic machine will 

be illustrated. Details of the machine will be given later. 

Specified Design Constraints 

Like any other program a compiler may be subject to constraints on its 

design and implementation. These constraints stem from the general objec¬ 

tives of software construction such as: 

Reliability 

Compiler reliability is not achieved by techniques peculiar to compiler con¬ 

struction. It results rather from a simple well-structured design, which gives 

a logical separation of concerns, and the use of simple well-understood tech¬ 

niques for their realization. The role played by modular development, and 
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modular testing, in achieving reliability is well illustrated by the Mini-Pascal 

compiler. 

Efficiency 

Efficiency requirements of object programs were mentioned as part of the 

compiler’s output specification. However, if a compiler is used as frequently 

as the programs which it produces, then its own efficiency becomes significant. 

Compiler efficiency involves three factors: 

(a) speed of compilation; 

(b) storage used during compilation; 

(c) backing store usage during compilation. 

All three factors warrant economy in the construction of a compiler. 

Compilers are often constructed as multi-pass systems for reasons of language 

design, main storage limitation, or conceptual simplicity. However the back¬ 

ing store transfers involved in multi-pass compilation are a very significant 

overhead in many environments. As we shall see, the conceptual simplifica¬ 

tion of the compilation process into several component processes can be 

achieved without enforcing multi-pass operation on the compiler which 

carries it out. 

Flexibility 

Flexibility is a particular virtue in system programs whose useful lifetime may 

span many changes in their working environment. 

An obvious flexibility for a compiler is a capacity to generate object 

code for a totally different target machine. Much of the effort of writing a 

compiler for a given language is machine independent, but if this common¬ 

ality of effort is to be fully exploited in producing compilers for other machines 

a compiler structure which separates the machine-dependent and machine- 

independent aspects must be chosen at an early stage in the design. 

A less radical but commonly required flexibility in system software is 

device independence. If the environment in which the compiler runs does not 

support device independent I/O, then it must be realized within the compiler 

itself. The ease with which this can be done is again dependent on the degree 

to which the chosen compiler structure isolates the device dependencies 

within the overall compilation process. 

To illustrate the influence which such considered flexibility may have on 

a program’s development, both the above will be incorporated in the specifi¬ 
cation of the Mini-Pascal compiler. 
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A Specification Summary 

In summary the specification we adopt for the Mini-Pascal compiler is as 
follows: 

(a) it must compile the language Mini-Pascal as defined in the language 
definition which follows; 

(b) it must achieve an acceptable level of error recovery; 

(c) it must generate reasonably efficient machine code for the chosen target 
computer; 

(d) it must be reliable; 

(e) it should be reasonably efficient in time, storage and backing-store 
utilization; 

(f) it should be adaptable to 

(i) a variety of I/O devices on the given machine, 

(ii) generation of object code for different machines. 

DEFINITION OF MINI-PASCAL 

Introduction 

Mini-Pascal is a small subset of the language Pascal, defined for two purposes: 

(a) as a suitable language for teaching the elementary principles of computer 

programming; 

(b) as a suitable language for illustrating the techniques and problems of 

compiler construction. 

This definition is intended therefore as a model of the language definitions 

which programmers must be able to read, and on which compiler writers 

must base the compilers which they construct. Its form and content are 

derived directly from the Pascal User Manual and Report by Jensen and 

Wirth. 

Summary of the Language 

An algorithm or computer program consists of two essential parts, a descrip¬ 

tion of actions which are to be performed, and a description of the data 

which are manipulated by these actions. Actions are described by statements, 

and data are described by declarations. 
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The data are represented by values of variables. Every variable occurring 

in a statement must be introduced by a variable declaration which associates 

an identifier and a data type with that variable. The data type essentially 

defines the set of values which may be assumed by that variable. 

The basic data types are the standard types: Boolean, integer, char. 

Except for the type Boolean, their values are not denoted by identifiers, but 

instead by numbers and quotations respectively. These are syntactically 

distinct from identifiers. The set of values of type char is the character set 

available on a particular installation. 

A type may also be an array type, each value of which comprises a 

number of components all of the same component type. A component is 

selected by a computable index, whose range is indicated in the array type 

definition and which must be of the type integer. Given a value of the index 

range, an indexed variable yields a value of the component type. 

The most fundamental statement is the assignment statement. It specifies 

that a newly computed value is to be assigned to a variable (or components of 

a variable). The value is obtained by evaluating an expression. Expressions 

consist of variables, constants, and operators operating on the denoted 

values and producing new values. Mini-Pascal defines a fixed set of operators, 

each of which can be regarded as describing a mapping from the operand 

types into the result type. The set of operators is subdivided into groups as 
follows: 

1. arithmetic operators of addition, subtraction, inversion, multiplication 
and division; 

2. Boolean operators of negation, union (or), and conjunction (and); 

3. relational operators of equality, inequality, ordering. 

A program has at its disposal an input device and an output device. The 

input device is capable of delivering information to the program in the form of 

a continuous character stream. The output device is capable of receiving 

information from the program in the form of a continuous character stream. 

Transfer of information from or to the input or output devices is caused by 
read or write statements within the program. 

The procedure statement causes the execution of the designated procedure 

(see below). Assignment, read, write, and procedure statements are the com¬ 

ponents or building blocks of structured statements, which specify sequential, 

selective, or repeated execution of their components. Sequential execution of 

statements is specified by the compound statement, conditional or selective 

execution by the if statement, repeated execution by the while statement. 

A statement can be given a name (identifier), and be referenced through 

that identifier. The statement is then called a procedure, and its declaration 
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is a procedure declaration. Such a declaration may additionally contain a 

set of variable declarations, or further procedure declarations, to form a 

block. Since procedures may thus be declared within the blocks defining other 

procedures, blocks may be nested. This nested block structure determines the 

range of use, or scope, of the identifiers denoting variables, procedures, types 

and constant values, and also determines the lifetime of variables. 

Notation, Terminology and Vocabulary 

According to traditional Backus-Naur form, syntactic constructs are 

denoted by English words enclosed between the angular brackets < and >. 

These words also describe the nature or meaning of the construct, and are 

used in the accompanying description of semantics. In our extension of BNF 

possible repetition of a construct zero or more times is indicated by enclosing 

the construct within braces { and }. The symbol <empty> denotes the null 

sequence of symbols. 
The basic vocabulary of Mini-Pascal consists of basic symbols classified 

into letters, digits, and special symbols. 

(letter') ::= A\B\C\D\E\F\G\H\I\J\K\L\M\N\0\P\Q\R\S\ 
T\U\V\W\X\Y\Z\a\b\c\d\e\f \g\h\i\j\k \ l\m\n\ 

o\p\q\r\s\t\u\v\w\x\y\z\ 

(digit) ::= 0|1 |2|3|4|5|6|7|8|9 

(special symbols> :: = + | — | * I = I I < | > I < = | > = I 

( | ) | [ | ] I : = I • I » I ; I : I • • I div | or | 
and | not | if | then | else | of | while | do j 

begin | end | read | write | var | array | 

procedure | program 

Identifiers 

Identifiers denote constants, types, variables, and procedures. Their associa¬ 

tion must be unique within the block in which they are declared (see Proced¬ 

ure Declarations and Programs below). 

(identifier) :: = (letter){(letter or digit)} 

(letter or digit) ::= (letter) \ (digit) 

Constants 

Constants are the particular values which variables of the basic types, 

integer, char and Boolean may take. 
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The usual decimal notation is used for those natural numbers which are 

constants of the data type integer 

(integer constant} ::= (digit}{(digit}} 

Examples 

0 1 100 

The constants of the data type char are denoted by the character involved 

enclosed in quote marks. If the character is itself a quote mark the quote 

mark is written twice 

(character constant} ::= '(any character other than '}' \' ' ' ' 

Examples 

'A' 
tit! 

The constants of the data type Boolean are denoted by the identifiers 

true and false. These are the only constant identifiers in Mini-Pascal: 

(constant identifier} :: = (identifier} 

(constant} ::= (integer constant} \ (character constant} \ 

(constant identifier} 

Data Types 

A data type determines the set of values which variables of that type may 

assume 

(type} :: = (simple type} \ (array type} 

Simple types 

(simple type} :: = (type identifier} 

(type identifier > :: = (identifier} 

The following types are standard in Mini-Pascal: 

integer The values are a subset of the whole numbers defined by individual 

implementations. Its values are denoted as described under 
Constants. 
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Its values are the truth values denoted by the identifiers true and 

false. 

Its values are a set of characters determined by particular imple¬ 

mentations. They are denoted by the characters themselves enclosed 

within quotes. Characters which are letters or digits are ordered 

in a manner consistent with alphabetic or numeric ordering. Thus 

'A' < 'B' <’C’ ... 
'0' < T < '2' . . . 

Array types 

An array type is a structure consisting of a fixed number of components 

which are all of the same type, called the component type. The elements of the 

array are designated by indices, values belonging to a certain index range. 

The array type definition specifies the component type as well as the index 

range. 

Boolean 

char 

{array type> ::= array [{index range}] of <component type} 

<index range> :: = <unsigned integer> . . <unsigned integer} 

<icomponent type> :: = <simple type} 

Examples 

array [1 . . 100] of integer 

array [1 . . 80] of char 

Declarations and Denotations of Variables 

Variable declarations consist of a list of identifiers denoting the new variables, 

followed by their type. 

{variable declaration} :: = {identifier}{,{identifier}} : {type} 

Examples 

x,y,z: integer 

i,j: integer 

p,q: Boolean 

a: array [0 . . 63] of integer 

Denotations of variables designate either an entire variable or an indexed 

variable. Variables occurring in the examples in subsequent sections are 

assumed to be declared as indicated above. 

{variable} :: = {entire variable} \ {indexed variable} 
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Entire variables 

An entire variable is denoted by its identifier. 

<■entire variable> ::= (variable identifier} 

(variable identifier} ::= (identifier} 

Indexed variables 

A component of an array variable is denoted by the variable followed by an 

index expression. 

(indexed variable} ::= (array variable} [(expression}] 

(array variable} :: = (entire variable} 

The type of the index expression must be integer and its value must lie 
in the range defined by the array type. 

Examples 

«[12] 
a[i+j] 

Expressions 

Expressions are constructs denoting rules of computation for obtaining 

values of variables and generating new values by the application of operators. 

Expressions consist of operands (i.e. variables and constants) and operators. 

The rules of composition specify operator precedences according to four 

classes of operators. The operator not has the highest precedence, followed by 

the multiplying operators, then the adding operators, and finally, with the 

lowest precedence, the relational operators. Sequences of operators of the 

same precedence are executed from left to right. The rules of precedence are 
reflected by the following syntax. 

(factor} ::= (variable} \ (constant} \((expression}) \ 
not (factor} 

(term} (term}{(multiplying operator} (factor}} 

(simple expression^ ::= (sign} (term}{(adding operator} (term}} 
(expression} :: = (simple expression} \ 

(simple expression} (relational operator} (simple expression} 
(multiplying operator} ; = * 1 div | and 
(sign} := + | — | (empty} 
(adding operator} := + | — | or 
(relational operator} : = = 1 <> | < | > | < 
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Examples 

Factors 

Terms 

Simple expressions 

Expressions 

x 

15 

(*+J+x) 
not p 

x * y 

(x<=j) and (y<z) 

x+y 

—x 

7*7 + 1 

X = 1 

p <= d 
0 <j) = O' < k) 

Operators 

The operator not 

The operator not denotes negation of its Boolean operand. 

Multiplying operators 

Operator Operation Type of operands Type of result 

* multiplication both integer integer 

div division with 

truncation 

both integer integer 

and logical “and” both Boolean Boolean 

Adding operators 

Operator Operation Type of operands Type of result 

+ addition both integer integer 

— subtraction both integer integer 

or logical “or ” both Boolean Boolean 

When used with one (integer) operand only, — denotes sign inversion, 

and + denotes the identity operation. 
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Relational operators 

Operator Type of operands Result 

= <> 

< > both integer or both Boolean 

<= > = char 

The operators <>, < = , >= stand for unequal, less or equal, and 

greater or equal respectively. 

Statements 

Statements specify actions of a computer, and are executable. 

<,statement> :: = (simple statement} {(structured statement} 

Simple statements 

A simple statement is a statement which does not contain another statement. 

(simple statement} ::= (assignment statement} | 

(procedure statement} \ (read statement} | (write statement} 

Assignment statements 

The assignment statement replaces the current value of a variable by a new 

value denoted by an expression. 

(assignment statement} :: = (variable} : = (expression} 

The variable and the expression must be of identical type. 

Examples 

x := y+z 

/?:=(!<= i) and (i < 100) 

Procedure statements 

A procedure statement executes the procedure denoted by the procedure 
identifier. 

(procedure statement} ::= (procedure identifier} 
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Examples 

next 

Transpose 

Read statements 

A read statement transfers values from the input device to one or more 
specified variables of the program 

(read statements ::= read {(input variable) {,(input variable)}) 
(input variable) :: = (variable) 

Each input variable must be of type integer or of type char. Values are 

transferred from the input device in the order in which the variables appear 

in the read statement. For a variable of type char the value transferred is the 

next character from the input device. For a variable of type integer the value 

transferred is that denoted by a sequence of characters from the input device. 

This sequence of characters must conform to the syntax for integer constants 

given above optionally preceded by a + or — sign and/or an arbitrary number 

of blanks. Successive integer values must be separated by at least one blank 

character. 

Write statements 

A write statement transfers values from the program to the output device 

(write statement) ::= write {(output value)},(output value)}) 

(output value) :: = (expression) 

Each output value must be an expression of type char, or of type integer. 

Values are transferred to the output device in the order in which they appear 

in the write statement. A value of type char is transferred as the single 

character denoted. A value of type integer is transferred as the sequence of 

decimal digits denoting its value, preceded by a — sign when appropriate, 

and possibly some blanks. The length of the sequence of characters trans¬ 

ferred is a constant sufficiently large to accommodate all integers represent¬ 

able on the object machine. 

Structured statements 

Structured statements are constructs composed of other statements which 

have to be executed either in sequence (compound statement), conditionally 

(if statements), or repeatedly (while statements). 

(structured statement) :: = (compound statement) \ 

(if statement) \ (while statement) 
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Compound statements 

The compound statement specifies that its component statements are to be 

executed in the same sequence as they are written. The symbols begin and end 

act as statement brackets. 

(compound statement} :: = begin (statement}{^statement}} end 

Example 

begin z := x ; x : = y ; y : = z end 

If statements 

The if statement specifies that a statement be executed only if a certain 

condition (Boolean expression) is true. If it is false, then the statement follow¬ 

ing the symbol else is to be executed; or if there is no else, no action is per¬ 

formed. 

(if statement} :: = if (expression} then (statement} | 

if (expression} then (statement} else (statement} 

The expression between the symbols if and then must be of Boolean type. 

Example 

if x < 1 then z : = x + y else z := 1 

Note The syntactic ambiguity arising from the construct 

if (expression-\} then if (expression-!} then (statement-1> 

else <statement-2} 

is resolved by interpreting the construct as equivalent to 

if (expression-1> then 

begin if (expression-2} then (statement-]} else (statement-!} 

end 

i.e., the else matches the closest unmatched then. 

While statements 

(while statement} ::= while (expression} do (statement} 
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The expression controlling repetition must be of type Boolean. The statement 

is repeatedly executed until the expression becomes false. If its value is false 
at the beginning, the statement is not executed at all. 

Procedure Declarations 

Procedure declarations define parts of a program and associate identifiers 

with them so that they can be activated by procedure statements. 

<procedure declaration> :: = <procedure heading> <block} 
(blocky :: = <variable declaration party 

(procedure declaration party 

<,statement party 

The procedure heading specifies the identifier naming the procedure. 

<procedure headingy :: = procedure (identifier') ; 

The variable declaration part contains all variable declarations within 
the procedure block. 

(variable declaration party :: = (empty) | 

var (variable dec!arationy{;(variable declaration} ; 

The procedure declaration part contains all procedure declarations within 

the procedure block. 

(procedure declaration party ::= {(procedure declarationy;} 

The statement part specifies the algorithmic actions to be executed upon 

an activation of the procedure by a procedure statement. 

(statement party :: = (compound statementy 

Identifiers introduced in the variable and procedure declaration parts 

are local to the procedure block, which is called the scope of these identi¬ 

fiers. More precisely thescope of an identifier declaration is defined as follows: 

(a) The scope of an identifier declaration is the block in which the declara¬ 

tion occurs, and all blocks enclosed in that block, subject to rule (b) 

which follows. 

(b) When an identifier declared in block A is redeclared in some block B 

enclosed by A, block B and all blocks enclosed by it are excluded from 

the scope of the identifier's declaration in A. 



52 A STRUCTURED COMPILER 

An identifier may have at most one declaration in any block, and may be 

used only within the scope of such a declaration. 
Variables declared in a block are created at the beginning of each exe¬ 

cution of that block, and cease to exist when its execution is complete. Their 

values are undefined at the beginning of each execution of the block. 

The use of a procedure identifier in a procedure statement within its 

declaration specifies recursive execution of the procedure. 

Programs 

A Mini-Pascal program has the form of a procedure declaration, except that 

its heading uses the word program instead of procedure, and its block is 

followed by a period. 

<program> :: = <program heading> <block} . 

<program heading> :: = program <identifier> ; 

The identifier following the symbol program is the program name; it 

has no further significance inside the program. 

Identifiers declared within the program block are called global, since 

their scope comprises the program block and all enclosed procedure blocks, 

except those in which they are redeclared. 

Variables declared in the program block are created at the beginning of 

execution of the program, i.e. of its statement part, and remain in existence 

throughout its execution. 

The standard identifiers integer, char, Boolean, false and true have a 

scope which encloses the program block, and are thus usable throughout the 

program, except in blocks where they are redeclared. 

SOURCE HANDLING 

Isolating Device Dependencies 

Our initial concept of a compiler was a program which takes a source 

program as input and produces an object program and a listing as output. 

Our first formal expression of the compiler’s structure might thus be 

compiler (source program) (object program, listing) 
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where 

1. source program denotes the program to be compiled; 

2. object program denotes the translated program; 

3. listing denotes the program listing produced. 

All three of these involve physical representation on some input, output or 

storage media. Their format is in general dependent on the devices or media 

involved. Since device independence was identified as an objective for the 

compiler a logical refinement on this first model is to isolate the device 
dependencies from the compiler proper, by introducing 

1. An input handler which converts the device-dependent source into a 
device-independent form. 

2. An output handler which composes a device-oriented listing format by 

collating the source program input with the errors 
detected by the compiler proper. 

3. A code handler which constructs a device-oriented representation 

of the object program from the device-independent 

object code emitted by the compiler proper. 

This separation of device-dependent functions gives us a revised model 

of our compiler structure which is as follows: 

input handler (source prograni)(character stream) 

compiler (character stream){errors, object code) 

output handler (source program, errors)(listing) 

code handler (object code)(object program) 

The notation used is not intended to imply the order in which these 

activities take place. They might proceed in sequence, in parallel, or by 

appropriate interleaving of their component actions. That remains to be 

determined. What the model has achieved is the separation of the device¬ 

dependent activities from the process of compilation proper. If this modularity 

can be carried into the final compiler program a sound basis for device inde¬ 

pendence will be achieved. 

Realizing such modular structure involves 

(a) defining precisely the communication interfaces between the modules; 

(b) choosing program structures to represent them; 

(c) proceeding with the refinement of the individual modules. 
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However, attempting to do so for the compiler model given above quickly 

reveals a practical flaw in the suggested structure. 
Both the input handler and the output handler process the device¬ 

dependent representation of the input source program. Practicalities of course 

dictate that input from a physical device such as a card reader should take 

place once only. Likewise simple efficiency considerations suggest that any 

internal saving and re-scanning of the source representation must be avoided 

whenever possible. The input and output handlers could share a single scan 

of the source input through a shared line buffer and an appropriate access 

protocol. But the need for such a shared structure calls into question the 

practical independence of the input and output handlers. 

An alternative is to revise our compiler model, merging the activities of 

the input and output handlers into a single source handler. It is then a question 

internal to the source handler how the input and listing device pair should 

co-operate. 
Our compiler model now has the form 

source handler (source program, errors)(character stream, listing) 

compiler (character stream){errors, object code) 

code handler (object code)(object program) 

We will find that this model remains a valid basis of all subsequent 

compiler development. It is not appropriate to consider the compiler/code 

handler interface further at this stage, but we shall proceed to define the 

source handler/compiler interface and then to develop each module in turn. 

Defining the Source Handler/Compiler Interface 

The source handler!compiler interface involves the transmission of the source 

character stream from the source handler to the compiler, and the transmission 

of error reports from the compiler to the source handler. 

Consider the source character stream first. 

Simple efficiency considerations suggest that the compiler should scan 

the individual characters in the source character stream once only, presumably 

in left-to-right order. A sufficient interface therefore is that the source 

handler makes available to the compiler the “current” character in the 

source stream, say as a variable 

ch : char ; 

together with the ability to replace this character by its successor when the 

compiler wishes. This could be provided as a procedure 

procedure Nextch ; 
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Now consider the error reporting. For each error detected the compiler 

must report to the source handler the nature and position of the error. 

For the nature of the error we shall adopt a simple numeric code, at the 

interface level. Whether this code is translated into an explicit text message 

by the source handler is a listing design decision which affects only the 

source handler. 

It is important to realize that the position of the error is not necessarily 

related to the current character position in the source character stream. 

Since we should make no assumptions as to how the compiler actually detects 

errors in this stream, it may be any position in the stream already scanned 

by the compiler. 

The compiler could keep track of the ordinal position of each character 

in the source stream scanned and express each error position in terms of 

these. Equally the source handler could relate an ordinal character position 

to whatever line or text structure it scanned in the original source program. 

A little consideration however shows that it is more efficient for the 

source handler to make available with each character in the source stream a 

corresponding position value which the compiler may record. This is more 

efficient because 

(a) the source handler must maintain some such positional coordinates 

anyhow; 
(b) the compiler need only copy this position at those points to which a 

subsequent error report may refer. 

So we first extend our source character stream interface by a variable 

positionnow : textposition ; 

and then the error reporting interface is easily provided as a procedure 

procedure Error (errorcode : integer ; 

errorposition : textposition) ; 

The total interface described can be implemented by declaring the source 

handler as a module with the structure shown 

envelope module source ; 

type 
*textposition = ... ; 

var 

*ch : char ; 
*positionno\v : textposition ; 
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procedure *Nextch ; 

procedure *Error (errorcode : integer ; 

errorposition : textposition) ; 

begin 

{,initialize I/O} ; 
*** * 

5 

{finalize 1/0} 

end ; 

Any use of a source handler’s facilities by the compiler must be preceded by 

some initialization, and followed by some finalization, of the source handler’s 

I/O activities. This bracketing is assured by the use of the inner mechanism 

in the source-handler body. 

Programming the Source Handier 

The keynote in programming the facilities provided within the source handler 

must be efficiency, since the overall efficiency of a compiler is determined 

largely by the efficiency of its character handling. It is crucial, therefore, that 

the normal repetitive actions provided by the source handler, primarily the 

Nextch procedure, be programmed as efficiently as possible. With this in 

mind, the internal structure of the source handler is now considered. 

A first model for the action of Nextch might be 

if current character is last in line 

then begin 

list this line ; 

read next line 

end ; 

update ch , position for next character 

As was anticipated, the position made available to the compiler can also be 

used within the source handler to control character transmission. 

For a line-by-line text format a text position involves a line identity or 

number, and a character position within the line. Assuming a maximum line 

length maxline we might define a type 

char position = 1 . . maxline 
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and hence 

textposition = record 

linenumber : 0 . . 99999 ; 

charnumber : charposition 

end 

The line buffer used to hold the source line under scan can now be declared 

as a variable 

line : packed array [charposition] of char ; 

For some input devices the actual line in the line buffer at any moment 

may be less than the maximum length, or the first actual character may be 

preceded by one or more “red-tape” characters which do not form part of 

the source input. It is convenient to introduce auxiliary variables 

firstinline ,' lastinline : charposition ; 

to delimit the significant contents of the line buffer at any time. 

With these decisions our first model for Nextch is easily translated into 

procedure Nextch ; 

begin 

with positionnow do 

begin 
if charnumber = lastinline 

then begin 

List this line ; 

Read next line ; 

linenumber := linenumber — 1 ; 

charnumber : = firstinline 

end 
else charnumber := charnumber + 1 ; 

ch : = line [charnumber] 

end 

end ; 

To complete the programming of Nextch it remains to refine the actions 

List this line and Read next line. However, since these actions 

(a) involve the mechanics of actual device manipulation, and 
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(b) are also required in the initialization and finalization of the source 

handler activities, 

it is prudent to abstract them as procedures to be called from Nextch, and 

elsewhere as required. 

Read next line is a straightforward device-handling procedure which 

(a) transfers the next input record to the line buffer, and 

(b) sets the markers firstinline, lastinline appropriately. 

The dynamic setting of the markers firstinline, lastinline enables leading and 

trailing blanks to be “stripped” by a fast scan within Read next line, rather 

than a slow scan 

while ch = ' 'do nextch 

within the compiler proper. 

Listthisline depends on the error collection and collation mechanisms 
chosen. These we consider next. 

We will assume that the compiler reports most errors relating to a 

particular line before moving to the next line, a reasonable assumption for a 

language such as Mini-Pascal. In this case error-message lines which are 

interleaved with the source-program text give the most convenient listing 

format, both from the compiler’s and the user’s viewpoint. Those messages 

which refer to a point in the immediately preceding source line can do so by a 

simple position marker, while those which refer to an earlier line may do so 

by means of line numbers included in the listing, as the following listing 
excerpt suggests: 

27 A := A +1 ; 

28 B = B*-A 

***** t ERROR . . . 

***** t ERROR . . . 

***** ERROR ... ON LINE 24 

Thus the source handler needs to accept the hold error reports during the 

processing of each line, for printout when the end of the line is reached. In 

these circumstances it is reasonable to set a fairly small upper limit on the 

number of errors reported during any line. If the compiler exceeds this limit 

it is more likely that the compiler has failed to recover from one of the first 
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errors reported, and so generated a welter of spurious messages, than that so 
many genuine independent errors exist. Of course the compiler must tell the 
user when such messages have been suppressed. So given a limit errmax we 
introduce an array to hold the error code/position pairs: 

error list : array [1 . . errmax] of record 

errorposition : textposition ; 
err or code : integer 

end ; 

a counter to indicate the number of errors collected so far since the last end 
of line 

errinx : 0 . . errmax ; 

and finally a flag to indicate when error overflow, with the consequent sup¬ 
pression of further errors, has occurred during processing of a given line 

erroroverflow : Boolean ; 

Besides the individual error reports interleaved with the program text it is 
useful to provide the user with a summary count of errors reported at the 
end of the compilation listing. For this purpose we introduce one additional 
variable 

errorcount : integer ; 

With these decisions the error-collecting procedure Error, and the listing 
procedure Listthisline, are both easily programmed. Likewise the initialization 
and finalization of the source-handler activities are readily programmed, in¬ 
volving only the printing of listing headers and trailers, and the suitable 
initialization of the variables introduced. Listing 1 shows the complete source 
handler, using Pascal’s standard input and output facilities to realize source 
input and listing output. 

Test 1 which follows shows a simple driver program used to test the 
source-handler module, and the output produced from a carefully chosen 
sequence of input lines. (The driver program makes use of a module inclusion 
facility provided by the Queen’s University Pascal Plus compiler, to extract 
the source module from the specified library file called Listing 1.) 



Listing 1 

ENVELOPE NODULE SOURCE ; 

(♦ THE SOURCEHANDLER ENABLES SOURCE TEXT INPUT AND SOURCE LISTING ♦ ) 
<♦ GENERATION THROUGH THE FOLLOWING ACCESSIBLE PROCEDURES : *) 

(* *) 
<* *) 
<♦ NEXTCH THIS PROCEDURE READS THE NEXT SOURCE CHARACTER FROM ♦ > 
(♦ THE INPUT STREAM, COPIES IT TO THE OUTPUT STREAM, ♦ ) 
<♦ AND LEAVES ITS VALUE IN THE ACCESSIBLE VARIABLE CH . ♦ ) 
(* THE POSITION OF THE CHARACTER UITHIN THE INPUT TEXT *) 
<* IS MAINTAINED IN THE ACCESSIBLE VARIABLE POSITIONNOU . ♦ ) 
<♦ ENDS OF LINE ARE TRANSMITTED AS BLANK CHARACTERS. *) 
(♦ *) 
<♦ *) 

(* ERROR THIS PROCEDURE ENABLES THE ANALYSIS PROCESSES TO *) 
<* RECORD ERROR CODE / TEXTPOSITION PAIRS FOR *) 
<* PRINTOUT DURING LISTING GENERATION. *) 

(* *) 
(* *) 

<* PROPER INITIALIZATION AND FINALIZATION OF THE SOURCE HANDLING *) 
(* PROCESS IS ENSURED BY THE SOURCEHANDLER BODY, UHICH ENVELOPES *) 
<* THE BODY OF THE BLOCK INVOKING IT, BY THE 'INNER' MECHANISM *) 

CONST 

ERRMAX = 6 ; 
MAXLINE = 101 ; 

TYPE 

CHARPOSITION = 1..MAXLINE ; 

♦TEXTPOSITION = RECORD 

LINENUMBER : 0..9999? ; 
CHARNUMBER : CHARPOSITION 

END ; 

VAR 

♦CH: CHAR ; 

♦POSITIONNOU : TEXTPOSITION ; 

LINE : PACKED ARRAY [CHARPOSITION] OF CHAR ; 
FIRSTINLINE,LAST INLINE : CHARPOSITION ; 

ERRORCOUNT : INTEGER ; 
ERRINX : 0..ERRMAX ; 
ERROROVERFLOU : BOOLEAN ; 
ERRLIST : ARRAY [1..ERRMAX] OF 

RECORD 

ERRORPOSITION : TEXTPOSITION ; 
ERRORCODE : INTEGER 

END ; 
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PROCEDURE READNEXTLINE ; 

VAR 

I : CHARPOSITION ; 

BEGIN 

I := 1 ; FIRSTINLINE := I ; 

WHILE NOT EOLN DO BEGIN READ!LINECI]) ; I:=I + 1 END ; 

L1NEUI LASTINLINE :=« I ; 

READLN 

END <* READNEXTLINE *) ; 

PROCEDURE LISTTHISLINE ; 

I : CHARPOSITION ; 

PROCEDURE LISTERRORS ; 

VAR 

K : 1..ERRNAX ; 

BEGIN 

ERRORCOUNT := ERRORCOUNT + ERRINX ; 

FOR K := 1 TO ERRINX DO 

WITH ERRLISTCKI DO 

BEGIN 

UR I TEX '***** ') ; 
IF ERRORPOSIT ION.LINENUMBER <> POSITIONNOU.LINENUNBER 

THEN WRITE! 'ERROR',ERR0RC0DE:4, 

' AT CHARACTER', 

ERRORPOSITION.CHARNUMBER-FIRST INLINE+ 1:3, 

' OF LINE', 

ERRORPOS ITI ON. LINENUNBER : <4) 

ELSE WRITE! '‘ERROR':ERRORPOSITION.CHARNUHBER-FIRSTINLINE+6, 

ERRORCODE:4) ; 

WRITELN 

END ; 

IF ERROROVERFLOU 

THEN WRITELN!'****;* FURTHER ERRORS SUPPRESSED') ; 

WRITELN ; 

ERRINX := 0 ; ERROROVERFLOU := FALSE 

END (* LISTERRORS *) ; 

BEGIN 

URITE<PQSITI0NN0W.LINENUHBER:5,' ') ; 

FOR I := FIRSTINLINE TO LASTINLINE DO URITE!LINECII) ; 

WRITELN ; 

IF ERRINX > 0 THEN LISTERRORS 

END (* LISTTHISLINE *) ; 



PROCEDURE *NEXTCH ; 

BEGIN 
UITH POSITIONNOU DO 
BEGIN 

IF CHARNUHBER = LASTINLINE 
THEN 
BEGIN 

LISTTHISLINE ; 
READNEXTLINE ; 
LINENUNBER : = LINENUMBER+1 ; 
CHARNUHBER !“ FIRSTINLINE 

END 
ELSE CHARNUHBER CHARNUMBER+1 J 
CH := LINECCHARNUNBER] 

END 
END (* NEXTCH *) ; 

PROCEDURE *ERROR < CODE : INTEGER ; POSITION : TEXTPOSITION ) 

BE6IN 
IF ERRINX * ERRHAX 
THEN ERROROVERFLOU s* TRUE 
ELSE 
BEGIN 

ERRINX := ERRINX+1 ; 
UITH ERRLISTEERRINXI DO 
BE6IN 

ERRORCODE :« CODE ; 
ERRORPOSITION i- POSITION 

END ; 
END 

END <* ERROR *> ; 

BEGIN 
URITELN!'LISTING PRODUCED BY NINI-PASCAL COMPILER HK 1') ; 
URITELN ; URITELN ; 
READNEXTLINE ; 
UITH POSITIONNOU DO 
BEGIN 

LINENUNBER !=» 0 ; 
CHARNUHBER s» FIRSTINLINE ; 
CH : = LINEECHARNUHBER] 

END ; 

ERRORCOUNT 0 ; ERRINX :* 0 ; ERROROVERFLOU :=> FALSE ; 

*** <♦ EXECUTE COMPILER *) ; 

LISTTHISLINE ; 

URITELN ; URITELN ; URITE!'COMPILATION COMPLETED :') ; 
IF ERRORCOUNT * 0 
THEN URITE!' NO') 

ELSE URITE<ERR0RC0UNTs5) ; 
URITELN!' ERRORS REPORTED') 

END (• SOURCE MODULE ») ; 
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Test 1 

PASCAL PLUS COMPILER 

3300 PROGRAM TESTSOURCE (INPUT,OUTPUT) ; 

ENVELOPE MODULE SOURCE = LISTING1 IN LIBRARY ; 

4 
* 

3723 VAR LASTQUERY : SOURCE.TEXTPOSITION ; 

J 

6 3738 BEGIN 

7 3738 REPEAT 

8 3738 IF SOURCE.CH = 

9 3738 THEN SOURCE.ERR0R11,SOURCE.POSITIONNOU) 

10 3748 ELSE IF SOURCE.CH = 

11 3750 THEN LASTQUERY := SOURCE.POSITIONNOU 

12 3753 ELSE IF SOURCE.CH * '!' 

13 3758 THEN SOURCE.ERR0R(2,LASTQUERY) 

14 3769 SOURCE.NEXTCH 

15 3769 UNTIL SOURCE.CH*'.' 

16 3770 END. 

COMPILATION COMPLETE ! NO ERRORS REPORTED 

COMPILATION TIME = 439 MILLISECONDS 

SOURCE PROGRAM = 188 LINES 

OBJECT PR06RAM = 3830 UORDS 

LISTING PRODUCED BY MINI-PASCAL COMPILER 

0 THE FIRST LINE 

1 A LINE UITH NO ERRORS 

2 A LINE UITH *NE ERROR 

***** 'ERROR 1 

3 A LINE UITH TU* ERR*RS 

***** 'ERROR 1 

***** 'ERROR 1 

4 A LINE UITH SIX ERR*RS * * * •** 

***** 
***** 
***** 
***** 

ERROR 1 
ERROR 1 

ERROR 1 
ERROR 

***** 
***** 

“ERROR 1 

'ERROR 1 
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5 A LINE WITH L*TS -*F ERRORS ***** •■***'* 

‘ERROR I 

'ERROR 1 

ERROR 1 

‘ERROR 1 

‘ERROR 1 

‘ERROR 1 

***** FURTHER ERRORS SUPPRESSED 

6 * A LINE WITH AN ERROR IN THE FIRST CHARACTER POSITION 

***** ‘ERROR I 

7 A LINE WITH A RETROSTECTIVE ERROR, DETECTED ON THE SAME LINE ! 

***** ‘ERROR 2 

8 A LINE UITH A RETROSPECTIVE ERROR, 

9 DETECTED ON THE NEXT LINE ! 

***** ERROR 2 AT CHARACTER 21 OF LINE 8 

10 A RETROSPECTIVE ERROR UITH OTHER ERRORS BEF*RE ITS DETECTION! 

***** ‘ERROR 1 

***** ‘ERROR 1 

***** ‘ERROR 2 

11 THE LAST LINE. 

COMPILATION COMPLETED : 21 ERRORS REPORTED 

Exercise 1 Modify the source-handler module in Listing 1 to screen the leading 
and trailing blanks on each input line from the attention of the compiler proper. 

LEXICAL ANALYSIS 

Splitting the Compiler Proper 

Isolation of device dependencies left us with a compiler proper of the form 

compiler (character stream){errors, object code) 

The two outputs errors and object code reflect the compiler’s underlying 
twin purposes which are 

(a) to determine if the input program is error free, and to diagnose the 
errors therein if it is not, and 

(b) to generate an equivalent object code program. 
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In practice action (b) may be conditional on action (a) finding the 

program error free, but in any case should make use of the program analysis 

which (a) must involve. This leads immediately to a subdivision of the com¬ 
piler process, thus 

analyzer (character stream)(errors, analyzed program) 

generator (analyzed program)(object code) 

where analyzed program is some representation produced by the analyzer, 

enabling the generator to produce the object code required. 

This splitting of our compiler into analyzer and generator processes 

contributes to the objective of achieving flexibility in the form of object code 

generated. The analyzer in effect represents those aspects of compilation 

which are machine- or object-code-independent, and its output, the analyzed 

program, can be thought of as a machine-independent expression of the 

program’s meaning or effect. In contrast, the generator must convert this 

output into a form which is totally dependent on the object machine code, 

and thus embodies those parts of the compiler which must change when the 

object code required is changed. The separation is thus not just a conceptual 

one but a practical means of achieving the flexibility required within the final 

compiler program. We adopt therefore a two-module structure for the 

compiler proper, comprising an analyzer module and a generator module, 

whose mutual interface, the analyzed program, should permit the generation 

of a variety of object codes by the generator, without any alteration to the 

analyzer. 
Having made this decision, our next step in principle should be to define 

the analyzed program interface before proceeding with the refinement of 

either the analyzer or generator module. In practice, however, so much of the 

analyzer is independent of this interface that it is convenient to postpone its 

definition to a later stage, proceeding for the moment with the development of 

an open-ended analyzer module of the form 

analyzer (character stream)(errors, ? ) 

Splitting the Analyzer 

The primary task of the analyzer is to apply the rules of the language defini¬ 

tion to the input source program, so determining any errors which exist 

within it, and its meaning. Our definition distinguishes in form between the 

(formally expressed) syntax rules, such as 

(assignment statement> :: = <variable> : = <expression> 



66 A STRUCTURED COMPILER 

and the (informally expressed) semantic rules, such as 

“The variable and the expression must be of identical type”, 

whose enforcement depends on the contextual information established by 

previous declarations, etc. Since application of the semantic rules depends on 

prior application of the syntax rules, a logical and commonly made separation 

of analyzer activities is as follows: 

syntax analyzer {character stream)(syntax errors, program syntax) 

semantic analyzer (program syntax){semantic errors, ? ) 

In practice a further distinction is usually made within the syntax 

analyzer between the analysis of those sequences of characters which form the 

individual symbols of the program, i.e. identifiers, constants, reserved 

words etc., and the analysis of the sequence of symbols itself. This distinction 

is not particularly reflected in the formal language definition, but follows 

rather from our intuitive conception of program composition in which we 

regard the symbols as the indivisible atomic building blocks, whose actual 

representation as character sequences is a mere clerical detail. The symbol- 

recognition process is usually known as lexical analysis or lexical scanning, 

so our model of the overall analysis process is now 

lexical scanner {character stream){lexical errors, symbol stream) 

syntax analyzer {symbol stream){syntax errors, program syntax) 

semantic analyzer {program syntax){semantic errors, ? ) 

This separation of the lexical scanning process has some significance in 

achieving inter-machine flexibility; while the “language” as such should not 

change from one machine to another the character set available for its 

representation may do so, and thus enforce variations in the symbol repre¬ 

sentations, or “dialects”. This character-set dependence is usefully isolated 

within the lexical scanner. 

For this reason, and because of the simplicity of its relationship with 

the syntax analyzer, we can readily choose to retain the separation of the 

lexical scanner within the analyzer module of the final compiler program. 

Defining the Lexical Scanner Interface 

The function of the lexical scanner is to transform the character stream 

transmitted by the source handler into a symbol stream suitable for analysis by 

the syntax analyzer. Again we assume that the syntax analyzer will scan the 
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symbols in the symbol stream once only from left to right (a more significant 

assumption in this case, as we shall see). An adequate interface is that the 

lexical scanner makes available to the syntax analyzer the “current” symbol in 

the input symbol stream, together with the ability to replace this symbol by 

its successor when the syntax analyzer wishes. 

What is a symbol? Our intuitive definition of symbols as the words from 

which a program is composed suggests that a symbol is an identifier, a con¬ 

stant, or one of the special symbols defined in the language definition. We can 

thus define the range of “values” which a symbol may take as an enumerated 

type 

symboltype = (identifier, integer constant, char constant, 

notop, andop, orop,.) 

The suggested interface for the lexical scanner is then provided by a 

variable representing the current symbol 

symbol : symboltype ; 

and a procedure which replaces the current symbol by its successor 

procedure Nextsymbol ; 

The syntax analyzer which receives these symbols may subsequently 

wish to report errors relating to them directly to the source handler, and 

requires some text position coordinates to do so. The syntax analyzer should 

not assume that the current position indicated by the source handler is that 

of the current symbol offered by the lexical scanner. Instead we will require 

the lexical scanner to make available a text position for each symbol, as an 

additional variable 

symbolposition : textposition ; 

When necessary the syntax analyzer may use this value in reporting errors to 

the source handler. 
The interface so far defined is sufficient for the process of syntax analysis 

itself. However the process of semantic analysis will require additional 

knowledge of user-defined symbols, viz. the spelling of each identifier, and 

the value denoted by each integer or character constant. Whatever interface 

we define between the syntax and semantic analyzers must transmit this 

information, and hence the lexical scanner must enable the syntax analyzer 
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to do so. We extend the interface therefore with additional variables 

spelling : alfa ; 

constant : integer; 

which, respectively, give the relevant identifier spelling when symbol = 

identifier, and the equivalent integer value when symbol = integerconstant or 

charconstant. The type alfa must provide some means of representing identifier 

spellings. 

The total interface described can be implemented as a module with the 

structure shown below. The module structure serves to protect the accessible 

variables from external assignment and to provide and protect the permanent 

tables which the scan process presumably requires. 

envelope module scan ; 

var *symbol : symboltype ; 

*spelling : alfa ; 

* constant : integer ; 

*symbolposition : textposition ; 
procedure *Nextsymbol ; 

Programming the Lexical Scanner 

The lexical scanner’s function, implemented by its single procedure 

Nextsymbol, is defined by the syntax rules given for special symbols, 

identifiers and constants in the language definition. We will find however that 

this definition is incomplete and must be augmented to enable a working 
lexical scanner to be programmed. 

For a free-format language successive calls to the lexical scanner must 

deal not only with the characters that actually compose the language symbols 

but also those characters, such as blanks, that are allowed to occur between. 

The usual rule adopted for Pascal-like languages is that any arbitrary number 

of blanks may occur between, but not within, the symbols of the program. 
This might be represented by an additional syntax rule 

(symbol} ::= {(separator}} (proper symbol} 
(separator} ::= (blank} 

(proper symbol} = (identifier} \(integer constant} | 

(character constant} \ (special symbol} 

This new syntax rule for (symbol} leads us intuitively to a corresponding 
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coding for the Nextsymbol scan process as follows: 

procedure Nextsymbol ; 
begin 

with source do 

begin 

while ch = ' 'do Nextch ; 

symbol position : = position now ; 
scan proper symbol 

end 

end ; 

We have assumed that each call of Nextsymbol expects source.ch to 

contain the first possible character of the next symbol already, and leaves in 
source.ch the first character which follows that symbol. 

Now consider the representation of the various proper symbols. The 

language definition represents the special symbols div, not, begin etc. as 

sequences of bold face lower-case letters. Within the printable character sets 

of most machines such a representation is impossible. The alternatives open 
to the implementor are 

(a) to require the users to distinguish such symbols in some way; 

(b) to require no distinction other than context between these symbols and 
identifiers of the same spelling; 

(c) to require no physical distinction between these symbols but to forbid 

the use of identifiers of the same spelling. 

Making choice (c) as the simplest solution acceptable to most users, we 

correspondingly revise our syntax rules as follows: 

<proper symbol> :: = <identifier or reserved wordy | 

<integer constanty j (character constant> | 

(special symboly 

(identifier or reserved wordy ::= (letter){(letter) \(digit)} 

(special symboly ::=+| — | * | . . . |;|: 

Identifiers and reserved words are no longer syntactically distinguished. 

Correspondingly our scanner will distinguish them only by a secondary 

process after their character-by-character scan is complete. 

With these changes our definition of proper symbols is readily trans¬ 

latable into an equivalent scan proper symbol process. 
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Rewriting the definition yet again in the form 

<proper symbol> :: = <identifier or reserved wordy | 

<integer constant> | 

<1character constant> | 

<=l<>l< 
>=l>l 

+ 

* 

( 
) 
[ 
] 

we see that the alternatives on each line are completely distinguished from 

those on other lines by the first character involved, and that the occurrence 

of any other character other than these shown cannot represent a legal symbol 

at all. This leads us immediately to a code structure for the process scan 
proper symbol as follows 

case ch of 

'A' . . 'Z' : scan identifier or reserved word 
'O' . . '9' : scan integer constant ; 
/ / t f 

: scan character constant ; 

: scan <>,<= or < symbol ; 

: scan > = or > symbol ; 
r , r 

: scan := or : symbol; 

: scan + symbol ; 

r . / 
9 : scan ; symbol ; 

other chars 

end 
: scan illegal symbol 

The process scan identifier or reserved word must implement the struc¬ 
tural rule 

(identifier or reserved wordy ::= (lettery{(lettery\(digity) 
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When the existence of the initial letter has been established by the case con¬ 
struct, this is programmable as 

Nextch ; 

while ch is letter or digit do nextch 

or, more neatly, as 

repeat Nextch until ch is not a letter or digit 

But the scan process must also implement 

(a) the distinction between identifiers and reserved words; 

(b) the recording of identifier spellings. 

How should spellings be represented by the type alfa assumed earlier? 

The language rules put no limit on the length of identifiers, but it is common 

for identifier implementations to impose some limit alfalcngth on their 

(significant) length (i.e. identifiers must differ in the first alfalength characters 

if they are to be considered as distinct). The analyzer then has only to retain 

the first alfalength characters as the spelling of each identifier, where the limit 

alfalength is chosen to give the most efficient copying and comparison of 

spellings consistent with the user’s need for a reasonable significant length 

for his identifiers. 

Having decided how spellings are represented the “scan identifier or 

reserved word’’’’ process may be elaborated as follows: 

begin 

k : = 0 ; spelling : = ' ' ; 

repeat 

if k < alfalength then 

begin k := k-\-\ ; spelling [£] := ch end ; 

Nextch 

until ch is not a letter or digit ; 

decide if spelling is identifier or reserved word 

end 

Deciding whether the spelling represents an identifier or a reserved word 

is a straightforward table-look-up process. However, since up to 50% of 

symbols in a program fall into this category it is important that the look-up 

be efficiently programmed. The scanner in Listing 2 uses a look-up table which 

is sorted and indexed by actual spelling length, so that each spelling is 
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compared only with those reserved words of the same actual length. To 

give a fast search loop with a single terminating condition an additional table 

position is left at the end of each sequence of words of given length, with 

preset symbol value identifier. The spelling scanned is inserted at this position 

before the search loop is entered. If no preceding entry gives a match the 

loop will terminate at this entry, and return the symbol value identifier as 

required: 

wordsymbol [(index of last wordsymbol of length k) + l].spelling := spelling ; 

/ : = index of first wordsymbol of length k ; 

while wordsymbol [I].spelling ^ spelling do / : = / + 1 ; 

symbol := wordsymbol [I].value ; 

The process scan integer constant implements the structural rule 

(integer constant} ::= (digit}{(digit}} 

which again is readily programmed as 

repeat Nextch until ch is not a digit 

Computation of the integer value equivalent to the constant scanned is 

readily incorporated in this loop, the only complication being that the 

scanner must guard against sequences of digits which denote values beyond 

the machine limit for integers. 

The other scanning processes within the case discrimination are equally 

easily programmed. Listing 2 shows the resultant code for each. Test 2 which 

follows it shows a suitable driver program to test the lexical scanner, and the 

output produced from an input program which demonstrates the complete 

range of Mini-Pascal symbols. 



Listing 2 

ENVELOPE NODULE SCAN ; 

<* THE SCAN NODULE ENABLES THE LEXICAL SCANNING OF SYMBOLS IN THE ♦ ) 
(* SOURCE STREAM THROUGH THE ACCESSIBLE PROCEDURE NEXTSYNBOL *> 
< * *) 
<* (THE MODULE STRUCTURE IS USED ONLY TO PROTECT THE *) 
<* PERMANENT TABLES UHICH THIS PROCEDURE REQUIRES) ♦ ) 
(* ■•*) 

<* UHEN CALLED, NEXTSYMBOL SCANS THE NEXT LANGUAGE SYMBOL IN THE *) 
<♦ INPUT STREAM AND RETURNS A REPRESENTATION OF IT IN THE *> 
(* FOLLOUING ACCESSIBLE VARIABLES : *> 
<♦ =») 

(♦ ♦ > 

<♦ SYMBOL IN ALL CASES SYMBOL REPRESENTS THE SYMBOL *> 
(♦ SCANNED, AS DEFINED BY THE TYPE SYMBOLTYPE ♦ > 
(♦ *) 

(♦ ♦ ) 

(* SPELLING UHEN SYMBOL = IDENT , SPELLING HOLDS THE *) 
<♦ (SIGNIFICANT) CHARACTERS OF THE IDENTIFIER ♦ ) 
<♦ SCANNED *) 
(* *) 

(* *) 

(* CONSTANT UHEN SYMBOL = INTCONST OR CHARCONST, CONSTANT ♦) 
(* HOLDS THE INTEGER REPRESENTATION OF THE CONSTANT *) 
<* *) 
(* *) 

(* THE STARTING POSITION OF THE SYMBOL SCANNED IS LEFT IN *) 
(* THE ACCESSIBLE VARIABLE SYNBOLPOSITION *) 
(* *) 

(* THE SCANNER REPORTS ERRORS UITH THE FOLLOUING CODES *) 
(* *) 

(* I .... INTEGER CONSTANT TOO LARGE *) 
(* 2 .... CHARACTER CONSTANT INCOMPLETE *> 

CONST 

NOUORDSYNBOLS = 2<4 ; 

VAR 

♦SYMBOL : SYMBOLTYPE ; 
♦CONSTANT 3 INTEGER ; 
♦SPELLING : ALFA ; 

♦SYNBOLPOSITION 8 SOURCE.TEXTPOSITION ; 

UORDSYMBOLS s ARRAYE 1..NOUORDSYMBOLSD OF 
RECORD 

SYMBOLSPELLING 3 ALFA ; 
SYMBOLVALUE 3 SYMBOLTYPE 

END ; 
LASTOFLENGTH s ARRAYED..ALFALENGTH3 OF 0..NOUORDSYMBOLS ; 



PROCEDURE *NEXTSYNBOL 

K : 0..ALFALENGTH ; 
I : 1.. NQUORDSYHBOLS ; 
DIGIT : 0..9 ; 

BEGIN <* NEXTSYMBOL *) 

WITH SOURCE DO 
BEGIN 

(* READ CHARACTER BY CHARACTER UNTIL NEXT 
SIGNIFICANT CHARACTER *>' 

WHILE CH = ' ' DO NEXTCH ; 
SYHBOLPOSITION := POSITIONNOW ; 
CASE CH OF 

'A',,'C'f'D ,'£','F ",'G',H','I', 

'J'/KVLVHVNVOVPVQVR"» 

(* ANALYSIS OF AN IDENTIFIER OR WORD SYMBOL *) 

BEGIN 
K ;= 0 ; SPELLING := ' ' ; 
REPEAT 

IF K < ALFALENGTH THEN 
BEGIN 

K := K+1 J SPELLINGS] := CH 
END ; 
NEXTCH 

UNTIL UCHOO') OR <CH>'9')) AND <(CH< A') OR (CH> 'Z')) 
U0RDSYHB0LSCLAST0FLENGTHIK3I.SYHBOLSPELLING := SPELLING 
I := LASTOFLENGTHCK-13+1 ; 

WHILE UORDSYNBOLSCII.SYMBOLSPELLINGOSPELLING DO I:=I+1 
SYMBOL := WORDSYNBOLSIII.SYMBOLVALUE 

END ; 

'O V'1 V 2 V3 V4', 

<* ANALYSIS OF AN INTEGER CONSTANT *) 

BE6IN 

CONSTANT i*0 ", 
REPEAT 

DIGIT :* 0RD(CH)-0RD<'0") ; 
IF (CONSTANT < HAXINT DIV 10) OR 

(CONSTANT = MAXINT DIV 10) AND 
(DIGIT <= HAXINT NOD 10) 

THEN CONSTANT := 10*C0NSTANT + DIGIT 
ELSE 
BE 6 IN 

ERROR(1,POSITIONNOW) ; 
CONSTANT := 0 

END ; 
NEXTCH 

UNTIL (CHOO'I OR <CH>'9") ; 
SYMBOL := INTCONST 

END ; 
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<* ANALYSIS OF A CHARACTER CONSTANT *) 

BE6IN 
NEXTCH ; 
IF CH = THEN 

BEGIN 
NEXTCH ; 
IF CH <> THEN ERROR!2,POSITIONNOU) 

END ; 
CONSTANT := ORD<CH) ; 
NEXTCH ; 
IF CH <> 
THEN ERROR(2 ,POSITIONNOU) 
ELSE NEXTCH ; 
SYNBOL CHARCONST 

END ; 

(* 2-CHARACTER OPERATOR/DELINITERS *) 

BEGIN 
NEXTCH ; 
IF CH = •'= ■ 
THEN BEGIN SYNBOL := BECONES ; NEXTCH END 

ELSE SYMBOL := COLON 

END ; 

BEGIN 
NEXTCH ; 
IF CH = 
THEN BEGIN SYNBOL := THRU ; NEXTCH END 

ELSE SYMBOL := PERIOD 
END ; 

< •' : 

BEGIN 
NEXTCH ; 
IF CH='=/ 
THEN BEGIN SYNBOL != LEOP J NEXTCH END 

ELSE 
IF CH = '>•' 
THEN BEGIN SYNBOL NEOP ; NEXTCH END 

ELSE SYMBOL LTOP 

END ; 
>' I 

BEGIN 
NEXTCH ; 
IF CH*'-' 
THEN BEGIN SYNBOL «* GEOP ; NEXTCH END 

ELSE SYNBOL i« STOP 

END ; 
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<* 1-CHARACTER OPERATOR/DELIMITERS *) 

/ _ / 

/ — ✓ 

')' 

'V 
/ / 

9 
/ m / 

f 

: BEGIN 
: BEGIN 
: BEGIN 
: BEGIN 
: BEGIN 
: BEGIN 
: BE6IN 
: BEGIN 
: BEGIN 
: BEGIN 

SYMBOL : = PLUS ; NEXTCH END ; 
SYMBOL : = MINUS ; NEXTCH END ; 
SYMBOL : = TIMES ; NEXTCH END ; 
SYMBOL :* EQOP ; NEXTCH END ; 
SYMBOL : = LEFTPARENT ; NEXTCH END ; 
SYMBOL :* RIGHTPARENT ; NEXTCH END J 
SYMBOL : = LEFTBRACKET ; NEXTCH END ; 
SYMBOL := RIGHTBRACKET ; NEXTCH END ; 
SYMBOL :* COMMA ; NEXTCH END ; 
SYMBOL != SEMICOLON ; NEXTCH END ; 

(* OTHER ILLEGAL CHARACTERS *) 

BE6IN 
SYMBOL : = OTHERSY ; 
NEXTCH 

END ; 

END (* CASE *) 

END 

END (* NEXTSYMBOL *) ; 

BEGIN 

<* INITIALIZE UORD SYMBOL TABLES *) 

LASTOFLENGTHCO] : = 0 ; 

UITH UORDSYMBOLSm DO 

BEGIN SYMBOLSPELLING:=' 
LASTOFLENGTHL1] : = 1 ; 

UITH U0RDSYMB0LSC2I DO 
BEGIN SYMBOLSPELLINGIF 
UITH UORDSYMBOLSC3I DO 
BEGIN SYMBOLSPELLING:*'DO 
UITH U0RDSYMB0LSC4I DO 
BEGIN SYMBOLSPELLING:*'OF 
UITH U0RDSYMB0LSC5I DO 
BEGIN SYMBOLSPELLING:*'OR 
UITH UQRDSYMB0LSI6I DO 
BEGIN SYMBOLSPELLING:*' 
LAST0FLENGTHC2I := 6 : 

; SYMBOLVALUE:*IDENT END 

; SYMBOLVALUE:=IFSY END 

; SYMBOLVALUE:=DOSY END 

; SYMBOLVALUE:*OFSY END 

; SYMBOLVALUE:=OROP END 

; SYMBOLVALUE:=IDENT END 



UITH U0RDSYNB0LSC7] DO 
BEGIN SYHBOLSPELLING:*'END 
UITH U0RDSYMB0LSC8I DO 
BEGIN SYMBOLSPELLING:='VAR 
UITH U0RDSYMB0LSC9] DO 
BEGIN SYHBOLSPELLING:='DIV 
UITH UORDSYHBOLSC103 DO 
BEGIN SYNBOLSPELLING:*•'AND 
UITH UORDSYHBOLSC11] DO 
BEGIN SYHB0LSPELL1NG:='N0T 
UITH UORDSYHBOLSC123 DO 
BEGIN SYMBOLSPELLING:*'' 
LAST0FLEN6THC33 := 12 ; 

UITH UORDSYHBOLSC133 DO 
BEGIN SYMBOLSPELLING:* THEN 
UITH UORDSYHBOLSC14T DO 
BEGIN SYHBOLSPELLING:='ELSE 
UITH UORDSYHBOLSC153 DO 
BEGIN SYMBOLSPELLING:='READ 
UITH UORDSYHBOLSC16] DO 
BEGIN SYHBOLSPELLING:*' 
LAST0FLENGTHC4] := 16 ; 

UITH U0RDSYHB0LSC17] DO 
BEGIN SYMBOLSPELLING:*'BEG IN 
UITH UORDSYHBOLSC18] DO 
BEGIN SYHBOLSPELLING:='UHILE 
UITH UORDSYHBOLSC19] DO 
BEGIN SYHBOLSPELLING:='ARRAY 
UITH UORDSYHBOLSC20] DO 
BEGIN SYHBOLSPELLING:=/URITE 

UITH U0RDSYHB0LSC2U DO 
BEGIN SYHBOLSPELLING:*-' 
LAST0FLENGTHC3] :* 21 ; 

UITH UORDSYMBOLSC22D DO 

BEGIN SYMBOLSPELLING:*-' 
LAST0FLENGTHC6] := 22 ; 

' ; SYNBOLVALUE:*ENDSY END ; 

' ; SYNBOLVALUE:*VARSY END ; 

' ; SYNBOLVALUE:=DIVOP END ; 

" ; SYNBOLVALUE:*ANDOP END ; 

' ; SYHBQLVALUE:=NOTOP END ; 

' ; SYHBOLVALUE:=IDENT END ; 

' ; SYHBOLVALUE:*THENSY END ; 

•' ; SYMBOLVALUE:=ELSESY END ; 

•' ; SYNBOLVALUE:=READSY END ; 

' ; SYNBOLVALUE:*I DENT END ; 

' ; SYHBQLVALUE:=BEGINSY END ; 

' ; SYNBOLVALUE:=UHILESY END ; 

■' ; SYNBOLVALUE:*ARRAYSY END ; 

' ; SYNBOLVALUE:=URITESY END ; 

' ; SYNBOLVALUE : = IDENT END ; 

•' ; SYNBOLVALUE: = IDENT END ; 

UITH UORDSYNBOLSC233 DO 
PEGIN SYMBOLSPELLING:*'PROGRAM ' ; SYNBOLVALUE:*PROGRAMSY END 

UITH U0RDSYHB0LSC24I DO 
BEGIN SYHBOLSPELLING:*' ' J SYNBOLVALUE:=IDENT END ; 

LAST0FLENGTHC7] :* 24 ; 

UITH U0RDSYMB0LSC25I DO 
BEGIN SYNBOLSPELLING:*'PROCEDUR' J SYNBOLVALUE:=PROCSY END ; 

UITH U0RDSYHB0LSC26I DO 
BEGIN SYHBOLSPELLING:*' ' J SYNBOLVALUE: = IDENT END ; 

LAST0FLENGTHC8I := 26 ; 

NEXTSYHBOL ; (* NAKE FIRST SYMBOL AVAILABLE *) 

*** (♦ EXECUTE ANALYZER *> 

t END <* SCAN.NODULE *) 



Test 2 

PASCAL PLUS COMPILER 

0 3300 PROGRAM TESTSCAN (INPUT,OUTPUT,SYMBOLS) ; 
1 
2 ENVELOPE NODULE SOURCE =■ LISTING) IN LIBRARY ; 
•1 
4 
C 

3450 CONST ALFALENGTH * 8 ; 
J 
4 
7 

TYPE ALFA = PACKED ARRAY Cl..ALFALENGTH] OF CHAR ; 
/ 
8 SYNBOLTYPE = (IDENT .INTCONST,CHARCONST, 
9 NOTOP ANDOP,OROP, 

10 TINES DIVOP,PLUS,MINUS, 
11 LTOP,LEOP,GEOP,GTOP,NEOP,EQOP, 
12 RIGHTPARENT,LEFTPARENT,LEFTBRACKET,RIGHTBRACKET, 
13 COHNA .SEMICOLON,PERIOD,COLON,BECOMES,THRU, 
14 
15 
14 
17 
18 
19 

PROBRANSY,VARSY,PROCSY,ARRAYSY,OFSY, 
BEGINSY,ENDSY,IFSY,THENSY,ELSESY,UHILESY,DOSY, 
REAOSY,URITESY, 
OTHERSY) ; 

ENVELOPE NODULE SCAN = LISTING2 IN LIBRARY ; 
20 
21 4384 VAR SYMBOLS s TEXT ; 
22 
23 4425 BEGIN 
24 
25 4425 URITELN(SYNBOLS,'SYMBOLS SCANNED s') ; 
24 4434 URITELN(SYNBOLS) ; 
27 
28 4442 REPEAT 
29 
30 4442 CASE SCAN.SYMBOL OF 
31 4444 IDENT URITELN<SYMBOLS,■'IDENTIFIER ' ,SCAN.SPELLING) ; 
32 4440 INTCONST UR ITELN<SYMBOLS,'INTEGER',SCAN.CONSTANT) ; 
33 4475 CHARCONST URITELN(SYMBOLS,''CHARACTER ',CHR<SCAN.CONSTANT 
34 4494 NOTOP URITELN(SYMBOLS,'NOT'> ; 
35 4504 ANDOP URITELN(SYMBOLS,'AND') ; 
34 4518 OROP URITELN<SYMBOLS,'OR') ; 
37 4530 TIMES URITELN(SYMBOLS,'*') ; 
38 4542 DIVOP URITELN(SYMBOLS,'DIV') ; 
39 4554 PLUS URITELNISYMBOLS,'+') ; 
40 4544 MINUS URITELN(SYMBOLS,'-') ; 
41 4578 LTOP URITELN(SYMBOLS,'<') ; 
42 4590 LEOP URITELNISYMBOLS, '<=') ; 
43 4402 GEOP URITELN(SYMBOLS,'>=') ; 
44 4414 GTOP URITELN(SYMBOLS,'>') ; 
45 4424 NEOP URITELN (SYMBOLS, 'O') ; 
44 4438 EQOP URITELN(SYMBOLS, '*') ; 
47 4450 RIGHTPARENT URITELN(SYMBOLS,')') ; 
48 4442 LEFTPARENT URITELN(SYMBOLS,'(') ; 
49 4474 RIGHTBRACKET URITELN(SYMBOLS,']') ; 
50 4484 LEFTBRACKET URITELN(SYMBOLS,'!') ; 
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51 4698 COMMA URITELNISYMBOLS//) ! 
52 4710 SEMICOLON : URITELNISYMBOLS//) ; 
53 4722 PERIOD URITELNISYMBOLS/.-') ; 
54 4734 COLON URITELNISYMBOLS/:-') ; 
55 4746 BECOMES URITELNISYMBOLS/:3') ; 

56 4758 THRU URITELNISYMBOLS/..') ; 
57 4770 PROGRAMSY URITELNISYMBOLS,'PROGRAM') ; 

58 4782 VARSY URITELNISYMBOLS, VAR') ; 

59 4794 PROCSY URITELNISYMBOLS/PROCEDURE') 

60 4806 ARRAYSY URITELN(SYMBOLS/ARRAY') ; 

61 4818 QFSY URITELNISYMBOLS,'OF') ; 

62 4830 BEGINSY URITELNISYMBOLS,'BEGIN') ; 

63 4842 ENDSY URITELNISYMBOLS,'END') ; 

64 4854 IFSY URITELN (SYMBOLS/IF') ; 

65 4866 THENSY URITELNISYMBOLS,'THEN') ; 

66 4878 ELSESY URITELNISYMBOLS,'ELSE') ; 

67 4890 UHILESY URITELNISYMBOLS/UHILE') ; 

68 4902 DOSY URITELNISYMBOLS/DO') ; 

69 4914 READSY URITELNISYMBOLS,'READ') ; 

70 4926 URITESY URITELNISYMBOLS/URITE') ; 

71 4938 OTHERSY SOURCE.ERROR(10,SCAN.SYMBOLP 

72 4945 END ; 

73 

74 4991 SCAN.NEXTSYMBOL 

75 
76 4991 UNTIL SCAN.SYMBOL3 PERIOD 

77 

78 4992 END. 

