636 96 96 36 36 36 36 36 96 96 36 36 6 36 96 3¢ 36 96 6 36 6 36 96 36 36 36 96 36 3 36 3¢ 3 96 3¢ 36 3¢ 3¢

* JCSD (MINI-MICRO COMPUTER) PASCAL *
% VERSION 1II.0 MARCH 1979 *
% Institute for Information Systems ¥
*# UCSD Mailcode C-021 *
* La Jolla, CA 92093 *

¥ (714) 452-4526 *
3006000 0 00006069606 3036600 3000 00000 06 000 00 D06 33 00 0

****************I****&******i*i***************!**********!*****

*# Copyright (c) 1978 Regents of the University of California, ¥
*# San Diego Campus. This software, its source, object, and *
all other forms, is the property of the Institute for *
*# Information Systems and may be used or copied by others ¥
* only with written authorization from the Institute for ¥
* *
*

Information Systems. All rights reserved.
S0 06006 0000060636006 6 06 000600606 06 063606 00 0600 6 00 J0 0000 36 06 D600 0000 006 L0 RN DRI IR N HANN

DISCLAIMER: These documents and/or the software they describe
are subject to change and/or correction without
notice. The UCSD Pascal Project cannot be held
responsible for implementations on processors where
the implementation work was not done at UCSD. Users
with systems obtained from sources other than UCSD -
must contact their supplier for support. UCSD does

not support users who have obtained their copy of
the software from other than UCSD.

ACKNOWLEDGEMENTS:

The work described in these notes has been supported
significantly by the following organizations:

United States Navy Personnel Research and Development
Center, Sperry Univac Minicomputer Operations, EDUCQM,
Digital Equipment Corporation, Processor Technology
Inc., Springer-Verlag, Terak Corporation, General
Automation Corporation, The UCSD Computer Center,
grants from the University of California Instructional
Improvement Program, Tektronix Corporation, Micropolis

Inc., Phillips Research Labs, Lawrence Livermore Labs,
Pascal Computing.

The work described in these notes has been made possible
by the drive and direction of the Director of the IIS:

Kenneth L. Bowles

Documentation Authors:

Gillian M. Ackland, S. Dale Ander, Lucia A. Bennett,
Raymond S. Causey, Charles "Chip" Chapin,

J. Greg Davidson, Gary J. Dismukes, Julie E. Erwin,
Shawn M. Fanning, Mary K. Landauer, J. Raoul Ludwig,
Joel J. McCormack, Mark D. Overgaard,

Keith A. Shillington, David A. Smith, Roger T. Sumner,
Dennis J. Volper.

Software Authors:

Lucia A. Bennett, Marc Bernard, J. Greg Davidson,

Barry Demchak, Gary J. Dismukes, William P. Franks,

Julie E. Erwin, Robert J. Hofkin, Albert A. Hoffman,
Richard S. Kaufmann, Peter A. Lawrence, Joel J. McCormack,
Robert A. Nance, Mark D. Overgaard, David A. Reisner,
Keith A. Shillington, David M. Steinore, Roger T. Sumner,
Steven S. Thompson, David B. Wollner.

Collected and Edited by:
Keith Allan Shillington and Gillian M. Ackland.
With special thanks to:

Tracy Barrett and the entire support staff.

P36 336 JE 3 3 36 36 36 36 I 3% 3 3 96 3 3 3 %

* TABLE OF CONTENTS *¥
ITITITII TR 222

Version II.0 March 1979

SECTION PAGE
0 ADDENDA,ERRATA AND NOTES
1 NOTES ON OTHER MATERIALS AVAILABLE . « & v v v v v v v v o - i
2 BRINGING UP THE PASCAL SYSTEM
T ON PDP=T1 & o v v v e v e e o e o o o e o e e iii
> ON 8080/Z80 SYSTEM WITH CP/M AND 3740 DISKS « . v
3 DIFFERENCES AMONG IMPLEMENTATIONS FOR DIFFERENT PROCESSORS. . viii
I CHANGES IN RECENT RELEASES 4 « ¢ o o v o o v o o o 0 o v v o ix
1 THE UCSD PASCAL SYSTEM
1 INTRODUCTION AND OVERVIEW . « o v o o o o o o o o o o o o o = 1
D FILE HANDLER « o « v o v o o o o e oo oo e oo e n e e 7
3 SCREEN CRIENTED EDITOR
1 INTRODUCTION .« v o v v o o v o oo e o oo e e e e e 31
> GETTING STARTED « « + v v v o o o o v o o o o v o oo 33
3 DETAILED DESCRIPTION OF COMMANDS . « « « o v o v o+ o+ 37
B REFERENCE . » « v o o o e et e et e e e e e e e e e 55
5 EXPERIMENTAL LARGE FILE VERSION (L2) . + « + « « « « « - 57
4 YET ANOTHER LINE ORIENTED EDITOR = YALOE . « « « « « + « « - 63
5 DEBUGGER + + v v o v v o e e e e e e e e e e 75
6 PASCAL COMPILER &+ v = v v o e e e e e v o oo oo a s o e e 7
7 BASIC COMPILER « « v v v o v e e o o oo m e oo oo &5
8 LINKER » o v v e e e e e e e e e o1
9 ASSEMELER & « v o e e e e e e e e e e e e 95
2 THE UCSD PASCAL LANGUAGE
1 INTRINSICS o v v e e e e e e et o e e e e e e e 15
1 STRING & v v e e e e e e e e e e e e e e e 17
5 INPUT/OUTPUT « v o v v v e e e oo oo e e e e e e e e 121
3 MISCELLANEGUS &+ « v v & v e o o o o o o v oo m oo oo 27
4
5 CHARACTER ARRAY MANIPULATION . . v v o « « o o v o v o 131
> DIFFERENCES BETWEEN UCSD'S PASCAL AND STANDARD PASCAL 133
1 CASE STATEMENTS . + v o o 0 o 0 v o o o o o m oo e e 133
D COMMENTS + v v v oo e e e e e e e e 134
3 DYNAMIC MEMORY ALLOCATION . « « « « = o o o o o o o o o 134
B OEOF + v o e vt e e e e e e e e e e e 136
B EOLN o v v e e e e e e e e e e e e e e 136
6 FILES o o v e e e e e e e e e e e e e e e 137
7 GOTO AND EXIT STATEMENTS . « & v « o o v o v v v oo v 140
8 PACKED VARIABLES . « v o o o o o o o o o o o o v o o o= 142
9 PARAMETRIC PROCEDURES AND FUNCTIONS . . « « « & o ¢+ o - 146

10
11
12
13
14
15
16
17
18
19
20
21
22

PROGRAM HEADINGS e e e e e e e e e e e e 146

READ AND READLN e e e e e e e e 146
RESET I ['ES
REWRITE e e e e e e e e 149
SEGMENT PROCEDURES « & v v v v v v v v v v e a v e e o 149
SETS + v v v v . . e e e e e e e e ..« . B0
STRINGS v v v v v v v e v e e e et e e ... 151
WRITE AND WRITELN e e e e e e 153
IMPLEMENTATION SIZE LIMITATIONS . . .+ & v v v o 154
EXTENIED COMPARISONS .+ . v v v v v v v v v 2w v v W 155
LONG INTEGERS . « « « v v o o o . . e e e e e e e 155
UNITS & v v v e v v e e e e e e e e e e e e e e 155
TABLE CF UCSD INTRINSICS . + & & v v v v v v v w v . . 155

3 IMPLEMENTORS' GUIDES -

T DRAWLINE . . & o i i i e e e e et e e e e e e e e e e 159

2 FILEFORMATS . . . & ¢ v v v ittt e e e e et e e e e e 163
3 SPECIAL UCSD PASCAL SYNTAX (USE OF)

’ 1 SEGMENT PROCEDURES ¢ v v v v v v v v v v v v . 165

2 UNITS G e e e e e e e e e e e e e 167

3 LONG INTEGERS vt e e e e e e e e e e e e e 181

4 INTERPRETER NOTES . . . v v v v v v v v e e e e e v e e e e 185

5 INTRODUCTION TO THE PASCAL PSEUDO-MACHINE 203

6 BYTE SWAPPING ¢« v v v v . . . e e e e e e e e e 217

4 UTILITY PROGRAMS

1
2 LIBRARIAN . . & & v v v i e it e et e e e e e e e e e 221
3 SETUP - SYSTEM RECONF IGURATION o v v v v v v 225
4 BOOTSTRAP COPIER . . v v v v v v v v v e e o e v e e . . . 233
5 PATCH/DUMP . . & v v v it et e e e e e e e e e e e e . 235
6 RT11 TO PASCAL CONVERSION KIT + 4 v v v v v v v v ¢ v v v o W 239
7 GOTOXY PROCEDURE BINDER . . . e e e e e -l X
8 DUPLICATE DIRECTORY . &+ + « ¢ v 4 v v o o o o o v v v v v o W 245
G P-CODE DISASSEMBLER . . « . v v v v v v v v v o o . e o . . . 2HT7
10 LIBRARY MAP e e e e e e e e e e e e e e e« « « « 253
5 TABLES

1 EXECUTION ERRORS e s e e 4 e e e e e e e e 263
2 IORESULTS e e e e e e e e e e e e e e e e e 265
3 UNITNUMBERS . . & v v v v v o v o v v v e e o e o e o e e e 267
4 RESERVED WORD LIST v v v v 4 v 4 ¢ o ¢ ¢ o ¢ o o o o o o+ . 269
5 SYNTAXERRORS . v v v v ¢ v v v v v o o o o o o o o v e e u s 271
6 ASSEMBLER SYNTAX ERRORS © &+ & v v v v v o v v ¢ v 0 v v v v . 275
7 AMERICAN STANDARD CODE for INFORMATION INTERCHANGE 279
8 P-MACHINE OP-CODES . . e e e e e e e e e e e e e e 281
9 UCSD PASCAL SYNTAX DIAGRAMS v e e e e e e e e e e« . . 255
AINDEX « v o vt it e e e e e e e e e e e e e e ¢ o e e e e . 283

FIEJ6 0632626 J0 6 32 I I JII N I I IIH I KK KK KKK K

% MATERTALS AVAILABLE * ¥ Section A.1 *
BRI NI NN EHRRERNRNRERRR

As the UCSD Pascal system has grown, we have found that to
distribute all of the software which is useful to all users for all
systems, has become an unbearable task. To attempt to alleviate the
large number of diskettes the release software requires, and to
alleviate the number of pages of documentation sent to each subscriber,

we have started to split the system into a number of seperately
available sections.

The major section is. the section which contains the operating
system and all the support routines that go with it. We include a
number of useful utilities which should enable the subscriber to do all
types of developmental work. The master release (as from herein it
shall be named) contains the interpreter for the initial system
ordered, the UCSD Pascal operating system, the Pascal compiler, two
text editors (one for screen devices, one for general purpose), a
BASIC compiler, the Linker, the Assembler for the appropriate machine
(at least). Other utilities include: a generalized file utility (the
File handler), a generalize patch and dump routine, a set of programs
to enable the subscriber to configure the system to run most
intelligently with any terminal, a desk calculator, and a librarian.

Software which is not included in the master release is
generally available from the IIS as a supplemental package at a nominal
handling charge (dependent on the amount of material involved with the
package). The sorts of software available are: interpreters for
machines other than the machine the master release was ordered for,
which will be accompanied by the assembler for that machine, in some
cases we have assemblers for machines for which we do not yet have
interpreters, program and data management systems, specifically a cross-
referencer, and a pretty-printer.

Page i

- Notes =

Page ii

************************** EERFERNRRERRRRXRR

* THE FIRST TIME THROUG * * Section A.2.1 *
et TR DT LS L Ll

Version II.0 March 1979

Welcome to UCSD PASCAL. If you put the Advanced System I
diskette in your booting drive, went through your normal boot-
strapping procedure, and were greeted in a similar fashion, you do not
need to read this section.

If this is not the case then here are a few of the problems we

encountered with I.4, and 1.5 coming up in strange and foreign lands:

1.) Some revisions of the LSI-11 refuse to boot with the clock
running. If you have a switchable clock, turn it off to
bootstrap; if and when the system greets you with the welcome
message and the date, turn the clock back on.

2.) You do mot have enough memory. The minimum requirement for
memory is 24K 16-bit words. '

3.) You have a system configured for RK-05 hard-disk and you have
an unformatted disk on line. The system will hang waiting for
a reply from the disk which cannot be generated if the disk is
unformatted. Take the disk off-line and try again.

4.) You have a system configured for RK and RX and the RX or RK is
not present. Both must pbe present at the standard DEC UNIBUS
or QBUS addresses for these devices.

5.) We haven't encountered your problem before. Call:

The number listed on the front page of this document.

Page i

- Notes -

Page iv

2696 3 063 3636 % 36 3 3696 2636 6 9 36 36 36 06 06 36 D606 36 36 36 36 30 00 36 20 36 ¢ HRRFEEREXRRERRRNX

* 8080/280 WITH CP/M & 3740 DISKS * ¥ Section A.2.2 ¥
PP TTTT T I TITI T TT A 1L AR 2 22 20 s bbb hhddel

Version I.5 September 1978

THE CP/M IMPLEMENTATION OF UCSD PASCAL
BOOTING PASCAL '

To get Pascal running under your version of CP/M, a two-disk
bootstrap is used. First, boot CP/M in the usual manner. On the CP/M
disk distributed with the "Pascal system is a file called PASCAL.COM.
PIP this file over to the booted disk, then execute it.

When the program asks for a Pascal disk, put the disk labeled
PASCAL: in drive A and any disk in drive B. The system may not boot if
there is no disk in drive B, or if you have a 1-drive system and your
CP/M drivers wait on a request to drive B. Then hit {return]. In
about 15 seconds the Pascal welcoming message should appear. (Note: we
have discovered that some drives, possibly as a result of being double-
buffered, cannot keep up with a 2 to 1 interleaving and hence are
extremely slow. The bootstrap then may take about 30 or 40 seconds.
We intend to alleviate this problem in the next release, but persons
with such drives will have to bear with slow disk accesses for the
present.)

If all has gone well, Welcome to the Wonderful World of Pascal.
If not, please call to notify us of your problem.

MODIF ICATIONS TO CP/M

The Pascal system will operate under an wmmodified CP/M system,
but it is advisable to create a special CP/M for use with Pascal in
order to have Pascal running in the environment for which it was
designed.

1. If there is no disk in a drive and an access is made from
that disk, the driver should not wait to perform that access until a
disk is inserted, as the Pascal system often attempts to read from
empty drives when searching for a particular disk. Instead, simply
return a 1 to indicate a bad I/O operation.

2. If you have a keyboard interrupt handler, it should
recognize the character [entrl-f] as a nflush-output" toggle and signal
the character-out routine to gobble any characters until signaled
again. When it receives another [cntrl-f] the keyboard handler should
sign®l the output handler causing the output handler to resume
outputting characters sent to it.

Page

The ke yooard interrupt handler should also recognize the
character [entrl- s] as a "stop output" toggle and wait until it
receives another [entrl-s] before allowing program execution to
continue.

If your keyboard has no alphalock, the input driver can use any
character not used for some other purpose as an alphalock toggle.
[Cntrl-p], [returnl, [entrl-il, [entrl-sl, [entrl-f], [entrl-c] or any
character in SYSCOM™ .CRTINFO should be excluded from consideration. We
suggest [entrl-al.

Pascal expects the tab character ({entrl-i]) to cause the
terminal cursor to advance to the nearest eight column. If the
terminal does not do this itself, then the driver in the BIOS should.

