%@NewsLetter

Serving the Pascal, Modula-2, and Portable Programming Community

Vol. 5 No.1 Jan - Feb 1991

| N THI S

I S S UE

Using Procedure Vectors To Ease User
Interface Design

The Macintosh Pascal RunTime

Debugger

Et tu, Absolut?

Board Meéting_ Minutes-'(DeceI:hber 5,

1990)

Board Meeting Minutes (January 9,
1991)

Treasurer’s Report (January 1991).

e, - o 'l' =
* Submission Gui delines”

20

21

22

23

Copyright 1991, USUS INC, All Rights Reserved.

The USUS NewsLetter is published =6 times per year by
USUS, the UCSD Pascal System User’s Society, P.O. Box
1148 La Jolla, California 92038. The NewsLetter is a direct

benefit of membership in USUS.

Tom Cattrall Editor
William Smith Publisher

Using Procedure Vectors To Ease

User Interface Design
By John M. Hughes - 1 January 1989

Email: jmh%moondog@datalog.com
jmh@coyote.datalog.com

Background w

Developing ‘large software systems with extensive menu-driven

interfacing is often an ‘arduous task at best. The common
approach of using layer after layer of CASE structures or switch
constructs leads to programs that are difficult to maintain, and
tedious “to design and debug.- The programming language
Modula-2 offers’ a-simiple an elegant way to completely sidestep
this aspect of yser interface design. The result is a simple one or’

" two procedure deep control structuresthit is. casy to-modify and-

simple to implement. This is accomplished by utilizing the PROC
type of Modula-2 and créating vector tables for each menu strue-

|. ture in the system.

Some Thoughts On Vector Tables

One of the more interesting features of Modula-2 is its ability to
declare procedures as types. This, in effect, allows a programmer
to write code that behaves much like the indirect operations
available with certain processor instruction sets.

Vector-tables (also referred to as jump-tables) are well known to
those programmers whom spend large amounts of time dealing
with assembly language code. The common approach is to build a
list of target addresses for various subroutines, and then jump
"through" the list based on a relative offset value. This offset
value is itself nothing more than a pointer into the list, which
contains the addresses of subroutines to be executed with an indi-
rect JSR (jump to subroutine) or CALL instruction. Processors
with indirect forms of subroutine call instructions lend them-
selves to this technique directly. In assembly language program-
ming this constitutes a powerful technique for rapidly and effi-

ciently altering program flow.

Some high-level languages, such as Modula-2 and C,
also have the ability to utilize indirect calls. This article
illustrates the use of the standard types PROCEDURE
and PROC in Modula-2. The examples contained in this
article were compiled and testing using the Fitted Soft-
ware Tools Version 2.0 Modula-2 compiler system, but I
have tried to make the code as generic as possible. They
should compile and run with other compiler types with
no modifications, since PROC is part of the original lan-
guage definition according to Niklaus Wirth.

Dynamic Linked Lists Versus CASE Structures

Before we get started, perhaps a comment about linked
lists is in order. Yes, there is a way to perform similar
functions in Modula-2 by using dynamic linked lists,
each node of which contains a pointer to particular pro-
cedure. I have chosen not to delve into this area, how-
ever, because it is already well covered in most standard
texts on the language. Niklaus Wirth gives an excellent
example of this technique in his book, Programming in
Modula-2, and I would refer the reader there for more
information. Although much has been written on the use
of the Modula-2 procedure type in linked list data struc-
tures, references to its application in building vector-
table type constructs appear to be rather scarce.

My main focus here is the design and conmstruction of
application dependent code based on the use of the
CASE structure. In this article we will examine this
alternative usage of the procedure type in conjunction
with the creation of a complex user interface based on
layered menus. This type of application often relies
heavily on multiple CASE structures to evaluate user
selections. The use of the procedure types allows the pro-
grammer to eliminate redundant CASE structures in the
code and replace them with a single procedure vector
dispatch handler.

The Procedure Type In Modula-2

In Modula-2, the procedure type may be declared in one
of two ways: (1) as a parameter-defined type, or (2) as a
parameterless type. The term "parameter-defined" is used
to mean those occurrences of the procedure type where
one specifically defines what parameter types will be
used. An example of this would be:

Page 2

VAR
SomeProcedure : PROCEDURE (CARDINAL,CARDINAL) ;
Then, later in the code,

SomeProcedure := WriteCard;

may be used to assign WriteCard from the standard
library to the name SomeProcedure. By the same token,
any procedure that accepts two parameters of type CAR-
DINAL may be assigned to SomeProcedure.

The second form is somewhat more generic, and is coded
as:

VAR SomeProcedure : PROC;

When this is used one does not need to declare parame-
ters, but the parameters of the procedure pointed to by
the variable designated as being of type PROC must
match the actual parameters passed to it.

Using The PROC Type - Examples

Consider a typical problem: You are writing a rather
large applications package that makes extensive use of
menu screens and associated CASE structures to route
the user to various portions of the code. If you took a
standard approach, you would have to duplicate the code
for the menu display and CASE routing of the user’s
selection for each and every menu in the system. For a
program of even modest size this may begin to approach
twenty or so menus, each with its own section of CASE
code. That’s a lot of wasted code, especially for those
paths in the menu tree that are seldom traversed.

It would seem to make more sense to define a list of pos-
sible target procedures, and then hand it to one procedure
that does nothing but select procedure calls based on
input from the user. This, then, would reduce the prob-
lem to simply constructing vector-tables for each of the
possible menu displays. The CASE vector structure
would never change, and could be reused any number of
times.

The key to this approach is to use the type PROC to
build a one- dimensional array. The program show in
Listing 1 illustrates the use of an array of type PROC.
Notice that the procedures called have no parameters.

An important point to notice here is the way that the exe-
cution loop is tested for a valid end condition. Instead of
attempting to determine which procedure is currently
executing, the relative pointer value is used. This is

USUS NewslLetter Jan - Feb 1991

because there exists no Lype coercion mechanism
between an array of type CHAR (a string) and the type
PROC.

While the previous example may be interesting, and in
some cases useful, the next example contained in List-
ing 2 shows where this technique really shines. Here we
have basically the same program, only now a crude user
interface has been added. When the user selects a num-
ber from the menu, the appropriate procedure is called
from the vector-table, Also notice that the execution
loop is now itself a separate procedure. The main body
of the program simpiy passes an ariay of procedures 10
use as the vector-table and the relative vector pointer
into the array.

One might ask at this point: "Why have a separate pro-
cedure to handle the vector dispatch?”. There is a good
reason for this. Because Modula-2 allows the program-
mer to easily pass arrays as procedure paramelers, sepa-
rating the vector-table dispatcher from the rest of the
code allows one to give it any pre-defined array of pro-
cedure pointers. In other words, it becomes a generic,
and hence reusable, procedure.

Handling Variable Size Vector Selection Lists

The reader may notice that this implementation of the
technique does have a fundamental limitation: The case
structure in the vector dispatch handler should have less
or the same amount of choices as the vector-table array
has declared elements, This lack of generalization also
precludes the technique from implementation as part of
a library module, unless one is willing to define very
large vector-table arrays 10 handle most conceivable
cases.

One way to resofve the array indices problem mentioned
above would be to define both the vector-table array and
the vector handler CASE structure for the maximum
possible number of choices in a particular program
application. If one inspects the declaration portion of
both example programs it will be seen that this has, in
fact, been done for the vector-table array. In Listing 2,
also notice that the procedure Jump has the ability to
atilize the entire vector-table array, but that the table
itself only contains five valid vectors.

