

"

4'

I

Reply with D for D(ebug to invoke
If a code file does not currently exist. the system will compile the
work file. just like R(un.

Breakpoint handler prompt:

Debug: R(esume, I(nsert. Leist. C(lear breakpoints, 'Q(uit (2)

Reply:

R(esume:

I(nsert:

to continue running the user proram.

to insert one or more breakpoints { max number = 10 }
For breakpoint, tne Breakpoint handler will prompt:

Enter segment number: (enter number in deCimal); (3)
Enter procedure number:
Enter procedure IPC:

Validity checking Is done for each value.
If the insertion is successful, then about the
breakpoint will be displayed:

Index: i. SI <aeg> pI <proc> IPC <proc-ipc>(in hex) Op-code <op>(in hex)

L(ist:

then the Breakpoint handler will prompt:

Insert another breakpoini ? (Y or N)

Reply:
Y: to go back to (3);
N: to stop the insertion and go back to (2).

to list all breakpoints or to display 'No breakpoints'
then return to (2); {see breakpoint info. in I(nsert }

Page 2

•

Jt

(

!

C(lear: to clear breakpoints.' The Breakpoillt handler will prompt

A(ll, S(ingle

Reply:

A(ll: to clear ALL breakpoints;
for each breakpoint displays info { see I(nsert)
with "removed'.

S(ingle: to clear a single breakpoint.
The Debugger will list all breakpoints { see L(ist }

then prompt:

Clear breakpoint with index (enter selected
number, as listed)

Q(uit:

if clearing is successful then the Breakpoint
handler will prompt:

Continue clearing? (Y or N)
Reply:

Y: to go ba:::k to
N: to go back to

(4) ;
(z) •

to go back to (1), the outer comfuand level.

Breakpoint information is kept in block zero of the code file.

Block zero layout:
zolayol.lt"" record

otheroata: [O •• 22k} of integer;

end;

where

bkcntrl packed record

bkinfar

bkcnt: O •• maxbrk count}
end;
array [O •• maxindx] of info array}

packed record
byte;

opsipc: integer;
opp:lpc: fnteger;

cnd;

maxbrk {max. number of breakpoint} = 10;
maxindx {max. index value} = maxbrk-l= 9.

Page 3

(I.)

, I

/

/
t

~I 'II
\-3:. 2

;0.

6)

<it

• The Debugger: (Called when a breakpoint is executed)

When a breakpoint is executed the DEBUGGER is invoked and the message
Programmed break-point is output along w~[h:

S I! <seg .nllmber>, pi! <proc .number>, II! <proc- ipc>

Then, the debugger is invoked, Status is displayed { see S(tatus below}
and the debugger prompt is shown.

Prompt:

Debugger: R(esume, D(ump, B(reakpoint. X(~mine, S(tatus, Q(uit (5)

Reply:

R(esume: to continue running the work file.

D(ump: to dump the whole memory into *SYSTEM.DEBINFO file.
The Debugger will prompt:

Input your Notice: (max size~ 80 char.)

This notice (or <space>) will be saved in block n of SYSTEM.DEBINFO
along with:

• the contents of registers -3 •• 13;

.. 1/ .. " I'

r
!

.l
I~

I

•

• the run time error code that caused debugger invocar:ion; .6
• the segment#. procH and the ipc of the corresponding opcode; ~
• and the date (as displayed at boot time).

The record describing this dumped information is:

dumplayout record
regs: array[O •• 16] of integer;
errcode: integer;
seg: integer;
proc: integer;
fpc: integer;
date: daterec; { 1 word}
filler: array[O •• 193] of integer;
notice: packed array[O •• 79] of char;

end;

B(reakpoint: to go to the Breakpoint handler
(Very much like in the breakpoint handling step in I.;

except:
o The code file tn memory will also be updated

correspoadingly for I(nsert and C(lear;
o Q(uit will return to (5), instead of (1).)

Page 4

•

e

('

S(tatus: to diplay the environment status:

Current MP
User prcgrnm BP = dec, value (he~ value)
dec. value (hex. valUe) [seg.p,oc]

Q(uit: do return to (I), the outer command level.

[1. i J

User program KP is the pointer to the MSCW of the user progrd.
at the time the breakpoint occurred

Current MP is the pointer to the current activation record as
performed by the C(hain command { see below}.

NOTE: At the iirst call of the Debugger. user program MP current MP.

