

The WD9000 Pascal MICROENGINE[™] Microprocessor Chip Set

FEATURES

- Direct Execution of Pascal Intermediate Code (P-Code)
- High Level Language Programming with
 Assembly Language Efficiency
- 16-Bit Stack-Based Architecture
- Executes Full USCD Pascal, Version III.0
- Program Size to 128K Bytes
- 3.0 MHz Four-Phase Clock
- Four-Level Interrupt Structure
- Hardware Multiply/Divide
- Hardware Floating Point
- Single and Multi-Byte Instructions
- TTL Compatible Three-State Interface-
- Memory Mapped I/O

DESCRIPTION

The WD9000 Microprocessor is a 16-bit MOS/LSI Chip Set that directly executes programs written in the Pascal programming language at speeds five or more times greater than equivalent systems using interpreters. The Chip Set consists of five LSI components:

- Arithmetic Component contains the arithmetic logic unit, microinstruction decode, register file, and paths to control processor operation.
- Control Processor contains macroinstruction decode, portions of the control circuitry, microinstruction counters, and I/O control logic.
- MICROM Components three high-speed, 512 x 22 bit, custom MICROMs implement P-Code instructions.

The MICROENGINE[™] Microprocessor Chip Set is designed for a large range of applications which could gain from 16-bit throughput and/or direct Pascal execution. Pascal is a high-level programming language which provides an environment conducive to structured software development. The WD9000 Microprocessor Chip Set directly executes the University of California at San Diego (UCSD) Pascal System, Version III.0, which is widely used throughout the industry on eight- and sixteen-bit processors.

The WD9000 Microprocessor includes:

• P-Machine Architecture — implements the

Pascal MICROENGINE[™] Five Chip Set

UCSD Version III.0 P-Machine, an ideal architecture (stack oriented) for execution of Pascal programs. This approach replaces the alternative of software interpreters or compilation to architectures less suited for Pascal.

- Sixteen-Bit I/O and Data Paths for High Throughput — all address, data and I/O paths are sixteen bits wide.
- Stack Architecture for Reentrant and Recursive Programs — all Pascal programs are reentrant and recursive with no performance penalty
- High-Level Language Programming of I/O and Interrupts — simple access to device and system control provided in the Pascal language.
- Hardware Multiply/Divide 16-bit multiply and divide instructions.
- Floating Point Hardware instructions provide execution of floating point instructions using the proposed IEEE standard.
- Four-Level Interrupt Structure each level represents an interrupt priority.
- TTL Compatible Three-State Interface standard parts may be used to interface to the Chip Set.
- Memory Mapped I/O the language and Chip Set support memory mapped I/O, where I/O devices are accessed as memory locations.

WESTERN DIGITAL

BENEFITS

Use the WD9000 Pascal MICROENGINE[™] Microprocessor Chip Set has significant benefits for the system designer:

- High Performance throughput of the 16-bit CPU provides processing power needed for many applications.
- Lower Software Development Cost use of Pascal increases programmer productivity, decreasing software development costs over alternative approaches. These productivity increases are the result of the language's highlevel nature, extensive error checking, automatic reentrancy and recursion.
- Shortened Development Schedules critical software development schedules are shortened.

- Transportability programs written in the industry standard UCSD Pascal may be executed on other Pascal-based systems.
- Efficient Memory Utilization Since the P-Machine is an ideal architecture for Pascal execution, memory utilization is equivalent to that of software programmed in assembly language on other processors and less than on systems using interpreters or compilers operating on architectures not optimized for Pascal.
- System Reliability reliability, the probability that programs will perform their intended function, is improved by extensive compiler error checking. In addition, since Pascal programs are simpler statements of the algorithm to be executed than the alternative tools, reliability is further enhanced.