One method for trapping an "early-end” condition is
illustrated in the way that menu item 6 is trapped by an
[F-THEN-ELSE structure in the main body of Listing 2.
The vector selection list for any given menu is simply

UsUS Newsletter Jan - Feh 1991

overlaid on the vector-table array, and the trap point set
for the end of the list + 1.

Towards Eliminating Redundant Code

Finally, there is one further trick in this rather interesting
bag. The main body of Listing 2 could itself be made
into a sub-procedure that accepts the name of a menu
display array (ARRAY [0..n] OF StringType), and a vec-
tor list. This will eliminate most of the redundant menu
handling code, since the programmer would now need
only to define the following items for each menu in the
system:

1 - The Menu Display
2 - The Vector Selection List
3 . The Menu Item Cut-Off Point (list item + 1)

The header line for this procedure might look something
like this:

DoMenu { Menu : Menubisplay;
vlist : Proclist);

Alternatively, one could define a record structure with all

the necessary elements for each menu:

TYPE VDef = RECORD
Menuline : ARRAY [0,.80] OF CHAR;
PVector : PROC;
END;

VBR MenuDef : ARRAY {0..n] OF VDef;

where n is the number of selection items in the menu.

Acknowledgements

I would like to express iny appreciation to Roger Car-
valho, the author of the FST compiler, for the time he
spent reviewing this article and making helpful com-
ments and corrections.

Product Reference

Fitted Software Tools

P.O. Box 867403

Plano, Texas 75086

FST Modula-2 Compiler System, Version 2.0

Page 3

ITYNIQIYD @ UIISsn

‘NYTI00E ¢ dooTaTxE

ITYNIQIYD ¢ umNSoId

11sTI00Id ¢ ASTTITIRD

YA

D0d 40 [6°°1] AYEdY = 3ISTTo0Xd
ddAL

{pTeppesy’ UTSATIM BPUTIIS93TIM THOAHI INOUL WONA

{zassrdur TINAOH

sjdwexg soepo) Jasn - 2 Buns)

n¢ B X A T iv
*raserdur aNg
gy
£
guliich
¢ (WN¥POII) ONT
{ (Mo OIJ FOLICAOSA

O 9 > umfiooad FTIHM

(« psyoesx ST pus Syl TTIUN STge3 UT doad Yoes TIED «)

(» ToquTrod oTqe] 8Y3 JITUT &) {1 =t unpooIg
{gooig =: [glogToioep

{pooxd =t [¥lozToloop

fgooad =: {glozzoioea

fzooxd =: {gloproloma

{x STqe1 TTe0 341 PeoT) frooxd =t [T]oLIo100A
NISId

(x sxerevrrssrrprrensrrnsrrrsy SPOH UTEW wysxrsfrxsExpssssxsxrrss x)

{gooxd QNE

furrsatapd (000 cpeyTom ¢ Isqumy,) BUTIAISOITIM
NISEH

{g001d TENAAD0Ed

{p00xd NI

turedtam! (00 c cpeyIoM B Isaumy,) BuTIiseaTam
NISHE

{§00Id TUNTADOUD

{gooxgd (gud

{uTeaTaMi (¢ cpeyIom £ Ioqumy,) SUTIISTITIM
NIDEd

{g001d TANaEOOId

{z001d CNY

fupatami(, 0 rpeyIos g ISqumy, }BUTIISSITIM
NISEd

{zo0oad MINATO0Ed

NHOOHm QNG

fUTesTIM (0 poNIOM T ToqUIN, }BUTIISSITIN
NIDEd

fEoold MINAAD0Ed

(% sxsvarsvexvsxresyyrsrryyrsy SOINPODOIT IVOL wxrrvsxvsrrs =)

{x go3utod I03100A SATIPTON +) (TYNIQHYD @ uUnyooid
{x oTqe} 103594 SINPBOOIJ ») {1STI00A : OLIOIPBA
Hon

1o0¥d 40 [6°°T1 AMMNY = 2ISTIO014
JdAL

{UTSITIM’ BUTIISSITIM TNOdWT JNOUT WOMI

{1assrdur FTINGOH

Aelle ue se HOHd 2dA; Jo uonensuowsaq - | Buns

USUS Newsletter Jan - Feb 1991

Page 4

*zasordur QNI

(x TITHM ») ‘@E

(x dI) ‘anE

L =t doomTxH
asTH

(1 1TITR0 ULaesn) dunr
NIHL 9 > urxesn 41
IUTSITAM

! (urxssn) preppesy

£(, < uoT309T8G Inox |,) BUTIISOITIM

(x ITX2 NUSKE I0J 31557 «)

Ue3ITIM

tueltam! (,aTx3 - 9 ,)burayseaTim

U9 TIM

fueatam! (2ATd Tequny we3l nusy - ¢ |, }huTaiseltam
{eeiTM! (o] Isquny WelL nusH - § |, }BUTIISelTIM
{uerTam { seIyy Ioquny Well nueW - € , }burilgeaTim
fureaTam! (oM, ISQUDN W81 NusW - 7 |, }BUTINSeITIM
furentam! (PU0 IsqUNN WL nusy - T |, JBuTIngeyTam

{USITIM {UWESITIM
0Q dooTITXHd ION TTITHM

{x 'PeITSSP ST 1TX3 Ue eyl
sTeubts 1o9sn syl [riun AeTdsTp nusw syy Jeedar TTTM doOT STYL «)
{x YOITMS TOIUOD dOOT «) tASTYd =t dooTaTxy
‘graqumy =: [g]asTITTed
{pToqunN =: [$]asTITTED
‘gxequmnN =: [glasTIITED
igroqumy =t [Z]13STITT®D
TToounN =: [T]ASTITTED
NISFg

{x STqel TIE° U3 PROT +)

Cn rxxxsrrrsrrrrsrrvsnsrrnrsnss ADOH UTEH vxsrsnsrxessyssrxssvrssyns x)

!dump aQNT

Hivich

Ul TIM! (,I9JUTOd J0309A PTTRAUL,) PUTIISHITIM
dSTH

flelasTIane : 6
| {lslasTIair * 8
| flelasTiame : L
| il9lasTramr : 9
| flglastrame : g

| (IplasTIdHC ¢
| flelasTianr :
| flzlasTidwe
| flTlasTidie
d0 xydane Zsvo

NIDEd

N

f{asTTO0Ig ¢ ISTIAWD
UTENIQEYD Tdane } dimp mInaEooud

(# sxxrrrxvsxxxnsrxrrres JOTPUBH OTAEI~TOIOON srvrrrsvsrsrvrsrrss x)

{gToqun NI

fureaTami(, ** poIon § ToqUDN, }BuTIygeyTaM
{UTP3TIM

NIDZg

{gIDqUMN MENATIOEA

{pIoqUN QNH

fureatami(,C cpedTom ¥ ISqUN,)BUTIISSITIM
{UTOITIM

NIDTE

{pISEMN DINAND0Ed

{gIBqUINN QNH

fureyTamd (00 tpoyrom £ Ioqumy,)BUTIISEITIM
UTEITIM

NIoEH

{gTequnN HENAEOE

{ZTo0uIYN AN

U TIMI (0 cpesdom g ozequmy,) ButTisenTam
frTelTIM

RIDHEG

IZIoqUmy TNATI0U

{{ToquON QNI

fuearamd (00 cpeyIom T Isquny,)buriigeaTam
luelTIn

RIOdd

{TIoqumy TANATO0H

(x sxxsxexrsrzsvsrrreresrrerey SOINPOOOTT ISOL myerxrxrrrrs x)

Page 5

USUS Newsi etter Jan - Feb 1991

The Macintosh Pascal RunTime Debugger

by
David T. Crai
736 Edgewater, Wichita, Kansas 67230

(1986)

INTRODUCTION

The Pascal RunTime Debugger, RTDebugger, is a tool that allows programmers for the Apple
Macintosh computer to debug their compiled Pascal programs interactively. RTDebugger is written
in Lisa Pascal.