Page 5

!i

~"'!!<'~'I', ~'~ i'U " ,,,
....

•

-
..

."

X(emine: to go to the memory eXamine mode.
Prcmpt:

(l(ttl!
C(hain. O(ffset. re-D(isplay, A(lter, M(emory, S(tatus, R(ad l ",

Reply:

C(hain: to move the current MP pointer along the dynamil' "r
static links.

Prompt:
(1)

S(tatic. D(ynamic

Repl y:
III til'"

D(ynamic: to follow the dynamic link chain field
mark stack control yord; ~Rtk

S(tat~c: to follow the static link chain of thM
stack control word.

If D(ynamic then prompt: lin
G (lobal, L (ocal

Ri<ply:
d~r~~

L(ocal: to move toward more recently called ,~u~-
{ Limit: procedure [4.1]~ PRINTERRO. ~;dU'-~

G(lohal: to move toward previously called pe
N8

{ Limit: procedure [0,1) }.

Number of links: { enter n. a decimal number}
4' ,to ks. , /I', ~ f,

If n in [1 •• maxint} then ~raverse n dynamic ot II ~ f,M # jAIIJ.tS
If D(ynamic then the chaining will be stopped 1f /.',j:;
{ see (8) } are rea c he d ; e Is e S { tat icc h a i n 1 r. ~ '#'

stop if [1 .. 1J is reached.

NOTE: C(hain with S(tatic allows only G(lobal moves a~~
to the user program domain.,

Page 6

;:.~,it:d

,

;/
il r
•

.'

(

After every C(hain the following will be displayed:

In [seg ,proc]

p(ffset: to display the contents of memory at a word offset
from the current MP (see C(hain).

Offset is convenient to aCCESS values of variables as all variables
are allocated at offsets from a mark stack. The offset corresponds
to variables offsets assigned by the compiler.

Prompt: (the Debugger will prompt if input data must he In Fex)
Offset~ {enter the offset value }
Length- { enter number of WORDS to be dIsplayed

then, the requested words will be displayed •

re-D(isplay: to display whatever O(ffset or M(emory was just
previously displayed in the "other" radix. This option does
not change current radix. Re-display is not possible if the
immediately previous commacd was noi O(ffset or M(emory.

A(lter: to modify one word in memory.
Th~ Debugger will display the current Radix and prompt:

Enter address: (in current radix

then will display:

to Hexadecimal or vice versa. The debugger will prompt:

Radix switched from Decimal to "ex (or Hex to Decimal)

NOTE: This Radix option is always reset to Decimal when the (run time)
debugger is first invoked •

Page 7

~

I
I
;f

I NOTE:
.~ .
r' ~

•

e

•

(

Q(uit: to go back to (5).

Due to the mechanism used to return from a breakpoint the
active breakpoint in memory will be replaced by the original p-code;
and it will be restored only when another breakpoint is encountered.
This means a single breakpoint will NOT be restored until another
is encountered. However, tLe breakpoint is still preserved in the
code file.

3. The Debugger: (called when a ruu-time error occurs).

Run-time errors other than Stack overflow will display
the prompt:

D{ebug or Type <space> to continue

Reply:
<space>: to follow the usual path of execution for an ~rror;
D{ebug: to go to the Debugger { prompt (5) }

If there is not enough room to load the Debugger, the system
will ptQmpt:

Nut enough room for Debugger
Fer debugger invo~ation via a run time error. the lnvocation of the
Br~akpoint Handler will not be allowed, as an X(ecute { from the outer
commands} of a program other than the workfile may have been requested •

Page 8

•

. '

e

(

APPENDIX C

Physic&l Sector. Mode

To provide enhanced flexibility for systems pr0graruming. a mechanIsm is
provided for dit~ctly accessing physical sectors of a disk. This ruoJe
may be enabled during the UNITREAD or UNITWRITH commands. Th~ options
for UNITREAD and UNITWRITE are as follows:

UNITREAD(unitnumber. array. length, [blocknumber], [flags]);

~

where flags is an integer that may specify physical mede. If bit 1 of
flags is reset, logical sector mode, the normal mode on the Hicroengi=e
is performed. If bit 1 is s~t, physical sector mode iR enabl~d. This
mode has the effect that block number is interpreted as the physical
sector number. Conceptually in this mode the diRk looks like an array
of tracks where each track iA an array of sectors. Physical sectors
are numbered from 0 starting on track 0 of the diskette. continue ascending
from 26 to 51 on track 1. etc. This mode Is especially useful tor
accessing track 0 of a diskette, where the bootstrap resides. For example,
the following code sequence reads all of track 0 into an array:

var TrackBuf array[O •• 3327} of 0 •• 255;

unitread(4)>Trackbuf.3328,O{ se~tor 0 }. 2{ physical mode });