CREATING A BOOTSTRAP ON A PASCAL DISK

Note: These instructions are for a standard BIOS with 512-byte
pblocks. For instructions for a non-standard BIOS, reference file
READ.ME on the CP/M disk in the distribution packet.

On the CP/M disk are two programs, PGEN.COM and PINIT.ASM. The
program PGEN.COM is a program used to write out a puffer (which will be
filled by boot code and BIOS) to track O. PINIT.ASM is the boot code
that reads SYSTEM.MICRO from a Pascal disk, loads the BIOS into the
correct place, and starts the interpreter's boot routine.

You must create a file PBOCT.HEX, which will require a slight
modification of your current BOOT progrem. PBOOT will reside on track
0, sector 1 and, when executed, will load track 0, sectors 2 thru 13
into memory starting at location (MSIZE-U8)*102U + OBAOOH, and jump to
that location.

You then need to edit PINIT.ASM, changing MSIZE to match your
system. Assemble the file, creating PINIT.HEX.

The next step is to stitch together the one-sector boot, the
Pascal interpreter loader, BIOS, and the program to write this
information out to sector 0. The following is a session with DDT that
performs all this. This session was used to create a 48K system. User
input is in lowercase, and comments are off to the right.

1oad PGEN.COM into memory. PBOOT, PINIT,
and BIOS will be overlayed into PGEN'S
data area, after which a memory image will

A>ddt pgen.com

e g o

be saved.
DDT VERS 1.3
NEXT PC
ou00 0100
-ipboot 48.hex ; set PBOOTU8.HEX as input file

Page vi

-h900 O

0900 0900
-r900

NEXT PC
0980 0000

-ipiniti8.hex
-h980 BAOO

C380 4F80
-r4£80
NEXT PC
CAT7d BAOC

-ibiosHl&.hex
-hd& be00
C380 4F80
-rif8c

NEXT PC
OF76 0000
-[entrl-c]

A>save 16 pgend8.com

A>pgeni8
PGEN VI.O

PUT BOOTER?(Y/N)y

WRITING BOOTER TO DRIVE A, TYPE RETURN

AGAIN?(Y/N)n

GET BCOTER?(Y/N)n
REBOOTING CP/M, TYPE RETURN

A>

“ew* we e

PBOOT starts at location 0, and we want to
read it in at location 90CH

.

read in PBOOT

set 'PINITY8.HEX' as input file

PINIT starts at location BAOOH in a 48K system
(in general (MSIZE-48)%1024 + BAOOH), and we
want it at location 980H

read it in

and lastly read BIOS into location D80OH

leave DDT...

...and save the program.

sample execution of the program...

; before hitting [return].

: before hitting [return].

; put a Pascal disk (preferably a
; copy of the master) in drive A

s put the CP/M disk back in drive A

Pege v:

*% **********************!************ 9636 3 3 3 3 36 36 3 3 3¢ 3 %

DIFFERENCES AMONG IMPLEMENTATIONS * * Section A.3 *
SR BRI R SRR R

Version II.C March 1979

The following is a list of differences between PDP11 Pascal and

2’

8080/280 Pascal, the items describe the way it is on the
8080/280, and how that differs from the documented system.

The definition of div is different (thereby changing the values
returned by mod):

b = floor(a/b)
amod b = a - b¥(a div b)

The I/0 drivers are all written for synchronous operation. This
means that [break] has no effect. [Cntrl-s] and [entrl-f] will
not perform as described unless you have a keyboard interrupt
handler, and this handler is modified as specified below in
Modifications to CPM.

This also means that UNITBUSY, UNITCLEAR, and UNITWAIT are
meaningless. (In the future it may be possible to use the
UNITBUSY and UNITCLEAR operations on the keyboard, but tnis is
currently infeasible.)

The interpreter is called SYSTEM.MICRO instead of SYSTEM.PDP-11.

The CP/M implementations have bootstraps that are not accessible to
Pascal, hence the program BOOTER will not work. See the
appropriate section of this document for instructions on
copying and/or creating a bootstrap.

There are no long integer functions available with the Z80/808C
system. They will be available in a later release.

Page viii

JINIII NI NI I TN TN IR XN NRH

* CHANGES MADE IN RECENT RELEASES * * Section A.4 ¥
NN MNIR IR NI NI NI NI TN IR IR IR NN

Version II.0 March 1979

SUMMARY OF DIFFERENCES BETWEEN UCSD PASCAL RELEASES I.5 AND I1.0

The following additions, improvements and/or corrections apply
to Version II.0. Reference the (section #) preceding each entry for a
more detailed description. For information regarding differences be-

tween previous releases refer to the system documentation for those
releases.

(1.1
OPERATING SYSTEM

1.1 C(ompile will now prompt the user for the file to
compile, as well as the output file, if the workfile
is empty.

(1.2) FILE HANDLER

Substantial modifications have been made in the syntax of user
responses to filer prompts. The symbol "$" means 'same name'. This
symbol may be used on the right-hand side of a transfer command
expression. If the filer detects as some time that two volumes on
line have the same name, the warning message:

Warning: units N & M have the same name'
will appear beneath the prompt line. This message will remain until
some action is taken to convince the filer that this is no longer true.

R(emove command prompts for verification always.

K(runch command allows space to be opened anywhere on
the disk.

The bad block scan allows for scanning of any number of
blocks.

EDITORS (Sections 1.3 and 1.4)

Page "

Three different editors are currently provided with the UCSD
PASCAL system: YALOE, WEDITOR"(E.6), and the new L.2 EDITOR. EDITOR is a
substantially more powerful (and even easier to use) editor than YALOE,
but it makes some assumptions about the run-time environment.
The L.2 EDITOR (eventually to become the standard release editor) will
handle files of arbitrary size, however it is in its experimental form
and recommended for brave users only.

EDITOR requires a reasonably powerful CRT terminal with the following
features:)

XYADRESSING - go directly to a given row and column on the screen

NDF'S - non-destructive forward space (the inverse of back-
space) .

LF - down one line (and if at the bottom of the screen
scrolls up)

RLF - reverse line feed (up one line; not required to

reverse scroll)

Typing "E" at the main command level will execute the file
SYSTEM.EDITOR. Selection of either YALOE or EDITOR(E.6 or L.2) as
the system editor is made in the Filer by C(hanging the selected file's
name to SYSTEM.EDITOR.

Proper use of EDITOR requires that the system disk be left
on-line while editing.

Wnen prompted with the no work file prompt, typing <escape +
return> will return you to the system command level.

Page X

‘71e main purpose of release II.0 is to establish compatibility at
the P-code level among 2ll the interpreters maintained by the Pascal
Project. This requires changing the P-machine supported on the PDP-11
and 280/8080 processors, thereby invalidating all I.5 or earlier
codefiles. No functional enhancements in the system software have
been planned for II.C, although a number of evolutionary improvements
have been made. Only two changes have been made which may affect 1.5
level source programs: .

1) the volume 'REMCTE:' has been split into two volumes --
'REMIN: ' and 'REMOUT:'. Programs using 'REMOTE:' will have to be
modified Lo reflect this change.

2) User programs (rather sophisticated ones presumably) which
called the system procedure FBLOCKIC must be changed to accomodate an
additional parameter. Uses of BLOCKREAD and BLOCKWRITE are unaffected.

Evolutionary enhancements provided in II1.0 are intended largely
to improve the ability of the system to operate in in small memory
(UBK), and small disk (160 block mini-floppy) environments. These
improvements include:

1) The Pascal compiler will run in swapping mode automatically
(without ths (¥3S+%*) directive) if it determines that no useful program
could be compiled without swapping.

2) Codefiles for system programs are no longer required to reside
on the system disk. The operating system will, at initialize time,
(looking first on '*' volume) scan on-lne volumes for the files:
SYSTEM.EDITOR, SYSTEM.FILER, SYSTEM.COMPILER, SYSTEM.LINKER, and
SYSTEM. ASSMBLER, and remember where they were found. Furthermore, if
onc of these files cannot be found when it is actually invoked by the
user, the system will look again at that time.

The issue of byte-sex - (high order byte numbered 0 or 1?) hes
also been addressed. If the programmer wishes to have the compiler
generate code for a machine of the opposite sex to the one he is
running on, the pseudo-comment (¥$F+*) (flip) will cause the codefile
to be generated for a machine of the opposite sex. (See section 3.6)

The rest of this document concerns only those users who
find themselves concerned with the P-Machine internals. A
few instructions have been removed, a few have been
‘replaced. The problems solved are those concerning word
addressed machines, specifically: Addressing 128& bytes,
word boundary troubles with strings and packed arrays, and
byte-sex difficulties.

Byte addresses, which are specified by a 16 bit quantity
in I.5 systems, are now specified with an address couple. A
wrd base and a byte offset, each of which are 16 bits.

Page x1

(PCCIE Changes:

Decimal value

157
1€€
167
16¢
208
209
210

1.5

SeP
LCA
LDO
MVB
S1P
IXB
BYT

II1.0

unused
LSA
unused
LDO
LPA
unused
unused

Load String Address

Load Global
Load Packed array Address

Cperators with new or changed functional behavior:

1) LSA - puts address of length byte of string constant, which

compiler has aligned to a word, on top-of-stack.

2) LPA - puts address of first data byte of string constant,
which compiler has aligned to a word, on top-of-stack.

3) INC now adds its parameter (# of words) to the top of stack,

and is now used only for addresses.

L) Other operators/standard procedures affected: LDB, STB, MVR,

ML, SCN, FLC, UNITREAD, UNITWRITE, BLOCKIO.

These now use address

couples, wherever one word byte addresses were used in I.5.

Page xii

2696 06 636 9696 JE0E 30 6 936 06 33 96 36 636 3636 96 9 33 I N P36 3 J % %N

* INTRODUCTION AND OVERVIEW * * Section 1.1 ¥
et T T ITTTIT IR I T A A2 A2 AL AL Lt i

Version II.0 February 1979

The UCSD Pascal system described in this document is a system
intended to run on stand alone micro- and mini-computers. This system
is highly machine independent since it runs on a pseudo-machine
interpreter commonly referred to as the "P-machine". All system
software is written in Pascal, except for the P-machine interpreter
and a few run-time support routines written in assembler for

efficiency, resulting in relatively straightforward software
maintenance and enhancement.

The system is designed to be used primarily with a CRT terminal
acting as the CONSOLE device; however, the system is flexible enough
to be reconfigured for slower hard=-copy terminals. The system does
require some kind of fast mass storage suwch as a floppy disk system or
better. For further information regarding compatability between
various types of equipment and this system see the "SETUP" document in
Section 4.3. This document is intended for programmers who are
familiar with the Pascal programming language and have some experience
in writing computer programs. Some additional reading suggestions
follow:

The following is a tutorial book on PASCAL:

Kenneth L. Bowles,
(Microcomputer) Problem Solving Using PASCAL
Springer-Verlag, New York, (e)1977

We suggest the following book as a PASCAL reference guide:

Kathleen Jensen and Niklaus Wirth,
PASCAL User Manual and Report
Springer-Verlag, New York, (c)1975

For documentation concerning the differences between ucsb
Pascal and Standard Pascal see Section 2.2.
1.1.1 THE UCSD PASCAL SYSTEM: AN OVERVIEW

The structure of the UCSD Pascal system is best conceptualized in
terms of the "tree-like" structure diagram figure 0.1.

The diagram in figure 0.1 depicts the outermost level of the

system. In terms of a "tree" or structure diagram, the "root"
corresponds to the outermost level, while the "leaves" (i.e. the boxes

N -~ 1

with no branches to lower levels) correspond to the lower levels of
the system. While a user is in a particular level, the system
displays a list of available commands called the "prompt-line". If
the system is running on a CRT screen type terminal, then the prompt-
1ine will usually appear at the top of the screen. Commands are
usually invoked by typing a single character from the CONSOLE device. .
For example, the prompt-line for the outermost level of the system is:

Command: E(dit, R(un, F(ile, C(omp, L(ink, X(ecute, A(ssem, D(ebug, ? [II.0]

By typing "F" the user will "descend" a level within the
structure diagram into a level called the "Filer". Upon entering the
Filer, another prompt-line detailing the set of commands available at
the Filer level of the system is displayed. The Q(uit command causes
the user to exit from the Filer and "ascend" back to the outermost
command level of the system. Now the user is back at the level in the
system from which he startéd after pbootstrapping the machine. Some
cormands within the system prompt the user for the name of some file.
In these cases, the user enters the name of the file followed by a
carriage return. If an error is made in typing a portion of the file
name, the backspace key (or equivalent key depending upon the system
configuration) may be used to "back over" and erase the erroneous
part. The line delete key (rubout key) may be used to erase the
entire file name, thereby allowing the user to completely start over.
If the user decides not to accept any file name whatsoever, "escape"
from this command is by entering a file name of zero characters, i.e.
type <cr>.

Sometimes there are more commands than will fit on the screen.
If this is true, a question mark (?) will appear at the end of the
line, typing "?" will cause a different prompt to appear, such that
more of the available commands will be displayed to the user.

A concept central to the design of the entire UCSD Pascal
system command structure is the concept of the "workfile". A workfile
can be thought of as a ngeratch-pad" area used for development of
programs and only one workfile is allowed at any one time. If a user
wishes to begin a new workfile, the contents of the old one can be
saved, under a separate file name, for later reference by using the
S(ave command in the Filer level of the system. When that file is
1ater retrieved for further work on the contents, it is possible that a
number of files (usually source and code) will be retrieved together
and in total they comprise the work-file.

1.1.2 OUTERMOST LEVEL COMMANDS: AN OVERVIEW
A. E(dit
Typing "E" while at the outermost command level of the system 4

causes the editor progranm to be brought into memory from disk. The
user may, while in the editor, alter text inside his workfile or any

Page 2

textfile. See Section 1.3 for details. The workfile text (if present)
is read into the editor buffer, otherwise the Editor prompts for a
file.

B. F(iler

"F" places the user in a level of the system called the Filer.
This section of the system contains commands used primarily for
maintenance of the disk directory. For more documentation on the
Filer level including commands associated with the "'getting",
"saving", and "clearing" of the user's workfile see Section 1.2.

C. C(amp .
This command initiates the system compiler to compile the users
workfile. If there is no work-file currently the user is asked for a
source text file name. If a syntax error within the source is
detected, the compiler will stop and display the error number and the
surrounding text of the program. By typing a space, the user can
cause the compiler to continue the compilation. Typing an {esc> causes
the compiler to abort & return to Command level. Typing 'E' will,
call the editor placing the cursor, if the system editor is the
screen editor, near the offending symbol. If the compilation is
successful, (i.e. no compilation errors were encountered) a codefile
called *SYSTEM.WRK.CODE is written out onto the user's disk and
becomes part of the workfile. For more documentation on the use of
the UCSD Pascal compiler see Section 1.6.

D. R(un

This command causes the codefile associated with the current
workfile to be executed. If no such code file currently exists, the
compiler is called in the same manner as described in C above. If the
compilation requires linkage to separately compiled code the linker
will automatically be invoked and will assume the use of the file
#SYSTEM.LIBRARY. After a successful compilation, the program is
executed.

E. X(ecute

This command prompts the user for the filename of a previously
compiled codefile. If the file exists, the codefile is executed;
otherwise the message "can't find file" is returned. (Note: the
" CODE" suffix on such a file is implicit.) If all code necessary to
execute the codefile has not been linked in, the message "must L(ink
first" is returned. It is convenient to X(ecute other programs which
have already been compiled because otherwise the user would have to
enter the Filer, G(et the file, Q(uit the Filer, and then R(un the
program.