TYPICAL WD9000 CPU CIRCUIT

PIN ASSIGNMENTS

The following are pin assignments for the Pascal MICRO-ENGINETM Microprocessor Chip Set:

DATA CHIP PIN ASSIGNMENTS

PIN NO.	SIGNAL	PIN NO.	SIGNAL	PIN NO.	SIGNAL	PIN NO.	SIGNAL
1	ø3	11	DAL08	21	ø2	31	MIB07
2	V _{BB}	12	DAL09	22	WAIT	32	MIB06
3	DAL00	13	DAL10	23	MIB 15	33	MIB05
4	DAL01	14	DAL11	24	MIB14	34	MIB04
5	DAL02	15	DAL12	25	MIB13	35	MIB03
6	DAL03	16	DAL13	26	MIB12	36	MIB02
7	DAL04	17	DAL14	27	MIB11	37	MIB01
8	DAL05	18	DAL15	28	MIB10	38	MIB00
9	DAL06	19	V _{ss}	29	MIB09	39	V _{DD}
10	DAL07	20	ø4	30	MIB08	40	ø1

CONTROL CHIP PIN ASSIGNMENTS

NO.	SIGNAL	NO.	SIGNAL	NO.	SIGNAL	PIN NO.	SIGNAL
1	ø3	11	MIB16	21	ø2	31	MIB07
2	V _{BB}	12	REPLY	22	V _{cc}	32	MIB06
3	13	13	WAIT	23	MIB15	33	MIB05
4	12	14	DOUT	24	MIB14	34	MIB04
5	11	15	NC	25	MIB13	35	MIB03
6	10	16	IACK	26	MIB12	36	MIB02
7	MIB17	17	SYNC	27	MIB11	37	MIB01
8	BUSY	18	DIN	28	MIB10	38	MIB00
9	COMPUTE	1 9	V _{SS}	29	MIB09	39	V _{DD}
10	RESET	10	Ø4	30	MIB08	40	ø1

MICROM CHIP PIN ASSIGNMENTS

PIN NO.	SIGNAL	PIN NO.	SIGNAL	PIN NO.	SIGNAL	PIN NO.	SIGNAL
1	ø3	11	MIB16	21	ø2	31	MIB06
2	V _{BB}	12	MIB17	22	V _{CC}	32	MIB05
3	NC	13	NC	23	CS	33	MIB04
4	NC	14	NC	24	NC	34	MIB03
5	NC	15	NC	25	NC	35	MIB02
6	NC	16	NC	26	MIB11	36	NC
7	MIB15	17	NC	27	MIB10	37	MIB01
8	MIB14	18	NC	28	MIB09	38	MIB00
9	MIB13	19	V _{ss}	29	MIB08	39	V _{DD}
10	MIB12	20	Ø4	30	MIB07	40	Ø1

PIN FUNCTIONS

The following describes the function of each pin:

BUSY (TTL)

The BUSY is a Control signal from an external unit to the Processor requesting access to the bus. The signal can be used by a DMA unit to access the memory. The BUSY signal is interrogated at Ø3 by the Processor every time READ or WRITE instructions are taking place. Whenever the BUSY signal is found to be on, the Processor enters a WAIT state inhibiting any access operation from taking place. The Processor will resume normal operation as soon as BUSY is turned off.

CS

CS (Chip Select) is always connected to +5 Volts.

Ø1-Ø4 CLOCK CYCLES

These cycles may be generated by the CP 2143 Clock Chip or by external user supplied circuitry. Cycles occur every 83 nanoseconds, yielding a 333 nanosecond interval between each occurrence of a given clock.

COMPUTE (TTL)

The processor examines COMPUTE during every ø1 to determine whether or not it should execute the present microinstruction. In the case of a two cycle instruction, COMPUTE need be high only during ø1 of the first cycle. Among other things, COMPUTE may be used to control single stepping of microinstructions. This line should not be confused with the WAIT signal on the MIB bus.

DAL 00-DAL 15 (TTL)

Data/Address Lines, used to transfer addresses and data from the processor and receive data into the processor. Signals are logical true data.

DIN (TTL)

The DATA-IN (DIN) is a Control signal from the Processor to cause the address unit to gate its Read data on the Data lines. It is made high at the time the address is removed from the lines, or one cycle after the SYNC is made high (the second Ø2 of the INPUT) and is a function of the READ instruction. The DATA-IN is made low at the end of the Input Byte or Input Word instruction or when SYNC is made low. This signal can be used to control the enabling of external TTL Tri-State Bus Driver/Receivers.

DOUT (TTL)

The DATA-OUT (DOUT) is a Control signal from the Processor which is made high at the same time as the Write data (Ø1 following the OUTPUT) is placed on the DAL bus by the Processor. It remains high for the duration of the OUTPUT instruction, dropping one phase before the data is taken off the DAL bus.