USING THE DEBUGGER

To use RTDebugger requires a Macintosh running the program to be debugged and an external
terminal which displays RTDebugger's output. RTDebugger uses the Macintosh modem port to send
debugging information to the programmer. The communication parameters are: baud rate = 2400,
data bits = 8, stop bits = 2, and duplex = full. Iuse a Macintosh XL to run the application that needs
debugging and a Macintosh 512 with the FreeTerm terminal program as the external terminal.

DEBUGGER COMMANDS

The debugger supports two kinds of commands: application commands and external commands.
The application commands consist of calls to RTDebugger's routine named DDT. An application
debugger command is contained within conditional compile comment commands so that compiling
the non-debugged application version involves only changing one flag. An example of these
debugging commands is

{3IFC ctvDebug} DDT(dcBP, 'do_AppleMenu [200]'); {$ENDC}

The debugger call consists of a command (in this case dcBP) and a string (in this case
‘do_AppleMenu [200]") which provides specific information to the debugger. RTDebu Eger supports
the following application code commands:

dcInitialize - Initialize the debugger

deTerminate - Terminate the debugger

dcBP - Tell the debugger that a routine is starting
dcEP ~- Tell the debugger that a routine is ending
dcWriteMsg - Output a message to the external terminal
dcExternalCmd - Allow interactive commands on external terminal

The program Edit, whose source code is shown in another section in this document, shows how to
use these commands.

External commands are commands that the programmer issues to the debugger thru the external
terminal. These commands allow the programmer to watch information about executing routines, set
break points on specific routines, view routine access frequencics & routine duration times, and
many other items of interest to your typical Macintosh programmer,

ROUTINE NAMES AND LEVEL NUMBERS

Every routine in the application should have a debugger entry call command and an exit call
command. These debugger calls tell the debugger that a routine is currently being executed by the
Macintosh and allows the debugger to keep several pieces of statistical information about the
routine. Each of these entry and exit calls has a message which tells the name of the routine and its
level number. The routine name is simply the name of the routine as defined in the Pascal source

Page 6 USUS Newsletter Jan - Feb 1991

code. The level number assigns a unique value to the routine which the debugger uses when the
programmer interactively accesses the debugged program. An example of a routine with these
commands is (the debugger code is underlined)

PROCEDURE doInMenuBaxr;

BEGIN { doInMenuBar }

IF

D

DDT BP, 'doInMenuBar I ND

doCommand (MenuSelect {(myEvent .where}) ;

END; { doInMenuBar 1}

EXTERNAL DEBUGGER COMMANDS
Access to the external debugger is thru the dcExternalCmd command to the debugger routine DDT.
The sample program Edit tests for the Shift, Option and Command keys in the main event loop and if
these keys are down the dcExternalCmd command is sent to the debugger. The code for this test is
in the Edit routine handleDebuggerActivation.

When the debugger wants an external command it prompts for a line of text from the programmer on
the external terminal. The text line is then processed and the appropriate debugger external
command is performed. These commands are as follows

HELP/?
GO
W
GW
PS
sSBp
CBP
DBP
3)a)
MI
WIND
VOL
CAT
cv
DM
DFM
DTM
CcM
KPM
IL
HD
WH
DR
RB
ES
GOMB
DV

Parameter{s)

min_lev max lev ({P]

{L/F/D]
proc_num B/E
[proc_num]

(volume name]
number
address [count]

address [count]
[res mask]
Ltrap name

Description

Display help information
Continue the application
Set watch/trace level
Get watch/trace level
Show routine statistics
Set breakpoint

Clear breakpoints
bisplay all breakpoints
Display date & time
Display machine info
Show window information
Show volume information
Show volume catalog
Convert number to hex/dec
Display machine memory
Display free memory
Display top cf memory
Compact memory

Kill purgable memory
Instruction list

Dump application Heap
Show trap address
Display CPU registers
Reboot machine

Exit to machine shell
Exit to MacsBug debugger
Show debugger version

{Parameters enclosed in [] are optional, others are required)

RTDebugger is currently not finished, but all of the important commands are implemented. The
others state that they are not finished when the programmer tries to invoke them.

USUS NewslLetter Jan - Feb 1981

Page 7

SAMPLE DEBUGGER SESSION
This sample debugger session was performed on the Edit program which is listed below.

Ak K A AT AR AR AR AAKRAAKAAARKARKAKR KKK AKRKRKAKR A AR R A A AR KK LXK

kkk * kK
el Welcome to the *k ok
* kK Pascal RunTime Debugger kR
* &k * k k
fallalel by David T Craig k&
Jok*k & kK

KA I K KA KA A KR KA A AAAARRAKRAKA A kA A A AR AR AR R IR AR A A A hkhdk ok

Application...: TinyEdit
Date..........: 30-Jul-1986 16:24

Initializing the application stuff
Creating the edit window

USER KEY BREAK in handleDebuggerActivation [Hi]

> 7

Command Parameter(s) Description

HELP/? command Display help information
GO Continue the application
W min_lev max_lev [P] Set watch/trace level

GW Get watch/trace level

PS {L/F/D} Show routine statistics
SBP proc_num B/E Set breakpoint

CBP [proc_num] Clear breakpoints

DBPE Display all breakpoints
DD Display date & time

MI Display machine info
WIND Show window information
VoL Show volume information
CAT [volume name] Show volume catalog

cv number Convert number to hex/dec
DM address [count] Display machine memory
DEM Display free memory

DTM Display top cf memory
CM Compact memory

KPM Kill purgable memory

IL address [count] Instruction list

HD [res_mask] Dump application Heap
WH trap name Show trap address

DR Display CPU registers

RB Reboot machine

ES Exit to machine shell
GCMB Exit to MacsBug debugger
DV Show debugger version
{Parameters enclosed in [] are optional - others are required)
> DV

MacRTDebugger by David Craig Ver. 0.50 [30-Jul-86 16:01:25]
> 7 CV

cv number Convert number to hex/dec

> Cv 200

200 = $000000C8

USUS Newsletter Jan - Feb 1931

> CV 5C8
200 = 5000000C8
> GO

Leaving the RunTime Debugger...
USER KEY BREAK in handleDebuggerActivation [Hi]

> GW _

Minimum watch level = 9990

Maximum watch level = 9999

> W 1010 1010 P

> GW

Minimum watch level = 1010

Maximum watch level = 1010
Watching proc entry and exit points
> GO

Leaving the RunTime Debugger...