Page 3

F. A(ssem

Just like C(omp except the system assembler is invoked rather

than the system compiler. See Section 1.9 for more information on the
system assembler.

G. D(ebug

This command causes the current workfile to be executed. If
the program in the workfile has not been compiled, the compiler will be
called as in the case of the R(un command. However if a run-time error
oceurs, or a user-defined break-point or halt is encountered, the
Debugger program is called. The Debugger is a program which allows the
user to examine the contents of variables within the program. See
section 1.5 Debugger for more details.

H. L(ink

This command starts the system linker program explicitly to
allow users to link routines from libraries other than
*SYSTEM.LIBRARY. See section 1.8 for more information on the Linker.

1.1.3 UTILITY PROGRAMS

There are many functions needed by users of any operating
system. To attempt to make all these functions system functions would
result in a terrible proliferation of command letters at the base node
level. In order to keep the COMMAND line simple, we have restricted
the functions available on it to what we feel is the bare minimum for
program and text development. The other useful, but much less often
used functions are available through the X(ecute command. The sort of
functions which are available are the desk calculator, the patch/dump
utility, the terminal configuration setup program, a bootstrap mover, a
librarian and many others. For a complete list of the utility pragrams
now available with the UCSD Pascal system, reference Section 4 in the
Table of Contents. Any programs which you write and feel would be a
useful addition to our library of utilities will be welcome
contributions.

1.1.4 AN INTRODUCTION TO THE UCSD PASCAL SYSTEM

1.5 is the first release which contains the fully intergrated
and implemented concept of separate compilation and assembly. I.Ub was
the first to support multiple types of processors. I.3 was the first
releasable system.

The great bulk of the system software is written in Pascal and

runs on a relatively simple pseudo-machine. If this pseudo-machine is
emulated by a machine language program on a new real machine, the

Page U

Pascal software will also run on that new real machine.

One class of differences among versions of the system is due to
aspects of the pseudo-machine that are not identicaly emulated by the
implementations for different types of processors. Section A contains

a chart of differences between processors the system currently runs
on.

Another class of differences stems from variations in the
system I/0 environments rather than in the host processor. Included
here are difference in system console terminal types (i.e. hard-copy vs
CRT vs storage tube) or command conventions and capabilities (eg.
"intelligent" vs "dumb" CRT's). The system is intended to be able to
cope with this sort of variation.

In the PDP-11 world these mass storage variations are not too
serious, primarily because there is considerable motivation to be
compatible with DEC devices and media. We have written and support
drivers for a few DEC incompatible devices but make no claim to
support users who want to develop their own such drivers. See section
A for warnings about problems you might encounter.

The situation in the 8080/Z80 world is much more chaotic.
Since is would not be practical for the Project to write and support
drivers for the vast multitude of 8080/Z80 I1/0 environments that exist,
we have chosen to take advantage of the widespread implementation of
Digital Research's CP/M operating system by structuring the pseudo-
machine's 1/0 operations as calls on CP/M's Basic 1/0 Subsystem (BIOS)
primitives. Therefore, any 1/0 configuration on which CP/M has been
implemented should also be able to support the Pascal system. We do
not guarantee this. For example, Intel MDS disk controllers cannot
read disks generated here and some BIOS's we have encountered do not
completely meet all the requirements specified for CP/M. UCSD plans to
support some of the larger distribution 8080-based machines directly.

Our dominant mode of distribution is on 3740 compatible diskettes.
One of the distribution diskettes for Z80/8080 systems will be CP/M
oriented. This disk will be used, via a somewhat awkward two- step
process, to bring up UCSD Pascal on a particular CP/M configuration.
Look to section A for details on this process. It also describes the
configuration of a modified BIOS, which will better support the needs
of the Pascal system. Finally, directions are given for making it
possible to boot directly to Pascal rather than indirectly through a
CP/M program.

A number of files on the disk start with 'SYSTEM.' specifically:

SYSTEM.PDP-11
SYSTEM.MICRO
SYSTEM. PASCAL
SYSTEM.SYNTAX
SYSTEM.ASSMBLER

Page 5

SYSTEM.COMPILER
SYSTEM.EDITOR
SYSTEM.FILER
SYSTEM.LINKER
SYSTEM.STARTUP
SYSTEM. SWAPDISK
SYSTEM.CHARSET
SYSTEM.LIBRARY
SYSTEM.WRK. TEXT
SYSTEM.WRK.CODE
SYSTEM.WRK. INFO
SYSTEM.LST. TEXT

In most cases these files contain the system segment of the
name they carry. That is to say that the EDITOR, FILER, LINKER,
COMPILER, ASSEMBLER are the files that are invoked by the main level
of the system when 'E', 'F', etc. is typed. Some of the files are
machine specific. PDP-11 and MICRO are the files which contain the
interpreters for the particular machine being used. CHARSET is a file
which appears on disks meant for TERAK computers only and contains the
definition for the soft character set, and the data for the Triton
logo prompt. LIBRARY is a file containing separately assembled or
compiled routines for use by the Linker in producing executable code
files. PASCAL contains the operating system, and the Debugger.
SWAPDISK is a file used by some of the system segments during
open/close operations on files if a memory shortage exists. It is a
2048 byte file which gets a portion of memory swapped to it when a
directory needs to be read into core. When the directory work is
complete, the memory is restored to its original state. STARTUP is a
file which can be created at the user's option. If it exists on a
disk, the operating system considers it a runnable code-file, and
executes it at initialize time. This allows the user to have a
program that runs before the main command prompt comes up, and will
run anytime the I(nitialize command is typed. WRK.TEXT and WRK.CODE
are the current work-file after some action has occurred to the work-
file. They appear after having done some text editing on a work-file
(SYSTEM.WRK.TEXT) or compiling a work- file (SYSTEM.WRK.CODE). To
change the editor which is invoked by "E", one simply names the
codefile which is to respond to the 'E(dit' command SYSTEM.EDITOR.
This is true for all system segments which have named files associated
with their command.

All other files on the disk are user generated (in one fashion
or another). The other important parts of a disk are relatively
invisible to the user. The directory resides at block 2 on the disk
and extends for U blocks if it is a single directory, 8 blocks if it is
a duplicated (backed-up) directory. The bootstrap can reside at any of
a number of places on the disk, depending on the host machine. In most
cases, blocks 0 and 1 are reserved for the bootstrap.

Page 6

F6 060 A0 036 0606 069636 36 36 96 36 36 96 36 6 36 96 96 3¢ 2 3¢ ¢

FILEHANDLER * * Section 1.2 ¥
AN TN NN

Version II.O February 1979
1.2.1 FILES

A file is a collection of information which is stored on the
disk and referenced by a filename. Each disk has a directory which
contains the filenames and locations of each file on the disk. The

Filehandler, or Filer, uses the information contained in the disk
directory to manipulate files.

One of the attributes of a file is its type. The type of the
file determines the way in which it can be used. File types are
assigned based on part of the file name.

Reserved type suffixes for filenames are:

. TEXT

.BACK Human readable text.

.CODE Machine executable code.

.DATA Data.

.FOTO A file containing one graphic screen-image.

.GRAF Intended to be a file containing a
compressed graphic image. Currently unused .

.BAD An unmovable file covering a physically
damaged area of a disk.

JINFO Debugger information.

1.2.2 VOLUMES

A volume is any I1/0 device, such as the printer, the keyboard,
or a disk. A "block-structured" device is one that can have a
directory and files, usually a disk of some sort. A non- block-
structured device does not have internal structure; it simply produces
or consumes a stream of data. The printer and the keyboard, for
example, are non-block-structured. The table below illustrates the
reserved volume names used to refer to non-block- structured devices,
the 'unit number' associated with each device, and the unit numbers
associated with the system (booted) disk and any alternate disks.

Page 7

Unit Number Volume ID Description

- o w—

——

e s —— ———

|
|
| 1 CONSOLE: screen and keyboard with echo
i 2 SYSTERM: screen and keyboard without echo
/ 3 GRAPHIC: the graphic 'side' of the screen
H y {volume name>: the system disk
i 5 <volume name>: the alternate disk
\ 6 PRINTER: the line printer
' 7 REMIN: serial line input
' 8 REMOUT: serial line output
| 9-12 <{volume name>: additional disk drives
|
FIGURE 1

1.2.3 THE 'WORKFILE'

The workfile is a scratch-pad copy of the file being worked
with. It is used by the Filer, in the Editor, and by the Compiler.
when the text part of a workfile is charged, the system stores it on
disk under the name 1 #SYSTEM.WRK. TEXT', and when a code version is
first created, it is named ' #SYSTEM.WRK.CODE'. There may at times
exist other portions of the work-file, with appropriate names.

1.2.4 FILE SPECIFICATION
Many Filer commands require the uservto respond with at least

one file specification. The diagram below illustrates the sytax of
file specification.

(file spectf'tcut'tom °

{..
!

positive } U
) tnteger
1
L...._@-—.—._.

Page 8

I
i
!
1
!
|
J

FIGURE 2

Volume i.d. syntax can be expanded thusly:

<volume 10>

FIGURE 3

Volume names for block-structured volumes canbe assigned by
the user. A volume name must be 7 or less characters long and may not
contain '=', '$', '?' or ','. Reserved volume names for non- block-
structured devices are given in Figure 1. The character '%#1' is the
volume ID of the 'system disk', the disk upon which the system was
booted. The character ':', when used alone, is the volume ID of the
tdefault disk'. The system disk and default disk are equivalent
unless the default prefix (see material on P(refix) has been changed.

"#<unit number>' is equivalent to the name of the volume in the drive
at that time.

A legal filename can consist of up to 15 characters. In order
for the file to be run the last 5 characters must be .TEXT, or .CODE.
Without these suffixes the file may be executed but not put in the
workfile. Lower-case letters are translated to upper-case, and blanks
and non-printing characters are removed from the filename. Legal
characters for filenames are the alphanumerics and the special
characters '=', '/', '\', ' ', and '.'. These special characters may
be used to indicate hierarchic relationships among files and/or to
distinguish several related files of different types. Currently the
system does not support hierarchical directories.

Page 9

WARNING:

The II.0 Filer will not be able to access filenames containing
the characters '$', vgr, vz, 2?7, and v+, If filenames contain
these characters, then they should be changed before attempting to use
those files with the II.0 System.

The wildcard characters, 1=' and '?', are used to specify
subsets of the directory. The Filer performs the requested action on
all files meeting the specifications. A file specification containing
the subset-specifying string 'DOC=TEXT' notifies the Filer to perform
the requested action on all files whose names begin with the string
"DOC' and end with the string 'TEXT'. If a '?' is used in place of an
1=', the Filer requests verification before affecting each file
meeting the specified criteria. Either or both strings may be empty.
For example, a subset specification of the form '=z<string>' or
t¢string>="' or even v=1 is valid. This last case, where both subset-
specifying strings are empty, is interpreted by the Filer to specify
every file on the volume, SO typing '=' or '?' alone causes the Filer
to perform the appropriate action on every file in the directory.

Given an example directory for volume MYDISK:

NAUGHTYBITS 6 23-Jun-54
MOLD. TEXT 4 29-Jun-54
USELESS.CODE 10 19-May-54
MOLD.CODE 4 29-Jun-54
NEVERMORE.TEXT 12 5-Apr-5d
GOONS 5 10-Sep-52

EXAMPLE:
Prompt: Remove what file?
Response: Typing 'N=' generates the message:
MYDISK: NAUGHTYBI TS removed
MYDISK: NEVERMORE. TEXT removed
Update directory?
(At this point the user can type 'Y' to remove or type 'N', in

which case the files will not be removed. The Filer always requests
verification on any wildcard removes.)

Page 10

Typing 'N?' generates the message:
Remove NAUGHTYBITS: ?
After the user types a response, the Filer asks :
Remove NEVERMORE.TEXT: ?

EXAMPLE:
Prompt: Dir listing of what vol ? .
Response: Typing '=TEXT' causes the Filer to list

MOLD. TEXT 4 29-dun-54
NEVERMORE.TEXT - 12 S-Apr-54

The subset-specifying strings may not toverlap'. For example,
GOON=NS would not specify the file GOONS, whereas GOON=S would be a
valid (although pointless) specification.

The size specification information is predominantly useful in
the commands T(ransfer section 1.2.5.11 and M(ake section 1.2.5.17.

1.2.5 COMMANDS AND USE
Type "F" at the Command level to enter the Filer and the
following prompt is displayed:
Filer: G(et, S(ave, W(hat, N(ew, L(dir, R(em, C(hng, T(rans, D(ate, Q(uit [A]

Typing '?' in response to this prompt displays more Filer
commands:

Filer: B(ad-blks, E(xt-dir, K(rnch, M(ake, P(refix, V(ols, X(amine, Z(ero
The individual Filer commands are invoked by typing the letter

found to the left of the parenthesis. For example, 'S' would invoke
the Save command.

Page 11

In the Filer, answering a Yes/No question with any character
other than 'Y' constitutes a 'No' answer. Typing an <esc> will return
the user to the outer level of the Filer.

For each command requiring a file specification, refer to the
file specification diagram (Figure 2). In many cases, the entire file
specification is not necessary, and in some cases, certain parts of
the file specification are not valid. Follow the specification with
{carriage return>. See the required command in the following section.

Whenever a Filer command requests a file specification, the
user may specify as many files as desired, by separating the file
specifications with commas, and terminating this 'file list' with a
carriage return. Commands operating on single filenames will keep
reading filenames fram the file 1ist and operating on them until there
are none left. Commands operating on two filenames (such as C(hange
and T(rans) will take file specifications in pairs and operate on each
pair until only one or none remains. If one filename remains, the
Filer will prompt for the second member of the pair. If an error is
detected in the list, the remainder of the list will be flushed.

1.2.5.1 G(et
Loads the designated file into the workfile.
The entire file specification is not necessary. If the volume
ID is not given, the default disk is assumed. Wildcards are not
allowed, and the size specification option is ignored.
Given the example directory:
FILERDOC2.TEXT
ABSURD,.CODE
HYTYPER. CODE
STASIS.TEXT
LETTER1.TEXT
FILER.DOC.TEXT
STASIS.CODE

EXAMPLE:

Prompt: Get what file?

Response: STASIS

The Filer responds with the message
'Text % Code file loaded'

Page 12

since both text and code file exist. Had the user typed
'STASIS. TEXT' or 'STASIS.CODE', the result would have been the same -
both text and code versions would have been loaded.- In the event that
only one of the versions exists, as in the case of A.OUT, then that
version would be loaded, regardless of whether text or code was
requested. Typing 'ABSURD.TEXT' in response to the prompt would
generate the message: 'Code file loaded'. Working with the file may
oause the files SYSTEM.WRK.xxxx to be created, as part of the
workfile. These files will go away when the S(ave command is used.
If the system is rebooted before the S(ave command is used, the name
of the workfile will be forgotten.

1.2.5.2 S(ave

Saves the workfile under the filename specified by the user.

The entire file specification is not necessary. If the volume
ID is not given, the default disk is assumed. Wildcards are not
allowed, and the size specification option is ignored.

EXAMPLE :
Prompt :
Save as what file?

Response: Type a filename of 10 or less characters, observing
the filename conventions in section 1.2.4 'FILES' . This causes the
FILER to automatically remove any old file having the given name, and
to save the workfile under that name. For example, typing "X" in
response to the prompt causes the workfile to be saved on the default
disk as X.TEXT. 1If a codefile has been compiled since the last update
of the workfile, that codefile will be saved as X.CODE.