IACK (TTL)

The IACK is a Control signal from the Processor

which signifies that the Processor is responding to an Interrupt. This signal is made high at the same time the SYNC is made high as a result of either 'RA' or 'WA' instructions, and stays high as long as SYNC is high.

10-13

10-13 provide four interrupt request levels to the chip set. Interrupts are tested by priority from 10 to 13. If an Interrupt is pending on any line the chip set will execute an Interrupt Acknowledge sequence. This sequence presents a 4 bit code on the DAL lines which provides mask capability to disable other interrupt levels.

MIB00-MIB10

These lines carry data bidirectionally between MICROM's and the Data and Control Chips. They are unconditionally precharged Hi at Ø4 by the MICROM's attached to the bus. At the following Ø1 they may have two different meanings, depending upon whether the Microinstruction presently being executed is a one cycle or a two cycle instruction.

If the Microinstruction executes one cycle, then the next \emptyset 1 conveys the next microinstruction from the Microinstruction ROM to the Data Chip and Control Chip.

If the Microinstruction takes two cycles, the second occurrence of \emptyset 1 may result in data being transferred from the Data Chip to the Control Chip. At \emptyset 2, address data is transferred from the Location Counter in the Control Chip to the MICROM. At \emptyset 3 the address data remains valid on the bus. The processor cycle is completed by an unconditional precharge of these lines by the MICROM at \emptyset 4.

MIB11-MIB14

These lines serve to convey Microinstruction data from the MICROM to the Data and Control Chips in much the same fashion as the preceding lines do. These lines are unconditionally precharged Hi by the MICROM at Ø4. At Ø1 of a single cycle they are conditionally discharged to represent Micrinstruction Data from the MICROM to the Data Chip and the Control Chip.

If the preceding Microinstruction was of the 2-cycle variety, the second occurrence of \emptyset 1 on these lines can carry data from the Data Chip to the Control Chip. These lines have no other significance during \emptyset 2 and \emptyset 3.

MIB15

MIB15 is used to carry Microinstruction data from the MICROM to the Data Chip and Control

Chip and also to transfer the results of conditional jump tests from the Data Chip to the Control Chip.

This line is precharged Hi unconditionally by the MICROM at Ø3. At Ø4 it can be conditionally discharged by the results of a conditional jump test.

At \emptyset 1 this line conveys the microinstruction data from the MICROM to the Data and Control Chip. In the case of a microinstruction whose execution takes two cycles, the second occurrence of \emptyset 1 may serve to convey data from the Data Chip to the Control Chip. The contents of MIB15 are not significant at \emptyset 2. The cycle is completed by an unconditional precharge of MIB15 at \emptyset 3.

MIB16

This control line conveys data from the ROM to the Control and Data Chips and from the Control Chip to the MICROM. It is unconditionally precharged HI at Ø2 and Ø4. At Ø1 following Ø4 it may conditionally discharge low by the MICROM in which case the signal is interpreted by the Control Chip as a command to load the subroutine Return Register with the incremented content of the Location Counter. On Ø2 the lines are unconditionally precharged Hi. At Ø3, the Control Chip may conditionally discharge this line. If it does so, this is an instruction to the selected MICROM to disable its outputs at the next Ø1. In this fashion, 2 cycle instructions inhibit the transfer of new microinstructions from the MICROM to the Control Chip and the Data Chip.

MIB17

MIB17 conveys the READ NEXT INSTRUCTION imperative from the MICROM to the Control Chip. This line is unconditionally precharged by the MICROMs attached to the Microinstruction Bus and conditionally discharged at Ø1. A discharge indicates that the RNI imperative is required.

REPLY (TTL)

The REPLY is a Control signal used by the addressed unit to respond to the Processor's Data Access signals.

The REPLY signal must be high during Ø3 of the INPUT or OUTPUT microinstruction execution cycle in order for this operation to complete. The REPLY signal is also interrogated by READ and WRITE microinstructions and it must be low during Ø3 in order for these operations to take place.

