
-..\ C" ,. - - .

The individual characters ~~thin a string are indexed from 1 to the length of
the string. A string variable may not be indexed beyond its current dynamic
leng th.

String variables may be compared (=, <>,
variables, no matter what the current
lengths of two strings being compared are
extended to the length of the longer
based on the ASCII collating sequence.

>, < , >=, <-) to other string
dynamic length of either. If the
unequal, the shorter string is

by append ing blanks. Comparison is

A common use of string variables in UCSD Pascal is reading file names from
the console device. v.Then a string variable is used as a parameter to READ or
READLN, all characters up to the end-of-line character (carriage return) in
the source file will be assigned to the string variable. In reading string
variables, the single statement READLN(SI,S2) is equivalent to the two
statement sequence:

3.6.17

READ (S 1);
READLN(S2) ;

WRITE and WRITELN

The procedures WRITE and WRITELN follow the conventions of Standard Pascal
except when applied to a variahle of type BOOLEAN. UCSD Pascal does not
support the output of the words TRUE or FALSE when writing out the value of a
boolean variable.

For ~Titing variables of type STRING, see Section 3.1.3, String Intrinsics.
When a string variable is written without specifying a field width, the actual
number of characters ~T itten is equal to the dynamic length of the string. If
the field width specified is longer than the dynamic length, leading blanks
are inserted. If the field width is smaller, excess characters will be
truncated on the right.

3.6. 18 Implementation Size Limits

The maximu~ size limitation of UCSD Pascal are:

1. ~iaxiIilum number of bytes of obj ect code in a procedure or function
is 1200. !-faximurn number of words for local variables in a
procedure or function is 16383.

2. Max1mu~ number of characters in a string variable is 255.

3. Maximum number of elements in a set is 255 * 16 = 4080.

4.

5.

Haximum number of segment
w~ich nine are reserved for
available to the uSer.

procedures and functions is 16, of
the Pascal system anG seven are

Maximum i.~ber of procedures or functions within a segment is 127.

Page 82

..... ~'.;.~ .
....

.~. -

, "

i :"~ .. -
L

"
~"

;"
f

r '" .
I ~

f

t

I
f

I

I
I
I

I
I
i
I

I
. !

i
I

I
I

I

I
I ,
:

. j
.!
j'

i

. \
i

---.......... ---- .. _.-.-.....:._".- -

3.6.19 Ex tended Comparisons

UCSD Pascal permits = and <> comparisons of any array or record structure.

3.7 INTRODUCTION TO THE PASCAL MACHINE

The following sections discuss aspects of software control of the Pascal
HICROENGINE. Topic s covered incl ude code file represen ta tion, prog rae
execution, operating system structure, bootstrapping of the operating systeo,
concurrent task (process) representation, and task control primitives.

3.7.1 Operating System Structure

The Pascal compiler emits code which runs directl y on the ~m9000 micro
processor. The compiler, screen editor, operating system, and all utilities
are themselves written in Pascal and use this instruction set.

Figure 3-18 is a skeleton version of a large Pascal program, the operating
system, here in after referred to as "The Program". This document is a top
down description of the realization of that program on the UCSD Pascal
system. We will oake occasional use of a helpful coincidence; The Program is
the framework of the po~tion of the UCSD Pascal environment that's written in
Pascal.

If The Program were expanded to a complete Pascal system, it would consist of
several thousand lines of Pascal and compile to more than 50,000 bytes of
code--too big to fit all at once into the memory of a small machine (current
definition of small). USCD Pascal has therefore been extended so that a
programmer can explicitly partition a program into segments; only some of
which need be re s ident in main memory at a time. The syntax of this
extension is shown in Figure 3-12. (An y syntactic objects not defined
explicitly there retain t heir standard interpretation as defined by Jensen &
Wirth: Pascal User Manual and Report.)

<program> ::= <program heading> <segment block> •

<segment block> ::= <label declaration part>
<constant declaration part> <type definition part>
<variable declaration part> <segment declaration part>
< segment bod y>

<segment declaration part> '::= SEQtENT <procedure heading>
<segment block>; I SEG~ENT <function heading>
<segment block>;

<segment body> ::= <procedure and function declaration part>
<statement part>

Figure 3-1 2. Segment Declaration Syntax

Page 83

---...,.---- -
-~.-:--- '-''';-";

.-- - .. ------~

.. ' .
.... ~ ..

':""

~~ . ,,-,(-:'

~. ~~. :.

':'l~;:- ~
.' ~'~:.-...... ,~

#:~"::~: 7

7>- ;'.

' ~{~F

;~{y.
. L~;\~. :

;E;~

. '.:;

- $

Segment declaration syntax (Figure 3-12) requires that all nested segments
be declared before the ordinary procedures or functions of the segment body.
Thus, a code segment can be completely generated before processing of code
for the next segment starts. This is not a functional limitation, since
forward declarations can be used to allow nested segments to reference
procedures in an outer segment body. Similarly, segment procedures and
functions can themselves be declared forward.