Page 13

The FILER automatically appends the suffixes .TEXT and .CODE
to files of the appropriate type. Explicitly typing AFILE.TEXT in
response to the prampt will cause the FILER to save this file as
AFILE.TEXT.TEXT . Any illegal characters in the filename will be
ignored, with the exception of ':'. If the file specification
includes volume id, the Filer assumes that the user wishes to save the
workfile on another volume. For example, typing:

RED:EYE

in response to 'Save as what file?' will generate

MYDISK:SYSTEM.WRK. TEXT --> RED:EYE.TEXT

RED:EYE constitutes a file specification, and a 'Y' answer to

this prompt will cause the Filer to attempt a transfer of the workfile
to the specified volume and file. (see section 1.2.5.11 T(ransfer.)

1.2.5.3 N(ew

Clears the workfile. Creating a blank, unnamed workfile. It
will remain unnamed until it is saved.

If there is already a workfile present, the user is prompted:
Prompt:
Throw away current workfile?

Response: 'Y' will clear the workfile while 'N' returns the
user to the outer level of the FILER.

If <workfile name>.BACK exists, then the user is prompted:
Prompt :

Remove <workfile name>.BACK ?

1.2.5.4 Q(uit

Returns the user to the outermost command level.

Page 14

1.2.5.5 W(hat

Identifies the name and state (saved or not) of the workfiie.

1.2.5.6 V(olumes

Lists volumes currently on-line, with their. associated unit
(device) numbers. ’

A typical display might be:

Vo lumes on-line:

1 CONSOLE:
2 SYSTERM:
4 # MYDISK:
6 PRINTER:
8 REMOTE:
g # BIG:

Root vol is - MYDISK:
- Prefix is - MYDISK:

The system volume is the default volume unless the prefix (see

PS}refix) has been changed. Block-structured devices are indicated by
tie

1.2.5.7 L(dir

Lists a disk directory, or some subset thereof, to the volume
and file specified (default is CONSOLE:).

The user may list any subset of the directory, using the
'wildcard' option, and may also write the directory, or any subset
thereof, to a volume or fil ename other than CONSOLE. File
specification will therefore be discussed in terms of source file
specification and destination file specification.

Source file specification consists of a mandatory volume ID,
and optional subset-specifying strings, which may be empty. Source
file specifications are separated from destination file
specifications by a comma ¢,".

Page 15

Destination file specification consists of a volume ID, and,
if the volume is a block-structured device, a filename.

The most frequent use of this command is to list the entire
directory of a volume. The following display, which represents a
complete directory listing for the example disk MYDISK, would be

generated by typing any valid volume ID for MYDISK (see Figure 2) in
response to the prompt,

Dir listing of what vol?

MYDISK:

FILERDOC2.TEXT 28 1-Sep-T78
ABSURD. CODE 18 1-Sep-T8
HYTYPER.CODE 12 1-Sep-T8
STASIS.TEXT 8 1-Sep-T78
LETTER1.TEXT 18 1-Sep-T78

ASSEMDOC. TEXT 20 1-Sep-T78
FILERDOC1.TEXT 24 1-Sep-78
STASIS. CODE 6 1-Sep-T8

10/10 files <listed/in-dir>, 144 blocks used, 350 unused, 200 in largest
(The bottom line of the display informs the user that 10 files

out of 10 files on the disk have been listed, that 130 disk blocks

have been used, that 364 disk blocks remain unused, and that the

largest area available is 200 blocks.)

EXAMPLE:

L(dir transaction involving wildcards:
Prompt: Dir listing of what vol ?

User response: #4:FIL=TEXT

generates the following display:

MYDISK:

FILERDOC2.TEXT 28 1-Sep-T78
FILERDOC1.TEXT 24 1-Sep-T8
2/10 files <listed/in=dir>, 62 blocks used, 432 unused, 200 in largest

Page 16

EXAMPLE :

L(dir transaction involving writing the directory subset to a
device other than CONSOLE:

Prompt: Dir listing of what vol ?
User response: ¥ IL=TEXT, RINTER: causes

MYDISK:

FILERDOC2. TEXT 28 1-Sep-78

FILERDOC1.TEXT 24 1-Sep-T8

2/10 files <listed/in-dir>, 62 blocks used, 364 unused, 200 in largest

to be written to the Printer.
EXAMPLE :

L(dir transaction involving writing the directory subset to a
block-structured device:

Prompt: Dir listing of what wol ?

User response: #4:FIL=TEXT,#5:TRASH creates the file TRASH on
the volume associated with unit 5. TRASH would contain:

MYDISK:

FILERDOC2.TEXT 28 1-Sep-T8

FILERDOC1.TEXT 24 1-Sep-78

2/10 files <listed/in-dir>, 62 blocks used, 364 unused, 200 in largest

1.2.5.8 E(xtended list

Lists the directory in more detail than the L(dir command.

All files and unused areas are listed along with (in this
order) their block length, last modification date, the starting block
address, the number of bytes in the last block of the file, and the
filekind. All wildcard options and prompts are as in the L(dir
command. An example display is shown below.

MYDISK:

FILERDOC2.TEXT 28 1-Sep-T78 6 512 Textfile
ABSURD.CODE 18 1-Sep-T78 34 512 Codefile
<UNUSED> 10 52

ABSURD 4 1-Sep-T78 62 512 Datafile
HYTYPER.CODE 12 1-Sep-T78 66 512 Codefile
STASIS.TEXT 8 1-Sep-T78 78 512 Textfile
LETTER1. TEXT 18 1-Sep-T78 86 512 Textfile
ASSEMDOC . TEXT 20 1-Sep-78 104 512 Textfile
FILERDOC1.TEXT 24 1-Sep-78 124 512 Textfile

Page 17

<UNUSED> 200 148

STASIS.CODE 6 1-Sep-78 3u8 512 Codefile

<UNUSED> 154 354

10/10 files <listed/in-dir>, 138 blocks used, 364 unused, 200 in largest

1.2.5.9 C(hange
Changes file or volume name.

This command requires two file specifications. The first of
these specifies the file to be changed, the second, to what it will be
changed. The first specification is separated from the second
specification by either a <ret> or a coma (','). Any volume 1D
information in the second file specification is ignored, since
obviously the 'old file' and the 'new file' are on the same volume!
Size specification information is ignored.

Given the example file F5.TEXT, residing on the volume
occupying unit 5:

Prompt : Change what file?
User Response: #5:F5. TEXT,HOOHAH

changes the name in the directory from 'F5.TEXT' to '"HOOHAH ' .
Filekinds are originally determined by the filename, the C(hange
command does not affect the filekind. In the above case, HOOHAH would
still be a text file. However, since the G(et command searches for
the suffix '.TEXT' in order to load a text file into the workfile,
HOOHAH would need to be renamed HOOHAH.TEXT in order to be loaded into
the workfile.

Wildcard specifications are legal in the C(hange comand. If
a wildcard character is used in the first file specification, then a
wildcard must be used in the second file specification. The subset-
specifying strings in the first file specification are replaced by the
analogous strings (henceforward called replacement strings) given in
the second file specification. The Filer will not change the filename
if the change would have the effect of making the filename too long
(>15 characters). Given a directory of example disk NOTSANE:
containing the files:

Page 18

POEMS. TEXT
MAUNDER. TEXT
MALPRACTICE
MAKELISTS. TEXT

EXAMPLE :
Prompt : Change what file?

User response: NOTSANE:MA=TEXT ,XX=GAACK
causes the Filer to report

NOTSANE :MAUNDER. TEXT —-> XXUNDER.GAACK
NOTSANE :MAKELISTS. TEXT --> XXKELISTS.GAACK

The subset-specifying strings may be empty, as may the
replacement strings. The Filer considers the file specification 'z’
(where both subset-specifying strings are empty) to specify every file
on the disk. Responding to the C(hange prompt with '=,Z=Z' would cause
every filename on the disk to have a 'Z' added at front and back.
Responding to the prompt with 'Z=Z,=' would replace each terminal and
initial 'Z' with nothing. Given the filenames:

THIS.TEXT
THAT.TEXT

EXAMPLE:
Prompt : Change what file?
User Response: T=T,=

The result would be to change 'THIS.TEXT' to 'HIS.TEX', and
'THAT.TEXT' to 'HAT.TEX'.

The volume name may also be changed by specifying a volume ID
to be changed, and a volume ID to change to.

EXAMPLE:
Prompt : Charge what file?

User Response: NOTSANE:,WRKDISK:

NOTSANE: --> WRKDISK

Page 19

1.2.5.10 R(emove

Removes file entries from the directory.

This command requires one file specification for each file thé
user wishes to remove. Wildcards are legal. Size specification
information is ignored. Given the example files (assuming that they
are on the default volume):

AARDVARK. TEXT

ANDROID.CODE

QUINT.TEXT

AMAZING. CODE
EXAMPLE :

Prompt: Remove what file?

User Response: AMAZ ING.CODE

removes the file AMAZING.CODE from the volume directory.

Note: To remove SYSTEM.WRK. TEXT and/or SYSTEM.WRK. CODE the
N(ew command should be used, or the system may get confused.
Fortunately, before finalizing any wildcard removes, the Filer prompts
the user with

Prompt: Update directory?

Response: 'Y' causes all specified files to be removed. 'N'
returns the user to the outer level of the Filer without any removes
having occurred.

As noted before, wildcard removes are legal.

EXAMPLE:
Prompt: Remove what file?

User Response: A=CODE

Page 20

causes the Filer to remove AMAZING.CODE and ANDROID.CODE.
WARNING: Remember that the Filer considers the file specification '='
(where both subset- specifying strings are empty) to specify every
file on the volume. Typing an '=' alone will cause the Filer to -
remove every file on your directory!!

1.2.5.11 T(ransfer
Copies the specified file to the given destination.
This command requires the user to type twotfile

specifications, one for the source file, and one for the destination
file, separated with either a comma or {ret>. Wildcards are
permitted, and size specification information is recognized for the
destination file. y

Assume that the user wishes to transfer the file FARKLE.TEXT
from the disk MYDISK to the disk BACKUP.

EXAMPLE :
Prompt: Transfer what file ?
User Response: MYDISK:FARKLE.TEXT
Prompt: To where?

(Note: On a one-drive machine, DO NOT remove your source
disk until you are prompted to insert the destination disk)

User Response: BACKUP:NAME.TEXT

Prompt: Put in BACKUP:
Type <space> to continue

The user should remove the source disk, insert the destination
disk and type a <space>. The Filer then notifies the user:

MYDISK:FARKLE. TEXT —> BACKUP:NAME.TEXT
The Filer has made a copy of FARKLE and has written it to the
disk BACKUP giving it the name NAME.TEXT. If the specified file is

large, the user may be prompted to alternately insert the source and
destination disks until the transfer is completed .

Page 21

It is often convenient to transfer a file without changing the
name, and without retyping the file name. The Filer enables the user
to do this by allowing the character '$' to replace the filename in
the destination file specification. In the above example, had the
user wished to save the file FARKLE .TEXT on BACKUP under the name
FARKLE.TEXT, she could have typed:

MYDISK:FARKLE.TEXT,BACKUP: $

WARNING: Avoid typing the second file specification with the
filename completely omitted! For example, a response to the Transfer
prompt of the form:

MYDISK:FARKLE.TEXT,BACKUP:

generates the message:

Destroy BACKUP: ? °

"Y' answer causes the directory of BACKUP to be wiped out!

Files may be transferred to volumes that are not block
structured, such as CONSOLE: and PRINTER:, by specifying the
appropriate volume ID (see Figure 1) in the destination file
specification. A file name on a non- block-structured device is
ignored. It is generally a good idea to make certain that the
destination volume is on-line.
EXAMPLE :

Prompt: Transfer what file?

User Response: FARKLE.TEXT

Prompt: To where?

User Response: PRINTER:

causes FARKLE.TEXT to be written to the printer.

The user may also transfer from non-block-structured devices,

providing they are input devices. Filenames accompanying a non- block=-
structured device ID are ignored.

Page 22

The wildcard capability is allowed for T(ransfer. If the
source file specification contains a wildecard character, and the
destination file specification involves a block-structured device,
then the destination file specification must also contain a wildcard
character. The subset-specifying strings in the source file
specification will be replaced by the analogous strings in the
destination file specification (henceforward known as replacement
strings). Any of the subset-specifying or replacement strings may be
empty. Remember that the Filer considers the file specification '='
to specify every file on the volume.

EXAMPLE:

Given the volume MYDISK containing the files PAUCITY, PARITY
and PENALTY, and the destination ODDNAMZ:

Prompt: Transfer what file?
User Response: P=TY,ODDNAMZ:V=S

would cause the Filer to reply:

MYDISK:PAUCITY --> ODDNAMZ:VAUCIS
MYDISK: PARITY --> ODDNAMZ:VARIS
MYDISK: PENALTY —-> ODDNAMZ:VENALS
Using '=' as the source filename specification will cause the

Filer to attempt to transfer every file on the disk. This will
probably overflow the output buffer. (There are easier ways to
transfer whole disks. If you wish to do this, please refer to the
material in this section on volume- to- volume transfers.)

Using '=' as the destination filename specification will have
the effect of replacing the subset-specifying strings in the source
specification with nothing. A brief reminder: 12' may be used in
place of '='. The only difference is that 121 causes the user to be
asked for verification before the operation is performed.

A file can be transferred from a volume to the same volume by
specifying the same volume ID for both source and destination file
specifications. This is frequently useful when the user wishes to
relocate a file on the disk. Specifying the number of blocks desired
will cause the Filer to copy the file in the first-fit area of at
least that size. If no size specification is given, the file is
written in the largest unused area.

Page 23

If the user specifies the same filename for both source and
destination on a same-disk transfer, then the Filer rewrites the file
to the size-specified area, and removes the older copy.

EXAMPLE:
Prompt: Transfer what file?
User Response: #H:QUIZZES.TEXT,#H:QUIZZES.TEXT[20]

causes the Filer to rewrite QUIZZES.TEXT in the first 20-block
area encountered (counting up from block 0) and to remove the previous
version of QUIZZES.TEXT.

It is also possible to do entire volume-to-volume transfers.
The file specifications for both source and destination should consist
of volume ID only. Transferring a block-structured volume to another
block- structured volume causes the destination volume to be 'wiped
out' so that it becomes an exact copy of the source volume.

Assume that the user desires an extra copy of the disk MYDISK:
and is willing to sacrifice disk EXTRA:

EXAMPLE :
Prompt: Transfer what file?
User Response: MYDISK:,EXTRA:
Prompt: Destroy EXTRA: ?

WARNING: If the user types 'Y', the directory of EXTRA: will
be destroyed! An 'N' response will return the user to the outer Tevel
of the Filer, and a 'Y' will cause EXTRA to become an exact copy of
MYDISK. Often this is desirable for backup purposes, since it is
relatively easy to copy a disk this way, and the volume name can be
changed (see C(hng) if desired.

Mthough it is certainly possible to transfer a volume (disk)
to another using a single disk-drive, it is a fairly tedious process,
since the in-core transfer reads up the information in rather small
chunks, and a great deal of disk juggling is necessary for the
complete transfer to take place.

Page 24

1.2.5.12 D(ate

Lists current system date, and enables the user to change the
date.

Prompt: Date Set: <1..31>-<JAN..DEC>-<OO..99>
Today is 19-Aug-T78
New date?