~-=> xKeyDownEvent
Performing a key down event
theKey = N

<--- xKeyDownEvent

-——> xKeyDownEvent
Performing a key down event
theKey = ©

<~-- xKeyDownEvent

-——> xzKeyDownEvent
Performing a key down event
theKey = w

<--— xKeyDownEvent

USER KEY BREAK in handleDebuggerActivation [Hi]

> W 1000 1040

> GW

Minimum watch level
Maximum watch level
> P3

Number of Symbol Table procs = 8
Sorting by name. .

1000
1040

i

ProcName Level Freqg Time T% Attr

1 doCommand.vveuunn. Ceeae 500 1 57 3
2 doInMenuBar.ciivenvanenan 999 1 134 7
3 doInSysWindow.cvecueennn- 999 1 46 2
4 do AppleMenu..............0.-.. 200 1 55 2
5 init ApplicationStuff.......... 9999 1 68 3
6 xActivateEvent............... .. 1030 3 4 0
7 xKeyDownEvent.........ouvuvevnnn- 1010 94 1313 70
B xMouseDownEvent................ 1000 2 184 9
9 xUpdateEvent.............. ... 1040 2 4 0

> 2?2 SBP

SBP proc_num B/E Set breakpoint

> SBP 9 B

> GBP

What ?

> DBP

USUS Newsletter Jan - Feb 1991 Page 9

ProcName

1 xUpdateEvent
> GO

Leaving the RunTime Debugger...

Performing a mouse down event
Performing an activate event

Level B E

"TinyEdit Sample Window" is becoming inactive

Performing a mouse down event
Performing an activate event

"TinyEdit Sample Window" is becoming active

USER BREAK POINT in xUpdateEvent [BEGIN]

> PS8
Number of Symbol Table procs =
Sorting by name

ProcName

1 doCommand.,....voenevennn cena
2 doInMenuBar..... e
3 doInSysWindow...............
4 do AppleMenu................
5 init_ApplicationStuff.......
6 %ActivateEBvent..............
7 zxKeyDownEvent........ e
8 xMouseDownEvent.............
9 xUpdateEvent.....

> MI

Machine type.........: Lisa

Machine RAM (K}......: 908

ROM Version..........: 130

RCM Type.............: 64K

CPU Type.............: 68000

File System type.....: MF3

System Version.......: -1

Keyboard Version..... : 0

Switcher status......: Inactive
Servant status.......: Inactive
Journal status.......: Inactive
Monkey status........: Inactive
Stack Sniffer status.: Active

> DFM

Free memory {bytes} = 812576

> VOL

VolumeName

Level Freg Time % Attr
e 500 2 89 4
. 959 2 255 10
... 999 2 84 3
e 200 2 96 4
... 9999 1 68 2
... 1030 5 48 2
... 1010 94 1313 56
... 1000 4 362 15
... 1p40 2 4 0B

Creation-Date Last-Mod-Date

Files Attr

1 ProFile
2 TESTER
> GO

Leaving the RunTime Debugger...

USER XEY BREAK in handleDebuggerfctivation

Page 10

29-Jul-1986 15:24 01-Jan-1980 13:17
24-Jul-1986 14:13 30-Jul-1986 16:23

[Hi]

UsSUS Newsletter Jan - Feb 1991

> W 0 9999
> GO

Leaving the RunTime Debugger...

Performing a mouse down event
Mouse down in Menu Bar area
User issued a menu command
theMenu = 0 i

theltem = 0

Performing a mouse down event

Mouse down in application window Content area
Mouse down in application window Grow area

Performing a mouse down event
Mouse down in Menu Bar area
User issued a menu command
theMenu = 257 (Edit)

theltem = 2

Edit menu item selected

Bdit action = Copy
Performing a mouse down event
Mouse down in Menu Bar area
User issued a menu command
theMenu = 256 {(File)

theItem = 1

File menu item selected
Terminating the application

The Debugger says "Have a nice day”

EDIT SOURCE CODE LISTING
PROGRAM Edit;

{ Modified by David Craig (21 July 1986}

{ ___
{$M+ } { Turn ON Macintosh code generaticn }
{$X~ } { Turn OFF RunTime stack expansion ({Lisa concept) }
[$U- } { Turn OFF Lisa Libraries |}

~== Edit -—--
A small sample application written in Pascal
by Macintoesh User Education

(12 December 83)

USES {5L-} { Turn OFF unit output listing }

{$U MAC/Obj/MemTypes
{5U MAC/Cbj/QuickDraw
{$U MAC/0Obj/0SIntf
{$U MAC/0Ob3j/ToolIntf
{$U MAC/Obj/PackIntf

[$U MAC/P3/UMacHardware
{$U MAC/P3/UStringUtils
{$U MAC/P3/UNumberUtils
{$U MAC/P3/URTDebugger

}

}
}
}
}

]
]
)

}

MemTypes,
QuickDraw,
OSIntf,
ToolIntf,
PackIntf,

P3 MacHardware,
P3 StringUtils,
P3_ NumberUtils,
P3 RTDebugger;

{8L+} { Turn ON unit output listing }

USUS Newsletter Jan - Feb 1991

- —— o ——

— ey

Memory Data Types
QuickDraw
Operating System
ToolBox

Package Managexr

Hardware Manager
String Utilities
Number Utilities
RunTime Debugger

Page 11

Page 12

CONST

VAR

lastMenu = 3; { number of menus |}

appleMenu = 1; { menu ID for desk accessory menu |}
fileMenu = 236; [menu ID for File menu }
editMenu = 257; { menu ID for Edit menu }
userlsDone : BOOLEAN;

myMenus : ARRAY [1..lastMenu] OF MenuHandle;
screen Rect : Rect;

dragRect : Rect;

pRect : Rect:

wRecord : WindowRecord;

myWindow : WindowPtr;

hTE : TEHandle;

PROCEDURE doCommand (mResult: LongInt];
VAR theMenu : INTEGER; theItem : INTEGER;

PROCEDURE do_AppleMenu;

VAR name : STR255; refNum : INTEGER;
BEGIN { do_AppleMenu }

{$IFC ctvDebug}
DDT (dcBP, "do_AppleMenu [200]1');
DDT (deWriteMsg, 'Apple menu item (desk accessory) selected [2001');

{$ENDC}

GetItem{myMenus[1l], theItem, name}
refNum := OpenDeskAcc (name);

{$IFC ctvDebug]

DDT (dcWriteMsg, CONCAT ('"Desk accessory name = "' name, '™ [200]'));
DDT {dcEP, 'do_AppleMenu ([200]1"%);

{SENDC}

END; { do_AppleMenu }

PROCEDURE do FileMenu;

BEGIN { do FileMenu }

{$IFC ctvDebug}
DDT{dcBP, 'do_FileMenu [300]"');
DDT {dcWriteMsqg, 'File menu ltem selected [3001");

{SENDC}
userIsDone := TRUE; { Quit }
{$IFC ctvbebug} DDT(dcEP,'do FileMenu [300]1%'); {$ENDC]

END; { do FileMenu |}

PROCEDURE do_ EditMenu:

BEGIN { do EditMenu |

{SIFC ctvDebug}

DDT {dcBP, 'do_EditMenu [400]'};

DDT (dcWriteMsg, 'Edit menu item selected {400]1%);
{SENDC)

IF NOT (SystemEdit (theltem-1))
THEN

USUS Newsl etter Jan - Feb 1991

BEGIN
SetPort (myWindow) ;

{$IFC ctvDebug}
CASE theltem OF

1: ddtString := 'Cut';

2: ddtString := 'Copy':