Page 1

, .. ,
i ~. it:

APPENDIX D

The following sections were originally a part of the O_FO Tech note. The
documentation is included here as information for users with earlier Operating

f • Systems and for new users. .. -

(9

•

e

SETUP

The SETUP utility has been modified to add two fields:

VERTICAL DELAY CHARACTER: The pad character output after a slow terminal
operation such as home or clearscreen. (The default vertical delay char
acter is NUL=O.)

KEY TO BACKSPACE: Configures the backspace key for a terminal.

The SETUP p~ogram also has three fields, "DISK SEEK RATE", "DISK READ RATE',
and "DISK WRITE RATE' that tailor disk accesses.

The operating system tailors disk lID operations by means of these fields.
This allows a user to c0uiigur.e the cisk transfer delays and stepping rates
of any type of floppy disk drive according to values set in SETUP. User
tailoring of disk 1/0 commands is useful due to the wide variance of disk
drives. By allowing user configuration of disk 1/0 commands, full advantage
can be taken of each type of disk drive. For example, some floppy disk drives
have a f~st head stepping rate, so the system stepping rate would be modified
using SETUP to specify fast step rates. The SYSTEM.MISCINFO that is shipped
has fields that reflect the slowest step rates and disk transfer delays.

Values that can be in$erted in to 'DISK SEEK RATE' are:

He:lt Dec J.Dlal Step Rate

IE 27 15 ms. (slowest)
1A 26 10 ms.
19 25 6 ms.
18 24 3 D1S. (fastest)

Fast drives can have a value of 24 for this field due to their fast step
capability. Slower drives may use a value of 27 or 26 as they have a slow
step rate. Note that the SYSTEM.MISCINFO that is shipped has a value of IF
hex, 31 decimal, which is the slowest step rate and also requests the 1791
Controller to verify that the seek is on the destination track. The verify
option may be removed to pro~uce a command of hex In which is the slowest
step rate.

Page I

•

I •

(~.

('

READ RATE' and 'DISK WRITE RATE~ fjelds s,ecify if there is a delay

load. the values for 'DISK READ RATE' are:

Hex

90
94

The values

Hex

so
B4

for

Dec:1.mal

144
148

'DISK WRITE RATE'

Decimal

176
180

no delay
delay

are:

no delay
delay

~

These three fields corresDond to W~stern Digital 1791 Floppy Disk Controller
commands described in section 5.6.4 of the Pascal MICROENGINE Hardware

Reference Manual.

"page 2

,'1!

(

(.; ci-

UNITREAi) ·AND UNI'rWRITF.

~

~UNITREAD and UNITWRITE now have an option not to convert DLE control characters
into spac2s, and an option not to append a line feed onto a carriage return.

-

e i
.

The options for UNITREAD and UNITWRITE are as follows:
UNITREAD {unit number, array, length. {block number], [flags1}
Where flags is an integer specifying the options;

MSB 15 4 .1 2 o LSB

[~~)
~IT 0-1

BIT 2

BIT 3

BIT 4-1:>

Exalllpl~:

NOSPEC

NOCRLF

Reserved

SET im~lies no special character handling
for DLE.

RESET implies special character handling
for DLE~ 1.~ •• expand to blanks.

SET implies no LF~s are appended to CR's.
RESET implies LF#s arc appended to CR's.

Reserved

Var p: packed array [0 •• 3) oE char;
unitwrite (l,p,.,.4) {DLE not stripped and replaced by blanks}

Page 3

(

SYSTEM.LIBRARY

In ai~ltlon to the LONGINT UNIT, the SYSTEM.LIBRARY contains a UN1T SCR~EN-
. CONTROL. This unit accesses fields in the record SYSCOH, which is set up by

SYSTEM.MISCINFO. It contains several procedures that caURe screen cont~ol
action or return information about the user's terminal. In sddition, there is
a procedure that returns the date. The procedures the user may access in this
UNIT are:

PROCEDURE HOME;

PROCEDURE CLEAREOS;

FUNCTION CLEAREOL;