The user may enter the correct date in the format given.:
After typing <ret>, the new date will be displayed. Typing only a
return does not affect the current date. The hyphens are delimiters
for the day, month and year fields, and it is possible to affect only
one or two of these fields. For example, the year could be changed by
typing '--79', the month by typing '-Sep', etc. The entire month-
name can be entered, but will be truncated by the Filer. Slash ('/")
is also acceptable as a delimiter. The most common input will be a
single number, which witl be interpreted as a new day. For example,
if yesterday was the 19th of August, the user would want to type
D20<ret>, which would have the desired effect of changing the date to
the 20th of August. The day-month-year order is inviolate, however.

This date will be associated with any files saved during the

current session and will be the date displayed for those files when
the directory is listed.

1.2.5.13 P(refix

Changes the current default to the volume specified.

This command requires the user to type a volume ID. An entire
file specification may be entered, but only the volume ID will be
used. It is not necessary for the specified volume to be on-line.

To determine the current default volume, the user may respond
to the prompt with ':'. To return the prefix to the booted or "Root"
volume, user may respond with n#r,
1.2.5.14 B(ad blocks

Scans the disk and detects bad blocks.

This command requires the user to type a volume ID. The
specified volume must be on-line.

Page 25

Prompt: Bad block scan of what vol?

Response: <volume D>

Prompt: Scan for 494 blocks ? <y/n>

Response may be myn for yes if you want to scan for the entire
length of the disk. If you only wish to check a smaller portion of
the disk, type "N" and you will then be prompted for the number of
blocks you want the filer to scan for. The purpose of this part of

the command is for disks where the filer has no idea of how 'long'
the device is.

Checks each block on the indicated volume for errors and lists
the number of each bad block. Bad blocks can often be fixed or marked
(see eX(amine).
1.2.5.15 eX(amine

Attempts to physically recover suspected bad blocks.

This command requires the user to type a volume ID. The
volume must be on-line.

EXAMPLE :

Prompt : Examine blocks on what volume?

Response : <volume ID> generates the

Prompt: Block-range ?

The user should have just done a pad block scan, and should
enter the block number(s) returned by the bad block scan. If any
files are endangered, the following prompt should appear:

Prompt: File(s) endangered:

{filename>

Fix them?

Response: 'Y' will cause the FILER to examine the blocks and
return either of the messages:

Page 26

Bl ock <block-number> may be ok
in which case the bad block has probably been fixed, or

Block <block-number> is bad

in which case the FILER will offer the user the option of
marking the block(s) BAD. Blocks which are marked BAD will not be
shifted during a K(runch, and will be rendered effectively harmless.

An 'N' response to the 'fix them?' prompt returns the user to
the outer level of the FILER.

WARNING: A block which is 'fixed' may contain garbage. 'May
be ok' should be translated as 'is probably physically ok'. Fixing a
block means that the block is read, is written back out to the block
and is read again. If the two reads are the same, the message is
'may be ok'. In the event that the reads are different, the block is
declared bad and may be marked as such if so desired.

1.2.5.16 K(runch

Moves the files on the specified volume so that unused blocks
are combined.

This command requires the user to type a volume ID. The
specified volume must be on-line. It is recommended that the user
perform a bad block scan of the volume before K(runching in order to
avoid writing files over bad areas of the disk. If bad blocks are
encountered, they must be either fixed or marked before the K(runch
(see eX(amine).

As each file is moved, its name is reported to the console.
If SYSTEM.PASCAL is moved, the system must be reinitialized by
pootstrapping. Do not touch the disk, the boot-switch or the disk-
drive door until K(runch tells you it has completed its task. To do
otherwise may cause irreversible damage to the disk.

EXAMPLE :

Prompt : Crunch what vol?

Page 27

Response : <volume ID>
causes Filer to prompt with:
Prompt : From end of disk, block u93 ? (y/n)

Response: 'Y' initiates the K(runch. Typing an 'N' will cause
the prompt: .

Prompt : Starting at block # ?

Response: The block number at which you wish the filer to
open a space on the disk. .

1.2.5.17 M(ake

Creates a directory entry with the specified filename.

This command requires the user to type a file specification.
Wildecard characters are not allowed. The file size specification
option is extremely helpful, since, if it is omitted, the Filer
creates the specified file by consuming the largest unused area of the
disk. The file size is determined by following the filename with the

desired number of blocks, enclosed in square brackets '[*and ']'.
Some special cases are:

[0] - equivalent to omitting the size specification. The file is
created in the largest unused area.

[*] - the file is created in the second largest area, or half the
largest area, whichever is larger.

EXAMPLE:
Prompt : Make what file?
Response : MYDISK:FARKLE.TEXT[28]

Creates the file FARKLE.TEXT on the volume MYDISK: in the
first unused 28-block area encountered.

Page 28

Reformats the specified volume. The previous directory is
rendered irretrievable.

EXAMPLE:

Prompt: Zero dir of what vol ?

Response: <volume ID>

Prompt: Destroy <volume name> ?

Response: A 'Y' response generates

Prompt: Duplicate dir ?

Response: If a 'Y' is typed, then a duplicate directory will
be maintained. This is advisable because, in the event that the disk
directory is destroyed, a utility program called COPYDUPDIR can use
the duplicate directory to restore the disk.

Prompt: Are there 49l blks on the disk ? (y/n)

Response: 'N' generates

Prompt: # of blocks on the disk ?

Response: User will type number of blocks desired. The table
following this section gives the correct number of blocks for several
types of disks.

'Y' generates

Prompt: New vol name ?

Response: User types any valid volume name.

Prompt: <new volume name> correct ?

Response: 'Y' causes the Filer, if it could indeed write the
new directory on the disk, to respond with the message:

<new volume name> zeroed

Page 29

MACHINE DISK TYPE # OF BLOCKS

L] 1
1 H ,
Terak ! Single-density soft-sectored 8" floppy L 493
1]
1 L}
| \
Northwest | Double-density soft-sectored 8" floppy v 1101
Micro ' !
d g
i i
Zilog ! Single-density hard~-sectored 8" floppy ' 607
] 1
[} |
! :
North Star | Single-density nard-sectored 5 1/4" floppyi 167
! 'z
i |
DEC | RKO5 / per volume 1 u8T
[}

These ane the numbens that one Zypes when the §ilern asks for a numben 04

blocks, as the blocks are numbered grom zero. ed.

?

»

Page 30

FE 36366 36 36 306 D0 6 J6 06 36 6636 D606 06 0696 36 36 36 2636 36 38 36 6 06 6 96 96 36 90 36 06 3¢ ¢

SCREEN ORIENTED EDITOR * * Section 1.3.1 ¥
T I T T T R T A T A i i

Version II1.0 February 1979

This introduction describes the idea behind the Editor, -
and is the first section. The second section is a tutorial for
the novice. While the Editor is designed to handle any files, the
tutorial section uses a sample program to demonstrate how to use the
most basic commands to modify a file. The third section contains a
detailed description of each command, with examples, and the fourth is
a quick reference guide.

THE CONCEPT OF A 'WINDOW' INTO THE FILE

The Screen Oriented Editor is specifically designed for use
with Video Display Temminals. On entering any file, the Editor
displays the start of the file on the second line of the screen. If
the file is too long for the screen, only the first portion is
displayed. This is the concept of a 'window'. The whole file is
there and is accessible by Editor commands, but only a portion of it
can be seen through the 'window' of the screen. When any Editor
command takes the user to a position in the file which is not
displayed, the "window" is updated to show that portion of the file .

THE CURSOR

The cursor represents the exact position in the file and can be
used to move to any position. The window shows that portion of the
file near the cursor. To see another portion of the file, move the
cursor. Action always takes place at the cursor. Some of the
commands permit additions, changes or deletions of such length that
the screen cannot hold the whole portion of the text that has been
changed. In those cases, the portion of the screen where the cursor
stopped is displayed. In no case is it necessary for the user to
operate on portions of the text not seen on the screen, but in some
cases it is optional. In this document, examples are shown in
uppercase, the cursor is denoted by an underline or lower case
character.

THE CONCEPT OF A PROMPT LINE
The Editor displays a prompt line as a reminder to the user of
the current mode and the options available for that mode. Only the

most commonly used options appear on the prompt line as the following
display shows:

>Edit: A(djust C(py D(lete F(ind I(nsrt J(mp Rplace Q(uit X(chng Z(ap [E.6]

Page 31

NOTATION

The notation used in this section corresponds to the notation
used to prompt the user in the editor. Any input that is enclosed
petween a < and > is requesting that a particular key be used, not that
the particular word be typed out. For example, <RET> means that the
return key should typed at that point. When a particular sequence of
key strokes is required they will be contained within quotes. For
example, "FILENAME", <RET> refers to the typed sequence "FILENAME"
followed by typing the return key. Lower or upper case may be used
when typing Editor commands.

ENVIRONMENT
In order to establish the correct environment, depending on

whether text or a program is to be edited, see the options available
under Environment in the Miscellaneous commands section.

Page 32

406 3 336 FE 606 30 3636 36 3 16 38 3 269098 9696 36 3696 36 06 36 30 36 36 36 30 3

GETTING STARTED * * Section 1.3.2 ¥
FHEEREIIIIII RN NI RN

ENTERING THE WORKFILE AND GETTING A PROGRAM.
On entering the Editor :

No workfile is present. File? (<ret> for no file <esc-ret> to exit)

appears.
There are three ways to answer this question :

1) With a name, for example "STRING1 <ret>". The file named
STRING1 will now be retrieved. The file STRING1 could contain a
program, also called STRING1, as in Fig. 2.1. After typing the name,
a copy of the text of the first part of the file appears on the
screen.

Figure 2.1

PROGRAM STRING1;
BEGIN
WRITE ('TOO WISE");
WRITE ('YOU ARE');
WRITELN(',");
WRITELN ('TOO WISE');
WRITELN('YOU BE')
END.

2) With a <return>. This implies that a new file is to be
started. The only thing visible on the screen after doing this is the
editor prompt line. A new workfile is opened and currently has
nothing in it. Type "I" to begin inserting a program or text.

3) With <escape + return>. This causes the editor to drop you
back to the system command level. Useful when you didn't mean to type
'‘E'.

Workfiles: No questions are asked if a workfile already exists.
The workfile is displayed and can be modified or can be cleared, in
order to start a file, by using the N)ew command in the Filer.

Page 33

MOVING THE CURSOR

In order to edit, it is necessary to move the cursor. On the
keyboard are four keys with arrows,(which may 1ook like triangles),
which move the cursor. The <up=-arrow> moves the cursor up one line, the
{right-arrow> moves the cursor right one space and so forth. On
terminals which do not have cursor keys, the system will have to be
set up with a set of control keys to act as vector keys. Refer to
section 4.3 for more information on setting control keys. :

The cursor does not like to be outside of the text of the
program. For example, after the nN" in "BEGIN" in Fig. 2.2 , push the
<right-arrow> and the cursor moves to the "W" in "WRITE". Similarly
at the "W" in WWRITE('TOO WISE ');", use ¢left-arrow> to move to after
the "N" in "BEGIN". :

Figure 2.2

BEGIN
WRITE ('T00 WISE ");

BEGIN
WRITE('TOO WISE ");

If it is necessary to change the WWRITE('TOO WISE ');" found in
the third line to a "WRITE('TOO SMART 1);", the cursor must first be
moved to the right spot.

For example: if the cursor is at the "P" in "PROGRAM STRING1;",
go down two lines by pressing the down arrow 2 times. To mark the
positions the cursor occupies, labels a,b,c are used in Fig. 2.3. nat
is the initial position of the cursor; "b" is where the cursor is
after the first <down-arrow>; "c", after the second {down=-arrow>.

Figure 2.3

aROGRAM STRING1
bEGIN
c WRITE('TOO WISE ');

Now, using the {right-arrow>, move until the cursor sits on
the "W" of "WISE". Note that with the use of <down-arrow> the cursor
appears to be outside the text. Actually it is at the "W" in "WRITE",
so do not be surprised when on typing the first <left-arrow> the
cursor jumps to the wgr in "WRITE". The point being that when the
cursor is outside the text, it is conceptually on the closest
character to the right or left.

Page 34

USING INSERT

The Edit level prompt line shows that to I(nsrt (insert) an
item, type "I". The cursor must be in the correct position before
typing "I". Earlier, the cursor was moved to the "W' in "TOO WISE";
now, on typing "I", an insertion will be made before the "W'. The ‘rest
of the line from the point of insertion will be moved to the right hand
side of the screen. In the event that the insertion is lengthy, that
part of the line will be moved down to allow room on the screen. After
typing "I" the following prompt line should appear on the screen:

>Insert: text {<bs> a char, a line} [<etx> accepts, <esc> excapes]

If that prompt line did not appear at the top of the screen it
is NOT insert mode and a wrong key may have been typed.

If the cursor is at the "W" in "WISE", and on typing "I" the
insert prompt line appeared, "SMART" may be inserted by typing those
five letters. They will appear on the screen as they are typed.

There remains one more important step. The choice at the end
of the prompt line indicates that pushing the <etx> key accepts the
insertion, while pushing the <esc> key rejects the insertion and the
text remains as it was before typing nin,

Figure 2.4 (Screen after typing "SMART")

BEGIN WRITE('TOO SMART WISE ");

Figure 2.5 (Screen after etx>)

BEGIN
WRITE('TOO SMARTWISE ');

Figure 2.6 (Screen after <esc>)

BEGIN
WRITE('TOO WISE ');

It is legal to insert a carriage return. This is done by
typing <return> while in the INSERT mode and causes the Editor to start
a new line. Notice where carriage return places the cursor. This is
intended as a programming aid.

Page 35

USING DELETE

The DELETE mode works like the INSERT mode. Having inserted
the 'SMART' into the STRING1 program and having pushed <etx>, 'WISE'
must be deleted. Move the cursor to the first of the items to delete
and type "D" to put the Editor into DELETE mode. The following prompt
1line should appear:

sDelete: < > <Moving commands> {<etx> to delete, <esc> to abort}

Each time <space> is typed a letter disappears. In this
example typing Y4 spaces will cause "WISE" to disappear. Now the same
choice must be made as in insert. Type <etx> and the proposed deletion

is made or type <esc> and the proposed deletion reappears and remains
part of the text.

It is legal to delete a carriage return. At the end of the
line, enter DELETE mode, and <space> until the cursor moves to the
beginning of the next line.

These are sufficient commands to edit any file desired. The
next section describes many more commands in the Editor which make
editing easier.

LEAVING THE EDITOR AND UPDATING THE WORKFILE

When all the changes and additions have been made, exit the
Editor and "save'" a copy of the modified program. This is done by
typing "Q" which will cause the prompting display shown in Fig. 2.7.

Figure 2.7

Yuit:
U(pdate the workfile and leave
E(xit without updating
R(eturn to the editor without updating
W(rite to a file name and return

The most elementary way to save a copy of the modified file on
disk is to type "U" for U(pdate which causes the workfile to be saved
as SYSTEM.WRK.TEXT. With the workfile thus saved, it is possible to
use the R(un command, provided of course the file is a program. It is
also possible to use the S(ave option in the Filer to save the
modified file before using the Editor to modify or create another
file.

Miscellaneoufs commands, in the next section, explains in
greater detail the options available at >Quit.

Page 36

SHE 36 63606 06 06 06 9616 36 JF0E SHIE 3030 JHE 06 JHE 36 36 060 S 36 96 96 3038 36 % 3636 30 30 0698 0636 36 36 96 3 3¢ 36 36 ¢

* DETAILED DESCRIPTION OF COMMANDS ¥ * Section 1.3.3 *
B0 T 0D IO I 000 IO I IO N BTN IR N NN

COMMAND AND MODE

At the Edit level there are many options, some of which are
referred to as commands and some as modes depending upon the appearance
of the prompt . If an option executes a task and returns control to the
Edit level, that option is called a comand. If an option issues a
prompt and gives the user another level of options, it is called a
mode. On entering or returning to the Edit level, the Editor redisplays
the "Edit:" prompt line.