RESET (TTL)

Activation of the RESET line causes the Microprocessor to force 001 into the Location Counter. A NOP is also forced into the MIR and the MI registers. SYNC and DATA-IN are both reset. The RESET line can be wired to a POWER ON reset or it may be used by the program for its own purposes.

SYNC (TTL)

The SYNC is a Control signal used to initiate and signify the length of a Data Access operation. SYNC is made high as soon as an address becomes valid. This occurs at Ø2 following a READ or WRITE. It remains high until the termination of the operation.

VBB

-5 Volt Supply

Vcc

+5 Volt Supply

V_{DD} +12 Volt Supply

Vss

Logic Ground

WAIT

The WAIT Line from the Control Chip to the Data Chip establishes whether or not the Data Chip is in the RUN or WAIT mode. Whenever the WAIT control line is in the Low state, the Data Chip is in the RUN mode and the Microinstruction will be loaded into the MIR register and executed. This line is normally Low and must be driven Hi during Ø4 to cause the Data Chip to enter the WAIT state. It always returns to Low when the beginning edge of the Ø1 clock appears.

WRITE/OUTPUT SEQUENCE

	01	READ	04		WAIT) 03 04	INPUT (LOW B	3 04		HBYTE) 03 04	01 02
AIT									lan di selamber Maria	$ \rightarrow $
AL				AD	DRESS	>		DATA	IN	Y
NC										
N				<u> </u>	\geq	3	•			
PLY					2		¥		\checkmark	
	1. "SYNC 2. "REPL 3. "DIN	C" IS MADE	HIGH AS SO OW ON 03 C IIGH AS SOO N" MUST BE	ON AS A VALI AUSES THE IN N AS THE ADI HIGH ON 03 II	D ADDRESS IS IPUT SEQUENC DRESS IS TAKE N ORDER FOR	ON THE BUS (02) SE TO BE REPEATED IN OFF THE BUS (02) "INPUT" OPERATION	AS FUNCTION	I OF READ MIC	ROINSTRUCTION	Ň

READ/INPUT SEQUENCE

INTERRUPT ACKNOWLEDGE SEQUENCE

DATA CHIP INTERFACE TIMING

CONTROL SIGNALS TIMING

. · TCYC т_т т_т T_{PW} 1 CLOCK PHASE 1 тсw 2 . CLOCK PHASE 2 з CLOCK PHASE 3 CLOCK PHASE 4 - Тмот тміт -. TPRE MIB₁₆ 2 3 1 TMOL тміт -TMIS тмот T_{AH} TAS MICRO INSTR BUS (MIB00-MIB15, MIB17) J TMOL MIB15 IS PRECHARGED AT 03 -1 ${}^{\mathsf{T}}{}_{\mathsf{A}}{}^{\mathsf{T}}$. F TPRE APPLIES

.

NOTES: 1. <u>MIB L</u>INES EXCEPT MIB15 ARE PRECHARGED HIGH AT PHASE 4 2. <u>MIB16</u> IS ALSO PRECHARGED HIGH AT PHASE 2 3. MIB16 IS DISCHARGED TO DISABLE THE MIB00-MIB15 AND MIB18-MIB21 OUTPUTS AT PHASE 1 FROM DISCHARGING LOW 4. ADDRESS INPUT TRANSITIONS OCCUR ONLY ON MIB00-MIB10 LINES AND CHIP SELECT 5. SWITCHING TIMES ARE MEASURED AT 10% AND 90% OF SPECIFIED LEVELS

MICROM TIMING DIAGRAM

Pascal MICROENGINE[™] Instruction Set Format

Instructions are one byte long, followed by zero to four parameters. Most parameters specify one word of information, and are one of five basic types.

- UB Unsigned byte: high order byte of parameter is implicitly zero.
- SB Signed byte: high order byte is sign extension of bit 7.
- DB Don't care byte: can be treated as SB or UB, as value is always in the range 0...127.
- B Big: this parameter is one byte long when used to represent values in the range 0...127, and is two bytes long when representing values in the range

128...32767. If the first byte is in 0...127, the high byte of the parameter is implicitly zero. Otherwise, bit 7 of the first byte is cleared and it is used as the high order byte of the parameter. The second byte is used as the low order byte.

W Word: the next two bytes, low byte first, are the parameter value.