3: ddtString := 'Paste';
END;
DDT {dcWriteMsg, CONCAT {'Edit action = ',ddtString,' [4001")):
{SENDC}

CASE theltem OF
1: TECut (hTE) ;
2: TECopy (hTE);
3: TEPaste (hTE):;
ENLD;
END;

{SIFC ctvDebug} DDT(dcEP, 'do_EditMenu {400]"): ({S$ENDC]
END; { do_EditMenu }

BEGIN { doCommand }
{SIFC ctvDebug}
DDT {(dcBP, 'doCommand (5001 ') ;
DDT (dcWriteMsg, '"User issued a menu command [500]'):

{SENDC}
theMenu := HiWord(mResult};
theltem := LoWord(mResult};

{$IFC ctvDebug}

NumToString {theMenu,ddtString) ;

CASE theMenu OF
appleMenu : ddtString
fileMenu : ddtString
editMenu ; ddtString

END;

DDT (deWriteMsg, CONCAT (' theMenu

NumToString{theltem,ddtString) ;

DDT (dcWriteMsqg, CONCAT {'theItem

{SENDC}

CONCAT (ddtString, ' (Apple) ");
CONCAT (ddtString, ' (File}');
CONCAT (ddtString, ' (Edit) '}:;

' ddtString, ' [5001'});

i

', ddtString, ' [5001'});:

CASE theMenu OF
appleMenu : deo_AppleMenu;

fileMenu : do FileMenu;
editMenu : do_EditMenu;
END; { of menu case }

HiliteMenu{0) ;

{S3IFC ctvDebug} DDT{(dcEP, 'doCommand [500]'); {SENDC}
END; { of doCommand }

PROCEDURE init_SystemStuff;

USUS Newsletter Jan - Feb 1891

Page 13

PROCEDURE setUpMenus; { Once-only initialization for menus }
VAR i : INTEGER; appleTitle : STRINGI[1]:

BEGIN
appleTitle = '?7;
appleTitlef[l] := CHR{AppleMark);
myMenus [1] 1= NewMenu (appleMenu, appleTitle) ;
AddResMenu {myMenus[1l], '"DRVR'"); { desk accessories |}
myMenus [2] := GetMenu(fileMenu) ;
myMenus {3] := GetMenu{editMenu) ;
FOR i := 1 TO lastMenu DO

InsertMenu (myMenus[(i], 0);

DrawMenuBar;
END; { of setUpMenus |}

BEGIN [init SystemStuff)}
{ Initialize the low-level memory items first }

MaxApplZone; { Expand application heap zone to the max. }
MoreMasters; { Allocate several 'master pointer blocks' }
MoreMasters; { so that they occupy low memory in order }
MoreMasters; | to avoid memory fragmentation later on. }

MoreMasters; MoreMasters; MoreMasters;
{ Initialize the many Macintosh Managers }

InitGraf (@ThePort); { Init Bill's QuickDraw
InitFonts; { Init the Font Manager
InitWindows; { Init the Window & Event Manager
InitMenus; { Init the Menu Manager
TEInit; { Init the Text Editor
InitDialogs (NIL); { Init the Dialog Manager

{

InitCursor; Init the cursor stuff

{ Setup the application menus }
setUpMenus;

{ Empty the Macintosh Event queue }
FlushEvents (EveryEvent, () ;
END; { init_ SystemStuff }

PROCEDURE init ApplicationStuff;
VAR wBounds : Rect; wTitle : Str255;
BEGIN { init_ApplicationStuff)
{ Initialize the debugger }

{$IFC ctvDebug}

DDT (deInitialize, "TinyEdit") ;

DDT (dcWriteMsq, "Initializing the application stuff [9899]');
DDT (dcBP, 'init ApplicationStuff [9999]11);

{$ENDC}
userlIsDone := FALSE;
screen_Rect := screenBits.bounds;

SetRect(dragRect,4,24,sereen_Rect.rightwé,screen_Rect.bottom—4};

Page 14 USUS Newsletter Jan - Feb 1991

{SIFC ctvbebugl
DDT {dcWriteMsg,' Creating the edit window [9999]"');

{SENDC)
GetIndString (wTitle,128,1); { 'TinyEdit Sample Window' }
WITH wBounds DO
BEGIN
Left = 20;
Top 1= 50;
Right := screen_Rect.Right -~ 20;
Bottom := screen Rect.Bottom - 20;
END;
myWindow := NewWindow{@wRecord,wBounds,wTitle,

TRUE, RDocProc, POINTER (~1) , FALSE, 0) ;
SetPort {(myWindow) ;

pRect := thePort”.portRect;
InsetRect {(pRect,4,0);
hTE := TENew({pRect,pRect);

{$IFC ctvDebug} DDT(dcEP, 'init ApplicationStuff [9993]'); {SENDC)
END; { init ApplicationStuff |}

BEGIN { initialize }
init_ SystemStuff;
init_ApplicationStuff;

END; { initialize }

PROCEDURE terminate:;
BEGIN { terminate }
{$IFC ctvDebug}
DDT {dcBP, "terminate {9999]17);
DDT (dcWriteMsqg, 'Terminating the application [9999]1');
{ SENDC}

{ ??? Terminate application stuff here 72? }

{$IFC ctvDebug}
DDT (dcEP, 'terminate [9999)"');
DDT (deTerminate, ') ;
{SENDC}
END; { terminate }

PROCEDURE handleUserEvents;
VAR eventIsGood : BOOLEAN; myEvent : EventRecord;

PROCEDURE xMouseDownEvent ;
VAR code : INTEGER; whichWindow : WindowPtr;

PROCEDURE doInMenuBar;
BEGIN { doInMenuBar |}
[$IFC ctvDebug}

USUS Newsletter Jan - Feb 1991

Page 15

DDT (dcBP, "doInMenuBar [999]"');

DDT (dcWriteMsg, 'Mouse down in Menu Bar area [9991');
{ SENDC}

doCommand {(MenuSelect (myEvent .where)}) ;

{$IFC ctvDebugl DDT(dcEP, 'doInMenuBar [999%]'); {SENDC}
END; { doInMenuBar }

PROCEDURE doInSysWindow;
BEGIN { doiInSysWindow }
{$1FC ctvDebug}
DDT (dcBP, 'doInSysWindow ({959]7);

DDT (deWriteMsg, '"Mouse down in System window area [099]');
{SENDC}

SystemClick {myEvent, whichWindow) ;

{3IFC ctvbebug} DDT{dcEP, 'doInSysWindow [%99]"*); (SENDC}
END; { deInSysWindow }

PROCEDURE doInDrag:
BEGIN { doInDrag }
{SIFC ctvDebugl
PDT {dcBP, "doInDrag [999]1"');

DDT (dcWriteMsg, 'Mouse down in application window Drag area [999]7);
{SENDC}

DragWindow (whichWindow,myEvent .where,dragRect) ;

{$IFC ctvDebug} DDT(dcEP, 'doInDrag [9929]'); {SENDC}
END; { doInDrag }

PROCEDURE doInGrow;
BEGIN { doXinGrow }
{8IFC ctvDebugl}
DDT (dcBP, 'doeInGrow {999]1%');

DDT {(dcWriteMsg, 'Mouse dewn in application window Grow area {999]1");:
{SENDC}

IF whichWindow <> FrontWindow
THEN
SelectWindow {whichWindow)
ELSE
BEGIN
GlobkalToLocal (myEvent.where);