REPEAT -FACTORS

Most of the commands allow repeat-factors. A repeat-factor is
applied to a command by typing a number immediately before issuing the
command which is then repeated for the number of times indicated by the
repeat-factor. For example: typing "2 <{down-arrow>" will cause the
<down-arrow> commmand to be executed twice, moving the cursor down two
lines. Commands which allow a repeat-factor assume the repeat-factor
to be 1 if no number is typed before the command. A '/' typed before
the command implies an infinite number.

THE CURSOR

It should be pointed out that the cursor is never really "at" a
character. The cursor is only allowed to be "petween" characters. For
instance, if the cursor looks as though it is at the letter "R", it is
actually between the letter "R" and the letter in front of it. This is
noticed most clearly on the insert command as it inserts in front of
the character the cursor was "at". On the screen the cursor is placed
nat" "R" to make it easier to display.

DIRECTION

Certain commands are affected by direction. If the direction is
forward, then they operate forward through the file, that being the
standard direction of reading English. Backwards is the reverse
direction. When direction affects the command it is specifically
noted.

MOVING CCQMMANDS

Page 37

{down-arrow> Moves down

<up-arrow> Moves up
(right-arrow> Moves right
(left-arrow> Moves left

n¢n or "," or "-" Changes the direction to backward
nyn or M." or "+" Changes the direction to forward

{space> Moves direction
<{back-space> Moves left :
<{tab> Moves direction to the next position which is a multiple

of 8 spaces fram the left side of the screen

return> Moves to the beginning of the next line

Tne arrow, "<" or ™", in front of the prompt.line always

indicates direction; "<" for packward and ">" for forward. On
entering the Editor, the direction is forward. The direction can be

changed
line is

by typing the appropriate command whenever the "Edit:" prompt
present. The period and the comma can also be used because on

many standard keyboards, "." is lower-case for ™" and "," is the
lower- case for e,

Repeat-factors can be used with any of the above commands.

For user convenience, the Editor maintains the column position

of the cursor when using <up-arrow> and <down-arrow>. When the cursor

is outs

ide the text, the Editor treats the cursor as thowgh it were

immediately after the last character, or pefore the first, in the

line.

JUMP

level.

JUMP mode is reached by typing "J" for J(mp while at the Edit
On entering JUMP mode the following prompt line appears:

>JUMP: B(eginning E(nd M(arker <esc>

Typing "B" (or WE") moves the cursor to the beginning (or the

end) of the file, displays the edit prompt line and the first (or last)
page of the file. Typing "M" causes the Editor to display the prompt

line:
Jump

Miscell

PAGE

level.

down.

to what marker?

aneous commands.

PAGE command is executed by typing "P" while at the Edit
Depending on the direction of the arrow at the beginning of the
line, PAGE command moves the cursor one whole screenful up or
The cursor always moves to the start of the line. A <repeat-

factor> may be used pefore this command for moving several pages.

Page 38

EQUALS

EQUALS

EQUALS command is executed by typing "=" while at the Edit
level. It causes the cursor to jump to the beginning of the last
section of text which was inserted, found or replaced from anywhere in
the file. Equals works from anywhere in the file and is not direction
sensitive. An INSERT, FIND or REPLACE cause the absolute position of
the beginning of the insertion, find or replacement to be saved.:
Typing "=" causes the cursor to jump to that position. If a copy or a
deletion has been made between the beginning of the file and that
absolute position, the cursor will not jump to the‘start of the
insertion as that absolute position will no longer be correct.

TEXT CHANGING COMMANDS
INSERT

INSERT mode is reached by typing "I" for "I(nsrt" while at the
Edit level. On entering INSERT mode the following prompt line appears:

>Insert: Text {<bs> a char, a line} [<etx> accepts, <esc> escapes]

One of the options here is to type in text followed by <esc> or
<etx>. It is possible to delete a character without leaving the INSERT
mode by back-spacing over it. To delete the entire line just typed,
type . The INSERT prompt line indicates these by "<bs> a char"
and " a line".

Typing <return> INSERT starts a new line at the level of
indentation specified by the options turned on in Environment section
of the SET mode. See the section on the SET mode in order to set these
options.

AUTO-INDENT

If Auto-indent is True, a <return> causes the cursor to start
the next line with an indentation equal to the indentation of the line
above. If Auto-indent is False, a <return> returns the cursor to the
first position in the next line. Note: if Filling is True, the first
position is the Left-margin. Unless the lne above is blank, in which
case the first position is that of Paragraph margin.

FILLING

FILLING

If Filling is True, the Editor forces all insertions to be
between the right and left margins by automatically inserting
dreturn>'s between "words" whenever the right margin would have been
exceeded and by indenting to the Left-margin whenever a new line is
started. The Editor considers anything between two spaces or between a

Page 39

space and a hyphen to be a word .

If both Auto-indent and Filling are True, Auto-indent controls
the Left-margin while Filling controls the Right-margin. The level of
indentation may be changed by using the <space> and <{backspace> keys
immediately after a <return>. Important: This can only be done
immediately after a {return>.

Example 1: With Auto-indent true, the following sequence
creates the indentation shown in Figure 3.1.

'TNE",<return>,<space>,<space>,"TWCP,
<return>,"THREE",<return>,<backspace>,"FOUR".

Figure 3.1
ONE Original indentation

TWO Indentation changed by {space> <space>

THREE {return> causes auto-indentation to level of line above
FOUR <backspace> changes indentation from level of line above

Example 2: With Filling True (and Auto-indent False) the
following sequence creates the indentation shown in Figure 3.2:

"ONCE UPON A TIME THERE- WERE".

(Very narrow margins have been used for simplicity.)

Figure 3.2

ONCE UPON A Auto-returned when next word would exceed margin
TIME THERE- Auto-returned at hyphen

WERE

Level of left margin

The cursor may be forced to the left margin of the screen by
typing the ASCII control code DC1. (Generated by <CTRL-Q>)

Filling also causes the Editor to adjust the margins on the
portion of the paragraph following the insertion. Any line beginning
with the Command character (see SET mode) is not touched when filling
does this ad justment and that line is considered to terminate the
paragraph .

Page U0

The direction does not affect the INSERT mode, but is indicated
by the direction of the arrow on the prompt line.

If an insertion is made and accepted, that insertion is
available for use in the COPY mode. However, if <esc> is used, there
is no string available for COPY. "

DELETE

DELETE mode is reached by typing "D" for "D(lete" while at the
Edit level. On entering DELETE mode the following prompt line appears:

>Delete: < > <Moving commands> {<etx> to delete, ,{esc> to abort}

In order to delete, the cursor must be in position at the
first character to be deleted. On typing "D" and entering DELETE, the
Editor remembers where the cursor is. That position is called the
anchor. As the cursor is moved from the anchor using the normal
moving commands. Text in its path will disappear. To accept the
deletion, type <etx>; to escape, type <esc).

Example:

In Figure 3.3:

1) Move the cursor to the "E" in END.

2) Type"<" (This changes the direction to backward)

3) Type "D" to enter DELETE mode.

4) Type <ret> <ret>. After the first return the cursor moves to
before the "W" in WRITELN and "WRITELN('TO BE.');"disappears. After
the second return the cursor is before the "W" in WRITE and that
line has disappeared.

5) Now press <etx>. The program after deletion appears as is shown in
Figure 3.4.

The two deleted lines have been stored in the copy buffer and
the cursor has returned to the anchor position. Now use the COPY mode
to copy the two deleted lines at any place to which the cursor is
moved.

Figure 3.3

PROGRAM STRINGZ2;
BEGIN
WRITE('TOO WISE ');
WRITELN('TO BE.')
END.

Figure 3.4

PROGRAM STRING2:
BEGIN

END'

Page 41

The <repeat-factor> may also be used to delete several lines as
once by prefacing a ¢return> or any other of the moving commands with a
{repeat-factor> while in delete mode.

ZAP

The ZAP command is executed by typing "Z" for Z(ap while at the
Edit level. This command deletes all text between the start of what
was previously found, replaced or inserted and the current position of
the cursor. This command is designed to be used jmmediately after one
of the FIND, REPLACE or INSERT commands. If more than 80 characters
are being zapped the editor will ask for verification.

The position of the cursor where what was previously found,
replaced, or inserted is called the vequals mark". Typing the "=" key
will place the cursor exactly there.

Repeat-factors and Zap: If a FIND or a REPLACE is made with a
repeat factor and then ZAP, only the 1ast find or replacement will be
zapped. All others will be left as found or replaced .

Whatever was deleted by using the ZAP command is available for
use with the COPY mode, unless the editor has stated otherwise.

CoPY

The COPY mode is executed by typing "C" for C(py while at the
Edit level.

On entering the Copy mode the following prompt line is
displayed:

SCOPY: B(uffer F(ile {esc>

To copy text fram another file, type "F" and another prompt
will appear:

>COPY: FROM WHAT FILE[MARKER ,MARKER]?

Any file may now be specified, .TEXT is assumed. In order to
copy part of a file, two markers can be set to bracket the desired
text. If [,marker]or [marker,] is used, the file will be copied
from the start to the marker or from the marker to the end. Use of
ghe copy command does not change the contents of the file being copied

rom.

Page 42

To copy the text in the copy buffer, type "B" and the Editor
immediately copies the contents of the copy buffer into the file at
the location of the cursor when "C" was typed. Use of the copy
command does not change the contents of the copy buffer.

On the completion of the copy command in either mode the
cursor returns to immediately before the text which was copied.

The copy buffer is affected by the following commands:

1)DELETE: On accepting a deletion, the buffer is loaded with
the deletion; on escaping from a deletion the buffer is loaded with
what would have been deleted.

2)INSERT: On accepting an insertion the buffer is loaded with
the insertion; on escaping from an insertion the copy buffer is empty.

3)ZAP: If the ZAP command is used the buffer is loaded with
the deletion.

The copy buffer is of limited size. Whenever the deletion is
greater than the buffer available, the Editor will issue a warning
upon typing <etx> with the line:

There is no roam to copy the deletion. Do you wish to delete anyway? (y/n)
EXCHANGE

EXCHANGE mode is reached by typing "X" while at the Edit level.
On entering EXCHANGE mode the following prompt line appears:

>eXchange: TEXT {<bs> a char} [<esc> escapes; <etx> accepts]

EXCHANGE mode replaces one character in the file for each
character of text typed. For example in the file in Figure 3.5 with
the cursor at the "W" in WISE, typing "™X" , followed by typing "SM"
will replace the "W" with the "S" and then the "I" with the "M" leaving
the 1ine as shown in Figure 3.6 with the cursor before the second nse,

Figure 3.5 Figure 3.6

WRITE('TOO WISE '); WRITE('TOO SMSE ");

Typing a <back-space> (<bs>) will back the cursor one character
and cause the original character in that position to reappear. As with
most other commands, when in EXCHANGE mode, <esc> leaves the mode
without making any of the changes indicated since entering the mode,
while <etx> makes the changes part of the file.

Page 43

Note: Exchange does not allow typing past the end of the line
or typing in a carriage return.

FIND AND REPLACE

In both modes the use of a <repeat-factor> is valid and must be
typed before typing "F" or "R". The <repeat-factor> appears in-
brackets on the prompt line.

Strings: Both modes operate on delimited strings. The Editor
has two string storage variables. One, called <targ> by the prompt
lines, is the target string and is referred to by both commands while
the other, called <sub> by the prompt line, is the substitute and is
used only by REPLACE. The following rules apply to both these strings.

Delimiters: Both delimiters of the string will be the same.
For example: When in REPLACE mode the following command is valid and
will replace the first occurrence of the character "[" with the
character "1": "<[<)])". Here n¢" and M)" are the delimiters.

The Editor considers any character which is not a
letter or a number to be a delimiter.

Direction: Both modes operate from the position of the cursor
to scan the text in the direction indicted by the arrow on the prompt
l1ine. The target pattern can only be found if it appears in that
section of the text. See the section on direction on order to change
the arrow.

Literal and Token mode: In Literal mode, the Editor will look
for any occurrences of the target string. If you are in Token mode the
Editor will look for isolated occurrences of the target string. The
Editor considers a string isolated if it is surrounded by any
combination of delimiters. For example, in the sentence "Put the book
in the bookcase.", using the target string "book", literal mode will
find two occurrences of "pook" while token mode will find only one, the
word "book" isolated by the delimiters <space> {space>.

To use token mode, type nT" after the prompt line and before
the target string; to use literal mode, type "L". The default value
found in the Environment may be over-ridden by typing npn or "T" as
appropriate. Token mode ignores spaces within strings so that both
m(*+,*)" and "(',")" are considered to be the same string.

The Same option: In both commands typing "S" indicates to the
Editor that it is to use the same string as used previously. For
example, typing "RS/<any-string>/" causes the REPLACE mode to use the
previous target string, while typing "R/<any-string>/S" causes the
previous substitute string to be used.

Page 44

NOTE: The S(et-E(nvironment mode displays the current target
and substitution strings.

FIND

FIND mode is reached by typing "F" while at the Edit level. On
entering Find mode one of the prompt lines in Figure 3.7 appears.

Figure 3.7
SFind[1]: L(it <target> =>
SFind[1]: T(ok <target> =>

The FIND mode finds the n-th occurrence of the <target> string
starting with the current position and moving in the direction shown by
the arrow at the beginning of the prompt line. The number "n" is the
(repeat-factor> and is shown on the prompt line in the brackets "[1".

Example 1: In the STRING1 program with the cursor at the first
npr in PROGRAM STRING1 type "F". When the prompt appears type
"IWRITE'". The single quote marks MUST be typed. The prompt line
should now appear as:

>Find[1]: L)it <target> =>'WRITE'

After typing the last quote mark the cursor jumps to immediately after
the "E" in the first WRITE.

Example 2: In the STRING1 program with the cursor at the "E" of
WEND." type: "K' "3" "F". This will find the 3rd ("3") pattern in the
reverse ("") direction. When the prompt line appears type /WRITELN/.
The prampt line should read:
&ind[3]): L)it <target> =>/WRITELN/

The cursor will move to immediately after the "N" in WRITELN.

Page U5

Figure 3.8

PROGRAM STRING1;

BEGIN
WRITE('TOO WISE ");
WRITE('YOU ARE');
WRITELN(',"); (CURSOR FINISHES IN THIS LINE¥)
WRITELN('TOO WISE ');
WRITELN('YOU BE.")
END. (¥CURSOR STARTS IN THIS LINE®)

Example 3: On the first find we type "F/WRITE/". This locates
the first "WRITE". Now typing "FS" will make the prompt line flash:

SFind[1]: L)it <target> =>S
and the cursor will appear at the second WRITE.
REPLACE
REPLACE
REPLACE mode is reached by typing "R" while at the Edit level.
On entering REPLACE mode one of the two prompt lines in Figure 3.9
appears. In this example, a <repeat-factor> of four is assumed.

Figure 3.9

>Replace(l]: L(it V(fy <targ> <sub> =>

>Replacelu]: T(ok V(fy <targ> <sub> =>

Example 1: Type "RL/QX//YZ/" which make the prompt line appear as:
>Replace(1]: L)it V)fy <targ> <sub> =>L/QX//YZ/

This command will change: "YAR SIZEQX:INTEGER;" to "VAR
SIZEYZ:INTEGER;". Literal mode is necessary because the string QX is
not a token but is part of the token SIZEQX.