Segmenting a program does not change its meaning in any fundamental sense.
~~en a segment is called, the operating system checks to see if it is present
in memory due to a previous invocation. If it is, control is transferred
and execution proceeds: if not, the appropriate code segment must be loaded
from disk before the transfer of control takes place. When no more active
invocations of the segment exist, its code is removed from memory. Clearly,
a program should be segmented in such a way that (non-recursive) segment
calls are infrequent; otherwise, much time could be lost in unproductive
thrashing (particularly on a system with low performance disk).

location 31
PASCALSYSTEM

size I 8

I 0

USERPROGRAM
o

11
SYSCODE

4399

24
CSPCODE

3153

PRINTERROR
656

A
GETCMD

506

Figure 3-13. The Segment Dictionary

Page 84

I'
I

I
I
!
J
I
i-
I

I

i ,
1-
I_

I-
1.--
t -

t-- -
!

1
! '

t
!

,-

f
~
r

I
::-

< ~ .. '
~ .:~-~:'

... =

<~t· .. ~

~ V '

. ~.X;:r··
..
i.

~ ,

. .~':~:-:

p"'::- :.:;:' /

. ~

. \ :-

~ j
I

j

The code file of The Program is a sequence of
segment dictionary. Code segments consist
512-byte disk allocation quantum, and each code
boundary. The ordering (from low address to
the order that one encounters segment procedure
Program.

code segments preceded by a
of a sequence of blocks, a

segment begins on a block
high address) is determined by
bodies in passing through The

The segment dictionary in the first block of a code file contains an entry
for each code segment in the file. The entry includes the disk location and
size (in words) for the segment. The disk location is given as relative to
the beginning of the segment dictionary (which is also the beginning of the
code file) and is given in number of blocks. This information is kept in
the segment vector during the execution of the code file, and is used in the
loading of non-present segments when they are needed. Figure 3-13 details
the layout of the table and shows representative contents for the Pascal
system code file.

A code segment contains the code for the body of each of its procedures,
including the segment procedure, itself. Figure 3-14 is a detailed diagram
of a code segment. Each of a code segment's procedures are assigned a
procedure number, starting at 1 for the segment procedure, and ranging as
high as 255 (current temporary limit of 127). All references to a procedure
are made via its number. Translation from procedure number to location in
the code segment is accomplished with the procedure dictionary at the end of
the segment. This dictionary is an array indexed by the procedure number.
Each array element is a segment base pointer to the code for the
corresponding procedure. Since zero is not a valid procedure number, the
zero'th entry of the dictionary is used to store the segment number (even
byte) and number of procedures (odd byte). The outer block code is generated
and appears last.

Page 85

-

r ..
i,
i -

f
I
f

r· .:

r
r-. ;
1 -- -
~ .
t .

!

~.

!.

<~.~ .'

~ .. ~ •. l
• . ,.;;: .. :\0-

~~~g' .. 
. :'~~1~;'~~ ~ 

. ~~~.:~.: . 
':;'~::" " " 

~, ,~&:, 
~{i-t 

. ... .;~ 

.. .• r .. •• 

• ...:=;~~. -:: . 
~ .. : . 

-:~ . . : .~ ... ~ .... 
. t;.;;~~·: .. 

~ .. 1l-: . 
:. ~ .. ,,' 

"':' . 

~ - ':'" 'j," 
- )"\ :, 

~~~." ... 


high addresses
odd even

1 Num~ er of procedures 1 Segment Number 1
1 in dictionary 1 1
1---1
1 Procedure #1 1--1
1 - - - - - - - - - - I 1

1----1 Procedure #2 1 1
1 1 - - - - - - rest of - - - - - - 1 1
1 1--1 - - - - - - -procedure dictionary - - - - I 1
1 1 1---1 1
1 1 1 1 I
1 1 1 outer block code 1 <-I
1 I 1 1

1 1 1---1
1 1 1 other procedures of the Pascal system 1

1 1 1---1
1 1-> I Proced ure #3 code 1
1 1---/
1--->1 Procedure #2 code 1

1---1
1 Number of words in segment 1

1 1

low addresses

Figure 3-14. A Code Segment

A more detailed diagram of a single procedure code section is seen in Figure
3-15. It consists of two parts: the procedure code itself, and a table of
attributes of the procedure. These attributes are:

EXIT IC: This is a segment-base-relative byte pointer to the beginning of the
block of procedure instructions which must be executed to terminate procedure
properly.

DATA SEGMENT SIZE: The data size is the size of the procedure data space
(pa~ameters and local variables) in words, excluding the markstack size.

Page 86

i
I
I
t .
i

'"

j

I "

1""

[".
! ,

I

: ;;:!:y:~J>"
A~';' ~ 4-

~}': .

. ~L:;;' ·

_:1{:;,
. " -: :' ~

: ~;.~~i~ :

.. .:. ...

..~.~ .. .

. ~-

' .. !"~

--

......