{Homes the cursor.}

{Clears the screen starting at
the current cursor position}

{Clears the line starting at the
current cursor position}

FUNCTION SCREENWIDTH: INTEGER;
{Returns the width of the screen}

FUNCTION SCREENHEIGHT: INTEGER;
{Returns the height of the screen}

PROCEDURE DATE(VAR M:MONTHS; VAR P:DAYS; VAR Y:YEARS);
{Returns the current date as stored by the operating system.
MONTHS, DAYS, and YEARS are types declared in the INTeRFACE
and are therefore available to the user. The declarations
are:

TYPE MONTHS
DAYS
YEARS

Page 4

0 •• 12
o •• 31

'" 0,.99

- _ • .. ~ ... , •• f ' rrl n..,,.. __ _

<t r

...
iii<>

'It

THE SYNTAX FOR UNIT DEFINITION

The following should replace Figure 3-4, Syntax for a Unit Definition, in the
Pascal Operatio~s'Manual which is the second part of the WD/90 Pascal MICRO
ENGINE Refere~ce Manual.

<Compilation unit>

<Unit definition>

<Unit heading>

<Unit identifier>

::= <Program heading>;{<Unit definition>;}
< Use spa r t > < B 10 c k> 1
<Unit definition>{; <Unit definition>}.

::= <Ur.jt heading>;
<Interface part>
<Implementation part>
E1Hl

::= Unit <Unit identifier>

::'" Interface
<Uses part>
<Constant definition part>
<Type definition part>
<Variable declaration part>
<Procedure and function heading part>

<Procedure and function heading part>
::: {<Procedure or function heading>}

<Procedure or function heading>
::= <procedure heading>t<functicn heading>

<Implementation parL>

<Uses part>

::= Implementation
<Label declaration part>
<Constant definition part>
<Type definition part>
<Variable declaration part>
<Procedure and Function declaration part>

::= Uses <Unit identifier>
{, <Unit Identifier>}; I <Empty>

Page 5

I ~-it:

('

-----~-~--...... -., -'---~, .. , ~ .. - .'.--... ---.- .. -.~.,-.-.

:

o

~ 2 I

· ('