COMPILATION COMPLETE 

COMPILATION TIME 

SOURCE PROGRAM 
OBJECT PROGRAM 

NO ERRORS REPORTED 

1808 MILLISECONDS 

547 LINES 

5153 UORDS 
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LISTING PRODUCED BY MINI-PASCAL COMPILER MK 1 

0 PROGRAM SYMBOLS ; 
t VAR I,J : INTEGER ; 
2 A i ARRAY Ct..103 OF CHAR ; 
3 PROCEDURE P ; 
4 VAR J s INTEGER ; 
5 BEGIN 
6 READ!J) ; 
7 I := I+I-I*I DIV I ; 
8 IF (J=I> OR NOT (JOI) THEN A[I]: = -' •' ELSE ACII:*' 

***** 

? URTTE(AtII) ; 
10 I := 1+1 
It END ; 
12 BEGIN 
13 I := 1 ; J := 10000000; 

***** 'ERROR 1 

14 UHILE (I>0)AND<I<11)OR(I>=1)AND(I< =10) DO P ; 
15 URITE(J) 
16 i " Z * # ♦ 

***** 'ERROR 10 
***** 'ERROR 10 
***** 'ERROR 10 
***** ERROR 10 
***** ERROR 10 
***** 'ERROR 

17 ! \ 8 ? 
***** 'ERROR 10 
***** 'ERROR 10 
***** ERROR 10 
***** 'ERROR 10 
***** 'ERROR 10 

16 END. 

COMPILATION COMPLETED : 13 ERRORS REPORTED 

SYMBOLS SCANNED s 

PROGRAM 
IDENTIFIER SYMBOLS 

VAR 

IDENTIFIER I 

IDENTIFIER J 

'ERROR 

IDENTIFIER INTEGER 



IDENTIFIER A 

ARRAY 
t 
INTEGER 1 

INTEGER 10 
] 
OF 

IDENTIFIER CHAR 

PROCEDURE 
IDENTIFIER P 

VAR 

IDENTIFIER J 

IDENTIFIER INTEGER 

BEGIN 
READ 
( 

IDENTIFIER J 
) 

IDENTIFIER I 

IDENTIFIER I 
♦ 
IDENTIFIER I 

IDENTIFIER I 
* 

IDENTIFIER I 
DIV 

IDENTIFIER I 

IF 
< 
IDENTIFIER J 

IDENTIFIER I 
) 
OR 
NOT 
< 

IDENTIFIER J 
<> 

IDENTIFIER I 
) 

THEN 

IDENTIFIER A 
[ 
IDENTIFIER I 
I 
: = 

CHARACTER 
ELSE 
IDENTIFIER A 
E 
IDENTIFIER I 
] 
■ — 
CHARACTER •' 

WRITE 
( 
IDENTIFIER A 
C 
IDENTIFIER I 
I 
) 

IDENTIFIER I 

IDENTIFIER I 
+ 

INTEGER 
END 

BEGIN 

IDENTIFIER I 

INTEGER 1 

IDENTIFIER J 
■ r 

INTEGER 0 

UHILE 
< 

IDENTIFIER I 
> 

INTEGER 0 
) 
AND 
( 
IDENTIFIER I 
< 

INTEGER It 
) 
OR 
( 
IDENTIFIER I 
>= 

INTE6ER 1 
) 
AND 

( 
IDENTIFIER I 

INTEGER 10 
) 

DO 
IDENTIFIER P 

WRITE 
( 
IDENTIFIER J 
) 
END 

Exercise 2 Modify the lexical scanner in Listing 2 to allow comments of the form 

{.} 
to precede any Mini-Pascal symbol. Why is it more difficult for comments of the 
form 

(*.*) 

to be allowed ? 

SYNTAX ANALYSIS 

Separating Syntax and Semantics 

The remaining components of the analysis process were identified as 

syntax analyzer (symbol stream)(syntax errors, program syntax) 

semantic analyzer (program syntax)(semantic errors, ? ) 
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Before further development can take place some decision must be taken on 

the structural relationship between these processes. The factors affecting this 

decision are as follows: 

(a) The language features of Mini-Pascal do not require that semantic 

analysis of the program as a whole should follow its syntax analysis— 

they can take place in parallel, and efficiency considerations dictate that 

they should. 

(b) The project constaints do not, as in the case of the source handler, the 

generator and the scanner, require the physical separation of the syntax 

and semantic analysis code. This choice can be made purely on the 

inherent nature of the two processes and their mutual interaction. 

(c) The conceptual interface program syntax is some representation of the 

significant program structure, usually referred to as a syntax tree. A 

common property of such recursive tree structures is that the sequence 

of control involved in their “consumption” (in our case, by semantic 

analysis) either mirrois exactly, or is an exact subset of, the sequence 

of control which creates them (in our case, syntax analysis). Where 

these take place in parallel a common controlling code structure can 
suffice. 

The way forward therefore is not to define any explicit interface at this 

stage, but to construct the code structure necessary for syntax analysis and 

then to add to this syntactic skeleton the meat of semantic analysis. The end 

product will be a single module which carries out both syntax and semantic 
analysis. 

Programming the Syntax Analyzer 

In the previous chapter we intuitively translated the syntax rules for symbols 

into equivalent fragments of scanner code. A similar technique can be used to 

construct a syntax analyzer from the remaining syntax rules of the language. 
Thus, from the syntax rule for <program> 

<program> :: = program <1identifier> ; <block>. 

we can formulate a procedure for the analysis of a program as: 

procedure program ; 
begin 

accept (programsy) ; 

accept (identifier) ; 
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accept {semicolon) ; 

block ; 

accept (period) 

end ; 

where accept is a procedure which checks that the current symbol is that 

specified and scans to the next, otherwise it reports a syntax error: 

procedure accept (expected symbol : symbol type) ; 
begin 

if scan.symbol = expected symbol 

then scan.nextsymbol 

else source.error ( ) 

end ; 

The procedure for the analysis of a <block> is similarly derived from the 
corresponding syntax rule 

(.block} :: = <variable declaration part} 

<procedure declaration part} 

<,statement part} 

leading to a procedure: 

procedure block ; 

begin 

variable declaration part ; 

procedure declaration part ; 

statement part 

end ; 

Since these are the only calls on the procedures variable declaration part, 

procedure declaration part and statement part which occur, they could be 

replaced by the procedure bodies themselves, and the procedures dropped 

from the analyzer. However, in this case their retention gives a useful 

structural separation of the very different activities of dealing with variable 

declarations, procedure declarations, and statements. 

We could continue developing syntax-analysis procedures in this way, 

one for each syntax rule in the language definition. It is clear however that 

each procedure developed is a direct “translation” of the corresponding 

syntax rule. Before continuing, therefore, it is worthwhile to formulate a set 

of rules for the translation process. 
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Each syntax rule takes the form 

(syntactic construct} ::= allowable form 

where the allowable form is expressed in terms of 

(a) the basic symbols of the language, which we will denote for the present 

by lower case letters, a, b, . . . ; 
(b) other syntactic constructs <A> , <B> , . . . ; 
(c) the meta-symbols | and { } denoting selection and possible repetition. 

Our objective is to translate the syntax rule for each syntactic construct 
into a procedure of the same name, whose action is to analyze the incoming 
sequence of symbols, and verify that it is of the corresponding allowable form, 
reporting errors if it is not. More precisely, the procedure corresponding to 

a syntactic construct <S> 

(a) assumes initially that scan.symbol contains the first symbol of an S ; 
(b) causes the input of the longest sequence of symbols which are of form S, 

reporting an error if no such sequence is found ; 
(c) leaves in scan.symbol the first symbol which does not belong to S . 

The body of the procedure required is clearly some transformation of the 
allowable form appearing in the syntax rule, so we can depict our translation 

process as converting a syntax rule 

(S} ::= a 

into an equivalent procedure 

procedure S ; 
begin 

T (a) 
end ; 

The transformation T is defined by a series of rules as follows: 

1. If the allowable form a is a single symbol of the language, the action 
required is to inspect the current input symbol, and if it is the allowed 
symbol then scan to the next symbol, otherwise report an error. 
Assuming the procedure accept defined above, our first transformation 
rule is thus 
Rule 1 T( a) accept (a) 
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2. If the allowable form is itself a single syntactic construct, <A> say, the 

action required is simply a call to the corresponding procedure A. 
Hence rule 2: 

Rule 2 T«A» - A 

3. If the allowable form is a sequence of symbols and syntactic constructs 

the action required is clearly the corresponding sequence of actions 
appropriate to each. Hence rule 3 : 

Rule 3 T(oqa2 . . a„) -> begin 

i); 
t(*2) ; 

no 
end ; 

4. If the allowable form consists of a number of alternative forms 

a | (3 | . . 18, the action required is clearly some selection between the 

actions appropriate to each alternative 

case ? of 

? : T(a) ; 

?: m ; 

• * • • • • 5 

? : T(8) 
end 

On what basis is the selection made? In the lexical scanner the corre¬ 

sponding decision was made on the value of the current input character, 

which was necessarily the first character of the symbol under scan. 

Analogously the choice here should be made on the basis of the 

current input symbol. If we define those symbols which can begin a 

sequence of symbols of form a as Startersof(a), the necessary trans¬ 

formation seems to be 

Rule 4 77a | (3 | . . |8) -> case scan.symbol of 
Startersof(cn) : T(y.) ; 

Startersof($) : 77,3) ; 

Startersof(§) : T(%) 

end 
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We note however that if this is to be a deterministic case statement we 

must insist on the following condition: 

Condition (a) No symbol may be a starter of more than one of the 

alternatives of each allowable form. 

Even this condition is insufficient if one of the alternatives is <empty>, 

or allows an empty sequence of symbols. 

The analyzer’s action for an <empty> alternative of an allowable form S 

is to accept no symbols. This action should be taken when the next sym¬ 

bol is a follower of the allowable form, i.e. 

T{a |p | ... |(empty')) -*■ case scan.symbol of 
Startersof( a) : T( a) ; 

Starter sof (,3) : T((i) ; 

Followersof(S) : 

end 

Hence we must have condition (b): 

Condition (b) No symbol may be both a possible starter and a possible 

follower of an allowable form which has an empty 

alternative. 

The case construct used in Rule 4 neatly expresses a choice between any 

number of alternatives. If only two alternatives exist it may of course 

be re-expressed as an if. . then . . else, and if one of these alternatives is 

empty it reduces to a simple if. . then .. 

5. If the allowable form involves a possible repetition, { }, the action re¬ 

quired is clearly a loop. As in the lexical scanner the criterion for loop 

termination is again based on the current symbol, hence Rule 5: 

Rule 5 T({a}) while scan.symbol in Startersof(a) 

do T{a) 

Note that since a repetitive form { } is possibly empty, condition (b) 
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again applies. Those repetitions that cannot be empty are written in 
the syntax rules a{a}, which transforms to 

begin 

n«); 
while ... do T(cc) 

end 

In Pascal this may be rewritten: 

repeat T(a) until not (scan symbol in Startersof(oC)) 

Rules 1-5 enable the translation of the set of syntax rules defining a 

language into an equivalent set of syntax procedures. The ultimate objective, 

viz. the analysis of programs of the language, is then achieved by a call to 

the procedure corresponding to the syntax rule for <program>. This procedure 

of course calls other procedures, which in turn call others, so producing a 

gradual tracing of the conceptual syntax tree of the program being analyzed, 

accompanied by a symbol-by-symbol acceptance of the program each time a 

“leaf”of the tree is identified. For those constructs which are nested or 

recursive in form, e.g. expressions, statements, the procedures automatically 

call themselves recursively to deal with nested instances of their allowable 

forms. Because of its inherently recursive nature, and the fact that analysis 

proceeds from the top (<program» of the syntax tree to its bottom (the actual 

symbols), such an analyzer is referred to as a recursive-descent analyzer. 

The analyzer operates in a deterministic manner, determining the 

appropriate analysis path by inspection of the current input symbol, provided 

each of the underlying syntax rules fulfils conditions (a) and (b). A set of 

syntax rules meeting these conditions constitutes what is known as an LL(1) 

grammar. Many simple programming languages can be defined by such a 

grammar. 
Constructing the syntax analyzer for Mini-Pascal now involves the 

systematic application of rules 1-5 to the syntax rules appearing in the 

language definition, with a preliminary check that conditions (a) and (b) are 

fulfilled where appropriate. The following table shows the syntax rules as 

they appear in the definition, but sorted in an order appropriate to recursive 

descent. 

Table showing Syntax of Mini-Pascal in recursive descent order 

(program) :: = program <identifier>; <block>. 

(block} : := (variable declaration part} 
(procedure declaration part} 
(statement part} 
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(variable declaration party :: = <empty> | 
var <variable declaration); 

{<variable declaration>;} 
(variable declaration.> ::= <identifier) {,(identifier)}: (type) 
(type) :: = (simple type) \ (array type) 
(array type) :: = array [(index range)] of (simple type) 
(index range) ::= (integer constant) . . (integer constant) 
(simple type) :: = (type identifier) 
(type identifier) :: = (identifier) 

(procedure declaration part) :: = {<procedure declaration);} 
(procedure declaration) :: = procedure (identifier); (block) 

(statement part) ::= (compound statement) 
(compound statement) :: = begin <statement>{ ;(statement)} end 
(statement) ::= (simple statement) \(structured statement) 
(simple statement) (assignment statement) \(procedure statement) \ 

(read statement) \ (write statement) 
(assignment statement) (variable) := (expression) 
(procedure statement) ::= (procedure identifier) 
(procedure identifier) :: = (identifier) 
(read statement) ::= read «input variable)},(input variable)}) 
(input variable) ::= (variable) 
(write statement) ::= write «output value)},(output value)}) 
(output value) :: = (expression) 
(structured statement) (compound statement) \ (if statement) | 

(while statement) 
(if statement) :: == if (expression) then (statement) | 

if (expression) then (statement) else (statement) 
(while statement) ::= while (expression) do (statement) 

(expression) :: = (simple expression) | 
(simple expression) (relational operator) (simple expression) 

(simple expression) ::= (sign) (term) }(adding operator) (term)} 
(term) ::= (factor)}(multiplying operator) (factor)} 
(factor) ::= (variable) \(constant) \{(expression)) ]not (factor) 
(relational operator) = = |<> |< |< = | > = | > 
(sign) ::= + | - |(empty) 
(adding operator) ::= + | — |or 
(multiplying operator) ::= * |div |and 

(variable) ::= (entire variable) \(indexed variable) 
(indexed variable) :: = (array variable) [(expression)] 
(array variable) :: = (entire variable) 
(entire variable) (variable identifier) 
(variable identifier) ::= (identifier) 

(constant) ::= (integer constant) \(character constant) \(constant identifier) 
(constant identifier) (identifier) 

The procedures already devised for program and block analysis follow 

directly from application of rules 1-3 to the first two syntax rules. The next 
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syntax rule, viz. 

<variable declaration party :: = {empty) \ 

var {variable declaration}; 

{<variable declaration>;} 

presents a more significant translation task. Its allowable form involves 

alternatives, one of which is {empty}. We must therefore check that con¬ 

dition (b) is met in this case. The only symbols which can follow a variable 

declaration part are procedure and begin, while the only symbol with which 

a non-empty variable declaration part can begin is var, so condition (b) is 

clearly met. Similarly we find that the possible repetition {<variable declara¬ 

tion} ;} creates no problems, so using rules 4 and 5 in their simplified forms 

we obtain 

procedure variable declaration part ; 

begin 

if scan.symbol = varsy then 

begin 

accept (varsy) ; 

repeat 

variable declaration ; 

accept (semicolon) 

until scan.symbol A identifier 

end 

end ; 

The remaining syntax rules can be checked and transformed in a similar 

manner. Listing 3 shows the complete syntax analyzer which results. This 

analyzer is exactly that dictated by the syntax rules except that 

(a) the procedures are nested within each other as tightly as their use 

permits; 
(b) certain redundant procedures are eliminated; 

(c) procedure names are shortened to meet the limits put on the significant 

length of identifiers by Pascal compilers; 

(d) four conflicts with conditions (a) and (b) arise which are resolved as 

follows. 

An obvious conflict with condition (a) arises in the syntax rule for the 

{if statement} 

{if statement} :: = if <expression} then <statement} \ 

if <expression} then <statement} else <statement} 
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since the two alternatives begin with the same symbols. This is resolved by 

factorizing out the common symbols as follows: 

(if statement> ::= if <expression> then <statement}(if tail} 

(if tail> :: = (empty} | else (statement} 

Condition (a) is thus fulfilled but we now find that condition (b) is violated 

by (if tail} since an (if tail} can be followed by the else symbol (of an en¬ 

closing if statement). This well-known problem is fortunately resolved for 

us by a rider in the language definition which states that the correct 

interpretation of the sequence if .. then if . . then . . else . . is that which 

will result by transformation of the syntax rules above to give the procedure 

procedure if statement ; 
begin 

accept (ifsy) ; 

expression ; 

accept (thensy) ; 

statement ; 

if scan.symbol = elsesy then 
begin 

accept (elsesy) ; 

statement 

end 

end ; 

A similar problem with the syntax rule for (expression} is also resolved 
by factorization to give a procedure 

procedure expression ; 

begin 

simple expression ; 

if scan.symbol in [eqop, neop, . . ] then 
begin 

accept (scan.symbol) ; 

simple expression 

end 

end 

Notice we avoid the need for six distinct syntax paths for the acceptance of 

the particular relational operator involved by the coding accept (.scan.symbol). 

Since this cannot produce an error it might be further reduced to scan.next- 
symbol. 
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A more difficult problem arises in <simple statement> whose syntax 
rule is 

(simple statementy ::= (assignment statement) | 

<procedure statement> j 

(read statement> | 

(write statement> 

Symbol sequences allowed by the alternatives (assignment statement> 

and (procedure statement> both start with an identifier, so the choice between 

them cannot be made on the basis of the (first) symbol under scan. A similar 
problem arises in (factory 

(factory :: = (variable'; \(constanty | . . . 

since both (variabley and (constanty may begin with an identifier. 

These problems are due to the fact that the syntax constructs (variable 

identified, (procedure identified and (constant identified are lexically in¬ 

distinguishable. A purely syntactic solution can be found by eliminating 

their distinction from the syntax rules, and then factorizing and transforming 

the revised syntax. However, the distinction can and must be made during 

semantic analysis. Anticipating that syntax and semantic analyses are to take 

place in parallel we may assume that a semantic check can be used to resolve 

the syntactic choice, and so retain the general form of syntax given by the 

language definition. 

Adding Syntax Error Recovery 

The syntax analyzer constructed so far will function satisfactorily on syn¬ 

tactically correct programs, i.e. it will verify that the programs obey the 

syntax rules of the language, and in doing so determine their syntactic 

structures. For an incorrect program, however, the analyzer’s behavior is 

acceptable only up to the detection of the first syntax error. Thereafter the 

analysis process is liable to get out of step with the sequence of symbols under 

scan, and so either loop or produce a welter of syntax-error messages irrele¬ 

vant to these symbols. In short the analyzer lacks the quality of error recovery 

identified as a project objective. 

To achieve syntax-error recovery we must maintain a reasonable 

synchronization between the analyzer and the symbol sequence under scan. 

The analyzer functions as a set of syntax procedures. If we could enforce 

synchronization at entry to and exit from each procedure, then the effects of 

desynchronization would be limited to the range of symbols accepted between 

any two successive calls or exits. This range is dependent on the number of 



Listing 3 

ENVELOPE MODULE ANALYZE ; 

CONST ALFALENGTH = 8 | 

TYPE ALFA = PACKED ARRAY [1..ALFALENGTH] OF CHAR ; 

SYMBOL TYPE = ( IDENT,INTCONST,CHARCONST, 
NOTOP,ANDOP.OROP, 
TIMES,DIVOP,PLUS,MINUS, 
L TOP, LEOP, GEOP, GTOP, NEOP, EGOF', 
RIGHTPARENT,LEFTPARENT,LEFT BRACKET,RIGHTBRACKET, 
COMMA,SEMI COLON,PERIOD,COLON,BECOMES,THRU, 
PROGRAMSY,VARSY,PROCSY,ARRAYSY,OFSY, 
BEGINSY,ENDSY,IFSY,T HE NS Y,ELSESY,UHILESY,D0SY, 
READSY,URI TESY , 
OTHERSY ) ; 

ENVELOPE MODULE SCAN - LISTING2 IN LIBRARY ; 

(» (A) SYNTAX ANALYSIS 
<* 
i* SYNTAX ANALYSIS OF MINI-PASCAL PROGRANS IS IMPLEMENTED 
<* AS A SET OF RECURSIVE DESCENT PROCEDURES. THESE PROCEDURES 
<* ARE BASED ON THE SYNTAX RULES GIVEN IN THE LANGUA6E DEFN 
U AND ARE NESTED AS TIGHTLY AS THE MUTUAL INTERACTION PERMITS. 
(* THE ORDER, NAMES, AND NESTING OF THE PROCEDURES IS AS FOLLOUS 
(* 

<* 
(* 

(* 

(* 

(* 
(* 
(* 

(* 
<* 

(* 

(* 
(* 
<* 
<* 

<* 
(» 

(* 
(* 
(* 

(* 

(* 

(* 

(* 
(* 
(* 
(* 

PROGRAMME 
BLOCK 

VARPART 
VARDECLARATION 

TYP 

SIMPLETYPE 
INDEXRANGE 

PROCPART 
PROCDECLARATION 

STATPART 

COMPOUNDSTATEMENT 
STATEMENT 

VARIABLE 
EXPRESSION 

SIMPLEEXPRESSION 
TERM 

FACTOR 
ASSIGNMENT 
READSTATEMENT 

INPUTVARIABLE 
URITESTATEMENT 

OUTPUTVALUE 
IFSTATEMENT 
UHILESTATEMENT 

■*) 

*) 

■■») 

+ ) 
.) 

•*) 

*) 
*) 

*) 
*) 

*) 
*) 
*) 
*) 
*) 

■») 

*) 
*> 
*) 
=♦) 
*) 
=*) 
=♦) 
*> 
*) 
■*) 

*) 
*) 
*) 
*> 
=*) 
*) 
=») 
*) 
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<* THE SYNTAX ANALYZERS ARE WRITTEN ON THE ASSUMPTION THAT THE *) 
(* NEXT SYNTACTIC GOAL CAN ALWAYS BE SELECTED BY INSPECTION OF *) 
(* (AT HOST> THE NEXT INCOHING SYMBOL < I.E. THAT THE UNDERLYING <*> 
<* GRAMMAR IS LL<1) ). THIS IS NOT SO AT THE FOLLOUING POINTS *) 
<* IN THE SYNTAX RULES ACTUALLY USED *) 

<* w) 

<* 1. A STATEMENT BEGINNING WITH AN IDENTIFIER NAY BE *) 
<* EITHER AN ASSIGNMENT OR A PROCEDURE CALL *) 
(* 2. A FACTOR BEGINNING WITH AN IDENTIFIER MAY BE EITHER *) 
<* A VARIABLE OR A CONSTANT *> 
<* *) 

<* IN CASE I TO RESOLVE THE CHOICE ON A PURELY SYNTACTIC *> 
<* BASIS WOULD REQUIRE A DISTORTION OF THE SYNTAX RULES *) 
(* CHOICE 2 CANNOT BE SYNTACTICALLY RESOLVED IN SOME CASES . *) 

(* HOUEVER IF PARALLEL SEMANTIC ANALYSIS IS ASSUMED (AS IN *) 
(* THE CASE OF THIS COMPILER) THESE CHOICES CAN BE RESOLVED =») 

WITHOUT SYNTAX DISTORTION, BY INSPECTION OF THE CURRENT =*) 
«* SEMANTIC ATTRIBUTES OF THE IDENTIFIER INVOLVED. FOR THIS *) 
(* REASON SYNTACTIC RESOLUTION OF THESE CHOICES IS NOT USED. +> 
(* •*) 

(* THE ANALYSER GENERATES SYNTAX ERROR CODES WITH THE =*> 
(* FOLLOWING MEANINGS: O 
(* *) 

<* 10 . SYMBOL EXPECTED WAS IDENTIFIER *) 
(* )) . SYMBOL EXPECTED WAS INTEGER CONSTANT ») 
<* 12 . SYMBOL EXPECTED WAS CHARACTER CONSTANT *> 
(* 13 . 

(* ■*) 

(* I.E. ONE VALUE FOR EACH OF THE VALUES OF SYMBOLTYPE. *) 
(* THE FINAL VALUE ORD(OTHERSY)+10 IS USED TO MEAN *> 
(* Hi) 

(* NN . UNEXPECTED SYMBOL =») 

TYPE 

SETOFSYMBOLS = SET OF SYMBOLTYPE ; 

VAR 

STATSTARTERS,FACTORSTARTERS,MULOPS,SIGNS,ADDOPS,RELOPS : SETOFSYMBOLS ; 

PROCEDURE SYNTAXERROR ( EXPECTEDSYMBOL : SYMBOLTYPE ) ; 

BEGIN 
SOURCE.ERROR(ORD(EXPECTEDSYMBOL)+10,SCAN.SYMBOLPOSITION) 

END (* SYNTAXERROR *) ; 

PROCEDURE ACCEPT ( SYMBOLEXPECTED t SYMBOLTYPE ) ; 

BEGIN 
IF SCAN.SYMBOL = SYMBOLEXPECTED 
THEN SCAN.NEXTSYMBOL 
ELSE SYNTAXERROR(SYMBOLEXPECTED) 

END <* ACCEPT ♦) ; 
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PROCEDURE +PROGRAMME ; 

PROCEDURE BLOCK ; 

PROCEDURE VARPART ; 

PROCEDURE VARDECLARATION ; 

PROCEDURE TYP ; 

PROCEDURE SIMPLETYPE ; 

BEGIN 
ACCEPT(I DENT) ; 

END (» SIMPLETYPE *> ; 

PROCEDURE INDEXRANGE ; 

BEGIN 
ACCEPT(INTCONST) ; 
ACCEPT(THRU) ; 
ACCEPT(INTCONST) ; 

END (* INDEXRANGE =») ; 

BEGIN <* TYP *) 
IF SCAN.SYMBOL = IDENT 
THEN SIMPLETYPE 
ELSE 
BEGIN 

ACCEPT<ARRAYSY) ; 
ACCEPT(LEFTBRACKET) ; 
INDEXRANGE ; 
ACCEPT(RIGHTBRACKET) ; 
ACCEPT(OFSY) ; 
SIMPLETYPE ; 

END 
END <* TYP *) ; 

BEGIN <* VARDECLARATION *) 
ACCEPT(IDENT) ; 
WHILE SCAN.SYMBOL => COMMA DO 
BEGIN 

ACCEPT(COMMA) ; 
ACCEPT(IDENT) 

END ; 
ACCEPT(COLON) ; 
TYP 

END (■* VARDECLARATION *) ; 
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BEGIN <* VARPART <*) 
IF SCAN.SYNBOL = VARSY THEN 
BEGIN 

ACCEPT(VARSY) ; 
REPEAT 

VARDECLARATION ; 
ACCEPT(SEMICOLON) 

UNTIL SCAN.SYNBOL <> IDENT 
END 

END (* VARPART *) ; 

PROCEDURE PROCPART ; 

PROCEDURE PROCDECLARATION ; 

BEGIN <* PROCDECLARATION *> 
ACCEPT(PROCSY) ; 
ACCEPT<IDENT) ; 
ACCEPT(SENICOLON) ; 
BLOCK ; 

END <* PROCDECLARATION *) ; 

BEGIN <* PROCPART *) 
UHILE SCAN.SYNBOL » PROCSY DO 
BEGIN 

PROCDECLARATION ; 
ACCEPT(SEMICOLON) 

END- 
END (* PROCPART *) ; 

PROCEDURE STATPART ; 

PROCEDURE CONPOUNDSTATENENT ; 

PROCEDURE STATENENT ; 

PROCEDURE EXPRESSION ; FORUARD ; 

PROCEDURE VARIABLE ; 

BEGIN <* VARIABLE *> 
ACCEPT!I DENT) ; 
IF SCAN.SYNBOL = LEFTBRACKET THEN 
BEGIN 

ACCEPT(LEFTBRACKET) ; 
EXPRESSION ; 
ACCEPT(RIGHTBRACKET) 

END ; 
END (* VARIABLE *) ; 
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PROCEDURE EXPRESSION ; 

PROCEDURE SIMPLEEXPRESS1QN ; 

PROCEDURE TERN ; 

PROCEDURE FACTOR ; 

BEGIN 

IF SCAN.SYMBOL IN FACTORSTARTERS 
THEN 
BE6IN 

CASE SCAN.SYMBOL OF 
IDENT : 
<* IF VARIABLE IDENTIFIER *) 
(* THEN =*) 

VARIABLE 
(* ELSE ACCEPT AS CONSTANT *) 
INTCONST : 

ACCEPT(INTCONST) ; 
CHARCONST : 

ACCEPT(CHARCONST) ; 
LEFTPARENT s 

BE6IN 

ACCEPT(LEFTPARENT) ; 
EXPRESSION ; 
ACCEPT(RIGHTPARENT) 

END ; 
NOTOP : 

BEGIN 

ACCEPT(NOTOP) ; 
FACTOR 

END ; 
END ; 

END 

ELSE SYNTAXERROR(OTHERSY) 
END (* FACTOR *) ; 

BE6IN (* TERM *) 
FACTOR ; 

UHILE SCAN.SYMBOL IN MULOPS DO 
BEGIN 

SCAN.NEXTSYNBOL ; 
FACTOR ; 

END 

END (* TERM *> ; 

BEGIN <* SIMPLE EXPRESSION *) 

IF SCAN.SYMBOL IN SIGNS THEN 
SCAN.NEXTSYMBOL ; 

TERM ; 

WHILE SCAN.SYMBOL IN ADDOPS DO 
BEGIN 

SCAN.NEXTSYMBOL ; 
TERM ; 

END 

END <* SIMPLE EXPRESSION *) ; 
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BEGIN <* EXPRESSION ■») 
SINPLEEXPRESSION ; 
IF SCAN.SYMBOL IN RELOPS THEN 
BEGIN 

SCAN.NEXTSYNBOL ; 
SINPLEEXPRESSION ; 

END 
END <* EXPRESSION *) ; 

PROCEDURE ASSIGNMENT ; 

BE6IN (* ASSIGNMENT *> 
VARIABLE ; 
ACCEPT(BECONES) ; 
EXPRESSION 

END <* ASSIGNMENT *) ; 

PROCEDURE READSTATENENT ; 

PROCEDURE INPUTVARIABLE ; 
BEGIN 

VARIABLE 
END <* INPUTVARIABLE *); 

BEGIN 
ACCEPT(READSY) ; 
ACCEPT(LEFTPARENT) ; 
INPUTVARIABLE ; 
UHILE SCAN.SYMBOL = COMMA DO 
BEGIN 

ACCEPT(COMMA) ; 
INPUTVARIABLE 

END ; 
ACCEPT < RIGHTPARENT) 

END <* READSTATENENT *) ; 

PROCEDURE URITESTATEMENT ; 

PROCEDURE OUTPUTVALUE ; 
BEGIN 

EXPRESSION 
END (♦ OUTPUTVALUE *) ; 

BEGIN 

ACCEPT(WRITESY) ; 
ACCEPT(LEFTPARENT) ; 
OUTPUTVALUE ; 
UHILE SCAN.SYNBOL = COMMA DO 
BEGIN 

ACCEPT(COMMA) ; 
OUTPUTVALUE 

END ; 
ACCEPT(RIGHTPARENT) 

END <* URITESTATEMENT ») ; 
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BEGIN (* IFSTATEMENT ») 
ACCEPT(IFSY) ; 
EXPRESSION ; 
ACCEPT(THENSY) ; 
STATENENT ; 
IF SCAN.SYMBOL = ELSESY 

THEN 
BEGIN 

ACCEPT(ELSESY) ; 
STATENENT ; 

END 
END <* IFSTATENENT *) J 

PROCEDURE UHILESTATEMENT ; 

BEGIN (* UHILESTATEMENT *) 
ACCEPT< UHILESY) ; 

EXPRESSION ; 
ACCEPT(DOSY) ; 

STATEMENT 
END <* UHILESTATEMENT =») ; 

BEGIN <* STATENENT *) 
IF SCAN.SYMBOL IN STATSTARTERS 
THEN 

CASE SCAN.SYMBOL OF 
IDENT i 
<* IF PROCEDURE IDENTIFIER *> 
(* THEN ACCEPT AS PROCEDURE STATENENT *) 

<* ELSE ♦> 
ASSIGNMENT ; 

BEGINSY : 
CONPOUNDSTATEMENT ; 

IFSY : 
IFSTATEMENT ; 

UHILESY s 
UHILESTATEMENT ; 

READSY : 
READSTATENENT ; 

URITESY : 
URITESTATEMENT 

END <* CASE *> 
ELSE SYNTAXERROR(OTHERSY) 

END (* STATEMENT *) ; 

BEGIN <*CONPOUNDSTATEHENT *) 
ACCEPT(BEGINSY) ; 
STATEMENT ; 

UHILE SCAN.SYMBOL * SEMICOLON DO 
BE6IN 

ACCEPT<SEMICOLON) ; 
STATENENT 

END ; 
ACCEPT(ENDSY) 

END (* COMPOUND STATEMENT *) ; 
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BEGIN <* STATPART ■*) 
CONPOUNDSTATENENT 

END (* STATPART *) ; 

BEGIN (* BLOCK *) 
UARPART ; 
PROCPART ; 
STATPART 

END (* BLOCK *) ; 

BEGIN <* PROGRANNE *) 
ACCEPT(PROGRANSY) ; 
ACCEPT(IDENT) ; 
ACCEPT(SEMICOLON) ; 
BLOCK 

END <* PROGRANNE *) ; 

BEGIN 

STATSTARTERS := ClDENT,BEGINSY,READSY,URITESY,IFSY,UHILESY] ; 
FACTORSTARTERS := CIDENT, INTCQNST,CHARCONST,NOTOP,LEFTPARENT] ; 
NULOPS := CTINESfDIVOP,ANDOPI ; 
SIGNS := [PLUS,MINUS] ; 
ADDOPS := CPLUS,MINUS,OROP] ; 
RELOPS := CEQOP,NEOP,LTOP,LEOP,6EOP,GTOP] ; 

*** 

END <* ANALYZER NODULE *) ; 

procedures used within the analyzer, but for the analyzer already constructed 

is rarely more than one or two symbols. 

It is easy to enforce this synchronization at the start of the procedure S 

corresponding to a syntax rule <5>. The set of symbols which are legitimate 

starters for a sequence of form <£'> is known so a preliminary statement of 

the form 

if not {scan.symbol in starters) then 

begin 

error . . . ; 

skipto (starters) 

end ; 

can be added to the procedure body of S, where skipto is an operation which 

accepts symbols from the input stream until one of the set of symbols specified 

is found. 
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The obvious danger is that if the intended starter has been omitted the 

skipto operation may skip over symbols which should have been processed 

by the procedures which called S. 

What do we mean by synchronization at procedure exit? In practice it 

implies that the symbol under scan when execution of S is complete is one 

which the procedure which called S is prepared to deal with next. The pro¬ 

cedure 5 has no intrinsic knowledge of which symbols these are, but it can 

be passed this information as a parameter at the point of call. We therefore 

add a parameter to the syntax procedure corresponding to the syntax rule 

<S>: 

procedure S (followers : set of symbols) ; 

where followers are those symbols which the calling procedure is prepared 

to deal with after the call to S is completed. Now we can readily add to the 
body of S a trailing statement of the form 

if not {scan.symbol in followers) then 
begin 

error . . . ; 

skipto {followers) 
end 

Introduction of followers also enables us to avoid the dangers inherent in the 

statement to enforce synchronization at procedure entry, by re-writing it in 
the rather more complex form 

if not {scan.symbol in starters) then 
begin 

error . . . ; 

skipto {starters + followers) 
end ; 

if scan.symbol in starters then . . . 

With this prelude, if a follower of S' is met before a starter an immediate exit 
from S’ will occur without execution of the body proper. 

What actual parameter is used in making a call to procedure SI Clearly 

it must include the set of symbols which may legitimately occur immediately 

after the sequence scanned by S. However, since the legitimate immediate 

follower may itself be missing in an incorrect program the actual set used is 
strengthened by the addition of 

(a) subsequent symbols which the calling procedure expects to deal with 
after the call to S, and 

(b) the follower symbols which the calling procedure has itself received as 
parameter. 
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The inclusion of (b) guarantees that within any nest of active syntax 

procedures a lower-level procedure cannot inadvertently skip over a symbol 
which a higher-level procedure expects to deal with. 

So our revised picture of the syntax procedure corresponding to a syntax 
rule <5) is 

procedure S (followers : set of symbols) ; 
begin 

if not {scan.symbol in starters) then 
begin 

error . . . ; 

skipto {starters + followers) 
end ; 

if scan.symbol in starters then 
begin 

if not {scan.symbol in followers) then 

begin 

error . . . ; 

skipto {followers) 
end 

end 

end ; 

where the dotted lines represent the analyzer body constructed as before, 

except that each call to any other syntax procedure T takes the form 

T{[ ] + followers) 

where [ ] is the set of symbols which S, or a procedure which S calls, 

expects to deal with after the call to T. 

Modification of each syntax procedure of the analyzer in this way would 

achieve a reasonable level of syntax-error recovery, but at a considerable 

expansion of the code length of the analyzer as a whole. However, the same 

effect can be achieved much more economically by abstracting the synchroniz¬ 

ation code in the form of an envelope. The code structure bracketing each 

procedure body differs only in the starters and followers sets which are 

manipulated, so we may define an envelope in the form 
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envelope check (starters, followers : set of symbols) ; 
begin 

if not {scan.symbol in starters) then 
begin 

source.error ( , scan.symbol position) ; 

skipto {starters + followers) 
end 

if scan.symbol in starters then 
begin 

*** • 

if not {scan.symbol in followers) then 
begin 

source.error ( , scan.symbol position) ; 
skipto {followers) 

end 

end 

end ; 

and declare each syntax procedure in the form 

procedure S {followers : set of symbols) ; 

instance context : check {starters of S, followers) ; 
begin 

end ; 

where the dotted lines are again the procedure body with parameterized 

syntax procedure calls as before. The result is an analyzer with the desired 

syntax-error recovery at the cost of a modest code increase on the analyzer 
previously constructed. 

Listing 4 shows a syntax analyzer derived from that in Listing 3 in this 

way. It corresponds to a purely mechanical introduction of the followers 

parameters and context envelopes for each syntax procedure, with the follow¬ 
ing exceptions: 

(a) The procedures assignment, readstatement, writestatement, ifstatement 

and whilestatement serve only as alternative paths through the enclosing 

procedure statement and do not require followers parameters, or con¬ 
text envelopes of their own. 



SYNTAX ANALYSIS 1 03 

(b) The syntax form S{aS} consisting of a sequence of one or more sub 

forms S separated by separators a, translates to analyzer code of the 
form 

while scan.symbol = a do 
begin 

accept (a) ; 

end 

In adding syntax recovery it is logical to guard against a missing separa¬ 

tor a by including the starters of S in the actual followers parameter used 

for each call of S in this code. However, if this is to be effective, the 

while loop condition must also be relaxed to continue looping when a 

starter of S actually occurs, thus: 

S([a] + startersof S + followers) ; 

while scan.symbol in [a] + startersof S do 

begin 

accept (a) ; 

S{[a) + startersof S + followers) 

end 

This technique is used in the procedure compoundstatement to handle 

missing semicolons, and in the procedure term to handle missing 

operators in an expression. 

Test 4, which follows Listing 4, shows a suitable driver program to test 

the syntax analyzer, and the output produced for one test input. In practice 

a carefully chosen sequence of such test programs is necessary to test the 

analyzer’s behavior over the range of possible syntax errors and recovery. 



Listing 4 

ENVELOPE NODULE ANALYZE ; 

CONST ALFALENGTH = 8 ; 

TYPE ALFA = PACKED ARRAY [1..ALFALENGTH] OF CHAR ; 

SYHBOLTYPE = < IDENT,INTCONST,CHARCONST, 
NOTOP,ANDOP,OROP, 
TINES,DIVOP,PLUS,MINUS, 
LTOP,LEOP,GEOP,GTOP,NEOP,EQOP, 
RIGHTPARENT,LEFTPARENT,LEFTBRACKET,RIGHTBRACKET, 
COMMA,SEMICOLON,PERIOD,COLON,BECONES,THRU, 
PROGRAMSY,VARSY,PROCSY,ARRAYSY,OFSY, 
BEGINSY,ENDSY,IFSY,THENSY,ELSESY,UHILESY,DOSY, 
READSY,MRITESY, 
OTHERSY ) ; 

ENVELOPE MODULE SCAN = LISTING2 IN LIBRARY ; 

(* (A) SYNTAX ANALYSIS 
(* 

<* SYNTAX ANALYSIS OF MINI-PASCAL PROGRAMS IS INPLENENTED 
<* AS A SET OF RECURSIVE DESCENT PROCEDURES. THESE PROCEDURES 
<* ARE BASED ON THE SYNTAX RULES GIVEN IN THE LANGUAGE DEFN 
<* AND ARE NESTED AS TIGHTLY AS THE MUTUAL INTERACTION PERMITS. 
(* THE ORDER, NAMES, AND NESTING OF THE PROCEDURES IS AS FOLLOUS 
<* 
<* 
<* 
<* 

(♦ 
(* 

(* 

(* 

(* 

<* 
<* 
(* 

(* 

(* 
(* 
(* 

(* 
(* 
<* 

(* 
<* 
<* 
(* 
(* 
(* 

(* 

PROGRAMME 
BLOCK 

VARPART 

VARDECLARATION 
TYP 

SIMPLETYPE 
INDEXRANGE 

PROCPART 
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<=* THE SYNTAX ANALYZERS ARE URITTEN ON THE ASSUMPTION THAT THE *) 
(* NEXT SYNTACTIC GOAL CAN ALUAYS BE SELECTED BY INSPECTION OF *) 
(* (AT MOST) THE NEXT INCOMING SYMBOL < I.E. THAT THE UNDERLYING +) 
<* GRAMMAR IS LL<1) ). THIS IS NOT SO AT THE FOLLOUING POINTS •») 
(* IN THE SYNTAX RULES ACTUALLY USED *) 
<* *) 
<* I. A STATEMENT BEGINNING UITH AN IDENTIFIER MAY BE *) 
<* EITHER AN ASSIGNMENT OR A PROCEDURE CALL «> 
(« 2. A FACTOR BEGINNING UITH AN IDENTIFIER MAY BE EITHER •*) 
(* A VARIABLE OR A CONSTANT *) 
<* *) 

<* IN CASE 1 TO RESOLVE THE CHOICE ON A PURELY SYNTACTIC •») 
<* BASIS UOULD REQUIRE A DISTORTION OF THE SYNTAX RULES *> 
<* CHOICE 2 CANNOT BE SYNTACTICALLY RESOLVED IN SOME CASES . *) 
<* HOWEVER IF PARALLEL SEMANTIC ANALYSIS IS ASSUMED (AS IN *) 
(* THE CASE OF THIS COMPILER) THESE CHOICES CAN BE RESOLVED *> 
<* WITHOUT SYNTAX DISTORTION, BY INSPECTION OF THE CURRENT *) 
(* SEMANTIC ATTRIBUTES OF THE IDENTIFIER INVOLVED. FOR THIS *) 
<* REASON SYNTACTIC RESOLUTION OF THESE CHOICES IS NOT USED. *) 
(* *> 

<» THE ANALYZER GENERATES SYNTAX ERROR CODES UITH THE '»> 
(* FOLLOUING MEANINGS: *) 
<* *) 
(* )0 . SYMBOL EXPECTED WAS IDENTIFIER *> 
(* 11 . SYMBOL EXPECTED UAS INTEGER CONSTANT =») 
(* 12 . SYMBOL EXPECTED UAS CHARACTER CONSTANT *> 

(* 13 . +> 
(* *) 

<* I.E. ONE VALUE FOR EACH OF THE VALUES OF SYMBOLTYPE. *) 
<» THE FINAL VALUE ORD<OTHERSY)+10 IS USED TO MEAN *) 
<# *) 

(* NN . UNEXPECTED SYMBOL *> 

TYPE 

SETOFSYMBOLS * SET OF SYMBOLTYPE ; 

VAR 

STATSTARTERS.FACTORSTARTERS.MULOPS,SIGNS,ADDOPS,RELOPS : SETOFSYMBOLS ; 

PROCEDURE SYNTAXERROR ( EXPECTEDSYMBOL : SYMBOLTYPE ) ; 

BEGIN 
SOURCE.ERROR(ORD(EXPECTEDSYMBOL)+10,SCAN.SYMBOLPOSITION) 

END (* SYNTAXERROR *> ; 

PROCEDURE ACCEPT ( SYMBOLEXPECTED : SYMBOLTYPE ) ; 

BEGIN 
IF SCAN.SYMBOL * SYMBOLEXPECTED 
THEN SCAN.NEXTSYMBOL 
ELSE SYNTAXERROR(SYMBOLEXPECTED) 

END <* ACCEPT *> ; 



<* (B) SYNTACTIC ERROR RECOVERY *> 
(» *) 

<* RECOVERY IN THE SYNTAX ANALYSIS PROCESS FOLLOUING THE *) 
<* DISCOVERY OF A SYNTAX ERROR IS INCORPORATED INTO THE *> 
(* SYNTAX PROCEDURES ON THE FOLLOUING BASIS *) 
<» *) 

<* 1. EACH PROCEDURE UHEN CALLED IS PASSED AN ACTUAL *) 
(* PARAMETER UHICH IS A SET OF SYMBOLS UHICH ARE *> 
<* POSSIBLE FOLLOWERS OF THE STRING UHICH IT SHOULD *) 
(* SCAN. THESE FOLLOWERS NORMALLY INCLUDE *) 

<* <A) ALL SYMBOLS UHICH MAY LEGITIMATELY FOLLOU *) 
<* THE STRING TO BE SCANNED *) 
<* (B) SUCH ADDITIONAL SYMBOLS AS A SUPERIOR *> 
<* (CALLING) PROCEDURE NAY UISH TO HANDLE IN *) 
(* THE EVENT OF ERROR RECOVERY *) 
<* *) 

<* 2. UHEN ENTERED THE PROCEDURE MAY ENSURE THAT THE *) 
<* CURRENT SYMBOL IS AN ACCEPTABLE STARTER FOR THE ■*) 

<* STRING TO BE SCANNED, AND IF NOT SCAN FORUARD *) 
<* UNTIL SUCH A SYMBOL IS FOUND (SUBJECT TO 4. BELOU) *> 
<* *) 

(* 3. UHEN CALLING A SUBSIDIARY SYNTAX PROCEDURE THE *> 
<* PROCEDURE PASSES ON AS FOLLOWERS ITS OUN FOLLOWERS PLUS *) 

<* THOSE SYMBOLS IF ANY UHICH IT MAY DETERMINE AS *) 
(* FOLLOWERS FOR THE SUBSTRING TO BE SCANNED *) 
<* *) 

<* 4. TO RECOVER FROM A SYNTAX ERROR THE PROCEDURE MAY *) 
<* SCAN OVER (SKIP) ANY SYMBOL PROVIDED IT IS NOT *) 
<* CONTAINED IN THE FOLLOWERS PASSED TO IT «) 

(* *) 

<* 5. ON EXIT THE SYNTAX PROCEDURE ENSURES THAT THE CURRENT *) 
<* SYMBOL IS CONTAINED IN THE FOLLOWERS PASSED TO IT, *) 
<* FLAGGING A TERMINAL ERROR AND SKIPPING IF THIS IS NOT *) 
<* INITIALLY THE CASE. *> 

*> 
(* TESTS 2 AND 5 ARE IMPLEMENTED BY THE DECLARATION OF AN *> 
(* INSTANCE OF A CONTEXT CHECKING ENVELOPE WITHIN EACH *) 
(* SYNTAX PROCEDURE 

ENVELOPE CHECK ( STARTERS,FOLLOWERS : SETOFSYMBOLS ) ; 

PROCEDURE SKIPTO ( RELEVANTSYMBOLS : SETOFSYMBOLS ) ; 
BEGIN 

WHILE NOT (SCAN.SYMBOL IN RELEVANTSYMBOLS) 
DO SCAN.NEXTSYMBOL 

END <♦ SKIPTO *) ; 

BEGIN 

IF NOT (SCAN.SYMBOL IN STARTERS) THEN 

BEGIN SYNTAXERROR(OTHERSY); SKIPTO(STARTERS+FOLLOUERS) END • 
IF SCAN.SYMBOL IN STARTERS THEN ' 
BEGIN 

*** (* EXECUTE ENVELOPED BLOCK *) ; 
IF NOT (SCAN.SYMBOL IN FOLLOWERS) THEN 

BEGIN SYNTAXERROR(OTHERSY); SKIPTO(FOLLOWERS) END 
END 

END (* CHECK ENVELOPE *) ; 
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PROCEDURE *PROGRAMME ; 

PROCEDURE BLOCK ( FOLLOWERS : SETOFSYMBOLS ) ; 

INSTANCE CONTEXT:CHECK(EVARSY,PROCSY,BEGINSYI,FOLLOWERS) ; 

PROCEDURE VARPART ( FOLLOWERS : SETOFSYMBOLS ) ; 

INSTANCE CONTEXT:CHECK([VARSYI+FOLLOWERS,FOLLOWERS) ; 

PROCEDURE VARDECLARATION < FOLLOWERS : SETOFSYMBOLS ) ; 

INSTANCE CONTEXT:CHECK*[IDENT,CONNA,COLON](FOLLOWERS) ; 

PROCEDURE TYP < FOLLOWERS : SETOFSYMBOLS ) ; 

INSTANCE CONTEXT:CHECK([IDENT,ARRAYSY],FOLLOWERS) ; 

PROCEDURE SIMPLETYPE < FOLLOWERS : SETOFSYMBOLS ) ; 

INSTANCE CONTEXT:CHECK(CIDENT],FOLLOWERS) ; 

BEGIN 
ACCEPT(IDENT) ; 

END <* SIMPLETYPE •») ; 

PROCEDURE INDEXRANGE ( FOLLOWERS : SETOFSYMBOLS ) ; 

INSTANCE CONTEXT:CHECK([INTCONSTfTHRUI,FOLLOWERS) ; 

BEGIN 
ACCEPT(INTCONST) ; 
ACCEPT(THRU) ; 
ACCEPT(INTCONST) ; 

END (* INDEXRANGE ♦> ; 

BEGIN (» TYP *) 
IF SCAN.SYMBOL = IDENT 
THEN SIMPLETYPE(FOLLOWERS) 

ELSE 
BE6IN 

ACCEPT(ARRAYSY) ; 
ACCEPT(LEFTBRACKET) ; 
INDEXRANGE([RIGHTBRACKET,OFSYI+FOLLOWERS) ; 

ACCEPT(RIGHTBRACKET) ; 
ACCEPT(OFSY) ; 
SIMPLETYPE(FOLLOWERS) ; 

END 

9 



BEGIN (* VARDECLARATION *) 
ACCEPTUDENT) ; 
WHILE SCAN.SYMBOL =■ COMMA DO 
BEGIN 

ACCEPT(COMMA) ; 
ACCEPKIDENT) 

END ; 
ACCEPT<COLON) ; 
TYP(FOLLOWERS) 

END (* VARDECLARATION =*) ; 

BEGIN <* VARPART *) 

IF SCAN.SYMBOL = VARSY THEN 
BEGIN 

ACCEPT(VARSY) ; 
REPEAT 

VARDECLARATIONt CSEMICOLONT+FOLLOWERS) ; 
ACCEPT(SEMICOLON) 

UNTIL SCAN.SYMBOL <> IDENT 
END 

END (•> UARPART ») ; 

PROCEDURE PROCPART ( FOLLOWERS : SETOFSYMBOLS ) ; 

INSTANCE CONTEXT:CHECK(tPROCSYD+FOLLQWERS(FOLLOWERS) ; 

PROCEDURE PROCDECLARATION ( FOLLOWERS : SETOFSYMBOLS ) 

INSTANCE CONTEXT:CHECK(CPRQCSY3(FOLLOWERS) ; 

BEGIN (* PROCDECLARATION *) 

ACCEPT(PROCSY) ; 
ACCEPTUDENT) ; 
ACCEPT(SEMICOLON) ; 
BLOCK(FOLLOWERS) ; 

END (* PROCDECLARATION *) ; 

BEGIN <* PROCPART ♦) 

WHILE SCAN.SYMBOL * PROCSY DO 
BEGIN 

PROCDECLARATION*[SEMI COLON,PROCSYJ+FQLLOWERS) ; 
ACCEPT(SEMICOLON) 

END 

END (* PROCPART ♦) ; 

PROCEDURE STATPART ( FOLLOWERS : SETOFSYMBOLS ) ; 

INSTANCE CONTEXT:CHECK<TBEGINSY],FOLLOWERS) ; 

PROCEDURE COMPOUNDSTATEMENT ( FOLLOWERS : SETOFSYMBOLS ) 

INSTANCE CONTEXT:CHECK([BEGINSY3,FOLLOWERS) ; 

PROCEDURE STATEMENT ( FOLLOWERS : SETOFSYMBOLS ) ; 

INSTANCE CONTEXT:CHECK<STATSTARTERS,FOLLOWERS) ; 



SYNTAX ANALYSIS 1 09 

PROCEDURE EXPRESSION ( FOLLOUERS : SETOFSYNBOLS ) ; FORUARD ; 

PROCEDURE VARIABLE < FOLLOWERS : SETOFSYMBOLS ) ; 

INSTANCE CONTEXT:CHECK([IDENT],FOLLOUERS) ; 

BEGIN (* VARIABLE *> 
ACCEPT(IDENT) ; 
IF SCAN.SYMBOL = LEFTBRACKET THEN 
BEGIN 

ACCEPT(LEFTBRACKET) ; 
EXPRESSION*[RIGHTBRACKET]^FOLLOWERS) ; 
ACCEPT(RIGHTBRACKET) 

END ; 
END (* VARIABLE ♦) ; 

PROCEDURE EXPRESSION ; 

PROCEDURE SINPLEEXPRE8S10N ( FOLLOWERS : SEIOFSYHBOLS ) | 

INSTANCE CONTEXT:CHECK<FACTORSTARTERSIGNS,FOLLOUERS) { 

PROCEDURE TERN ( FOLLOUERS s SETOFSYMBOLS ) \ 

PROCEDURE FACTOR < FOLLOWERS i SETOFSYHBOlS ) ; 

INSTANCE CONTEXTtCHECK(FACTORSTARTERS,FOLLOUERS) ; 

BEGIN 
BEGIN 

CA8E SCAN.SYMBOL OF 
IDENT ! 
(« IF VARIABLE IDENTIFIER >») 
(* THEN +> 

VARIABLE(FOLLOUERS) 
(* EL8E ACCEPT AS CQN8TANT *> ; 
INTCONST : 

ACCEPT<INTCONST) ; 
CHARCONST : 

ACCEPT(CHARCONST) ; 
LEFTPARENT : 

BEGIN 
ACCEPT(LEFTPARENT) ; 
EXPRESSIONCRIGHTPARENT]+FOLLOUERS) ; 

ACCEPT(RIGHTPARENT) 

END ; 
NOTOP : 

BEGIN 
ACCEPT(NOTOP) J 
FACTOR(FOLLOWERS) 

END ; 
END ; 

END 
END (* FACTOR *) ; 
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BEGIN <* TERN *) 
FACTOR(MULOPS+FACTORSTARTERS+FOLLOUERS) ; 
WHILE SCAN.SYMBOL IN NULOPS+FACTORSTARTERS DO 
BEGIN 

IF SCAN.SYMBOL IN MULOPS 
THEN SCAN.NEXTSYNBOL 
ELSE SYNTAXERROR(TIMES) ; 
FACTOR(MULOPS+FACTORSTARTERS+FOLLOUERS) ; 

END 
END (* TERN *) ; 

BEGIN (* SIMPLE EXPRESSION *) 
IF SCAN.SYMBOL IN SIGNS THEN 

SCAN.NEXTSYMBOL ; 
TERM(ADDOPS+FOLLOUERS) ; 
WHILE SCAN.SYMBOL IN ADDOPS DO 
BEGIN 

SCAN.NEXTSYMBOL ; 
TERN(ADDOPS+FOLLOUERS) ; 

END 
END <* SIMPLE EXPRESSION *) ; 

BEGIN <* EXPRESSION *) 

SIMPLEEXPRESSION(RELOPS+FOLLOUERS) ; 
IF SCAN.SYMBOL IN RELOPS THEN 
BEGIN 

SCAN.NEXTSYMBOL ; 
SIMPLEEXPRESSION(FOLLOWERS) ; 

END 
END (* EXPRESSION *) ; 

PROCEDURE ASSIGNMENT ; 

BEGIN <* ASSIGNMENT *) 

VARIABLE(CBECOMESI+FOLLOUERS) ; 
ACCEPT(BECOMES) ; 
EXPRESSION(FOLLOWERS) 

END <■» ASSIGNMENT *) ; 

PROCEDURE READSTATEMENT ; 

PROCEDURE INPUTVARIABLE ; 
BEGIN 

VARIABLE!CCOMMAfRIGHTPARENT3+FQLLOUERS) 
END (♦ INPUTVARIABLE *); 

BEGIN 
ACCEPT(READSY) ; 

ACCEPT(LEFTPARENT) ; 
INPUTVARIABLE ; 
UHILE SCAN.SYMBOL = COMMA DO 
BEGIN 

ACCEPT(COMMA) ; 
INPUTVARIABLE 

END ; 

ACCEPT(RIGHTPARENT) 
END <+ READSTATEMENT *) ; 
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BEGIN <*COMPOUNDSTATEMENT *) 

ACCEPT(BEGINSY) ; 
STATEMENT![SEMICOLON,ENDSY3+STATSTARTERS 

-CIDENT3+FOLLOUERS) ; 
WHILE SCAN.SYMBOL IN [SENICOLON]+STATSTARTERS-[IDENT] DO 

BEGIN 
ACCEPT(SEMICOLON) ; 
STATEMENT([SEMICOLON,ENDSYI+STATSTARTERS 

-[IDENT]*FOLLOUERS) 
END ; 
ACCEPT(ENDSY) 

END <* COMPOUND STATEMENT *) ; 

BEGIN <* STATPART *> 
COMPOUNDSTATEMENT(FOLLOUERS) 

END <* STATPART *) ; 

BEGIN <* BLOCK *) 
UARPART <[PROCSY,BEG INS Y 3) ; 
PROCPART< CBEGINSYI) ; 
STATPART(FOLLOWERS) 

END (* BLOCK *> ,* 

BEGIN (* PROGRAMME *> 
ACCEPT(PROGRAMSY) ; 
ACCEPT(IDENT) ; 
ACCEPT(SEMICOLON) ; 
BLOCK([PERIOD]) 

END (* PROGRAMME *) ; 

BEGIN 

STATSTARTERS := CIDENT,BEGINSY,READSY,UR I TESY,IFSY,UHILESY] ; 
FACTORSTARTERS := [IDENT,INTCONST,CHARCONST,NOTOP,LEFTPARENT] ; 
MULOPS := [TIMES,DIVOP,ANDOP] ; 
SIGNS := [PLUS,MINUS] ; 

ADDOPS := [PLUS,MINUS,OROP] ; 
RELOPS s= [EQOP,NEOP,LTOP,LEOP,GEOP,GTOP] ; 

END (* ANALYZER MODULE *> 



Test 4 

PASCAL PLUS COMPILER 

0 
1 

3300 PROGRAM TESTANALYZER (INPUT,OUTPUT) ; 

2 
3 
4 
5 
6 
7 
8 

ENVELOPE MODULE SOURCE = LISTING1 IN LIBRARY ; 

3644 ENVELOPE MODULE ANALYZE = LISTING4 IN LIBRARY ; 

5512 BE6IN 

5512 ANALYZE.PROGRAMME 
5512 END. 

COMPILATION COMPLETE : NO ERRORS REPORTED 
COMPILATION TIME = 2680 MILLISECONDS 
SOURCE PROGRAM = 1027 LINES 
OBJECT PROGRAM = 5635 UORDS 

LISTING PRODUCED BY MINI-PASCAL COMPILER MK 1 

0 
1 
2 
3 

***** 

PROGRAM SYNTAX ; 
VAR I,J : INTEGER ; 

A : ARRAY Cl..10] OF CHAR 
PROCEDURE P ; 
“ERROR 31 

4 
5 
6 

***** 

VAR J : INTEGER ; 
BEGIN 

READ J ; 
“ERROR 27 

***** “ERROR 26 

7 
***** 

I := I I-I I DIV I ; 
“ERROR 16 

***** “ERROR 16 

8 
***** 

IF (< J=I) OR NOT (JOI) THEN A [ 13: = •' ELSE AC ; 
“ERROR 26 

***** “ERROR 50 

9 
***** 

IF < J=I) OR NOT (JOI) )THEN ACI]: = -' ' ELSE AC ; 
“ERROR 50 

***** “ERROR 50 

10 
11 
12 
13 
14 
15 

16 
***** 

URITE(ACII) ; 
I := 1+1 

END ; 
BEGIN 

I: = 1 ; J := 1000000 ; 
WHILE (I>0>AND<I<11>OR<I>=1)AND<I<=10) DO I := 1 + 1 

WRITE J) 
“ERROR 31 

***** “ERROR 27 

17 END. 

COMPILATION COMPLETED : 11 ERRORS REPORTED 
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Exercise 3 Modify the syntax of Mini-Pascal, and then the syntax analyzer given in 
Listing 4, to allow a multiple assignment statement of the form 

Vi, v2, • • •, v» : = e 

SEMANTIC ANALYSIS 

Attributes and their Representation 

Syntax analysis applies the formally expressed syntax rules of the language 
definition to the program under analysis. Semantic analysis is concerned with 
the informal semantic rules which accompany this formal syntax. Their 
application involves the collection and examination of the attributes asso¬ 
ciated with the identifiers, constants and expressions which appear in the 
program. For the time being we confine our attention to those attributes 
necessary for semantic checking, i.e. verifying that the semantic rules of the 
language are obeyed. The construction of attributes which reflect the object 
program to be produced will be considered with the generator interface in 
the next chapter. 

Clearly semantic analysis requires some means of representing the 
attributes associated with identifiers, constants and expressions. For identi¬ 
fiers the attributes necessary to semantic checking are 

(a) the declared class of usage of the identifier—in Mini-Pascal identifiers 
may denote types, constants, variables and procedures, so class of usage 
may be represented by an enumerated type: 

idclass = {types, consts, vars, procs) ; 

(b) for type, constant and variable identifiers, the associated type itself 
(Mini-Pascal’s parameterless procedures require no further attributes 
for semantic checking). 

The association of each identifier with its attributes must involve the 
maintenance of some record of the form 

idrec = record 

name : alfa ; 

class : idclass ; 

idtype : ? 
end ; 

(where the field idtype is redundant in the case when class = procs). 
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The number of such records required is determined by the program 

being compiled, and varies greatly from one program to another. In the 

interests of compile-time storage economy, therefore, the representation 

of the records in dynamically allocated storage is preferable to any statically 

allocated structure, a decision which we reflect in Pascal by introduction of 

the pointer type 

identry = t idrec ; 

The creation and access of all idrecs required will be made through pointers 

of type identry. 

How should we represent types? Each type in a program is shared by, 

and must be associated with, a number of data objects. For storage economy 

each association with a given type should be represented by some reference 

to a single descriptor of the type, rather than by duplication of the descriptor 

at each point of association. Where the number of types to be represented is 

not predetermined, the pointer is again the natural means of denoting such 

references in Pascal, so we introduce a type 

typentry = t typerec ; 

In Mini-Pascal a type is either one of the built-in scalar types (integer, char, 

Boolean) or an array type whose index range and element type is determined 

by the type definition within a variable declaration. A suitable form for the 

type descriptors is thus defined by 

typeform = (scalars, arrays) ; 

typerec = record 

case form : typeform of 

arrays : (indexmin, indexmax : integer ; 

elementtype : typentry) 

end ; 

Notice that no explicit discrimination between the individual scalar types is 

necessary within the descriptors. The descriptor for type integer is that 

pointed to by the entry for the identifier “integer”. Any type represented by 

the same pointer value must be integer. 

The Semantic Table 

The semantic analysis of identifiers involves 

(a) creating a new identifier record for each identifier on encountering its 

declaration, and recording its attributes therein; 

(b) locating the entry for a particular identifier on each of its subsequent 

occurrences, and inspecting its attributes. 
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For block-structured languages such as Mini-Pascal, the process is 

complicated by the fact that more than one entry for an identifier may exist 

and the appropriate entry, as determined by the scope rules of the language, 
must always be selected. 

Clearly some form of table is required to hold the identifier records. 

Since its organization seems independent of the actual analysis applied to the 

attributes stored there, it is logical to isolate this organization from the 

semantic analyzer proper. This separation might be achieved by the intro¬ 
duction of a module of the following form: 

envelope module Table ; 

envelope *Newscope ; 

procedure *Newid (spelling : alfa ; 

var entry : identry) ; 

procedure *Searchid (spelling : alfa ; 

var entry : identry) ; 

begin 

{initialize new scope}; 
He** ' 

9 

{finalize scope} 
end ; 

begin 

{initialize table of scopes} ; 

end ; 

The semantic analyzer must signal the beginning and end of each scope range, 

as determined by the syntactic block structure of the program, by creating an 

instance of the scope envelope. Within this envelope the analyzer may create 

a new identifier entry in the current scope by a call to Newid, or locate the 

appropriate entry for an identifier, in the current or any enclosing scope, 
by a call to Searchid. 

Context-error detection and recovery 

This interface reflects the basic functions of the identifier table in the semantic- 

analysis process. However, its precise behavior may be further refined in 

relation to the errors of identifier context which semantic analysis must 
detect and recover from. 
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Consider, for example, the handling of an identifier encountered as the 

first symbol of a statement. The analyzer actions must take the general form: 

Locate identifier in table ; 

if none exists 

then error—undeclared identifier 
else 

if not class in [vars,procs] 

then error—identifier out of context 
else . . . 