Example 2: In Token mode REPLACE ignores spaces between tokens
when finding patterns to replace. For example, using the 1ines on the
left hand side of Figure 3.10 and typing: w2RT/(',")/.LN." The prompt
1line should appear as:

>Replace: L)it V)fy <targ> <subd =>/(',")/.IN.

Page 46

Immediately after the last period was typed those two lines
would change to those on the right hand side.

Figure 3.10
WRITE(','"); WRITELN;
WRITE(','); WRITELN;

V)fy: The verify option permits examination of the <targ>
string (up to the limit set by the repeat factor) and deciding if
it is to be replaced. The following prompt line appears whenever
REPLACE mode has found the <targ> pattern in the file and verification
has been requested:

>Replace: <esc> aborts, 'R' replaces, ''' doesn't

Typing an "R" at this point will cause a replacement while
typing a space will cause the REPLACE mode to search for the next
occurrence provided the <repeat-factor> has not been reached. The
{repeat-factor> counts the number of times an occurrence is found, not
the number of times you actually type "R". Use "/" as a {repeat-
factor> in order to examine every occurrence of the target string.

If the Editor can not find the target string the number of times

specified, the prompt:
ERROR: Pattern not in the file Please press <spacebar> to continue.

appears.

FORMATTING COMMANDS
ADJUST

ADJUST mode is reached by typing "A" while at the Edit level of
Command. On entering ADJUST mode the following prompt line appears:

>Adjust: L(just R(just C(enter <left,right,up,down-arrows> {<etx> to leave}

The ADJUST mode is designed to make it easy to adjust the
indentation. On any line the <right-arrow> and <{left-arrow> commands
move the whole line. Each time a <right-arrow> is typed the whole line
moves one space to the right. Each <{left-arrow> moves it one to the
left. When the line is adjusted to the desired indentation press
<etx>, <esc> cannot be used.

Page U7

In order to adjust a whole sequence of lines, ad just one line,
then use <up-arrow> (¢down=-arrow>) commands and the line above (below)
will be automatically ad justed by the same amount.

Repeat-factors are valid when used before any of the <arrow>
commands while in ADJUST mode, including '/°'.

ADJUST mode can also center or justify text. Typing "L" while
in ADJUST mode will cause the line to be left-justified to the margin
set in the Environment. Similarly typing "R" right-justifies to the set
margin and typing "C" will cause the line to be centered between the
set margins. Typing {up-arrow> (or <down-arrow>) will cause the line
above (below) to be ad justed to the same specification (left-justified,

right-justified or centered) as the previously adjusted line.

MARGIN

MARGIN command is executed by typing "M" while at the Edit
1evel. MARGIN is an Environment dependent command, that is, it may only
be executed when Filling is set to True and Auto-indent is set to
False. The prompt for the MARGIN command does not appear on the
">Edit:" line.

There are two parameters used by the command: Right-margin,
Left-margin and Paragraph-margin. MARGIN deals with one paragraph and
realigns the text to compress it as much as possible without violating
the above three margins. See the Environment option under the SET
mode for how to set the margin values.

Example: The paragraph in Figure 3.13 has been MARGINed with
the parameters on the left while the same paragraph in Figure 3.1 has
been MARGINed with the parameters on the right.

Left-margin O Left-margin 10
Right-margin 72 Right-margin 70
Paragraph-margin 8 Paragraph-margin O

Page 48

Figure 3.13

This quarter, the equipment is different, the course materials
are substantially different, and the course organization is different
from previous quarters. You will be misled if you depend upon a friend
who took the course previously to orient you to the course.

¢

Figure 3.14

This quarter, the equipment is different, the course materials are
substantially different, and the course organization is
different fram previous quarters. You will be misled if
you depend upon a friend who took the course previously to
orient you to the course.

A paragraph is defined to be something occurring between two
blank lines beginning or end of file, or a line which starts with the
command charager. To MARGIN a paragraph move the cursor to anywhere
in that paragraph and type "M". When doing an exceptionally long
paragraph it may take several seconds before the routine is ready to
redisplay the screen. Margin works with blanks and hyphens to do its
splitting. All other characters in sequence are considered words.

It does not know how to hypenate words itself.

COMMAND CHARACTERS

Portions of the text can be protected from being MARGINed by
the use of the Command character. If the Command character appears as
the first non-blank character in a line then that line is protected
from the MARGIN command. The MARGIN command treats a line beginning
with the command character as though it were a blank line, that is, it
will consider that line to terminate (begin) the paragraph.

warning: Do not use the MARGIN command when in a line
beginning with the Command character.

MISCELLANEOUS COMMANDS
SET

SET mode is entered by typing "S" while at the Edit level.
The prompt for the SET command does not appear on the ">Edit:" prompt
line due to space limitations. On entering the SET mode the following
prompt line appears:

>Set: M(arker E(nvironment <esc>

Page 49

M(arker:

when editing, it is particularly convenient to be able to jump
directly to certain places in a long file by using markers set in the
desired places. Once set, it is possible to jump to these markers
using the M(arker option in the JUMP mode. When in the SET mode, type
nM* for M(arker and the following prampt line appears:

Name of marker?

The name may be up to 8 characters followed by a <return>.
Marker names are case sensitive so that lower and upper cases of the
same letter are considered to be different characters. The marker will
be entered at the position of the cursor in the text; therefore, first
move the cursor to the desired position before setting the marker. (If
the marker already existed, it will be reset.)

Only a limited number of markers are allowed in a file at any one
time. If on typing "SM", the prompt:

Figure 3.15

Marker ovflw.

Which one to replace.
0) namel

1) name2

LECEEY

9)name 10

appears, it is necessary to eliminate one in order to replace it.
Choose a number O thru 9, type that number and that space will now be
available for use in setting the desired marker.

If a copy or deletion is made between the beginning of the
file and the position of the marker, a jump to that marker may not
subsequently return to the desired place as the absolute position has

changed.
E(nvironment:

The Editor enables the user to set the environment which the
user determines to be most convenient for the editing being done. When
in the SET mode type "E" for E(nvironment, the screen display is
replaced with the following prompt shown in Figure 3.16.

Page 50

Figure 3.16

“Environment: {options} <etx> or <sp> to leave
A(uto indent True
F(illing False

L(eft margin O
R(ight margin 79
P(ara margin 5
C(ommand ch *
T(oken def True

Tu436 bytes used, 12020 available

Patterns:
<target>= 'xyz', <subst>= ‘'abc'

Date Created: U-13+55 Last Used: 12-28-T78

By typing the appropriate letter, any or all of the options
may be changed. The options shown are the default options for the
Editor on most screens. Implementations for other machines may have
different defaults.

THE OPTIONS:

A(uto indent:

Auto-indent affects only the INSERT mode of the Editor. Auto-
indent is set to True (turned on) by typing "AT" and to False (turned
off) by typing "AF".

F(illing:

Filling affects the INSERT mode and allows the MARGIN command
to function. Filling is set to True (turned on) by typing "FT" and to
False by typing "FF".

L(eft margin
R(ight margin
P(ara margin:

When Filling is True the margins set in the Environment are the
margins which affect the INSERT mode and the MARGIN command. They also
affect the Center and justifying commands in the ADJUST mode. To set
the Left-margin, type "L" followed by a positive integer and a {space>.
The positive integer typed replaces the old value for the L(eft margin
in the prompt shown in Figure 3.16. All positive integers with less
than four digits are valid margin values.

Page 51

C(ommand ch:

The Command character affects the MARGIN command and the
Filling option in the INSERT mode as described in those sections.
Change Command characters by typing ncr followed by any character. For
example typing ncn, nin will change the Command character to "an, This
change will be reflected in the prompt.

T(oken def:

This option affects FIND and REPLACE. Token is set to True by
typing "TI" and to False by typing nTEn. If Token is True, Token is
the default and if Token is False, Literal is the default.

VERTFY

The VERIFY command .is executed by typing ny" while at the Edit
1evel. The status of the Editor is verified by redisplaying the
screen. The Editor attempts to adjust the window so that the cursor
is at the center of the screen.

QUIT

QUIT mode 1is reached by typing nQ" while at the Edit level. On
entering QUIT mode the screen display is replaced by the following
prompt :

Figure 3.17

»uit:
U(pdate the workfile and leave
E(xit without updating
R(eturn to the editor without updating
W(rite to a file name and return

One of the four options must be selected by typing U,E,R or W.
U(pdate:

This causes the Editor to write the file just modi fied
into the workfile and store it as SYSTEM .WRK. TEXT . It is available

for either the Compile or Run options or for the Save option in the
Filer. The Filer treats SYSTEM.WRK. TEXT as text file.

Page 52

E(xit:

This causes the Editor to leave without making any changes in
SYSTEM.WRK.TEXT. This means that any modifications made since entering
the Editor are not recorded in the permanent workfile. A1l editing
during the session is irrecoverably lost.

R(eturn:

This option returns to the Editor without updating. The cursor
is returned to the exact place in the file it occupied when "Q" was
typed. Usually this command is used after unintentionally typing "Q".
W(rite: '

This option puts up a further prompt :

Figure 3.18 .

>Quit:
Name of output file (<er> to return) =-=>

The modified file may now be written to any file name. If it
is written to the name of an existing file, the modified file will
replace the old file. This command can be aborted by typing <return>
instead of a file name and return will be to the Editor. After the
file has been written to disk, the Editor will display the following:

Figure 3. 19

>Quit

Writing.....

Your file is 1978 bytes long.

Do you want to E(xit from or R(eturn to the Editor?

Typing "E" exits from the Editor and returns to the Command
1evel while typing "R" returns the cursor to the exact position in the
file as when "Q" was typed.

Page 53

-- Notes =--

Page 54

0983636 36 96 38 90 36 36 96 30 96 36 36 96 36 38 96 6 269018 96 06 38 36 36 36 36 96 96 96 36 3¢ 3¢ ¢

REFERENCE SECTION * # Section 1.3.4 *
BN R R

<down-arrow> moves <repeat-factor> lines down

{up=-arrow> " " lines up

{right-arrow> " " spaces right

<left-arrowd " " spaces left

{space> " " spaces in direction

<back -space> " " spaces left

<tab> moves <repeat-factor> tab positions in direction

<{return> moves to the beginning of line <repeat-factor> lines in directio

n¢n mom non change direction to backward

nyn u n nmun change direction to forward

Nt moves to the beginning of what was just found/replaced/inserted/
exchanged

<repeat-factor> is any number typed before a canmand. Typing a / is the
infinite number.

A(djust: Adjusts the indentation of the line that the cursor is on. Use
the arrow Keys to move. Moving up (down) adjust line above
(below) by same amount of adjustment on the line you were on.
Repeat-factors are valid.

Clopy: Copies what was last framed in insert/delete/zap into the file at
the position of the cursor.

D(elete: Treats the starting position of the cursor as the anchor. Use
any moving commands to move the cursor. <etx> deletes
everything between the cursor and the anchor.

F(ind: Operates in L)iteral or T)oken mode. Finds the <targ> string.

Repeat-factors are valid, direction is applied. "S" = use same
string as before.

I(nsert: Inserts text. Can use <backspace> and to reject part of
your insertion.

J(ump: Jumps to the beginning, end or previously set marker.

M(argin: Adjusts anything between two blank lines to the margins which
have been set. Command characters protect text from being
margined. Invalidates the copy buffer.

P(age: Moves the cursor one page in direction. Repeat-factors are
valid, direction is applied.

Q(uit: Leaves the editor. You may U)pdate, E)xit, Wirite, or R)eturn.

Page 55

R(eplace: Operates in L(iteral or T(oken mode. Replaces the <targ>
string with the ¢subs> string. V(erify option asks you to
verify before it replaces. ngn option uses the Same string as
pbefore. Repeat-factors replace the target several times.

Direction is valid.
me to them. Sets

s by assigning a string na
ng, margins, T(oken, and

S(et: Sets M(arker
indent, F(illi

E (nvironment for A(uto-
C(ommand characters.

th the cursor centered.

the text typed whi
rately. ¢{back-space

y: Redisplays the screen wi

urrent text for
st be done sepa
to re-appear-.

on of the 1ast thing
n anchor and deletes everything

ent cursor position.

le in this

V(erif
> causes the

eX(change: Exchanges the ¢
mode. Each line mu

original character

7)ap: Treats the starting positi
fbund/replaced/inserted as a
between the anchor and the curr

Page 56

369363 J U636 T B0 JHIE I 6 36 30 36 96 36 96 36 3636 3 3¢ 3

% L2 EDITOR * * Section 1.3.5 ¥
BN BN I I IO RN NN

Version II.0 February 1979

The L2 Editor is being released on an experimental basis. Not
all options are yet fully implemented so this section may not be.
complete. The main advantage of this version is that it is able to
handle files larger than can fit into the main memory buffer at one
time; the upper limit being determined by the space:available on disk.
It also automatically makes a backup copy of the file being edited. In
many respects this Editor works exactly as this release and displays
the same prompt lines. Where the versions are the same, the user is
directed to read the main Editor section.

Entering the Workfile and Getting a Program

If, on typing E, there is not enough room on the disk;
ERROR: Not enough room for backup!
will be displayed. This disk must then be K(runched in order to
provide room if that is possible, a file removed or another disk must
be used. The backup file is always 'written' to disk with the
original file data in it.

The same prompt line is displayed; see section 1.3.2.

1) With a name. If a file is chosen, a backup copy will be
made before the file is available for editing.

Figure 5.1

Copying to filename.back.
>Edit
Reading....

After this series of prompt lines, the first part of the text
will appear on the screen.

2) With a return. A new file is created in the same manner as
in section 1.3.2.

The paragraphs on moving the cursor, Insert and Delete in
section 1.3.2. should be read and are applicable here.

Leaving the Editor and Updating the workfile

Page 57

When all changes and additions have been made, the Editor is
exited by typing "Q" and the following prompt is displayed.

Figure 5.2
>Quit:

U(pdate the workfile and leave

E(xit (but workfile not updated)

R(eturn to the Editor without doing anything.

Notice that the Write option is no longer available. One of
these three options must be chosen. See also Miscellaneous commands
in section 1.3.3.

U(pdate:

This works in the same manner, however additional information
is supplied indicating the name of file updated and the length.

When a new file is created, the following appears:

Figure 5.3

Writing.*
The workfile, #SYSTEM.WRK.TEXT, is n blocks long.

When an existing file has peen used, this example shows the extra
information now given:

Figure 5.4
Writing.*

The workfile, #X:F1.TEXT, is 44 blocks long.
The backup file is X:F 1.BACK.

The newly edited file is referred to as .TEXT, while the .BACK file
contains the original file with no modifications.

E(xit:

This causes the Editor to return to the command level without
making any changes in the workfile. No .BACK file is made and the
existing .BACK is removed. For example, if F1.TEXT is the file being
used, then a copy F1.BACK will be made on entering the editor and on
leaving by using the E option, F1.BACK will be removed and only F1.TEXT
will remain. However, since F1.TEXT is a copy of the original, it
will be in different place in the directory.

R(eturn:

This is the same. See section 1.3.3.
Page 58

MOVING COMMANDS
JUMP

Jump mode displays the same prompt line as before. In this
case "B" and "E" refer to the beginning(end) of the puffer not the
beginning(end) of the file.

Typing "M" causes the Editor to display:

Jump to what marker?