TEClick {(myEvent.where, FALSE, hTE} ;
END;

{$IFC ctvDebug} DDT (dcEP, 'doInGrow [289%]1"); {3ENDC)
END; { doInGrow 1}

PROCEDURE deInContent;
BEGIN { doInContent }
{$IFC ctvDebug}
DDT(dcBP, 'doInContent [999]"');

Page 16 USUS NewsLetter Jan - Feb 1991

DDT (deWriteMsg,

"Mouse down in application window Content area

{$ENDC)

doInGrow;

[999]"):

{$IFC ctvDebug} DDT(dcEP, 'doInContent [999]1'}); {SENDC}

END; { doInContent 1}

BEGIN { xMouseDownEvent |}
{SIFC ctvbebugl
DDT (dcBP, 'xMouseDownEvent [1000]'):;

DDT {(dcWriteMsqg, 'Performing a mouse down event [1000]7);

{$ENDC}
code := FindWindow (myEvent.where, whichWindow) ;

CASE code OF

inMenuBar : doInMenuBar;
inSysWindow : doInSysWindow;
inbrag : doinDrag;
inGrow : doInGrow;
inContent : doInContent;

END; { of code case }

{$IFC ctvDebug)} DDT{(dcEP, "xMouseDownEvent [1000]°');
END; { xMouseDownEvent |

PROCEDURE xKeyDownEvent;
VAR theKey : CHAR;
BEGIN { xKeyDownEvent }
{34FC ctvDebug}
DDT (dcBP, 'xKeyDownEvent [1010]'):;

{SENDC}

DDT (dcWriteMsg, 'Performing a key down event [1010]°');

{ SENDC}

IF myWindow = FrontWindow
THEN
BEGIN
theKey := CHR{myEvent.message MOD 256);

{$IFC ctvDebug]
IF (theKey >= ' ') AND (theKey <= '~')
THEN
BEGIN
ddtString = '7?°';
ddtString(l] := theKey:;
END
ELSE
BEGIN
NumToString (ORD (theKey) ,ddtString) ;
ddtString := CONCAT('<',ddtString, ">7);
END;
DDT (dcWriteMsg, CONCAT ('theKey = ',ddtString, '
{$ENDC}

TEKey (theKey, hTE) ;
END;

USUS Newsletter Jan - Feb 1991

[101Q] ")} ;

Page 17

{$IFC ctvDebug} DDT{dcEP, 'xKeyDownEvent [1010]17); {SENDC}
END; { xzKeyDownEvent |

PROCEDURE =xAutoKeyEvent;
BEGIN { xAutoKeyEvent |}
{$IFC ctvDebug} DDT(d4cBP, 'xAutoKeyEvent [1020]'); (SENDC}

xReyDownEvent ;

{$IFC ctvDebug) DDT (deEP, 'xAutoKeyEvent {1020]'); {[SENDC}
END; { xAutoKeyEvent }

PROCEDURE xActivateBEvent;
BEGIN { xActivateEvent }
{SIFC ctvDebug}
DDT (dcBP, "xActivateEvent [1030]1'):;
DDT (dcWriteMsg, 'Performing an activate event [103071");

ddtString := WindowPeek (myEvent .Message) ".TitleHandle"";
{$ENDC}

IF ODD (myEvent.Modifiers)
THEN
BEGIN { Window is becoming active }
{$IFC ctvDebug}
DDT {dcWriteMsgqg,

CONCAT ('"',ddtString, '" is becoming active 11030]1'));
{SENDC)}

TEActivate (hTE) ;
END
ELSE
BEGIN{ Window is becoming inactive }
{$IFC ctvDebug}
DDT (dcWriteMsgqg,

CONCAT('"',ddtString, "™ is becoming inactive [1030717));
[SENDC}

TEDeactivate (hTE) ;
END;

{$IFC ctvDebug] DDT(JcEP, 'xActivateEvent [1030}7); {S$SENDC}
END; { xActivateEvent |}

PROCEDURE xUpdateEvent;
BEGIN { xUpdateEvent }
{$IFC ctvDebug}
DDT (dcBP, 'xUpdateEvent [1040]"');
DDT (dcWriteMsqg, 'Performing an update event [1040]7);
{SENDC}
SetPort (myWindow) ;

[$IFC ctvDebug}

ddtString := WindowPeek {(myEvent.Message)~.TitleHandle""; ‘
DDT (dcWriteMsg, CONCAT { '"Updating window "', ddtString, '™ [1040]°%));
{ SENDC}

Page 18 USUS NewslLetter Jan - Feb 1991

BeginUpdate (myWindow) ;
TEUpdate (thePort” .portRect,hTE) ;
EndUpdate (myWindow) ;

{$IFC ctvDebug} DDT(dcEP, 'xUpdateEvent [1040]1'); {S$SENDC]
END; { xUpdateEvent !}

{SIFC ctwvDebugl
PROCEDURE handlebebuggerActivation;
CONST { Macintosh keyboard special key codes }

kcCommandKey = 55; { Command }
keShiftRey = 56; { Shift }
kcOptionKey = 58; { Option }

VAR keyboard : KeyMap; { Macintosh keyboard key state map }
BEGIN { handleDebuggerActivation }
GetKeys (keyboard); { Get the speical key states }

IF keyboard[kcCommandKey] AND
keyboard[kcShiftKey] AND
keyboard[kcOptionKey]
THEN { Enter the Debugger if the activation keys are pressed }
DDT (dcExternalCmd, 'handleDebuggerActivation <Hi> [0]'}; { DDT.. }
END; { handleDebuggerActivation |
{SENDC)

BEGIN { handleUserEvents }
REPEAT { Wait for a user event }

BEGIN
SystemTask; { Let the Mac do its own thing for a little while }
TEIdle(hTE}; { Same for the Text Edit manager }

{SIFC ctvbebug} handleDebuggerActivation; {$ENDC}

eventIsGood := GetNextEvent (everyEvent,myEvent); { Fetch an event |}
END;
UNTIL eventIsGood;

CASE myEvent.What OF (Handle the user event !}

mouseDown : xMouseDownEvent;
keyDown : xKeyDownEvent ;
autoKey : XAutoKeyEvent;
activateEvt : xActivateEvent;
updateEvt : xUpdateEvent;
END; { of event case |
END; { handleUserEvents }

BEGIN { main program }

initialize; { Initialize the application }
REPEAT { Handle user events until the user is done }
handieUserEvents;

UNTIL userisDone;

terminate; { Terminate the application)
END.

{ That's all, Folks... }

USUS NewsLetter Jan - Feb 1991 ' Page 19

Et tu, Absolut?
David T. Crai

736 Edgewater, Wichita,

ansas 67230

21 August 1990

All programmers expect the absolute value function in Pascal,
ABS, to return a positive value (zero is considered positive).
But this fact is not always true. The absolute value function
can turn treacherous, like Caesar’s friend Brutus, and return a
negative value!

For all computers using two’s complement arithmetic the val-
ue of ABS(- 32768) is -32768. This startling answer is a result
of the non-symmetric nature of two’s complement numbers
about the value 0. For 16 bit integers the numeric range is -
32768 to +32767. The negative side contains 32,768 distinct
values while the positive side contains only 32,767 values.
Since +32767 is the largest positive value the expected value
for ABS(-32768) would be +32768 which is clearly not in the
correct range.