It turns out that the screening tests for: 

(a) undeclared identifiers, and 

(b) identifiers of inappropriate class 

are common to every context in which Searchid is required. It is more logical 

therefore to incorporate them within Searchid. To do so, however, requires a 

further parameter in the parameter list—to specify the acceptable classes of 
identifier at that moment—thus: 

procedure Searchid (spelling : alfa ; 

allowableclasses : set of idclass ; 

var entry : identry) ; 

When an undeclared identifier is detected, semantic error recovery 

demands that a new entry for the identifier be created at that point. This 

will prevent repeated flagging of the same undeclared identifier at its every 

occurrence in the program being compiled. This too can be incorporated 

within the specification of Searchid. 

With these refinements the procedure Searchid is guaranteed to return a 

pointer to an identifier entry of appropriate class at every call. This guarantee 

considerably simplifies the semantic analysis code around the point of call. 

For example the statement analysis outlined above becomes: 

Table.Searchid (scan.spelling, [vars, procs], idfound) ; 

case idfound t .class of 

vars : assignment ; 

procs : .. . 

end 

The procedure Newid can deal with duplicate declaration errors in a 

similar manner. When a second declaration of some identifier occurs in a 

given scope, whose attributes differ from the first, semantic-error recovery 

suggests that both entries should be retained and the more appropriate one 

chosen at any subsequent occurrence of the identifier. Provided Newid makes 
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the duplicate entries, Searchid will sometimes be able to choose between them 

—on the basis of appropriate class. 

Storage control and recovery 

Newid is responsible for the creation of the dynamically allocated records 

used to hold the identifier attributes. While our concept of these attributes so 

far is simple, in general they, and the storage required for their representation, 

may vary considerably from one class of identifier to another. To achieve 

storage economy Newid must therefore be aware of the required class of 

identifier and hence of its storage requirement. We therefore extend the 

parameter list to accommodate this information, thus: 

procedure Newid {spelling : alfa ; 

classneeded : idclass ; 

var entry : i den try) ; 

This new parameter also enables Newid to fill each new identifier record with 

a set of default attributes, an action which again simplifies coding in the 

analyzer proper. 
In a one-pass compiler all usage of the identifier entries takes place 

between the opening and closing of the scope in which they are created. It is 

possible therefore to reclaim the storage occupied by the local identifier 

entries when closing any scope, and storage economy dictates that this should 

be done. This storage recovery can be programmed into the finalization 

sequence of the scope envelope, according to the organization chosen for 

identifier records within the table module. 

A similar lifetime is sufficient for the type records created within any 

scope. To enable these to be dealt with in the same way a final extension is 

made to the scope envelope interface—-to put the creation of type records, 

and hence their collection and disposal, under its control. This we do by a 

further interface procedure: 

procedure Newtype (var entry : typentry ; 

formneeded : typeform) ; 

Programming the Table Module 

With these refinements of its interface settled, the internal organization of 

the table module can now be considered. To reflect the block structure and 

corresponding identifier scopes in the program being compiled the table must 

clearly be held as a stack of sub-tables, one for each scope currently in 

existence, with the topmost sub-table holding the identifier records for the 

current local scope. As we saw in Section 1, this organization can be repre¬ 

sented in Pascal by introducing types 
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scope = t scoperec ; 

scoperec = record 

local identifiers . . . ; 

enclosing scope : scope 
end ; 

and a pointer variable which always points to the scoperec representing the 
current local scope: 

localscope : scope ; 

The initial action required on creating a new instance of a scope envelope is 

readily expressed as 

procedure Openscope ; 

var newscope : scope ; 

begin 

newfiiewscope) ; 

with newscope t do 

begin 

local identifiers : = none ; 

enclosing scope : = localscope 

end ; 

localscope := newscope 

end ; 

The hierarchical search which block structure demands of Searchid will 

have the form 

procedure Searchid (...); 

var thisscope : scope ; 

begin 

thisscope := localscope ; 

repeat 
search for identifier required 

in subtable thisscope t Jocal identifiers 

and exit if found ; 
thisscope := thisscope t .enclosingscope 

until thisscope = nil ; 

identifier not found 

end ; 

How do we organize and search the sub-tables holding the identifiers 

local to each scope? After character handling, table searching is the second 

most time-consuming activity in most compilers, so it is important that an 
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organization allowing fast searching be chosen. Simple linear lists are too 

slow when programs containing a large number of identifiers are compiled. 

Hash tables are undoubtedly the fastest organization for simple table look-up, 

but their advantage is blunted when used in a block-structured environment. 

As a simpler compromise we will adopt a binary-tree organization for each 

sub-table, which gives a reasonably fast search without excessive storage 
overheads. 

The identifier records created in each scope can be organized as nodes 

in a binary tree by the addition of two pointer fields to each record, which 

point to the root node of the left and right sub-trees, thus 

idrec = record 

name : alfa ; 

leftlink, rightlink : identry ; 

class : ... 

end ; 

Trees are maintained such that the identifier at any node is alphabetically 

greater than any identifier in its left sub-tree, but less than any identifier in 

its right sub-tree. This allows searching by the binary-split technique. 

Each sub-table within a scope record is now representable by a pointer 
to the root node of the corresponding binary tree, thus: 

scoperec = record 

firstlocal ; identry ; 

enclosingscope : scope 
end 

and the process of searching the sub-tables within Searchid is expressible as 
follows ,. , . 

thisentry := this scope t .firstlocal ; 
while thisentry # nil do 

if thisentry t .name > spelling 

then thisentry : = thisentry t . leftlink 
else 

if thisentry t .name < spelling 

then thisentry : = thisentry t .rightlink 
else entry found ; 

entry not found 

The logic for inserting a new entry within Newid is similar except that 

the occurrence of a nil pointer denotes the appropriate point for insertion. 

Listing 5 shows the detailed realization of this logic for both Newid and 
Searchid. 



Listing 5 

ENVELOPE NODULE TABLE ; 

it THE TABLE NODULE ORGANISES THE CREATION OF, LOCATION OF, AND *) 
' STORAGE RECOVER! FROM, THE IDENTIFIER AND TYPE RECORDS UHICH +) 

SUPPORT SEMANTIC ANALYSIS *) 
<♦ *) 

<* THE TABLE IS ORGANISED AS A SET OF BINARY TREES, ONE FOR *) 
<* EACH IDENTIFIER SCOPE CURRENTLY OPEN, THE NESTING OF THESE *) 
(* SCOPES BEING REPRESENTED BY A STACK OF SCOPE RECORDS *) 
(* *> 
<* SCOPE HOUSEKEEPING IS CARRIED OUT BY AN INSTANCE OF THE SCOPE *> 
<* ENVELOPE CREATED FOR EACH BLOCK. UITHIN THIS ENVELOPE +> 
<* INSERTION AND LOOKUP OF IDENTIFIERS UITHIN THE TABLE IS *) 
<* PROVIDED BY THE TUO PROCEDURES "NEUID" AND "SEARCHID". *) 
<* *) 

<* RECOVERY FROM SEMANTIC ERRORS IS ACCOMODATED UITHIN THESE DATA *> 
(* STRUCTURES AND PROCEDURES AS FOLLOWS *> 
(* *) 

(* (1) IF NEUID FINDS AN ENTRY FOR THE IDENTIFIER ALREADY IN *) 
(* THE CURRENT SCOPE, AN ERROR IS FLAGGED BUT A SECOND ENTRY •*) 
(* IS STILL MADE(FOR POSSIBLE SELECTION BY SEARCHID AS *) 
<* BELOU) *> 
(* *) 

(* (2) SEARCHID UHEN CALLED IS PASSED A PARAMETER SPECIFYING *) 
(* THE ACCEPTABLE CLASSES OF ENTRY TO BE FOUND . IF THE +> 
<* FIRST ENTRY ENCOUNTERED FOR THE IDENTIFIER IS NOT OF AN *) 
(* ACCEPTABLE CLASS SEARCHING CONTINUES UITHIN THE CURRENT *) 
(* SCOPE FOR A POSSIBLE DUPLICATE ENTRY. IF NO ACCEPTABLE *) 
(* DUPLICATE IS FOUND IN THE SCOPE A MISUSE ERROR IS *) 
<* REPORTED AND AN ANONYMOUS DEFAULT ENTRY OF ACCEPTABLE *) 
(* CLASS IS RETURNED. *) 
(* *) 

i* (3) IF SEARCHID FAILS TO FIND AN ENTRY IN ANY SCOPE FOR THE ») 
(» IDENTIFIER SOUGHT,AN UNDECLARED ERROR IS REPORTED AND =») 
(* AN ENTRY OF ACCEPTABLE CLASS IS CREATED FOR THE IDENT- •*) 
<* IFIER, UITH OTHERWISE DEFAULT ATTRIBUTES. =») 
(* *) 

(* TO FACILITATE STORAGE RECOVERY THE CREATION OF TYPE ENTRIES *> 
<* IS HANDLED BY THE TABLE MODULE. EACH TYPE ENTRY CREATED BY *) 
(* "NEUTYPE" IS APPENDED IN A LINEAR CHAIN TO THE CURRENT BLOCK =*) 
(* SCOPE ENTRY IN THE DISPLAY. ALL STORAGE ALLOCATED TO TABLE *) 
(* ENTRIES IS RECOVERED AT FINAL CLOSURE OF A BLOCK SCOPE *) 
(* :*) 

(* THE TABLE MODULE REPORTS ERRORS UITH THE FOLLOUING CODES *) 
(* *) 

(* 5) .... IDENTIFIER DECLARED TUICE *> 
<* 52 .... IDENTIFIER NOT DECLARED *) 
(* 53 .... IDENTIFIER OF WRONG CLASS FOR THIS CONTEXT *> 

TYPE SCOPE = 'SCOPEREC ; 
SCOPEREC = RECORD 

FIRSTLQCAL : IDENTRY ; 
TYPECHAIN : TYPENTRY ; 
ENCLOSINGSCOPE : SCOPE 

END ; 

VAR LOCALSCOPE : SCOPE ; 
DEFAULTENTRY : ARRAYCIDCLASSI OF IDENTRY ; 

C : IDCLASS ; 
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PROCEDURE OPENSCOPE ; 

VAR NEUSCOPE : SCOPE ; 

BEGIN 
NEU(NEUSCOPE) ; 
WITH NEUSCOPE' DO 
BEGIN 

FIRSTLOCAL := NIL ; 
TYPECHAIN := NIL ; 
ENCLOSINGSCOPE := LOCALSCOPE 

END ; 
LOCALSCOPE s~ NEUSCOPE 

END <* OPENSCOPE *) ; 

PROCEDURE CLOSESCOPE ; 

VAR OLDSCOPE : SCOPE ; 

PROCEDURE BISPOSEIDS < ROOT : IDENTRY ) ; 

BEGIN 
IF ROOT ■<> NIL THEN 
WITH ROOT'- DO 
BEGIN 

DISPOSEIDS (LEFTLINK) ; 
DISPOSEIDS (RIGHTLINK) ; 
DISPOSE(ROOT) 

END 
END <* DISPOSEIDS *) ; 

PROCEDURE DISPOSETYPES ( FIRSTTYPE : TYPENTRY ) ; 

VAR THISTYPE.NEXTTYPE : TYPENTRY ; 

BEGIN 

NEXTTYPE FIRSTTYPE ; 
WHILE NEXTTYPE <> NIL DO 
BEGIN 

THISTYPE := NEXTTYPE ; NEXTTYPE := THISTYPE'.NEXT 
CASE THISTYPE'.FORM OF 

SCALARS s DISPOSE(THISTYPE.SCALARS) ; 
ARRAYS : DISPOSE(THISTYPE,ARRAYS) 
END 

END 
END <* DISPOSETYPES *) ; 

BEGIN (*CLOSESCOPE *> 
OLDSCOPE := LOCALSCOPE ; 

LOCALSCOPE := LOCALSCOPE .ENCLOSINGSCOPE ; 
UITH OLDSCOPE' DO 
BEGIN 

DISPOSE IDS(FIRSTLOCAL) ; 
DISPOSETYPES(TYPECHAIN) 

END ; 

DISPOSE(OLDSCOPE) 
END <* CLOSESCOPE *> ; 



ENVELOPE *NEUSC0PE ; 

PROCEDURE *NEUID ( SPELLING : ALFA ; 
VAR ENTRY : IDENTRY ; 
CLASSNEEDED : IDCLASS ) ; 

THISSCOPE : SCOPE ; 
NEUENTRY,THISENTRY,LASTENTRY t IDENTRY ; 
LEFTTAKEN : BOOLEAN ; 

BEGIN 

NEU (NEUENTRY) ; 

<* SET NANE, CLASS, AND DEFAULT ATTRIBUTES *) 
UITH NEUENTRY" DO 
BEGIN 

NAHE := SPELLING ; IDTYPE := NIL ; 
LEFTLINK := NIL ; RIGHTLINK := NIL ; 
CLASS := CLASSNEEDED ; 

END ; 

(* ENTER IN CURRENT SCOPE *) 
THISSCOPE := LOCALSCOPE ; 
THISENTRY := THISSCOPE*.FIRSTLOCAL ; 
IF THISENTRY = NIL 
THEN THISSCOPE*.FIRSTLOCAL := NEUENTRY 
ELSE 
BEGIN 

REPEAT 
LASTENTRY := THISENTRY ; 
IF THISENTRY'.NANE > SPELLING 
THEN 
BEGIN 

THISENTRY := THISENTRY".LEFTLINK ; 
LEFTTAKEN := TRUE 

END 
ELSE 

IF THISENTRY".NANE < SPELLING 
THEN 
BEGIN 

THISENTRY := THISENTRY ' .RIGHTLINK 
LEFTTAKEN := FALSE 

END 
ELSE 
BEGIN 

SEMANTICERR0R(51) ; 
THISENTRY := THISENTRY".RIGHTLINK 
LEFTTAKEN := FALSE 

END 
UNTIL THISENTRY = NIL ; 
IF LEFTTAKEN 
THEN LASTENTRY*.LEFTLINK := NEUENTRY 
ELSE LASTENTRY".RIGHTLINK := NEUENTRY 

END ; 

ENTRY := NEUENTRY 

END <* NEUID *> 



PROCEDURE *SEARCHID ( SPELLING : ALFA ; 
OAR ENTRY : IDENTRY ; 

ALLOUABLECLASSES : SETOFIDCLASS ) ; 

LABEL 1 ; 

VAR THISENTRY,LASTENTRY : IDENTRY ; 
MISUSED,LEFTTAKEN : BOOLEAN ; 
THISSCOPE r SCOPE ; 

FUNCTION HOSTLIKELYOF < CLASSES : SETOFIDCLASS ) : IDCLASS : 
BEGIN 

IF VARS IN CLASSES 
THEN HOSTLIKELYOF := VARS 
ELSE IF PROCS IN CLASSES 

THEN HOSTLIKELYOF := PROCS 
ELSE IF TYPES IN CLASSES 

THEN HOSTLIKELYOF := TYPES 
ELSE HOSTLIKELYOF := CONSTS 

END <* HOSTLIKELYOF *) ; 

BEGIN (* SEARCHID *) 

MISUSED :* FALSE ; 

THISSCOPE := LOCALSCOPE ; 
REPEAT 

THISENTRY := THISSCOPE*.FIRSTLOCAL ; 

WHILE THISENTRY <> NIL DO 

IF THISENTRY .NAME > SPELLING 
THEN THISENTRY := THISENTRY ' .LEFTLINK 
ELSE 

IF THISENTRY".NAME < SPELLING 
THEN THISENTRY := THISENTRY*.RIGHTLINK 
ELSE 

IF THISENTRY'.CLASS IN ALLOUABLECLASSES 
THEN GOTO 1 
ELSE 
BEGIN 

MISUSED := TRUE ; 

THISENTRY := THISENTRY*.RIGHTLINK 
END ; 

IF MISUSED THEN 
BEGIN 

SENANTICERR0RO3) ; 

THISENTRY := DEFAULTENTRYIHOSTLIKELYOF<ALLOUABLECLASSES)I 
GOTO 1 

END ; 

THISSCOPE := THISSCOPE*.ENCLOSINGSCOPE 
UNTIL THISSCOPE = NIL ; 

SEHANTICERROR(52) ; 

NEUIDISPELLING,THISENTRY,HOSTLIKELYOF(ALLOUABLECLASSES)) ; 

1: ENTRY := THISENTRY 

END <* SEARCHID *) ; 
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PROCEDURE ♦NEUTYPE ( VAR ENTRY : TYPENTRY ; FORNNEEDED 

VAR THISSCOPE : SCOPE ; 
NEUENTRY : TYPENTRY ; 

BE6IN 
CASE FORNNEEDED OF 

SCALARS : 
BEGIN 

NEU(NEUENTRY,SCALARS) ; 
NEUENTRY".FORM := SCALARS 

END ; 
ARRAYS : 

BEGIN 
NEUINEUENTRY,ARRAYS) ; 
UITH NEUENTRY' DO 
BEGIN 

FORM := ARRAYS ; 
INDEXNIN := 0 ; INDEXHAX := 1 ; 
ELEHENTTYPE := NIL 

END 
END 

END ; 
THISSCOPE := LOCALSCOPE ; 
UITH THISSCOPE" DO 
BEGIN 

NEUENTRY".NEXT := TYPECHAIN ; 
TYPECHAIN := NEUENTRY 

END ; 
ENTRY := NEUENTRY 

END (* NEUTYPE •») ; 

BEGIN (* NEUSCOPE INITIALIZATION *) 
OPENSCOPE ; 

*** ; 
CLOSESCOPE 

END <4 NEUSCOPE FINALIZATION *); 

BEGIN (* TABLE NODULE INITIALIZATION *) 

LOCALSCOPE :* NIL ; 

FOR C := TYPES TO PROCS DO 
BEGIN 

NEU(DEFAULTENTRYECD) ; 
UITH DEFAULTENTRYCCT" DO 
BEGIN 

NAME := ' ' J 
IDTYPE := NIL ; 
CLASS := C 

END 
END ; 

44* 

TYPEFORN ) ; 

END (4TABLE NODULE 4) 9 
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Programming the Semantic Analyzer 

Having chosen a representation for identifiers and their attributes and 

defined a table module to maintain them, we may easily add to the existing 

syntax analyzer framework the additional coding necessary to carry out 

semantic analysis. 

Scope housekeeping is achieved simply by declaring an instance of the 

Newscope envelope in the head of the block analysis procedure Block. The 

built-in identifiers and types which are provided for every Mini-Pascal 

program are implemented by a further scope instance created in the program 

analysis procedure, in which appropriate entries for the built-in identifiers 

and types are created before program analysis begins, thus: 

procedure Programme ; 

instance Builtin : table.newscope ; 
procedure Block ; 

instance Scope : table.new scope ; 

Within the procedure Statementpart the attributes of identifiers denoting 

variables, constants or procedures are obtained by calls to Searchid. There¬ 

after semantic analysis involves a copying and comparison of typentry pointer 

values which represent the types of the variables, operands and expressions 

occurring within statements. By extending each syntax procedure which scans 

a typed construct (Variable, Expression, etc.) by an additional parameter 

through which it returns the type pointer for the construct scanned, the 

transmission of type information between procedures is neatly and securely 
programmed. 

For example the procedure Assignment now becomes: 

procedure Assignment ; 

var vartype, extype : typentry ; 
begin 

Variable (. . . , vartype) ; 

Accept (becomes) ; 

Expression (. . . , extype) ; 

if not compatible (vartype, extype) 

then semanticerror ( ) 
end ; 

The predicate compatible is one needed throughout the semantic-analysis 

code. How should it be defined? Clearly the types denoted by two pointer 
values are compatible: 

(a) if they point to the same type record (i.e. the pointers are equal), or 
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(b) if they point to distinct type records of form arrays, with equal bounds 

and element types. 

Situations may arise, however, due to some preceding error in the 

program, in which the type of some data item is in doubt or unknown. Error 

recovery requires that an unknown type should be regarded as compatible with 

any other type, to avoid unnecessary semantic error messages. By including 

this tolerance of unknown types within the function compatible, repeated 

screening against the effects of previous errors can be avoided in the 

semantic-analysis code. 

In the Mini-Pascal analyzer unknown types are denoted by the pointer 

value nil, so the appropriate definition for the function compatible is as 

follows: 

function compatible (typel, type2 : typentry) : Boolean ; 

begin 

if type 1 = type2 

then compatible : = true 

else 
if {type 1 = nil) or (type2 = nil) 

then compatible : = true 

else 
if {type 1 t .form = arrays) and (type2 t .form = arrays) 

then compatible : = 

{type 1 t .indexmin = type2 t .indexmin) and 

{type 1 t .indexmax = type! t .indexmax) and 

compatible {type 1 t .elementtype, 

typel t . elementtype) 

else compatible : = false 

end ; 

With this function the semantic analysis required in the remainder of 

the analyzer is easily programmed. Listing 6 gives a complete listing of the 

augmented syntax/semantic analyzer which results, and Test 6 shows its 

output for an appropriate test program. 



Listing 6 

ENVELOPE MODULE ANALYZE ; 

CONST ALFALENGTH = 8 ; 

TYPE ALFA = PACKED ARRAY [1..ALFALENGTH] OF CHAR ; 

SYMBOLTYPE = ( I DENT,INTCONST,CHARCONST, 
NOTOP,ANDOP,OROP, 
TIMES,DIVOP,PLUS,MINUS, 
LTOP,LEOP,GEOP,GTOP,NEOP,EQOP, 
RIGHTPARENT,LEFTPARENT,LEFTBRACKET.RIGHTBRACKET, 
COMMA,SEMI COLON,PERIOD,COLON,BECOMES,THRU, 
PROGRAMSY,VARSY,PROCSY,ARRAYSY,OFSY, 
BEGINSY,ENDSY,IFSY,THENSY,ELSESY,UHILESY,DOSY, 
READSY,UR I TESY, 
OTHERSY ) ; 

ENVELOPE MODULE SCAN = LISTING2 IN LIBRARY ; 

(* <A) SYNTAX ANALYSIS 
(* 

<* SYNTAX ANALYSIS OF MINI-PASCAL PROGRAMS IS IMPLEMENTED 
(* AS A SET OF RECURSIVE DESCENT PROCEDURES. THESE PROCEDURES 
<* ARE BASED ON THE SYNTAX RULES GIVEN IN THE LANGUAGE DEFN 
(* AND ARE NESTED AS TIGHTLY AS THE MUTUAL INTERACTION PERMITS. 
(*- THE ORDER, NAMES, AND NESTING OF THE PROCEDURES IS AS FOLLOUS 
<* 
(* PROGRAMME 
<* BLOCK 
(* VARPART 

<* VARDECLARATION 
<* TYP 

<* SIMPLETYPE 
<* INDEXRANGE 
<* PROCPART 

<* PROCDECLARATION 
<* STATPART 

<* COMPOUNDSTATEMENT 
<* STATEMENT 
<« VARIABLE 
<* EXPRESSION 

(* SIMPLEEXPRESSION 
<* TERM 
<* FACTOR 
<* ASSIGNMENT 
<* READSTATEMENT 

<* INPUTVARIABLE 
<* URITESTATEMENT 
<* OUTPUTVALUE 
<* IFSTATEMENT 
<* UHILESTATEMENT 
<* 

(* 

*> 
*) 
*) 

*) 
*) 

*) 

*> 
*) 

*) 

■*) 

*) 

*) 

*) 

*) 
*) 
*) 

*) 
*) 

*) 

*> 
*) 
*) 
*) 

*) 
*) 
*) 

*> 
♦ ) 
*) 

*> 
*) 

*) 
*) 

*) 
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<* THE SYNTAX ANALYZERS ARE WRITTEN ON THE ASSUMPTION THAT THE *> 
<* NEXT SYNTACTIC GOAL CAN ALWAYS BE SELECTED BY INSPECTION OF *) 
(* (AT MOST) THE NEXT INCOMING SYMBOL < I.E. THAT THE UNDERLYING *) 
<* GRAMMAR IS LL<1) ). THIS IS NOT SO AT THE F0LLOUING POINTS *) 
<* IN THE SYNTAX RULES ACTUALLY USED *) 
(* •■*) 

<* I. A STATEMENT BEGINNING WITH AN IDENTIFIER MAY BE *) 
<* EITHER AN ASSIGNMENT OR A PROCEDURE CALL *) 
(* 2. A FACTOR BEGINNING WITH AN IDENTIFIER MAY BE EITHER ‘> 
<* A VARIABLE OR A CONSTANT *) 
(* *) 

(* IN CASE I TO RESOLVE THE CHOICE ON A PURELY SYNTACTIC *) 
<* BASIS WOULD REQUIRE A DISTORTION OF THE SYNTAX RULES *) 
(* CHOICE 2 CANNOT BE SYNTACTICALLY RESOLVED IN SOME CASES . *) 
(* HOWEVER IF PARALLEL SEMANTIC ANALYSIS IS ASSUMED (AS IN *) 
<* THE CASE OF THIS COMPILER) THESE CHOICES CAN BE RESOLVED ♦) 
(* WITHOUT SYNTAX DISTORTION, BY INSPECTION OF THE CURRENT *) 
<* SEMANTIC ATTRIBUTES OF THE IDENTIFIER INVOLVED. FOR THIS *) 
(* REASON SYNTACTIC RESOLUTION OF THESE CHOICES IS NOT USED. ») 
(# *) 

<« THE ANALYZER GENERATES SYNTAX ERROR CODES WITH THE ■*) 
(* FOLLOWING MEANINGS: *> 
<* *) 

(* 10 . SYMBOL EXPECTED WAS IDENTIFIER *) 
(* 11 . SYMBOL EXPECTED WAS INTEGER CONSTANT *) 
<* 12 . SYMBOL EXPECTED WAS CHARACTER CONSTANT .*) 
(* 13 . *) 
(* *) 

(* I.E. ONE VALUE FOR EACH OF THE VALUES OF SYMBOLTYPE. *) 
<* THE FINAL VALUE ORD(OTHERSY)+10 IS USED TO MEAN *) 
(* *) 

<* NN . UNEXPECTED SYMBOL «) 

TYPE 

SETOFSYMBOLS = SET OF SYMBOLTYPE ; 

VAR 

STATSTARTERS,FACTORSTARTERS,MULOPS,SIGNS,ADDOPS,RELOPS : SETOFSYMBOLS ; 

PROCEDURE SYNTAXERROR ( EXPECTEDSYMBOL : SYMBOLTYPE ) ; 

BEGIN 
SOURCE.ERROR(ORD(EXPECTEDSYMBOL)+10,SCAN.SYMBOLPOS1TION) 

END (* SYNTAXERROR *) ; 

PROCEDURE ACCEPT ( SYMBOLEXPECTED : SYMBOLTYPE ) ; 

BEGIN 
IF SCAN.SYMBOL = SYMBOLEXPECTED 
THEN SCAN.NEXTSYMBOL 
ELSE SYNTAXERROR(SYMBOLEXPECTED) 

END <* ACCEPT ♦) ; 
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<=» (B) SYNTACTIC ERROR RECOVERY *> 
<* =*) 

(* RECOVERY IN THE SYNTAX ANALYSIS PROCESS FOLLOWING THE *) 
(* DISCOVERY OF A SYNTAX ERROR IS INCORPORATED INTO THE *) 
<* SYNTAX PROCEDURES ON THE FOLLOWING BASIS *) 
(* *) 

<* 1. EACH PROCEDURE WHEN CALLED IS PASSED AN ACTUAL *) 
<* PARAMETER WHICH IS A SET OF SYMBOLS UHICH ARE *) 
(* POSSIBLE FOLLOWERS OF THE STRING WHICH IT SHOULD *) 
(* SCAN. THESE FOLLOWERS NORMALLY INCLUDE *> 
(* (A) ALL SYMBOLS WHICH MAY LEGITIMATELY FOLLOU *> 
(* THE STRING TO BE SCANNED *> 
<* (B) SUCH ADDITIONAL SYMBOLS AS A SUPERIOR *’ 
<* (CALLING) PROCEDURE MAY WISH TO HANDLE IN *) 
<* THE EVENT OF ERROR RECOVERY *) 
(* *) 

<* 2. WHEN ENTERED THE PROCEDURE MAY ENSURE THAT THE *> 
<* CURRENT SYMBOL IS AN ACCEPTABLE STARTER FOR THE «) 
<* STRING TO BE SCANNED, AND IF NOT SCAN FORWARD +) 

<* UNTIL SUCH A SYMBOL IS FOUND (SUBJECT TO A. BELOU) *) 
<* *) 

(* 3. WHEN CALLING A SUBSIDIARY SYNTAX PROCEDURE THE *) 
(* PROCEDURE PASSES ON AS FOLLOWERS ITS OWN FOLLOWERS PLUS *) 
<* THOSE SYMBOLS IF ANY WHICH IT MAY DETERMINE AS *) 

(* FOLLOWERS FOR THE SUBSTRING TO BE SCANNED *) 
(* *) 

(* 4. TO RECOVER FROM A SYNTAX ERROR THE PROCEDURE MAY ») 
(* SCAN OVER (SKIP) ANY SYMBOL PROVIDED IT IS NOT *) 
(* CONTAINED IN THE FOLLOWERS PASSED TO IT *) 

<* *) 

<* 5. ON EXIT THE SYNTAX PROCEDURE ENSURES THAT THE CURRENT *) 

(* SYMBOL IS CONTAINED IN THE FOLLOWERS PASSED TO IT, *) 
<* FLAGGING A TERMINAL ERROR AND SKIPPING IF THIS IS NOT *) 
(* INITIALLY THE CASE. *> 

<* *) 

<* TESTS 2 AND 5 ARE IMPLEMENTED BY THE DECLARATION OF AN *) 
<* INSTANCE OF A CONTEXT CHECKING ENVELOPE UITHIN EACH *) 
(* SYNTAX PROCEDURE ,> 

ENVELOPE CHECK ( STARTERS,FOLLOWERS : SETOFSYMBOLS ) ; 

PROCEDURE SKIPTO ( RELEVANTSYMBOLS : SETOFSYMBOLS ) ; 
BEGIN 

WHILE NOT (SCAN.SYMBOL IN RELEVANTSYMBOLS) 
DO SCAN.NEXTSYMBOL 

END (* SKIPTO *) ; 

BEGIN 

IF NOT (SCAN.SYMBOL IN STARTERS) THEN 

BEGIN SYNTAXERROR(OTHERSY); SKIPTO(STARTERS+FOLLOWERS) END * 
IF SCAN.SYMBOL IN STARTERS THEN ’ 
BEGIN 

*** <« EXECUTE ENVELOPED BLOCK *) ; 

IF NOT (SCAN.SYMBOL IN FOLLOWERS) THEN 

BEGIN SYNTAXERROR(OTHERSY); SKIPTO(FOLLOWERS) END 
END 

END (* CHECK ENVELOPE *) ; 
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(* (C) SEMANTIC ANALYSIS AND SEMANTIC ERROR RECOVERY *> 

<* ♦) 

<* *) 

(* SEMANTIC ANALYSIS AND SEMANTIC ERROR RECOVERY ARE IMPLEMENTED *> 
(* DY "ENRICHMENT" OF THE SYNTAX ANALYZER WITH *) 
<* SEMANTIC INTERLUDES. THE SEMANTIC ANALYSIS DEPENDS ON THE *) 
<♦ FOLLOWING DATA STRUCTURES AND MANIPULATIVE *) 
(* PROCEDURES *) 

<* *) 

<* *) 

(* (1) IDENTIFIER ENTRIES *) 

<* *) 

(* AN ENTRY IS RECORDED FOR EACH IDENTIFIER,EITHER STANDARD OR *> 
(* PROGRAM DEFINED, UHICH MAY APPEAR IN THE PROGRAM BEING *) 
(* COMPILED. THE FORM OF ENTRY USED DEPENDS ON THE "CLASS" OF *) 
<* USAGE OF THE IDENTIFIER AND IS REPRESENTED BY THE *) 
(* RECORD TYPE "IDREC". CREATION, LOCATION AND DESTRUCTION OF *) 
<* THESE RECORDS IS HANDLED BY THE SUB-MODULE "TABLE". #) 
(* ••») 

(* STANDARD IDENTIFIERS SUPPORTED BY THE LANGUAGE ARE HELD ♦) 
(* WITHIN THE TABLE AS IF DECLARED IN A PSEUDO-BLOCK *) 

<* ENCLOSING THE MAIN PROGRAM . THESE ENTRIES ARE CREATED ON *) 
<* INITIAL ENTRY TO THE ANALYZER MODULE *) 
(* ■*) 

<* *) 

(* (2) TYPE ENTRIES ■*) 

(* *) 

<* ALL TYPES UNDERLYING THE DATA DEFINED BY THE PROGRAM BEING *) 
(* COMPILED ARE REPRESENTED BY TYPE ENTRIES UHOSE FORM IS *) 
<* DETERMINED BY THE "FORM" OF THE TYPE SO REPRESENTED (I.E. *) 
<* SCALARS,ARRAYS,ETC.). ENTRIES ARE CONSTRUCTED USING A *) 
<* CORRESPONDING VARIANT RECORD TYPE “TYPEREC". *) 
(* *) 

<* THESE TYPE ENTRIES ARE ACCESSED ONLY VIA THE IDENTIFIER *) 
(* TABLE ENTRIES FOR TYPE IDENTIFIERS, OR VIA THE REPRESENTATION *) 
(* OF THE DATA OBJECTS (VARIABLES,CONSTANTS,EXPRESSIONS) *) 
<* UHOSE TYPE THEY DESCRIBE. THUS FOR EXAMPLE ALL IDENTIFIER *) 
(« TABLE ENTRIES HAVE A COMMON FIELD "IDTYPE" UHICH POINTS TO *) 

(* AN UNDERLYING TYPE ENTRY (UITH AN OBVIOUS INTERPRETATION FOR *) 
(* ALL CLASSES OF IDENTIFIER OTHER THAN "PROC") *) 
<* *) 

(* THE TYPE ENTRIES REPRESENTING THE STANDARD TYPES SUPPORTED «) 
(* BY THE LANGUAGE (INTEGER,CHAR,ETC.) ARE CREATED ON INITIAL *) 
<* ENTRY TO THE ANALYZER. THESE ENTRIES ARE DIRECTLY ACCESSIBLE *> 
(♦ VIA POINTER VARIABLES "INTYPE","CHARTYPE",ETC., AS *') 
(* UELL AS VIA THE IDENTIFIER ENTRIES FOR "INTEGER","CHAR",ETC. *) 
(* *) 

<* +) 

(* (3) THE FUNCTION COMPATIBLE *) 
(* *) 

(* TO FACILITATE TYPE ANALYSIS UITHIN THE SEMANTIC ANALYZER +) 
(* A GENERAL-PURPOSE BOOLEAN FUNCTION "COMPATIBLE" IS PROVIDED *) 
(* TO TEST THE COMPATIBILITY OF TUO TYPES AS REPRESENTED BY •♦) 
<* POINTERS TO THE CORRESPONDING TYPE ENTRIES. A RESULT TRUE IS *) 
(* RETURNED IF THE TYPES ARE IDENTICAL (I.E. THE POINTERS POINT «) 
(* TO THE SAME TYPE ENTRY), OR STRICTLY EQUIVALENT (I.E. TUO *) 
<* DISTINCT TYPE ENTRIES OF IDENTICAL FORM AND CONTENT) *) 

(* *) 
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(* IN ALL SITUATIONS WHERE THE TYPE OF A DATA OBJECT IS NOT *> 
<* DETERMINED IT IS REPRESENTED BY A POINTER VALUE 'NIL'. *> 
(* THE TYPE-CHECKING FUNCTION "COMPATIBLE" IS DEFINED TO RETURN *) 
(* 'TRUE' IF EITHER OF ITS PARAMETERS HAS THIS VALUE. IN THIS *) 
(* WAY NORMAL TYPE ANALYSIS CAN PROCEED WITHOUT A PRELIMINARY *) 

(* SCREENING FOR INDETERMINATE TYPES AT EVERY POINT AT WHICH *) 

(* THEY MIGHT ARISE. *} 

(« 
<* SEMANTIC ERRORS ARE REPORTED WITH THE FOLLOUING CODES *) 

<* '4) 

<* 61 _ INDEXED VARIABLE MUST BE OF ARRAY TYPE *> 
(* 62 .... INDEX EXPRESSION MUST BE OF TYPE INTEGER *> 
(* 63 .... OPERAND MUST BE OF TYPE BOOLEAN *> 
(♦ 64 .... OPERAND MUST BE OF TYPE INTEGER *> 
(* 65 .... OPERANDS MUST BOTH BE INTEGER, OR BOTH CHAR +) 
<* 66 .... EXPRESSION MUST BE OF SAME TYPE AS VARIABLE *> 
<* 67 .... INPUT VARIABLE MUST BE OF TYPE INTEGER OR CHAR *> 
<* 68 .... OUTPUT VALUE MUST BE OF TYPE INTEGER OR CHAR *) 
<* 69 .... EXPRESSION MUST BE OF TYPE BOOLEAN *> 

TYPE 

TYPENTRY = TYPEREC ; IDENTRY = IDREC ; 

TYPEFORM = (SCALARS,ARRAYS) ; 

TYPEREC = RECORD 
NEXT : TYPENTRY ; 
CASE FORM : TYPEFORM OF 

ARRAYS : 

(INDEXMIN,INDEXMAX : INTEGER ; 
ELEMENTTYPE : TYPENTRY ) 

END ; 

IDCLASS = (TYPES,CONSTS,VARS,PROCS) ; 

SETOFIDCLASS = SET OF IDCLASS ; 

IDREC = RECORD 
NAME : ALFA ; 
LEFTLINK,RIGHTLINK : IDENTRY | 
IDTYPE : TYPENTRY ; 
CLASS : IDCLASS 

END ; 

VAR 

INTTYPE,BOOLTYPE,CHARTYPE : TYPENTRY ; 

PROCEDURE SEMANTICERROR ( CODE : INTEGER ) ; 

BEGIN 

SOURCE.ERROR(CODE,SCAN.SYMBOLPOSITION) 
END (* SEMANTICERROR «) ; 
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ENVELOPE MODULE TABLE = LISTING5 IN LIBRARY ; 

FUNCTION COMPATIBLE (TYPEI,TYPE2 : TYPENTRY) : BOOLEAN ; 

<* DECIDES WHETHER TYPES POINTED AT BY 
TYPEI AND TYPE2 ARE COMPATIBLE *> 

BEGIN <* COMPATIBLE *> ; 
IF TYPEI = TYPE2 
THEN COMPATIBLE := TRUE 
ELSE 

IF <TYPE 1=NIL) OR <TYPE2=NIL) 
THEN COMPATIBLE := TRUE 
ELSE 

IF (TYPEI'.FORN=ARRAYS) AND <TYPE2\F0RM=ARRAYS) 
THEN COMPATIBLE := 

(TYPEI.INDEXMIN = TYPE2 .INDEXMIN) AND 
(TYPEI.INDEXMAX = TYPE2'.INDEXMAX) AND 
COMPATIBLE(TYPEI' .ELEMENTTYPE,TYPE2'’.ELEMENTTYPE) 

ELSE COMPATIBLE := FALSE 
END (* COMPATIBLE *) ; 

PROCEDURE ^PROGRAMME ; 

INSTANCE BUILTIN : TABLE.NEUSCOPE ; 

VAR ENTRY : IDENTRY ; 

PROCEDURE BLOCK ( FOLLOWERS : SETOFSYMBOLS ; BLOCKID : IDENTRY ) ; 

INSTANCE CONTEXT:CHECK< CVARSY,PROCSY.BEGINSY]TFOLLOUERS) ; 

SCOPE : TABLE.NEUSCOPE ; 

PROCEDURE VARPART ( FOLLOUERS : SETOFSYMBOLS ) ; 

INSTANCE CONTEXT:CHECK(CVARSYI+FOLLOUERS,FOLLOUERS) ; 

PROCEDURE VARDECLARATION ( FOLLOUERS : SETOFSYMBOLS ) ; 

INSTANCE CONTEXT:CHECK(EIDENT,COMMA,COLON],FOLLOWERS) ; 
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TYPE 

IDLIST = LISTREC ; 

LISTREC = RECORD 

ID : IDENTRY ; 

NEXTONLIST : IDLIST 

END ; 

OAR 

VARIABLELIST : RECORD 

HEAD,TAIL : IDLIST 

END ; 

VARTYPE : TYPENTRY ; 

PROCEDURE NEUVARIABLE ; 

VAR 

VARENTRY : IDENTRY ; 

LISTENTRY : IDLIST ; 

BEGIN 

IF SCAN.SYMBOL = 1DENT THEN 

BEGIN 

SCOPE.NEUID<SCAN.SPELLING,VARENTRY,VARS) 

NEU(LISTENTRY) ; 

UITH LISTENTRY' DO 

BEGIN 

ID := VARENTRY ; 

NEXTONLIST := NIL 

END ; 

UITH VARIABLELIST DO 

BEGIN 

IF HEAD = NIL 

THEN HEAD := LISTENTRY 

ELSE TAIL'.NEXTONLIST := LISTENTRY ; 

TAIL := LISTENTRY 

END 

END 

END <* NEU VARIABLE *) ; 

PROCEDURE ADDATTRIBUTES ; 

VAR 

LISTENTRY,OLDENTRY : IDLIST ; 
BEGIN 

LISTENTRY := VARIABLELIST.HEAD ; 

WHILE LISTENTRY <> NIL DO 

UITH LISTENTRY" DO 

BEGIN 

ID .IDTYPE := VARTYPE ; 

OLDENTRY := LISTENTRY ; 

LISTENTRY := NEXTONLIST ; 

DISPOSE(OLDENTRY ) 

END 

END <* ADD ATTRIBUTES *) ; 
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PROCEDURE TYP ( FOLLOUERS : SETOFSYMBOLS ; 

VAR TYPEFOUND : TYPENTRY ) ; 

INSTANCE CONTEXT:CHECK([IDENT,ARRAYSY],FOLLOUERS) ; 

PROCEDURE SIHPLETYPE ( FOLLOUERS : SETOFSYMBOLS ; 

VAR TYPENAMED s TYPENTRY ) ; 

INSTANCE CONTEXT:CHECK<[IDENT],FOLLOUERS) ; 

VAR 

TYPEID : IDENTRY ; 

BEGIN 

SCOPE.SEARCH ID(SCAN.SPELLING,TYPE ID,[TYPES]); 

TYPENANED := TYPEID .IDTYPE ; 

ACCEPT(IDENT ) ; 

END <* SIHPLETYPE *) ; 

PROCEDURE INDEXRANGE ( FOLLOUERS : SETOFSYHBOLS ) ; 

INSTANCE CONTEXT:CHECK([INTCONST,THRU],FOLLOUERS) ; 

BEGIN 

TYPEFOUND .INDEXHIN := SCAN.CONSTANT ; 

ACCEPT(INTCONST ) ; 

ACCEPT(THRU) ; 

TYPEFOUND'.INDEXMAX := SCAN.CONSTANT ; 

ACCEPT(INTCONST ) ; 

END <* INDEXRAN6E *) ; 

BEGIN (* TYP *) 

IF SCAN.SYMBOL = IDENT 

THEN SIHPLETYPE(FOLLOUERS,TYPEFOUND) 

ELSE 

BEGIN 

SCOPE.NEUTYPE(TYPEFOUND,ARRAYS) ; 

ACCEPT(ARRAYSY) ; 

ACCEPT(LEFTBRACKET ) ; 

INDEXRANGE([RIGHTBRACKET,OFSY] + FOLLOUERS) ; 

ACCEPT(RIGHTBRACKET) ; 

ACCEPT(OFSY) ; 

SIMPLETYPE(FOLLOUERS,TYPEFOUND'.ELEHENTTYPE) ; 

END 

END (* TYP *) ; 



BEGIN <* VARDECLARATION ••*) 

VARIA8LELIST.HEAD := NIL ; 

NEUVARIABLE ; 

ACCEPT(IDENT) ; 

UHILE SCAN.SYMBOL = COMMA BO 

BEGIN 

ACCEPT(COMMA) ; 

NEUVARIABLE ; 

ACCEPT(IDENT) 

END ; 

ACCEPT(COLON) ; 

TYP(FQLLOUERS,VAR TYPE) ; 

ADDATTRIBUTES 

END (* VARDECLARATION *) ; 

BEGIN <* VARPART *) 
IF SCAN.SYMBOL = VARSY THEN 
BEGIN 

ACCEPT(VARSY) ; 
REPEAT 

VARDECLARATION(CSEMICOLON] +FOLLOWERS) ; 
ACCEPT(SEMICOLON) 

UNTIL SCAN.SYMBOL <> IDENT 
END 

END (* VARPART *) ; 

PROCEDURE PROCPART ( FOLLOUERS : SETOFSYMBOLS ) ; 

INSTANCE CONTEXT:CHECK<IPROCSYI+FOLLOUERS,FOLLOUERS) ; 

PROCEDURE PROCDECLARATION ( FOLLOUERS : SETOFSYMBOLS ) 

INSTANCE CONTEXT:CHECK(CPROCSY],FOLLOUERS) ; 

VAR 

PROCID : IDENTRY ; PROCNAME : ALFA ; 

BEGIN (* PROCDECLARATION *) 
ACCEPT(PROCSY) ; 
IF SCAN.SYMBOL = IDENT 

THEN PROCNAME := SCAN.SPELLING 
ELSE PROCNAME := ■???????? ■ 
SCOPE.NEUID(PROCNAME,PROCID,PROCS ) ; 
ACCEPT(I DENT ) ; 
ACCEPT(SEMICOLON) ; 

BLOCK(FOLLOWERS,PROCID) ; 
END (* PROCDECLARATION *) ; 

BEGIN <:* PROCPART +> 

UHILE SCAN.SYMBOL = PROCSY DO 
BEGIN 

PROCDECLARATION([SEMICOLON,PROCSYI+FOLLOUERS) • 
ACCEPT(SEMICOLON) 

END 
END <* PROCPART *) ; 
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PROCEDURE STATPART ( FOLLOWERS : SETOFSYHBOLS ) ; 

INSTANCE CONTEXT:CHECK([BEGINSY],FOLLOUERS) ; 

PROCEDURE COHPOUNDSTATEHENT < FOLLOUERS : SETOFSYHBOLS ) ; 

INSTANCE CONTEXT:CHECK<[BEGINSY],FOLLOUERS) ; 

PROCEDURE STATEMENT ( FOLLOUERS : SETOFSYHBOLS ) ; 

INSTANCE CONTEXT:CHECK!STATSTARTERS,FOLLOUERS) ; 

VAR 
FIRSTID : IDENTRY ; 

PROCEDURE EXPRESSION ( FOLLOWERS : SETOFSYHBOLS ; 
VAR EXPTYPE : TYPENTRY ) ; FORUARD ; 

PROCEDURE VARIABLE ( FOLLOUERS : SETOFSYHBOLS ; 
VAR VARTYPE s TYPENTRY ) ; 

INSTANCE CONTEXT:CHECK(CIDENTD,FOLLOWERS) ; 

VAR 
VARID : IDENTRY ; 
INDEXTYPE : TYPENTRY ; 

BEGIN (* VARIABLE *) 
SCOPE. SEARCHI DOC AN. SPELLING, VAR ID, CVARST) ; 
VARTYPE := VARID'.IDTYPE ; 
ACCEPT(IDENT) ; 
IF SCAN.SYMBOL = LEFTBRACKET THEN 
BEGIN 

IF VARTYPE <> NIL THEN 
IF VARTYPE .FORH <> ARRAYS THEN 
BEGIN 

SEhANTICERROR(61) ; 
VARTYPE := NIL 

END ; 
ACCEPT(LEFTBRACKET) ; 
EXPRESSION![RIGHTBRACKETI+FOLLOUERS,INDEXTYPE) ; 
IF NOT COMPATIBLE!INDEXTYPE , I NT TYPE) 
THEN SEMANTICERR0R<62) ; 
IF VARTYPE <> NIL THEN 

VARTYPE := VARTYPE\ElEHENTTYPE ; 
ACCEPT(RIGHTBRACKET) 

END ; 
END <* VARIABLE *) ; 
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PROCEDURE EXPRESSION ; 

VA R 
FIRSTTYPE : TYPENTRY ; 
OPERATOR : SYHBOLTYPE ; 

PROCEDURE SIHPLEEXPRESSION ( FOLLOWERS : SETOFSYHBOLS ) ; 

INSTANCE CONTEXT:CHECK(FACTORSTARTERS+SIGNS,FOLLOWERS) 

VAR 
SIGNED : BOOLEAN ; 
FIRSTTYPE : TYPENTRY ; 
OPERATOR : SYHBOLTYPE ; 

PROCEDURE TERN ( FOLLOWERS : SETOFSYNBOLS ) ; 

FIRSTTYPE : TYPENTRY ; 
OPERATOR : SYHBOLTYPE ; 

PROCEDURE FACTOR < FOLLOWERS : SETOFSYHBOLS > ; 

INSTANCE CONTEXT:CHECK<FACTORSTARTERS,FOLLOUERS) 

VAR 
FIRSTID : IDENTRY ; 

BEGIN 
BEGIN 

CASE SCAN.SYMBOL OF 
IDENT : 

BEGIN 

SCOPE.SEARCHIBISCAN.SPELLING, 
FIRSTID, 
CVARS.CONSrSI) ; 

CASE FIRSTID'.CLASS OF 
CONSTS : 

BEGIN 

EXPTYPE := FIRSTID .ID T YPE ; 
ACCEPT(IDENT) 

END ; 
VARS : 

VAR I ABLE(FOLLOUERS,EXPTYPE) 
END 

END ; 
INTCONST : 

BEGIN 

EXPTYPE := INTTYPE ; 
ACCEPT(INTCONST) 

END ; 
CHARCONST : 

BEGIN 

EXPTYPE := CHARTYPE ; 
ACCEPT(CHARCONST) 

END ; 



LEFT PAR ENT : 
BEGIN 

ACCEPT(LEFTPARENT) ; 
EXPRESSION![RIGHTPARENTD+FOLLOUERS, 

EXPTYPE) ; 
ACCEPT(RIGHTPARENT) 

END ; 
NOTOP : 

BEGIN 
ACCEPT(NOTOP) ; 
FACTOR(FOLLOUERS) ; 
IF NOT COMPATIBLE(EXPTYPE,BOOL TYPE) 
THEN SEMANTICERROR<63) ; 
EXPTYPE := BOOLTYPE 

END ; 
END ; 

END 
END (* FACTOR *) ; 

BEGIN <* TERN ■*) 
FACTOR(NULOPS+FACTORSTARTERS+FOLLOUERS) ; 
UHILE SCAN.SYMBOL IN NULOPS+FACTORSTARTERS DO 
BEGIN 

FIRSTTYPE := EXPTYPE ; 
OPERATOR := SCAN.SYMBOL ; 
IF SCAN.SYMBOL IN MULOPS 
THEN SCAN.NEXTSYMBOL 
ELSE SYNTAXERROR(TIMES) ; 
FACTOR(MULOPS+FACTORSTARTERS+FOLLOUERS) ; 
IF OPERATOR IN MULOPS 
THEN 

CASE OPERATOR OF 
TIMES,DIVOP : 

BEGIN 
IF NOT 
< COMPATIBLE(FIRSTTYPE,INTTYFE) 

AND COMPATIBLE(EXPTYPE,INTTYPE)) 
THEN SEMANTICERROR(64) ; 

EXPTYPE := INTTYPE 
END ; 

ANDOP : 
BEGIN 

IF NOT 
(COMPATIBLE(FIRSTTYPE,BOOLTYPE) 

AND COMPATIBLE(EXPTYPE,BOOLTYPE )) 

THEN SEMANTICERR0RU3) ; 
EXPTYPE := BOOLTYPE 

END 
END 

ELSE EXPTYPE := NIL 

END 
END (* TERM *) ; 

BEGIN (=» SIMPLE EXPRESSION =») 
IF SCAN.SYMBOL IN SIGNS THEN 
BEGIN 

SIGNED := TRUE ; 
SCAN.NEXTSYMBOL ; 

END 
ELSE SIGNED := FALSE ; 



TERM<ADBOPS+FOLLOUERS) ; 
IF SIGNED THEN 

IF NOT COMPATIBLE(EXPTYPE,INTTYPE) 

THEN SEMANTICERR0R<64> ; 
WHILE SCAN.SYMBOL IN ADDOPS DO 
BEGIN 

F1RSTTYPE := EXPTYPE \ 
OPERATOR := SCAN.SYMBOL ; 
SCAN.NEXTSYMBOL ; 
TERN(ADDOPS+FOLLOUERS) ; 
CASE OPERATOR OF 
PLUS,MINUS : 

BEGIN 
IF NOT <COMPATIBLE(FIRST TYPE,INTT YPE) 

AND COMPATIBLE(EXPTYPE,INTTYPE)) 
THEN SEMANTICERROR(64 ) ; 
EXPTYPE INTTYPE 

END ; 

OROP : 
BEGIN 

IF NOT (COMPATIBLE(FIRST TYPE,BOOL TYPE) 
AND COMPATIBLE(EXP TYPE,BOOL TYPE)) 

THEN SEMANTICERROR(63) ; 
EXPTYPE BOOLTYPE 

END 
END 

END 
END <* SIMPLE EXPRESSION *i ; 

BEGIN (* EXPRESSION *) 

SIMPLEEXPRESSIONIRELOPS+FOLLOUERS) ; 
IF SCAN.SYMBOL IN RELOPS THEN 
BEGIN 

FIRST TYPE EXPTYPE ; 
OPERATOR := SCAN.SYMBOL ; 
SCAN.NEXTSYMBOL ; 
SIMPLEEXPRESSION(FOLLOUERS) ; 
IF NOT ( COMPATIBLPKFIRSTTYPE,INTTYPE) AND 

COMPAT IBLE < EXPTYPE,INTTYPE) OR 

COMPATIBLE(FIRST TYPE,CHARTYPE) AND 
COMPATIBLE(EXPTYPE,CHARTYPE)) 

THEN SEMANTICERROR(65) ; 
EXPTYPE s= BOOLTYPE 

END 
END <* EXPRESSION *) ; 

PROCEDURE ASSIGNMENT ; 

VARTYPE.EXPTYPE : TYPENTRY ; 

BEGIN <* ASSIGNMENT «) 

VARIABLE <[BECOMEST+FOLLOUERS,VAR TYPE) ; 
ACCEPT(BECOMES) ; 

EXPRESSION(FOLLOUERS,EXPTYPE) ; 
IF NOT COMPATIBLE(VARTYPE,EXPTYPE) 
THEN SEMANTICERROR(66) 

END <* ASSIGNMENT *) ; 
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PROCEDURE READSTATEHENT ; 

PROCEDURE INPUTVARIABLE ; 

VAR 
VARTYPE t TYPEMTRY ; 

BEGIN 

VARIABLE![COMMA,RIGHTPARENTT+FOLLOUERS,VARTYPE) ; 
IF NOT COMPATIBLE!VARTYPE,CHARTYPE) 
AND NOT COMPATIBLE(VARTYPE,INTTYPE) 
THEN SEMANTICERROR(A7) 

END (♦ INPUTVARIABLE *); 

BEGIN 
ACCEPT!READSY) ; 
ACCEPT(LEFTPARENT) ; 
INPUTVARIABLE ; 
WHILE SCAN.SYMBOL * COMMA DO 
BEGIN 

ACCEPT(COMMA) ; 
INPUTVARIABLE 

END ; 
ACCEPT(RIGHTPARENT) 

END (* READSTATEMENT ♦) ; 

PROCEDURE URITESTATEMENT ; 

PROCEDURE OUTPUTVALUE ; 

VAR 
EXPTYPE : TYPENTRY ; 

BE6IN 
EXPRESSION![COMMA,RIGHTPARENTT+FOLLOUERS,EXPTYPE) ; 
IF NOT COMPATIBLE(EXPTYPE,CHARTYPE) 
AND NOT COHPATIBLE(EXPTYPE,INTTYPE) 
THEN SEMANTICERR0R<68) 

END (♦ OUTPUTVALUE *) ; 

BEGIN 
ACCEPT(URITESY) ; 
ACCEPT(LEFTPARENT) ; 
OUTPUTVALUE ; 
WHILE SCAN.SYMBOL = COMMA DO 
BEGIN 

ACCEPT(COMMA) ; 
OUTPUTVALUE 

END ; 
ACCEPT(RIGHTPARENT) 

END (* URITESTATEMENT *) ; 
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PROCEDURE IFSTATEMENT ; 

VAR 
EXPTYPE : TYPENTRY ; 

BEGIN <* IFSTATEMENT *) 
ACCEPT(IFSY) ; 
EXPRESS ION(ETHENSY,ELSESY]+FOLLOUERS,EXPTYPE) 

IF NOT CQNPATIBLE(EXPTYPE,BOOLTYPE) 
THEN SENANTICERR0R(69) ; 
ACCEPT(THENSY) ; 
STATENENT(EELSESYI+FOLLOUERS) J 
IF SCAN.SYMBOL * ELSESY 
THEN 
BEGIN 

ACCEPT(ELSESY) ; 
STATENENT(FOLLOUERS) ; 

END 
END <* IFSTATEMENT *) ; 

PROCEDURE UHILESTATENENT ; 

VAR 

EXPTYPE : TYPENTRY ; 

BEGIN <* UHILESTATENENT *> 
ACCEPT(UHILESY) ; 

EXPRESSION(LDOSYD+FOLLOUERS,EXPTYPE) ; 
IF NOT COMPAT IBLE(EXPTYPE,BOOLTYPE) 
THEN SEMANTICERR0R(69) ; 
ACCEPT<DOSY) ; 

STATENENT(FOLLOUERS) 
END (* UHILESTATENENT *) ; 

BEGIN (=* STATEMENT *) 

CASE SCAN.SYMBOL OF 
IDENT : 

BEGIN 

SCOPE.SEARCHID(SCAN.SPELLING,FIRSTID, 
CPROCS,VARS]) ; 

IF FIRSTID*.CLASS = VARS 
THEN ASSIGNMENT 
ELSE ACCEPT(IDENT) 

END ; 
BEGINSY : 

CONPOUNDSTATEMENT(FOLLOUERS) ; 
IFSY : 

IFSTATEMENT ; 
UHILESY : 

UHILESTATENENT ; 
READSY : 

READSTATEMENT ; 
URITESY : 

URITESTATEMENT 
END <•* CASE ♦) 

END <* STATEMENT =») ; 



BEGIN <*COMPOUNDSTATEMENT *) 
ACCEPT(BEGINSY) ; 

STATEMENT![SEMICOLON,ENDSY3+STATSTARTERS 
-CIDENT3+FOLLOUERS) ; 

UHILE SCAN.SYMBOL IN [SENICOLON]+STATSTARTERS-[IDENT] DO 
BEGIN 

ACCEPT<SEMICOLON) ; 
STATEMENT![SEMICOLON,ENDSY3+STATSTARTERS 

-CIDENTI+FOLLOUERS) 
END ; 
ACCEPT < ENDSY) 

END <* COMPOUND STATEMENT •*) ; 

BEGIN (* STATPART *> 
COMPOUNDSTATEMENT(FOLLOUERS) 

END <* STATPART *> ; 

BEGIN (* BLOCK *) 

VARPART([PROCSY,BEGINSY]) ; 
PROCPART(CBEGINSYI) ; 
STATPART(FOLLOUERS) 

END (* BLOCK *) ; 

BEGIN <* PROGRAMME *) 

BUILTIN.NEUTYPE(INTTYPE,SCALARS) ; 
B'JILTIN.NEUTYPE(CHARTYPE,SCALARS) ; 
BUILT IN.NEUTYPE(BOOLTYPE,SCALARS) ; 
BUILTIN.NEUIB< "INTEGER " .ENTRY,TYPES) ; 
ENTRY".IDTYPE := INTTYPE ; 
BUILTIN.NEUID< 'CHAR '.ENTRY,TYPES) ; 
ENTRY".IDTYPE := CHARTYPE ; 
BUILTIN.NEUID< "BOOLEAN ".ENTRY,TYPES) ; 
ENTRY".IDTYPE := BOOLTYPE ; 
BUILT IN.NEUID( FALSE '.ENTRY.CONSTS) ; 
ENTRY'.IDTYPE := BOOLTYPE ; 
BUILTIN.NEUID< "TRUE ".ENTRY,CONSTS) ; 
ENTRY".IDTYPE := BOOLTYPE ; 

ACCEPT(PROGRAMSY) ; 
ACCEPT<IDENT) ; 
ACCEPT<SEMICOLON) ; 

BLOCK([PERIOD].NIL) 
END (* PROGRAMME *> ; 

BEGIN 
STATSTARTERS := [IDENT,BEGINSY,READSY,URITESY,IFSY,UHILESY] ; 
FACTORSTARTERS : = [I DENT,INTCONST.CHARCONST,NOTOP,LEFTPARENT] ; 
MULOPS := [TIMES,DIVOP.ANDOP] ; 
SIGNS : = [PLUS,MINUS] ; 
ADDOPS := [PLUS,MINUS,OROP] ; 
RELOPS := [EQOP,NEOP,LTOP,LEOP,GEOP,GTOP] ; 

*** 

END (* ANALYZER MODULE *> ; 
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Exercise 4 Modify the syntax/semantic analyzer in Listing 6 to handle the multiple 
assignment statement suggested in Exercise 3. 

THE CODE-GENERATION INTERFACE 

A Hypothetical Machine 

We split the compilation process between analyzer and generator modules 
thus: 

analyzer (character stream)(errors, analyzed program) 
generator (analyzed program){object code) 

where analyzed program is some representation of the program analyzed 
which enables the generator to produce equivalent object code. Our motive in 
rigidly enforcing this split was to isolate the machine- and object code¬ 
dependent aspects of compilation, and so facilitate adaptation of the compiler 
to a variety of object codes and/or machines. It follows that the interface, 
the analyzed program, must be such that 

(a) no features peculiar to any particular object code or machine are 
implied, and 

(b) generation of any particular object code can be achieved without 
additional knowledge of, or access to the internal functioning and data 
of the analyzer. 

A commonly used technique in such situations is to define a hypothetical 
machine whose features are those convenient for the execution of programs 
of the source language, but which can be readily realized in whatever object 
code/hardware environment is actually selected. The action of the analyzer 
is to translate the source program into an equivalent sequence of operations, 
or program, for the hypothetical machine. The generator’s task is then to 
translate this sequence of operations into whatever object-code form is 

required. 
In principle analysis and generation may take place either in sequence or 

in parallel. In sequential mode the analyzer must create and “output” the 
entire sequence of hypothetical operations for subsequent input to the 
generator. In parallel mode the analyzer need only signal each hypothetical 
operation; the generator acts immediately to translate this operation into 
equivalent object code. In practice, however, the analyzer need not be aware 
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of which mode is in use, since it may in either case transmit the hypothetical 

operation by a procedure call, whose effect may either be to file the operation 

for subsequent translation, or to translate it immediately. 

The generation interface is thus a series of procedure calls, each of 

which corresponds to a hypothetical machine operation. Our next task is to 

determine the range of hypothetical operations, and hence procedure calls, 

required. We note, however, that the term “operation” must be interpreted 

loosely, since the interface must cover all aspects of program generation— 

such static operations as determining data representations and storage as 

well as the dynamic operations required in program execution. 

Defining the Hypothetical Machine Interface 

Data representation and storage 

On any machine which is to execute a program, a means of representing the 

data items which the program manipulates must first be determined. For a 

simple typed language such as Mini-Pascal, all items of a given type share a 

common form of representation. Our generator must determine, therefore, a 

representation within the object program for each type in the source program. 

To represent these representations we introduce a type within the generator 

typerepresentation =.; 

whose form will depend on the particular object machine involved. A value of 

this type is created by the generator for each Mini-Pascal type encountered 

in the program being compiled. This value describes how items of the type 

are to be represented on the object machine. Although the analyzer should 

not have any understanding of type representations as such, it can be used 

to maintain the association between types and their representations—by 

requesting from the generator some indication of the representation for a 

type when the type is created, and supplying this each time an item of the 

type is to be manipulated. If the analyzer and generator run in parallel, the 

representation details themselves may be passed to and fro in this way. If 

they run in sequence, then the “representation” given to the analyzer may 

be just an index to the actual details to be created at generation time. 

The generator makes representations available in two ways. For the 

built-in types integer, char, Boolean we assume corresponding built-in repre¬ 
sentations in the generator, thus 

in tegerrepresen tat ion, charrepresen tat ion, 

Booleanrepresentation : typerepresentation ; 
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For array types the generator will construct a representation on request, 

given the index range and element representation, through a call to the 
procedure: 

procedure arrayrepresentation {number of elements : integer ; 

elementrepresentation : typerepresentation ; 

var representation : typerepresentation) ; 

The generator must also determine the storage locations which individual 

data items occupy in the object program during execution. We will assume 

that these locations are specified within the generator as values of a type 

runtimeaddress =.; 

whose details again depend on the storage structure and organization of the 

particular object machine. 

The analyzer must maintain the association between variables and run¬ 

time addresses. At variable declaration time it must request a run-time 

address for each variable through a call to the procedure 

procedure addressfor { representation : typerepresentation ; 

var address: runtimeaddress) ; 

To enable the generator to exploit the store sharing which block structure 

permits, and to implement recursion correctly, the analyzer must also signal 

this block structure to the generator. Since the storage organization chosen 

is normally a stack of storage “frames”, one frame for each variable space 

currently in existence, the signaling is carried out by calls to procedures: 

procedure Openstackframe ; 

procedure Closestackframe ; 

Within each matching pair of calls all storage addresses will be allocated 

in the storage frame associated with the bracketed code body. 