More detailed information on the Pascal MICROEN-GINE[™] instructions (P-Code) is contained in the Pascal Operations Manual.

These mnemonics are intended only for further understanding of P-code. Neither the Microengine Company nor the University of California at San Diego provide P-code assembler software.

Mnemonic Instruction Code		Parameters	Description
Constant One Wo	ord Loads		
SIDC	n ar		Short Lord Word Constant Wellin D 211
LDCN	152		Load Constant Nil
LDCB	128	τıß	Load Constant Byte
LDCI	129	Ŵ	Load Constant Word
LCA	130	В	Load Constant Address
Local One Word	Loads and Store		
SIDIT 16	33 37		Chart Land Land Ward
LDI	195		Load Local Word
LLA	132	8	
STL	164	B	Store Local
Global One Word	L oads and Store		
CI DO1 10			
	40DJ		Short Load Global Word
	100		Load Global Address
SRO	185		Store Global Word
Intermediate One	Word I hade and		
	- and the street	UB, 8	Load Intermediate Word
LUA	130	DB, B	Load Intermediate Address
SIN	100		
Indirect One-Wo	rd Loads and Store		
STO	196		Store Indirect
Extended One-W	ord Loads and Stor		
LDE	1	l lis s	Load Word Extended
LAE	155	UB. B	Load Address Extended
STE -	217	UB, B	Store Word Extended
Multiple Word Lo	ads and Stores (Se	ts and Reals)	
LDC	1- 1-1-		Load Multiple Word Constant
LDM	208	UB SUB	Load Multiple Words
STM	142	UB-	Store Multiple Words
Byte Arraye		I a constant	
		T	
CTD	107	Company Concerns	

Mnemonic	Instruction Code	Parameters	Description
Record and Array	Indexing and Ass	Ignment	
MOV	197	.	. Move Words
SIND07	120127		Short Index and Load Word
	230	8 8	Static Index and Load word
	215	B	Index Array
İXP	216	UB1, UB2	Index Packed Array
LDP	201		Load A Packed field
STP	202		Store Into A Packed Field
Logicals			
LAND	- 161		Logical And
LOR	160	1750 - 1 760 - 17	Logical Or
LNOT	229		Logical Not
	180		Compare Unsigned Word <=
GEUSW	161		
Integers			
ABI	224		Absolute Value of Integer
NGI	225		Negate Integer
ADI SBI	162		Add Integers Subtract Integers
MPI	140		Multiply Integers
DUP1	226		Copy Integer
DYI	- 141		Divide Integers
MODI	143		Modulo Integers
	203		Check Against Subrange Bounds
	- HO 177		Compare Integer =
LEOI	178		
GEOI	179		Compare Integer>=
Reals (All Over/U	nderflows Cause a	Run-Time Error)	
FLT	204		Float Too-of-Stack
TNC	190		Truncale Real
RND	3 70 1		Bound Real
ABR	227		Absolute Value of Real
ADH	.192		Add Reals
NGA Y	100 200		Subtract Bools
MPR	1 194	1	Multiply Beals
DUP2	198,		Copy Real
DVR	195		Divide Reals
EQUREAL	205		Compare Real =
CEOREAL	206		Compare Real <=
TOEVINEAL SE		No. 200 Territor	
Sets			
ADJ	19 9 (199	1	Adjust Set
INN		1 States	Build Subrange Set
INT SAME	2020		Set Intersection
E DIF	1.1.21 公社	Land Street	Set Difference
E EQUIPME	2-2-182 Jan		Set Compare +
ELEOPWR	184	T States -	Set Compare <= (Subset of)
			E Superset off a state