The value of ABS(-32768) is negative because two’s comple-
ment arithmetic wraps around for this special case. Seen in bi-
nary -32768 is 1000000000000000. The two’s complement of
this value is obtained by negating the value
(0111111111111111) and adding 1. When 1 is added a carry
ripples through the bits transforming all the 1 bits to 0 bits and
finally transforming the most significant bit, a 0, to a 1.
Therefore, the two’s complement of 1000000000000000 is
1000000000000000, itself!

This unexpected behavior also applies to 32 bit integers and
the 32 bit value -2147483648. This feature applies to any com-
puter language that uses two’s complement arithmetic and is
not solely a Pascal problem. Pascal programmers may wish to
special case this function by testing for the special values that
generate negative ABS function results.

FUNCTION my_ABS (x : INTEGER) : INTEGER;

BEGIN
IF x = -MaxInt-1 THEN
my_ABS := ... some value ...
ELSE
my_ABS := ABS(x);
END;

Page 20

To handle this numeric anomaly one could use bigger integers.
For example, instead of returning a 16 bit integer, you could
return a 32 bit integer which can hold the value +32768. Or
you could make certain that the values you pass to the ABS
function never include -32768.

Historical note: The name for this paper originated in Shake-
speare’s Julius Caesar (Act II, Scene I). Julius Caesar suppos-
edly said this to Marcus Brutus, an assassin and friend, during
Caesar’s assassination on the Ides of March, 44 B.C. (March
15). This statement is historically incorrect. Caesar did speak
to Brutus but spoke in Greek, not Latin (Suetonius, The
Twelve Caesars).

That’s all, folks ...

Editor’s Note:

When doing arithmetic with -32768 (or the 32 bit equivalent)
on machines that check for integer overflow, you will likely get
an overflow on almost any operation involving -32768. As an
example, one way to check for the situation described in this
article is:

IF (n < 0) AND (n = -n) THEN
.. have -32768 or equivalent value ...;

But the negate operation will give an overflow, which if
checked by your machine, will abort the program. Thus the
safer method of checking is as was described in David’s exam-
ple: check if n = -32768.

USUS Newsletter Jan - Feb 1991

Board Meeting Minutes (December 5, 1990)
By Keith R. Frederick

Minutes of the Board Meeting of USUS, Inc., held in room 1 of
the MUSUS forum teleconferencing facility on the CompuServe
Information Service December 5, 1990.

Present at the meeting were:

User ID Name

734472754 Henry Baumgarten (Henry)
71016,1203 Stephen Pickett (stbp)
72767,622 Tom Cattrall (TomC)
73767,3521 Keith Frederick (KeithF)
76702,513 Harry Baya (Harry)
73007,173 William Smith (Wm)

Henry Baumgarten started the board meeting at 6:37 PM PST.
Topics discussed were:
1. Elections

Henry asked if there was a committee report. Stephen Pickett
replied "uh oh" and poetically stated that he had not prepared the
report. Henry then stated that progress must be made on the elec-
tions since they are scheduled for February and that a slate be put
in the newsletter soon.

Tom Cattrall replied that there are three vacancies and currently
three candidates so far: Bob Spitzer, Keith Frederick, and Felix
Bearden.

Henry asked for any further nominations and stated if there
weren’t then asked if there would be a motion to cease nomina-
tions. Stephen indicated his utter embarrassment over forgetting
fo prepare the report and asked for a 48 hour extension to find ad-
ditional names. Otherwise he said, the three current candidates
get elected "ipso facto."

Tom replied, saying that whoever he hears from by this weekend
will be put on the slate of candidates. Henry said he would accept
that as a motion,

Tom Cattrall, Stephen Pickett, Harry Baya, and William Smith
voted in faver and there were none opposed.

William Smith then asked who is going to count the ballots.
William noted that he counted them one year because the ballots
went to the La Jolla PO box but since he is not picking up the
mail now the ballots should be sent to the address of whoever is
picking up the mail. Henry asked for volunteers and said he
would do it if no one else would. Tom Catirall stated he could do
it and Henry agreed and asked if there were any objections. There
were none.

II. Submitting the bylaws

Henry asked if this would appear on the same ballot and Tom
Cattrall replied that it should so that the voting procedures are
gone through only once. Tom then asked if the Board should use

USUS Newsletter Jan - Feb 1991

the proposal given by Felix Bearden on MUSUS. Henry agreed
on both accounts and then asked for objections. There were none.

0. Demise of JPAM (Journal of Pascal, Ada, and
Modula-2)

Tom Cattrall started off by saying that it looks like the agreement
with JPAM can be transferred over to CLM (Computer Language
Magazine) at the same rates and terms. Tom then said if the
Board wants to do that then we should move and vote to transfer
to CLM as Felix proposed.

Henry noted that Felix also proposes an increase of $6 for Cana-
dian and Mexican members and $15 for international members.
William Smith commented that the increases were for internation-
al postage. Henry then said that these are the standard extra
amounts that CLM tacks on to subscriptions from the various
countries. Summing it up, Henry said that CLM is offering a sub-
scription to USUS members for $20 plus any added postage.

Stephen Pickett indicated he was pleased with that saying that
those are the prices that he though JPAM should have been charg-
ing all along. Henry then asked for any additional comments on
the motion.

Tom Cattrall then moved to transfer the JPAM arrangement to
CLM as stated by Felix Bearden.

Tom Cattrall then, for the record, posted Felix’s motion:

To adopt CLM as the official Journal of USUS;

To offer CLM as a standard member benefit to all USUS mem-
bers;

To increase Canadian and Mexican dues by $6 to cover postage;

To increase other international dues by $15 to cover postage;

To process all subscriptions now being held by the administrator
and Treasurer to CLM.

The cost of subscriptions is $20/year (plus any extra for postage).

Henry commented that USUS may or may not get some of the
other things that JPAM promised but that this (CLM) is a differ-
ent journal, probably more stable and widely circulated and that
the deal sounded fair to him and asked for further opinions.
William Smith mentioned that CLM deals with more than just
structured languages, C and BASIC for example, and that it pub-
lished 12 times year instead of 6. Also, he said that there’s more
in it than JPAM and the price (offered) is good.

Henry replied that he didn’t care much for the issue when he first
scanned it. However, after looking at other issues he has changed
his mind and said he agreed with William. Henry then called for
further discussion, of which there was none, then he called for a
vote.

William Smith, Tom Cattrall, Stephen Pickett, and Harry Baya all

voted in favor. There were no opposing votes. The motion was
passed.

Page 21

IV. Printing of the Newsletter

Tom Cattrall began, saying that he and William Smith compared
costs and both are about the same. Tom went on to say that Felix
suggesied that either the editor or the administrator handle the
printing. But, Tom commented, both Felix and himself are very
tight for time and feel that William’s offer to handle it is the best
approach. Tom ended saying that the only question he and
William had is how their cost quotes compare with what is cur-
rently being paid. Tom then moved to allow William Smith to
bandle the printing and mailing duties.

Willaim agreed with Tom’s summing up of the situation.

Stephen Pickett, Harry Baya, William Smitk, and Tom Cattrall all
voted in favor. There were no opposing votes. The motion was
passed.