WESTERN·DIGITAL
c o R p o R A T o N

Pascal MICROENGINETM Product

~~~!_2~-Q~~2_Q~§~!!U~_~!~!~~ aO-Ol3007-00A3 
TECH NOTES 

~he HO software release has improvements in software, ~ar iware, 
an~ flrmware. The mest important aspect is chat 1/0 in~errupt 
capability is providerl. 

New Features 

The interrupt capabili~y is manifest to the user as four new features. 

'l'he typeahead queue allows t.yped charact:<:!rs to be stored 
until there is a programatic request. The typeahead queup 
is gO characters in length. 

The start/stop feature is the ability to suspend output to 
the terminal dnd then resume the output. The start/stop 
key is specified by the user in the SE~UP program. The 
default se~t:lng is control- S. 

The flush feature gives the ability to terminate output to 
the tar~inal. The flush key is specified in the SETUP 
program. ~~A ~efault setting is control-F. 

~he user brea~ f~ature provides the capability to interrupt 
a program's execution at any time. The break key i~ 
s !? <! C i fie d i:) the S ;~ T" P pro 9 ram a:n d its de fa u 1 t set tin 'J is 
the hreak key or f0r terminals without break key it is 
control-I~. 

As ~ part of the 90 release, new.microms are incorporated into 
the ~icroengine board. These microms correct several past microcode 
problems. The following changes Willi be noticed by the ~ser. 

1. Integer overflow reporting is inh~bited. 
to the UCSD sta~riard. 

~his was jone to correspond 

2. A floating point underflow reporting is inhibited. This now 
corresponds to the UCSD standard for floating ~oint. Now a 
floati~g point underflow causes the floating point result to be 
reported as 0.0. 

3. The result of 0.0/0.0 now causes a floating point error. 

4. The stack overflow run-time error is now reported correctly. 

5, The ~OD oper~tor now generates ~ run-time error message 
error) for I MOD J where J is !5S than or equal to zero. 
corresponds to the proposed ANSI/IEEE Pascal 3tandar~. 

value range 
This 

':':'. ~ new oper~tor, BNOT, has been added to the operator se:. Its 

Page nr'I§~' u lII:tB&l!!SWJ&fII 5' A $9 VS . sg:;..J!:GWii'?f' U eST v ,.. 1J&Ul~ mm:llS1r 2U 
3128 REDHILL AVENUE. BOX 2180 ~,jEV'PORT BEACH. CA 92663 (7;4) 557-3550.TWX 910-595-1139 

! 
I 
I 

i 
I 

I 

I 
I 
I 

I 
i 
! 

I 

I 
! 

instruction code is 159. This operator replac~s the 0perator , QBP, 
which was unused. The S~OT operator is now generated wher~ the LNOT 
operator was genera~ed ~reviously. The LNCT operator complements all ~ r 

bits in a ~ord, whereas the 3NCT operate, compl~~ents only the low 
order ~it and zeroes the 15 hi~h order bi~s. This Ei~es p~obJe~$ such 
as CRD(NOT FALSE) which formerly returned a negativ~ value and OROII > 
0) where I is an integer which returned a negative value when I was ~ 

negative number. 

~ote that the ~~OT operator is always generated w~en ~ nOT i, 
perfor~ed. Programs that need a whcle wor~ complemented must use the 
L~OT operator. This can be gen~rated by use of the PMACHINE 
construct. 

Concurrency 

The START command is the system intrinsic that creates ~ew tQsks 
in the system. Rafe: to section 3.7.4 of the Hicroengine ?ascal 
Operations Manual for a discussion of the SrART commanri. It may only 
be called from a main task, such as the outer block of a user 
program. If START is called from a sub-task, a run-time error is 
generaced. ~s a part oE the START callinq sequence, the semaphgre 
primitives SIGNAL and WAIT are executed. The purpose of this 
semaphore synchronization fcr START is to assure th.t par3mot~rs 
passed by a START call are received by the subtask before later 
execution may alter them. 

A user should note that this type oE task swit~h occurs dS ~ 

p~rt of task STARTing. Under the HO operating system, it should be 
noted that calls to READ and WR!TE execut. the WAIT semap~or~ 

operator so a task switch may occur during I/O. Thus a user should 
realize that a task switch may occur at other times than he has 
explicitly programmed using SIGNAL and WAIT. 

A correct concurrent progr~m makes no assumptions abcut the 
order of operations during concurrent processing. The corollary is: 
a program ~ust always be prepar.ed Ear a task switch as .interrupts 
may happen any time. In order to protect indivisible operations, a 
semaphore lock must be used. Note that a ~rogram that eaes not call 
START need not be concerned about concurrency and task switching as 
the operation for a Single task ~ill handle all intertask 
syn~hronization. 

Under the HO software release, I/O locks and associated critical 
regions are implemented at the unit level. These sema~hore locks are 
used to assure that each I/O operation is noc interrupted until it 
completes. This means that each UNITREAD, UHITWRITE, UNITCLEAR call 
is an indivisible operation for a spec~fic unit and that no other 
task in the system may perform a unit operation on the same unit 
until the first operation completes. 

I 
Pi).qe 2 



( 

Interrupts 

• Each time there is a hardware interrupt. a software semaphore is 
signal~ed. When a hardware interrupt occurs. all interrupts are 
disabled. Thus a typical. I/O driver upon r~ceipt of dn interrupt 
must re-enable interrupts after checking status and capturing the 