Variables, expressions and assignment 

For variable access and expression evaluation the hypothetical machine is 

assumed to use an evaluation stack, the operands on which are either 

references (to storage locations) or values. The hypothetical code transmitted 

by the analyzer is then a sequence of stack manipulating post-fix operations, 

represented by calls to the following procedures: 

procedure Stackreference {address : runtimeaddress) ; 

{push reference or address given onto the 

evaluation stack} 
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procedure Indexedreference (boundmin,boundmax : integer ; 
elementrepresentation : typerepresentation) ; 

{pop an index value and an array reference from the 

evaluation stack and push a reference to the 

corresponding array element} 

procedure Dereference (representation : typerepresentation) ; 

{pop a reference from the evaluation stack and 

push the value referenced} 

procedure Stackconstant {constoutvalue : integer) ; 

{push a constant value onto the evaluation stack} 

The range of possible arithmetic operations is representable as the 

corresponding subrange of the language symbols as denoted by symboltype, 

thus 
optype = notop . . eqop 

The corresponding postfix operations on the hypothetical machine are 

then representable as calls to the procedures: 

procedure Negateinteger ; 

{pop integer value a from stack ; 

push integer value {—a) onto stack} 

procedure Binaryintegeroperation {operator : optype) ; 

{pop integer values a, b from stack ; 

push integer value {a operator b) , 

where operator denotes -\-* or div} 

procedure Negateboolean ; 

{pop Boolean value a from stack ; 

push Boolean value (not a) onto stack} 

procedure Binarybooleanoperation {operator : optype) ; 

{pop Boolean values a,b from stack ; 

push Boolean value {a operator b) , 

where operator denotes and or or} 

procedure Comparison {operator : optype) ; 

{pop scalar values a,b from stack ; 

push Boolean value {a operator b), 

where operator denotes = , <> , < , < = , > = , >} 
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Finally the operation of assigning the topmost value on the evaluation 

stack to the location referenced immediately below is representable as a call 
to the procedure 

procedure Assign ; 

Thus the sequence of hypothetical operations, or procedure calls, 
resulting from the Mini-Pascal assignment statement 

A := B + 4 

would be as follows: 

Stackreference {address of A) 

Stackreference {address of B) 

Dereference {integer representation) 

Stackconstant (4) 

Binaryintegeroperation {plus) 

Assign 

Input/Output 

For the input/output the hypothetical machine is assumed to have an input 

and an output channel which may be operated in either character or integer 

mode 

iomode = {charmode, integermode) ; 

I/O operations to and from the evaluation stack are then represented by 

calls to the procedures: 

procedure Readoperation {mode : iomode) ; 

procedure Writeoperation {mode : iomode) ; 

Control statements 

The object code generated, whatever its form, is assumed to be executed in 

the order of its generation except where explicit control operations intervene. 

The code can therefore be modeled as a series of code sequences, each of 

which can be entered either sequentially from its predecessor, or by an 

explicit transfer of control to a label at its head. To represent each label the 

generator provides a type 

codelabel = 

S.S.P.—L 
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Variables of this type can be used by the analyzer to identify labeled points 

in the code sequence under generation. Binding of these variables to the 

appropriate points in the actual sequence under generation is allowed by 

three generator procedures: 

procedure Newcodelabel (var sequence : codelabel) ; 

procedure Futurecodelabel (var sequence : codelabel) ; 

procedure Expectedcodelabel (var sequence : codelabel) ; 

The first is used for labels not previously referenced. The second is used to 

announce a codelabel which is referenced (by some control operation) before 

the code which it labels is generated, and the third to bind such a label when 

this code eventually is generated. 
With this codelabel facility the control operations necessary to Mini- 

Pascal’s if and while statements can be expressed as calls to two procedures: 

procedure Jump (var sequence : codelabel) ; 

procedure Jumponfalse (var sequence : codelabel) ; 

The first represents an unconditional jump, the second a jump conditional on 

the (Boolean) value on the top of the evaluation stack. 

Procedures 

Besides a simple transfer of control, procedure calls in a block-structured 

language involve housekeeping activity to maintain variable access. To repre¬ 

sent the information necessary to support a procedure call, the generator 
provides a type 

proclinkage =.; 

a value of which must be associated with each procedure in the program. 

The analyzer must request this linkage at procedure-declaration time, by a 
call to the procedure 

procedure Newlinkage (var linkage : proclinkage) ; 

and must supply this linkage in translating a procedure call into the hypo¬ 
thetical operation 

procedure Callproc (linkage : proclinkage) ; 
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Besides the calling sequence procedure activation requires some prelude 

and postlude code located at the beginning and end of the procedure’s code 

body. These can be represented as additional hypothetical operations 

procedure Enterbody (linkage : proclinkage ); 

procedure Leavebody ; 

The corresponding prelude and postlude code required for the main 

program body itself can be similarly represented as 

procedure Enter program ; 

procedure Leaveprogram ; 

These two complete the range of hypothetical operations necessary for the 

execution of Mini-Pascal programs. A summary of the complete generation 

interface which they define is given in Listing 7. 

Using the Interface 

After definition of the code-generation interface, the incorporation of its use 

within the existing analyzer is easily accomplished. 

The additional code-generating attributes which the analyzer must 

associate with types, variables, and procedures are readily accommodated by 

the extension of the type and identifier records as follows: 

typerec = record 
representation : typerepresentation ; 

case form : . . . 

end ; 

idrec — record 
name : alfa ; 
leftlink, rightlink : identry ; 

id type : typentry ; 

case class : idclass of 

vars : (varaddress : runtimeaddress) ; 

consts : (constvalue : integer) ; 

procs : (linkage : proclinkage) 

end ; 

The generation and assignment of values to these additional attributes is 

then coded as generator calls in the analyzer sequences which create the type 

and identifier records themselves. 



Listing 7 

ENVELOPE MODULE GENERATE ; 

<* 
(* 
(* 
(* 
(* 

<* 
(* 

(* 
(* 
<* 

(* 

(* 

<* 
(* 
<* 

(* 

(* 

(* 

<* 

(* 

(* 

(* 

(* 

(* 

(* 

(* 

(* 

(* 
(* 

<* 
(* 
(* 
(* 
(* 

(* 
(* 
(* 

(* 
<* 
<* 

(* 

(* 

(* 
<* 

(* 

<* 
(* 
<* 

(* 

<* 
<* 
(* 

<* 
(* 
<* 

(* 
<* 
(* 

THE GENERATOR PROVIDES A PROGRAM GENERATION INTERFACE FOR THE *) 

SYNTACTIC/SEMANTIC ANALYZER AS A SET OF PROCEDURE CALLS. *) 
THESE CALLS, AND THE TYPES UNDERLYING THEIR PARAMETER LISTS, *) 

PROVIDE A GENERATION INTERFACE UHICH IS INDEPENDENT OF THE *) 
PRECISE OBJECT CODE TO BE GENERATED. BETUEEN CALLS THE *) 
ANALYZER STORES AND TRANSMITS DATA OF THESE TYPES BUT UITHOUT *) 
ANY NECESSARY KNOWLEDGE OF THEIR INTERNAL NATURE. *) 

*) 

=») 
(1) REPRESENTATION AND STORAGE OF DATA *) 

*) 
THE REPRESENTATION AND STORAGE OF DATA UITHIN THE OBJECT *> 
PROGRAM IS DESCRIBED BY THE GENERATOR AS FOLLOUS *) 

*) 
1. FOR EACH TYPE THE GENERATOR CREATES A REPRESENTATION-*) 

OF TYPE ■'TYPEREPRESENTATION-' UHICH DESCRIBES HOU *) 
SUCH DATA ARE TO BE REPRESENTED IN THE OBJECT •♦) 
PROGRAM. :*) 

*) 
2. FOR EACH VARIABLE THE GENERATOR CREATES AN ADDRESS +) 

'RUNTIMEABDRESS' UHICH HOLDS THE NECESSARY ADDRESS *) 

CO-ORDINATES FOR THE RUN-TIME ACCESS OF THOSE DATA. *) 

*) 
THESE DESCRIPTORS ARE GENERATED AS FOLLOUS ■*) 

*) 
3. REPRESENTATION FOR THE BUILT-IN TYPES ARE MADE *) 

AVAILABLE AS ACCESSIBLE VALUES INTEGERREPRESENTATION *) 
ETC. THE PROCEDURE ARRAYREPRESENTATION GENERATES A *) 
REPRESENTATION FOR EACH PROGRAM-DEFINED ARRAY TYPE. *) 

•») 

4. THE PROCEDURE ADDRESSFOR DETERMINES THE RUN-TIME *) 

ADDRESS CO-ORDINATES FOR A VARIABLE. SINCE THESE *) 
RUN-TIME ADDRESSES ARE ASSUMED TO LIE UITHIN A *) 
CONVENTIONAL RUN-TIME STORAGE STACK, PROCEDURE *) 

CALLS OPENSTACKFRAME" AND -'CLOSESTACKFRAME’ ARE *) 
USED TO DELIMIT THE STATIC NESTING OF STACK FRAMES *) 
FOR THE ADDRESS ALLOCATOR. *) 

<2) PROCEDURE AND PROGRAM CONTROL *) 

THE NECESSARY COMPILE- AND RUNTIME HOUSEKEEPING *) 

OPERATIONS ASSOCIATED WITH THE OBJECT PROGRAM ARE *> 
REALIZED AS FOLLOUS 

1. A LINKAGE RECORD IS GENERATED FOR EACH PROCEDURE 
BY THE PROCEDURE NEULINKAGE 

2. TRANSFER OF CONTROL TO A PROCEDURE 

IS REALIZED BY THE OPERATION CALLPROC 

3. THE NECESSARY PRELUDE AND POSTLUDE CODE FOR EACH 
PROCEDURE OR PROGRAM BLOCK IS REALIZED BY THE 
OPERATIONS 

ENTERBODY 
LEAVEBODY 
ENTERPROGRAM 
LEAVEPROGRAM 
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0* * i 

( * :* ) 

<* (3) VARIABLES, EXPRESSIONS AND ASSIGNMENT *> 

(* *) 

i* THE CODE GENERATION INTERFACE FOR VARIABLE ACCESS, *) 
<* EXPRESSION EVALUATION AND ASSIGNMENT ASSUHES A POSTFIX *> 
(* CODE FORM (THOUGH THE GENERATING PROCEDURES CALLED MAY *> 
(* TRANSFORM THIS CODE THEREAFTER). THE GENERATING CALLS +) 
(* REPRESENT OPERATIONS ON A HYPOTHETICAL RUN-TIME STACK *) 

<* OF OPERAND REFERENCES AND VALUES, AS FOLLOWS *) 
(* *) 

<* t. VARIABLE ACCESS IS REALIZED BY THE FOLLOUING *) 

<* HYPOTHETICAL OPERATIONS *> 
i* *) 
(* STACKREFERENCE *) 

(* INDEXEDREFERENCE *> 
(* *) 

(* 2. EXPRESSION EVALUATION IS REALIZED BY THE FOLLOWING *) 
(* ADDITIONAL STACK OPERATIONS *> 
(* *> 
(* DEREFERENCE *> 
<* STACKCONSTANT *) 

(* *) 
(* NEGATEINTEGER *> 
<* BINARYINTEGEROPERATION *) 
(* *> 
(* COMPARISON ■») 
(* ■») 
<* NEGATEBOOLEAN *) 
(* BINARYBOOLEANOPERATION *> 
(* *) 

(* THE OPERATION BINARYBOOLEANOPERATION IS DEFINED *> 
(* AND USED IN A WAY WHICH PERMITS EITHER INFIX OR *) 
<* POSTFIX EVALUATION OF AND/OR OPERATIONS *) 

I* *) 

(t 3. FINALLY ASSIGNMENT IS REALIZED BY THE SINGLE *) 
(* HYPOTHETICAL STACK OPERATION - ASSIGN. •*) 
(* ■*) 

(* *) 

(* (A) 1-0 OPERATIONS *) 
(* *) 

(* THE 1-0 OPERATIONS ARE REALIZED BY THE FOLLOUING *) 
(* GENERATIVE OPERATIONS *) 

<* *) 

(* READOPERATION *) 

<* URITEOPERATION *) 

(* *) 

(* *) 

(* (5) CONTROL STATEMENTS AND *> 
(* SEQUENTIAL CODE GENERATION *) 
(* *) 

(* THE CODE GENERATED, WHATEVER ITS FORM, IS ASSUMED TO BE *) 
<* FOR SEQUENTIAL EXECUTION. EACH CODE SEQUENCE WHICH CAN =») 
(* BE ENTERED OTHER THAN SEQUENTIALLY IS REPRESENTED AT *) 

(* COMPILE TIME BY A RECORD OF TYPE 'CODELABELTHESE *) 
(* RECORDS ARE BOUND TO POINTS IN THE CODE BY THE PROCEDURES *) 



154 A STRUCTURED COMPILER 

*) 
<* NEULABEL - FOR A PREVIOUSLY UNREFERENCED *) 
(♦ LABEL *) 
(* =*) 

<* FUTURELABEL - FOR A LABEL UHICH NAY BE *) 

(* REFERENCED BEFORE IT :S + ) 

<* GENERATED *) 

(* *) 

(* EXPECTEDLABEL - FOR A LABEL PREVIOUSLY *> 
<* "EXPECTED-' *) 

(* *) 

<* ALL REFERENCES!JUMPS ETC.) ARE GENERATED BY THE CONTROL *) 
<* GENERATING PROCEDURES MANIPULATING THESE LABEL RECORDS *) 

(* *) 

<* CONTROL STATEMENT CODE IS REALIZED BY THE FOLLOUING *> 
<♦ HYPOTHETICAL OPERATIONS *) 
<* *) 

<* JUMPONFALSE *) 
<* JUMP :*) 

<* *) 

(* THE ANALYZER MAY SUPPRESS FURTHER GENERATOR ACTIVITY AT ANY *) 
<* TIME BY CALLING THE PROCEDURE NOFURTHERCODE . ALL SUBSEQUENT *) 
<* GENERATOR CALLS ARE IGNORED. THIS IS NECESSARY IF ANALYSIS OF *) 
(* <ANY PART OF) AN INCORRECT PROGRAM CAUSES INCONSISTENT *) 
<♦ SEQUENCES OF INTERFACE CALLS *) 

PROCEDURE ♦NOFURTHERCODE ; 

TYPE ♦TYPEREPRESENTATION = . ; 

CONST 

♦ BOOLEANREPRESENTAT ION = . ; 
♦CHARREPRESENTATION = . ; 
♦INTEGERREPRESENTATION = . ; 

PROCEDURE ♦ARRAYREPRESENTATION ( BOUNDHIN,BOUNDHAX : INTEGER ; 

ELEMENTREPRESENTATION : TYPEREPRESENTATION ; 
VAR REPRESENTATION s TYPEREPRESENTATION ) ; 

TYPE *RUNTIMEADDRESS = . ; 

PROCEDURE '*QPENSTACKFRANE ; 

PROCEDURE ♦ADDRESSFOR ( REPRESENTATION : TYPEREPRESENTATION ; 

VAR ADDRESS : RUNTIHEADDRESS ) ; 

PROCEDURE ♦CLOSESTACKFRAME ; 



TYPE *PROCLINKAGE = > 

PROCEDURE *NEWLINKAGE < VAR LINKAGE : PROCLINKAGE ) ; 

PROCEDURE *CALLPROC ( VAR LINKAGE : PROCLINKAGE ) ; 

PROCEDURE *ENTERBODY ( VAR LINKAGE : PROCLINKAGE ) ; 

PROCEDURE *LEAVEBODY ; 

PROCEDURE *ENTERPROGRAN ; 

PROCEDURE *LEAVEPROGRAH ; 

PROCEDURE *STACKREFERENCE ( LOCATION : RUNTINEADDRESS ) ; 

PROCEDURE *INDEXEDREFERENCE < BOUNDHIN.BOUNDNAX : INTEGER ; 
ELEHENTREPRESENTATI ON:TYPEREPRESENTATION) 

PROCEDURE *DEREFERENCE ( REPRESENTATION : TYPEREPRESENTATION ) ; 

PROCEDURE *STACKCONSTANT ( CVALUE : INTEGER ; 
REPRESENTATION : TYPEREPRESENTATION ) ; 

PROCEDURE *NEGATEINT£GER ; 

PROCEDURE :*BINARYINTEGEROPERATION ( OPERATOR : OPTYPE ) ; 

PROCEDURE *COMPARISON < OPERATOR : OPTYPE ) ; 

PROCEDURE *NEGATEBQOLEAN ; 

PROCEDURE *BINARYBOOLEANOPERATOR < OPERATOR : OPTYPE ; 
FIRSTSUCHOPERATOR : BOOLEAN ) ; 

PROCEDURE ^ASSIGN ; 

PROCEDURE :*READOPERATION ( READHODE : IOHODE ) ; 

PROCEDURE *URITEOPERATION < URITENODE : IOHODE ) ; 

TYPE *CODELABEL = . ; 

PROCEDURE *NEUCODELABEL < VAR SEQUENCE : CODELABEL ) ; 

PROCEDURE *FUTURECODELABEL ( VAR SEQUENCE : CODELABEL ) ; 

PROCEDURE *EXPECTEDCODELABEL ( VAR SEQUENCE : CODELABEL ) ; 

PROCEDURE *JUHPONFALSE < VAR DESTINATION s CODELABEL ) ; 

PROCEDURE *JUHP < VAR DESTINATION : CODELABEL ) ; 
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Thereafter, generation of object code for the statement parts of the 

program being analyzed is easily added at appropriate points in the analyzer 

code. The use of code labels to generate the necessary control structure in 

the object code is illustrated by the while statement analyzer, which in its 

final form is as follows: 

procedure while statement ; 

var extype : typentry ; 

totestcondition, afterloop : Generate.codelabel ; 
begin 

accept (whilesy) ; 

Generate.newcodelabel (totestcondition) ; 

Expression {[dosy] T followers, extype) ; 

if not compatible (extype, booltype) then semanticerror ; 

Generate.future codelabel {after loop) ; 

Generate.jumponfalse {afterloop) ; 
accept {dosy) ; 

statement {followers) ; 

Generate.jump {totestcondition) ; 

Generate.expectedcodelabel {after loop) 
end ; 

This coding illustrates one remaining problem with the interface. Can an 

error during the call to Expression sabotage the subsequent generator call 

jumponfalse ? More generally can analysis of an erroneous program produce 

a malformed sequence of hypothetical operations with which the generator 

cannot cope? Clearly it can, and possible solutions to the problem are 

(a) to guard against the generation of malformed sequences within the 
analyzer, or 

(b) to detect and ignore malformed sequences within the generator. 

Various complicated ways of achieving either of these can be conceived, but 

a simpler expedient adopted in many compilers is to suppress code generation 

permanently at the occurrence of the first error. With the form of interface 

chosen it is easier to make this suppression test within the generator, so we 
extend the interface by one further procedure: 

procedure nofurthercode ; 

which the analyzer will call on detecting any syntax or semantic error. 

A complete listing of the final augmented analyzer with all its generator 
calls is given in Listing 8. 
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Listing 8 

ENVELOPE NODULE ANALYZE ; 

CONST ALFALENGTH = 8 ; 

TYPE ALFA = PACKED ARRAY [1..ALFALENGTH3 OF CHAR ; 

ENVELOPE NODULE SCAN = LISTING2 IN LIBRARY ; 

<* (A) SYNTAX ANALYSIS +) 
(* ■*) 

<* SYNTAX ANALYSIS OF HINI-PASCAL PROGRAHS IS INPLENENTED *) 
<* AS A SET OF RECURSIVE DESCENT PROCEDURES. THESE PROCEDURES *) 
(* ARE BASED ON THE SYNTAX RULES GIVEN IN THE LANGUAGE DEFN ■») 
<* AND ARE NESTED AS TIGHTLY AS THE HUTUAL INTERACTION PERHITS. *> 
(* THE ORDER, NANES, AND NESTING OF THE PROCEDURES IS AS FOLLOUS *> 
(* *) 
(* PROGRANNE *) 
(* BLOCK *> 
(* VARPART *) 

<* VARDECLARATION *> 
(* TYP *> 
(* SIHPLETYPE *) 

(* INDEXRANGE *) 

<* PROCPART *> 
<* PROCDECLARATION *) 
(* STATPART *) 
(* CONPOUNDSTATENENT *) 
(* STATEMENT *) 

(* VARIABLE *) 
(* EXPRESSION *) 

(* SINPLEEXPRESSION •*) 
(* TERN •'*) 
(* FACTOR *) 
(* ASSIGNMENT *) 
<* READSTATEMENT *) 
(* INPUTVARIABLE *> 
(* URITESTATENENT *) 

(* OUTPUTVALUE ■♦) 
(* IFSTATENENT ■*) 
(* UHILESTATENENT *) 

(* *> 



<* THE SYNTAX ANALYZERS ARE WRITTEN ON THE ASSUMPTION THAT THE *) 

<* NEXT SYNTACTIC GOAL CAN ALWAYS BE SELECTED BY INSPECTION OF *> 
<* (AT HOST) THE NEXT INCOMING SYMBOL ( I.E. THAT THE UNDERLYING *) 
(* GRAMMAR IS LL<1) ). THIS IS NOT SO AT THE FOLLOUING POINTS *) 
(* IN THE SYNTAX RULES ACTUALLY USED ■*> 
(* *) 

(* 1. A STATEMENT BEGINNING WITH AN IDENTIFIER MAY BE •*) 
(* EITHER AN ASSIGNMENT OR A PROCEDURE CALL *> 
(* 2. A FACTOR BEGINNING WITH AN IDENTIFIER MAY BE EITHER *> 
<* A VARIABLE OR A CONSTANT =*> 
<* *) 
<* IN CASE 1 TO RESOLVE THE CHOICE ON A PURELY SYNTACTIC *) 
<* BASIS WOULD REQUIRE A DISTORTION OF THE SYNTAX RULES *) 

(* CHOICE 2 CANNOT BE SYNTACTICALLY RESOLVED IN SOME CASES . •») 
<* HOWEVER IF PARALLEL SEMANTIC ANALYSIS IS ASSUMED (AS IN *> 
(* THE CASE OF THIS COMPILER) THESE CHOICES CAN BE RESOLVED *> 
<* WITHOUT SYNTAX DISTORTION, BY INSPECTION OF THE CURRENT *) 
(* SEMANTIC ATTRIBUTES OF THE IDENTIFIER INVOLVED. FOR THIS *> 
<* REASON SYNTACTIC RESOLUTION OF THESE CHOICES IS NOT USED. *) 
<* *) 

(* THE ANALYZER GENERATES SYNTAX ERROR CODES WITH THE *) 
(* FOLLOWING MEANINGS: =») 
(* ■*) 

(* 10 . SYMBOL EXPECTED WAS IDENTIFIER *> 
(* 11 . SYMBOL EXPECTED WAS INTEGER CONSTANT *) 
(* 12 . SYMBOL EXPECTED WAS CHARACTER CONSTANT *) 
<* 13 . *) 
<* ♦) 

(* I.E. ONE VALUE FOR EACH OF THE VALUES OF SYMBOLTYPE. *) 
(* THE FINAL VALUE ORD(OTHERSY)+10 IS USED TO MEAN *) 
<* -4) 

<* NN . UNEXPECTED SYMBOL *) 

TYPE 

SETOFSYMBOLS = SET OF SYMBOLTYPE ; 

VAR 

STATSTARTERS,FACTORSTARTERS,MULOPS,SIGNS,ADDOPS,RELOPS : SETOFSYMBOLS 

PROCEDURE SYNTAXERROR ( EXPECTEDSYMBOL : SYMBOLTYPE ) ; 

BEGIN 

SOURCE.ERROR(ORD(EXPECTEDSYMBOL)+10,SCAN.SYMB0LP0SITI0N) : 
GENERATE.NOFURTHERCODE 

END (* SYNTAXERROR *) ; 

PROCEDURE ACCEPT < SYMBOLEXPECTED : SYMBOLTYPE ) ; 

BEGIN 

IF SCAN.SYMBOL = SYMBOLEXPECTED 
THEN SCAN.NEXTSYMBOL 

ELSE SYNTAXERROR(SYMBOLEXPECTED) 
END (* ACCEPT *) ; 
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<* (B) SYNTACTIC ERROR RECOVERY *) 
< * ••») 
<* RECOVERY IN THE SYNTAX ANALYSIS PROCESS FOLLOUING THE *) 
<» DISCOVERY OF A SYNTAX ERROR IS INCORPORATED INTO THE *) 
<* SYNTAX PROCEDURES ON THE FOLLOUING BASIS ») 
<* *) 
<* 1. EACH PROCEDURE UHEN CALLED IS PASSED AN ACTUAL *) 
<* PARAMETER UHICH IS A SET OF SYMBOLS UHICH ARE *' 
<* POSSIBLE FOLLOUERS OF THE STRING UHICH IT SHOULD *) 
<* SCAN. THESE FOLLOUERS NORMALLY INCLUDE *) 
<* (A) ALL SYMBOLS UHICH MAY LEGITIMATELY FOLLOU *) 
<* THE STRING TO BE SCANNED *) 
<* (B) SUCH ADDITIONAL SYMBOLS AS A SUPERIOR *) 
(* (CALLING) PROCEDURE MAY UISH TO HANDLE IN *) 
(* THE EVENT OF ERROR RECOVERY •*) 
<* *) 

<* 2. UHEN ENTERED THE PROCEDURE MAY ENSURE THAT THE *) 
<* CURRENT SYMBOL IS AN ACCEPTABLE STARTER FOR THE *) 
(* STRING TO BE SCANNED, AND IF NOT SCAN FORUARB *) 
(* UNTIL SUCH A SYMBOL IS FOUND (SUBJECT TO 4. BELOU) *) 
(* *) 
(* 3. UHEN CALLING A SUBSIDIARY SYNTAX PROCEDURE THE *) 
<* PROCEDURE PASSES ON AS FOLLOUERS ITS OUN FOLLOUERS PLUS *) 
(* THOSE SYMBOLS IF ANY UHICH IT MAY DETERMINE AS *) 
(* FOLLOUERS FOR THE SUBSTRING TO BE SCANNED *) 
<* *) 
(* 4. TO RECOVER FROM A SYNTAX ERROR THE PROCEDURE MAY ■») 
(* SCAN OVER (SKIP) ANY SYMBOL PROVIDED IT IS NOT *> 
(# CONTAINED IN THE FOLLOUERS PASSED TO IT *) 
(* *) 
(* 5. ON EXIT THE SYNTAX PROCEDURE ENSURES THAT THE CURRENT *) 
(* SYMBOL IS CONTAINED IN THE FOLLOUERS PASSED TO IT, *) 
<* FLAGGING A TERMINAL ERROR AND SKIPPING IF THIS IS NOT *) 
<* INITIALLY THE CASE. ■*) 
<* t) 

(* TESTS 2 AND 5 ARE IMPLEMENTED BY THE DECLARATION OF AN *> 
<* INSTANCE OF A CONTEXT CHECKING ENVELOPE UITHIN EACH *) 
(* SYNTAX PROCEDURE *) 

ENVELOPE CHECK ( STARTERS,FOLLOUERS : SETOFSYHBOLS ) ; 

PROCEDURE SKIPTO ( RELEVANTSYMBOLS : SETOFSYHBOLS ) ; 

BEGIN 
UHILE NOT (SCAN.SYMBOL IN RELEVANTSYMBOLS) 

DO SCAN.NEXTSYMBOL 

END (* SKIPTO *> ; 

BEGIN 
IF NOT (SCAN.SYMBOL IN STARTERS) THEN 
BEGIN SYNTAXERROR(OTHERSY); SKIPTO(STARTERS+FOLLOUERS) END ; 
IF SCAN.SYMBOL IN STARTERS THEN 

BEGIN 
*** (* EXECUTE ENVELOPED BLOCK *) ; 
IF NOT (SCAN.SYMBOL IN FOLLOUERS) THEN 
BEGIN SYNTAXERROR<OTHERSY); SKIPTO(FOLLOUERS) END 

END 
END <* CHECK ENVELOPE *) ; 



<* (C) SEMANTIC ANALYSIS AND SEMANTIC ERROR RECOVERY *> 
(* *) 
<* + ) 

<* SEMANTIC ANALYSIS AND SEMANTIC ERROR RECOVERY ARE IMPLEMENTED *) 
<* BY "ENRICHMENT" OF THE SYNTAX ANALYZER UITH *) 
<* SEMANTIC INTERLUDES. THE SEMANTIC ANALYSIS DEPENDS ON THE *) 
(* F0LL0UIN6 DATA STRUCTURES AND MANIPULATIVE *> 
(* PROCEDURES *) 
(* *) 

(* *) 
<* (1) IDENTIFIER ENTRIES *> 
<* *) 
(* AN ENTRY IS RECORDED FOR EACH IDENTIFIER,EITHER STANDARD OR *) 
<* PROGRAM DEFINED, WHICH MAY APPEAR IN THE PROGRAM BEING *) 
(* COMPILED. THE FORM OF ENTRY USED DEPENDS ON THE "CLASS" OF *) 
<* USAGE OF THE IDENTIFIER AND IS REPRESENTED BY THE *) 
<* RECORD TYPE "IDREC". CREATION, LOCATION AND DESTRUCTION OF *) 

(* THESE RECORDS IS HANDLED BY THE SUB-MODULE "TABLE". *) 

<* •#) 
(* STANDARD IDENTIFIERS SUPPORTED BY THE LANGUAGE ARE HELD *) 

(* UITHIN THE TABLE AS IF DECLARED IN A PSEUDO-BLOCK *) 
<* ENCLOSING THE MAIN PROGRAM . THESE ENTRIES ARE CREATED ON *) 

<* INITIAL ENTRY TO THE ANALYZER MODULE *) 

<* *) 
<* *) 

<* (2) TYPE ENTRIES *) 
<* ■*) 

<* ALL TYPES UNDERLYING THE DATA DEFINED BY THE PROGRAM BEING *> 
<♦ COMPILED ARE REPRESENTED BY TYPE ENTRIES UHQSE FORM IS *) 
(* DETERMINED BY THE "FORM” OF THE TYPE SO REPRESENTED (I.E. *) 
<* SCALARS,ARRAYS,ETC.). ENTRIES ARE CONSTRUCTED USING A ■*) 

(* CORRESPONDING VARIANT RECORD TYPE "TYPEREC”. *) 

(* 4) 

(* THESE TYPE ENTRIES ARE ACCESSED ONLY VIA THE IDENTIFIER *) 

(* TABLE ENTRIES FOR TYPE IDENTIFIERS, OR VIA THE REPRESENTATION *) 
(* OF THE DATA OBJECTS (VARIABLES,CONSTANTS,EXPRESSIONS) *) 
(* WHOSE TYPE THEY DESCRIBE. THUS FOR EXAMPLE ALL IDENTIFIER *) 
<* TABLE ENTRIES HAVE A COMMON FIELD "IDTYPE" WHICH POINTS TO ■*> 
(* AN UNDERLYING TYPE ENTRY (WITH AN OBVIOUS INTERPRETATION FOR *) 

<* ALL CLASSES OF IDENTIFIER OTHER THAN "PROC") *) 
<* 
(* THE TYPE ENTRIES REPRESENTING THE STANDARD TYPES SUPPORTED *) 
<* THE LANGUAGE (INTEGER,CHAR,ETC.) ARE CREATED ON INITIAL *) 
(* ENTRY TO THE ANALYZER. THESE ENTRIES ARE DIRECTLY ACCESSIBLE *> 
<* VIA POINTER VARIABLES "INTYPE","CHARTYPE",ETC., AS *) 
<* UELL AS VIA THE IDENTIFIER ENTRIES FOR "INTEGER","CHAR",ETC. *) 

(* *) 

*) 
(* (3) THE FUNCTION COMPATIBLE 

*) 
<* TO FACILITATE TYPE ANALYSIS WITHIN THE SEMANTIC ANALYZER *) 
(* A GENERAL-PURPOSE BOOLEAN FUNCTION "COMPATIBLE" IS PROVIDED •) 
(* TO TEST THE COMPATIBILITY OF TWO TYPES AS REPRESENTED BY =♦) 
(* POINTERS TO THE CORRESPONDING TYPE ENTRIES. A RESULT TRUE IS *) 
<* RETURNED IF THE TYPES ARE IDENTICAL (I.E. THE POINTERS POINT *) 
<* T0 THE SAME TYPE ENTRY), OR STRICTLY EQUIVALENT (I.E. TWO *) 
(* DISTINCT TYPE ENTRIES OF IDENTICAL FORM AND CONTENT) *i 
( * 

*) 
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♦) 

<* IN ALL SITUATIONS WHERE THE TYPE OF A DATA OBJECT IS NOT *) 
<* DETERMINED IT IS REPRESENTED BY A POINTER VALUE 'NIL'. *> 
<* THE TYPE-CHECKING FUNCTION "COMPATIBLE" IS DEFINED TO RETURN *) 
<* 'TRUE' IF EITHER OF ITS PARAMETERS HAS THIS VALUE. IN THIS *) 
<* UAY NORMAL TYPE ANALYSIS CAN PROCEED UITHOUT A PRELIMINARY *) 
<* SCREENING FOR INDETERMINATE TYPES AT EVERY POINT AT UHICH •») 
<* THEY MIGHT ARISE. *) 
<* *) 
(* SEMANTIC ERRORS ARE REPORTED WITH THE FOLLOWING CODES *> 
(* *> 

(* 61 .... INDEXED VARIABLE MUST BE OF ARRAY TYPE ♦> 
<* 62 .... INDEX EXPRESSION MUST BE OF TYPE INTEGER •*) 
<* 63 .... OPERAND MUST BE OF TYPE BOOLEAN *) 
(* 64 .... OPERAND MUST BE OF TYPE INTEGER ♦) 
<* 65 _ OPERANDS MUST BOTH BE INTEGER, OR BOTH CHAR *) 
<* 66 .... EXPRESSION MUST BE OF SAME TYPE AS VARIABLE *) 
(* 67 .... INPUT VARIABLE MUST BE OF TYPE INTEGER OR CHAR *> 
(« 68 _ OUTPUT VALUE MUST BE OF TYPE INTEGER OR CHAR *> 
<* 69 .... EXPRESSION MUST BE OF TYPE BOOLEAN *) 

TYPE 

TYPENTRY = 'TYPEREC ; IDENTRY = IDREC ; 

TYPEFORM = (SCALARS,ARRAYS) ; 

TYPEREC = RECORD 
NEXT t TYPENTRY ; 
REPRESENTATION : GENERATE.TYPEREPRESENTATION ; 

CASE FORM : TYPEFORM OF 
ARRAYS : 

(INDEXMIN,INDEXMAX « INTEGER ; 
ELEMENTTYPE : TYPENTRY ) 

END ; 

IDCLASS * (TYPES,CONSTS,VARS,PROCS) ; 

SETOFIDCLASS = SET OF IDCLASS J 

IDREC = RECORD 
NAME : ALFA ; 
LEFTLINK jRIGHTLINH : IDENTRY ; 
IDTYPE : TYPENTRY ; 

CASE CLASS : IDCLASS OF 
CONSTS : ( CONSTVALUE : INTEGER ) ; 
VARS s ( VARADDRESS s GENERATE.RUNTIMEADDRESS ) ; 
PROCS : ( LINKAGE : GENERATE.PROCLINKAGE ) 

END ; 

VAR 

I NTTYPE,BOOLTYPE,CHARTYPE t TYPENTRY ; 



PROCEDURE SEHANTICERROR ( CODE : INTEGER ) 

BEGIN 
SOURCE.ERROR(CODE,SCAN.SYHBOLPOSITION) ; 
GENERATE.NOFURTHERCODE 

END <* SEHANTICERROR *> J 

ENVELOPE NODULE TABLE = LISTING5 IN LIBRARY J 

FUNCTION COHPATIBLE (TYPE1,TYPE2 : TYPENTRY) : BOOLEAN ; 

<* DECIDES WHETHER TYPES POINTED AT BY 
TYPE1 AND TYPE2 ARE COHPATIBLE *) 

BEGIN <* COHPATIBLE •») ; 
IF TYPE1 = TYPE2 
THEN COHPATIBLE := TRUE 
ELSE 

IF (TYPE1=NIL) OR (TYPE2=NIL) 
THEN COHPATIBLE := TRUE 
ELSE 

IF <TYPE 1‘ .FORM=ARRAYS) AND (TYPE2'.FORM=ARRAYS) 
THEN COHPATIBLE := 

(TYPE 1 *.INDEXNIN = TYPE2'.INDEXHIN) AND 
(TYPE1MNDEXHAX = TYPE2*.INDEXMAX) AND 
COHPATIBLE!TYPE1A.ELEHENTTYPE,TYPE2‘.ELEHENTTYPE) 

ELSE COHPATIBLE FALSE 
END <* COHPATIBLE *) ; 

(* <D) OBJECT PROGRAM GENERATION *) 

<* *) 
(* OBJECT PROGRAH GENERATION IS IHPLEHENTED BY INTERFACING THE *) 

(* ANALYZER HODULE TO AN OBJECT-CODE-DEPENDENT GENERATOR MODULE *> 
(* THE INTERFACE ITSELF HOWEVER IS INDEPENDENT OF THE OBJECT *) 
<* CODE TO BE PRODUCED. THE INTERFACE SPECIFICATION IS GIVEN IN *) 
(♦ THE GENERATOR HODULE *) 

PROCEDURE *PROGRAHHE ; 

INSTANCE BUILT IN s TABLE.NEUSCOPE ; 

VAR ENTRY : IDENTRY ; 

PROCEDURE BLOCK ( FOLLOWERS : SETOFSYMBOLS ; BLOCKID : IDENTRY ) ; 

INSTANCE CONTEXT:CHECK!CVARSY,PROCSY,BEGINSY],FOLLOWERS) ; 

SCOPE : TABLE.NEWSCOPE ; 

PROCEDURE VARPART < FOLLOWERS : SETOFSYMBOLS ) ; 

INSTANCE CONTEXT:CHECK![VARSYI+FOLLOWERS,FOLLOWERS) ; 
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PROCEDURE VARDECLARATIQN ( FOLLOWERS : SETOFSYNBOLS ) ; 

INSTANCE CONTEXT:CHECK(CIDENT,COMMA,COL ON],FOLLOWERS) ; 

TYPE 
IDL1ST * "LISTREC ; 
LISTREC = RECORD 

ID : IDENTRY ; 
NEXTONLIST s IDLIST 

END ; 

VAR 
VARIABLELIST : RECORD 

HEAD,TAIL : IDLIST 
END ; 

VARTYPE : TYPENTRY ; 

PROCEDURE NEWVARIABLE ; 
VAR 

VARENTRY : IDENTRY ; 
LISTENTRY : IDLIST ; 

BEGIN 
IF SCAN.SYMBOL = IDENT THEN 
BEGIN 

SCOPE.NEUID(SCAN.SPELLING,VARENTRY,VARS) ; 

NEU(LISTENTRY) ; 
WITH LISTENTRY' DO 
BEGIN 

ID := VARENTRY ; 
NEXTONLIST := NIL 

END ; 
UITH VARIABLELIST DO 

BEGIN 
IF HEAD = NIL 
THEN HEAD := LISTENTRY 
ELSE TAIL".NEXTONLIST :* LISTENTRY ; 
TAIL := LISTENTRY 

END 
END 

END (* NEU VARIABLE *) 

PROCEDURE ADDATTRIBUTES ; 

VAR 
LISTENTRY,OLDENTRY » IDLIST ; 

BEGIN 
LISTENTRY := VARIABLELIST.HEAD ; 
WHILE LISTENTRY <> NIL DO 

UITH LISTENTRY' DO 

BEGIN 
ID".IDTYPE := VARTYPE ; 
IF VARTYPE <> NIL 
THEN GENERATE.ADDRESSFOR(VARTYPE".REPRESENTATION, 

ID'.VARADDRESS) ; 
OLDENTRY := LISTENTRY ; 
LISTENTRY := NEXTONLIST ; 
DISPOSE(OLDENTRY) 

END 
END (* ADD ATTRIBUTES *) J 
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PROCEDURE TYP < FOLLOUERS : SETOFSYNBOLS ; 
VAR TYPEFOUND : TYPENTRY ) J 

INSTANCE CONTEXT:CHECK(CIDENT,ARRAYSY],FOLLOUERS) ; 

PROCEDURE SINPLETYPE ( FOLLOUERS : SETOFSYNBOLS ; 
VAR TYPENANED : TYPENTRY ) ; 

INSTANCE CONTEXT;CHECK(CIDENT],FOLLOUERS) ; 

VAR 
TYPEID : IDENTRY ; 

BEGIN 
SCOPE.SEARCHID<SCAN.SPELLING,TYPEID,[TYPES]); 

TYPENAHED : = TYPEID'.IDTYPE ; 
ACCEPT(IDENT) ; 

END <* SINPLETYPE *> ; 

PROCEDURE INDEXRANGE ( FOLLOUERS : SETOFSYNBOLS ) ; 

INSTANCE CONTEXT:CHECK(CINTCONST,THRU],FOLLOUERS) ; 

BEGIN 
TYPEFOUND .INDEXHIN := SCAN.CONSTANT ; 

ACCEPT(INTCONST) ; 
ACCEPT< THRU) ; 
TYPEFOUND'.INDEXNAX := SCAN.CONSTANT ; 
ACCEPT(INTCONST) ; 

END <* INDEXRANGE *) ; 

BEGIN <* TYP ♦> 
IF SCAN.SYMBOL =■ IDENT 
THEN SINPLETYPE<FOLLOUERS,TYPEFOUND) 
ELSE 
BEGIN 

SCOPE.NEUTYPEiTYPEFOUND,ARRAYS) ; 
ACCEPT(ARRAYSY) ; 
ACCEPT(LEFTBRACKET) ; 
INDEXRANGE<CRIGHTBRACKET,OFSY]+FOLLOUERS) ; 
ACCEPT(RIGHTBRACKET) ; 
ACCEPT(OFSY) ; 
SINPLETYPE(FOLLOUERS,TYPEFOUND'.ELENENTTYPE) ; 
UITH TYPEFOUND* DO 

IF ELENENTTYPE <> NIL 
THEN GENERATE.ARRAYREPRESENTATION 

(INDEXHIN,INDEXNAX, 
ELENENTTYPE".REPRESENTATION,REPRESENTATION) 

END 
END (* TYP *) ; 



BEGIN <* VARDECLARATI3N •*) 
VARIABLELIST.HEAD := NIL ; 
NEUVARIABLE ; 
ACCEPT(IDENT) ; 
UHILE SCAN.SYMBOL = COMMA DO 
BEGIN 

ACCEPT(COMMA) ; 
NEUVARIABLE ; 
ACCEPT(IDENT) 

END ; 
ACCEPT(COLON) ; 
TYP(FOLLOUERS,VARTYPE) ; 
ADDATTRIBUTES 

END <* VARDECLARATION *) ; 

BE61N <•* VARPART *) 

IF SCAN.SYMBOL = VARSY THEN 
BEGIN 

ACCEPT(VARSY) ; 
REPEAT 

VARDECLARATION!CSENICOLONI+FOLLOUERS) ; 
ACCEPT<SEMICOLON) 

UNTIL SCAN.SYMBOL <> IDENT 
END 

END (=* VARPART ♦) ; 

PROCEDURE PROCPART ( FOLLOWERS : SETOFSYMBOI.S ) ; 

INSTANCE CONTEXT: CHECK<[PROCSYI+FQLLOWERS,FOLLOUERS) ; 

PROCEDURE PROCDECLARATION < FOLLOUERS : SETOFSYHBOLS ) 

INSTANCE CONTEXT:CHECK<[PROCSYI,FOLLOUERS) ; 

UAR 
PROCID : IDENTRY ; PROCNAME : ALFA ; 

BEGIN (* PROCDECLARATION *) 
ACCEPT(PROCSY) ; 
IF SCAN.SYMBOL = IDENT 
THEN PRGCNAHE := SCAN.SPELLING 
ELSE PROCNAHE := •'????????' ; 
SCOPE.NEUIB(PROCNANE,PROCID,PROCS) ; 

GENERATE.NEULINKAGE(PROCID".LINKAGE) ; 
ACCEPT(IDENT) ; 
ACCEPT(SEMICOLON) ; 
BLOCK(FOLLOUERS,PROCID) ; 

END <* PROCDECLARATION *) ; 

BEGIN <* PROCPART *) 
UHILE SCAN.SYMBOL = PROCSY DO 
BEGIN 

PROCDECLARATION![SEMICOLON,PROCSYT+FOLLOUERS) ; 

ACCEPT(SEMICOLON) 

END 
END <* PROCPART *> ; 

S.S.P.—M 



PROCEDURE STATPART ( FOLLOUERS : SETOFSYHBOLS ) 

INSTANCE CONTEXTiCHECK(CBEGINSYD,FOLLOUERS) ; 

PROCEDURE COMPOUNDS TATEHENT < FOLLOUERS : SETOFSYHBOLS ) ; 

INSTANCE CONTEXT:CHECK<[BEGINSYI,FOLLOUERS) ; 

PROCEDURE STATEMENT ( FOLLOUERS s SETOFSYHBOLS ) ; 

INSTANCE CONTEXT:CHECK(STATSTARTERS,FOLLOUERS) ; 

VAR 

FIRSTID : IDENTRY ; 

PROCEDURE EXPRESSION ( FOLLOUERS : SETOFSYHBOLS ; 

VAR EXPTYPE i TYPENTRY ) ; FORUARD 

PROCEDURE VARIABLE ( FOLLOUERS : SETOFSYHBOLS ; 
VAR VARTYPE : TYPENTRY ) ; 

INSTANCE CONTEXT:CHECK(CIDENT],FOLLOUERS) ; 

VAR 

VARID : IDENTRY ; 
INDEXTYPE : TYPENTRY ; 

BEGIN <* VARIABLE *) 

SCOPE.SEARCHID(SCAN.SPELLING,VARID,[VARS]) ; 
VARTYPE := VARID *.IDTYPE ; 

GENERATE.STACKREFERENCE(VARID".VARADDRESS) ; 
ACCEPT(IDENT) ; 

IF SCAN.SYMBOL = LEFTBRACKET THEN 
BEGIN 

IF VARTYPE <> NIL THEN 

IF VARTYPE'.FORM <> ARRAYS THEN 
BEGIN 

SEMANTICERROR(<41 ) ; 
VARTYPE := NIL 

END ; 

ACCEPT(LEFTBRACKET) ; 

EXPRESS ION(CRIGHTBRACKETT+FOLLOUERS,INDEXTYPE) 
IF NOT COMPATIBLE!INDEXTYPE,INTTYPE) 
THEN SEHANTICERRORU2) ; 
IF VARTYPE <> NIL THEN 
BEGIN 

UITH VARTYPE* DO 

GENERATE.INDEXEDREFERENCE(INDEXMIN,INDEXHAX, 

ELEMENTTYPE-*.REPRESENTATION) 
VARTYPE j* VARTYPE*.ELEHENTTYPE : 
END ; 

ACCEPT(RIGHTBRACKET) 
END ; 

f 

END <* VARIABLE *) ; 
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PROCEDURE EXPRESSION ; 

VAR 

FIRSTTYPE : TYPENTRY ; 
OPERATOR j SYMBOLTYPE ; 

PROCEDURE SINPLEEXPRESSION ( FOLLOUERS : SETOFSYMBOLS ) ; 

INSTANCE CONTEXT:CHECK(FACTORSTARTERS+SIGNS,FOLLOUERS) ; 

VAR 
SIGNED,NEGATED : BOOLEAN ; 
FIRSTTYPE : TYPENTRY ; 
OPERATOR : SYMBOLTYPE ; 

PROCEDURE TERM ( FOLLOUERS : SETOFSYMBOLS ) ; 

VAR 
FIRSTTYPE : TYPENTRY ; 
OPERATOR : SYMBOLTYPE ; 

PROCEDURE FACTOR < FOLLOUERS : SETOFSYMBOLS ) ; 

INSTANCE CGNTEXT:CHECK(FACTORSTARTERS,FOLLOUERS) ; 

VAR 

FIRSTID : IDENTRY ; 

BEGIN 
BEGIN 

CASE SCAN.SYMBOL OF 

I DENT : 
BEGIN 

SCOPE.SEARCHID<SCAN.SPELLING, 
FIRSTID, 
CVARSjCONSTSI) ; 

CASE FIRSTID.CLASS OF 
CONSTS : 

BEGIN 
EXPTYPE := FIRSTID . IDTYPE ; 
GENERATE.STACKCONSTANT 

<FIRSTID".CONSTVALUE, 
EXPTYPE .REPRESENTATION) ; 

ACCEPT(IDENT) 

END ; 
VARS : 

BEGIN 
VARIABLEIFOLLOUERS,EXPTYPE) J 
IF EXPTYPE <> NIL THEN 

GENERATE.DEREFERENCE 
(EXPTYPE'.REPRESENTATION) ; 

END 

END 
END ; 



INTCONST : 
BEGIN 

EXP7YPE s= INTTYPE ; 
GENERATE.STACKCONSTANT 

(SCAN.CONSTANT, 
INTTYPE".REPRESENTATION) ; 

ACCEPT(INTCONST) 
END ; 

CHARCONST : 
BEGIN 

EXPTYPE := CHARTYPE ; 
GENERATE.STACKCONSTANT 

(SCAN.CONSTANT, 
CHARTYPE".REPRESENTATION); 

ACCEPT(CHARCONST) 
END ; 

LEFTPARENT : 
BEGIN 

ACCEPT(LEFTPARENT) ; 
EXPRESSION*CRIGHTPARENTD+FOLLOUERS, 

EXPTYPE) ; 
ACCEPT(RIGHTPARENT) 

END ; 
NOTOP : 

BEGIN 
ACCEPT(NOTOP) ; 
FACTOR(FOLLOUERS) ; 
IF NOT COMPATIBLE(EXPTYPE,BOOLTYPE) 
THEN SEMANTICERROR(<43) ; 
GENERATE.NEGATEBOOLEAN ; 
EXPTYPE := BOOLTYPE 

END ; 
END ; 

END 
END (•* FACTOR *) ; 

BEGIN <* TERM *) 
FACTOR(MULOPS+FACTORSTARTERS+FOLLOUERS) ; 
IF SCAN.SYMBOL = ANDOP THEN 

GENERATE.BINARYBOOLEANOPERATION< ANDOP,TRUE) 
UHILE SCAN.SYMBOL IN MULOPS+FACTORSTARTERS DO 
BEGIN 

FIRSTTYPE s* EXPTYPE ; 
OPERATOR :* SCAN.SYMBOL ; 
IF SCAN.SYMBOL IN MULOPS 
THEN SCAN.NEXTSYMBOL 
ELSE SYNTAXERROR(TIMES) ; 
FACTOR(NULOPS+FACTORSTARTERS+FOLLOUERS) ; 
IF OPERATOR IN MULOPS 
THEN 

CASE OPERATOR OF 
TIMES,DIVOP j 

BE6IN 
IF NOT 
(COMPATIBLE(FIRSTTYPE,INTTYPE) 

AND COMPATIBLE(EXPTYPE,INTTYPE)) 
THEN SEHANTICERR0R<64) ; 
GENERATE.BINARYINTEGEROPERATION 

(OPERATOR) 
EXPTYPE := INTTYPE 

END ; 
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ANDOP : 
BEGIN 

IF NOT 

(COMPATIBLE(FIRSTTYPE,BOOLTYPE) 
AND COMPATIBLE(EXPTYPE,BOOLTYPE)) 

THEN SEMANTICERR0R(63) ; 

GENERATE.BINARYBOOLEANOPERATION 
(ANDOP,FALSE) ; 

EXPTYPE := BOOLTYPE 
END 

END 
ELSE EXPTYPE s= NIL 

END 
END (* TERH ♦ > ; 

BEGIN (* SINPLE EXPRESSION *) 
IF SCAN.SYNBOL IN SIGNS THEN 
BE6IN 

SIGNED : = TRUE ; 
NEGATED := (SCAN.SYNBOL = MINUS) ; 
SCAN.NEXTSYMBOL ; 

END 
ELSE SIGNED := FALSE ; 
TERN(ADDOPS+FOLLOUERS) ; 
IF SIGNED THEN 

IF NOT COMPATIBLE(EXPTYPE,INTTYPE) 
THEN SENANTICERR0R<&4) 
ELSE 

IF NEGATED THEN GENERATE.NEGATEINTE6ER ; 
IF SCAN.SYNBOL = OROP THEN 

GENERATE.BINARYBOOLEANOPERATION< OROP,TRUE) ; 
UHILE SCAN.SYNBOL IN ADDOPS DO 
BEGIN 

FIRSTTYPE : = EXPTYPE ; 
OPERATOR :■= SCAN.SYMBOL ; 
SCAN.NEXTSYMBOL ; 
TERN(ADDOPS+FOLLOUERS) ; 

CASE OPERATOR OF 
PLUS,MINUS : 

BE6IN 
IF NOT (CONPATIBLE(FIRSTTYPE,INTTYPE) 

AND CONPATIBLE(EXPTYPE,INTTYPE)) 
THEN SENANTICERROR(64) ; 
GENERATE.BINARYINTEGEROPERATION 

(OPERATOR) ; 

EXPTYPE := INTTYPE 
END ; 

OROP : 
BEGIN 

IF NOT (COMPATIBLE(FIRSTTYPE,BOOLTYPE) 
AND COMPATIBLE(EXPTYPE,BOOLTYPE)) 

THEN SENANTICERROR(<43) ; 
GENERATE.BINARYBOOLEANOPERATION 

(OROP,FALSE) ; 

EXPTYPE :«= BOOLTYPE 
END 

END 

END 
END (* SINPLE EXPRESSION *) ; 



BEGIN <* EXPRESSION *> 
SIMPLEEXPRESS ION(RELOPS+FOLLOUERS) ; 
IF SCAN.SYMBOL IN RELOPS THEN 
BE6IN 

FIRSTTYPE := EXPTYPE ; 
OPERATOR SCAN.SYMBOL ; 
SCAN.NEXTSYNBOL ; 
SIHPLEEXPRESSION(FOLLOUERS) ; 
IF NOT ( COMPATIBLE!FIRSTTYPE,INTTYPE) AND 

COMPATIBLE(EXPTYPE,INTTYPE) OR 
COMPATIBLE(FIRSTTYPE,CHARTYPE) AND 
COMPATIBLE(EXPTYPE,CHARTYPE)) 

THEN SEMANTICERROR!<45) ; 
GENERATE.CONPARISON(OPERATOR) ,' 
EXPTYPE != BOOLTYPE 

END 
END <* EXPRESSION =*) ; 

PROCEDURE ASSIGNMENT ; 

VAR 

VARTYPE,EXPTYPE i TYPENTRY ; 

BEGIN <* ASSIGNMENT *> 

VARIABLE< CBECOMES3+FOLLOUERS,VARTYPE) ; 
ACCEPT(BECOMES) ; 

EXPRESSION(FOLLOUERS,EXPTYPE) ; 
IF NOT COMPATIBLE(VARTYPE,EXPTYPE) 
THEN SEMANTICERR0RU4) ; 
GENERATE.ASSIGN 

END <* ASSIGNMENT *> ; 

PROCEDURE READSTATEMENT ; 

PROCEDURE INPUTVARIABLE ; 

VAR 

VARTYPE : TYPENTRY ; 
BEGIN 

VARIABLE![COMMA,RI6HTPARENT]+FOLLOUERS,VARTYPE) 
IF COMPATIBLE!VARTYPE,CHARTYPE) 

THEN GENERATE.READOPERATION(CHARMODE) 
ELSE 

IF COMPATIBLE!VARTYPE,INTTYPE) 

THEN GENERATE.READOPERATION!INTEGERMODE) 
ELSE S£MANTICERR0R<67) 

END <* INPUTVARIABLE *); 

BEGIN 

ACCEPT!READSY) ; 

ACCEPT(LEFTPARENT) ; 
INPUTVARIABLE ; 

WHILE SCAN.SYMBOL * COMMA DO 
BE6IN 

ACCEPT(COMMA) ; 
INPUTVARIABLE 

END ; 

ACCEPT < RIGHTPARENT) 
END (* READSTATEMENT *) ; 
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PROCEDURE URITESTATEMENT ; 

PROCEDURE OUTPUTVALUE ; 

VAR 
EXPTYPE t TYPENTRY ; 

BEGIN 
EXPRESSION![COMMA,RIGHTPARENTD+FOLLOUERS,EXPTYPE) ; 
IF COMPAT IBLE(EXPTYPE,CHARTYPE) 
THEN GENERATE.URITEOPERATION<CHARMODE) 
ELSE 

IF COMPATIDLE(EXPTYPE,INTTYPE) 
THEN GENERATE.URITEOPERATION!INTEGERMODE) 
ELSE SEMANTICERROR(<48) 

END <♦ OUTPUTVALUE *) ; 

BEGIN 
ACCEPT(URITESY) ; 
ACCEPT(LEFTPARENT) ; 
OUTPUTVALUE ; * 
WHILE SCAN.SYMBOL = COMMA DO 
BEGIN 

ACCEPT(COMMA) ; 
OUTPUTVALUE 

END ; 
ACCEPT < RI6HTPARENT) 

END (* URITESTATEMENT *) ; 

PROCEDURE IFSTATEMENT ; 

VAR 
EXPTYPE : TYPENTRY ; 
AFTERTRUEACTION, 
AFTERFALSEACTION : GENERATE.CODELABEL ; 

BEGIN <* IFSTATEMENT *> 
ACCEPT(IFSY) ; 
EXPRESSIONCTHENSY,ELSESYT+FOLLOWERS.EXPTYPE) ; 
IF NOT COMPATIBLE(EXPTYPE,BOOLTYPE) 
THEN SENANTICERR0R<6?) ; 
GENERATE.FUTURECOBELABEL!AFTERTRUEACTION) ; 
GENERATE.JUMPONFALSE(AFTERTRUEACTION) ; 

ACCEPT(THENSY) ; 
STATEMENT(CELSESYI+FOLLOUERS) ; 
IF SCAN.SYMBOL * ELSESY 
THEN 
BEGIN 

GENERATE.FUTURECODELABEL(AFTERFALSEACTION) ; 
GENERATE.JUMP!AFTERFALSEACTION) ; 
GENERATE.EXPECTEDSEQUENCE(AFTERTRUEACTION) ; 
ACCEPT(ELSESY) ; 
STATEMENT(FOLLOWERS) ; 
GENERATE.EXPECTEDCODELABEL(AFTERFALSEACTION) 

END 
ELSE GENERATE.EXPECTEDCODELABEL(AFTERTRUEACTION) 

END (* IFSTATEMENT *) ; 



PROCEDURE UHILESTATEMENT ; 

VAR 
EXPTYPE s TYPENTRY ; 
TOTESTCONDITION, 
AFTERSTATEMENT : GENERATE.CODELABEL ; 

BEGIN <* UHILESTATEMENT *> 
GENERATE.NEUCODELABEL(TOTESTCONDITION) ; 
GENERATE.FUTURECODELABEL(AFTERSTATEMENT) ; 
ACCEPT<UHILESY) ; 
EXPRESS IONIC DOSY3+FOLLOUERS,EXPTYPE) ; 
IF NOT COMPATIBLE(EXPTYPE,BOOL TYPE) 
THEN SEMANTICERR0RU9) ; 
GENERATE.JUMPONFALSE<AFTERSTATEMENT) ; 
ACCEPT(DOSY) ; 
STATEMENT(FOLLOUERS) ; 
GENERATE.JUMP(TOTESTCONDITION) ; 
GENERATE.EXPECTEDCODELABEL(AFTERSTATEMENT) 

END <* UHILESTATEMENT *> ; 

BEGIN <* STATEMENT *) 
CASE SCAN.SYMBOL OF 
IDENT : 

BEGIN 
SCOPE.SEARCHID < SCAN.SPELLING,FIRSTID, 

CPROCS,VARS!) ; 
IF FIRSTID*.CLASS = VARS 
THEN ASSIGNMENT 
ELSE 
BEGIN 

GENERATE.CALLPROC(FIRST ID*.LINKAGE) ; 
ACCEPT(IDENT) 

END 
END ; 

BEGINSY : 
COMPOUNDSTATEMENT(FOLLOUERS) ; 

IFSY « 
IFSTATEMENT ; 

UHILESY : 

UHILESTATEMENT ; 
READSY : 

READSTATEMENT ; 
URITESY : 

URITESTATEMENT 
END <* CASE *) 

END (* STATEMENT *) ; 

BEGIN (♦COMPOUNDSTATEMENT *> 
ACCEPT(BEGINSY) ; 
STATEMENT([SEMICOLON,ENDSY3+STATSTARTERS 

-CIDENT3+FOLLOUERS) ; 
UHILE SCAN.SYMBOL IN CSEMICOLON3+STATSTARTERS-CIDENT] DO 
BEGIN 

ACCEPT(SEMICOLON) ; 
STATEMENT([SEMICOLON,ENDSY]>STATSTARTERS 

-[IDENT3+FOLLOUERS) 
END ; 
ACCEPT(ENDSY) 

END (♦ COMPOUND STATEMENT *) ; 
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BEGIN I* STATPART *) 
IF BLOCKID * NIL 
THEN GENERATE.ENTERPROGRAM 
ELSE GENERATE.ENTERBODYIBLOCKID*.LINKAGE) ; 
COHPOUNDSTATEHENT(FOLLOUERS) ; 
IF BLOCKID * NIL 
THEN GENERATE.LEAVEPROGRAM 
ELSE GENERATE.LEAVEBODY 

END <* STATPART *) ; 

BE6IN I* BLOCK •*) 
GENERATE.OPENSTACKFRANE ; 
VARPARTI[PROCSY,BEGINSY3) ; 
PROCPARTI[BEGINSY]) ; 
STATPARTIFOLLOUERS) ; 
GENERATE.CLOSESTACKFRAHE 

END <* BLOCK *> ; 

BEGIN (* PROGRAMME *) 

BUILTIN.NEUTYPEdNTTYPE,SCALARS) ; 
BUILTIN.NEUTYPEI CHARTYPE,SCALARS) ; 
BUILTIN.NEUTYPEIBOOLTYPE,SCALARS) ; 
INTTYPE".REPRESENTATION := GENERATE.INTEGERREPRESENTATION ; 
CHARTYPE'.REPRESENTATION := GENERATE.CHARREPRESENTATION ; 
BOOLTYPE'.REPRESENTATION := 6ENERATE.BOOLEANREPRESENTATION ; 
BUILTIN.NEUID( "INTEGER ", ENTRY,TYPES) ; 
ENTRY'.IDTYPE := INTTYPE ; 
BUILTIN.NEUID< 'CHAR ", ENTRY,TYPES) ; 
ENTRY*.IDTYPE := CHARTYPE ; 
BUILTIN.NEUIDI BOOLEAN ", ENTRY, TYPES) ; 
ENTRY*.IDTYPE :* BOOLTYPE ; 
BUILTIN.NEUIDI "FALSE ",ENTRY,CONSTS) ; 
ENTRY*.IDTYPE := BOOLTYPE ; 
ENTRY'.CONSTUALUE := 0 ; 
BUILTIN.NEUIDI "TRUE ",ENTRY,CONSTS) J 
ENTRY*.IDTYPE := BOOLTYPE ; 
ENTRY*.CONSTVALUE :* 1 ; 

ACCEPT(PROGRAMSY) ; 
ACCEPT!IDENT) ; 
ACCEPT(SEMI COL ON) ; 
BLOCK I[PERIOD!,NIL) 

END I* PROGRAMME *) ; 

BEGIN 
STATSTARTERS := CIDENT,BEG INSY,READSY,URITESY,IFSY,UHILESY3 ; 
FACTORSTARTERS := CIDENT,INTCONST,CHARCONST,NOTOP,LEFTPARENTI ; 
MULOPS := [TIMES,DIVOP,ANDOP3 ; 
SIGNS : = [PLUS,MINUS] ; 
ADDOPS := [PLUS,MINUS,OROP] ; 
RELOPS := [EQOP,NEOP,LTGP,LEOP,6EOP,GTOP] ; 

*** 

t END <♦ ANALYZER MODULE • > 
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Exercise 5 Modify the code-generation interface given in Listing 7 to allow gener¬ 
ation of the code for the multiple assignment statement, and make the necessary 
corresponding changes to the analyzer given in Listing 8. 

CODE GENERATION 

Beyond the code-generation interface all design decisions reflect the particular 

object-code form to be generated. In this project our aim is to generate 

directly executable machine code for a machine which we will call the REAL 

computer. In fact the REAL computer is not an actual existing machine, 

but it is modeled very closely on the simpler features of ICL 1900 series 

computers, and is typical of many available computers. In the space available 

we cannot cover all aspects of the generation of such code, but we will 

examine some of the areas to see how the machine and object-code character¬ 

istics influence the generation process and how they can be handled in the 
generator module. 

Representation of Object Program Data 

The generator interface introduced a type typerepresentation to describe how 

values of each type in a Mini-Pascal program are represented. The REAL is a 

strictly word-oriented machine with a wordlength of 24 bits. For the range 

of types which Mini-Pascal permits, the obvious representation is one REAL 

word for each of the built-in scalar types integer, char, and Boolean, and n 

contiguous words for each array of n elements. The only information re¬ 

quired on the representation of each type is its size in words, which may in 

principle be any size within the available address space of the REAL com¬ 

puter. We therefore define typerepresentation as follows: 

typerepresentation = addressrange ; 

where addressrange is a subrange representing the available address space for 
the object program, say 

addressrange = 0 . . addressmax ; 

The built-in representations can then be expressed as constants 

const integerrepresentation = 1 ; 

charrepresentation = 1 ; 

Booleanrepresentation = 1 ; 
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and the array representation procedure becomes 

procedure arrayrepresentation (boundmin, boundmax : integer ; 

elementrepresentation : typerepresentation ; 

var representation : typerepresentation) ; 
begin 

representation := boundmax — boundmin + 1 
end ; 

Storage Allocation and Control 

The normal run-time storage organization used for block-structured languages 

is a dynamically allocated stack of storage frames, one for each procedure 

currently under execution. The topmost frame holds the variables local to 

the procedure being executed, the one below holds those of the procedure 
which called it, and so on. 

On entering a block, a new frame can be allocated on top of the stack to 

accommodate the administrative data and local variables of the block, and 

on exit from the block this frame can be retrieved. The administrative data 

include the address to which control must return on exit from the block, and 

information describing the contexts in which the block was defined and 

invoked: this information is provided by two pointers to the stack frames of 

the appropriate blocks. These pointers thus form links in two chains called 

the static chain and the dynamic chain respectively; the former enables a 

block to access variables declared outside or global to it, while the latter is 

used for collapsing the top frame of the stack on exit from the block. 