1
1

1--->1
1 1

1 1
1 1
1 1

high addresses

(exit code)
1
I
1

- - - - - - - - - - 1

Procedure
Code

1

1

1

1

1

1

1 I

1---------------------------1 I
1 Data Segment Size 1<--------1

1 1---------------------------1 1
1----1 Ex it IC 1 1

1 1

low addresses

Procedure
Dictionary

Pointer

Figure 3-15. Procedure Code Section

Figure 3-16 is a snapshot of system memory during the execution of a call to
procedure GETC~m, which is the command processor of the , operating system.
SYSCOM serves as a communications area between the bootstrap and the
operating system. The operating system tables consists of the TIB (task
information block) and the segment vector, which is an array of information
about active program segments. The Pascal heap is next in the memory layout;
it grows toward high memory. The single stack growing do~~ from high memory
is used for 3 types of items: 1) temporary storage needed during expression
evaluation; 2) a data segment containing local variables and parameters for
each procedure activation; and 3) a code segment for each active segment
procedure.

Page 87

... -~...,. ._--_._-.... . -.- ----

1 ~:
i .

t
1
r
i. '
J.

f ' ~ -
t,
i
!.
i
~ . '

I
i
!
t
}
f .
I

. '.! ~:-...
.• "; ;':'t __ ~

. , '~ ..
" !.,-

: ~ :.?fl

.. ;~.!; . •
:.;;~~~.;~:- ..

,~S}'
~~."

. . "" .:-.~ . .: -
-.'7.6;r.7 ;

- ' ~ .~

.. ~ ~~~0' .

, ·~Wx.~·
'. ::~::j: :

. ~ ..
;- ".J. :

~; ;

- ,'-
, . ;'

.-:
.::;.,::.;,::..-

:. ';l -2: -~
....... . . "' ..

"'iI ' :' .. . ':r.~~
'/' .

'-:;..t_,

:: • ,: .c;-..:.
"'",.,.

... .rf ~
. ; -

hig h addresses

Code Segment 0 ,
- - - - - I

Code Segment 3 I
CSPCODE I

------ ,
markstack I - ------ - - - - I
Code Segment 2 I

SYSCODE I
- - - - - - I

marks tack , .
- - - - - - - - - - - I

Code Segment 6 I
GETCtm ,

------ - - - - - I
marks tack I
------- - - - - I

<Available Memory> I
- - - - - I

I
HEAP I

I
- - - - - - - - I

'Operating System Tables' , and ,
, SYSCOM ,
I - - - - ,
I Interrupt Vectors I
I - - - - - - - - - I
I ,

low addresses

Figure 3-16. System Hemory During Operating System Execution

Consider the status of
Conceptually, there are
memory:

operations just before a procedure call.
five pseudo-variables which point to locations in

a STACK POINTER(SP): which points to the current top of
the stack,

a MARY. STACK POINTER (MP): whic h po ints to the "topmost"
markstack in the st~ck, (remember that the stack grows
down!) ,

Page 88

r

,
I'

i

I
I r ,-.

,-- .

l ,-

i

f ,:"
f.
I

I -

I _

t

I ,
! .
t-
0-

r
I -

I .---- --- -~

. ,
~'. '

.... 1

.. -~.-..

: .. ~~:::

•• !< •• ,

or ~.,... ,-
. '~'"

'- . . -};

.... :-.:..

.~

: ~

-.

a SEGMENT POINTER(SEGB): which points to the base of the
code for the currently active segment proc'edure,

an INSTRUCTION PROGRA~ COUNTER(IPC): which contains the
byte offset from the base of the code segment of the next
instruction to be executed,

and (SPLOW): which points to the current top of the heap,
and also serves as the stack limit poin ter.

When a segment procedure is called, its code segment is loaded on the stack.
The data segment is bui1 t on top of the stack. Figure 3-17 is a diagram of
a data segment.

high addresses

~--------------------<--I I I I
1-----------------------1 I
1 1 I
1-----------------------1 1--> local variables
I 1 I
1-----------------------1 1
I I 1
1-----------------------1<--1
1 MSFLAG 1 MS SEG 1 1
1-- 1 1
1 MSIPC 1 I
1-- I 1--> markstack
,I MSDYNL 1 I
1-- - I I

1----/ 1 MSSTAT / 1
I MP /-->/-- - /<--1
I_I

low addresses

Figure 3-17. A Data Segment

In the upper portion of the data segment, space is allocated for variables
local to the new procedure.

In the lower portion of the data segment is a "markstack". When a call to
any procedure is made, the current values of the pseudo-variables, which
characterize the operating environment of the calling procedure, are stored
in the markstack of the called procedure. This is so that the execution
state may be restored to pre-call conditions when control is returned to
the calling procedure. "

Page 89

....,.-~. - ...

(.

"
I

I

I
I
I
I'
I '

1-

j

i
~ ,

i

t ,.
t

i
i

I
f
I

i
I
1
t

i

I
t
I

t t - -
I

I
~
•

~"".::
~ :~\:.~ 0* - ., - ;",

. '? -

. :f;- -
. ~ ,,'.

:.: ~ '.
- ; : ..

.... :. (, • ., ;o .. ~ ••

-- . -2:~-

. ',,~::.;, ,'
~,' ;:~ .

. :; ,.-.:, -

.:. .. .

.:--

" .