Mnemonic	Instruction Code	Parameters	Description		
Byle Arrays					
EQUBYT	185	В	Byte Array Compare =		
LEQBYT	186	В	Byte Array Compare <=		
GEOBYT	187	в –	Byte Array Compare >=		
Jumps					
UJP	138	SB	Unconditional Jump		
FJP	.212	SB	False Jump		
EFJ	210	SB	Equal False Jump		
NFJ	211	SB	Not Equal False Jump		
UJPL	139	W	1 Unconditional Long Jump		
FJPL.	213	W	False Long Jump		
XJP	,	8	Case Jump		
Procedure and Fu	nction Calls and R	leturns			
CPL	144		Call Local Procedure		
CPG	145 × *	UB Com	Call Global Procedure		
CPI	146	DB, UB	Call Intermediate Procedure		
CXL	147	UB1, UB2	Call Local External Procedure		
CXG	148	UB1, UB2	Call Global External Procedure		
CXI	149	UB1, DB, UB2	Call Intermediate External Procedure		
CPF	151		Call Formal Procedure		
HPU	150	B	Return From User Procedure		
	153	DB	Load Static Link Onto Stack		
NOP	1 36		No Operation		
SIGNAL	222		Signal		
	467		wait on Semaphore		
CDD			LOAD PTOCESSOT HEGISTER		
orn DDT	150		Diore Processor Register		
	150		Dicak FUIII		
SWAD	190	17	Swan Too of Stack with Novi to Too of Stack		
	IUJ .		A Durah Indan olary multimest in 100-01-0190K		

ABSOLUTE MAXIMUM RATINGS OVER FREE AIR TEMPERATURE RANGE (Unless Otherwise Noted)*

Supply Voltage V _{DD} (See NOTE)	– 0.5V to 15V
Supply Voltage V _{CC} (See NOTE)	– 0.5V to 15V
Supply Voltage V _{BB} (See NOTE)	- 10V to 1.0V
Clock Voltage (See NOTE)**	– 1.0V to 15V
All Other Pin Voltages (See NOTE)	- 1.0V to 15V
Operating Free Air Temperature Range	0°C to 125°C
Storage Temperature Range	– 55°C to 125°C

NOTE: These voltage values are with respect to V_{SS} Supply Voltage. If V_{BB} is more positive than any other voltage, then I_{BB} must be limited to 10 ma.

- *Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum-rating conditions for extended periods may affect device reliability.
- ** The other three clock voltages must be between 0.5V and -0.6V except for switching overlaps. Not more than one clock may be high at any one time.

Applying power to the part may be any sequence of conditions that do not violate the maximum ratings specified on this sheet.

OPERATING CHARACTERISTICS

-

$T_{CASE} = 0^{\circ}C \text{ to } 70^{\circ}C, V_{D}$	$_{\rm DD} = +12.0 \pm .6V,$	$V_{BB} - 3.9 \pm .25V$,	$V_{ss} = 0V,$	$V_{\rm CC} = +5V \pm$: .25V
--	------------------------------	---------------------------	----------------	------------------------	--------

SYMBOL	CHARACTERISTIC	MIN	ТҮР	MAX	UNITS	COMMENTS AND CONDITIONS
L	Leakage Current for any Pin Other than Clock or Power			±10	μA	V _{IN} = 5.25V/0V
H _{BB}	V _{BB} Supply Current	ر بر این میں اور		- 500	Αų	$V_{BB} = -5.25V$
lic	Clock Leakage Current	() () () () () () () () () () () () () (± 100	μA	V _{CLOCK} = 13.7V/0V
	Average V _{CC} Operating Current*		10.0	20.0	mA	T _{CYC} = 300 nsec C _L = 25 pf
	Average V _{DD} Operating Current	ere deste de Second	10.0	20.0	mA	$T_{CYC} = 300 \text{ nsec}$ $C_L = 50 \text{ pf}$
VIHM	Input High Voltage (All Inputs)	4.0	VCC	V		
VILM	Input Low Voltage (All Inputs)	0.0	0.8	v		
V _{OHM}	Output High Voltage (MOS)	4.35	V _{cc}	V	$I_0 = -30 \mu A$	
V _{OHT}	Output High Voltage (TTL)	2.4	V _{cc}	v	$I_0 = -50 \mu A$	
VOLM	Output Low Voltage (MOS)	V _{SS}	0.4	— V -	I _O = 100 μA	
VOLT	Output Low Voltage (TTL)	0.0	0.4	V.	l _o = 1.8 ma	
Vov	Overlap Voltage of Any Two Adjacent Clock Phases	0.0	3.0	V		
V _{сн}	Clock High Voltage (SEE NOTE)	11.8 12.0	13.0 13.7	v .	$V_{DD} = 11.4$ $V_{DD} = 12.6$	
V _{CL}	Clock Low Voltage (SEE NOTE)	-0.6	0.5	v .		