V. Felix’s motion 4: to pay for the CLM ads in
progress

Tom Cattrall moved to have Bob Clark pay the agency for the
three ads and authorize the agency to run the third advertisement
in the February issue of CLM. William discussed the pricing. He
indicated that the price is the same as agreed with JPAM and that
CLM has a much wider distribution than JPAM. He also indicat-

ed in the third ad, if possible, to change the reference from JPAM
to CLM. Stephen suggested that perhaps USUS should have
more ads at that price. Henry replied though, that it is not likely
to do that and there may be the cost of a new film to correct the
old advertisement.

William Smith commented that, according to Felix, the correction
is less than $50. Henry asked for any further discussion. Tom
Cattrall said he would amend the motion to authorize the new
film to change to JPAM reference to CLM.

Henry called for a vote, William Smith, Tom Cattrall, Harry
Baya, and Stephen Pickett all voted in favor. There were no op-
posing votes. The motion passed.

The meeting adjourned at 7:51 PM PST,

NEXT MEETING

The Board adjourned and agreed to meet again at 6:30 PM PST /
7:30 MST / 8:30 CST / 9:30 EST January 9, 1990 in Room 1 of
the MUSUS conference facility.

Minutes submitted by: Keith R. Frederick

Board Meeting Minutes (January 9, 1991)
By Keith R. Frederick

Minutes of the Board Meeting of USUS, Inc., held in room 1 of Felix Bearden asked who gets the mailing labels. Tom answered

the MUSUS forum teleconferencing facility on the CompuServe
Information Service January 9, 1991.

Present at the meeting were:

User ID Name

71016,1203 Stephen Pickett (sfbp)
72767622 Tom Cattrall {TomC)
74076,1715 Felix Bearden (felix)
73760,3521 Keith Frederick (KeithF)
734472754 Henry Baumgarten (Henry)
727473126 Bob Clark (BobC)
75226,3643 Bob Spitzer (BobS)

The Board Meeting started at 6:34 PM PST. Topics discussed
were:
L. Status of the Newsletter

Tom Caittrall stated he hadn’t received statements from those run-
ning in the elections until late December and should have sent the
Newsletter out earlier and held the election materials until the
next issue. However, Tom said, the Newsletter will be sent to
William Smith next week. Time will then be needed for printing
and mailing,

Page 22

that Williarn Sinith does.

IL Elections

Henry Baumgarten asked what the deadline is for the return of
ballots. Tom Cattrall responded that the end of February would
be necessary to allow for a round trip of printing, mailing, and
replies.

III. Advertisement

Henry Baumgarten asked Bob Clark about the finances of USUS.
Bob answered that as of 1-3-91, with all bills paid, USUS has
$5583.15. Henry asked Bob if that included the advertisement.
Bob responded that it did.

Tom Cattrall then asked if there are any more advertisements
scheduled and whether there have been any responses yet to the
current ad. Felix Bearden replied that he had not received any
mail from California lately and thus didn’t know if there were any
"punch card" results.

However, Felix said that he received two queries from the JPAM
ad and that he (Felix) called the people who handle the JPAM ads
and found that no punch cards were included in that issue. Be-
cause of this, Felix stated, they are refunding some amount of
money and that since the ad agency is alse printing new station-
ary they will be crediting the USUS account with that expense

USUS NewslLetter Jan - Feb 1991

when they bill USUS.

IV. Status of MUSUS

Tom Cattrall started off by saying that he is now a SysOp and that
traffic has built up recently but nothing spectacular. Also, Tom
said, that there are some new people that want to help build up the
forum because they like having a forum for Modula-2.

Henry commented that he has downloaded all the messages and

was impressed with the Modula-2 and Modula-3 discussions.

NEXT MEETING

The Board adjourned and agreed to meet again at 6:30 PM PST/
7:30 MST / 8:30 CST / 9:30 EST February 13, 1991 in Room 1
of the MUSUS conference facility.

Minutes submitted by: Keith R. Frederick

Treasurer’s Report
by Robert E. Clark, Treasurer

January 1991

Bank Balance $6,283.15 12-31-90

Income - January 199]

Bues: (new/renew)
Student 0.00 o/0
General 0.00 0/0
Professional 0.00 a/0
Institutional 0.00 0/0

Other Incomes
CIs 0.00
Library fees

Total Income: $ 0.00

Expenses - January 1981

Bank charges 1.82
Newsletter 525.44
Mail from La Jolla 0.00
Refunds 0.00
Reimbursements 0.00
JPAM/CL Adv. 700.00
. Total Expenses $1,227.286

Bank Balance $5,055.89 1-31-91

Submission Guidelines

Submit articles to me at the address shown on the back cover.
Electronic mail is probably best, disks next best, and paper
copy is last. If your article has figures or diagrams, I can use
encapsulated Postscript files in any of the disk formats listed
below. If you can’t produce encapsulated Postscript, then paper
copy is probably the only practical method for submitting
graphics.

You can send E-Mail to my Compuserve ID: 72767,622, or in-
directly from internet: 72767.622@compuserve.com. For disks,
[can read Sage/Stride/Pinnacle format disks. Also, any MS-
DOS 5.25 or 3.5 disks, and 3.5" Amiga disks. If anyone wants
to send Mac format disks [could probably get someone to
translate them into something I can wse. Whatever you send,
please mark on the disk what format it is. That will save me a
lot of guesswork.

Text should be plain ascii rather than a word processor file. It

USUS Newsletter Jan - Feb 1991

can have carriage returns at the end of all lines or oniy at the
ends of paragraphs. What you send doesn’t have to ook pretty.
[will take care of that. My spelling checker will take care of
spelling errors too. If you want special formatting use the fol-
lowing conventions:

1. _Underline_, put an underline character at each end of the
section to underline.

2. *Boid*, put a star at each end of the section to bold.

3. “ltalics”, put a caret at each end of the section to be set in
italics.

4. 7?8pecial requests??, such as 7?box next paragraph?? should
be surrounded with "?7 77",

Page 23

NewsLetter Editor : Tom Cattrall USUS Membership Information
Amity Software Inc.

7600 Seawood Road SE Student Membership $ 30/ year
Amity, Oregon 97101 Regular Membership $ 45/ year
503/835-1613 Professional Membership $ 100 / year

Compuserve : 72767,622
Internet : 72767.622@compuserve.com

tome@techbook.com $15 special handling outside USA, Canada, and

Mexico.

NewsLetter Fubilisher’ ‘William:Smith Write to the La Jolla address to obtain a member-

ship form.
USUS Board of Directors
Tom Cattrall 72767,622
Stephen Pickett 71016,1203
USUS Officers
President: Alex Kleider 71515,447 . .
Treasurer: Bob Clark 72747,3126 NewsLetter Publication Dates
Secretary: Keith Frederick 73760,3521
Due Date For All -
l’ﬁh"ysus Sta f S B ; = SR — ,,‘._.‘_,.-,...Issue-.‘ SR ——— . NewerttET'M’afeﬁal“'&“
Administrator: Felix Bearden 80761718 e Mar/Apr 199 f—arch 171991 e——
. I EgArAAVISor " David R, Babb 72257,1162 May/JuMm May 1, 1991
‘%‘xﬁMUSUS Sysop: Harry Baya 76702,513 ;./ g 1991 July 1, 1991
r " b Jct 1991 September 1, 1991
¢ c 1991 November 1, 1991

'~ P.0:-BOX-1148—
- LA-JOLLA, GA 92038

ADDRESS CORRECTION REQUESTED
FIRST CLASS MAIL

“Yosemite

"~ Yosemite