I/O data. 

Interrupts may be enabled programatically. In order to enable 
interrupts, the program must write to the interrupt enable register 
which is at address FC48 hex. For example. the Pascal procedure 
below enables interrupts. 

procedure enableintsi 
var enabletrix: record 

case boolean of 

begin 

true: (addr: integer): 
false: (loc: ~integer); 

end; 

enabletrix.addr :3 -952; 
enahletrix.loc~ :~ -1; 

end1 

{ FC48 hex} 

Interrupts may be dis~bled by a progra~ at the I/O device 
level. That is aacll peripheral device. such as the ~D 1931 on the 
serial port or the AMa255 on the parallel port, has a specific bit or. 
bits that disable interrupts for the device. Refer to sections 5.4, 
5.S, and 5.6 of the Microengine Hardware Hanual for a description of 
the specific control bits. For example, to disable interrupts on a 
serial port( bits' and 2 of control register l}, the request to send 
bit and the receiver en~ble bit must be reset. 

When an interrupt driven I/O driver executes, a typical sequence is: 

Set up device controller registers to perform I/O 
Wait(device interrupt semaphore) 
Capture data 
Re-enable interrupts 

In this sequence the microcode handles the conversion of a 
hardware interrupt signal to a software signal. For a discussion of 
semaphores, see section 3.7.4 of the Microengine Pascdl Operations 
Manual. When an interrupt is generated by the hardware, interrupts 
are disabled for the entire system. The I/O driver. sequence above re
enables interrupts as soon as possihle after the interrupt signal is 
received. Due to the necessity of re-enabling interrupts after an 
I/O interrupt, it must be guaranteed that ~hen a hardware interrupt 
attached semaphore is signalled, an I/O process is at a high enough 
priority that it can execute in order to re-enable interrupts. 

Page J 

.. 

/ 
\ 

~hen an I/O operation is requested by a program, the onera:ing 
system temporarily raises the priority of the I/O calli~q task. The 
I/O in~errupt causes an I/O task to run so that it can re-enable 
interrupts. This I/O priority switch changes the ~riority of the 
task requesting the I/~ to run at a ~riority becween 240 and 255. In 
order to keep the I/C ~sks at highest priority, no ether cas~ in the 
system may run at a h~~ner priority chan this. To saE~guard chis, t~e 

START command will not let a task run at a ~riority higher than 
240. If 8 tdsk must be started at a higher priority, ?assing the 
stack space parameter as a negative number to the start comnand will 
override this restriction. 

" 

'Page 4 



( 

'ft' 

CONCURRENCY AND INTSRRUPT INTRINSICS 

'4<1' 

Below is a 1escription of the concurrency ann interrupt 
intrinsics. See section 3.7.4 of the MICRO~NGINE Pascal Operations 
Manual for further details on the Concurrency Primitives snd 
Interrupts. 

?ROCEOURE ATTACH(SZMAPHORE,IMTEGER); 

This procedure will attach the semaphore to the interrupt address 
specified by the integer, allowing a hdr~ware interrupt to signal 
a s~~aphor~. See section 5.1.3 Device Initiated Com~unicaticn 
with the Processor: Interrupts in the MICROE~GINE Computer User's 
~anual for the inte~rupt addresses. 

PROCEDURE SEMI~IT(SEMAPHORE,INTEGER); 

This ~rocedur~ initializes the semaphore. The integer value 
specifies the nunber of times the semaphore has been signalled. 
The following example initializes the semaphore SEM 

SE:UNIT( SF-H, 0); 

PROCEDORE SIGNAL(SEHAPHORE); 

The procedure increments the number of outstanding signals for 
the semaphore. If any tasks are waiting on the semaphore, the 
first task on the queue for the signal is decremented. The highest 
priority task no~ waiting on the semaphore will then execute. 

PROCEDURE ST~RT(?ROC!SS(PARAMS),PROCESSID,I~TEGER/INTEGER); 

This procedure causes the process to be initiated asynchronously. 
The processid wil be aSSigned to point to the TIB initialized. 
The two integer parameters, STACKS PACE and PRIORITY respectively, 
specify the aMount of stack space that the task will be allocated 
and the priority at which it will run. PRIORITY is of type 0 •• 255. 
(See section 3.7.3 Resisters ar.d Operating System Tables for a 
descriptio~ of the TIE.) 

PROCEDURE WAI_(SEMAPHORE)r 

This procedur. will cause this task to wait until the semaphore 
has been signalled. If the semaphore has already been signalled, 
the taEk will be put on the ready queue and the nunber of outstanding 

1" 

Page 5 

~ 

Signals for the semaphore will be decremented. The highest priority 
tas~ not waiting on a semaphore will then execute. 

EXAMPLES OF CONCURRENCY AND INTERRUPT INTRI~SICS 

progran ProcessExanple; 
var pid1, 

pid2:processid; 
:1essageLock, 
~essageReady , 
ReceivedMessage:senaphorei 
message :string; 

process SendHessage(mess:string); 
[locals are allowecG 

begin 
wait(~essageLock); 

message:=mess; 
signal(MessageReady); 
wait(RecievedMessage); 
signal(MessageLock}; 

end; tsendMesSage} 

process PrintMessage; 
begin 

waltCMessageReady); 
writeln(messageji 
signal(ReceivedHessage); 

end; (?rint~esSage} 

begin 
seminlt(MessageLcck,1); 
seminit(~essageReady,O)i 

seminit(ReceivedMessage,O}; 

ntart(?rintMessage,pid1,BS,200); 
start(SendMessage(OThe message' ),pid2,85,200; 

end. 

~ , 

Page 6 