Suppose a procedure A encloses procedures B and C, and that A calls C 

which calls B, as shown: 

procedure A ; 

procedure B ; 

begin.end ; 

procedure C ; 

begin .... ; B ; . . . end ; 

begin . . . ; C ; . . . end ; 

During the resultant execution of B the topmost frames on the storage 

stack would be as shown in Fig. 2.1. Within this stack of frames at any 

moment there is exactly one accessible for each level of nesting in the corres¬ 

ponding source program—the accessible frames being held on the static 

chain. To address any variable the information needed is the static level of 

its declaration, which identifies the stack frame’s position on the static chain, 

and its relative address within this frame. 



176 A STRUCTURED COMPILER 
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Fig. 2.1 

runtimeaddress = record 

static level : integer ; 

relativeaddress : addressrange 
end ; 

The code generated to access the variable must convert the static level 

into the corresponding stack-frame address, by stepping down the static 
chain. 

The practical efficiency of the scheme can be guaranteed by 

(a) Dedicating one address register to address the topmost stack frame at 

all times. Local variables are thus accessible without any frame location 
code. 

(b) Allocating absolute addresses to the global (main program) variables. 

The stack overheads of variable access are thus confined to the (relatively 
infrequent) access of non-local non-global variables. 

In a one-pass compiler for Mini-Pascal, allocation of addresses for 

global variables will take place before any code generation for the procedure 

or program bodies. It is thus both possible and convenient to allocate the 

global variables to object-program locations which precede those allocated to 

the object code. On some machines this has the additional advantage of 

locating as many as possible, perhaps all, of the global variables within low- 

address locations which are more efficiently accessible than those beyond. 
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Fig. 2.2 

The overall picture of the object program to be generated is thus as shown in 

Fig. 2.2, with the generator sequentially allocating those locations from 

firstavailable to firststack. To represent the progress of this allocation we 

introduce a module Store as follows: 

envelope module Store ; 

var *address : addressrange ; {next available address} 

• • • 

procedure *allocate (area : addressrange ; var startaddress : 

addressrange) 

{sets startaddress to next available address 

and advances next available address by area} 

procedure *copy (contents : integer) ; 

{copies contents to current available address 

and advances address by one} 

begin 

address : = firstavailable ; 

end 

To allocate addresses correctly the generator must maintain a record of 

the level of nesting of the stack frames and the number of locations allocated 

within each. This it can do with a variable 

level : integer ; 

and a stack of frame records of the form 
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framerec = record 

nextlocal : addressrange ; 

nextframe : framentry 

end 

where framentry = t framerec ; 

The top of this stack can be located by a variable 

localframe : framentry ; 

The appropriate initialization for the frame stack is 

localframe := nil ; level := globallevel —1 ; 

and the operations openstackframe and closestackframe are then readily 

programmed as straightforward pushing and popping operations on this 

stack. 
The address allocation procedure is programmable as follows: 

procedure addressfor (representation : typerepresentation , 

var address : runtimeaddress) ; 

begin 

address.staticlevel : = level ; 

if level = globallevel 
then Store.allocate (representation, address, relative address) 

else 

with localframe t do 

begin 

address.relativeaddress : = nextlocal ; 

nextlocal : = nextlocal + representation 

end 

end ; 

Generating Code 

Before considering the problems of object-code generation we must introduce 

some details of the object REAL computer. The REAL has a set of eight 

general purpose 24-bit registers X0-X7, but three of these XI-X3 double 

as index or modifier registers. 

Each REAL instruction is held as one 24-bit word comprising 

a 7-bit function field F 

a 3-bit register field X 

a 2-bit index or modifier field M 

a 12-bit operand field N 

In store-addressing instructions the operand field N is added to the 
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contents of the modifier register M to determine the store location addressed, 

usually written N(M); M=0 means no modification i.e. the address used is N. 

The range of functions relevant to our code-generation problem and 
their effect is shown in Table 2.1, where a and n are used to denote the 

contents of register X and store location N(M) respectively. 

Table 2.1 

LDX X N{M) {x : = n 
NGX X N(M) {x : = —n 
ADX X N(M) {x \ = x + n 
SBX X N(M) {a : = x — n 
MPX X N{M) {a := x* n 
DVX X N(M) {x : = x div n 
STO X N(M) {n : — x 
STOZ N(M) {n := O 
MOVE X N {move N words from address in X 

to address in X + 1 

BRN N {jump to instruction N 
BZE X N {jump to instruction N if x = 0 
BNZ X N {jump to instruction N if x =0 
BNG X N {jump to instruction N if x < 0 
BPZ X N {jump to instruction N if x fz 0 
CALL X N {x : = address of next instruction; 

jump to instruction N 
EXIT 
HALT 

X O {jump to instruction x 
{stop execution 

LDN X N {x :=N 
NGN X N {x := - N 
ADN X N {x := x + N 
SBN X N {x := x - N 
MPN X N {x : = x * N 
DVN X N {x : = x div N 

The final group of functions, which use the 12-bit operand field N itself 

as an “immediate” operand, rather than the contents of the store location 

which it addresses, can be exploited in many contexts where constant values 

are manipulated by the program being compiled. 

The major problem in generating object code for the statement parts of a 

Mini-Pascal program is that the REAL architecture and instruction set do not 

directly mirror the architecture and operations of our hypothetical stack 

machine, in two significant aspects: 

(a) Given that registers XI-X3 have to be reserved for addressing purposes, 

the remaining four X4-XI do not provide an adequate stack for 

expression evaluation. 
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(b) The arithmetic instructions all operate on one operand in store and 

their efficient usage precludes prior loading of both operands into 

registers. 

The difference is well illustrated by the code sequences on either machine 

for the Mini-Pascal assignment 

A := B + 4 * C 

which are as shown in Table 2.2. This basic mismatch between the hypo¬ 

thetical and actual object machines is overcome in the generator by simulating 

the state of both at any point in the execution of the program being compiled, 

and using this simulation to choose the most efficient sequence of REAL 

instructions which keeps the latter in a state equivalent to the former. 

Table 2.2 
Hypothetical machine REAL 
Stackreference (A) LDN 4 4 
Stackreference (B) MPX 4 C 
Dereference ( ) ADX 4 B 
Stackconstant (4) 
Stackreference (C) 
Dereference ( ) 
Binaryintegerop (*) 
Binaryintegerop ( + ) 
Assign 

STO 4 A 

To carry out this simulation the generator must keep track of operands 

held by the hypothetical stack at any moment, of the corresponding contents 

of the registers and work locations used on the REAL machine, and of the 

sequence of REAL instructions required to maintain their equivalence. To 

look after these housekeeping operations we will introduce four corresponding 
modules as follows: 

envelope module Stack ; 

envelope module Registers ; 

envelope module Worklocations ; 

envelope module Code ; 

The precise range of facilities which these modules must provide will 

emerge as we consider the various aspects of code generation which the 
generator interface procedures imply. 
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The primary strategy in achieving efficient object code is delay—no 

object code is ever generated until it is essential in maintaining the equivalence 

of the hypothetical and actual machine states. This delaying strategy is 

illustrated by considering generator actions in handling a few of the basic 

stack-manipulation operations of the hypothetical machine. 

Programming basic stack operations 

Simulation of the hypothetical stack contents involves maintaining within 

the generator operand descriptions of the general form: 

operandkind = (reference, . . . ) ; 

operand = f oprec ; 

oprec = record 

case kind : operandkind of 

reference : (.) ; 

end ; 

When a new reference has to be added to the stack by the procedure 

Stackreference, no addressing code is generated at that stage. The address 

co-ordinates are simply copied across into a new operand description, for 

which a suitable form is thus 

oprec = record 

case kind : operandkind of 

reference : (address : runtimeaddress ; 

indexed : Boolean ; 

end 

The procedure Stackreference is then expressible as 

procedure Stackreference (location : runtimeaddress) ; 

var ref entry : operand ; 

begin 

New (refentry) ; 

with refentry t do 

begin 

kind := reference ; 

address := location ; 

indexed : = false 

end ; 

Stack.push(rejentry) 

end ; 

S.S.P.—N 
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Since operand descriptions sometimes exist outside the simulated hypo¬ 

thetical stack, we separate their creation and disposal from the Stack module s 

housekeeping procedures push and pop. 
The field indexed anticipates that indexed references will in some way 

form an extension of this simple case. 
In practice the Indexedreference operation also avoids the generation of 

any code. It removes the description of the index value from the stack and 

appends it to the array reference beneath together with sufficient information 

to enable the subscripting code to be generated when it becomes necessary 

to do so. 
A suitable extension of the stack-record variant concerned is thus 

reference : (address : runtimeaddress ; 

case indexed : Boolean of 

true : (index : operand ; 
indexmin, indexmax : integer )) 

and the procedure Indexedreference takes the form 

procedure Indexedreference (boundmin, boundmax : integer ; 
elementrepresentation : typerepresentation) ; 

var indexen try,array entry : operand ; 

begin 

Stack.popiindexentry) ; 

Stack.pop(arrayentry) ; 

with array entry t do 

begin 

indexed : = true ; 

index : = indexentry ; 

indexmin : = boundmin ; 

indexmax : = boundmax 

end ; 

Stack. push{ar ray entry) 

end ; 

The dereferencing of a reference in principle implies the replacement of 

the reference by the value to which it refers. In practice no code need be 

generated at that stage and the only action required is to add to the reference 

the representation details necessary when the value does have to be accessed. 

Since this representation information is common to other forms of operand 
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we add it thus: 

oprec = record 

rep : typerepresentation ; 

case kind : operandkind of 

end ; 

and the Dereference operation requires only the following 

procedure Dereference (representation : typerepresentation) ; 

var reference : operand ; 

begin 

Stack.pop(reference) ; 

reference t .rep : = representation ; 

Stack, push(reference) 

end ; 

Constant operands are also processed without any immediate generation 

of code. To accommodate them a second form of operand record is added, 

thus 
operandkind = (reference, constant, . . .) ; 

oprec = record 

rep : typerepresentation ; 

case kind : operandkind of 

reference : (.) ; 

constant : (constvalue : integer) ; 

end ; 

and the procedure Stackconstant is written 

procedure Stackconstant (value-.integer^representation -.typerepresentation) ; 

var constentry : operand ; 

begin 

New (constentry) ; 

with constentry t do 

begin 

rep : = representation ; 

kind : = constant ; 

constvalue : = value 

end ; 
Stack.push (constentry) 

end ; 
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In this way all primary operands are handled by the generator without any 
immediate code generation. How the code is ultimately generated by the 
application of arithmetic or other operations to them is well illustrated by 
the assignment operation, which we consider next. 

A general strategy for Mini-Pascal assignments on the REAL computer is 

if more than one word is being assigned 

then generate code to use store-to-store MOVE instruction 

else if assigning zero 

then generate code using STOZ instruction 

else generate code to load and store value 

Using the stack refinements so far, and introducing some basic pro¬ 
cedures for code generation, we can program this strategy as follows 

procedure Assign ; 
var size : addressrange ; 

value,variable : operand ; 
begin 

Stack.pop(value) ; 

Stack. pop{variable) ; 

size := value t .rep ; 
if size > 1 
then begin 

Loadaddress (6, value) ; 
Loadaddress (7, variable) ; 
Code.ins {MOVE,6,size,0) 

end 

else if {value t .kind= constant) and {value t .constvalue = 0) 
then begin 

address (variable) ; 
with addressed do Code.ins (ST0Z,0,N,M,) 

end 
else begin 

load {value) ; 
address {variable) ; 

with addressed do Code.ins {,STO,loadreg,N,M) 
end ; 

Dispose {value) ; 
Dispose (variable) 

end ; 
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Here we have introduced 

(a) A Code module procedure ins which assembles a REAL instruction 

from its component fields and appends it to the current code sequence. 

(b) A procedure Loadaddress which generates code to load the register 

specified with the address of the operand specified. 

(c) A procedure Load which generates code, if necessary, to load some 

convenient register with the value of the operand specified, leaving the 

register chosen in the variable loadedreg. 

(d) A procedure address which generates code, if necessary, to enable a 

subsequent instruction to address the location occupied by the operand 

specified. The addressing co-ordinates to be used in the subsequent 

instruction are left as the components of a record variable 

addressed : record 

N : 0 . . 4095 ; 

M : modifier register 

end ; 

These last two procedures are the basic work-horses of all the code¬ 

generation logic associated with the manipulation of hypothetical stack 

operands, e.g. integer arithmetic. It is interesting to carry their development 

a stage further. This we do in the next section. 

Loading and addressing operands 

Besides references and constants, stacked operands may be the result of some 

previous stack operation. Such a result will be left in a computation register 

of the actual machine. Since the number of registers is limited it is possible 

that the register may have to be re-used before its contents have been con¬ 

sumed. In this case the result has to be saved in a temporary work location 

until it is required. These possibilities are reflected by extending our operand 

records as follows: 

operandkind = (reference, constant, result . . .) 

oprec = record 
rep : typerepresentation ; 

case kind : operandkind of 

reference : (.) ; 

constant : (.) ; 
result : (case inregister : Boolean of 

true : (reg : register) ; 

false : (tempresult : work location)) 
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The reg field provides an operand -*■ register association. Register 

protection requires that some reverse association, i.e. register -*■ operand, 

also be maintained. To maintain this binding between registers and operands 

we will assume that the Registers module provides procedures 

procedure Bindto (entry : operand) ; 

procedure Freefrom (entry : operand) ; 

The procedure Load might now be written as 

procedure Load (entry : operand ) ; 

var chosenregister : register ; 

begin 

ii (entry t .kind=result) and entry t .inregister 

then begin 

chosenregister := entry t .reg ; 

Registers.freefrom (entry) 

end 
else begin 

chosenregister : = Registers.bestfor (entry) ; 

LoadX (chosenregister, entry) 
end ; 

loaded reg : = chosenregister 
end ; 

The operation LoadX, which generates code to load an operand value 

into a specified register, is required elsewhere in the code-generation logic, 

and is therefore isolated as a separate procedure. In coding LoadX we must 

remember that the register specified may already be occupied by some other 

operand which must first be moved to a temporary location and its operand 

description adjusted accordingly. LoadX therefore takes the form 

procedure LoadX (X : register ; entry : operand) ; 
begin 

if not (X in Registers.usedby (entry)) then Registers.save (X) ; 
with entry t do 

case kind of 

reference : begin 

address (entry) ; 

with addressed do Code.ins (LDX,X,N,M) 
end ; 

constant : constins (LDX,X,constvalue) ; 
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result : 

end 

end ; 

if imegister 

then begin 

if reg fi x then Code.ins (LDX,X,reg,0) ; 

Registers.freefrom {entry) 
end 

else begin 

Code.ins {LDX,X,tempresult,0) ; 

worklo cations .free {tempresult) 
end 

The procedure Registers.save(X) is assumed to test whether register X is 

free and if not generate an instruction to save its contents in an available 

work location, resetting the corresponding stack record accordingly. 

The procedure constins generates an instruction with the literal operand 

specified, making use of the REAL’S “immediate operand” instructions LDN, 

ADN, etc. whenever possible. 

Addressing operands require some decisions on the use of the REAL’S 

address or modifier registers Xl-3. We have already decided to dedicate 

one of these to the topmost frame of the run-time storage stack. It is im¬ 

material which is chosen: let us denote it by Xlocal. A second, Xref, we will 

always use in constructing addresses which require a modifier other than 

Xlocal. The third, which we denote by Xmod, we will leave free for other 

purposes for the time being. 
With these decisions we can proceed to code the address procedure as 

follows: 

procedure address {entry : operand) ; 

var Xrefset : Boolean ; 

adjustment, JinalN : integer ; 

finalM : modifier ; 

begin 

with entry t do 

case kind of 

reference : 

begin 
if indexed 

then begin 

if index t .kind=constant 

then begin 
adjustment := index t .constvalue—indexmin ; 
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Xref set : = false 

end 

else begin 

LoadX (Xref index) ; 

adjustment : = — index min ; 

Xref set := /rue 

end ; 

Dispose (index) 

end 

else begin 

adjustment : = 0 ; 

Xref set : = false 
end ; 

At this stage any compile-time adjustment of the address due to an 

index has been calculated, and any run-time adjustment loaded into Xref. 

Incorporation of these in an address-co-ordinates pair (finalNfinalM) then 
proceeds: 

with refaddress do 
begin 

finalN : = relativeaddress + adjustment ; 

if staticlevel = globallevel 

then if Xref set then final M : = Xref 

else finalM : = 0 
else 

if staticlevel = level 

then if Xrefset then begin 

Code.ins (ADX,XrefXlocaI,0) ; 
finalM : = Xref 

end 

else finalM := Xlocal 
else begin 

if Xrefset 

then if staticlevel = level-1 

then Code.ins (A DX, Xref static, Xlocal) 
else begin 

SetXtolevel (Xmod,staticlevel-]-1) ; 

Code.ins (A DX,Xref,static,Xmod) 
end 

else SetXtolevel {Xref staticlevel) ; 
finalM := Xref 
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end 

end 

end ; 

where the procedure SetXtolevel generates code to load the specified register 

with the address of the stack frame for the specified level—by stepping down 
the static pointer chain the necessary number of levels. 

The resulting address co-ordinates {finalN ,finalM) may be unusable in 

one case—for an indexed variable finalN will be negative if the lower bound 

of the index exceeds the relative address of the array. To avoid this we add 
the following code: 

if finalN < 0 then 
begin 

constins (ADX, Xref, finalN) ; 

finalN := 0 

end 

—since finalM must equal Xref in this case. 

The procedure address may also be used for operands with kind = 

constant or result, but the coding needed is straightforward in these cases. 

Other code generation 

We have considered only the code generation for Mini-Pascal assignments, 

and the underlying operand loading and addressing involved. Other areas 

unexamined are integer and Boolean arithmetic, control operations, procedure 

calls and input/output. Thereafter the supporting modules for register and 

work location housekeeping, stack maintenance, and code assembly have to 

be programmed. However, all of these can be tackled in the same basic 

manner. Listing 9 shows a complete code generator and the local modules 

on which it depends. As a measure of the effectiveness of the programming 

style used, the reader might consider the ease with which those parts of the 

generator not discussed in the text can be followed by a first-time reader. 



Listing 9 

ENVELOPE NODULE GENERATE J 

<* THE GENERATOR PROVIDES A PROGRAM GENERATION INTERFACE FOR THE *) 
(* SYNTACTIC/SEMANTIC ANALYZER AS A SET OF PROCEDURE CALLS. *> 
<* THESE CALLS, AND THE TYPES UNDERLYING THEIR PARAMETER LISTS, *) 
<* PROVIDE A GENERATION INTERFACE WHICH IS INDEPENDENT OF THE ■*) 

<* PRECISE OBJECT CODE TO BE GENERATED. BETWEEN CALLS THE *> 
(* ANALYZER STORES AND TRANSMITS DATA OF THESE TYPES BUT UITHOUT ■»> 
(* ANY NECESSARY KNOWLEDGE OF THEIR INTERNAL NATURE. *> 
(* *) 

(# *> 

(* (1) REPRESENTATION AND STORAGE OF DATA *) 

(* *> 
(* THE REPRESENTATION AND STORAGE OF DATA WITHIN THE OBJECT •*) 
(* PROGRAM IS DESCRIBED BY THE GENERATOR AS FOLLOWS *) 

(* *) 

(* 1. FOR EACH TYPE THE GENERATOR CREATES A REPRESENTATION*) 
<* OF TYPE TYPEREPRESENTATION-' WHICH DESCRIBES HOW ♦> 
(* SUCH DATA ARE TO BE REPRESENTED IN THE OBJECT *> 
<♦ PROGRAM. *) 
<* •») 

(* 2. FOR EACH VARIABLE THE GENERATOR CREATES AN ADDRESS *> 
<* 'RUNTIMEADDRESS' WHICH HOLDS THE NECESSARY ADDRESS *> 
<* CO-ORDINATES FOR THE RUN-TIME ACCESS OF THOSE DATA. *) 

(* *) 

<* THESE DESCRIPTORS ARE GENERATED AS FOLLOWS *) 
(* •+) 

(* 3. REPRESENTATION FOR THE BUILT-IN TYPES ARE HADE *) 
<* AVAILABLE AS ACCESSIBLE VALUES INTEGERREPRESENTATI ON *) 
(* ETC. THE PROCEDURE ARRAYREPRESENTATION GENERATES A *) 
<♦ REPRESENTATION FOR EACH PROGRAM-DEFINED ARRAY TYPE. *) 
<* +) 

<* THE PROCEDURE ADDRESSFOR DETERMINES THE RUN-TIME *) 
<* ADDRESS CO-ORDINATES FOR A VARIABLE. SINCE THESE +) 
(* RUN-TIME ADDRESSES ARE ASSUMED TO LIE WITHIN A *) 

<* CONVENTIONAL RUN-TIME STORAGE STACK, PROCEDURE *) 
<* CALLS 'OPENSTACKFRAME/ AND CLOSESTACKFRAME' ARE •*) 
(* USED TO DELIMIT THE STATIC NESTING OF STACK FRAMES ♦) 
<* FOR THE ADDRESS ALLOCATOR. *) 
( ♦ ^ ) 

(* (2) PROCEDURE AND PROGRAM CONTROL *) 
(* 

<* THE NECESSARY COMPILE- AND RUNTIME HOUSEKEEPING *> 
<* OPERATIONS ASSOCIATED WITH THE OBJECT PROGRAM ARE *) 
<* REALIZED AS FOLLOWS +> 

<* *) 

<* «• A LINKAGE RECORD IS GENERATED FOR EACH PROCEDURE •*) 
<* BY THE PROCEDURE NEWLINKAGE *> 

•) 
(* 2. TRANSFER OF CONTROL TO A PROCEDURE *) 
<* IS REALIZED BY THE OPERATION CALLPROC *) 

;* •■*> 
3. THE NECESSARY PRELUDE AND POSTLUDE CODE FOR EACH *) 

(* PROCEDURE OR PROGRAM BLOCK IS REALIZED BY THE *) 
<* OPERATIONS 

!* *) 
<* ENTERBODY ,4) 

<* LEAVEBODY .4) 

<♦ ENTERPROGRAM 
<* LEAVEPROGRAM 
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(* *) 

<* *) 
(* <3) VARIABLES, EXPRESSIONS AND ASSIGNMENT *> 
<* *) 
(* THE CODE GENERATION INTERFACE FOR VARIABLE ACCESS, *) 
(* EXPRESSION EVALUATION AND ASSIGNMENT ASSUMES A POSTFIX *) 
(♦ CODE FORM <THOUGH THE GENERATING PROCEDURES CALLED MAY *) 
(* TRANSFORM THIS CODE THEREAFTER). THE GENERATING CALLS +> 
(* REPRESENT OPERATIONS ON A HYPOTHETICAL RUN-TIME STACK •») 
<* OF OPERAND REFERENCES AND VALUES, AS FOLLOWS *) 
<* *) 
<* 1. VARIABLE ACCESS IS REALIZED BY THE FOLLOWING *) 
(* HYPOTHETICAL OPERATIONS *> 
(* *) 

(* STACKREFERENCE *) 
(* INDEXEDREFERENCE *) 

(* *) 

(* 2. EXPRESSION EVALUATION IS REALIZED BY THE FOLLOWING *) 
(* ADDITIONAL STACK OPERATIONS *) 
(* *) 

<* DEREFERENCE *) 
(* STACKCONSTANT *) 

<* *) 
<* NEGATEINTEGER *) 
(* BINARYINTEGEROPERATION *) 

(* *) 

(* COMPARISON '•►) 
(* *) 

<* NEGATEBOOLEAN *> 
(* BINARYBOOLEANOPERATION *) 
<* *) 

(* THE OPERATION BINARYBOOLEANOPERATION IS DEFINED *) 

<* AND USED IN A WAY WHICH PERMITS EITHER INFIX OR *) 

<* POSTFIX EVALUATION OF AND/OR OPERATIONS *) 
(* =♦) 

<♦ 3. FINALLY ASSIGNMENT IS REALIZED BY THE SINGLE *) 

<* HYPOTHETICAL STACK OPERATION - ASSIGN. *) 
<* *) 

(* ■*) 

(* <4) 1-0 OPERATIONS *> 
<* *) 

<* THE 1-0 OPERATIONS ARE REALIZED BY THE FOLLOWING *) 

(* GENERATIVE OPERATIONS *) 
(* *) 

<* READOPERATION *) 

<* WRITEOPERATION *> 
(* *) 

<* *) 

(* (5) CONTROL STATEMENTS AND *) 

(* SEQUENTIAL CODE GENERATION *) 
(* =*) 

<* THE CODE GENERATED, WHATEVER ITS FORM, IS ASSUMED TO BE *> 
(* FOR SEQUENTIAL EXECUTION. EACH CODE SEQUENCE WHICH CAN *) 

(* BE ENTERED OTHER THAN SEQUENTIALLY IS REPRESENTED AT *) 

(* COMPILE TIME BY A RECORD OF TYPE 'CODELABEL'. THESE *> 
<* RECORDS ARE BOUND TO POINTS IN THE CODE BY THE PROCEDURES *) 



(* NEULABEL - FOR A PREVIOUSLY UNREFERENCED *> 
<* LABEL *> 

<* *! 
(* FUTURELABEL - FOR A LABEL UHICH NAY BE *) 
(* REFERENCED BEFORE IT IS *> 

(* GENERATED *> 

(* *> 
(* EXPECTEDLABEL - FOR A LABEL PREVIOUSLY *> 
<* •'EXPECTED' *> 

(* ALL REFERENCESX JUMPS ETC.) ARE GENERATED BY THE CONTROL *> 
(* GENERATING PROCEDURES MANIPULATING THESE LABEL RECORDS *> 

(* *> 
(* CONTROL STATEMENT CODE IS REALIZED BY THE FOLLOWING :*> 

(* HYPOTHETICAL OPERATIONS *> 
(* 

<* JUMPONFALSE *> 
(* JUMP *> 
(* 
<* THE ANALYZER MAY SUPPRESS FURTHER GENERATOR ACTIVITY AT ANY *) 

(* TIME BY CALLING THE PROCEDURE NOFURTHERCODE . ALL SUBSEQUENT *> 
<* GENERATOR CALLS ARE IGNORED. THIS IS NECESSARY IF ANALYSIS OF *) 
(» (ANY PART OF) AN INCORRECT PROGRAM CAUSES INCONSISTENT *) 

(* SEQUENCES OF INTERFACE CALLS *> 

VAR 

CODEISTOBEGENERATED : BOOLEAN ; 

PROCEDURE ♦NOFURTHERCODE ; 
BEGIN 

CODEISTOBEGENERATED FALSE 
END ; 

<* THE GENERATOR REPORTS ERRORS OR VIOLATIONS OF *) 
(♦ IMPLEMENTATION RESTRICTIONS WITH THE FOLLOUING CODES *) 
(* *) 
(♦ 91 .... BLOCK TOO LONG *) 

<♦ 92 - TOO MUCH NON-LOCAL RECURSION *) 
(* 93 .... EXPRESSION TOO COMPLICATED *) 
(* 9A .... DIVISION BY ZERO ■*) 

PROCEDURE GENERROR ( CODE : INTEGER ) ; 
BEGIN 

SOURCE.ERRORtCODE,SOURCE.POSITIONNOU) 
END ; 
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(44****444-4**4*-4***44**4*444*4**-44**4*-44*'444444-444-4*'44) 

(************ REAL MACHINE CHARACTERISTICS ***********) 
(4*******4t**4*4*44****4*4*4***4*4*4**-44*44*44444f44*4) 

CONST 

ADDRESSMAX = 4095 ; 

SCR = 8 ; <* WORD 8 IS SEQUENCE CONTROL REGISTER *) 

TYPE 

ADDRRANGE = 0..ADDRESSMAX ; 
REGISTER = 0..7 ; 
MODIFIER = 0..3 ; 
ORDERCODE = 0..127 ; 

SYSTEMROUTINES = <INITIALI0,FINALJO, 
READCHAR,READINTEGER, 
UR I TECHAR,UR ITEINTEGER) ; 

CONST 

<********** ORDER CODE MNEMONICS ******■.♦*+*) 

LDX = OOOB; ADX = 001B; NGX = 002B; SBX = 003B; 
STO = 010B; 
STOZ = 033B; 
MPX = 040BJ DUX = 046B; 
BZE = 050B; BNZ = 052B; BPZ = 054B; BNG = 56B; 
CALL = 070B; EXIT = 072B; BRN = 074B; 
LDN = IOOB; ADN = 101B; NGN = I02B; SBN = 103B; 
HPN = 140B; DON = 146B; ERN = 122B; MOVE = 126B; 
HALT = 161B ; 
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ENVELOPE MODULE STORE ; 

<* SEQUENTIALLY ALLOCATES OBJECT PROGRAM LOCATIONS FROM *) 
(* FIRSTAVAILABLE ONWARDS. AT RUNTIME THE FIRST UNALLOC- *> 
<* ATED LOCATION MAY BE ADDRESSED VIA LOCATION STACKBASE ♦ ) 

CONST 

FIRSTAVAILABLE = 500 ; 

VAR 

♦ADDRESS : ADDRRANGE ; 

♦STACKBASE : ADDRRANGE ; 

<♦ ADDRESSES OF PRESET STORE LOCATIONS ♦) 

♦ADDRESSFOR : ARRAY ESYSTEMROUTINESI OF ADDRRANGE ; 

PROCEDURE *COPY ( UORD : INTEGER ) ; 

BEGIN 

CODEFILE.LOCATEfABDRESS,UORD) ; 
ADDRESS := ADDRESS+1 

END ; 

PROCEDURE *ALLOCATE ( AREA : ADDRRANGE ; VAR STARTADDRESS : ADDRRANGE ) 

BEGIN 

STARTADDRESS := ADDRESS ; 
ADDRESS := ADDRESS+AREA 

END ; 

BEGIN 

<♦ INITIALIZE PRESET STORE ADDRESSES ♦) 

ADDRESSFOREINITIAL 10 3 := 100 ; 
ADDRESSFOREFINALIO 3 := 150 ; 
ADDRESSFORIREADCHAR 3 := 200 ; 
ADDRESSFORCURITECHAR 3 := 250 ; 
ADDRESSFOREREADINTEGER 3 := 300 ; 
ADDRESSFOREWRITE INTEGER 3 := 400 ; 

STACKBASE :* FIRSTAVAILABLE ; 
ADDRESS :* FIRSTAVAILABLE+1 ; 

*»* ; 
CODEFILE.LOCATE(STACKBASE,ADDRESS) 

END <♦ STORE MODULE ♦) ; 
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I******************#******************:*********:******:** ) 
<*♦*** data representation and STORAGE ALLOCATION ***♦*) 
I******************************************************) 

TYPE 

♦TYPEREPRESENTATION = ADDRRANGE ; 

CONST 

*BOOLEANREPRESENTATION = 1 ; 
♦CHARREPRESENTATION * 1 ; 
♦INTEGERREPRESENTATION = 1 ; 

PROCEDURE *ARRAYREPRESENTATION ( BOUNDMIN,BOUNDMAX : INTEGER ; 
ELEMENT REPRESENTAT I ON : TYPEREPRESENTAT ION ; 
VAR REPRESENTATION : TYPEREPRESENTATION ) ; 

BEGIN 
IF CODEISTOBEGENERATED THEN 

REPRESENTATION := BOUNDMAX - BOUNDMIN + 1 
END ; 

CONST 

GLOBALLEVEL = 1 ; 

<* STACKFRAME OFFSETS ») 

DYNAMIC = 0 ; 
STATIC = 1; 
LINK = 2 ; 
NEXTFRANE = 3 ; 
FIRSTLOCAL = 4 ; 

TYPE 

FRAMENTRY = TRAMEREC ; 

FRAMEREC = RECORD 
NEXTLOCAL : ADDRRANGE ; 
NEXTFRAME : FRAMENTRY 

END ; 

♦RUNTIMEADDRESS = RECORD 
STATICLEVEL : INTEGER ; 
RELATIUEADDRESS : ADDRRANGE 

END ; 
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VAR 

LEVEL : INTEGER ; 

LOCALFRAHE : FRANENTRY ; 

PROCEDURE *OPENSTACKFRANE ; 
VAR 

NEUFRANE : FRANENTRY ; 
BEGIN 

IF CODEISTOBEGENERATED THEN 
BEGIN 

NEU(NEUFRANE) ; 
WITH NEUFRANE' DO 
BEGIN 

NEXTLOCAL := FIRSTLOCAL ; 
NEXTFRAHE : = LOCALFRANE 

END ; 
LOCALFRANE := NEUFRANE ; LEVEL := LEVEL+1 

END 
END (♦ OPENSTACKFRANE ; 

PROCEDURE *ADDRESSFOR ( REPRESENTATION : TYPEREPRESENTATION ; 
VAR ADDRESS : RUNTIHEADDRESS ) ; 

BEGIN 
IF CODEISTOBEGENERATED THEN 
BEGIN 

ADDRESS.STATICLEVEL := LEVEL ; 
IF LEVEL = GLOBALLEVEL 
THEN 

STORE.ALLOCATE(REPRESENTATION,ADDRESS.RELATIVEADDRESS) 
ELSE 

UITH LOCALFRANE' DP 
BEGIN 

ADDRESS.RELATIVEADDRESS := NEXTLOCAL ; 
NEXTLOCAL := NEXTLOCAL + REPRESENTATION 

END 
END 

END (* ADDRESSFOR *) ; 

PROCEDURE *CLOSESTACKFRANE ; 
VAR 

OLDFRANE : FRANENTRY ; 
BEGIN 

IF CODEISTOBEGENERATED THEN 
BEGIN 

OLDFRANE := LOCALFRANE ; 

LOCALFRAHE := LOCALFRANE'.NEXTFRAHE ; LEVEL := LEVEL-1 
DISPOSE(OLDFRAHE) 

END 

END <* CLOSESTACKFRANE *) ; 
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ENVELOPE NODULE CODE ; 

<* ASSEMBLES AND FILES REAL NACHINE INSTRUCTIONS VIA *) 
<* THE PROCEDURES INS , JUHPINS ,AND LINKEDJUNPINS *) 
<* LABELED POINTS IN THE CODE HAY BE REPRESENTED BY *) 
(* VARIABLES OF TYPE CODELABEL, UHICH ARE BOUND TO THE *) 

<* CODE ITSELF BY THE PROCEDURES NEULABEL, FUTURELABEL, *) 
<* AND EXPECTEDLABEL. TUO LABELS HAY BE EQUIVALENCEB BY *) 

<♦ THE PROCEDURE LINKLABEL *) 

CONST 

CODENAX = 1000 ; 
LINKNAX = 50 ; 

TYPE 

CODERANGE = O..CODEHAX ; 
LINKRANGE = 0..LINKNAX ; 

♦CODELABEL = RECORD 
CASE EXPECTED : BOOLEAN OF 

FALSE : 
( STARTADDRESS : ADDRRANGE ) ; 

TRUE : 
( LASTCODEREFERENCE : LODERANGE ; 

CASE LINKED : BOOLEAN OF 
TRUE : 

( LINKINDEX : LINKRANGE )) 

END ; 

DIRECTOPERAND = 0..4095 ; 

REALINSTRUCTION = PACKED RECORD 
N : DIRECTOPERAND ; 
M : MODIFIER ; 
F : ORDERCODE ; 
X : RE6ISTER 

END ; 

VAR 

ADDRESS : ADDRRANGE ; 

CODE : ARRAYCCODERANGEI OF REALINSTRUCTION ; 
NEXTINS,FIXUPSNEEDED : CODERANGE ; 
NOCODEOVERFLOU : BOOLEAN ; 

LINKTABLE : ARRAYELINKRANGET OF INTEGER ; 
FIRSTLINKADDRESS : ADDRRANGE ; 
NEXTLINK,I : LINKRANGE ; 

NOLINKOVERFLOU i BOOLEAN ; 



PROCEDURE *ALIGNINSTORE; 

BEGIN 
ADDRESS := STORE.ADDRESS 

END ; 

PROCEDURE COPYCODE < CODEVALUE : REALINSTRUCTION ) ; 

(* COPIES CODEVALUE AS NEXT INSTRUCTION OF OBJECT PROGRAN 
EITHER BY PASSING IT DIRECTLY TO THE STORE NODULE, 
OR BY HOLDING IT IN THE CODE ARRAY PENDING FIXUPS *) 

CODEBASE : ADDRRANGE ; 
CODEOFFSET : CODERANGE ; 

BEGIN 
IF FIXUPSNEEDED » 0 
THEN 
BEGIN 

IF NEXTINS <> 1 THEN 
BEGIN 

CODEBASE := ADDRESS - NEXTINS ; 
FOR CODEOFFSET := I TO NEXTINS-1 DO 

STORE.COPY(ORD(CODECCODEOFFSETJ)) ; 
NEXTINS := 1 ; NOCODECVERFLOU := TRUE 

END ; 

STORE.COPY(ORD(CODEVALUE)) 
END 
ELSE 
BEGIN 

IF NEXTINS > CODENAX THEN 
BEGIN 

IF NOCODEOVERFLOU THEN 
BEGIN 

GENERROR(91) ; 

NOCODEOVERFLOU FALSE 
END ; 
NEXTINS := 1 

END ; 

CODECNEXTINS] := CODEVALUE ; 
NEXTINS := NEXTINS + 1 ; 

END ; 

ADDRESS := ADDRESS + 1 
END <* COPYCODE *) ; 

PROCEDURE * INS ( F : ORDERCODE ; X : REGISTER ; 

N : DIRECTOPERAND ; N : MODIFIER ) ; 

<* GENERATES REAL INSTRUCTION F X N(H > *) 

VAR 

INSTRUCTION : REALINSTRUCTION ; 
BEGIN 

INSTRUCTION.F := F ; 
INSTRUCTION.X := X ; 
INSTRUCTION.N := N ; 
INSTRUCTION.M := M ; 

COPYCODE!INSTRUCTION) 
END (* INS *) ; 
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PROCEDURE *JUNPINS ( F : ORDERCODE ; X : REGISTER ; 
VAR SEQUENCE : CODELABEL ) ; 

(* GENERATES REAL JUMP INSTRUCTION F X .. 
TO THE CODELABEL DESCRIBED BY SEQUENCE *) 

VAR 
N : DIRECTOPERAND ; 

BE6IN 

WITH SEQUENCE DO 
IF EXPECTED 
THEN 
BEGIN 

FIXUPSNEEDED := FIXUPSNEEDEDM ; 
N := LASTCODEREFERENCE ; 
LASTCODEREFERENCE := NEXTINS 

END 
ELSE N := STARTADDRESS ; 

INS(F,X,N,0) 
END <* JUHPINS *) ; 

PROCEDURE *LINKEDJUHPINS ( F : ORDERCODE ; X : REGISTER ; 
VAR SEQUENCE : CODELABEL ) ; 

(* AS JUHPINS, BUT AVOIDS FIXUPS BY USE OF LINKTABLE *> 

VAR 
N : DIRECTOPERAND ; 

BEGIN 
UITH SEQUENCE DO 

IF EXPECTED 
THEN 
BEGIN 

IF NOT LINKED THEN 
BEGIN 

IF NEXTLINK > LINKHAX THEN 
BEGIN 

IF NOLINKOVERFLOU THEN 
BEGIN 

GENERR0R(?2) ; 
NOLINKOVERFLOU := FALSE 

END ; 
NEXTLINK := 0 

END ; 

LINKED := TRUE ; 
LINKINDEX := NEXTLINK ; 

NEXTLINK := NEXTLINK + 1 

END ; 
N := FIRSTLINKADBRESS + LINKINDEX ; 
F := F+1 

END 
ELSE N := STARTADDRESS ; 

INS(F,X,N,0) 
END (* LINKEDJUNPINS =») ; 
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PROCEDURE *SYSTEHCALL ( ROUTINENEEDED s SYSTENROUTINE ) 

(* GENERATES CALL TO SYSTEM ROUTINE SPECIFIED =») 

BEGIN 

INS(CALL,OpSTORE.ADDRESSFOR[ROUTINENEEDEDIfO) 
END ; 

PROCEDURE *NEWLABEL ( VAR SEQUENCE : CODELABEL ) ; 
BEGIN 

WITH SEQUENCE DO 
BEGIN 

EXPECTED := FALSE ; 
STARTADDRESS :* ADDRESS 

END 
END <* NEULABEL *) ; 

PROCEDURE +FUTURELABEL ( VAR SEQUENCE : CODELABEL ) ; 
BEGIN 

WITH SEQUENCE DO 
BEGIN 

EXPECTED := TRUE ; 

LASTCODEREFERENCE := 0 ; 
LINKED := FALSE 

END 

END <* FUTURELABEL *> ; 

PROCEDURE *EXPECTEDLABEL ( VAR SEQUENCE : CODELABEL ) 
VAR 

THISFIXUP.NEXTFIXUP : CODERANGE ; 
BEGIN 

UITH SEQUENCE DO 
BEGIN 

IF LINKED 

THEN LINKTABLECLINKINDEX] := ADDRESS ; 
NEXTFIXUP:* LASTCODEREFERENCE ; 
UHILE NEXTFIXUP <> 0 DO 
BEGIN 

FIXUPSNEEDED := FIXUPSNEEDED-1 ; 
THISFIXUP :* NEXTFIXUP ; 

NEXTFIXUP := CODECTHISFIXUPI.N ; 
CODEITHISFIXUPI.N := ADDRESS 

END ; 

EXPECTED : = FALSE ; 

STARTADDRESS := ADDRESS 
END 

END (* EXPECTEDLABEL *) ; 



PROCEDURE *LINKLABEL ( EXPECTEDSEQUENCE i CODELABEL ; 
VAR DESTINATION : CODELABEL ) ; 

(* REDIRECTS ANY BRANCH INSTRUCTIONS FOR EXPECTEDLABEL 
TO THE SEQUENCE DESCRIBED BY DESTINATION *) 

THISREFERENCE,NEXTREFERENCE : CODERANGE ; 
CODEADDRESS : INTEGER ; 

BEGIN 
IF(EXPECTEDSEQUENCE.LASTCODEREFERENCE <> 0) AND NOCODEOVERFLOU 
THEN 

IF DESTINATION.EXPECTED 
THEN 
BEGIN 

NEXTREFERENCE := EXPECTEDSEQUENCE.LASTCODEREFERENCE ; 
REPEAT 

THISREFERENCE := NEXTREFERENCE ; 
NEXTREFERENCE := CODECTHISREFERENCEI.N 

UNTIL NEXTREFERENCE = 0 ; 
CODECTHISREFERENCE3.N i= DESTINATION.LASTCODEREFERENCE ; 
DESTINATION.LASTCODEREFERENCE := 

EXPECTEDSEQUENCE.LASTCODEREFERENCE 

END 
ELSE 
BEGIN 

NEXTREFERENCE := EXPECTEDSEQUENCE.LASTCODEREFERENCE ; 
REPEAT 

FIXUPSNEEDED := FIXUPSNEEDED-1 ; 
THISREFERENCE := NEXTREFERENCE ; 
NEXTREFERENCE : = CODECTHISREFERENCEI.N ; 
CODECTHISREFERENCEI.N :=DESTINATION.STARTADDRESS 

UNTIL NEXTREFERENCE = 0 
END 

END <* LINKLABEL *> ; 

PROCEDURE *ENTERHERE ; 

(* SETS OBJECT PROGRAN SCR TO NEXT INSTRUCTION *> 

BEGIN 
CODEFILE.LOCATE(SCRrADDRESS) 

END ; 

BEGIN (* CODE NODULE INITIALIZATION *) 
NEXTINS :« 1 ; FIXUPSNEEDED := 0 ; NOCODEOVERFLOU := TRUE ; 
NEXTLINK :» 0 ; NOLINKOVERFLOU := TRUE ; 
STORE.ALLOCATE(LINKMAX^I .FIRSTLINKADDRESS) ,* 

*** ; 
IF CODEISTOBEGENERATED THEN 

BEGIN 
FOR I := 0 TO NEXTLINK-1 DO 

CODEFILE.LOCATE(FIRSTLINKADDRESS+I,LINKTABLECID 

END 
END <*CODE NODULE *) ; 



ENVELOPE NODULE CONSTNTS ; 

(♦ COLLATES A TABLE OF CONSTANTS DURIN6 CODE GENERATION *) 
<* WHICH IS LOCATED AT THE END OF THE PR06RAN GENERATED *) 
(* CONSTANTS WITHIN IT ARE ADDRESSES BY AN OFFSET FROM *) 
<* A BASE ADDRESS AVAILABLE AT RUNTINE IN 'BASEADDRESS' *) 

TYPE 

WORDPTR = “WORDREC ; 
WORDREC = RECORD 

CONTENTS s INTEGER ; 
NEXTUORD : WORDPTR 

END ; 

VAR 

*BASEADDRESS : ADDRRAN6E ; 

FIRSTWORD,THISUORD,LASTWORD : WORDPTR ; 

PROCEDURE *LOCATE ( CONSTANT tINTEGER ; 

VAR OFFSET : ADDRRANGE ) ; 

VAR 

THISWORD,LASTWORD : WORDPTR ; 

BEGIN 

THISWORD := FIRSTWORD ; OFFSET != 0 ; 

WHILE (THISWORDONIL) AND (THISWORD* .CONTENTSOCONSTANT) DO 
BEGIN 

LASTWORD := THISWORD ; 

THISWORD := THISWORD*.NEXTWORD ; 
OFFSET := OFFSET+1 

END ; 

IF THISWORD=NIL THEN 
BE6IN 

NEW(THISUORD) ; 
THISWORD*.CONTENTS := CONSTANT ; 
THISWORD*.NEXTWORD := NIL ; 
IF FIRSTWORD=NIL 
THEN FIRSTWORD := THISWORD 

ELSE LASTWORD".NEXTWORD := THISWORD 
END 

END ; 

BEGIN 

STORE.ALLOCATE(1,BASEADDRESS) : 
FIRSTWORD != NIL ; 

*** ; 

CODEFILE.LOCATE(BASEADDRESS,STORE.ADDRESS) ; 
THISWORD := FIRSTWORD ; 
WHILE THISWORDONIL DO 
BE6IN 

STORE.COPY(THISWORD*.CONTENTS) ; 
LASTWORD := THISWORD ; 

THISWORD :=> THISWORD* .NEXTWORD : 
DISPOSE(LASTWORD) 

END 

END (* CONSTNTS NODULE *) ; 
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ENVELOPE MODULE UORKLOCATIONS ; 

(* ALLOCATES AND MAKES AVAILABLE A SET OF TEMPORARY *) 
<* WORK LOCATIONS *) 

CONST 

UORKMAX = 9 ; 

TYPE 

UORKRANGE = 0..UORKMAX ; 

UORKSET = SET OF UORKRANGE ; 

VAR 

UORKSPACE : UORKSET ; 

FIRSTUORKADDRESS : ADDRRANGE ; 

PROCEDURE *GET ( VAR UORKADDRESS t ADDRRANGE ) ; 
LABEL 1 ; 
VAR 

UORKINDEX : UORKRANGE ; 
BEGIN 

FOR UORKINDEX := 0 TO UORKMAX DO 
IF UORKINDEX IN UORKSPACE THEN 
BEGIN 

UORKSPACE := UORKSPACE - [UORKINDEX] ; 
UORKADDRESS : = FIRSTUORKADDRESS -f UORKINDEX ; 
GOTO I 

END ; 
GENERRQR<93) ; 

UORKADDRESS := FIRSTUORKADDRESS ; 
1: 
END ; 

PROCEDURE *FREE ( UORKADDRESS : ADDRRANGE ) ; 

BE6IN 
UORKSPACE : = UORKSPACE + [UORKADDRESS-FIRSTUORKADDRESS] 

END ; 

BEGIN (* UORKLOCATIONS HODULE INITIALIZATION ■*) 

STORE.ALLOCATE(UORKHAX+1,FIRSTUORKADDRESS) ; 

UORKSPACE [0..UORKMAX] ; 
*•* 

END (* UORKLOCATIONS NODULE *) ; 



(*********************************************************) 

<* **• STACK OPERAND DESCRIPTION ********************** *) 
(************************************4*******************9) 

TYPE OPERAND = * OPREC ; 
OPKIND * (REFERENCE,CONSTANT,RESULT,CONDITION) ; 
CONDKIND = (XCONDITION,MULTIJUHPCONDITION) ; 

OPREC = RECORD 
NEXTENTRY : OPERAND ; 
REP : TYPEREPRESENTATION ; 
CASE KIND : OPKIND OF 
REFERENCE s 

( REFADDRESS : RUNTIMEADDRESS ; 
CASE INDEXED : BOOLEAN OF 

TRUE s 
< INDEX : OPERAND ; 

INDEXNIN,INDEXHAX : INTEGER )) ,’ 
CONSTANT : 

< CONSTVALUE ! INTEGER ) ,* 
RESULT : 

( CASE INREGISTER : BOOLEAN OF 
FALSE s 

< TEHPRESULT : ADDRRANGE ) ; 
TRUE : 

< REG : REGISTER )) ; 
CONDITION : 

( CASE KINDOFCONDITION : CONDKIND OF 
XCONDITION : 

( FAL9EJUNPINS : BZE..BNG ; 
CASE INCONDITIONREGISTER: BOOLEAN OF 
FALSE : 

( TENPCONDITION : ADDRRANGE ) ; 
TRUE : 

( CONDREGISTER : REGISTER )) ; 
MULTIJUNPCONDITIQN : 

( JUMPCONDITION : BOOLEAN ; 

JUHPDESTINATION : CODE.CODELABEL )) 
END ; 

ENVELOPE NODULE STACK ; 

(* HAINTAINS SIMULATION OF HYPOTHETICAL EVALUATION STACK *) 

VAR 

TOP : OPERAND ; 

PROCEDURE *PUSH ( ENTRY ; OPERAND ) ; 
BEGIN 

ENTRY".NEXTENTRY := TOP ; 
TOP := ENTRY 

9 
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PROCEDURE * POP < VAR ENTRY s OPERAND ) ; 
BEGIN 

ENTRY :* TOP ; 

TOP := TOP\NEXTENTRY 
END ; 

BEGIN (* STACK INITIALIZATION =*) 
TOP s= NIL ; 
*** 

END (* STACK NODULE «) ; 

ENVELOPE NODULE REGISTRS ; 

(* MAINTAINS BINDINGS BETUEEN THE REAL NACHINE REGISTERS *) 

(* AND HYPOTHETICAL STACK OPERANDS *> 

TYPE SETOFREGISTERS = SET OF REGISTER ; 

VAR THOSEFREE : SETOFREGISTERS ; 
OPERANDUSING : ARRAYCREGISTER] OF OPERAND ; 

PROCEDURE *BINDTO ( ENTRY : OPERAND ) ; 

<* RECORDS ANY REGISTERS ASSOCIATED UITH THE VALUE DESCRIBED BY 
ENTRY AS BEING BOUND TO THE ENTRY, SO THAT ANY ATTENPT TO 
USE THE REGISTERS FOR ANY OTHER PURPOSE NAY FIRST GENERATE 
CODE TO SAVE THEIR CONTENTS, AND ADJUST ENTRY ACCORDINGLY •►) 

BEGIN 
UITH ENTRY* DO 

CASE KIND OF 
REFERENCE , 
CONSTANT : 

RESULT : 
IF INREGISTER THEN 
BEGIN 

THOSEFREE := THOSEFREE - ERECT ; 

OPERANDUSINGEREGT := ENTRY ; 
END ; 

CONDITION : 
IF (KINDOFCONDITION = XCONDITION) AND 

INCONDITIONRE6ISTER THEN 

BEGIN 
THOSEFREE := THOSEFREE - ECONDREGISTERT ; 
OPERANDUSINGECONDREGISTERT := ENTRY 

END 
END 

END (* BINDTO *) ; 
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PROCEDURE *FREEFR0N ( ENTRY : OPERAND ) ; 

<* REVERSES EFFECT OF BINDTO *) 

VAR 
THOSEUSED : SETOFREGISTERS ; 

BEGIN 
THOSEUSED := E ] ; 
WITH ENTRY* DO 

CASE KIND OF 
REFERENCE , 
CONSTANT : 

RESULT : 
IF INREGISTER THEN THOSEUSED := [REG] ; 

CONDITION : 
IF IKINDOFCONDITION = XCONDITION) AND INCONDITIONREGISTER 
THEN THOSEUSED := [CONDREGISTER] 

END ; 
THOSEFREE := THOSEFREE + THOSEUSED 

END (* FREEFRON *) ; 

PROCEDURE *SAVE ( X : REGISTER ) ; 
VAR N : ADDRRANGE ; 
BEGIN 

IF NOT (X IN THOSEFREE) THEN 
BEGIN 

UORKLOCATIONS.GET(N) ; CODE.INS(ST0,X,N,0) ; 
UITH OPERANDUSINGCX] DO 

CASE KIND OF 
RESULT s 

BEGIN 

INREGISTER := FALSE ; TENPRESULT := N 
END ; 

CONDITION : 
BEGIN 

INCONDITIONREGISTER := FALSE ; 
TEHPCONDITION := N 

END 
END ; 

THOSEFREE THOSEFREE + [X] 
END 

END <* SAVE *) ; 
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FUNCTION *USEDBY ( ENTRY : OPERAND ) : SETOFREGISTERS ; 
BEGIN 

WITH ENTRY* DO 
CASE KIND OF 

REFERENCE : 
IF INDEXED 
THEN USEDBY := USEDBYIINDEX) 
ELSE USEDBY := C ] ; 

CONSTANT : 
USEDBY 1= [ ] ; 

RESULT : 

IF INREGISTER 
THEN USEDBY := [REG] 
ELSE USEDBY := [ ] ; 

CONDITION s 
IF (KINDOFCONDITION = XCONDITION) AND INCONDITIONREGISTER 
THEN USEDBY :* [C0NDREGISTER3 
ELSE USEDBY := C ] 

END 
END (* USEDBY *> ; 

FUNCTION #BESTF0R < ENTRY : OPERAND ) : REGISTER ; 
VAR THOSEAVAILABLE : SETOFREGISTERS ; 

X : A..7 ; 
BEGIN 

THOSEAVAILABLE :* (USEDBY(ENTRY)+THOSEFREE)*[4..7] ; 

IF THOSEAVAILABLE <> [ ] 
THEN 
BE6IN 

X := 4 ; 

UHILE NOT (X IN THOSEAVAILABLE) DO X := X+1 
END 
ELSE X := 4 ; 
BESTFOR := X 

END <* BESTFOR *) ; 

BEGIN (* REGISTERS NODULE *) 
THOSEFREE := CO..71 ; 
«** 

END (* REGISTERS NODULE *) ; 
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(*************** *****:*****•*:»****:*•■# t*********************) 
(***♦* PROCEDURE, PROGRAM AND STORAGE HOUSEKEEPING ***♦*> 
(***************************** ********:***:***************) 

CONST 

<*** ADDRESS REGISTER USAGE ***) 

XLOCAL = 1 ; (* ALUAYS ADDRESSES LOCAL STACKFRAhE *) 

XREF = 3 ; (* USED FOR REFERENCE EVALUATION *> 
XMOD = 2 ; (* UTILITY ADDRESS REGISTER *) 

TYPE 
♦PROCLINKAGE = RECORD 

STATICLtVEL : INTEGER ; 
CODEBODY : CODE.CODELABEL 

END ; 

PROCEDURE *NEULINKAGE ( VAR LINKAGE : PROCLINKAGE > ; 
BEGIN 

IF CODEISTOBEGENERATED THEN 
WITH LINKAGE DO 
BEGIN 

STATICLEVEL := LEVEL ; 
CODE.FUTURELABEL(CODEBODY) 

END 
END <* NEULINKAGE *) 

PROCEDURE SETXTOLEVEL ( X : REGISTER ; REQUIREDLEVEL s INTEGER ) 

(* GENERATES CODE TO SET THE REGISTER X EQUAL TO THE ADDRESS 
OF THE CURRENT STACKFRAHE FOR STATIC LEVEL REQUIREDLEVEL *) 

NEXTLEVEL : INTEGER ; 
BEGIN 

IF REQUIREDLEVEL = LEVEL 
THEN CODE.INS(LDX,X,XLOCAL,0) 
ELSE 

IF REQUIREDLEVEL = LEVEL-1 
THEN CODE.INS(LDX,X,STATIC,XLOCAL) 
ELSE 
BEGIN 

CODE.INS(LDX,XHOD,STATIC,XLOCAL) ; 
NEXTLEVEL := LEVEL-2 ; 
WHILE NEXTLEVEL <> REQUIREDLEVEL DO 
BEGIN 

CODE.INS(LDX,XMOD,STATIC,XNOD) ; 
NEXTLEVEL := NEXTLEVEL-1 

END ; 
CODE.INS(LDX,X,STATIC,XMOD) 

END 
END (* SETXTOLEVEL *) ; 



PROCEDURE *CALLPROC < VAR LINKAGE : PROCLINKAGE ) ; 
BEGIN 

IF CODEISTOBEGENERATED THEN 
WITH LINKAGE DO 
BEGIN 

IF STATICLEVEL <> GLOBALLEVEL THEN SETXTQLEVEL<4.STATICLEVEL) 
CODE.LINKEDJU«PINS<CALL,5,CODEBODY) 

END 
END <* CALLPROC *) ; 

PROCEDURE *ENTERBODY < VAR LINKAGE : PROCLINKAGE ) ; 
BEGIN 

IF CODEISTOBEGENERATED THEN 
WITH LINKA6E DO 
BEGIN 

CODE.ALIGNINSTQRE ; 
CODE.EXPECTEDLABEL(CODEBODY) ; 
CODE.INS(LDX,XREF, NEXTFRANE,XLOCAL) ; 
CODE.INS(STO,XLOCAL,DYNAMIC,XREF) ; 
IF STATICLEVEL <> GLOBALLEVEL THEN CODE.INS(STO,4.STATIC,XREF) 
CODE.INS<STO,5,LINK,XREF) ; 
CODE.INS(LDX,XLOCAL,XREF,0) ; 
CODE.INS(ADN,XREF,LOCALFRAME' .NEXTLOCAL,0) ; 
CODE.INS(STO,XREF,NEXTFRAHE,XLOCAL) 

END 
END <* ENTERBODY ■») ; 

PROCEDURE +LEAVEBODY ; 
BEGIN 

IF CODEISTOBEGENERATED THEN 
BEGIN 

CODE.INS(LDX,5,LINK,XLOCAL) ; 
CODE.INS(LDX,XLOCAL,DYNAMIC,XLOCAL) ; 
CODE.INS(EX IT,3,0,0) 

END 
END <* LEAVEBODY *) ; 

PROCEDURE *ENTERPROGRAM ; 
BEGIN 

IF CODEISTOBEGENERATED THEN 
BEGIN 

CODE.ALIGNINSTQRE ; 
CODE.ENTERHERE ; 
CODE.INS(LDX,XLOCAL,STORE.STACKBASE,0) ; 
CODE.INS(LDN,XREF,FIRSTLOCAL,XLOCAL) ; 
CODE.INS(STO,XREF,NEXTFRANE,XLOCAL) ; 
CODE.SYSTEHCALL<INITIAL10) ; 

END 
END <* ENTERPROGRAN *> ; 

PROCEDURE *LEAVEPRQGRAM ; 
BEGIN 

IF CODEISTOBEGENERATED THEN 
BEGIN 

CODE.SYSTEHCALL<FINAL 10) ; 
CODE.INS(HALT,0,0,0) 

END 
END (* LEAVEPR06RAH *) ; 
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(a*******#**:**:*:##!#*****'.*’**!*******#*'***'*1****1*’**1****1****’*1**) 
(********* OPERAND ADDRESSING AND LOADING *w*<***+w*) 

(*********************************‘****»***:M#>M*<**:M*:»*#i* ) 

PROCEDURE CONSTINS ( FsORDERCODE ; XsREGISTER ; NsINTEGER ) ; 

<* GENERATES CODE EQUIVALENT TO INSTRUCTION F X 'N' 
WHERE F IS ONE OF LDX,ADX,NGX,SBX,HPX,DVX *) 

VAR OFFSET : ADDRRANGE ; 

BE6IH 
IF <N<0) AND <N>=-4095> AND <F IN CLDX,ADX,NGX,SBX3) THEN 
BEGIN 

N := -N ; 
CASE F OF 
LDX : F:=NGX ; 
NGX : F:=LDX ; 
ADX : F:=SBX ; 
SBX : F:=ADX 
END 

END ; 
IF (N>=0) AND <N<=40?5) 
THEN CODE.INS(F+100B,X,N,0) 
ELSE WITH CONSTNTS DO 

BEGIN 
LOCATE<N,OFFSET) ; 
CODE.INS(LDX,XHOD,BASEADDRESSf0) ; 
CODE.INS(F,X,OFFSET,XHOD) 

END 
END (* CONSTINS ♦) ; 

ADDRESSED : RECORD 
N : 0..4095 ; 
M : MODIFIER 

END ; 

LOADEDREG : REGISTER ; 

PROCEDURE LOADX ( X : REGISTER ; ENTRY : OPERAND ) ; FORWARD ; 



PROCEDURE ADDRESS ( ENTRY : OPERAND ) ; 

<* GENERATES CODE (IF NECESSARY) TO ENABLE THE VALUE DESCRIBED 
BY ENTRY TO BE ADDRESSED, AND LEAVES ADDRESSING CO-ORDINATES 
IN THE GLOBAL RECORD ADDRESSED. ANY REGISTERS BOUND TO ENTRY, 
OR STACK ENTRIES OCCUPIED BY ITS INDICES ARE FREED IN THE 
PROCESS 

VAR 
XREFSET : BOOLEAN ; 
ADJUSTMENT,FINALN : INTEGER ; 
FINALN : MODIFIER ; 

BEGIN 
UITH ENTRY* DO 

CASE KIND OF 
REFERENCE ; 

BEGIN 
IF INDEXED 
THEN 
BEGIN 

IF INDEX*.KIND = CONSTANT 
THEN 
BEGIN 

ADJUSTMENT := INDEX*.CONSTVALUE-INDEXMIN ; 
XREFSET := FALSE 

END 
ELSE 
BEGIN 

LOADX(XREF,INDEX) ; 
ADJUSTMENT := - INDEXMIN ; 
XREFSET := TRUE 

END ; 
DISPOSE <INDEX) 

END 
ELSE 
BEGIN 

ADJUSTMENT := 0 ; 
XREFSET := FALSE 

END ; 
UITH REFADDRESS DO 
BE6IN 

FINALN := RELATIVEADDRESS + ADJUSTMENT ; 
IF STATICLEVEL = GLOBALLEVEL 
THEN 

BEGIN 
IF XREFSET 

THEN FINALM := XREF 
ELSE FINALM := 0 ; 

END 
ELSE 

IF STATICLEVEL = LEVEL 
THEN 

IF XREFSET 
THEN 
BEGIN 

CODE.INS(ADX,XREF,XL0CAL,0) ; 
FINALM := XREF 

END 
ELSE FINALM : = XLOCAL 

ELSE 



BEGIN 
IF XREFSET 
THEN 

IF STATICLEVEL = LEVEL-1 
THEN CODE.INS(ADX,XREF,STATIC,XLOCAL) 

ELSE 
BEGIN 

SETXTOLEVELIXNOD,STATICLEVEL+1 ) ; 
CODE.INSIADX,XREF,STATIC,XNOD) 

END 
ELSE SETXTOLEVEUXREF,STATICLEVEL) ; 

FINALM := XREF 

END 

END ; 
IF FINALM < 0 THEN 
BEGIN 

CONST I NS(ADX,XREF,FINALN) ; 

FINALN := 0 
END 

END ; 
CONSTANT : 

BEGIN 
CONSTNTS.LOCATE<CONSTVALUE,FINALNi ; 
CODE.I NS(LDX,XNOD,CONSTNTS.BASEADDRESS,0) ; 

FINALM := XMOD 
END ; 

RESULT : 
BEGIN 

IF INREGISTER 
THEN FINALS := REG 
ELSE FINALN := TEHPRESULT ; 

FINALM := 0 
END ; 

CONDITION : 
BEGIN 

LOADXIO,ENTRY) ; 
FINALN := 0 ; FINALN 0 

END 
END ; 

UITH ADDRESSED DO 
BEGIN 

N := FINALN ; 
N := FINALM 

END ; 
REGISTRS.FREEFRON(ENTRY) 

END (* ADDRESS *) ; 

PROCEDURE LOADADDRESS ( X : REGISTER ; ENTRY : OPERAND ) ; 

(* GENERATES CODE TO LOAD ADDRESS OF VALUE DESCRIBED BY 
ENTRY INTO REGISTER X, SAVIN6 PREVIOUS CONTENTS OF X 
IF NECESSARY *) 

BEGIN 
IF MOT (X IN REGISTRS.USEDBY(ENTRY)) THEN REGISTRS.SAVE(X) 
ADDRESS(ENTRY) ; 

UITH ADDRESSED DO CODE.INS<LDN,X,N,H) 
END (* LOADADDRESS *> ; 

PROCEDURE JUNPIF ( ENTRY : OPERAND ; JUHPONTRUE : BOOLEAN ; 

VAR DESTINATION : CODE.CODELABEL ) ; FORUARD 



PROCEDURE LOADX ; 

(* GENERATES CODE TO LOAD VALUE DESCRIBED BY ENTRY INTO 
REGISTER X ( IF NECESSARY ) . REGISTERS BOUND TO ENTRY 
ARE FREED IN THE PROCESS, BUT ENTRY ITSELF IS RESET TO 
DESCRIBE THE LOADED VALUE <FOR POSSIBLE REBINDING) =*> 

VAR 
TOBEJUHPEDON : BOOLEAN ; 
TOLOADCONDITIONJUNPEDON,AFTERCONDITIONLOADED : CODE.CODELABEL ; 

PROCEDURE LOADBOOLEANVALUE < CONDITION : BOOLEAN ) ; 
BEGIN 

IF CONDITION 
THEN CODE.INS<LDN,X,1,0) 
ELSE CODE.INS(LDN,X,0,0) 

END ; 

BEGIN 

IF NOT(X IN REGISTRS.USEDBY(ENTRY)) THEN REGISTRS.SAVE(X) ; 
UITH ENTRY* DO 
BEGIN 

CASE KIND OF 
REFERENCE : 

BEGIN 
ADDRESS(ENTRY) ; 
UITH ADDRESSED DO CODE.INS(LDX,X,N,H) 

END ; 
CONSTANT : 