NOTE: Linear interpolation applies for $\rm V_{CH}$ when $\rm V_{DD}$ is between 11.4V and 12.6V. No overshoot or undershoot allowable.

*Note: The majority of this current is used to precharge the output capacitance, C_L ; and therefore, is proportional to the C_L precharged by the MICROM and the frequency of discharge.

AC CHARACTERISTICS

· mun							
TCASE	= 0°C to 70°C,	$V_{DD} =$	$+ 12V \pm .6V$,	$V_{BB} = -3.9V =$	± .25V,	$V_{ss} = 0V, V_{cc} = +5.0V$	± 0.25V
						「行動系的にもい	

SYMBOL	CHARACTERISTICS	MIN	ТҮР	MAX	UNITS	CONDITIONS
T _{PW}	Clock Width High (All Phases)	55		240	nsec	
T _{cw}	Clock Width Low (All Phases)	75		300	nsec	
Τ _Τ -	Clock Transition Time (All Phases)	5			nsec	
T _{CYC}	Clock Period (All Phases)	300		1000	nsec	
T _{MOL}	Output Propagation Delay from Ø1 Clock			35	nsec	$C_{L} = 50 \text{ pf}$
T _{PRE}	Time to Precharge Outputs High			55.	nsec	C _L = 25 pf
T _{MIS}	Input Set-Up Time on MIB16 at Phase 3	20		- :	nsec	
T _{TOL}	TTL Out Switching Low			55	пзес	
T _{AS}	Address Set-Up Time	5			nsec	
T _{AH}	Address Hold Time	Ō			nsec	
T _{MOT}	Output Transition Start Delay Time			- 20	nsec	C ₁ = 50 pf
T _{MIT}	Input Transition Start Set-Up Time	35			nsec	
T _{AT}	Address Transition Start Set-Up Time	-25			- NSEC	

CAPACITANCE

SYMBOL	CHARACTERISTIC	MIN	TYP	МАХ	UNITS	CONDITIONS
C _{ø1}	Clock Phase 1 Capacitance		-20	- 50 -	pt]	
C _{ø2}	Clock Phase 2 Capacitance		40	60	.pf	V _{IN} = OV
C _{ø3}	Clock Phase 3 Capacitance		20	50	pt [$v_{ss} = 0v,$
C _{Ø4}	Clock Phase 4 Capacitance		50	100	pf	
<u>r</u> Co	Data Input/Output Pin Capacitance		5. 0	8.0	pf _	т _{вв} — — 0.5 v
C _c	Clock to Clock Capacitance		3.0	6.0	pt J	Constant Section

RELATED PRODUCTS

MICROENGINE[™] company products include:

- WD900 Pascal MICROENGINE[™] Single Board Computer — MICROENGINE[™] CPU, 64K Bytes of RAM, 2 Parallel Ports (110-19.2K Band), 2 Serial Ports, Floppy (Single or Double Density, Standard or Mini) Disk Controller with DMA.
- WD90 Pascal MICROENGINE[™] Computer Pascal MICROENGINE[™] Single Board Enclosed in Low Profile Housing With Power Supply.

Western Digital Corporation supplies other components useful in designing systems based on the Pascal MICROENGINE[™]. These include:

- FD1700 Series Floppy Controllers. For mini and standard floppy diskettes, single and double densities, IBM and non-IBM compatible. Also, Z80/8080 bus-compatible versions.
- DM1883 Direct Memory Access Controller.
- WD 2143 System Clock for MICROENGINE[™] Chip Set.
- Communication products including UART, PSAT/PSAR, ASTRO/USART, BOART, SDLC, and Data Encryption.

This is a preliminary specification with tentative device parameters and may be subject to change after final product characterization is completed.

Information furnished by Western Digital Corporation is believed to be accurate and reliable. However, no responsibility is assumed by Western Digital Corporation for its use; nor any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Western Digital Corporation. Western Digital Corporation reserves the right to change said circuitry at any time without notice.

The MICROENGINE Company is a wholly-owned subsidiary of Western Digital Corporation

ERN DIGITAL

3128 REDHILL AVENUE, BOX 2180 NEWPORT BEACH, CA 92663 (714) 557-3550, TWX 910-595-1139

A a real real and a bandar bea