CONST INS(LDX,X,CONSTVALUE) ; 

RESULT : 

IF INREGISTER 
THEN 
BEGIN 

REGISTRS.FREEFRON<ENTRT) ; 
IF REG <> X THEN CODE.INS(LDX,X,REG,0) 

END 
ELSE 
BEGIN 

ADDRESS(ENTRY) ; 
UITH ADDRESSED DO CODE.INS(LDX,X,N,N) 

END ; 
CONDITION : 

BEGIN 
TOBEJUHPEDON := (KINDOFCONDITION = HULTIJUNPC0ND1TI0N) 

AND JUMPCONDITION ; 
CODE.FUTURELABEL(TOLOADCONDITIONJUNPEDON) ; 
CODE.FUTURELABEL(AFTERCONDITIONLOADED) ; 

JUHPIF<ENTRY,TOBEJUHPEDON,TOLOADCONDITIONJUNPEDON) ; 
LOADBOOLEANVALUE(NOT TOBEJUHPEDON) ; 
CODE.JUHPINS<BRN,0,AFTERCONDITIONLOADED) ; 
CODE.EXPECTEDLABEL(TOLOADCONDITIONJUNPEDON) ; 
LOADBOOLEANVALUE(TOBEJUHPEDON) ; 
CODE.EXPECTEDLABEL(AFTERCONDITIONLOADED) 

END 
END ; 
KIND :* RESULT ; 
INREGISTER := TRUE ; 
REG := X 

END 
END (* LOADX *) ; 
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PROCEDURE LOAD < ENTRY : OPERAND ) J 

<* GENERATES CODE TO LOAD VALUE DESCRIBED BY ENTRY INTO AN 
APPROPRIATE REGISTER (IF NOT ALREADY LOADED) AND SETS THE 
GLOBAL VARIABLE LOADEDREG TO DESCRIBE THE LOADED VALUE. 
ANY REGISTERS BOUND TO THE ENTRY ARE FREED IN THE PROCESS 
BUT ENTRY IS UPDATED TO DESCRIBE THE LOADED VALUE 

(FOR POSSIBLE REBINDING) *> 

VAR 
CHOSENREGISTER : REGISTER ; 

BEGIN 
IF (ENTRY".KIND = RESULT) AND ENTRY".INREGISTER 

THEN 
BEGIN 

CHOSENREGISTER := ENTRY".REG ; 
REGISTRS.FREEFRON(ENTRY) 

END 
ELSE 
BEGIN 

CHOSENREGISTER := REGISTRS.BESTFOR(ENTRY) ; 
LOADX(CHOSENREGISTER,ENTRY) 

END ; 
LOADEDREG := CHOSENREGISTER 

END (* LOAD *) ; 

PROCEDURE L0ADNE6ATIVE < ENTRY : OPERAND ) ; 

(* SAHE AS LOAD, EXCEPT VALUE IS NEGATED *) 

VAR 
CHOSENREGISTER : REGISTER ; 

BEGIN 

CHOSENREGISTER := REGISTRS.BESTFOR(ENTRY) ; 
IF NOT (CHOSENREGISTER IN REGISTRS.USEDBY(ENTRY)) 
THEN REGISTRS.SAVE(CHOSENREGISTER) ; 
ADDRESS(ENTRY) ; 

WITH ADDRESSED DO CODE.INS(NGX,CHOSENREGISTER,N,N) ; 
WITH ENTRY" DO 
BEGIN 

KIND := RESULT ; 
INREGISTER := TRUE ; 

REG := CHOSENREGISTER 
END ; 

LOADEDREG := CHOSENREGISTER 
END (* LOADNEGATIVE *) ; 



PROCEDURE JUMPIF <* ENTRY : OPERAND ; JUNPONTRUE : BOOLEAN ; 
VAR DESTINATION : CODE.CODELABEL *> ; 

<* GENERATES CODE TO EXAMINE THE BOOLEAN VALUE DESCRIBED 
BY ENTRY AND JUMP TO THE LABEL DESTINATION IF 
ITS VALUE IS EQUAL TO JUNPONTRUE. ANY REGISTERS BOUND 
TO ENTRY ARE FREED IN THE PROCESS =*) 

VAR 

BRINS : BZE .. BN6 ; 
X ! REGISTER ; 

BEGIN 
WITH ENTRY* DO 

CASE KIND OF 
REFERENCE , 
RESULT : 

BEGIN 
LOAD(ENTRY) ; 
IF JUNPONTRUE THEN BRINS := BNZ ELSE BRINS := BZE 
CODE.JUMPINS<BRINS,LOADEDREG,DESTINATION) 

END ; 
CONSTANT : 

IF CONSTVALUE = ORD<JUNPONTRUE) 
THEN CODE.JUNPINS(BRN,0,DESTINATION) ; 

CONDITION : 
CASE KINDOFCONDITION OF 
XCONDITION : 

BEGIN 
IF INCONDITIONREGISTER 
THEN 
BEGIN 

X := CONDREGISTER ; 
REGISTRS.FREEFRON(ENTRY) 

END 
ELSE 
BEGIN 

CODE.INS<LDX,0,TENPCONDITION,0) ; 
UORKLOCATIONS.FREE(TENPCONDITION) ; 
X := 0 

END ; 
IF JUNPONTRUE 
THEN 
CASE FALSEJUNPINS OF 
BZE : BRINS := BNZ ; 
BNZ : BRINS : = BZE ; 
BPZ : BRINS := BNG ; 
BNG r BRINS : = BPZ 
END 
ELSE BRINS := FALSEJUNPINS ; 

CODE.JUNPINS(BRINS,X,DESTINATION) 

END ; 
HULTIJUNPCONDIT ION t 

IF JUNPCONDITION = JUNPONTRUE 
THEN CODE.LINKLABEL(JUNPDESTINATION,DESTINATION) 
ELSE 
BEGIN 

CODE.JUMPINS<BRN,0,DESTINATION) ; 
CODE.EXPECTEDLABEL(JUNPDESTINATION) 

END 
END <* CASE KINDOFCONDITION «> 

END 
END <* JUMPIF *) ; 
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(************ ***«***•■♦:»*****:* ****** W******-4 ***:****** ) 
(**♦***♦ VARIABLES, EXPRESSIONS, AND ASSIGNMENT **=»*♦****) 
(********************************************4****4******) 

PROCEDURE *STACKREFERENCE ( LOCATION : RUNTINEADDRESS ) ; 

VAR 
REFENTRY : OPERAND ,' 

BEGIN 
IF CODEISTOBEGENERATED 

THEN 
BEGIN 

NEU(REFENTRY) ; 
MITH REFENTRY' DO 

BEGIN 
KIND := REFERENCE ; 
REFADDRESS := LOCATION ; 
INDEXED : = FALSE 

END ; 
STACK.PUSH(REFENTRY) 

END 

END (* STACKREFERENCE *) ; 

PROCEDURE *INDEXEDREFERENCE < BOUNDHIN.BOUNDHAX : INTEGER ; 

ELENENTREPRESENTATIONsTYPEREPRESENTATION) 
VAR 

VARIABLE,INDEXENTRY : OPERAND ; 
BEGIN 

IF CODEISTOBEGENERATED THEN 
BEGIN 

STACK.POP(INDEXENTRY) ; 
STACK.POP(VARIABLE) ; 
WITH VARIABLE' DO 
BEGIN 

INDEXED s* TRUE ; 
INDEX :* INDEXENTRY ; 
INDEXHIN !■ BQUNDHIN ; 
INDEXNAX t« BOUNDNAX ; 

END ; 

STACK.PUSH(VARIABLE) 
END 

END <* INDEXEDREFERENCE *) ; 
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PROCEDURE ^DEREFERENCE ( REPRESENTATION : TYPEREPRESENTAT ION ) ; 
VAR REFERENCE : OPERAND ; 
BEGIN 

IF CODEISTOBEGENERATED THEN 
BEGIN 

STACK.POP(REFERENCE) ; 
REFERENCE'.REP := REPRESENTATION ; 
STACK.PUSH(REFERENCE) 

END 
END <* DEREFERENCE *) ; 

PROCEDURE *STACKCONSTANT ( CVALUE : INTEGER ; 
REPRESENTATION : TYPEREPRESENTATION ) ; 

VAR 

CONSTENTRY : OPERAND ; 
BEGIN 

IF CODEISTOBEGENERATED THEN 
BEGIN 

NEU(CONSTENTRY) ; 
UITH CONSTENTRY' DO 
BEGIN 

REP := REPRESENTATION ; 
KIND := CONSTANT ; 

CONSTVALUE CVALUE 
END ; 
STACK.PUSH(CONSTENTRY) 

END 
END (* STACKCONSTANT *) ; 

PROCEDURE *NEGATEINTEGER ; 
VAR INTEGERVALUE : OPERAND ; 
BEGIN 

IF CODEISTOBEGENERATED THEN 
BEGIN 

STACK.POP(INTEGERVALUE) ; 
UITH INTEGERVALUE* DO 

IF KIND = CONSTANT 
THEN CONSTVALUE := -CONSTVALUE 
ELSE 
BEGIN 

LOADNEGATIVE(INTEGERVALUE) ; 
REG ISTRS.BINDTOIINTEGERVALUE) 

END ; 
STACK.PUSH(INTEGERVALUE) 

END 
END (* NEGATEINTEGER *) ; 



PROCEDURE *BINARYINTEGEROPERATION < OPERATOR : OPTTPE ) ; 

TYPE 
OPERANDDESCRIPTION = RECORD 

ENTRY : OPERAND ; 
ISCONSTANT,ISZERO,ISINRE6ISTER : BOOLEAN 
CVALUE : INTEGER 

END ; 
VAR 

LEFTOPERAND,RIGHTOPERAND, 
INCRENENT : OPERANDDESCRIPTION ; 
RESET : INTEGER ; 
RESULTENTRY : OPERAND ; 
OPINS : ORDERCODE ; 

PROCEDURE ANALYZE ( VAR OPERAND : OPERANDDESCRIPTION ) ; 
BEGIN 

WITH OPERAND,ENTRY' DO 
IF KIND = CONSTANT 
THEN 
BEGIN 

ISINRE6ISTER : = FALSE ; 
ISCONSTANT :* TRUE ; 
CVALUE := CONSTVALUE ; 
ISZERO := (CVALUE = 0) 

END 
ELSE 
BE6IN 

ISCONSTANT := FALSE ; 
ISZE»0 := FALSE : 

ISINREGISTER :* (KIND = RESULT) AND INREGISTER 
END 

END <* ANALYZE *) ; 

BE6IN 
IF CODEISTOBEGENERATED THEN 
BE6IN 

STACK.POP(RIGHTOPERAND.ENTRY) ; 
STACK.POP(LEFTOPERAND.ENTRY) ; 
NEU(RESULTENTRY) ; 
RESULTENTRY*.REP s= INTEGERREPRESENTATION ; 
ANALYZE(LEFTOPERAND) ; 
ANALYZE(RIGHTOPERAND); 
IF LEFTOPERAND.ISCONSTANT AND RIGHTOPERANB.ISCONSTANT 
THEN 
BEGIN 

CASE OPERATOR OF 

PLUS : RESLT := LEFTOPERAND.CVALUE + RIGHTOPERANB.CVALUE ; 
NINUS: RESLT := LEFTOPERAND.CVALUE - RIGHTOPERANB.CVALUE ; 
TINES: RESLT := LEFTOPERAND.CVALUE * RIGHTOPERANB.CVALUE ; 
DIVOPs RESLT := LEFTOPERAND.CVALUE DIV RIGHTOPERANB.CVALUE 
END ; 
WITH RESULTENTRY* DO 
BEGIN 

KIND := CONSTANT ; 
CONSTVALUE := RESLT 

END 
END 
ELSE 
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IF LEFTOPERAND.ISZERO 
THEN 

CASE OPERATOR OF 
PLUS : 

RESULTENTRY" := RIGHTOPERAND.ENTRY'' ; 
MINUS : 

BEGIN 
LOADNEGATIVE(RIGHTOPERAND.ENTRY) ; 
RESULTENTRY" ;= RIGHTOPERAND.ENTRY" ; 
REGISTRS.BINDTO(RESULTENTRY) 

END ; 
TIMES , 
DIVOP : 

RESULTENTRY := LEFTOPERAND.ENTRY" 
END (* CASE *) 

ELSE 
IF RIGHTOPERAND.ISZERO 
THEN 

CASE OPERATOR OF 
PLUS , 
MINUS : 

RESULTENTRY" := LEFTOPERAND.ENTRY" ; 
TIMES : 

RESULTENTRY* := RIGHTOPERAND.ENTRY* ; 
DIVOP : 

6ENERRORI94) 
END <* CASE *> 

ELSE 

BEGIN 
CASE OPERATOR OF 
PLUS , 
TIMES : 

BEGIN 
IF OPERATOR = PLUS THEN OPINS:=ADX ELSE OPINS:=MPX ; 
IF RIGHTOPERAND.ISINREGISTER 
THEN 
BEGIN 

LOAD(RIGHTOPERAND.ENTRY) ; 
INCREMENT := LEFTOPERAND 

END 
ELSE 
BEGIN 

LOADILEFTOPERAND.ENTRY) ; 
INCREMENT RIGHTOPERAND 

END ; 
IF INCREMENT.ISCONSTANT 
THEN CONST1NS(OPINS,LOADEBREG,INCREMENT.CVALUE ) 
ELSE 
BEGIN 

ADDRESS*INCREMENT.ENTRY) ; 
WITH ADDRESSED DO CODE.INS(OPINS,LOADEDREG,N,M> 

END 
END ; 

MINUS , 
DIVOP : 



BEGIN 
IF OPERATOR = MINUS THEN OPINS:*SBX ELSE OPINS:= BVX 
LOAIKLEFTOPERAND.ENTRY) ; 
IF RIGHTOPERAND.ISCONSTANT 

THEN 
CONST INS (OF'INS.LOADEDREG, RIGHTOPERAND. CVALUE) 

ELSE 
BEGIN 

ADDRESS(RIGHTOPERAND.ENTRY) ; 
UITH ADDRESSED DO CODE.INS(OPINS,LOADEDREG,N,M> 

END 
END 

END <* CASE *) ; 
WITH RESULTENTRY" DO 
BEGIN 

KIND := RESULT ; 
INREGISTER := TRUE ; 
REG := LOADEDREG 

END ; 
REGI STRS.BINDTO(RESULTENTRY) 

END ; 
STACK.PUSH(RESULTENTRY) ; 
DISPOSE(LEFTOPERAND.ENTRY) ; 
DISPOSE(RIGHTOPERAND.ENTRY) 

END 
END <* BINARYINTEGEROPERATION •») ; 

PROCEDURE ^COMPARISON ( OPERATOR : OPTYPE ) ; 
VAR 

LEFTOPERAND.RI6HTOPERAND,RESULTENTRY : OPERAND ; 
DIFFERENCE : INTEGER ; 
RESULTVALUE : BOOLEAN ; 

BEGIN 
IF CODEISTOBEGENERATED THEN 
BEGIN 

IF OPERATOR IN CLEOP.GTOP3 THEN 
BEGIN 

STACK.POP(RIGHTOPERAND) ; STACK.POP(LEFTOPERAND) ; 
STACK.PUSH(RIGHTOPERAND) ; STACK.PUSH(LEFTOPERAND) 

END ; 

BINARY INTEGEROPERAT ION(MINUS) ; 
STACK.POP(RESULTENTRY) ; 
UITH RESULTENTRY" DO 
BEGIN 

IF KIND = CONSTANT 
THEN 
BE6IN 

DIFFERENCE := CONSTVALUE ; 

CASE OPERATOR OF 
LTOP , 

GTOP s RESULTVALUE := (DIFFERENCE < 0) ; 
LEOP , 

GEOP : RESULTVALUE := (DIFFERENCE >=0) ; 
EQOP : RESULTVALUE := (DIFFERENCE = 0) ; 
NEOP : RESULTVALUE := (DIFFERENCE <> 0) 

END ; 

IF RESULTVALUE THEN CONSTVALUE := t ELSE CONSTVALUE := 0 
END 
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BEGIN 
LOADIRESULTENTRY) ; 
KIND :* CONDITION ; 
KINDOFCONDITION := XCONDITION ; 
CASE OPERATOR OF 
LTOP,GTOP : FALSEJUMPINS := BPZ ; 
LE0P,GE0P : FALSEJUMPINS : = BNG ; 
EQOP : FAISEJUNPINS BNZ ; 
NEOP s FALSEJUMPINS := BZE 
END ; 
INCONDITIONREGISTER :* TRUE ; 
CONDREGISTER := LOADEDREG ; 
REGISTRS.BINDTOIRESULTENTRY > 

END ; 

REP := BOOLEANREPRESENTATION 
END ; 
STACK.PUSH(RESULTENTRY) 

END 
END <* COMPARISON *) ; 

PROCEDURE +NEGATEBOOLEAN ; 
VAR BOOLEANVALUE : OPERAND ; 
BEGIN 

IF CODEISTOBEGENERATED THEN 
BEGIN 

STACK.POP(BOOLEANVALUE) ; 
WITH BOOLEANVALUE' DO 

CASE KIND OF 
CONSTANT : 

CONSTVALUE := ABS(CONSTVALUE-1> ; 
CONDITION : 

CASE KINDOFCONDITION OF 
XCONDITION : 

CASE FALSEJUMPINS OF 
BZE : FALSEJUMPINS := BNZ ; 
BNZ : FALSEJUMPINS := BZE ; 
BPZ : FALSEJUMPINS := BNG ; 
BNG : FALSEJUMPINS := BPZ 
END ; 

MULTIJUNPCONDITION : 
JUMPCONDITION := NOT JUMPCONDITION 

END ; 
REFERENCE , 

RESULT : 
BEGIN 

LOAD(BOOLEANVALUE) ; 
CODE.INSIERN,LOADEDREG,1,0) ; 
REG ISTRS.BINDTO(BOOLEANVALUE) 

END 
END (* CASE *> ; 

STACK.PUSH(BOOLEANVALUE) 
END 

END <•* NEGATEBOOLEAN *) ; 



PROCEDURE *BINARYBOOLEANOPERATOR < OPERATOR : OPTYPE ; 
FIRSTSUCHOPERATOR : BOOLEAN ) 

VAR BOOLEANOPERAND.CONDENTRY : OPERAND ; 

BEGIN 
IF CODEISTOBEGENERATED THEN 
BEGIN 

STACK.POP(BOOLEANOPERAND) ; 
IF FIRSTSUCHOPERATOR THEN 
BEGIN 

NEU(CONDENTRY) ; 
WITH CONDENTRY* DO 
BEGIN 

REP : = BOOLEANREPRESENTATION ; 

KIND := CONDITION ; 
KINDOFCONDITION := HULTIJUNPCONDITION ; 
JUHPCONDITION := (OPERATOR = OROP) ; 
CODE.FUTURELABEL(JUHPDESTINATION) 

END 
END 

ELSE STACK.POP(CONDENTRY) ; 
WITH CONDENTRY* DO 

JUMP IF<BOOLEANOPERAND,JUHPCONDITION,JUHPDESTINATION) 
STACK.PUSH(CONDENTRY) ; 
DISPOSE(BOOLEANOPERAND) 

END 
END <* BINARYBOOLEANOPERATOR *) ; 

PROCEDURE *ASSIGN ; 
VAR 

EXPRESSION,VARIABLE : OPERAND ; 
SIZE : ADDRRAN6E ; 

BEGIN 

IF CODEISTOBEGENERATED THEN 
BEGIN 

STACK.POP(EXPRESSION) ; 
STACK.POP(VARIABLE) ; 
SIZE := EXPRESSION*.REP ; 
IF SIZE > 1 
THEN 
BEGIN 

LOADADDRESS(<4,EXPRESSION) ; 
LOADADDRESS(7,VARIABLE) ; 
CODE. I NS (HOVE, <4, SIZE ,0) 

END 
ELSE 

IF (EXPRESSION*.KIND = CONSTANT) 
AND (EXPRESSION*.CONSTVALUE = 0) 
THEN 
BEGIN 

ADDRESS(VARIABLE) ; 

WITH ADDRESSED DO CODE.INS(ST0Z,0,N,H) 
END 
ELSE 
BEGIN 

LOAD(EXPRESSION) ; 
ADDRESS<VARIABLE) ; 

WITH ADDRESSED DO CODE.INS(STO,LOADEBREG,N,H) 
END ; 

DISPOSE(EXPRESSION) ; 
DISPOSE(VARIABLE) 

END 
END <* ASSIGN *) ; 
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I*************************:********************:***:*****:*:**:*) 
<*******«****** INPUT/OUTPUT OPERATIONS ******************) 
( ****************************** *********:*:t*4******t****:***) 

PROCEDURE *READ0PERATI0N ( READMODE : IOMODE ) ; 

VAR 

VALUEREAD : OPERAND ; 

BEGIN 

IF CODEISTOBEGENERATED THEN 
BEGIN 

NEU(VALUEREAD) ; 
UITH VALUEREAD* DO 
BEGIN 

KIND := RESULT ; 
INREGISTER := TRUE ; 
REG := 6 ; 

CASE READNODE OF 
INTEGERNODE : 

BEGIN 

CODE.SYSTEMCALL(READ INTEGER) ; 
REP := INTEGERREPRESENTATION 

END ; 
CHARMODE : 

BEGIN 
CODE.SYSTEMCALL(READCHAR) ; 
REP := CHARREPRESENTATION 

END 
END 

END ; 
REGISTRS.BINDTO<VALUEREAD) ; 
STACK.PUSH(VALUEREAD) | 
ASSIGN 

END 
END (* READOPERATION *) ; 

PROCEDURE *URITEOPERATION ( URITEhODE : IOMODE ) ; 

VAR 
SCALARVALUE : OPERAND ; 

BEGIN 
IF CODEISTOBEGENERATED THEN 
BEGIN 

STACK.POP(SCALARVALUE) ; 
LOADX(6,SCALARVALUE) ; 

CASE URITEMODE OF 

CHARMODE : CODE.SYSTEMCALL(URITECHAR) ; 
INTEGERMODE : CODE.SYSTEMCALL(WRITEINTEGER) 
END ; 

DISPOSE(SCALARVALUE) 
END 

END (* URITEOPERATION 4) ; 



(♦♦♦♦♦♦♦♦♦♦♦♦♦ CONTROL STATEMENTS ***********************) 

(******************************************************** ) 

(♦♦♦♦MAKE CODE NODULE'S LABEL FACILITIES AVAILABLE ***♦*) 
(♦♦♦♦TO ANALYZER *****) 

TYPE 
♦CODELABEL = CODE.CODELABEL ; 

PROCEDURE ♦NEWCODELABEL ( VAR SEQUENCE : CODELABEL ) ; 

BEGIN 
CODE.NEULABEL(SEQUENCE) 

END ; 

PROCEDURE ♦FUTURECOBELABEL < VAR SEQUENCE : CODELABEL ) ; 

BEGIN 
CODE.FUTURELABEL(SEQUENCE) 

END ; 

PROCEDURE +EXPECTEDCODELABEL ( VAR SEQUENCE : CODELABEL ) 

BEGIN 
CODE.EXPECTEDLABEL(SEQUENCE) 

END ; 

PROCEDURE ♦ JUNPONFALSE ( VAR DESTINATION : CODELABEL ) ; 

VAR 
BOOLEANENTRY : OPERAND ; 

BEGIN 
IF CODEISTOBEGENERATED THEN 
BEGIN 

STACK.POP(BOOLEANENTRY) ; 
JUNPIF(BOOLEANENTRY,FALSE,DESTINATION) ; 
DISPOSE(BOOLEANENTRY) 

END 
END (♦ JUNPQNFALSE *) ; 

PROCEDURE ♦JUMP ( VAR DESTINATION : CODELABEL ) ; 
BEGIN 

IF CODEISTOBEGENERATED THEN 
CODE.JUHPINS<BRN,0,DESTINATION) 

END (♦ JUMP ♦) ; 

BEGIN <* GENERATOR INITIALIZATION ♦) 
LEVEL := GLOBALLEVEL-1 ; LOCALFRANE := NIL ; 
CODEISTOBEGENERATED := TRUE ; 

♦ ♦♦ ; 

END (^GENERATOR NODULE *) 
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With the generator module complete it remains only to provide a suitable 
codefile module which files the object code produced, and then to assemble 
the various modules which we have constructed, to produce a complete 
compiler for Mini-Pascal as we set out to do. 

The codefile module used in the final version of the compiler will depend 
on the conventions for storing object programs in the environment of its use. 
However, during compiler development and testing, the compiler writer 
might use a substitute codefile module which collects the object code generated 
and prints it out at the end of compilation in a form suitable for inspection. 

Test 9 shows the complete compiler and a sample of the output which it 
produces using a code-printing codefile module such as that suggested above. 

Test 9 

PASCAL PLUS COMPILER 

0 3300 PROGRAM MINIPASCALCOMPILER (INPUT,OUTPUT I ; 

1 
2 ENVELOPE MODULE CODEFILE IN LIBRARY ; 

3 
4 
C 

4294 ENVELOPE MODULE SOURCE = LISTING) IN LIBRARY ; 

J 
6 
7 

4636 ENVELOPE MODULE COMPILER ; 

8 
9 TYPE 

10 SYNBOLTYPE = (IDENT,INTCONS I,CHARCONST, 

11 NOTOP,AND0P.0R0P, 

12 TIMES,DIVOP,PLUS,MINUS, 

13 LTOP,LEOP,GEOP,GT0P,NEOP,EG0P, 

M RIGHTPARENT,LEFTPARENT,LEF LBRACKET,RIGHTBRACKET 

15 COMMA,SEMICOLON,PERIOD,COLON,BECOMES,THRU, 

U PROGRAMSY,VARSY,PROCSY,ARRAYSY,0FSY, 

17 BEGINSY,ENDSY,IFSY,THENSY,ELSESY,UHIL.ESY,DOSY, 

18 READSY,URITESY, 

19 0THERSY) ; 

20 
21 0PTYPE = N0T0P .. EGOP ; 

22 IOMODE = (INTEGERMODE,CHARMODE) J 

23 
24 
25 ENVELOPE MODULE GENERATE = LISTING9 IN LIBRARY ; 

26 
27 9048 ENVELOPE MODULE ANALYZE = LISTING8 IN LIBRARY ; 

28 
29 
30 12583 BEGIN 

31 12583 ANALYZE.PROGRAMME ; 

32 12584 *** 

33 12587 END (* COMPILER MODULE *) ; 
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34 
35 
36 12613 BEGIN END . 

COMPILATION COMPLETE t 

COMPILATION TIME 
SOURCE PROGRAM 
OBJECT PROGRAM 

NO ERRORS REPORTED 
11829 MILLISECONDS 

4242 LINES 
12775 UORDS 

LISTIN6 PRODUCED BY MINI-PASCAL COMPILER HK 1 

0 PROGRAM CODE ; 
1 VAR I,J : INTEGER ; 
2 A s ARRAY Cl..103 OF CHAR ; 

3 PROCEDURE P ; 
4 VAR J : INTEGER ; 
5 BEGIN 
6 READ<J) ; 
7 I := I+I-I*I DIV I ; 
8 IF J=*I THEN ACI3' ELSE ACI3:=' 

9 URITE(ACI3> ; 

10 I := 1+1 
11 END ; 
12 BEGIN 
13 I;= 1 ; J := 1000000 ; 
14 WHILE <I>0) AND < I<11) DO P ; 

15 URITE(J) 
16 END. 

COMPILATION COMPLETED : NO ERRORS REPORTED 
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*** OBJECT CODE GENERATED *** 

8 60? LDX 0 609 600 6292019 LDX 3 563 
601 -4181452 LDX 6 564(3) 

552 62? LDX 0 62? 602 917754 CALL 0 250 
603 -8388045 LDX 4 563 

500 630 LDX 0 630 604 -7323647 ADN 4 1 
605 -8256973 STO 4 563 

575 62?5555 LDX 3 3 < 1) 606 -6287358 LDX 5 2(1) 
576 2240512 STO 1 0(3) 607 2101248 LDX 1 0(1) 
577 -61480?4 STO 5 2(3) 608 -5341184 EXIT 5 0 
578 20?7155 LDX 1 3 609 2097652 LDX 1 500 
57? 7356421 ADN 3 5 610 7344132 LDN 3 4(1) 
580 6426627 STO 3 3(1) 611 6426627 STO 3 3(1) 
581 ?17804 CALL 0 300 612 917604 CALL 0 100 
582 —405?132 STO 6 4(1) 613 -7340031 LDN 4 1 
583 -8388045 LDX 4 563 614 -8256973 STO 4 563 
584 -8371661 ADX 4 563 615 4194856 LDX 2 552 
585 -62?08?3 LDX 5 563 616 -8380416 LDX 4 0(2) 
586 -5766605 NPX 5 563 617 -8256972 STO 4 564 
587 -5668301 DVX 5 563 618 -8355277 NGX 4 563 
588 -833?451 SBX 4 5 619 -7667087 BPZ 4 625 
58? -8256?73 STO 4 563 620 -8388045 LDX 4 563 
5?0 -8384508 LDX 4 4(1) 621 -7290869 SBN 4 11 

5?1 -8338893 SBX 4 563 622 -7667087 BPZ 4 625 

5?2 -76??883 BNZ 4 597 623 -5373377 CALL 5 575 

5?3 -7340016 LDN 4 16 624 983658 BRN 618 
5?4 62?201? LDX 3 563 625 -4193740 LDX 6 564 

5?5 -8244684 STO 4 564(3) 626 917904 CALL 0 400 

5?6 ?83640 BRN 600 627 917654 CALL 0 150 

5?7 -734000? LDN 4 23 628 1851392 HALT 0 

5?8 ' 629201? LDX 3 563 629 1000000 BRN 0 16960 

5?? -8244684 STO 4 564(3) 

************ end ************ 
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The final compiler is a program of some 4000 lines. It has been developed 

as a set of modules, each of which deals with a particular aspect of the overall 

compilation process. Each module has been programmed in isolation from 

the other modules, so simplifying the programming task at each stage. 

Whenever possible each module has been tested in isolation, or by its addition 

to a set of modules already tested, thus simplifying the identification of errors 

within and between the modules concerned. 
Within each module a similar structured approach has been used to 

simplify the programming task. The stepwise refinement of the code and 

data structures required leads to a final program which is easy to understand, 

to debug and to maintain. 
The modular structure of the compiler and the logical structure of the 

code and data within each module are significantly reinforced by the notations 

of Pascal Plus. However, it is the perception of this structure which is the 

vital factor in achieving a clear reliable piogram, not the precise notation 

used to express it. If the Mini-Pascal compiler demonstrates to its readers 

that the same approach can be used on other comparable programming 

projects, then the objective of this text has been achieved. 

Exercise 6 (a) Extend the code generator in Listing 9 to produce REAL code for 
multiple assignment statements, according to the extended interface defined in 
Exercise 5. 

(b) Using only the repertoire of REAL instructions defined in the text, devise 
a means of checking the array subscripts occurring in Mini-Pascal programs, and 
modify the generator to produce the code you have chosen. 



Section 3 
A STRUCTURED OPERATING SYSTEM 

In this section structured programming techniques are applied to the con¬ 

struction of an operating system. 

The users’ view of the operating system and the configuration on which 

the system is to run are specified in the first chapter, and then the principal 

components and their interfaces are identified. These components are the 

processes that run users’jobs and the resources that those processes need. In 

the second chapter the user processes are programmed and each of the 

remaining chapters treats the administration of one type of resource: the 

main store, the processor, the cardreaders, the lineprinters, the typewriters 

and the file store. 
On the whole, simple operating system techniques have been chosen in 

order to avoid distracting attention from the structural aspects of the design, 

but the two final chapters show how more complicated algorithms can be 

incorporated within the structure adopted. Each chapter concludes with a 

program listing and, taken together, these listings comprise the complete 

operating system. Several adaptations or extensions of the system have been 

suggested as exercises. 

THE OPERATING SYSTEM SPECIFICATION 

Introduction 

Purpose 

Following Hoare (in Hoare and Perrott (1972), pp. 11-19), we define the 

purpose of an operating system as being to share the resources of a computer 

S.S.P.—Q 
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among a number of programs which make unpredictable demands upon 

those resources. 
In a general purpose operating system the resources may include pro¬ 

cessors, main store, file store, input and output devices—such as cardreaders, 

lineprinters and typewriters—and “artificial” resources such as a limitation 

on the number of user programs that may be active at any moment. The users 

may perhaps be running Fortran programs to solve differential equations, 

or Cobol programs to process transactions and update master files, or 

statistical packages to analyze survey results. 

A special purpose operating system might be running programs to 

enable travel agents to book airline seats, or programs to process and display 

radar signals, or programs to monitor and control the operation of a chemical 

plant. The resources might be large files of data or radar displays or analog 

control devices. Such operating systems for computers dedicated to a par¬ 

ticular task are called command and control systems or, because they have to 

respond to external events in some limited time, typically of the order of 

seconds or milliseconds, real-time systems. 

Objectives 

Hoare (op. cit.) lists the following objectives that the constructor of an 

operating system should bear in mind. One important reason for sharing the 

use of a computer is to make efficient use of its resources, and this should 

therefore be a primary objective of the operating systems; a corollary of this 

is that the operating system must not use too much of those resources itself. 

Another objective of an operating system is reliability, mainly because the 

effects of a hardware failure or a user-program failure on a shared computer 

could be many times more serious than on an unshared computer; in addition, 

the correctness of the operating system is crucial. A further objective of an 

operating system must be to provide the users with a reasonably predictable 

service, despite the unpredictability of the demands which they make. 

To this list one must add simplicity: without simplicity—of concept, of 

specification, of design, of implementation and of use—one cannot have a 

complete understanding of one’s system, nor can one exercise complete 

control over it. To a certain degree these objectives are mutually incompatible 

and it is more important that none is neglected than that one is fully met at 

the expense of the others; however, the compulsory and pervasive nature of 

the use of an operating system imposes upon its constructor the obligation to 
fulfil each objective to a high degree. 

Specification 

The specification of an operating system is intimately concerned with the 

specification of the computer configuration on which it is implemented. With 
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other programs portability or device independence is often deemed a desirable 

objective and so such programs make as few suppositions as possible about 

their environment. With an operating system this is not always the case. 

It is true that sometimes an operating system is designed for use on a number 

of different configurations, but these configurations must be the same in 

essentials, and the differences in details can be but limited. For example, one 

configuration may have an extra cardreader or faster lineprinters or more 

store, but even here one has to be careful that the balance of the system is 

not upset. Major differences in configuration, such as whether or not there 

is a file store, affect the design of the operating system very considerably; the 

speed of the backing store can dictate whether an interactive system is 

feasible or whether only batch jobs can be processed. If the operating system 

provides the user with a “virtual machine” that differs considerably from the 

“real machine” then this must be the result of a deliberate decision by the 

system’s designer to make some features provided by the hardware unavail¬ 

able to the user. There is a variety of reasons for taking such a decision: for 

simplicity, for cheapness, for range compatibility, or to enable jobs to be run 

on configurations from a variety of manufacturers. 

A top-down specification would entail defining the users’ views of the 

system, quantifying the use they will make of the resources and then deducing 

what hardware is needed to support the system. Often, though, one has to 

start with the hardware and design in a bottom-up manner. In practice several 

iterations up and down may be required before one eventually achieves a 

specification for an operating system that is useful and a configuration that 

one can afford. 

The users’ jobs 

For the purpose of this book we shall construct a batch-processing system 

and we shall begin by considering the user’s view. Each job is submitted as a 

deck of cards (or we could equally well use paper tape). The first card of the 

deck, the title card, not only contains administrative information such as the 

title of the job and the user’s name but also states which library program 

(either a compiler or a package) is to be invoked. This card is followed by 

the data, including any program to be compiled, and the deck is terminated 

by a card beginning with four asterisks. 
The system holds a library of programs (compilers and packages) and, 

on reading a user’s job, loads the specified program from the library into 

main store and begins execution. This program, if part of a multi-pass suite, 

will generally finish by calling for the next program in the suite to be loaded 

and run; if the program is a compiler its final act is to call for the newly 

compiled program to be loaded and run, if no errors have been encountered 

during compilation. To pass data (or the code of a compiled program) from 
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one program of a suite to the next, an intermediate file is used. 

The output from the job is printed on a lineprinter, or we might use a 

typewriter or even a paper tape or card punch if we chose to abstract away the 

differences between these peripheral devices. 

As an example suppose that we wish to compile a program using a one- 

pass Mini-Pascal compiler and then run it to process some data; the job 

would be submitted as the deck of cards shown in Fig. 3.1. 

The title card is read and the Mini-Pascal compiler is loaded from the pro¬ 

gram library into main store and then executed, reading the Mini-Pascal 

program from the input, translating it, writing the compiled code to the 

intermediate file, directing the listing and any error reports to the output and, 

finally, if no errors have been detected, calling for the program in the inter¬ 

mediate file to be loaded. When the compiled Mini-Pascal program has 

been loaded, it is then run, getting its data from the input and sending its 

results to the output for printing. When the job has finished execution the 
intermediate file is deleted. 

Another example of a job is that of a user who wishes to call a two-pass 

package to process some data: the first program of the suite is called 

PACKAGE99, the second PACKAGE99A. The job would be submitted as 

shown in Fig. 3.2. The title card is read, PACKAGE99 is loaded into main 

store and execution commences. Data are read from the input and partially 

processed, the intermediate results are written to the intermediate file and 

PACKAGE99 calls for the loading of PACKAGE99A. That program is 

loaded and runs, taking the partial results from the intermediate file and 
writing the final results to the output. 
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A more complicated use of the intermediate file occurs when it is used by, 

say, the second program of a three-pass suite to transmit data to the third 

program while reading data from the first program. If the first program has 

written blocks bx to bn to the intermediate file, the second program may read 

these while appending blocks bn+1 to bn+m to the file. We shall define the file 

in such a way that when a block is read from the file that block is deleted and 

so, when the third program runs, the first block remaining in the file will be 

block bn+1, blocks bx to bn having been read and deleted by the second 

program. It is, of course, necessary for the first two programs to agree upon 

some convention, for example a terminator in block bn, to ensure that the 

second program does not try to consume data that it had intended to transmit 

to the third program! 

It is possible for one program to write data to the intermediate file and, 

later, to read it back, although the principal use of this file is to pass data 

through a sequence of programs. Usually this sequence is limited either to a 

single or multi-pass compile-and-run sequence or to a single or multi-pass 

package: in each case each program in the suite explicitly names its successor 

if it has one; it is, of course, possible for the user’s own program to name as 

its successor some library program, say a report writer, for which it has 

generated data in the intermediate file. 

The configuration 

In order to specify a suitable configuration we must know something of the 

use that jobs will make of the various resources of the system. For our 

purposes we shall assume the average job has 500 cards of input, generates 

1000 lines of output and occupies 100 000 characters of main store for 

about a minute, slightly over half that time being used for data transfers 

(program loading, and input and output of data) and rather less than half 

a minute being spent in processing. 
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To keep a single processor busy we should have sufficient main store to 
hold two programs simultaneously, thereby processing an average of two jobs 
a minute. We must therefore have sufficient capacity to process 1000 lines of 
input and 2000 lines of output each minute. A configuration of one processor, 
256K characters of main store (to hold two lOOK-character programs and a 
56K-character operating system), two 500 cards-per-minute cardreaders and 
two 1000 lines-per-minute lineprinters should be reasonably well balanced. 
This balance may be upset if too many jobs depart significantly from the 
average, but we shall assume here that this happens sufficiently infrequently 
to be acceptable and to make it unnecessary to spend more on a larger con¬ 
figuration to iron out fluctuations in the characteristics of jobs. Similarly, 
we shall assume that a rate of two jobs a minute is sufficient to prevent large 
queues building up during normal peaks. 

We shall, however, need further equipment. To enable operators and 
operating system to communicate we shall provide a typewriter or, better 
still, two, as the typewriter is necessary but slow and not altogether reliable. 
To store a library of compilers and packages we shall provide some sort of file 
store; this will also be used for holding the intermediate file of each job being 
run. We shall also use the file store for spooling each job’s input and output. 
This entails running each job in three stages: first the input is copied from 
the reader to a spooled input file-, then the programs that constitute the job 
are executed, obtaining their input from this file and directing their output 
to a spooled output file-, and finally this output is copied from file to printer. 
Spooling is used to decouple the job’s input, execution and output from one 
another, thereby avoiding the expensive delays that would otherwise result 
from the differences in speed of these three operations. Spooling enables 
each peripheral device to run at full speed, thereby contributing not only to 
its efficiency but also to its reliability. Spooling also makes the system less 
susceptible to peripheral failure and avoids processing being delayed while 
the cardreaders’ hoppers and the lineprinters’ supplies of paper are being 
replenished. 

Let us suppose that, for the system we are postulating, we shall have 
perhaps twenty library files, each of 100K characters, two intermediate files 
of say 100K characters, and some number of users’ jobs, each with an input 
file of about 40K characters (or 20K characters if packed to suppress leading 
and trailing spaces) and an output file of 120K characters (or 60K characters 
if packed), although if, as with intermediate files, we delete records as they 
are read we shall not need both a full input file and a full output file 
simultaneously. 

The number of users’ jobs in the system at any moment must exceed six 
if we are to keep both readers and both printers busy as well as execute two 
programs and also iron out fluctuations in the demand for those resources— 
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twelve should be adequate; we may thus expect a turnround time of about 

five minutes per job. A standard exchangeable disk pack with 200 cylinders 

of 10 tracks of 3K characters would thus be half used. Many files, of course, 

will be much smaller than those we have postulated but we should also cater 

for larger data files of up to, say, 500K characters. Since the disk store is 

unlikely to be fully used we shall not pack the data since such an operation 
is expensive. 

We shall update the library off-line and, because the users have no 

permanent files, we do not need to cater for the dumping and restoration of 

files to guard against corruption. In the case of a breakdown we shall simply 

restart the system, reloading the library first if necessary, and accept the loss 

of all the jobs that were in the system at the time of failure. 

Although we have a specific configuration we shall design the operating 

system in such a way that it will be easily adaptable to slightly different 

configurations. For instance it should be able to accommodate three slower 

printers instead of two fast ones, or to support just one typewriter, or to run 

three programs simultaneously rather than two, or to work with paper-tape 

readers rather than cardreaders. However, some other changes would entail 

more drastic alterations: the introduction of permanent files that a user 

could keep from one job to another, the introduction of a multiple-access 

service with several users running their programs interactively from type¬ 

writer or display terminals, or the introduction of a dynamic storage alloca¬ 

tion scheme such as paging. 

Structure 

The user processes 

The principal component of the operating system is a Pascal Plus process, 

of which we shall declare twelve instances, to run a succession of users’ jobs. 

Running a job entails reading the job’s title card from the spooled input, 

loading the appropriate library program into main store and executing that 

program. Execution involves supplyingthe program with data from the spooled 

input, directing results to the spooled output, supplying blocks from and 

directing blocks to the intermediate file, and loading further programs from 

the library or the intermediate file. The skeletal form of the process is as 

follows. 

process userprocess ; 

procedure runuserjob ; 

begin 
{read title card from spooled car dreader} ; 

repeat 
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{load program} ; 
{run program ; i.e. execute the instructions in sequence, 

with the supervisor calls (i.e. calls upon the operating 

system), such as 'read a card', 'print a line', 'input a 

block' and 'output a block', being translated into corresponding 

operations on the spooled input file, the spooled output file 

and the intermediate file ; this continues until the supervisor 

call finish' or 'load and run next program' is 

encountered or until the program fails} 

until {jobfinished) 

end ; 

begin while {system switched on) do runuserjob end ; 

instance user : array [1 . . 12] of user process 

The resources 

To run a user’s job the process requires the use of various resources. Each 

of these resources we shall represent by a Pascal Plus envelope, each instance 

of which provides its user with a “virtual resource” and maps that virtual 

resource onto the corresponding real resource. The real resources have to be 

shared among many users and so we shall represent each type of real resource 

by a monitor module in Pascal Plus. For example to administer a pool of 

fifty buffers we might declare a monitor module called pool containing: 

(a) a scheduler to keep track of which of the fifty buffers are available for 
use; 

(b) fifty controllers, one to control the use of each buffer; and 

(c) an envelope, called buffer, each instance of which would provide its 

user with a virtual buffer on which operations such as read and write 
would be defined. 

The outline of the pool monitor is given below. 

monitor module pool ; 

monitor module buffer scheduler ; 

{records availability of buffers and provides two 

procedures, 'acquire' and 'release') ; 
monitor controller ; 

{owns a buffer and provides procedures 

to 'read' and 'write' data) ; 

instance buffer controller : array [1 . . 50] of controller ; 
envelope *buffer ; 

{records which buffer is being used) ; 
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procedure *read (...); 

{calls 'read' procedure of appropriate controller} ; 
procedure *write (...); 

{calls 'write' procedure of appropriate controller} ; 
begin 

{call 'acquire' procedure of scheduler} ; 
*** * 

5 

{call 'release' procedure of scheduler} 
end ; 

begin 

end 

When an instance of the buffer envelope is declared, as in the example below, 

the body of the envelope is executed: it begins by invoking the scheduler to 

acquire permission to use one of the fifty buffers and, when this is granted, 

it records which buffer it is to use. The user of the virtual buffer then 
continues (to execute the body of the procedure P) and from time to time 

carries out read and write operations on the virtual buffer: these the 

envelope transforms into corresponding operations on the real buffer that it 

has been allocated. Eventually, when the virtual buffer is no longer required 

(on exit from the procedure P), the envelope returns the real buffer to the 

scheduler. , „ 
procedure P ; 

instance B : pool.buffer ; 

begin 

B.write (. . .) 

B.read (. . .) 

end 

The system 

Before considering the details of the resource administration monitors we 

shall outline the structure of the entire operating system. This consists not 

only of the several instances of userprocess but also one monitor module to 

administer each type of resource and, in general, each will have much the 

same structure as the pool monitor, namely a scheduler, one controller per 

resource of that type, and an envelope presenting the user with a virtual 

resource. Two points should be made about the structure. Firstly, each con¬ 

troller is represented by a monitor despite the fact that usually (but not 

always) the scheduler will have ensured that only one process at a time has 

permission to use that controller—the Pascal Plus compiler cannot tell that 

the controller is being used in such a disciplined manner, although an imple- 
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mentation in some other language might take advantage of such knowledge. 

Secondly, although the mainstore monitor and all the other resource admini¬ 

stration monitors are designed in this way, the mainstore monitor in particular 

will be implemented very differently: the frequency with which main store is 

accessed dictates that the mapping of an operation on a virtual address into 

an operation on a real address must be very fast and must be accomplished 

by special-purpose hardware—this matter is dealt with more fully in a later 

chapter. 

The outline structure of the complete system is as follows. 

program operating system ; 

monitor module processor ; 

monitor module mainstore ; 

monitor module typewriter ; 

monitor module filestore ; 

monitor module cardreader ; 

monitor module lineprinter ; 

process userprocess ; 

procedure runuserjob ; 

{(declare instances of the virtual resource envelopes needed— 

these, together, constitute the virtual machine in which 

the user's job is run} ; 
begin 

{read title card} ; 

repeat 

{load program} ; 

{run program} 

until {job finished} 
end ; 

begin 

while {system switched on} do runuserjob 
end ; 

instance user : array [1 . . maxuser] of userprocess ; 
begin 

*** 

end. 
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In order to consider the detailed design of the user process and of each 

resource administration monitor it is necessary to define the exact interface 

between the process and each monitor. The main store is essentially a pool 

of two partitions and its interface is thus similar to that of the buffer pool 

that we have already outlined: the monitor mainstore provides the user with 

an envelope called store which makes available a partition of some agreed 

size and also makes available procedures to read data from and write data to 

the store in some agreed units. We shall assume that the store is to be con¬ 

sidered as a linear array of some agreed number of characters (100K in 

our case), each identified by an address ranging from zero upwards. So the 

mainstore monitor provides the user with a constant, maxchar = 102399, 

and a type, address = 0 . . maxchar. The complete interface is summarized 
below. 

monitor module mainstore 

const *maxchar = 102399 {100AT characters per virtual store} 

type * address = 0 . . maxchar 

envelope *store 

procedure *read (address ; var char) 

procedure * write (address ; char) 

If we made three partitions of store available to users there would be no need 

to change this interface, but if we were to allow each user to specify the size 

of his partition we should have to add a parameter to store and so such a 

change would affect the user as well as this monitor. 

The processor 

Processor time is a resource that has to be shared: we must ensure that no 

process monopolizes the use of a processor to the exclusion of others for an 

unduly long time. We shall assume that while a process is performing super¬ 

visory functions (in other words it is not executing some user’s program) it 

uses the processor for only a short time before relinquishing it: this is a 

reasonable assumption since such supervisory functions are almost exclusively 

concerned with initiating or servicing input and output operations. Further¬ 

more we shall assume that the time thus spent processing is small compared 

with the time spent waiting for data transfers to be completed and so the 

processing load will be small. These assumptions enable us to exclude 

“supervisory processing” from the scheduling of the processor (or processors) 

and so we concern ourselves with just the “user processing”. 
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Some user programs will do little processing and will be “peripheral 

bound” while others will do much processing and can be said to be “processor 

bound”; still others will fall between these two categories or their character¬ 

istics will fluctuate. As a general rule a peripheral bound program should be 

given the use of a processor when it wants one in order to keep its peripheral 

devices busy and because it will not monopolize the processor for long. 

Processor bound jobs, though, must not in consequence be starved of pro¬ 

cessor time. As the characteristics of user programs are not known in advance, 

and may change, it is necessary to detect their characteristics at run time and 

adjust the scheduling of the processor accordingly. 
Thus each user process that has acquired a partition of main store, and is 

ready to begin running a user’s program, declares an instance of the cpu 

envelope of the processor administration monitor. This envelope keeps an 

account of the program’s use of the processor and provides a procedure, 

timeslice, which the user invokes before embarking on each “slice” of, say, 

100 ms of processing. The effect of this procedure is to update the account 

and, possibly, to delay the program if some other program with a better 

claim is waiting for the processor. In this way no program can monopolize 

a processor for more than 100 ms, and a program that has been progressing 

slowly is given the chance to catch up. The interface with the processor moni¬ 

tor is as follows: 

monitor module processor 

const * slice = 100 {milliseconds} 

envelope *cpu 

procedure *timeslice 

Increasing the number of processors would not alter this interface, but 

each program would more speedily be granted permission to embark on its 

next timeslice. Changing the scheduling algorithm would, likewise, alter the 

relative speeds at which programs are run but would not alter the logical 

interface. Allowing different programs to have timeslices of differing lengths 

would entail adding a parameter to cpu or to timeslice and would therefore 

necessitate a change to the user process. 

The lineprinters 

A virtual lineprinter should provide its user with procedures to print a line 

and to throw to a new line or a new page; depending on the type of printer 

used other control operations such as vertical tabulation may also be available 

but we shall not provide these. The interface is quite a simple one, compli¬ 

cated only by the need to cater for the failure of a data transfer: we introduce 
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a type, status, with two values, success and failure. 

monitor module lineprinter 

const *maxchar = 120 {characters per line} 
type 

*line = packed array [1 . . maxchar] of char 

*status = (*success, *failure) 
envelope Sprinter 

var *result : status 

procedure * print (line) 

procedure *newline 

procedure *newpage 

The cardreaders 

The cardreader envelope is similar in form to that of the lineprinter but here 

the type status has three values, success, failure and also endoffile to indicate 

that the four-star terminator has been read. 

monitor module cardreader 

const *maxchar = 80 {characters per card} 

type 

*card = packed array [1 . . maxchar] of char 

*status = (*success, *failure, *endoffile) 

envelope *reader 

var *result : status 

procedure *read (var card ) 

The typewriters 

A typewriter, or alternatively a keyboard with a character display, is necessary 

to enable an operator to converse with some process in the computer. Each 

typewriter may be used for a variety of conversations and so the printed (or 

displayed) record of each conversation should be prefaced by a name to 

enable the operator to distinguish easily between one conversation and the 

next and to know for sure with which process he is conversing. 

More often than not a conversation will be “outgoing” in that it will be 

initiated by some process to inform the operator of, say, a fault on a peri¬ 

pheral device. Occasionally “incoming” conversations will be required: 

here some process waits for the operator to initiate a conversation; for 

example the operating system may have a number of small service processes 

which wait to be interrogated by the operator when he wants, say, a list of 

the jobs currently being run; another example of an incoming conversation 
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is to be found after the operator has been unable to reply to a question during 

an earlier conversation: on his typing “WAIT” the process with which he 

was conversing would have released the typewriter and then waited for him 

to restart the interrupted conversation later, possibly on another typewriter. 

Thus the envelope that provides the user with a virtual typewriter must 

take two parameters: one is the name of the conversation and the other 

specifies whether the conversation is to be incoming or outgoing. The enve¬ 

lope then makes available procedures to read a message, to print a message, 

and to throw to a new line. The interface, with the necessary constants and 

types, is given below. 

monitor module typewriter 

const 
*maxname = 4 {characters per name} 

*maxcliar = 36 {characters per message} 

type 
*name = packed array [1 . . maxname] of char 

Hyp eofconversation = (*outgoing, incoming) 

*message = record 
*length: 0 . . maxchar ; 

*text\ packed array [1 . . maxchar] of char 

end 

*status = i*success, *failure) 

envelope *conversation {name, typeofconversation) 

var *result: status 

procedure *read (var message) 

procedure * print {message) 

procedure *newline 

The result value made available by the envelope is to inform the user whether 

the data transfer was successful or not. 

The file store 

The file store is unusual in that the “virtual filestore”, or file, that we wish to 

provide looks very different from the disk store onto which we must map it. 

For spooling and for intermediate files we wish to provide a sequence of 

blocks of some fixed length and two procedures, one to read a block from the 

head of the sequence (and free the space it occupied on disk), and the other 

to write a block to the tail of the sequence. The way in which these files will 

be implemented will be described later, but for the moment we may work 
with the following interface. 
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monitor module filestore 

const 

*maxchar = 1023 {1K characters per block} 

*maxblock = 500 {blocks per file} 
type 

*block = packed array [0 . . maxchar] of char 

*status = (*success, *endo/file) 
envelope *file 

var *result: status 

procedure *write (block) 

procedure *read (var block) 

Receipt of the status value endoffile on reading means that the file was 

empty, while on writing it means that the file was full (500 blocks of IK 

characters in this case). We do not provide a status value failure since we shall 

not attempt to recover from a fault on the disk store; the operating system 

cannot function while the file store is out of action. 

We have also to cater for library files: these differ from the spooled and 

intermediate files in that they can only be read, not written, and blocks that 

are read must of course remain on the disk. We therefore provide a second 

envelope, libraryfile, which takes as a parameter the name of the library 

file—we extend status with an extra value nofile to cope with attempts to 

read from non-existent files. We therefore extend the file store interface 

with the following definitions. 

const *maxname = 12 {characters per filename} 

type 

*status = {^success, *endoffile, *nofile) 

*filename = packed array [1 . . maxname] of char 

envelope *libraryfile (filename) 

var *result: status 

procedure *read (var block) 

This demonstrates that virtual resources of several different types may 

be mapped onto the real resources of a single type. Indeed, in a more elaborate 

system we might wish to provide users with envelopes representing sequential 

files, indexed sequential files and random access files. 

Summary 

Listing 1 summarizes the complete operating system: it contains one monitor 

module to administer each type of resource and then the definition of 

userprocess, of which twelve instances are declared. When the operating 

system begins execution the monitors are initialized and then the twelve user 

processes are initiated. 



Having defined this structure we may now proceed to program, in any 

order, these monitors and the userprocess; in doing so we may well find that 

we introduce some extra processes to handle peripheral devices, and also 

some minor service processes and monitors to enable the operator to exercise 

some control over the system, for example to permit him to stop the user 

processes in an orderly fashion at the end of the day: this particular monitor, 

called switch, is mentioned in Listing 1 and described in more detail in the 

next chapter. 

Listing 1 

PROGRAM OPERATINGSYSTEM; 

CONST 
MAXUSER * 12 (*USER PROCESSES*); 

MONITOR MODULE PROCESSOR = LIST10 IN LIBRARY; 
(* CONST *> 
(* *SLICE = 100 MILLISECONDS *> 
(* ENVELOPE *CPU *> 
<* PROCEDURE *TIMESLICE *> 

MONITOR MODULE MAINSTORE = LIST9 IN LIBRARY; 
<* CONST *> 
<* *MAXCHAR = 102399 I.E. 100K CHARS PER VIRTUAL STORE *) 

(* TYPE *> 
<* *ADDRESS = 0..MAXCHAR *> 
(* ENVELOPE *ST0RE *> 
<* PROCEDURE *READ (ADDRESS; VAR CHAR) *) 
(* PROCEDURE ♦URITE (ADDRESS; CHAR) =*) 

MONITOR MODULE TYPEWRITER = LIST13 IN LIBRARY; 
(* CONST *) 
<* *MAXNAME = 4 CHARACTERS PER NAME =») 
<* *NAXCHAR = 36 CHARACTERS PER MESSAGE *) 
(* TYPE =*) 
(* *NAME = PACKED ARRAY C1..MAXNAME3 OF CHAR *) 
(* ♦TYPEOFCONVERSATION = ( ^OUTGOING, *INC0MING ) *) 
(* *MESSAGE = RECORD ♦) 
(* *LENGTH: 0..MAXCHAR; '■*) 
(* *TEXT: PACKED ARRAY [1..MAXCHAR] OF CHAR *) 
(* END *) 

(* *STATUS = ( ♦SUCCESS, ♦FAILURE ) *) 
(♦ ENVELOPE *C0NVERSATION (NAME; TYPEOFCONVERSAT ION) *) 
<* VAR ♦RESULT: STATUS *) 
<* PROCEDURE *REAB (VAR MESSAGE) :*) 
(* PROCEDURE ♦PRINT (MESSAGE) *) 
(* PROCEDURE *NEULINE *) 

MONITOR MODULE CARDREADER = LIST11 IN LIBRARY; 
<» CONST :») 

(* *MAXCHAR = 80 CHARACTERS PER CARD :*) 
(* TYPE *) 

<* *CARD = PACKED ARRAY C1..MAXCHAR] OF CHAR =*) 
(* ♦STATUS = ( *SUCCESS, ♦FAILURE, *ENB0FFILE ) *) 
<* ENVELOPE *REABER *) 
(* VAR ♦RESULT: STATUS *) 
(* PROCEDURE ♦READ (VAR CARD) :*) 
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MONITOR MODULE LINEPRINTER = LISTI2 IN LIBRARY; 
<♦ CONST ♦ ) 
<♦ ♦MAXCHAR = 120 CHARACTERS PER LINE ♦ ) 
<♦ TYPE *) 
(* ♦LINE = PACKED ARRAY [1..MAXCHAR] OF CHAR ♦ ) 
<♦ ♦STATUS = ( ♦SUCCESS, ♦FAILURE ) *) 
<* ENVELOPE ^PRINTER ♦ ) 
<♦ VAR ♦RESULT: STATUS *) 
<♦ PROCEDURE ♦PRINT (LINE) *) 
(* PROCEDURE ♦NEULINE *) 
(* PROCEDURE ♦NEUPAGE ♦ ) 

MONITOR MODULE FILESTORE = LIST20 IN LIBRARY; 
<♦ CONST ♦ ) 
(* ♦MAXCHAR = 1023 I.E. IK CHARACTERS PER BLOCK ♦ ) 
<♦ ♦MAXBLOCK = 500 BLOCKS PER FILE *) 
<♦ ♦MAXNAME = 12 CHARACTERS PER FILENAME ♦ ) 
<♦ TYPE *) 
<* ♦BLOCK = PACKED ARRAY CO..MAXCHAR] OF CHAR ♦ ) 
(* ♦STATUS = ( ♦SUCCESS, ♦ENDOFFILE, ♦NOFILE ) *) 
(* ♦FILENAME = PACKED ARRAY [1..MAXNAME] OF CHAR ♦ ) 
(* ENVELOPE ♦FILE *> 
<* VAR ♦RESULT: STATUS ♦ ) 
<♦ PROCEDURE ♦WRITE (BLOCK) *) 
<♦ PROCEDURE ♦READ (VAR BLOCK) ♦ ) 
(* ENVELOPE ♦LIBRARYFILE (FILENAME) *) 
(* VAR ♦RESULT: STATUS ♦ ) 
(* PROCEDURE ♦READ (VAR BLOCK) *) 

MONITOR MODULE SWITCH = LIST2 IN LIBRARY; 
<* FUNCTION ♦ON: BOOLEAN ♦ ) 

PROCESS USERPROCESS = LIST8 IN LIBRARY; 
<♦ PROCEDURE RUNUSERJOB ♦ ) 
<♦ ♦♦♦ DECLARE INSTANCES OF THE VIRTUAL RESOURCE *** ♦ ) 
(♦ ♦♦♦ ENVELOPES NEEDED - THESE, TOGETHER, CONSTITUTE *** ♦ ) 
<♦ ♦♦♦ THE VIRTUAL MACHINE IN UHICH THE USER'S JOB IS *** ♦ ) 
<* ♦♦♦ RUN. * + * *) 
<* BEGIN ♦ ) 
<♦ READ TITLE CARD; ♦ ) 
(* REPEAT ♦ ) 
<♦ LOAD PROGRAM; *) 
<♦ RUN PROGRAM ♦ ) 
<♦ UNTIL JOB FINISHED ♦ ) 
<♦ END; ♦ ) 
(♦ BEGIN ♦ ) 
<♦ WHILE SWITCH.ON DO RUNUSERJOB ♦ ) 
<* END ♦ ) 

INSTANCE 
USER: ARRAY Cl..HAXUSER] Or USERPROCESS; 

BEGIN 
♦ ♦♦ 

END. 

S.S.P.—R 
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THE USER PROCESS 

System Termination 

The user process executes a succession of jobs. As we have seen, its outline 

form is as follows. 

process userprocess ; 

procedure runuserjob ; 

begin 

{read title card} ; 

repeat 

{load program} ; 

{run program} 

until {job finished} 

end ; 

begin 

while {system switched on} do runuserjob 

end 

Let us start by considering the body of the process: it is a loop that should 

be executed repeatedly until the operator indicates that the system should 

close down. We therefore introduce a monitor that records whether or not 

the system is operational. In it we have a process that waits for the operator 

to stop the system, flags the system as switched off, waits for all the user 

processes to terminate, and tells the operator that the system has stopped. 

Listing 2 shows the complete switch monitor together with its local stopper 

process and the Boolean function on which is invoked by the user processes. 

In Pascal string constants must be of the correct length but, for clarity, 

we have suppressed trailing spaces. 

The stopper process’s two procedures, waitforoperator and telloperator, 

illustrate well how the declaration of an envelope instance is used to acquire 

(and implicitly release) a virtual resource: here the resource is a typewriter 

used, in one case, for a simple incoming conversation initiated by the oper¬ 

ator and, in the other case, for a simple outgoing conversation initiated by 
the stopper process. 

Note that we have assumed that disk faults never occur: the entire system 

relies heavily upon the availability of the file store. Persistent typewriter 

faults are treated lightly: we can often afford to overlook them, as in the 

program above. Naturally if all the typewriters or all the cardreaders or all 

the lineprinters are out of action the system cannot do any useful work: it 

will merely wait for a peripheral device of the appropriate type to be repaired 
and returned to use. 



Listing 2 

MONITOR NODULE SUITCH; 

OPERATIVE: BOOLEAN; 
STOPCOUNT: O..NAXUSER; 

INSTANCE 
STOPPED: CONDITION; 

FUNCTION *ON: BOOLEAN; 
BEGIN 

ON:= OPERATIVE; 
IF NOT OPERATIVE THEN 

BEGIN 

STOPCOUNT:= STOPCOUNT + 1; 

IF STOPCOUNT = NAXUSER THEN STOPPED.SIGNAL 
END 

END; 

PROCEDURE SWITCHOFF; 
BEGIN 

OPERATIVE:= FALSE; 
STOPCOUNT:= 0; 
STOPPED.WAIT 

END; 

PROCESS NODULE STOPPER; 
PROCEDURE UAITFOROPERATOR; 

VAR 

N: TYPEWRITER.NESSAGE; 
INSTANCE 

OPERATOR: TYPEWRITER.CONVERSATION 

('STOP-', TYPEWRITER. INCOMING) 
BEGIN 

M.LENGTH:= 3; H.TEXT:= 'OK.'; 
OPERATOR.PRINT(H) 

END; 

PROCEDURE TELLOPERATOR; 
VAR 

N: TYPEWRITER.MESSAGE; 
INSTANCE 

OPERATOR: TYPEWRITER.CONVERSATION 

('STOP', TYPEWRITER.OUTGOING) 
BEGIN 

H.LENGTH:= 15; H.TEXT:= 'SYSTEM STOPPED.'; 
OPERATOR.PRINT(M) 

END; 

BEGIN 

WAITFOROPERATOR; 
SUITCHOFF; 
TELLOPERATOR 

END; 

BEGIN 

OPERATIVES TRUE; 
*** 
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Spooling 

On entry to the procedure runuserjob we must acquire certain resources 

which are needed to execute the several programs that constitute a job. 

So at the head of the procedure we would declare the following envelope 

instances were we not spooling the input and output. 

instance 

printer: lineprinter.printer; 

reader: car dreader .reader; 

intermediate: filestore.file’, 

store: mainstore.store; 

cpu: processor, cpu 

However, as we wish to spool the input we shall replace 

instance reader: cardreader.reader 

by 

envelope module reader ; 

var *result: cardreader.status; 

instance cardfile: filestore.file; 

procedure spoolinput; 

instance reader: cardreader.reader; 

begin 

{block together cards from 'reader' and write them to 'cardfile'} 

end; 

procedure *read (var c’.cardreader.card); 

begin 

{unblock a card from 'cardfile' and assign it to 'c'} 

end; 

begin 

spoolinput; 

end 

and, to spool the output, we replace 

instance printer: lineprinter.printer 

by 

envelope module printer; 

var *result: lineprinter.status; 

instance linefile: filestore.file; 

procedure * print (/: lineprinter.line); 
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begin 

{block line T for writing to 'linefile'} 
end; 

procedure *newline; 

begin 

{block newline control character for writing to 'linefile'} 
end; 

procedure *newpage; 

begin 

{block newpage control character for writing to 'linefile'} 
end; 

procedure spooloutput; 

instance printer: lineprinter.printer; 

begin 

{unblock lines and control characters from 'linefile' and write 
them to 'printer'} 

end; 

begin 
*** • 

spooloutput 

end 

Input 

The spooled reader envelope presents us with exactly the same interface as 

does the virtual cardreader, but does so in a different way. It declares an 

instance of a file and into this it copies the data which it reads from a card- 

reader. Having done this it releases the cardreader and makes the data 

available to the user, card by card, from the file. The complete module is 

shown in Listing 3. As each card is written to the file it is preceded by a 

control character ‘X’ and the end-of-file marker is written as the character ‘Z’. 

Listing 3, although basically simple, is complicated by the details of 

blocking and unblocking card images and by the need to check for, report, 

and recover from, failures. The program caters for two types of failure that 

may occur when the cards are being spooled in: either an attempt to read a 

card may fail or there may be too many cards to be held in the file. In either 

case a report failure procedure is called with the appropriate string parameter: 

either 'FAULTY CARDREADER' or 'TOO MANY CARDS'. However, 

the report, if it is to mean anything to the operator, or to the user who sub¬ 

mitted the job, must identify the job to which it relates. We assume that the 

title card of each deck of cards contains the user’s name (in the first twelve 

columns) and the job’s name (in the next twelve columns) in addition to such 



Listing 3 

ENVELOPE NODULE READER; 

♦RESULT: CARDREADER.STATUS; 
B: FILESTORE.BLOCK; 
J: 0..FILESTORE.HAXCHAR; 
OK: BOOLEAN; 

INSTANCE 

CARDFILE:FILESTORE.FILE; 

PROCEDURE SPOOLINPUT; 
LABEL 9; 
VAR 

C: CARDREADER.CARD; 
USERNAHE, 

JQBNAME: PACKED ARRAY C1..HAXNAHE3 OF CHAR; 
HI, H2: TYPEWRITER.HESSAGE; 

INSTANCE 

READER: CARDREADER.READER; 

PROCEDURE REPORTFAILURE (FAULT: TYPEWRITER.HESSAGE ); 
VAR 

H: TYPEWRITER.HESSAGE; 
INSTANCE 

OPERATOR: TYPEWRITER.CONVERSATION 

('USER, TYPEWRITER.OUTGOING); 
BEGIN 

H.TEXTC1..HAXNAHET:= USERNAHE; 
H.TEXTEHAXNAHE+1..HAXNAHE+33:= ■' - 

H.TEXTCHAXNAHE+4..HAXNAHE+FAULT.LENGTH+3]FAULT.TEXT; 
H.LENGTH:= HAXNAHE + FAULT.LENGTH + 3 ; 
OPERATOR.PRINT(H); 
H.TEXTC1. .91:= •' FOR JOB '; 

H.TEXTC10..HAXNAHE+93:= JOBNANE; 
H.LENGTH:1 HAXNAHE+9; 

OPERATOR.PRINT(M) 
END; 

BEGIN 

Ml.LENGTH:= 17; HI.TEXT:= "FAULTY CARDREADER"; 
H2.LENGTH:= 14; H2. TEXT: = TOO HANY CARDS' ; 
READER.READ(C); 
USERNAHE:= CM..HAXNAHEI; 

JOBNAHE:= CCHAXNAHE+1. . 2;*HAXNAHE] ; 
J:= 0; 

WHILE READER.RESULT = CARDREADER.SUCCESS DO 
BEGIN 

BCJI:= 'X '; J : = (J+1) HOD (FILESTORE.HAXCHAR+1 ); 
IF J = 0 THEN 

BEGIN 

CARDFILE.WRITE(B); 

IF CARDFILE.RESULT <> FILESTORE.SUCCESS THEN GOTO 9 
END | 

IF J+CARDREADER.HAXCHAR-1 <= FILESTORE.HAXCHAR 
THEN BCJ. .J + CARDREADER.HAXCHAR-1]:= C 
ELSE 
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BEGIN 
BU.. FILES TORE. NAXCHAR ] : = 

Cd..FILESTORE. HAXCHAR-J+1]; 
CARDFILE.URITE(B); 
IF CARDFILE.RESULTOF ILESTORE.SUCCESS THEN GOTO 9; 
BCO..J-FRESTORE.HAXCHAR+CARDREADER.MAXCHAR-2]:= 

C C FILEST ORE.MAXCHAR—J+2..CARDREADER.MAXCHAR] 
end; 

J: = (J+CARDREADER.MAXCHAR) HOD (FILESTORE.HAXCHAR+1 ); 
READER.READ(C) 

END; 
IF READER.RESULT = CARDREADER.ENDOFFILE THEN 

BEGIN BE J]: = 'l'\ CARDFILE.URITE(B) END; 
IF READER.RESULT = CARDREADER.FAILURE THEN REPORTFAILURE(N1); 

9: IF CARDFILE.RESULT=FILESTORE.ENDGFFILE THEN REPORTFAILURE(M2); 
OK: = (CARDFILE.RESULT = FILESTORE.SUCCESS) AND 

(READER.RESULT = CARDREADER.ENDOFFILE) 
END; 

PROCEDURE *READ (VAR C: CARDREADER.CARD); 
LABEL 9; 
BEGIN 

IF CARDFILE.RESULT = FILESTORE.ENDOFFILE THEN GOTO 9; 
IF BUT = T THEN RESULT: = CARDREADER.ENDOFFILE ELSE 

BEGIN 
RESULT:= CARDREADER.SUCCESS; 
J:= (J+1) HOD (FILESTORE.HAXCHAR+t); 
IF J = 0 THEN 

BEGIN 
CARDFILE.READ(B); 
IF CARDFILE.RESULT=FILESTORE.ENDOFFILE THEN GOTO 9 

END; 
IF J+CARDREADER.HAXCHAR-1 ■<= FILESTORE.MAXCHAR 
THEN C:= BEJ..J+CARDREADER.HAXCHAR-1] 
ELSE 

BEGIN 
CC1. .FILESTORE.HAXCHAR-J+1]: = 

BEJ..FILESTORE.MAXCHAR]; 
CARDFILE.READ(B); 
IF CARDFILE.RESULT=FILESTORE.ENDOFFILE THEN GOTO 9; 
CEFILESTORE.MAXCHAR-J+2..CARDREADER.MAXCHAR] 

BEO..J-F ILESTORE.MAXCHAR+CARDREADER.MAXCHAR-2] 
end; 

J:= (J+CARDREADER.HAXCHAR) MOD (FILESTORE.MAXCHAR+1) 

end; 
9: IF CARDFILE.RESULT = FILESTORE.ENDOFFILE THEN 

RESULT:= CARDREADER.FAILURE 
END; 

BEGIN 

SPOOLINPUT; 
IF OK THEN 

BEGIN 
CARDFILE.READ(B); J:= 0; RESULT:3 CARDREADER.SUCCESS; 
*** 

end; 
END 
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information as the name of the library program to be run. The lengths of 

these names (twelve characters) will be denoted by a constant, maxname, 

declared local to the procedure runuserjob. 

We shall assume that the cardreader monitor will indicate a reader 

failure only if attempts to rectify the fault have failed; and we shall assume 

also that the first card—the title card—of each deck of cards will be read 

without mishap; and furthermore we shall assume that any unread cards at 

the end of a deck will be skipped before another job tries to use the cardreader. 

These assumptions we shall justify when we program the cardreader monitor. 

The manipulation of text is clumsy in Pascal. Here, for legibility, we 
have used subarray assignments such as 

m.text[ 1 . . maxname]: = username 

c := b[j . . j + cardreader.maxchar—l] 

but, before compiling the operating system, we have to rewrite these as loops 
of character assignments such as 

for i := 1 to maxname do m.text[i] := username[i] 

and this tends to be expensive unless the compiler is clever enough both to 

avoid recalculating the array subscripts and also to make use of whatever 

multi-character assignment operations are provided by the hardware. Short 

of adding subarray operations to Pascal, the best solution is to program the 
text manipulation in machine code. 

Another deliberate departure from what is generally considered to be 

good programming practice is the use of goto statements to exit prematurely 

from a piece of program on detecting a failure. The alternative is to lard the 

program with tests to determine whether the “success” path or the “failure” 

path should be followed. This alternative is expensive since, one hopes, 

failures will only very occasionally arise; it also makes the program longer 
and more difficult to read. 

Output 

The development of the spooled printer envelope parallels that of the spooled 

reader envelope. A file is used to hold the output which is subsequently 

written to a hneprinter. The complete envelope module is shown in Listing 4. 

Each line written to the file is prefixed by the control character ‘X’, newline 

and newpage are represented by ‘L’ and ‘P’ respectively, and the end-of-file 

marker is denoted by ‘Z\ We use the same abbreviated notation for character 

manipulation as we did in Listing 3, and also we handle failures in much the 
same way. 
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ENVELOPE NODULE PRINTER; 

VAR 

♦RESULT: LINEPRINTER.STATUS; 
B: FILESTORE.BLOCK; 

J: FILESTORE.NAXCHAR; 

INSTANCE 
LINEFILE: FILESTORE.FILE; 

PROCEDURE *PRINT (L: LINEPRINTER.LINE); 
LABEL ?; 
BEGIN 

IF LINEFILE.RESULT = FILESTORE.ENDOFFILE THEN GOTO 9; 
BCJ3:= "X"; J:= (J+1) NOD (FILESTORE.NAXCHAR+1); 
IF J = 0 THEN 

BEGIN 
LINEFILE.URITE(B); 
IF LINEFILE.RESULT = FILESTORE.ENDOFFILE THEN GOTO 9 

END; 
IF J+LINEPRINTER.NAXCHAR-1 <= FILESTORE.NAXCHAR 
THEN BCJ..J + LINEPRINTER.NAXCHAR-1]:= L 
ELSE 

BEGIN 
BU..FILESTORE.NAXCHAR]:= LC1..FILESTORE.NAXCHAR-J+1I; 
LINEFILE.URITE(B); 
IF LINEFILE.RESULT = FILESTORE.ENDOFFILE THEN GOTO 9; 
BCO..J-FRESTORE.NAXCHAR+LINEPRINTER.NAXCHAR-2]:= 

LI FILESTORE.NAXCHAR-J+2..LINEPRINTER.NAXCHAR] 
END; 

J:= (J+LINEPRINTER.NAXCHAR) NOD (FILES TORE.NAXCHAR+1 ); 
9: IF LINEFILE.RESULT = FRESTORE.SUCCESS 

THEN RESULT:= LINEPRINTER.SUCCESS 
ELSE RESULT:^ LINEPRINTER.FAILURE 

END; 

PROCEDURE *NEULINE; 
LABEL 9; 
BE6IN 

IF LINEFILE.RESULT = FILESTORE.ENDOFFILE THEN GOTO 9; 
B[J]: = L'; J : = (J + 1) NOD (FILESTORE.NAXCHAR+1); 
IF J = 0 THEN LINEFILE.URITE(B); 

9: IF LINEFILE.RESULT = FRESTORE.SUCCESS 
THEN RESULT:= LINEPRINTER.SUCCESS 
ELSE RESULT:= LINEPRINTER.FAILURE 

END; 

PROCEDURE +NEUPAGE; 

LABEL 9; 
BEGIN 

IF LINEFILE.RESULT = FILESTORE.ENDOFFILE THEN GOTO 9; 
BEJ]:= 'P ; J:= (J+1) NOD (FILESTORE.NAXCHAR+1); 
IF J = 0 THEN LINEFILE.URITE(B); 

9: IF LINEFILE.RESULT = FILESTORE.SUCCESS 
THEN RESULT:= LINEPRINTER.SUCCESS 
ELSE RESULT:= LINEPRINTER.FAILURE 

END; 
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PROCEDURE SPOOLOUTPUT; 

LABEL ?; 

VAR 

L: LINEPRINTER.LINE; 

CH: char; 

INSTANCE 

PRINTER: LINEPRINTER.PRINTER; 

BEGIN 

LINEFILE.READ(B); J:= 0; 

REPEAT (*PRINT BLOCKS OF LINES UNTIL END OF FILE*) 

CH:= BCJ]; J:= <J+1> MOD (FILESTORE.MAXCHAR+1>; 

IF J = 0 THEN 

BEGIN 

LINEFILE.READ(B); 

IF LINEFILE.RESULT = FILESTORE.ENDOFFILE THEN GOTO 9 

IF 

END; 

CH = 'L' THEN PRINTER.NEULINE ELSE 

IF CH = THEN PRINTER.NEUPAGE ELSE 

IF CH = 'V 
BEGIN 

THEN 

IF J+LINEPRINTER.MAXCHAR-I <= FILESTORE.MAXCHAR 

THEN L:= BCJ.. J+LINEPRIN TER.MAXCHAR-1] 

ELSE 

BEGIN 

LC1. .FILESTORE.MAXCHAR-J+13: = 

BCJ..FILESTORE.MAXCHAR]; 

LINEFILE.READ(B); 

IF LINEFILE.RESULT = FILESTORE.ENDOFFILE THEN 

GOTO 9; 

LCFILESTORE.MAXCNAR-J+2..LINEPRINTER.MAXCHAR]:= 

BCO..J-FILESTORE.MAXCHAR+LINEPRINTER.MAXCHAR-2] 

END; 

J:= (J + LINEPRINTER.MAXCHAR) MOD (FILESTORE.MAXCHAR+1 ); 

PRINTER.PRINT(L) 

END 

UNTIL (PRINTER.RESULT = LINEPRINTER.FAILURE) OR (CH ^ Z'); 

9: IF LINEFILE.RESULT = FILESTORE.ENDOFFILE THEN 

BEGIN 

PRINTER.NEULINE; 

IF PRINTER.RESULT = LINEPRINTER.SUCCESS THEN 

PRINTER.PRINT( TOO MUCH OUTPUT ) 

END 

END; 

BEGIN 

J:= 0; RESULT:= LINEPRINTER.SUCCESS; 
***; 

BCJ] := 'l'] 

IF LINEFILE.RESULT = FILESTORE.SUCCESS THEN LINEFILE.URITE(B); 
SPOOLOUTPUT 
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Job Execution 

Having programmed the very simple body of the user process, and having 

programmed the spooling of both the input and the output, we are now left 

with the body of the procedure runuserjob. This consists of three main parts: 

processing the title card, loading a program, and running a program—in 

increasing order of complexity. 

/ 
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Fig. 3.3 

The title card begins with three twelve-column fields containing the 

user’s name, the name of his job and the name of the library file that holds 

the first program of the job. The user should also place some limit on the 

resource requirements of his job: this might take the form of the maximum 

price the user is prepared to pay or it might consist of a separate limitation 

on each type of resource such as main-store size, amount of lineprinter 

output, number of disk transfers and processor time. The only one that need 

worry us is the amount of processor time that a job uses. Normally this will 

be of the order of half a minute but, to guard against faulty jobs, we must 

impose some upper limit. If this limit is low we severely restrict the jobs that 

can be run on the system; this is perhaps sensible, since we are concerned 

with providing a fast turnround for short jobs and this would be endangered 

if long jobs were permitted to run; however, as we have two partitions of 

main store we could reserve one for short jobs and use the other for a 

mixture of short and long jobs. If, therefore, we set a high upper limit, we 

must allow each user to set a lesser limit for his job and so a field for this 

purpose must be set aside on the title card. Here we shall simply have a fixed 

upper limit of, say, five minutes per job, and we shall leave the extension of 

the system to provide for long jobs as an exercise for the reader: not only 

must a time-limit field be set aside on the title card but a scheduler must be 

introduced to ensure that no more than one long job at a time is occupying 

main store. 
The procedure for processing the title card is shown in Listing 5: it 

notes the name of the program to be loaded and copies to the output each 

field, including the rightmost forty-four columns which may contain some 

information such as instructions to the operator regarding the return of the 

print-out. 



Listing 5 

PROCEDURE PROCESSTITLECARD (VAR PROGRANNAHE: FILESTORE.FILENAME); 

C: CARDREADER.CARD; 

BEGIN 
READER.READ(C); 
PROGRANNAHE:= CC2*HAXNANE+1..2*MAXNAHE+FILEST0RE.MAXNAMEI; 
WITH PRINTER DO 

BEGIN 
NEUPAGE; 
PRINT <CC1..MAXNAMEI)J 
NEULINE; 
PRINT(CENAXNAME+1..2*MAXNANEI); 
NEULINE; 
PRINT(PROGRANNANE); 
NEULINE; 

PRINT(CC2*NAXNAME+FILESTORE.NAXNANE+1..CARDREADER.«AXCHARI); 
NEULINE; 
NEULINE 

END 
END; 

Listing 6 

PROCEDURE LOADLIBRARYFILEPROGRAM 
(PROGRANNAHE« FILESTORE.FILENAME; VAR OK: BOOLEAN); 

LABEL 9; 

INSTANCE 

F: FILESTORE.LIBRARYFILE(PROGRAMNAHE); 

VAR 
R: FILESTORE.BLOCK; 
A: HAINSTORE.ADDRESS; 

BEGIN 
F.READ(B); 
OK:= (F.RESULT = FILESTORE.SUCCESS); IF NOT OK THEN GOTO 9; 
A: = 0; 
REPEAT (*LOAD BLOCKS INTO MAIN STORE UNTIL END OF PROGRAM*) 

<*N.B. THIS LOOP ASSUMES THAT THE SIZE OF THE MAINSTORE *) 
(* AVAILABLE TO THIS JOB IS A MULTIPLE OF THE FILESTORE *) 
<* BLOCK SIZE. t) 

(♦COPY BLOCK "B" TO "STORE", STARTING AT ADDRESS "A”*); 
A:= (A + FILESTORE.MAXCHAR + 1) MOD (MAINSTORE.MAXCHAR + 1 ); 
F.READ(B) 

UNTIL (A = 0) OR (F.RESULT = FILESTORE.ENDOFFILE); 
OK:= (F.RESULT = FILESTORE.ENDOFFILE); 

9: IF NOT OK THEN UITH PRINTER DO 
BEGIN 

NEULINE; 
PRINT( 'ATTEMPT TO LOAD PROGRAM FROM '); 
CASE F.RESULT OF 

FILESTORE.SUCCESS: PRINT( OVERLONG LIBRARY FILE: '); 
FILESTORE.ENDOFFILE: PRINK'EMPTY LIBRARY FILE: '); 
FILESTORE.NOFILE: PRINK' MISSING LIBRARY FILE: ') 

END; 
PRINT(PROGRAMNAME); 
NEULINE 

END 
END; 
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Loading programs 

Each job consists of one or more programs run in sequence. The name of the 

first program is obtained from the title card and, thereafter, each program 

names its successor. We need to distinguish between programs loaded from 

the library and those loaded from the intermediate file and so we shall write 

two similar procedures to handle these two cases. The statement {load 

program} is thus rendered as: 

if programname = 'INTERMEDIATE' 
then loadintermediatefileprogram(ok) 

else loadlibraryfileprogram(programname,ok) 

where the two procedures are defined as in Listings 6 and 7. 

Listing 7 

PROCEDURE LOADINTERMEDIATEFILEPROGRAM (VAR OK: BOOLEAN); 

LABEL 9; 

VAR 
B: FILESTORE.BLOCK; 
A: HAINSTORE.ADDRESS; 

BEGIN 
INTERMEDIATE.READ(B); 
OK:= (INTERMEDIATE.RESULT = FILESTORE.SUCCESS); 
IF NOT OK THEN GOTO 9; 

A:* 0; 
REPEAT (*L0AD BLOCKS INTO MAIN STORE UNTIL END OF PROGRAM*) 

(*N.B. UE ASSUME 
(* (HAINSTORE.MAXCHAR+1) MOD (FILESTORE.MAXCHAR+1) =0 *) 
(♦COPY BLOCK "B" TO “STORE", STARTING AT ADDRESS "A"*); 
A:= (A + FILESTORE.MAXCHAR+1) MOD (HAINSTORE.MAXCHAR+1); 

INTERMEDIATE.READ(B) 
UNTIL (A = 0) OR (INTERMEDIATE.RESULT = FILESTORE.ENDOFFILE); 
OK:= (INTERMEDIATE.RESULT = FILESTORE.ENDOFFILE); 

9: IF NOT OK THEN UITH PRINTER DO 
BEGIN 

neuline; 
PRINT! 'ATTEMPT TO LOAD PROGRAM FROM '); 
IF INTERMEDIATE.RESULT = FILESTORE.SUCCESS 

THEN PRINT( 'OVERLONG INTERMEDIATE FILE. ') 
ELSE PRINT< EMPTY INTERMEDIATE FILE.'); 

NEULINE 
END 

END; 
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The statement 

{copy block 'b' to 'store', starting at address 'a'} 

occurs in both procedures and presents us with a problem that will recur 

several times in the construction of this operating system. Strictly speaking 

we should express this statement as 

for i := 0 to filestore.maxchar do store.write (a-\-i, b[i\) 

where 

var i: 0 . . filestore.maxchar-, 

however, this would be expensive. An improvement would be to copy the 

data en bloc rather than character by character; the only way to achieve this 

in Pascal is to extend the mainstore envelope so that it provides procedures 

to read and write blocks as well as characters, but we shall find that we also 

need procedures to read and write card images and line images and other 

data structures. A still more efficient solution would be to read blocks from 

the file directly into the user’s partition of main store, thereby avoiding the 

need for block b and the copying; but the strict type-matching rules of Pascal 

forbid this. We have here a problem that arises over and over again in 

operating systems: an area of store is to be used to hold data of different 

types at different times yet Pascal insists that we either reduce all the data to 

some common type or else enumerate all the possible types—the latter solu¬ 

tion is usually impracticable and the former is usually expensive. We have 

adopted the former solution here, reducing all data stored on files and in the 

main store to characters. Pools of buffers for holding different types of data 

pose the same problem, as do communication channels that convey different 

types of data.P. Brinch Hansen’s Concurrent Pascal (/.E.E.E. Trans. Software 

£«g.,SE-l, 199-207 (1975)) introduces a universal type to describe variables 

that hold data of several types; a variable of universal type has a specified size, 

and assignments of data to or from the variable are checked only for size 

compatibility but not for type compatibility. Lacking this useful construct 

we can instead resort to a few judiciously chosen machine-code instructions 

to achieve the same effect. Machine code, like goto statements and pointers, 
is potentially dangerous but, if used with care, it can enable us to provide 

useful constructs that are not available in our high-level language. Paren¬ 

thetically, it should be remarked that the last sentence is not at odds with 

the philosophy of structured programming but, rather, an illustration of it. 
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Running programs 

Running a program entails executing the program’s instructions one by one 
until the program terminates or. until some resource limit, in this case the 
five-minute time limit, is reached. The good scheduling of the processor 
requires that every so often the user process should pause to request per¬ 
mission to embark on its next 100 ms timeslice. So we shall introduce a 
coarsetimer, which is initialized to 5 minutes and decremented as each 
timeslice is completed, and a finetimer, which is initialized each timeslice 
to 100 ms and decremented as each instruction is executed. The following 
fragment of program summarizes the control structure, leaving only the 
innermost loop unelaborated. 

const timelimit = 5 {minutes}; 
var 

coarsetimer: integer {timeslices}; 
finetimer: integer {microseconds}; 
endofjob: Boolean', 
endofprogram'. Boolean', 
pc', mainstore.address {program counter}', 
ok: Boolean', 

coarsetimer := timelimit * 60000 divprocessor.slice', 
finetimer : = 0; 
endofjob : = false; 
repeat {execute programs until end of job} 

if programname = 'INTERMEDIATE' 
then loadintermediatefileprogramipk) 
else loadlibraryfileprogram(programname,ok); 

if ok then 
begin 

endofprogram : = false; 

pc := 0; 
repeat {execute timeslices until end of program} 

cpu.timeslice; finetimer : = finetimer-{-processor.slice *1000; 
repeat {execute instructions until end of timeslice} 

{fetch, decode and execute instruction at address 'pc', 
updating 'pc' and decrementing finetimer' and, 
if appropriate, setting 'endofprogram' or 'endofjob' true) 

until (.finetimer < 0) or endofjob or endofprogram; 
if finetimer < 0 then coarsetimer : = coarsetimer — 1 

until (coarsetimer < 0) or endofjob or endofprogram; 
if coarsetimer < 0 then with printer do 

begin 
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endofjob := true', 

newline 

print {'TIME LIMIT EXCEEDED'); 

newline 

end 

end 

until (not ok) or endofjob 

Interpretation or execution 

Conceptually it is attractive to consider the user’s program as being inter¬ 

preted, instruction by instruction, by the operating system; hence the follow¬ 

ing formulation of the innermost loop of the above program. 

repeat 

{fetch, decode and execute instruction at address 'pc', updating 

'pc' and decrementing 'finetimer' and, if appropriate, 

setting 'endofprogram' or 'endofjob' true} 

until {finetimer f 0) or endofjob or endofprogram 

Unless the compilers guarantee that all user programs are well behaved, and 

we do not countenance the possibility of hardware failure, we should regard 

each user program with suspicion and ensure that it cannot corrupt the rest 

of the system in any way. Interpretation enables us to carry out such checks. 

Although it is helpful to design the interpreter in Pascal it is not advisable to 

implement it in Pascal, for several reasons. First, we have the problem of the 

universal type of the main store: we wish to interpret the contents of the 

store as variable format instructions and as variable-length data values— 

again we can reduce instructions and data to characters but the cost of the 

conversion will be excessive, so judicious use of machine code is called for. 

Second, many of the operations involved in the interpretation can easily, 

and more efficiently, be accomplished by hardware, for example decoding the 

instructions and incrementing the program counter and decrementing the 

timer. Nevertheless, interpretation by software is currently popular: witness 

the popularity of interpretive forms of Basic or Cobol where processing times 

and processing efficiency are considered unimportant, or consider the popu¬ 

larity of P. Brinch Hansen’s Concurrent Pascal for use even in fields 

where processor time and efficiency are usually considered crucial. Interpre¬ 

tation by microcode is even more popular and is now used on many com¬ 

puters, often because it is cheaper to develop microcode interpreters than to 

construct special-purpose hardware; another reason is to enable programs 

written for one computer to be run on another; yet another is to support 
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several interpreters, each tailored to the requirements of a different language. 

Traditionally, however, the user program is not interpreted; for speed it 

is executed directly by hardware. In this case the hardware must be able to 

cope with several problems. First, it must be able to perform a variety of 

checks on the behavior of the user program. Second, where such checks fail, 

it must pass control back to the operating system, together with an indication 

of the nature of the failure so that an appropriate message can be printed. 

Third, it must return control to the operating system on the expiry of a time- 

slice. Fourth, it must recognize “supervisor calls” and return control to the 

operating system in order that the calls may be translated into operations 

on the virtual resources allocated to the user process. Often the special- 

purpose hardware provided to carry out these tasks is barely adequate and 

very restrictive. 

Unless one is aiming to produce a very fast computer, the best solution 

is probably to design the interpreter in Pascal, hand translate it into microcode 

and then use what hardware one can to speed it up, for example programmed- 

logic arrays and read-only memories. 

Summary 

Listing 8 summarizes the user process which we have developed in this 

chapter. 

Listing 8 

PROCESS USERPROCESS; 

PROCEDURE RUNUSERJOB; 

CONST 
MAXNAME = 12 (^CHARACTERS PER NAME*); 

TIMELIMIT = 5 (♦MINUTES*); 
ENVELOPE MODULE READER = LIST3 IN LIBRARY; 

(* VAR ^RESULT: CARDREADER.STATUS 
(* PROCEDURE ♦READ (VAR CARDREADER.CARD) *> 

ENVELOPE MODULE PRINTER = LIST* IN LIBRARY; 
(♦ VAR ♦RESULT: LINEPRINTER.STATUS *> 

(♦ PROCEDURE ♦PRINT <LINEPRINTER.LINE ) *> 

(♦ PROCEDURE ♦NEULINE *> 

(♦ PROCEDURE ♦NEUPAGE *> 

INSTANCE 
INTERMEDIATE: FILESTORE.FILE; 

STORE: MAINSTORE.STORE; 

CPU: PROCESSOR.CPU; 
PROCEDURE PROCESSTITLECARD = LIST5 IN LIBRARY; 
PROCEDURE LOADLIBRARYFILEPROGRAM = LIST6 IN LIBRARY; 
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PROCEDURE LOADINTERMEDIATEFILEPROGRAM = LIST? IN LIBRARY; 
VAR 

PROGRAMNAHE: FILESTORE.FILENAME; 
COARSETIhER: INTEGER <*TIHESLICES*); 
FINETIHER: INTEGER (*MICROSECONDS«); 
ENDOFJOB: BOOLEAN; 

ENBOFPROGRAM: BOOLEAN; 

PC: NAINSTORE.ADDRESS (‘PROGRAM COUNTER*); 
OK: BOOLEAN; 

BEGIN 

PROCESS!ITLECARD(PROGRAMNAME); 
COARSETIHER:= TIMELIMIT*60000 DIV PROCESSOR.SLICE; 
FINE TIHER:= 0; 
ENDOFJOB:= FALSE; 

REPEAT (‘LOAD AND EXECUTE PROGRAMS UNTIL END OF JOB*) 
IF PROGRAMNAHE = INTERMEDIATE' 

THEN LOAD INTERNED IATEFILEPROGRAM(OK) 

ELSE LOADLIBRARYF REPROGRAM (PROGRAMNAHE, OK); 
IF OK THEN 

BEGIN 

END0FPR06RAM:= FALSE; 
PC: = 0; 

REPEAT (‘EXECUTE TIMESL ICES UNTIL END OF PROGRAM*) 
CPU. TI HE SLICE; 

FINETIMER:* FINETINER * PROCESSOR .SLICE»1000; 
REPEAT (‘EXECUTE INSTRS. UNTIL END OF TIHESLICE*) 

(‘FETCH, DECODE AND EXECUTE INSTRUCTION AT ») 

(‘ADDRESS "PC", UPDATING "PC" AND DECREMENTING*) 

(‘FINETIMER AND, IF APPROPRIATE, SETTING *) 
(‘"ENBOFPROGRAM" OR "ENBOFJOB" TRUE *) 

UNTIL (FINETIMER <;* 0) OR ENDOFJOB OR ENBOFPROGRAM; 
IF FINETIMER <= 0 THEN COARSETIHER:* COARSETINER-1 

UNTIL (COARSETIHER <= 0) OR ENDOFJOB OR ENBOFPROGRAM; 
IF COARSETIHER <= 0 THEN UITH PRINTER DO 

BEGIN 

ENDOFJOB:* TRUE; 
NEULINE; 

PRINT( TIME LIMIT EXCEEDED >; 
NEULINE 

END 
END 

UNTIL (NOT OK) OR ENDOFJOB 
END; 

BEGIN 

WHILE SWITCH.ON DO RUNUSERJOB 
end; 

Exercise 1 Program a variant of the user process which will spool its input from 
any of the typewriters and will spool its output to a (possibly different) typewriter 
when requested to do so by the user who submitted the job. 

Exercise 2 Devise a simple instruction set for users’ programs to execute, and 
program an interpreter to fetch, decode and execute those instructions. 
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THE MAIN STORE 

Having programmed the user processes we now turn our attention to the 

resources that they use. Perhaps the most difficult and least typical is the main 

store. Unlike most resources, which are generally input or output devices, 

main store offers us many possibilities for devising complicated scheduling 

algorithms: this is because the main store generally consists of a large number 

of small units (bytes, words, or pages) and the users’ requirements may vary 

very considerably from one user to another and, indeed, each user’s needs 

may vary dynamically. As store accesses are very frequent it is important 

that the mapping of a virtual address onto a real address should be extremely 

fast. If the user has been allocated a single partition of main store, the mapping 

entails adding the base address of the partition onto the virtual address; but 

if the user has been allocated several disjoint areas of main store, then the 

address mapping will also entail looking up a table to find the base address of 

the partition: the problem is aggravated if a two-level table is used to avoid 

having to store a large sparse one-level table: to speed the mapping special 

purpose registers are often introduced to hold the base addresses of the 

partitions currently being used. Often backing store, such as a drum, is used 

as an extension to the main store, and the possibilities and problems are 

multiplied since the scheduling of storage offers more scope for flexibility and 

complexity and has to be done more frequently, the mapping of addresses 

may entail one or more data transfers and considerable delays, and more 

space and time must be expended to keep track of where a program’s pages 

are and which drum and main store page frames are free. To speed the address 

mapping and to take advantage of special-purpose hardware such as associa¬ 

tive stores and page-fault interrupts it is necessary that much of the monitor 

for administering main store be implemented as efficiently as possible in 

machine code, microcode or hardware. Much of the design, however, can 

and should be done in a high-level language. 

Fixed Partitions 

We have already seen that a simple store-management strategy suffices for 

the operating system that we are developing here; indeed part of the art of 

constructing any program is to do so in such a way that simple algorithms 

suffice. The structure of the mainstore monitor module has already been 

given: it contains a monitor to schedule the two partitions of main store, it 

contains a monitor for each partition to control the use of that partition, and 

it defines an envelope each instance of which provides a virtual store: the 

envelope, by calls upon the scheduler and the appropriate controller, maps 

operations on the virtual store onto operations on the corresponding parti¬ 

tion of real store. Although there are only two partitions of real store there 

may be any number of virtual stores extant at any moment, all but two of 
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them waiting for a partition to be freed. Listing 9 shows the complete main- 

store monitor. 

The partitions are identified by values of type msnum which ranges from 

1 to maxms. The scheduler is implemented as a monitor since it is accessed by 

many processes and mutual exclusion is required to prevent two processes 

from using it simultaneously. It keeps a pool of free partitions and has a 

queue, freed, on which, when the pool is empty, processes wait in order of 

arrival for a free partition; the scheduler’s initialization involves assigning 
all the partitions to the pool. 

Each controller is written as a monitor since it is used by many processes, 

albeit at different times. It contains a partition of 100K characters and 

provides operations to read and write single characters. We have already 

seen that we may also need to be able to transfer larger amounts of data, for 

example when loading a program, block by block, from file store. To provide 

fast access to store it is necessary that the controller be implemented in 

hardware and that instructions be available to read and write data values of a 
variety of sizes without regard for the types of those data values. 

Likewise the read and write procedures of the store envelope, perhaps 

suitably extended to deal with universal types of several sizes, should be 

implemented in hardware. The variable ms should be replaced by a hardware 

register holding the base address of the partition allocated by the scheduler, 

and at every read or write operation the content of this register must be added 
to the virtual address before the main store is accessed. 

The design of store-management schemes in a high-level language is 

beneficial, particularly for more complex algorithms such as those involving 

paging, since it helps the designer to get the logic right and it suggests to the 

designer what special-purpose hardware or microcode is required to imple¬ 

ment the algorithm efficiently. This approach is also useful if one needs to 

simulate a new system before the prototype is available, although the cost of 
doing this may be great. 

A More Advanced Example 

To illustrate the applicability of this approach to the design of a more 

elaborate store-management system let us construct a mainstore monitor that 

will permit up to four users’ programs to be executed concurrently. The 

monitor will present the users with the same virtual store as before except 

that, when declaring an instance of the store envelope, a user must specify 

how much store he needs in units (pages) of, say, 4K characters. A single 

partition of real store will be allocated to each user but the four partitions 

will usually overlap one another. We therefore postulate the availability of a 

backing store—a drum—whose sectors are used to hold pages of users’ 



Listing 9 

MONITOR MODULE MAINSTORE; 

CONST 

♦NAXCHAR = 102399 (*100K CHARACTERS PER VIRTUAL STORE*) 
HAXHS = 2 (♦PARTITIONS*); 

TYPE 

♦ADDRESS = O..MAXCHAR; 
MSNUM = 1. .HAXHS; 

MONITOR MODULE NSSCHEDULER; 
VAR 

POOL: SET OF HSNUM; 
INSTANCE 

FREED: CONDITION; 
PROCEDURE *ACQUIRE (VAR MS: MSNUM); 

BEGIN 
IF POOL = H THEN FREED.WAIT; 
MS:= 1; WHILE NOT (MS IN POOL) DO NS:= MS+1; 
POOL:= POOL - CMS] 

end; 
PROCEDURE ^RELEASE (MS: MSNUM); 

BEGIN POOL:= POOL + CMS]; FREED.SIGNAL END; 
BEGIN 

POOL:- C1..MAXMS]; 
*** 

END; 

MONITOR CONTROLLER; 
VAR 

PARTITION: PACKED ARRAY CADDRESS] OF CHAR; 
PROCEDURE *READ (A: ADDRESS; VAR C: CHAR); 

BEGIN C:= PART ITIONC A] END; 
PROCEDURE *URITE (A: ADDRESS; C: CHAR); 

BEGIN PARTITIONCA]:= C END; 
BE6IN 

*** 

END; 

INSTANCE 
MSCONTROLLER: ARRAY C1..MAXMS] OF CONTROLLER; 

ENVELOPE *STORE; 
VAR 

MS: MSNUM; 
PROCEDURE *READ (A: ADDRESS; VAR C: CHAR); 

BEGIN MSCONTROLLERCMS].READ(A, C) END; 
PROCEDURE *URITE (A: ADDRESS; C: CHAR); 

BEGIN MSCONTROLLERCHS].URITE(A, C) END; 
BEGIN 

MSSCHEDULER.ACOUIRE(MS); 
♦**; 

NSSCHEDULER.RELEASE(MS) 
END; 

BEGIN 
*** 
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virtual stores when there is contention for use of main store page frames; 

the drum presents the following interface. 

monitor module drum 

type *sectornum = 1 . . 50 {no. of drum sectors + no. of main store 

page frames > max. no. of users * max. 

no. of pages per user} 

procedure *read (var page; sectornum) {reads 'page' from drum 

'sector num'} 

procedure *write (page; var sectornum) {writes 'page' to drum and 

returns 'sectornum'} 
procedure *release (sectornum) {releases sector, numbered 'sectornum', 

on drum} 

where: 

const pagesize = 4096 {characters}; 
type 

char num = 0 . . pagesize— 1; 

page = packed array [charnum] of char. 

Each page frame belongs to a controller monitor which records which user is 

currently using it and swaps pages to and from drum as necessary—this is 

known as the delayed swap technique. The scheduler monitor allocates a 

unique identifying number to each user and endeavors to minimize the 

amount of overlapping of partitions—this is termed the minimum overlay 
algorithm. 

The overall structure of the mainstore administration monitor, together 
with the complete store envelope, is as follows. 

monitor module mainstore', 
const 

usermax = 4 {concurrent user programs}; 
storesize = 50 {pages}; 

*maxchar = 102399; {100AT characters per virtual store}; 
type 

usernum = 1 . . usermax; 

pagenum = 0 . . storesize — 1; 

*pageqty = 1 . . 25 {max.partition size ~ page size}; 
*address = 0 . . maxchar; 

monitor module msscheduler; 
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procedure *acquire (q-.pageqty; var p:pagenum; var u'.usernum); 

procedure *release (<q\pageqty, p-.pagenum; u:usernum); 

monitor controller, 

procedure *read (u-.usernum:; n\charnum; var c'.char); 

procedure (u-.usernum; ir.charnum; c'.char); 

procedure *release (u-.usernum); 

instance mscontroiler: array [pagenum] of controller; 
envelope *store (q \pageqty); 

var 

u'.usernum; 

p,i -.pagenum; 

procedure (a-.address; var c'.char); 
begin 

mscontroller [p+(a div pagesize) mod <?]. 
rear/ (w, a mod pagesize, c) 

end; 

procedure *write (a-.address; c'.char); 
begin 

mscontroller [p+(a div pagesize) mod <7]. 

write (u, a mod pagesize, c) 
end; 

begin 

msscheduler.acquire(q, p, u); 
H* * 

for i:=p to p-\-q— 1 do mscontroller[i].release(u); 

msscheduler.release(q, p, u) 

end; 

begin *** end 

The scheduler has two functions. One is to allocate unique identifying 

numbers to users when they are allocated partitions: for this it maintains a 

pool of free user numbers and a condition queue on which processes wait if 

the pool is empty. Its other task is to allocate partitions in such a way as to 

minimize the amount of overlapping: to do this it keeps a count, for each 

page frame, of the number of users allocated that frame; it can then try all 

possible positions for a partition and select the position that yields the 

lowest overlap sum. 
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monitor module msscheduler; 

var 

users: set of usernum; 

count: array [pagenum] of 0 . . usermax; 

p '.pagenum; 

instance freed: condition; 

procedure *acquire (q: pageqty; var p: pagenum; var u: usernum); 
var 

sum, min \ integer', 

i: pagenum', 

begin 

if users = [ ] then freed.waif, 

u: = 1; while not (u in users) do u: = w-f 1; 

users : — users— [u]; 

sum : = 0; for /: = 0 to q — 1 do sum: = sum -\-count[i]; 

p:= 0; min: = sum; 

for i:—n to storesize— 1 do 
begin 

sum\=sum—count[i—n]-\-count[i]; 
if sum < min then 

beginp:= i-nf-1; min:= sum end 
end; 

for i:=p to p-fn—l do count[i]: = count[i]-\-\ 
end; 

procedure *release (q'.pageqty; p'.pagenum; u'.usernum); 
var /-.pagenum; 
begin 

for /: = p topfn— 1 do count[i]:= count [/] —1; 
users := users flu]; 

freed.signal 
end; 

begin 

for p: =0 to storesize— 1 do : = 0; 

users'. — [1 . . usermax]; 
*** 

end 

The controller for each main store page frame is not too difficult to 
construct. It must declare the frame in which it is to store pages: 

var frame: page; 

it must record which, if any, user currently has a page occupying that frame: 
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var owner: 0 . . usermax; 

and it must remember, for each user, whether or not a copy of that user’s 

page resides on drum and, if so, in which sector: 

var location: array [usernum] of 

record case copy: Boolean of 

true: (drumsector: drum.sector)', 

false: 

end. 

On trying to read or write a character on behalf of user u, the controller must 

first check whether owner = u and, if not, invoke a procedure pagefault which 

will bring the required page into main store having first discarded the current 

page. When a page is written to in main store the copy on drum is no longer 

valid and its sector can be released by a procedure releasecopy. The complete 

controller is shown below. 

monitor controller', 

var 

frame', page', 

owner: 0 . . usermax; 

location: array [usernum] of 
record case copy: Boolean of 

true: (drumsector: drum.sector); 

false'. 

end; 

procedure pagefault (u'.usernum); 

begin 
if owner 0 then with location [owner] do if not copy then 

begin copy := true; drum.write (frame, drumsector) end; 

owner : = u; 

with location [owner] do 

case copy of 

true: drum.read (frame, drumsector); 

false', {clear the frame) 

end 

end; 

procedure releasecopy (u'.usernum); 

begin 

with location [u] do if copy then 

begin drum.release (drumsector); copy: = false end 

end; 
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procedure *read (u: usernum; n: charnum; var c: char); 

begin if owner =£ u thenpagefault(u); c: = frame [n] end; 

procedure *write (u: usernum; n: charnum; c: char); 

begin 

if owner ^ w then pagefaultiu); frame [n] := c; 

releasecopy (u) 

end; 

procedure *release (u: usernum); 

begin if owner = w then owner := 0; releasecopylu) end; 

begin 

for owner: = 1 to usermax do location [owner],copy: = false; 

owner: = 0; 

end 

For efficiency the procedure releasecopy need not be invoked on every 

vm7<? operation but can be postponed until the next page fault, provided we 

introduce a Boolean variable to denote whether or not the page has been 
written to during its sojourn in main store. 

One important modification is necessary if the program is to work. 

If a user of some page frame has to wait for a page to be read from or written 

to drum, the exclusion on that page frame’s controller monitor is released. 

It is necessary, therefore, to delay other users that enter the monitor while 

the first user is waiting. This can be done simply by declaring within the 

monitor a state variable to denote whether the monitor is free or busy and a 

condition queue on which processes can wait when they find the monitor 

busy. Each execution of the pagefault procedure should be preceded by: 

if state = busy then queue.wait; state: = busy 

and the read or write operation should be followed by: 

state : = free; queue.signal. 

Exercise 3 The fixed partition, minimum overlay and delayed swap techniques 
programmed in this chapter were taken from a survey of store management tech¬ 
niques by Hoare and McKeag (in Hoare and Perrott (1972), pp. 117-51). Program 
some of the other techniques described in that survey. (Your attention is drawn to 
Hoare’s structured paging system (Computer /., 16, 209-15 (1973).). 
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THE PROCESSOR 

We have seen that the scheduling of main store can be accomplished at two 

levels: at the coarser level a limited number of processes is given permission 

to use the main store, while at the finer level the use of the main store page 

frames is switched amongst those processes, their pages being transferred 

between the drum-store sectors and the main-store frames in accordance 
with their dynamic behavior. 

The scheduling of the processor gives us another example of a two-level 

algorithm. At the finer level the switching of the processor from one process 

to another is performed by the run-time routines, called the nucleus, that 

underlie the operating system. Associated with each process is a priority and, 

whenever the processor is free, it is normally allocated to the highest priority 

process that is ready to run. Precedence, however, is given to processes execu¬ 

ting monitor procedures; this is done for two reasons: firstly because a 

monitor is a potential bottleneck, and secondly to prevent a process that has 

been held up by a signaling operation in a monitor from being overtaken by 

other processes that subsequently enter the monitor. Once a process has been 

allocated the processor by the nucleus it continues to execute until it volun¬ 

tarily relinquishes the processor or until it is obliged to wait—on a condition 

queue, or for an interrupt from some peripheral device, or because it has sig¬ 

naled some other process in a monitor, or because the nucleus has to service 

some interrupt. 

At the coarser level the priorities of the processes can be adjusted to 

ensure that no process fails to make reasonable progress. Processes that are 

executing operating-system code, as opposed to interpreting users’ programs, 

make very limited demands upon the processor and can safely be given the 

highest priority since, when they are allocated the processor, it is known that 

they will very soon relinquish it again; thus such processes do not unduly 

delay others and, as many of them are concerned with driving peripheral 

devices, the efficiency of the entire system depends upon their receiving the 

processor when they need it. We know nothing, however, about the character¬ 

istics of processes interpreting or executing users’ programs. Some such 

programs may do a lot of processing without needing to wait in a monitor 

or for an interrupt; to ensure that these do not monopolize the processor 

we shall require them to relinquish the processor voluntarily after performing 

a certain amount of computation (say a timeslice of 100 ms) and to down¬ 

grade their priorities to give other processes a chance. Those programs that 

make slow progress, either because they frequently wait for data transfers or 

because they have temporarily been elbowed out by other processes, will be 

required to upgrade their priorities on the expiry of their timeslices. 

We may implement this policy by requiring each user process to reset its 
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priority, thereby delaying itself to a greater or lesser extent, before embarking 

on each timeslice. It can do this by computing for itself a target time at which 

it should complete its next timeslice, and from this it subtracts the duration of 

the timeslice, 100ms in our system, thus obtaining the latest time at which it 

can resume processing if it is to meet its target; this value is used as the 

priority of the process. 
The target is computed by adding to the starting time for this timeslice 

the real time that can be expected to elapse before the timeslice has been 

completed: if there are n processes competing for 100 ms timeslices, then 

100/7 ms should be added to the starting time. 
The starting time might be the current real time, i.e. now, or, if we are 

to compensate (or penalize) processes fully for any past lateness (or earliness), 

the previous target. We have already seen that some compensation is desirable, 

but we wish to give greater weight to a process’s recent history and we wish to 

avoid giving too much weight to a short-lived uncharacteristic change in a 

process’s behavior. A simple algorithm with these properties is to take the 

average of the previous target and the current time as the starting time for 

the calculation of the new target. 

Thus the target is given by: 

target := (target + time now) /2 + 100/7 

and the priority is set to: 

target — 100 

although since all the timeslices have the same value here we could use the 

target as the priority. This scheduling algorithm was devised by C. A. R. 
Hoare. 

To implement this scheduler we need to keep track of the number of 

competing processes, n, which may vary, and we need to record the current 

real time: to do this we introduce a real-time clock that ticks (i.e. interrupts) 

with some suitable frequency, say every 20 ms. Thus the monitor to administer 

the processor contains an envelope, cpu, that provides a procedure, timeslice, 

that makes use of a processcounter monitor and a clockcontroller monitor to 

determine a target and so set a priority. Care must be taken that variables 

that are to hold values of real time do not overflow during the period the 

system is in operation: using units of 1 ms a word length of 36 bits would 

suffice to measure one year.Listing 10 shows the complete processor monitor. 

We shall assume that every process is automatically initialized with a 

priority of zero; if this is not the case then this initialization must be pro¬ 
grammed. 
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MONITOR MODULE PROCESSOR; 

CONST 

♦ SLICE = 100 (♦MILLISECONDS:*); 

MONITOR MODULE PROCESSCOUNTER; 
VAR 

COUNT: INTEGER; 

PROCEDURE ♦START; 
BEGIN COUNT:= COUNT + 1 END; 

PROCEDURE ♦FINISH; 
BEGIN COUNT:= COUNT - 1 END; 

FUNCTION ♦NUMBER: INTEGER; 
BEGIN NUMBER:= COUNT END; 

BEGIN 
COUNT:* 0; ♦** 

END; 

MONITOR MODULE CLOCKCONTROLLER; 
VAR 

CURRENTTIME: INTEGER (♦MILLISECONDS^); 
FUNCTION ♦TIMENOU: INTEGER; 

BEGIN TIMENOU:= CURRENTTIME END; 
PROCEDURE FROCESSTICKSFROMCLOCK; 

CONST 
TICKINTERVAL = 20 (♦MILLISECONDS:*); 
ETERNITY = FALSE; 

BEGIN 
REPEAT 

(♦WAIT FOR A TICK FROM THE CLOCK*); 
CURRENTTIME:= CURRENTTIME + TICKINTERVAL 

UNTIL ETERNITY 
END; 

PROCESS MODULE CLOCKCONTROLLER; 
BEGIN PROCESSTICKSFROMCLOCK END; 

BEGIN 
CURRENTTIME:= 0; *♦♦ 

END; 

ENVELOPE ♦CPU; 
VAR 

TARGET: INTEGER; 
PROCEDURE ♦TIMESLICE; 

BEGIN 
TARGET:= (TARGET + CLOCKCONTROLLER.TIMENOU) DIV 2 

+ PROCESSCOUNTER.NUMBER*SLICE 

SETPRIORITY< TARGET) 

END; 
BEGIN 

PROCESSCOUNTER.START; TARGET:= CLOCKCONTROLLER.TIMENOU; 
♦ ♦♦; 

PROCESSCOUNTER.FINISH; SETPRIORITY(O) 

END; 

BEGIN 
♦ ♦* 
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THE CARDREADERS 

Many of the resources administered by an operating system are input and 

output devices; the cardreaders and lineprinters illustrate well some of the 

problems of administration such as the buffering of successive data transfers 

and the handling of device failures. The scheduling of such devices is usually 

straightforward, but we shall encounter more complicated scheduling 

algorithms when we consider the file store and the typewriters. 

We have already specified that the cardreader monitor is to make 

available an envelope, reader, which in turn will provide a procedure to read 

a card and a result value, which might denote success, failure or, if the four- 

star terminator has been read, endoffile. 

We have two cardreaders to administer and these will be identified by 

values of 

type crnum — 1 . . crmax 

where 

const crmax = 2 {cardreaders} 

We shall introduce two controllers, one to handle each cardreader, and a 

scheduler to match up processes requiring to read decks of cards with card- 

readers containing decks of cards ready to be read. 

monitor module crscheduler 

procedure *acquire (var cr : crnum) ; 

procedure *supply (cr : crnum) 

monitor controller (cr : crnum) 

procedure *read (var c : card ; var s : status) 

instance cr controller : array [crnum] of controller ((1) (2)) 

The reader envelope, which maps a virtual cardreader onto a real cardreader, 

is easily programmed in terms of calls upon these monitors. 

envelope *reader ; 

var cr : crnum ; *result\ status', 

procedure *read (var c : card) ; 

begin cr controller [crj.read (c, result) end; 
begin 

crscheduler.acquire (cr) ; result := success; 

end 
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Note that the envelope does not release the cardreader when it has finished 

reading the deck of cards: the reason is that the cardreader will often not be 

immediately ready to be used by some other process, either because it has 

failed and has to be put right or because it contains no deck of cards and its 

hopper has to be replenished; in either case we can leave it to the controller 

to tell the scheduler when the cardreader is ready to be allocated to some 

user. Note also that we have assumed here that a user will read all the cards 

of the deck until either the four-star terminator is encountered or until a 

failure occurs, and we have assumed that it will attempt to read no further. 

Here we know that these assumptions are justified, but if they were not it 

would be the duty of the reader envelope to carry out the necessary checks. 

The scheduler is straightforward to program, requests being dealt with 

on a first-come, first-served basis and any deck of cards being acceptable 

to any user. 

monitor module crscheduler ; 

var pool : set of crnum ; 

instance queue : condition ; 

procedure *acquire (var cr : crnum) ; 

begin 

if pool = [ ] then queue, wait ; 

cr : = 1 ; while not {cr in pool) do cr : = cr + 1 ; 

pool := pool — [cr] 

end; 

procedure *supply {cr : crnum) ; 

begin 

pool := pool + [cr] ; 

queue.signal 

end; 

begin 

pool := [ ] ; 

end 

The controllers are complicated by two factors. One is the need to cope 

with data transfer failures—we shall defer consideration of that problem for 

a moment and, meanwhile, glibly assume that failures never occur. The other 

factor is the need to buffer the input: it would be intolerable if the user had to 

initiate the input of a card, wait for the completion of the data transfer and 

then process that card, before beginning the input of the next card. So we 

declare, local to each controller, a small service process, crhandler, whose 

main task is to read cards into a buffer, from which they can be extracted by 
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the user. A subsidiary task is to inform the scheduler when there is a new 

deck of cards waiting to be read; note that extra terminator cards may have 

been inserted between jobs and will have to be skipped. 

monitor controller (cr : crnum) ; 
var 

buffer : card ; 

result : status ; 

state : (empty, full) ; 

instance 

notfull, notempty : condition ; 

procedure *read (var c : card ; var v : status) ; 
begin 

if state = empty then notempiy.wait ; 

s : = result ; if 5 = success then c : = buffer ; 

state : = empty ; notfull.signal 
end; 

procedure readcardsintobuffer ; 

const eternity = false ; 

procedure readacardintobuffer ; 
begin 

{read a card into 'buffer' from reader 'cr', recording 'success' 
in ’result’) ; 

if buffer [1 . . 4] = '****' then result := endoffile 
end; 

begin 

repeat 

repeat readacardintobuffer until result ^ endoffile ; 

state \ — full ; cr scheduler.supply (cr) ; 

if state = full then notfull. wait ; 

repeat {read cards until endoffile} 

readacardintobuffer ; 

state : = full ; notempty.signal ; 

if state = full then notfull.wait 

until result = endoffile 
until eternity 

end; 

process module crhandler ; 

begin readcardsintobuffer end ; 
begin 

end 
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The Handling of Faults 

Cardreaders are not infallible: they need the attention of operator and 

engineer from time to time and so, when initiating a transfer, we must be 

prepared for failure. A fault can occur for any of several reasons: the transfer 

cannot be started because the reader has been switched off or off-line; or the 

operator is required to fill the hopper, empty the stacker, attend to a damaged 

card or position the card weight; or the engineer is needed to replace a broken 

photoelectric cell or to free a jammed transport mechanism. On detecting 

any such fault the crhandler process reports it to the operator and gives him 

an opportunity to rectify it. If the fault persists, then the operator is informed 

and no further attempt will be made to read that file. Thus, when a fault 

occurs, there is little that the crhandler process can do until it is sensible to 

continue, and only the operator can decide that. So we supply the operator 

with an interrupt button on each cardreader and it is on this that the crhandler 

process waits before attempting to read further cards. 

To report a fault to the operator we shall use a virtual typewriter and 

output the message 'FAILURE TO READ CARD' or, if the fault persists, 

'FAILURE TO READ FILE'; in the former case the operator knows he has 

the opportunity to correct the fault and enable the file to be read satisfactorily, 

while in the latter case he knows that any remaining cards of the file must be 

skipped before a new file is submitted. If the precise reason for failure is 

known, then we can report this to the operator to help him in his diagnosis, 

but the operating system can rarely make any other use of this information. 

The body of the procedure readcardsintobuffer now runs as follows: 

begin 

repeat 
awaitoperator ; 

repeat {read files until failure} 

repeat {read until a title card is found} 

readacardintobuffer ; 

if result = failure then 
begin report (Ml) ; awaitoperator end 

until result = success ; 

state : = full ; crscheduler.supply (cr) ; 

if state = full then notfull.wait ; 

repeat {read cards until failure or endoffile} 

readacardintobuffer ; 

if result = failure then 
begin report (Ml) ; awaitoperator ; readacardintobuffer end ; 

state : = full ; notempty.signal ; 
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if state = full then notfull.wait 

until result success 

until result = failure ; 

report (Ml) ; 

until eternity 

end 

where Ml and M2 are the messages 'FAILURE TO READ CARD' and 

'FAILURE TO READ FILE' respectively; these are typed by the procedure 

report which declares an instance of an outgoing conversation and precedes 

each message by the name 'CR l' or 'CR 2' as appropriate. 

Listing 11 shows the complete cardreader administration monitor. 

The Use of Machine Code 

In the procedure readacardintobuffer the statement represented by the com¬ 

ment {read a card into 'buffer' from reader 'cr', recording the 'success' or 

failure' of the transfer in 'result'} should be replaced by code to initiate the 

data transfer from the card reader, by a call on an inbuilt procedure to await 

the corresponding completion interrupt, and by code to read and store the 

result of the operation. 

In general, machine-code instructions are necessary to initiate operations 

on peripheral devices since it is undesirable to expect a general-purpose 

high-level language to support the wide variety of devices that all the opera¬ 

ting and real-time systems written in that language might have to support. 

The body of the procedure awaitoperator, denoted by the comment 

{await interrupt from operator on reader 'cr'}, should be replaced by a call of 

the same inbuilt procedure as is used when reading a card, but this time to 

await the arrival of the interrupt from the operator. The effect of this proce¬ 

dure is similar to that of waiting on a condition queue with the corresponding 

signal coming from the routine that services the interrupt. These routines, 

await interrupt and service interrupt, together with the routines to guarantee 

mutual exclusion on monitor entry and monitor exit, and the routines to wait 

on and signal condition queues, and the routine set priority underlie the 

operating system and manipulate queues of processes and allocate the 

processor(s) to processes. Together with the queues they manipulate, they 

form what is termed a nucleus and amount to perhaps a few hundred words 

on most computers, but this figure depends on the number of processes to 

be supported, on how easy it is to switch a processor from one process to 

another, on the number of peripheral devices to be supported and on how 

easy it is to determine the source of an interrupt. The nucleus can be designed 

in a high-level language such as Pascal and must then be implemented in 

machine code to take advantage of the architecture of the computer. 
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MONITOR MODULE CARDREADER; 

CONST 
♦NAXCHAR = 80 (*CHARACTERS PER CARD*); 
CRMAX = 2 <*CARDREADERS*>; 

TYPE 
♦CARD = PACKED ARRAY [1..NAXCHAR3 OF CHAR; 
♦STATUS = ( *SUCCESS, *FAILURE, *ENDOFFILE ); 
CRNUM = 1..CRMAX; 

MONITOR MODULE CRSCHEDULER; 
VAR 

POOL: SET OF CRNUM; 
INSTANCE 

QUEUE: CONDITION; 
PROCEDURE *ACQUIRE (VAR CR: CRNUM); 

BEGIN 
IF POOL = [] THEN QUEUE.UAIT; 
CR:= 1; WHILE NOT (CR IN POOL) DO CR:= CR+1J 
POOL:® POOL - [CR] 

END; 
PROCEDURE *SUPPLY (CR: CRNUM); 

BEGIN POOL:® POOL + [CR]; QUEUE.SIGNAL END; 
BEGIN 

POOL:® []; 
*** 

END; 

MONITOR CONTROLLER (CR: CRNUM); 
VAR 

BUFFER: CARD; 
RESULT: STATUS; 
STATE: (EMPTY, FULL); 

INSTANCE 
NOTFULL, 
NOTEMPTY: CONDITION; 

PROCEDURE *READ (VAR C: CARD; VAR S: STATUS); 
BEGIN 

IF STATE = EMPTY THEN NOTEMPTY.UAIT; 
S:= RESULT; IF S = SUCCESS THEN C:= BUFFER; 
STATE:® EMPTY; NOTFULL.SIGNAL 

END; 
PROCEDURE READCARDSINTOBUFFER; 

CONST 
ETERNITY = FALSE; 

VAR 
Mt, M2: TYPEURITER.MESSAGE; 
N: TYPEURITER.NAME; 

PROCEDURE REPORT (M: TYPEURITER.MESSAGE); 
INSTANCE 

TU: TYPEURITER.CONVERSATION(N, TYPEURITER.OUTGOING); 
BEGIN TU.PRINT(M) END; 

PROCEDURE AUAITOPERATOR; 
BEGIN (*AUAIT INTERRUPT FROM OPERATOR ON READER "CR"*) END 



PROCEDURE READACARDINTOBUFFER; 
BEGIN 

<* READ A CARD INTO "BUFFER" FROM READER "CR"f 
<* RECORDING THE "SUCCESS" OR "FAILURE" OF THE 

(* TRANSFER IN "RESULT" 
IF RESULT = SUCCESS THEN 

IF BUFFERC1..43 = '****' THEN RESULT:= ENBOFFILE 

END; 
BEGIN 

N:= 'CR'; NE4T : = CHR(ORD('O') + CR); 
HI .TEXT: = 'FAILURE TO READ CARD''; N1.LEN6TH:= 21; 
M2.TEXT:= FAILURE TO READ FILE'; H2.LENGTH:= 21; 

REPEAT 
AUAITOPERATOR; 
REPEAT (*READ FILES UNTIL FAILURE*) 

REPEAT (*READ UNTIL A TITLE CARD IS FOUND*) 
READACARBINTOBUFFER; 
IF RESULT = FAILURE THEN 

BEGIN REPORT(Ml ); AUAITOPERATOR END 
UNTIL RESULT = SUCCESS; 
STATE: = FULL; CRSCHEDULER.SUPPLY(CR); 
IF STATE = FULL THEN NOTFULL.WAIT; 
REPEAT (*REAB CARDS UNTIL FAILURE OR END OF FILE*) 

READACARBINTOBUFFER; 
IF RESULT = FAILURE THEN 

BEGIN 
REPORT(Ml); 

AUAITOPERATOR; 
READACARDINTOBUFFER 

END; 

STATE:= FULL; NOTENPTY.SIGNAL; 
IF STATE = FULL THEN NOTFULL.UAIT 

UNTIL RESULT <> SUCCESS 
UNTIL RESULT = FAILURE; 
REPORT < M2) 

UNTIL ETERNITY 
END; 

PROCESS MODULE CRHANDLER; 
BEGIN READCARDSINTOBUFFER END; 

BEGIN 
*** 

END; 

INSTANCE 
CRCONTROLLER: ARRAY ECRNUM] OF CONTROLLER<< 1 > (2)); 

ENVELOPE *READER; 
VAR 

CR: CRNUN; 
♦RESULT: STATUS; 

PROCEDURE *READ <VAR C: CARD); 
BEGIN CRCONTROLLERECR],READ(C, RESULT) END; 

BEGIN 
CRSCHEDULER.ACQUIRE(CR); RESULT:* SUCCESS; 
*** 

END; 

BEGIN 
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Exercise 4 If we could not assume that the user of a virtual cardreader would read 
right up to the end of the file (or prior failure) and no further, how should the 
reader envelope be modified to prevent the user from reading too many cards and to 
skip any unread cards? 

Exercise 5 In our operating system any user process is prepared to read any card 
file since every deck of cards contains a job to be run. If the system were to cater for 
data files as well as job files, each user process would have to specify the name of 
the file that it required (either 'JOB' or the data file name), and each crhandler 
process, on reading a file’s title card, would have to supply the scheduler with the 
name of the file as well as the number of the cardreader. Show how this facility can 
be added to the cardreader monitor. {Hint: This is similar to the handling of in¬ 
coming conversations in the typewriter monitor (q.v.).) 

THE LINEPRINTERS 

The administration of the lineprinters is very similar to that of the cardreaders. 

Again we identify the devices by values of a subrange: 

type Ipnum = 1 . . Ipmax 

where 

const Ipmax = 2 {lineprinters}', 

again we have a simple scheduler with procedures acquire and supply, again 

we have one controller to handle data transfers on each device; again we have 

an envelope that maps a virtual device onto the corresponding real devices. 

As before, we introduce a small service process, Iphandler, into each 

controller, but its interface with the user process is slightly more complicated 

than was the case with the cardreaders: this is because not only lines must be 

buffered between them but also control signals, principally newline and new- 

page; one other control signal is also required, namely endoffile, since the 

Iphandler process is unable to detect this event for itself, unlike the crhandler 

which searched the input for a four-star terminator. Thus, to effect the 

synchronization between the user and the Iphandler, we need to declare the 

following variables and queues in the controller monitor. 

var 

buffer : line ; 

operation : controlop ; 

result : status ; 

state : {empty, full) ; 

instance 

notfull, notempty : condition 
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where 

type 

*controlop = (linewrite, *linethrow, *pagethrow, *endofftle) . 

In other respects the Ipcontrollers resemble the crcontrollers. In particular, 

the message 'FAILURE TO PRINT LINE' is output to the operator in the 

event of a failure and, after the operator has pressed the interrupt button on 

the lineprinter, the operation is repeated; if it continues to fail the message 

'FAILURE TO PRINT FILE' is output and the printing of the file is aban¬ 

doned. These messages are prefixed by the names 'LP V or 'LP 2' as appro¬ 

priate. The body of the procedure printlinesfrombujfer, which is called by the 

Iphandler process, is essentially as follows. 

begin 

repeat 

awaitoperator ; 

repeat {print files until failure} 

repeat 

{throw to a new page) ; 

if result = failure then 

begin report (Ml) ; awaitoperator end 
until result = success ; 

state : = empty ; Ipscheduler.supply (Ip) ; 

if state = empty then notempty.wait ; 

repeat {print lines until failure or end offile} 

printalinefrombujfer ; 

if result = failure then 

begin report (Ml) ; awaitoperator ; printalinefrombujfer end ; 
if result # endfile then 

begin 

state : = empty ; notfull. signal ; 

if state = empty then notempty.wait 
end 

until result # success 

until result — failure ; 
report (M2) 

until eternity 
end 

The. printer envelope may now be programmed; it begins by acquiring 

a printer, it continues by translating calls upon the procedures print, newline 
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and newpage into calls upon the procedures print and control of the appro¬ 

priate controller, and it finishes by sending an endoffile control signal to the 

controller. As with the cardreaders, the task of returning the device to the 

scheduler for allocation to another user devolves upon the controller’s 

service process because the printer is not usually immediately available to be 

used again—normally because the last line has still to be printed from the 

buffer, and occasionally because some failure has to be remedied; in the latter 

case the Iphandler process already knows that the file has come to a premature 

end and so the envelope refrains from sending it an endoffile signal. 

envelope * printer', 

var Ip: Ipnum; *result: status', 

procedure * print (/: line); 

begin 

if result = success then with Ipcontroller [Ip] do print (l, result) 
end; 

procedure *newline ; 

begin 

if result = success then with Ipcontroller [Ip] do 

control (linethrow, result) 

end; 

procedure *newpage ; 

begin 

if result = success then with Ipcontroller [Ip] do 

control (pagethrow, result) 

end; 

begin 

Ipscheduler.acquire (Ip); result: = success; 
***; 

if result = success then with Ipcontroller [Ip] do 

control (endoffile, result) 

end 

Listing 12 shows the complete lineprinter administration monitor. 

Exercise 6 In commercial data processing many files must be printed on special 
stationery, preprinted invoices or cheques for example. Modify the lineprinter 
monitor so that the user of a virtual lineprinter can specify, in the form of a message 
to the operator, the special stationery that he requires. The Iphandler process 
should type the message and wait for the operator to change the paper; it should 
also tell the operator when the stationery is no longer required and wait for the 
paper to be changed back before continuing. 
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Listing 12 

MONITOR MODULE LINEPRINTER; 

CONST 
♦MAXCHAR = 120 (^CHARACTERS PER LINE*); 
LPHAX = 2 <*LINEPRINTERS*); 

TYPE 
♦LINE = PACKED ARRAY [1..NAXCHAR] OF CHAR; 
♦ STATUS = ( *SUCCESS, *FAILURE, ENDFILE ); 
LPNUM = 1..LPHAX; 

MONITOR MODULE LPSCHEDULER; 
VAR 

POOL: SET OF LPNUM; 
INSTANCE 

QUEUE: CONDITION; 
PROCEDURE ^ACQUIRE (VAR LP: LPNUM); 

BEGIN 
IF POOL = U THEN QUEUE.UAIT; 
LP:= 1; WHILE NOT (LP IN POOL) DO LP:= LP + 1 ; 
P00L:= POOL - CLP] 

END; 
PROCEDURE *SUPPLY (LP: LPNUM); 

BEGIN POQL:= POOL + [LP]; QUEUE.SIGNAL END; 
BEGIN 

POOL:= []; 
*** 

END; 

MONITOR CONTROLLER (LP: LPNUM); 
TYPE 

♦CONTROLOP = (LINEURITE, ♦LINETHROU, *PAGETHROU, *ENDOFFILE) 
VAR 

BUFFER: LINE; 
OPERATION: CONTROLOP; 
RESULT: STATUS; 
STATE: (EMPTY, FULL); 

INSTANCE 
NOTFULL, 

NOTEMPTY: CONDITION; 
PROCEDURE *PRINT (L: LINE; VAR S: STATUS); 

BEGIN 

IF STATE = FULL THEN NOTFULL.UAIT; 
S:= RESULT; OPERATION^ LINEURITE; BUFFER:= L; 
STATE:= FULL; NOTEMPTY.SIGNAL 

END; 

PROCEDURE *CONTRQL (OP: CONTROLOP; VAR S: STATUS); 
BEGIN 

IF STATE = FULL THEN NOTFULL.UAIT; 
S:= RESULT; OPERATION:= OP; 
ST ATE:= FULL; NOTEMPTY .SIGNAL 

END; 



PROCEDURE PRINTLINESFROMBUFFER; 
CONST 

ETERNITY = FALSE; 
VAR 

Ml, M2: TYPEURITER.MESSAGE; 
N: TYPEURITER.NAME; 

PROCEDURE REPORT IN: TYPEURITER.MESSAGE); 
INSTANCE 

TU: TYPEWRITER.CONVERSATIONS, TYPEURITER.OUTGOING); 
BEGIN TU.PRINT(M) END; 

PROCEDURE AUAITOPERATOR; 
BEGIN (*AUAIT INTERRUPT FROM OPERATOR ON PRINTER "LP"*> END; 

PROCEDURE PRINTALINEFROMBUFFER; 
BEGIN 

CASE OPERATION OF 
LINEURITE: 0* URITE A LINE FROM "BUFFER" TO PRINTER *) 

<* "LP", RECORDING THE "SUCCESS" OR *) 
<* "FAILURE" OF THE TRANSFER IN "RESULT" •♦) 

LINETHROU: (* THROU TO A NEU LINE ON PRINTER "LP", *) 
(* RECORDING THE "SUCCESS" OR "FAILURE" 4) 
(* OF THE OPERATION IN "RESULT" *) 

PAGETHROU: (* THROU TO A NEU PAGE ON PRINTER "LP", ») 
<* RECORDING THE "SUCCESS" OR "FAILURE" *) 
<* OF THE OPERATION IN "RESULT" *> 

ENDOFFILE: RESULTS ENDFILE 
END 

END; 
BEGIN 

N:= ■'LP'; NC43:- CHR(ORD("O'> + LP); 
Ml.TEXTs "FAILURE TO PRINT LINE '; Ml .LENGTH:3 22; 
M2.TEXT:= 'FAILURE TO PRINT FILE"; M2.LENGTHS 22; 
REPEAT 

AUAITOPERATOR; 
REPEAT IMPRINT FILES UNTIL FAILURES) 

REPEAT 
OPERATION^ PAGETHROU; PRINTALINEFROMBUFFER; 
IF RESULT = FAILURE THEN 

BEGIN REPORT(Ml); AUAITOPERATOR END 
UNTIL RESULT = SUCCESS; 
STATES EMPTY; LPSCHEDULER.SUPPLY(LP); 
IF STATE = EMPTY THEN NOTEMPTY.UAIT; 
REPEAT (♦PRINT LINES UNTIL FAILURE OR END OF FILE*) 

PRINTALINEFROMBUFFER; 
IF RESULT = FAILURE THEN 

BEGIN 
REPORT(Ml); 
AUAITOPERATOR; 

PRINTALINEFROMBUFFER 
END; 

IF RESULT <> ENDFILE THEN 
BEGIN 

STATES EMPTY; NOTFULL.SIGNAL; 
IF STATE = EMPTY THEN NOTEMPTY.UAIT 

END 
UNTIL RESULT <> SUCCESS 

UNTIL RESULT = FAILURE; 
REPORT(M2) 

UNTIL ETERNITY 
END; 
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PROCESS MODULE LPHANDLER; 

BEGIN PRINTLINESFROHBUFFER END; 

BEGIN 

*** 

END; 

INSTANCE 

LPCONTROLLER: ARRAY CLPNUMI OF CONTROLLER(<1) <2)>; 

ENVELOPE ^PRINTER; 

VAR 

♦RESULT: STATUS; 

LP: LPNUM; 

PROCEDURE SPRINT (L: LINE); 

BEGIN 

IF RESULT = SUCCESS THEN WITH LPCONTROLLERCLP] DO 
PRINT(L, RESULT) 

END; 

PROCEDURE *NEULINE; 

BEGIN 

IF RESULT = SUCCESS THEN UITH LPCONTROLLERCLP! DO 

CONTROL(LINETHROU, RESULT) 

END; 

PROCEDURE ♦NEUPAGE; 

BEGIN 

IF RESULT = SUCCESS THEN UITH LPCONTROLLERCLP] DO 

CONTROKPAGETHROU, RESULT) 

END; 

BEGIN 

LPSCHEDULER.ACQUIRE(LP); RESULT:= SUCCESS; 

«»♦; 
IF RESULT = SUCCESS THEN UITH LPCONTROLLERCLP] DO 

CONTROL(ENDOFFILE, RESULT) 

END; 

BEGIN 

*** 

END; 

THE TYPEWRITERS 

Outgoing Conversations 

We have already seen that the typewriters can be used for “outgoing” 
conversations, initiated by processes, and “incoming” conversations, 
initiated by operators; for the moment we shall consider just the former. 

As usual the typewriter administration monitor will consist of a scheduler, 
one controller for each device, and an envelope. As with the cardreaders and 
lineprinters we shall declare, local to each controller monitor, a process 
(twhandler) to handle the data transfers to and from the device it is controlling 
and to deal with faults that arise on that device. Faults will be dealt with in 
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the usual way by outputting a message to report the fault, repeating the 

operation that failed and, if the fault persists, outputting a further message 

to terminate the conversation; on each occasion the twhandler process waits 

for the operator to press the interrupt button on the typewriter when the 

fault has been rectified. We shall direct the failure messages to the faulty 

typewriter: although this seems to be paradoxical it is adequate for several 

reasons. Firstly, the failure may have occurred on input and the output may 

be unaffected Secondly, many of the faults that afflict typewriters are 

transitory and there is a good chance that the failure message will be printed 

satisfactorily. Thirdly, the use of another typewriter for reporting faults, if 

indeed there is another convenient typewriter, may lead to deadlock, which 

is a more serious problem. Fourthly, if the failure message does not appear 

the operator will soon realize that his typewriter is lifeless. 

We may now program the typewriter administration monitor to handle 

outgoing conversations. First we shall identify the two typewriters by values of 

type twnum = 1 . . twmax 

where 

const twmax = 2 {typewriters} . 

Next we program the scheduler with its two procedures to acquire a typewriter 

from, and to supply a typewriter to, the pool of free devices. 

monitor module twscheduler ; 

var pool : set of twnum ; 

instance outgoing : condition ; 

procedure *acquire (var tw : twnum) ; 

begin 

if pool = [ ] then out going.wait ; 

tw : = 1 ; while not (tw in pool) do tw : = tw + 1 ; 

pool := pool — [tw] 

end; 

procedure *supply (tw : twnum) ; 

begin pool : = pool + [tw] ; outgoing.signal end ; 

begin pool := [ ] ; *** end 

The function of the controller monitor is to enable the user process to com¬ 

municate with the twhandler process. This communication consists of the 

user sending the twhandler a signal to read a message, to print a message, to 

throw to a newline or to finish a conversation, and the twhandler sending the 
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user a status value to denote the success or failure of the operation; in addi¬ 

tion the message that is being input or output has to be buffered. Thus the 

following variables and queues are required to effect the synchronization 

between the user and the twhandler. 

var 

buffer : message ; 

operation : controlop ; 

result : status ; 

state : (free, busy) ; 

instance 

notbusy, notfree : condition 

where 

type 

controlop = (textread, textprint, linethrow, finishconversation) . 

The four procedures invoked from the envelope are as follows; in general 

they indicate the required operation, signal the twhandler and wait until it 

has completed the operation, and then note the status result. A slight com¬ 

plication arises if the result denotes a failure, for then the twhandler process 

must be reactivated to report the failure to the operator. 

procedure *read (var m : message; var s : status) ; 
begin 

operation := textread ; 

state : = busy ; notfree.signal ; 

if state — busy then notbusy .wait ; 

s : = result ; if s = success then m : = buffer ; 

if s = failure then begin state := busy; notfree.signal end 
end; 

procedure *print (m : message ; var s : status); 
begin 

operation : = textprint ; buffer : = m ; 

state busy ; notfree.signal ; 

if state = busy then notbusy.wait ; 
^ := result ; 

if s = failure then begin state := busy; notfree.sig?ial end 
end; 

procedure *newline (var s : status) ; 
begin 

operation := linethrow ; 

state : = busy ; notfree.signal ; 
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if state = busy then notbusy .wait ; 
s := result; 

if s = failure then begin state := busy; notfree.signal end 
end; 

procedure * finish ; 

begin 

operation : = finishconversation ; 

state := busy ; notfree.signal 
end 

The twhandler process spends its entire life executing a procedure of the 
controller monitor: 

process module twhandler ; 

begin transfermessagestoandfrombuffer end 

where: 

procedure tranfermessagestoandfrombuffer ; 

const eternity = false ; 

var Ml, M2 : message ; 

procedure awaitoperator ; 

begin {await interrupt from operator on typewriter 'tw' end ; 

procedure read ; 

begin 

{read a message into 'buffer' from typwriter 'tw', recording 

the 'success' or failure' of the transfer in 'result'} 

end; 

procedure print (m : message) ; 

begin 

{print a message from 'm' on typewriter 'tw', recording the 

'success' or failure’ of the transfer in 'result'} 

end; 

procedure newline ; 

begin 

{throw to a new line on typewriter 'tw', recording the 

'success' or failure' of the operation in 'result') 

end; 

procedure performoperation ; 

begin 

case operation of 

textread : read ; 
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textprint : print {buffer) ; 

linethrow : newline ; 

finishconversation : result \ — endofconversation 
end 

end; 

begin 

Ml.text := 'FAILURE TO TRANSFER MESSAGE.' ; 
Ml.length := 28 ; 
M2.text := 'FAILURE TO COMPLETE CONVERSATION.' ; 
Ml.length : = 33 ; 

repeat 

awaitoperator ; 

repeat {carry on conversations until failure} 

state : = free ; twscheduler. supply (tw) ; 

if state = free then notfree.wait ; 

repeat {read and print messages until failure or end of 

conversation} 

performoperation ; 

if result = failure then 
begin 

newline; print (Ml) ; 
newline ; performoperation 

end; 

if result / endof conversation then 
begin 

state : = free', notbusy.signal', 

if state — free then notfree.wait', 
end 

until result A success 

until result — failure ; 

newline ; print (M2) 
until eternity 

end . 

Some care should be devoted to the design of the envelope. As each 

typewriter will be used to converse with a variety of processes it is important 

that the operator should be able to distinguish readily between the various 

conversations, so, on opening a conversation with an operator, a process 

must preface the exchange of messages by typing some identifying name. 

Thus when an instance of the conversation envelope is declared for an out¬ 

going conversation, the envelope prints the word 'FROM', followed by the 

identifying name, on a new line and indents the subsequent lines of the 
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conversation by four spaces. For example, if the controller of cardreader 

number two fails to read a card properly, it holds the following, one-sided, 

conversation with an operator. 

FROM CR 2 FAILURE TO READ CARD. 

A conversation to report a fault will usually be kept as short as possible but a 

conversation in which the “operator” is using the typewriter to edit a file, or 

to run a program interactively, or to browse round an information-retrieval 

system, will typically consist of many messages being transmitted in each 

direction. 

envelope *conversation (n : name) ; 

var 

tw : twnum ; 

FROM, TAB : message ; 

*result : status ; 

procedure *read (var m : message) ; 
begin if result = success then twcontroller [tw].read (m, result) end ; 

procedure *print (m : message) ; 
begin if result = success then twcontroller [tw].print {m, result) end ; 

procedure *newline ; 

begin 
if result = success then twcontroller [tw].newline (result) ; 

if result = success then twcontroller [tw].print (TAB, result) 

end; 

begin 

TAB.text := ' TAB.length := 4 ; 

FROM.text := 'FROM FROM.text [6 . . 9] ;= n ; 

FROM.length := 13 ; 

repeat 
twscheduler. acquire {tw) ; 

twcontroller [tw].newline {result) ; 

if result = success then twcontroller [tw].print {FROM,result) 

until result = success ; 
*** • 

if result = success then twcontroller [tw]. finish 

end 

Note that if the envelope is unfortunate enough to acquire a typewriter that 

is faulty from the start it tries again with another one. 
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Incoming Conversations 

We shall also cater for incoming conversations. Although an incoming 

conversation is initiated by the operator, the process he wishes to address 

must be waiting ready to accept the call, if we wish to draw an analogy with 

the telephone system. To initiate an incoming conversation the operator 

presses a “call button” on his typewriter; a “switching” process associated 

with that typewriter is awoken by the resulting interrupt and, after waiting 

for the current conversation, if any, on that typewriter to finish, types the 

word 'CALL'; the operator replies with the name associated with the process 

it is calling; the switching process passes this name and the number of the 

typewriter to the scheduler; if the named process is waiting it is awoken and 

continues the conversation but, if it is not, the switching process tells the 

operator that the call has failed. Thus the switching process plays the role 

of a telephone switchboard operator who accepts calls and routes each to its 

proper destination. An example of a short incoming conversation is: 

CALL STOP OK. 

We modify the conversation envelope so that a process can state whether 

it is to await an incoming call or engage as soon as possible in an outgoing 

call. We also test every message read to check whether the operator has typed 

'WAIT', this being the signal that the conversation is to be interrupted until 
he resumes it later as an incoming conversation. 

envelope *conversation (n : name; outorin : typeojconversation) ; 
var WAIT : message ; *result: status', 

procedure *read (var m : message) ; 
begin 

if result = success then twcontroller [tw].read (m, result) ; 
while {result = success) and (m = WAIT) do 

begin 

twcontroller [tw].finish ; 

twscheduler.await {tw,ri) ; 

twcontroller [tw].print {TAB, result) ; 

if result = success then twcontroller [tw].read {m, result) 
end 

end; 

begin 

WAIT.text : = 'WAIT' ; WAIT.length : = 4 ; 
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case outorin of 

outgoing : 

repeat 

tw scheduler. acquire (tw) ; 

twcontroller [tw\.newline {result) ; 

if result = success then 

twcontroller [tw].print {FROM,result] 
until result = success ; 

incoming ; 

repeat 

tw scheduler .await (tw,n) ; 

twcontroller [tw].print {TAB,result) 

until result — success 

end; 
*** • 

if result = success then twcontroller [tw], finish 

end 

The messages WAIT and TAB are essentially constants and could therefore 

be moved out of the envelope to a more global position within the typewriter 

monitor. Indeed the same applies to the error messages we have used in the 

cardreader, lineprinter and typewriter administration monitors. 

Turning our attention to the scheduler we note that a new procedure has 

been introduced, namely await which is invoked by a process awaiting an 

incoming conversation: the process supplies the name associated with the 

conversation and receives in return the identity of the typewriter on which the 

conversation is to take place. There must of course be a corresponding 

scheduler procedure, call, which is invoked by a typewriter’s switching process 

on detecting an incoming call; the call procedure supplies the scheduler 

with the identity of the typewriter and the name of the conversation and in 

return it is informed whether or not there was a process waiting for that 

particular conversation. The switching process, which is declared local to the 

controller monitor, takes the following form. 

process module twswitchingprocess ; 

const eternity = false ; 

var 

m, CALL, FAIL : message ; 

result : status ; 

ok : Boolean ; 

begin 
CALL.text := 'CALL ' ; CALL.length := 5 ; 

S.S.P.—U 
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FAIL.text := ' FAILED' ; FAIL.length := 11 ; 

repeat 

awaitcallbutton ; twscheduler.reserve (tw) ; 

print {CALL, result) ; 

if result = success then read (m, result) ; 

if result = success then 

begin 

ok := (m. length = 4) ; 

if ok then twscheduler.call {tw, m.text [1 . . 4,] ok) ; 

if not ok then 

begin 

print {FAIL,result) ; 

if result = success then finish 

end 

end 

until eternity 

end 

where CALL and FAIL can be treated as constants and made more global 
and the monitor procedure awaitcallbutton is: 

procedure awaitcallbutton ; 

begin {await interrupt from call button on typewriter 'tw') end. 

The switching process has now introduced another call on the scheduler, 

namely reserve which resembles acquire except that it demands the use of a 

particular typewriter rather than any typewriter; also it is desirable to give 

precedence to incoming calls over outgoing calls if the operator is not to be 

in danger of being locked out. Indeed it is worth noting that any process 

that produces a lot of output to a typewriter should occasionally pause to 

input some response from the operator: this gives the operator the chance 

to stem the flood of output, possibly by typing ' WAIT’ so that he can con¬ 

tinue it again later—some such ploy is necessary if the output is appearing on 

a display screen and is in danger of being scrolled off the screen before the 
operator has had a chance to read it. 

To summarize, the scheduler now has the following procedures: 

acquire (var twnum) 

invoked by the user for an outgoing call; 
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await (var twnum ; name) 

invoked by the user for an incoming call; 

reserve (twnum) 

invoked by twswitchingprocess in order to accept an incoming call; 

call (twnum ; name ; var Boolean) 

invoked by twswitchingprocess to signal an incoming call; 

supply (twnum) 

invoked by twhandler after a call. 

The scheduler maintains a pool of available typewriters and it has one 

queue on which user processes wait for outgoing conversations (they wait in 

procedure acquire and the signal comes from procedure supply), another 

queue on which user processes wait for incoming calls (they wait in procedure 

await and the signal comes from procedure call), and an array of queues, one 

for each switching process to wait on when it needs to use its own typewriter 

(it waits in procedure reserve and the signal comes from procedure supply). A 

free typewriter is always offered first to a process on the appropriate type¬ 

writer queue before it is offered to a process on the outgoing queue, thereby 

giving priority to incoming calls. Subject to that, however, the outgoing queue 

is serviced on a first-come first-served basis. The incoming queue is serviced 

quite differently: processes on it are signaled in turn until one is found that 

can match the name of the incoming call with its own name or until the 

queue has been emptied, whereupon all the processes that failed to accept 

the proffered conversation rejoin the queue; the order of queuing is immaterial. 

The scheduler, together with the rest of the typewriter administration 

monitor, is shown in Listing 13. 



Listing 13 

MONITOR MODULE TYPEURITER; 

CONST 
♦MAXNAME = 4 <♦ CHARACTERS PER NAME ♦ ); 
♦MAXCHAR = 36 (* CHARACTERS PER MESSAGE *); 

TUNAX = 2 <♦ TYPEWRITERS ♦ >; 

TYPE 
♦NAME = PACKED ARRAY C1..HAXNAME] OF CHAR; 
♦TYPEOFCONVERSATION = < ♦OUTGOING, ♦INCOMING ); 

♦MESSAGE = RECORD 
♦LENGTH: 0..NAXCHAR; 
♦ TEXT: PACKED ARRAY [1..MAXCHAR] OF CHAR 

END; 
♦STATUS = < ♦SUCCESS, ♦FAILURE, ENDOFCONVERSATION ); 

TUNUM = 1..TUNAX; 

Nt, N2, TAB, WAIT, CALL, FAIL: MESSAGE; 

MONITOR MODULE TUSCHEDULER; 
OAR 

POOL: SET OF TUNUM; 
CALLNAME: NAME; 
CALLTU: TUNUM; 
CALLOK: BOOLEAN; 

INSTANCE 
OUTGOING, 
INCOMING: CONDITION; 
TYPEURITER: ARRAY [TUNUM] OF CONDITION; 

PROCEDURE ♦ACQUIRE (VAR TU: TUNUM); 
BEGIN 

IF POOL = [] THEN OUTGOING.WAIT; 
TU:= 1; WHILE NOT (TU IN POOL) DO TU:= TU+1; 
POOL:= POOL - [TU] 

END; 
PROCEDURE ♦RESERVE (TU: TUNUM); 

BEGIN 
IF NOT (TU IN POOL) THEN TYPEURITERCTU].UAIT; 
POOL:= POOL - [TU] 

END; 
PROCEDURE ♦SUPPLY (TU: TUNUM); 

BEGIN 
POOL := POOL + CTU]; 

IF TYPEURITERCTU].LENGTH > 0 
THEN TYPEURITERCTU].SIGNAL 
ELSE OUTGOING.SIGNAL 

END; 

PROCEDURE ♦AUAIT (VAR TU: TUNUM; N: NAME); 
BEGIN 

INCOMING.UAIT; 
UHILE CALLNAME <> N DO 

BEGIN INCOMING.SIGNAL; INCOMING.UAIT END; 
TU:= CALLTU; 
CALLOK:* TRUE 

END; 
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PROCEDURE *CALL <TU: TUNUH; N: NAME; VAR OK: BOOLEAN); 
BEGIN 

CALLTU:* TU; CALLNANE:= N; 
CALLOK:= FALSE; INCOMING.SIGNAL; OK: = CALLOK 

END; 
BEGIN 

pool : = n; 
**# 

END; 

MONITOR CONTROLLER (TU: TUNUH); 
TYPE 

CONTROLOP = 
(TEXTREAD, TEXTPRINT, LINETHROU, FINISHCONVERSATION); 

OAR 
BUFFER: MESSAGE; 
OPERATION: CONTROLOP; 
RESULT: STATUS; 
STATE: (FREE, BUSY); 

INSTANCE 
NOTBUSY, NOTFREE: CONDITION; 

PROCEDURE *READ (VAR M: MESSAGE; VAR S: STATUS); 
BEGIN 

OPERATION:- TEXTREAD; 

STATE:=BUSY; NOTFREE.SIGNAL; 
IF STATE = BUSY THEN NOTBUSY.UAIT; 
S: = RESULT; IF S = SUCCESS THEN M: = BUFFER; 
IF S = FAILURE THEN BEGIN STATE:* BUSY; NOTFREE.SIGNAL END 

END; 
PROCEDURE SPRINT (M: MESSAGE; VAR S: STATUS); 

BEGIN 
OPERATION:* TEXTPRINT; BUFFER:* M; 
STATE:* BUSY; NOTFREE .SIGNAL; 
IF STATE = BUSY THEN NOTBUSY.UAIT; 

S:= RESULT; 
IF S = FAILURE THEN BEGIN STATE:* BUSY; NOTFREE.SIGNAL END 

END; 
PROCEDURE *NEULINE (VAR S: STATUS); 

BEGIN 
OPERATION:* LINETHROU; 
STATE:* BUSY; NOTFREE.SIGNAL; 
IF STATE = BUSY THEN NOTBUSY.UAIT; 
S:= RESULT; 
IF S = FAILURE THEN BEGIN STATE:* BUSY; NOTFREE.SIGNAL END 

end; 
PROCEDURE ♦FINISH; 

BEGIN 
OPERATION:* FINISHCONVERSATION; 

STATE:* BUSY; NOTFREE.SIGNAL 
end; 



PROCEDURE TRANSFERHESSAGESTOANDFROMBUFFER; 
CONST 

ETERNITY = FALSE; 
PROCEDURE AUAITOPERATOR; 

BEGIN 
(* AUAIT INTERRUPT FROM OPERATOR ON TYPEWRITER "TU" *) 

END; 
PROCEDURE READ; 

BEGIN 
<* READ A MESSAGE INTO "BUFFER" FROM TYPEURITER "TU", =*) 
<* RECORDING THE "SUCCESS" OR "FAILURE" OF THE *) 
<* TRANSFER IN "RESULT" •*) 

END; 
PROCEDURE PRINT (M: MESSAGE); 

BEGIN 

(* PRINT A MESSAGE FROM "M" ON TYPEURITER "TU", *) 

(* RECORDING THE "SUCCESS" OR "FAILURE" OF THE *) 
<* TRANSFER IN "RESULT" *) 

END; 
PROCEDURE NEULINE; 

BEGIN 

<» THROU TO A NEU LINE ON TYPEURITER "TU", *> 
<* RECORDING THE "SUCCESS" OR "FAILURE" OF THE *) 

<* OPERATION IN "RESULT" *) 
END; 

PROCEDURE PERFORHOPERATION; 
BEGIN 

CASE OPERATION OF 
TEXTREAD: READ; 
TEXTPRINT: PRINT(BUFFER); 
LINETHRCU: NEULINE; 

FINISHCONVERSATIQN: RESULT:= ENDOFCONVERSATION 
END 

END; 
BEGIN 

REPEAT 

AUAITOPERATOR; 

REPEAT <:» CARRY ON CONUERSATIONS UNTIL FAILURE *) 

STATE:= FREE; TUSCHEDULER.SUPPLY(TU); 
IF STATE = FREE THEN NOTFREE.UAIT; 

REPEAT (* READ AND PRINT MESSAGES UNTIL FAILURE *) 
(* OR END OF CONVERSATION *) 

PERFORHOPERATION; 
IF RESULT = FAILURE THEN 

BEGIN 

NEULINE; PRINT(Ml); NEULINE; PRINT <TAB); 
PERFORHOPERATION 

END; 

IF RESULT <> ENDOFCONVERSATION THEN 
BEGIN 

STATE:= FREE; NOTBUSY.SIGNAL; 
IF STATE = FREE THEN NOTFREE.UAIT 

END 

UNTIL RESULT <> SUCCESS 
UNTIL RESULT = FAILURE; 
NEULINE; PRINT(M2) 

UNTIL ETERNITY 
END; 

PROCESS MODULE TUHANDLER; 

BEGIN TRANSFERHESSAGESTOANDFRONBUFFER END; 



PROCEDURE AUAITCALLBUTTON; 
BEGIN 

(* AUAIT INTERRUPT FROH CALL BUTTON ON TYPEURITER "TUM *> 
END; 

PROCESS NODULE TUSUITCHINGPROCESS; 
CONST 

ETERNITY = FALSE; 
VAR 

N: message; 
RESULT: STATUS; 
OK: BOOLEAN; 

BEGIN 
REPEAT 

AUAITCALLBUTTON; TUSCHEBULER.RESERVE(TU); 
PRINT(CALL, RESULT); 
IF RESULT = SUCCESS THEN READ(M, RESULT); 
IF RESULT = SUCCESS THEN 

BEGIN 

OK:= IN. LENGTH = 4); 
IF OK THEN TUSCHEDULER.CALLMU. M.TEXTC1..43, OK); 
IF NOT OK THEN 

BEGIN 
PRINT(FAIL, RESULT); 
IF RESULT = SUCCESS THEN FINISH 

END 
END 

UNTIL ETERNITY 
END; 

BEGIN 
*♦* 

END; 

INSTANCE 
TUCONTROLLER: ARRAY C1..TUMAXJ OF CONTROLLER((1) (2)); 

ENVELOPE ♦CONVERSATION (N: NAME; OUTORIN: TYPEOFCONVERSATION); 
VAR 

TU: tunuh; 
FROH: HESSAGE; 
♦RESULT: STATUS; 

PROCEDURE ♦READ (VAR H: MESSAGE); 
BEGIN 

IF RESULT = SUCCESS THEN TUCONTROLLERCTU],READ(N, RESULT); 
UHILE (RESULT = SUCCESS) AND <M = UAIT) DO 

BEGIN 
TUCONTROLLERCTU],FINISH; 
TUSCHEDULER.AUAIT(TU, N); 

TUCONTROLLERCTU].PRINT(TAB, RESULT); 
IF RESULT = SUCCESS THEN 

TUCONTROLLERCTU].READ(H, RESULT) 
END 

END; 
PROCEDURE ♦PRINT (M: MESSAGE); 

BEGIN 
IF RESULT = SUCCESS THEN TUCONTROLLERCTU].PRINT <H, RESULT) 

END; 
PROCEDURE ♦NEULINE; 

BEGIN 
IF RESULT = SUCCESS THEN TUCONTROLLERCTU].NEULINE(RESULT); 
IF RESULT = SUCCESS THEN TUCONTROLLERCTU] .PRINT(TAB, RESULT) 

END; 



BEGIN 
CASE OUTORIN OF 

OUTGOING: BEGIN 
FROM.TEXT:= 'FROM '; 
FROH.TEXTEA..93:= N; FROH.LENGTH:= 13; 
REPEAT 

TUSCHEDULER-ACQUIRE(TU); 

TUCONTROLLERCTU3.NEULINE<RESULT); 
IF RESULT = SUCCESS THEN 

TUCONTROLLERCTU].PRINT(FROM, RESULT) 
UNTIL RESULT = SUCCESS 

END; 
INCOMING: REPEAT 

TUSCHEDULER.AUA IT(TU, N); 
TUCONTROLLERCTUT.PRINT(TAB, RESULT) 

UNTIL RESULT = SUCCESS 
END; 
***; 

IF RESULT = SUCCESS THEN TUCONTROLLERCTU].FINISH 
END; 

BEGIN 

HI.LENGTH := 28; HI.TEXT := 'FAILURE TO TRANSFER MESSAGE'; 
H2.LENGTH := 33; H2.TEXT := 'FAILURE TO COMPLETE CONVERSATION'; 
TAB.LENGTH := 4; TAB.TEXT := t 
UAIT.LENGTH:= 4; UAIT.TEXT: = 'UAIT-'; 
CALL.LENGTH:= 5; CALL.TEXT : = 'CALL 
FAIL.LENGTH:= it; FAIL.TEX T: = FAILED'; 
*** 

END; 

Implementation Cons iderations 

This program, despite its moderate length of about 250 lines (about a third 

of which contain just a single word), provides as powerful and as simple an 

interface to its users as one could expect of an operating system such as this. 

Nevertheless the 250 or so lines of code hide a considerable amount of 

complexity and, unfortunately, further complexity is bound to arise when 

one considers real typewriters that differ from the “ideal” typewriters postu¬ 
lated here. 

For example, although it is usual for cardreaders and lineprinters to 

have “interrupt buttons” that the operator can use to signal to the operating 

system that those devices are operable, it is unusual for a typewriter to have 

such an interrupt button, nor does it normally have a “call button” to enable 

the operator to initiate an incoming conversation. The effect of these can be 

achieved by reserving two of the control characters in the typewriter’s charac¬ 

ter set to play the roles of these two buttons. We then need to introduce into 

the operating system a routine that will read in each character as it is offered 

by the typewriter and analyze it to decide whether to pass it on to the process 

that is waiting for it or else simulate an “operable” or “call button” interrupt. 

This routine may be a small process in the operating system or, for efficiency, 

it would probably be incorporated into the nucleus routine that services 
interrupts. 
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Likewise, if the machine has no interrupt mechanism one can introduce, 

for each peripheral device, a small service process that regularly polls the 

device and, on finding it ready, simulates an interrupt. Again, for efficiency, 

one would probably replace the family of polling processes by a single 

process, embedded in the nucleus, to poll all the devices. 

A further problem arises from the fact that typewriters work a character 

at a time, whereas we have assumed that an entire message can be read or 

printed as a unit. Obviously the read and print procedures have to be pro¬ 

grammed as loops, the only difficulty arising when the read procedure tries 

to detect the end of the message that is being typed: some control character 

must be set aside to mean “end of message”. 

With all peripheral devices a serious problem must be faced: if the 

device does not respond after some suitable interval the operation should 

be terminated; for example one may be trying to output to a device that has 

been switched off, or one may be trying to read from a typewriter when the 

operator has gone to find a cup of coffee. The provision of a time-out mech¬ 

anism is not difficult in principle although it may be tricky in practice. For 

the queue associated with each peripheral device we introduce a clock 

process whose task is to signal that queue at regular intervals of say t seconds. 

A process waiting for an interrupt from that device would ignore the first n 

clock signals and would take notice of the (n + l)st, assuming of course that 

the device had not responded by then. This would give a time-out interval in 

the range of nt. . (n + 1 )t ; in practice n need be no larger than 1 or 2 since 

the exact duration of a time-out interval is not usually critical. Again, a 

single clock process servicing all the interrupt queues would be preferable. 

The Operators 

We began the design of this operating system by considering the users’ view 

of the system. We have yet to consider the operators’ point of view. This is 

perhaps as good a place as any to consider it as the operator is primarily 

concerned with the peripheral devices and his main channel of communication 

with the operating system is his typewriter. 

The operators begin a session by mounting the disk pack that contains 

the file store and loading the operating system into the computer. The 

operating system begins execution but at this stage has no cardreaders, 

lineprinters or typewriters available to it. The operators can, at any time, 

press the interrupt button on one of these devices to make it available to the 

operating system. The operators have two main tasks: to supply the card 

readers with decks of cards containing jobs to be run—and each of these 

has to begin with a title card and finish with one or more terminator cards; 

and to burst the output from the printers and distribute it to the users. 
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This routine is occasionally interrupted to deal with a message on the 

typewriter relating to the “failure” of a peripheral device. “Failure” is per¬ 

haps too strong a word, for usually the reader will have run out of cards or 

the printer will have run out of paper and supplies must be replenished. The 

failure messages that may be received are as follows. 

FROM CR n FAILURE TO READ CARD. 

FROM LP n FAIL URE TO PRINT LINE. 

FROM TW n FAILURE TO TRANSFER MESSAGE. 

The operator knows that another attempt will be made when he has rectified 

the fault and pressed the interrupt button on the device. If then the fault 

persists he will receive one of the following messages. 

FROM CR n FAILURE TO READ FILE. 

FROM LP n FAIL URE TO PRINT FILE. 

FROM TW n FAILURE TO COMPLETE CONVERSATION. 

The operator knows that the file or the conversation has been abandoned. 

In the case of a cardreader he must remove any remaining cards of the affected 

file and later, or on another reader, resubmit the entire file. In the case of a 

lineprinter he must inform the user for whom the file was being printed or 

he must resubmit that user’s job. Two other failure messages may be printed; 

these are detected by some user’s job and either the job must be resubmitted 

or else the user informed that his job was unable to run. 

FROM USER name-of-user—FAULTY CARDREADER FOR JOB 

name-of-job 

FROM USER name-of-user—TOO MANY CARDS FOR JOB 

name-of-job 

At the end of the session the operator can stop the system by pressing 

the call button on a typewriter and, when the word 'CALL' appears, typing 

the name 'STOP'; the system will acknowledge this by typing 'OK'. 

CALL STOP OK. 

Later, when all processing of users’ jobs has been completed, the system will 
output to some typewriter the message: 

FROM STOP S YSTEM STOPPED. 
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Had the operator inadvertently called up a non-existent program instead of 

'STOP' he would have been informed of his mistake and could have tried 
again. 

CALL STQP FAILED. 

As the system stands the operator is not required to type any messages 

during a conversation and so he has no occasion to use the ‘ WAIT facility. 

Exercise 7 The operators of our system have no way of finding out what jobs have 
been run, what jobs are currently in the system, what stage each job has reached, 
and so on. Nor have they any way of telling the operating system that a particular 
peripheral device is to be removed from service (perhaps for routine maintenance) 
when it has finished its current task. Nor have they any way of obtaining statistics 
on the resources used by jobs: turnround times for instance, or run times, or quan¬ 
tities of input and output, or sizes of intermediate files. 

Provide one or more of these services. This will usually necessitate writing a 
monitor in which to record the required information, and a process to print the 
information when requested to do so by an operator; the switch monitor with its 
stopper process in Listing 2 is an example of this. 

THE FILE STORE 

The file store is the one remaining resource to be considered. Recall that two 

types of file are to be provided, one to hold spooled and intermediate data, 

and the other to hold library programs. Both types are sequential; the library 

files can be read block by block; the other files can be written block by block 

and read once, block by block, the blocks being discarded as they are read. 

On reading or writing a block a status result is made available: this will 

usually be success but it may be endoffile (the length of a file cannot exceed 

500 blocks of IK characters) or, in the case of an attempt to use a non¬ 

existent library file, it may be nofile; the possibility of failure is not count¬ 

enanced. 
We have also decided that the actual store onto which the files will be 

mapped is to be a standard exchangeable disk pack with 200 cylinders of 10 

tracks of 3 sectors of IK characters. Furthermore it was decided that the 

library would be updated off-line and that, because the users have no per¬ 

manent files, the dumping and restoration of files are unnecessary. 

We may begin the construction of the filestore administration monitor 

with the following definitions for addressing blocks. 
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const 

CMAX = 200 {cylinders} ; TMAX = 10 {tracks} ; SMAX = 3 

{sectors};TS=30 {sectors per cylinder} ; CTS=6000 {sectors per disk}; 

type 

cylinder — 1 . . CMAX ; track = 1 . . TMAX ; sector = 1 . . SMAX; 

address = packed record c : cylinder ; t ; track ; s : sector end 

Two schedulers are required, one to schedule the use of sectors and the 

other to schedule access to the disk; a monitor to control access to the disk is 

needed; and two envelopes must be defined to provide users with a file and a 

libraryfile. 

Because it is simple let us take the disk access controller first; it provides 

two procedures to read and write blocks; these may invoke another procedure, 

seek, to move the read/write heads to a different cylinder. The complete 

diskcontroiler monitor is shown in Listing 14. 

Listing 14 

MONITOR MODULE DISKCONTROLLER; 

VAR 

CYL: CYLINDER; 

PROCEDURE SEEK <C: CYLINDER); 
BEGIN 

(* MOVE HEADS TO CYLINDER "C" ON DISK *); 
CYL:= C 

END; 

PROCEDURE *READ (A: ADDRESS; VAR B: BLOCK); 
BEGIN 

IF A.C <> CYL THEN SEEK(A.C); 
<♦ READ A BLOCK INTO "B" FROM SECTOR "A" ON DISK *) 

END; 

PROCEDURE * UR IT E (A: ADDRESS; B: BLOCK); 
BEGIN 

IF A.C <> CYL THEN SEEK(A.C); 

(* WRITE A BLOCK FROM "B” TO SECTOR "A" ON DISK *) 
END; 

BEGIN 

CYL: = 1; 
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In passing we may note the simplicity of this controller compared with 

the complexity of the other controllers we have programmed. This is due in 

part to our assumption of failure-free operation, and in part to the fact that 

the users operate directly on the device, rather than through the offices of a 

dedicated device-handling process with the resulting complexities of buffering 

and synchronization. We avoid the need for a diskhandler process by assuming 

that the device has no existence except when a user is operating upon it. 

This assumption could not have been made when we were considering the 

other types of peripheral device, although it might be true of more passive 

resources such as main store. There are several reasons why device-handling 

processes may be necessary. One reason is, again, concerned with the failure 

of devices: a user does not wish to nurse a sick device until it has been restored 

to health: this the device-handling process can do. Another reason is that we 

wish to overlap data transfers with processing when using many devices, 

particularly ones operating on sequential data files: cardreaders and line- 

printers fall into this category in most operating systems. Yet another reason 

is that the device may operate independently of any of the users: the 

twswitchingprocess was incorporated in the typewriter controller for just such 

a purpose to deal with incoming conversations. Thus considerable simplicity 

can be gained by assuming failure-free operation provided failures occur 

infrequently (as in main store) or (as may be the case with typewriters) are 

not too embarrassing when they do occur. 

To avoid excessive numbers of head movements we schedule requests to 

use the disk according to the number of the cylinder sought rather than first 

come, first served. To prevent any request from being passed over indefinitely 

often we use the “elevator algorithm” in which the disk heads sweep across 

the cylinders, first in one direction and then in the other, selecting the nearest 

outstanding request in the current direction of travel. Furthermore, when 

writing a block to disk, we can choose to output it to a sector on, or as near 

as possible to, the current cylinder, thereby considerably reducing the number 

of head movements. Thus the algorithm performs as many transfers from 

and to the current cylinder as possible, it then selects the next read operation 

in the current direction, changing direction if there is none, and finally it 

performs any outstanding write operations. Three queues are therefore re¬ 

quired, one for pending write operations and the other two for pending read 

operations in each of the upward and downward directions. The scheduler 

must record whether or not the disk is busy, the current cylinder number, cyl, 

and the current direction of travel, dir. Each data transfer must be sand¬ 

wiched between calls of the procedures starttoread (or starttowrite) and 

finish, in which the elevator algorithm is implemented. Listing 15 shows the 

complete diskscheduler monitor. 
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MONITOR MODULE DISKSCHEDULER; 

TYPE 
DIRECTION = (UP, DOWN); 

VAR 
BUSY: BOOLEAN; 

CYL: CYLINDER; 
DIR: DIRECTION; 

INSTANCE 

URITE: CONDITION; 
READ: ARRAY [DIRECTION] OF CONDITION; 

PROCEDURE *STARTTOREAD (C: CYLINDER); 
BEGIN 

IF BUSY THEN IF C >= CYL THEN READCUP].PUAIT<C) 
ELSE READCDOWN].PUAIT(CNAX-C); 

CYL:= C; BUSY:= TRUE 
END; 

PROCEDURE *STARTTOURITE (VAR A: ADDRESS); 
BEGIN 

IF BUSY THEN URITE.WAIT; 

SECTORSCHEDULER.ACQUIRE(A, CYL); 
CYL:= A.C; BUSY:= TRUE 

END; 

PROCEDURE *FINISH; 

FUNCTION MATCH (DIR: DIRECTION; CYL: CYLINDER): BOOLEAN; 
BEGIN 

IF READCDIR].LENGTH = 0 
THEN MATCH:= FALSE 

ELSE HATCH:= (READCDIR3.PRIORITY = CYL) 
END; 

BEGIN 
BUSY:= FALSE; 

IF MATCH(UP, CYL) 

THEN READCUP].SIGNAL ELSE 
IF HATCH(DOUN, CMAX-CYL) 

THEN READCDOUN].SIGNAL ELSE 

IF (URITE.LENGTH > 0) AND SECTORSCHEDULER.ANYFREECYLSECTOR(CYL ) 
THEN URITE.SIGNAL ELSE 

BEGIN (* NO OUTSTANDING REQUESTS FOR CURRENT CYLINDER *) 
IF READCDIR].LENGTH = 0 THEN 

IF DIR = UP THEN DIR:= DOWN ELSE DIR:= UP; 

IF READCDIR].LENGTH > 0 THEN READCDIR].SIGNAL ELSE 

IF SECTORSCHEDULER.ANYFREEDISKSECTOR THEN URITE.SIGNAL 
END 

END; 

BEGIN 

BUSY:= FALSE; DIR:= UP; CYL:= 1; 
*** 

END 
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In connection with the scheduling of writing requests several calls are 

made upon the sector scheduler. The Boolean functions anyfreecylsector 

{cylinder) and anyfreedisksector are used to ascertain whether or not it is 

possible to write a block to some specified cylinder or to any cylinder on the 

disk; thus the scheduler must keep a count of the number of free sectors on 

each cylinder and also the total number of free sectors. The procedure acquire 

(var address ; cylinder) is used to obtain a free sector, preferably on some 

specified cylinder; the search for a free sector will always be successful since 

it will have been preceded by a check that there is indeed some free sector. 

If the preferred cylinder has no free sectors, which cylinder should be used? 

Preferably a cylinder that is close to the specified cylinder, to limit the head 

movement delay; and perhaps a cylinder that is not almost full so that further 

head movements can be avoided for a time if a succession of writing opera¬ 

tions ensues. The latter consideration is not of great importance to the system 

we are developing but it is scarcely more difficult or more expensive to 

program it than to disregard it, provided we can find a cheap way of deter¬ 

mining whether or not a cylinder is “almost full”: we shall select any cylinder 

that has at least the average number of free sectors, i.e., any cylinder c for 

which: 

free[c\ > total div CM AX 

To find such a cylinder we shall search from the specified cylinder in the 

direction of the middle of the disk and, if that proves fruitless, search in the 

other direction; taking the two directions in this order helps to keep the heads 

away from the edges of the disk and so reduces the possibility of very long 

head-movement delays. The choice of sector number can also be important, 

albeit not in this system: on writing a block to a new cylinder it is advisable 

to choose as low a sector number as possible to reduce rotational delays, 

while on writing a succession of blocks to a new cylinder it is advisable to 

choose a succession of sector numbers so that they can subsequently be read 

during a single revolution of the disk. These techniques are incorporated in 

the sector scheduler monitor in Listing 16. 

Intermediate and Spooling Files 

We turn now to the envelope that provides the users with intermediate and 

spooling files. It must maintain a table of the addresses of the sectors occupied 

by the file it represents and it must count the number of blocks written to the 

file (wnum). When the file is being read it must count how many blocks have 

been read from the file {mum). Recall that sectors are acquired when blocks 

are written and that they are to be released when blocks have been read or, 
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MONITOR NODULE SECTORSCHEDULER; 

VAR 
POOL: ARRAY [CYLINDER, SECTOR] OF SET OF TRACK; 
FREE: PACKED ARRAY [CYLINDER] OF O..TS; 
TOTAL: O..CTS; 
C: CYLINDER; 
T: TRACK; 
S: SECTOR; 

PROCEDURE ‘ACQUIRE (VAR A: ADDRESS; CYL: CYLINDER); 
VAR 

DIR: (UP, DOWN); 
BEGIN 

C:» CYL; 
IF FREECC] = 0 THEN 

BEGIN 
IF C < CNAX DIV 2 THEN DIR:* UP ELSE B1R: = DOUN; 
REPEAT (* EXAMINE CYLINDERS UNTIL ONE IS ») 

(» FOUND THAT IS REASONABLY EMPTY *> 
CASE DIR OF 

DOUN: IF C > 1 THEN C: = C-1 ELSE 
BEGIN C:* CYL+1; DIR:* UP END; 

UP: IF C < CNAX THEN C: = C+1 ELSE 
BEGIN C:= CYL-1; DIR:* DOUN END 

END 
UNTIL FREECC] >= TOTAL DIV CNAX; 
S:* SNAX 

END; 
REPEAT S:= S MOD SMAX + 1 UNTIL POOLCC,S] O []; 
UHILE NOT (T IN POOLCC.SI) DO T:* T NOD TNA* * 1; 
A.C:= C; A.T:= T; A.S:* S; 
FREECC]:* FREECC] - t; TOTAL:* TOTAL - I 

END; 

PROCEDURE ‘RELEASE (A: ADDRESS); 
BEGIN 

POOLCA.C, A.S]:* POOLCA.C, A.S] ♦ CA.T] ; 
FREECA.C):* FREE C A . C 3 ‘ 1; TOTAL:* TOTAL ‘ 1 

END; 

PROCEDURE ‘RESERVE (A: ADDRESS); 
BEGIN 

POOLCA.C, A.S]:= POOLCA.C, A.S] - CA.T3; 
FREECA.C]:* FREECA.C] - 1; TOTAL:* TOTAL - t 

END; 

FUNCTION ‘ANYFREECYLSECTOR (C: CYLINDER): BOOLEAN; 
BEGIN ANYFREECYLSECTOR:* (FREECC] > 0) END; 

FUNCTION ‘ANYFREEDISKSECTOR: BOOLEAN; 
BEGIN ANYFREEDISKSECTOR:* (TOTAL > 0) END; 

BEGIN 
TOTAL:* CTS; 
FOR C:* t TO CMAX DO 

BEGIN 
FREECC!:* TS; 
FOR S:* 1 TO SMAX DO POOLCC, S]:= C1..TMAX] 

END; 
T:= t; S:* SNAX; 
(* NOTE THAT THIS RECORD OF FREE SECTORS NUST BE ADJUSTED, BY ») 
(» CALLS ON THE PROCEDURE "RESERVE", TO EXCLUDE THOSE SECTORS ■*) 
(* OCCUPIED BY BLOCKS OF THE LIBRARY FILES AND DIRECTORY *) 
Ml 

END 
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for those blocks that are not read, during the finalization of the envelope. 
The complete file envelope is shown in Listing 17. 

Listing 17 

ENVELOPE *FILE; 

VAR 
'♦RESULT: STATUS; 
TABLE! ARRAY Cl. .NAXBL0CK3 OF ADDRESS; 
RNUH, 
UNUH: INTEGER; 

PROCEDURE *URITE (B: BLOCK); 
VAR 

LOCATION: ADDRESS; 
BEGIN 

IF UNUN-RNUN 5 NAXBLOCK THEN RESULT:= ENDOFFILE ELSE 
BEGIN 

LOCATION:5 TABLECUNUN NOD NAXBLOCK + 13; 
UNUH:- UNUH + 1; 
DISKSCHEDULER.STARTTOURITE<LOCATION); 
DISKCONTROLLER.URITE(LOCATION, B); 
DISKSCHEDULER.FINISH 

END 
END; 

PROCEDURE *READ (VAR B: BLOCK); 
VAR 

LOCATION: ADDRESS; 
BEGIN 

IF RNUH 5 UNUH THEN RESULT:= ENDOFFILE ELSE 
BEGIN 

LOCATION:5 TABLECRNUN HOD NAXBLOCK + ID; 
RNUH:= RNUH + 1; 
DISKSCHEDULER.STARTTOREAD(LOCATION.C); 
DISKCONTROLLER.READ(LOCATION, B>; 
DISKSCHEDULER.FINISH; 
SECTORSCHEDULER.RELEASE(LOCATION) 

END 
END; 

BEGIN 
UNUH:= 0; RNUN:= 0; RESULT:5 SUCCESS; 

***; 
UHILE RNUH < UNUH DO 

BEGIN 
SECTORSCHEDULER.RELEASE(TABLECRNUN HOD NAXBLOCK + 13); 
RNUH:= RNUH + 1 

END 
END; 

The reason for using the table of sector addresses cyclically is that 
further blocks may be written to an intermediate file after some blocks have 
been read from it. 

S.S.P.— w 
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Library Files 

Users cannot write to library files: these will already have been written to 

disk together with their sector address tables. Somewhere on the disk, at 

some known address, is a directory correlating the names of the library files 

with the addresses of their sector tables. Thus the initialization of the library 

file envelope involves “opening” the file by locating the sector table and 

reading it into main store, provided the file can be found in the directory. 

Lacking Brinch Hansen’s universal type we must define the sector table in 

two ways: physically as a block and logically as a record with a table of 

addresses and a count of the number of blocks written to the file. Listing 18 

shews the library file envelope. 

Listing 18 

ENVELOPE *LIBRARYFILE <F: FILENAME); 

VAR 
♦RESULT: STATUS; 
LOCATION: ADDRESS; 
SECTOR: RECORD CASE INTERPRETATION: (LOGICAL,PHYSICAL) OF 

PHYSICAL: <B: BLOCK); 
LOGICAL: (TABLE: ARRAY Ct..NAXBLOCKJ OF ADDRESS; 

LENGTH: O..HAXBLOCK) 
END; 

RNUH: 0..HAXBL0CK; 
FOUND: BOOLEAN; 

PROCEDURE *READ (VAR B: BLOCK); 
BEGIN 

IF RNUM = SECTOR.LENGTH THEN RESULT:* ENDOFFILE ELSE 
BEGIN 

RNUH:= RNUH + 1; 

DISKSCHEDULER.STARTTOREAD(SECTOR.TABLECRNUM].C); 
DISKCONTROLLER.READ(SECTOR.TABLECRNUM], B); 
DISKSCHEDULER.FINISH 

END 
END; 

BEGIN 
LIBRARYDIRECTORY.FINDFILE(F, LOCATION, FOUND); 
IF NOT FOUND THEN RESULT:= NOFILE ELSE 

BEGIN 
SECTOR. INTERPRETATION:* PHYSICAL; 
DISKSCHEDULER.STARTTOREAD(LOCATION, C); 
DISKCONTROLLER.READ(LOCATION, SECTOR.B); 
DISKCONTROLLER.FINISH; 
SECTOR.INTERPRETATION:* LOGICAL; 
RNUH:= 0; 
RESULT: = SUCCESS 

END; 
*** 
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The administration of the library directory is accomplished by a monitor 

that has one starred procedure, findfile. Since there are few library files a 

linear scan of the table will suffice. On its initialization the monitor reads 

its directory into main store and instructs the sector scheduler to reserve all 

those sectors occupied by the library. The librarydirectory monitor is shown 

in Listing 19. 

Listing 19 

MONITOR MODULE LIBRARYDIRECTORY; 

CONST 
HOMEADDRESS = (•* DISK ADDRESS OF THE DIRECTORY *); 
MAXFILE 2 73 (* MAXIMUM NUMBER OF LIBRARY FILES THAT CAN *) 

(* BE ACCOMMODATED IN A ONE-BLOCK DIRECTORY *); 

VAR 
DIRECTORY: RECORD CASE INTERPRETATION: (LOGICAL, PHYSICAL) OF 

PHYSICAL: (B: BLOCK); 
LOGICAL: (TABLE: ARRAY C1..NAXFILE] OF 

RECORD 
NAME: FILENAME; 
ADDR: ADDRESS 

END; 
LENGTH: 0..MAXFILE) 

END; 
NEXTFILE: 1..MAXFILE; 

PROCEDURE *FINDFILE 
<F: FILENAME; VAR LOCATION: ADDRESS; VAR FOUND: BOOLEAN); 

VAR NEXTFILE: 0..MAXFILE; 
BEGIN 

NEXTFILE:= DIRECTORY.LENGTH; 
REPEAT 

F0UND:= <F = DIRECTORY.TABLECNEXTFILE].NAME); 
IF FOUND THEN LOCATION:2 DIRECTORY.TABLECNEXTFILE].ADDR 

ELSE NEXTFILE:2 NEXTFILE - 1 
UNTIL FOUND OR (NEXTFILE 2 0) 

END; 

PROCEDURE RESERVESECTORSOFFILE (LOCATION: ADDRESS); 
VAR 

SECTOR: RECORD CASE INTERPRETATION: (LOGICAL, PHYSICAL) OF 
PHYSICAL: (B: BLOCK); 
LOGICAL: (TABLE: ARRAY C1..MAXBLOCK] OF ADDRESS; 

LENGTH: 0..MAXBLOCK) 
END; 

NEXTBLOCK: 1..MAXBLOCK; 
BEGIN 

SECTORSCHEDULER.RESERVE(LOCATION); 
SECTOR.INTERPRETATION:2 PHYSICAL; 
DISKCONTROLLER.READ(LOCATION, SECTOR.B); 
SECTOR.INTERPRETATION:2 LOGICAL; 
FOR NEXTBLOCK:2 1 TO SECTOR.LENGTH DO 

SECTORSCHEDULER.RESERVE(SECTOR.TABLE[NEXTBLOCK]) 
END; 
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BEGIN 
SECTORSCHEDULER.RESERVE(HOMEADDRESS); 
DIRECTORY.INTERPRETATION:3 PHYSICAL; 
DISKCONTROLLER.READ(HOMEADDRESS, DIRECTORY.B); 
DIRECTORY.INTERPRETATION:* LOGICAL; 
FOR NEXTFILE:= 1 TO DIRECTORY.LENGTH DO 

RESERVESECTORSOFFILE(DIRECTORY.TABLECNEXTFILE3.ADDR); 
*** 

Two points need to be noted about this monitor. Calls upon diskcontroiler.read 

need not be sandwiched between calls on the starttoread and finish procedures 

of the diskscheduler as there is no competition for the disk during this 

initialization. The other point is that a procedure reserve must be added to 

the sector scheduler. 

procedure ^reserve (a : address) ; 

begin 

pool [a.c, a.s] : = pool [a.c, yus] — [a, t] ; 

free [a.c] : = free [a.c] — 1 ; total : = total — 1 
end 

All the components of the filestore administration monitor can now be 

combined to produce Listing 20. 

Listing 20 

MONITOR MODULE FILESTORE; 

CONST 
♦MAXCHAR = 1023 <♦ IK CHARACTERS PER BLOCK *); 
♦MAXBLOCK = 500 (* UP TO 500 BLOCKS PER FILE *>; 
♦MAXNAME = 12 <♦ CHARACTERS PER FILE NAME ♦ ); 
CHAX = 200 (* CYLINDERS ♦ ); 
TMAX = 10 <♦ TRACKS *); 
SMAX = 3 <* SECTORS *); 

TYPE 
♦BLOCK = PACKED ARRAY [0..MAXCHAR] OF CHAR; 
♦ STATUS = ( ♦SUCCESS, ♦ENDOFFILE, •♦NOFILE ); 
♦FILENAME = PACKED ARRAY Cl..MAXNAME] OF CHAR; 
CYLINDER = 1..CHAX; 
TRACK = 1..TMAX; 
SECTOR = 1..SMAX; 
ADDRESS = PACKED RECORD C: CYLINDER; T: TRACK; S: SECTOR END; 
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MONITOR MODULE SECTORSCHEDULER = L 1ST 16 IN LIBRARY; 
(* PROCEDURE ♦ACQUIRE (VAR ADDRESS; CYLINDER) *) 
<* PROCEDURE *RELEASE (ADDRESS) *) 
(* PROCEDURE *RESERVE (ADDRESS) *> 
(* FUNCTION ♦ANYFREECYLSECTOR (CYLINDER): BOOLEAN *> 
(* FUNCTION *ANYFREEDISCSECTOR: BOOLEAN *) 

MONITOR MODULE DISKSCHEDULER = LIST15 IN LIBRARY; 
(* PROCEDURE *STARTTOREAD (CYLINDER) *) 
(* PROCEDURE *STARTTOURITE (VAR ADDRESS) ■*) 
(» PROCEDURE *FINISH *) 

MONITOR MODULE DISKCONTROLLER = LIST 14 IN LIBRARY; 
(* PROCEDURE *READ (ADDRESS; VAR BLOCK) *) 
(* PROCEDURE *URITE (ADDRESS; BLOCK) *> 

MONITOR MODULE LIBRARYBIRECTORY = LIST19 IN LIBRARY; 
<* PROCEDURE ♦FINDFILE (FILENAME; VAR ADDRESS; VAR BOOLEAN) *) 

ENVELOPE ♦LIBRARYFILE = LIST18 IN LIBRARY; 
(* VAR ^RESULT: STATUS *) 
<* PROCEDURE *READ (VAR BLOCK) *> 

ENVELOPE ♦FILE = LIST17 IN LIBRARY; 
<* VAR ♦RESULT: STATUS *) 
(* PROCEDURE ♦WRITE (BLOCK) *> 
(* PROCEDURE *READ (VAR BLOCK) *) 

BEGIN 
* * * 

END; 

Implementation Considerations 

Listings 1-20 constitute a reasonably complete operating system with only 

the most machine-dependent parts unelaborated. One task remains to be done 

and that is to convince ourselves that the space and time overheads of the 

operating system are acceptably low. 
Consider the time overheads first. The amount of computation per¬ 

formed by each routine of the operating system is very limited because we 

have avoided two dangers. One : the job descriptions are rudimentary—if 

they were not, the user processes would be engaged in much expensive 

character processing, although if a library program to interpret the job 

description were run as part of the user’s job the expense would be charged 

to the user rather than to the operating system. Two : the operating system 

trusts itself—naturally any supervisor call by a user program must be vali¬ 

dated, but in many systems each operating system routine insists on checking 

the validity of all parameters passed to it by other operating system routines : 

not only is this expensive but the protection afforded by this precaution is 
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almost invariably inadequate. There is, however, one significantly expensive 

operation in this system : the copying of data structures when passing para¬ 

meters on procedure calls and when passing data from one process to another. 

The former can be mitigated by passing a pointer to the data rather than 

passing the data themselves: this is potentially unsafe and, although against 

the spirit of Pascal, can be accomplished by passing parameters by reference 

rather than by value, thus in the diskcontroller monitor the procedure write 

might specify the block to be written as a variable : 

procedure *write (a : address ; var b : block). 

The problem of inter-process communication is more difficult : in Pascal Plus 

processes cannot communicate directly with one another but must pass data 

through a common monitor. Any amelioration of this problem in Pascal 

Plus or by resorting to machine code is clumsy and dangerous. A better 

solution appears to lie with languages, such as Hoare’s “Communicating 

Sequential Process” notation (Comm. A.C.M., 21, 666-77(1978)), that permit 

direct communication between processes. Indeed much copying may be 

avoided altogether if the data structure is represented as a process, although 

any saving in time must be offset by the increased time necessary to access that 
data structure. 

In this operating system the file system, with its IK character blocks, is 

the main contributor to unnecessary time overheads. It is also the main 

contributor to the space overheads since each of the twelve users will have up 

to four files, for each of which it will need space to hold both a sector table 

and a block, and the librarydirectory will need to hold the directory block 

and will also require another block during its initialization phase. These 

blocks account for much more than the 56K characters set aside for the 

operating system. The code of the operating system is limited in size— 

naturally the precise amount will depend upon the order code and architecture 

of the computer. The only other substantial data structure is the pool of 

free disk sectors held in the sector scheduler', this is an array of 600 sets, 

each of 10 members. Describing this data structure, and others, as packed 

may save a useful amount of space, depending on how the standard and 

packed representations differ from one another. Incidentally, some machine 

independence is lost when assumptions are made about data representations: 

for example, it has been assumed in this file system that a packed disk address 

occupies two characters, thereby enabling a 500 page file to be represented 

by a sector table of one block. The problem of the 98 IK buffers for the file 

system can be solved by recognizing that not all the sector tables and not all 

the blocks will be required simultaneously. For example, the library directory 

needs a second buffer only during its initialization phase, a user engaged in 
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spooling needs only two buffers to hold the sector table and the data of the 

file that is being read or printed, and a user that is neither spooling nor running 

needs at most one buffer to hold the sector table of a spooled file. Thus a 

pool of 31 buffers, each of IK characters, would suffice and should leave 

adequate space for the remainder of the operating system : indeed the choice 

of twelve user processes was somewhat arbitrary, as in a perfectly balanced 

system six would suffice; extra processes are provided to iron out fluctuations 

in demand for the use of resources and this number can be reduced to save 

space or increased to utilize spare space. 

Exercise 8 Amend the operating system to use a public pool of buffers, each of 
IK characters, in place of the file blocks and sector tables at present declared 
privately by the user processes. This entails programming a buffer pool and altering 
those parts of the system that will use the buffers, namely the user processes, the 
spoolers and the file and libraryfile envelopes. 

Exercise 9 Rewrite the filestore monitor to handle disk transfer failures. 

Postscript 

This operating system and several similar ones have been implemented in 

Pascal Plus (or its predecessor, PPP) by the author and by D. W. Bustard 

and have been run on a small ICL 1900 configuration or have been simulated 

on a large ICL 1900 installation—the simulation involves adding a monitor 

and an external file to represent each peripheral device (with a pseudo- 

random-number generator to simulate faults) and a process to represent 

each operator: the only change to the operating system is to replace the 

machine code to effect data transfers by calls upon the appropriate peripheral 

device monitors. The ability to simulate so easily is a great help in developing 

a system for a configuration whose hardware is not readily available during 

the testing stage: this is often the case, especially when developing a system 

to run on a variety of configurations. The ability to simulate the execution 

of an operating system is also of value when teaching a class of students, 

since they can then readily modify the system to cope with different con¬ 

figurations, to use different scheduling algorithms, or to provide different 

services. 
Nevertheless, the purpose of this book has not been to “sell” Pascal Plus 

but to use it to illustrate the application of structured programming to the 

design of difficult and challenging programs. 
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