It is now possible to use 20 markers and these will be set in
the same way as in section 1.3.3. To jump to the desired marker, type
in the name. If the marker is present, the Editor will jump to that
position, otherwise, the Editor will jump to the last position of the
cursor in the file. If Find needs to search a section of the file,
other than the buffer, Leaping...... will be displayed.

BANISH

This is a new command and is reached by typing "B" at the Edit
jevel. This is the prompt that will appear:

>Banish: To the L(eft or R(ight <esc>

Prior to doing a large insertion or copy, in order to provide
more room in the buffer and avoid buffer overflow, it is possible to
move characters from the buffer into the stack. There is a left and a
right stack; left being ahead of the cursor and right, behind the
cursor. The user can make the choice according to the current
situation. In general, "some text" is saved after a banish, the
screen is a rough boundary for this text.

NEXT

In order to move beyond the bounds of the buffer, type "N".
The following prompt will then be displayed:

Next: F(orwards, B(ackwards in the file; S(tart, E(nd of the file. <esc>

Choose one of the five options available. When using "F" or
"B" an implicit banish occurs using the cursor as the point of
reference. For example, when "F" is typed, everything above the top of
the screen is banished to the left stack. More characters are added to
the bottom of the screen to extend the buffer in the forward
direction. When "B" is used the characters below the cursor are
banished to the right stack and part of the screen will become blank.
More characters are added above the 'window' of the screen.

Page 59

Figure 5.5 SYMBOLIC FILE

! left stack | ' -;;;ht st;;; i
| Backwards i BUFFER | Forward \
| Start i | End |
PAGE
See section 1.3.3.
EQALS
See section 1.3.3.
TEXT CHANGING COMMANDS
INSERT
See section 1.3.3.
DELETE
See section 1.3.3.
ZAP
See section 1.3.3.
COPY
See section 1.3.3.
EXCHANGE
See section 1.3.3.
FIND
Read section 1.3.3. The Editor will display: Finding.......

and if the pattern is not in the buffer:

End of buffer encountered. Get more from disk? (Y/N)

Page 60

On typing ™", the Editor will move another section of the file
into the buffer to continue searching. Find is still directional. If
the pattern is not found, in a full-file search, the cursor is left in
an arbitrary position in the file.

REPLACE

See section 1.3.3.

FORMATTING COMMANDS
ADJUST

See section 1,3.3.
MARGIN

See section 1.3.3.

MISCELLANEOUS COMMANDS
SET

See section 1.3.3. The same prompt line is displayed.
M(arker:

Read section 1.3.3. The names of the markers can be seen by
typing "SE" for Set Environment while at the Edit level. To set the
marker, type "SM". In the event that 20 markers have already been set,
this will be indicated by:

Marker overflow. Which one to replace? (Type in the letter or <sp>

E(nvironment:

To set the environment, type nSE". The following is an example
of the prompt displayed:

Figure 5.5

SEnvironment: options <etx> or <sp> to leave
A(uto Indent False
F(illirg True
L(eft margin 4
R(ight margin 70
P(ara margin 1
C(ommand ch °
S(et tabstops
T(oken def True

Page 61

11582 bytes used. 2754 available.

There are O pages in the left stack, and 10 pages in the right stack.
You have 86 pages of room, and at most 13 pages worth in the buffer.

Markers:
<P1 P2 >P3
Created August 15, 1978: Last updated August 15, 1978 (Revision 1).

By typing the appropriate letter, any or all of the options can
changed. See section 1.3.3. The arrow before the marker name

indicates the relative position of the marker in the file to the
buffer. No arrow indicates that the marker is in the current buffer.

It is now possible to vary the tabstops. Type "S" while in the
environment and the following prompt will appear:

Set tabs: <right,left vectors> C(ol# N(o R(ight L(eft D(ecimal stop <etx>

At present, these are not yet fully implemented so that the effect of
using any of them is to have a variable tabstop instead of being set at

eight characters apart.
VERIFY

See section 1.3.3.

Page 62

****I******ﬁ*********i*******l!***l********* 269036 96 38 30 36 36 96 30 36 36 3¢ 3

YET ANOTHER LINE ORIENTED EDITOR - YALOE * * Section 1.4 *
I et T DT TETE DI L bbbl

Version II.0 February 1979

This text editor is intended for use on systems that do not
have powerful screen terminals. It is designed to be very similar to
the text-editor which accompanies DEC's RT-11 system. Its name is
pronounced: Yaw-loo-ee. :

The editor assumes, but is not dependent on, the existence of
the workfile text. Upon reading it YALOE will proclaim 'workfile
STUFF read in'. If it does not find such a file, it will proclaim 'No
work file read in'. This means that you entered YALOE with an empty
workfile. From this point you may create a file in YALOE; and when
you exit by typing 'QU', your workfile will no longer be empty.

The editor operates in one of two modes: Command Mode or Text
Mode. In command mode all keyboard input is interpreted as commands
instructing the editor to perform some operation. When you first
enter the editor you will be in the Command Mode. The Text Mode is
entered whenever the user types a command which must be followed by a
text string. After the command F(ind, G(et, I(nsert, M(acro define,
R(ead file, W(rite to file, or eX(change has been typed, all
succeeding characters are considered part of the text string until an
Cesc)> is typed. Note: when typed Cescd> echoes a '$'. The <esc>
terminates the text string and causes the editor to re-enter the

Command Mode, at which point all characters are again considered
commands.

NOTE: Follow command strings in YALOE with <esc><esc> to
execute them. (This is unlike the rest of the systems 'immediate’
commands.)

1.4.1 SPECIAL KEY CCMMANDS

Various characters have special meanings, as described below.
Some of these apply only in YALOE. Many have similar effects in the
rest of the system; for these the ASCII code to which the system
responds as indicated can be changed using the program SETUP,
descri?ed in Section 4.3. (<esc> is the most particular anomaly to
YALOE.

<esc> Echoes a '$'. A single <esc> terminates a
text string. A double <esc)> executes the
command string.

Page 63

1.4.2

R LBOUT
{linedel>

CTRL H
<chardel>

CTRL X

CTRL O

CTRL F
<flush>

CTRL S
<{stop>

Deletes current line. On hard-copy terminals
echoes '<ZAP' and a carriage return. On
others, it clears the current line on the
screen. In both cases the contents of that
1ine are discarded by the editor.

Deletes character from the current line. @
hard-copy terminals it echoes a percent sign
followed by the character deleted. Each
succeeding CTRL H the by the user deletes and
echoes another character. An enclosing percent
sign is printed when a key other than CTRL H
is typed. This erasure is done right to left
up to the beginning of the command string.
CTRL H may be used in both Command and Text
mode.

Causes the editor to ignore the entire command
string currently peing entered. The editor
responds with a <cr> and an asterisk to
indicate that the user may enter another
command. For example:

*IDLE AND
EEITH(CTRL X>

A <linedel> would cause deletion of only
KEITH; CTRL X would erase the entire command .

Will switch you to the optional character set
(i.e. bit 7 turned on). This works only on
the TERAK 8510A. The CTRL O is used as a
toggle between the character sets. NOTE: You
may find while in the editor that weird
characters are showing up on the terminal
instead of normal ones. It could be because
you accidentally typed CTRL O. To get back
just type CTRL O again.

A1l output to the terminal is discarded by the
system until the next CTRL F is typed.

A11 output to the terminal is held until
another CTRL S is typed.

All other control characters are ignored and discarded by
YA

LOE.

COMMAND ARGUMENTS

Page 64

A commmand argument precedes a command letter and is used
either to indicate the number of times the command should be performed
or to specify the particular portion of text to be affected by the
command. With some commands this specification is implicit and no
argument is needed; other commands, however, require an argument. °

Command arguments are as follows:

n n stands for any integer. It may be preceded
by a + or -. If no sign precedes n, it is assumed
to be a positive number. Whenever an argument is
acceptable in a command, its absence implies an
argument of 1 (or -1 if only the - is present).

m m is a number 0..9.

0 10" refers to the beginning of the current
line.

/ '/' means 32700. '-/' means -32700. It is

useful for a large repeat factor.

1=t is used only with the J, D and C commands
and represents -n, where n is equal to the length
of the last text argument used, for example
#*GTHIS$=D$$ finds and removes THIS.

1.4.3 COMMAND STRINGS

A1l EDIT command strings are terminated by two successive
<esc)>s. Spaces, carriage returns and tabs (CTRL 1) within a command
string are ignored unless they appear in a text string.

Several commands can be strung together and executed in
sequence. For example:

#B GTHE INSERTED$ -3CING$ 5K GSTRING$$

The "B" sets the cursor position.

The “G" looks for the string wTHE INSERTED" and places the cur sor on
the character which follows the "D".

The "-3CING" replaces the string "TED" with "ING".

The "S5K" deletes text fram the cursor to the 5th successive end-of-
line.

The "GSTRING" finds the first occurance of "STRING" in the file and
places the cursor just after the G.

Page 65

As a rule, commands are separated from one another by a single
Cesc>. This separating <esc> is not needed, however, if the command
requires no text. Commands are terminated by a single <esc>; a second
<esc> signals the end of a command string, which will then be
executed. Wien the execution of the command string is complete, the
editor prompts for the next command with '¥'.

If at any point in executing the command, an error is
encountered, the command will be terminated, leaving the command
executed only up to that point.

1.4.4 THE TEXT BUFFER

The current version of your text is stored in the Text Buffer.
This buffer's area is dynamically allocated; its size and the room
1eft for expansion may be ascertained by using the ? command .

The editor can only work on files that fit entirely within the
Text Buffer.

1.4.5 THE CURSOR

The "cursor® is the position in your text where the next
command will be executed. In other words it is the current "pointer"

into the Text Buffer. Most edit commands function with respect to the
cursor:

A,B,F,G,J: Moves it.

D,K: Remove text from where it is.

U,I,R: Add text to where it is.

C,X: Remove and then add text at it.

L,V: Print the text on the terminal from it.

1.4.6 INPUT/OUTPUT COMMANDS

L(ist, V(erify, W(rite, R(ead, Q(uit, E(rase.

The L(ist comand prints the specified number of lines on the
console terminal without moving the cursor.

*2L$S Prints all characters starting at the second
preceding line and ending at the cursor.

Page 66

*4L 3% Prints all characters beginning at the cursor
and terminating at the Uth <er>.

*0L$$ Prints from the beginning of the current line
up to the cursor. -

The V(erify command prints the current text line on the :
terminal. The position of the cursor within the 1ine has no effect
and the cursor is not moved. Arguments are ignored. The V(erify
command is equivalent to a OLL (list) commard.

The W(rite command is of the form
#W<file title>$

File title is any legal file title as decribed in Section 1.2
less the file type. The editor will automatically append a '.TEXT'
suffix to the file title given unless the file title ends with '.',
']', or '.TEXT'. If the filename ends in a '.', the dot will be
stripped from the filename. Refer to Figure 2 in section 1.2.4 for
details on filename specifications.

The W(rite command will write the entire Text Buffer to a file
with the given file title. It will not move the cursor nor alter the
contents of the Text Buffer.

If there is no room for the Text Buffer on the volume
specified in the file title given, the message:

OUTPUT ERROR. HELP!

will be printed. It is still possible to write the Text
Buffer out by writing it to another volume.

The R(ead command is of the form
*R<file title>$

The editor will attempt to read the file title as given. In
the event no file with that title is present, a ' TEXT' is appended
and a new search is made.

The R(ead command inserts the specified file into the Text
Buffer at the cursor. The cursor remains in the Text Buffer before
the text inserted. If the file read in does not fit into core buffer,
the entire Text Buffer will be undefined in content, i.e. this is an
unrecoverable error.

Page 67

The Q(uit command has several forms

Q Quit and update by writing out a new SYSTEM.WRK.TEXT
QE Quit and escape session; do not alter SYSTEM .WRK. TEXT
R Don't quit; return to the editor

Q A prampt will be sent to the terminal giving all the .

above choices; enter option mnemonic (U, E, or R) only.

Executing the QU command is a special case of the write
command, and the attempt to write out SYSTEM .WRK. TEXT may fail. In
this case use the W command to write out your file and then QE to exit
the editor.

The QR cammand is used on the occasions when a Q is

accidentally typed, and you wish to return to the editor rather than
leave it.

The E(rase command (intended for CRT terminals) erases the
screen.

1.4.7 CURSOR RELOCATION COMMANDS
J(ump, A(dvance, B(eginning, G(et, F(ind

When using character and line oriented commands, a positive (n
or +n) argument specifies the number of characters or lines in a
forward direction, and a negative argument the number of characters or
lines in a backward direction. The editor recognizes a line of text
as a unit when it detects a <er> in the text.

Carriage return characters are treated the same as any other
character. For example assume the cursor is positioned as indicated
in the following text (~ represents the current position of the cursor
and does not appear in actual use. It is present here only for
clarification):

THERE WAS A CROOKED MAN~<CR>
AND HUMPTY DUMPTY FELL ON HIM<CR>

The J(ump command moves the cursor over the specified number
of characters in the Text Buffer. The edit command -UJ moves the
cursor back 4 characters.

THERE WAS A CROOKED" MANKCR>
AND HUMPTY DUMPTY FELL ON HIM<CR>

Page 68

The command 10J moves the cursor forward 10 characters and
places it between the 'H' and the 'U’.

THERE WAS A CROOKED MAN<CR>
AND H"UMPTY DUMPTY FELL ON HIM<CR>

The A(dvance command moves the cursor a specified number of
lines. The cursor is left positioned at the beginning of the line.

Hence the command OA moves the cursor to the beginning of the
current line. .

THERE WAS A CROOKED MAN<CR>
“AND HUMPTY DUMPTY FELL ON HIM<CR>

The command -1A. (or -A) moves the cursor back one line.

“THERE WAS A CROOKED MAN<CR>
AND HUMPTY DUMPTY FELL ON HIM<CR>

The B(eginning command moves the cursor to the beginning of
the Text Buffer. Use /J to move to the end of the buffer.

Search commands are used to locate specific characters or
strings of characters within the Text Buffer.

The G(et and F(ind commands are synonymous. Starting at the
position of the cursor, the current Text Buffer is searched for the
nth occurrence of a specified text string. A successful search leaves
the cursor immediately after the nth occurrence of the text string if
n is positive and immediately before the text string if n is
negative. An unsuccessful search generates an error message and
leaves the cursor at the end of the Text Buffer for n positive and at
the beginning for n negative.

¥BGSTRING$=J$$ This command string will look for the string
STRING starting at the beginning of the Text
Buffer; and if found it will leave the cursor
immediately before it.

1.4,8 TEXT MODIFICATION COMMANDS

I(nsert, D(elete, K(ill, C(hange, eX(change

The I(nsert command causes the editor to enter the TEXT mode.
Characters are inserted immediately following the cursor until an
<esc> is typed. The cursor is positioned immediately after the last
character of the insert. Occasionally with large insertions the
temporary insert buffer becomes full. Before this happens a message
will be printed on the console terminal, 'Please finish'. In response

Page 69

type two successive <esc>s. To continue, type 1 to return to the Text
mode.

NOTE: Forgetting to type the I command will cause the text
entered to be executed as commands.

The D(elete command removes a specified number of characters
from the Text Buffer, starting at the position of the cursor. Upon

completion of the command, the cursor's position is at the first
character following the deleted text.

*_2D$$ Deletes the two characters immediately preceding
the cursor . :

*BSFHOSE $=D$$ Deletes the first string 'HOSE ' in the Text
Buffer, since =D used in combination with
a search command will delete the indicated
text string.

The K(ill command deletes n lines from the Text Buffer,
starting at the position of the cursor. Upon completion of the
command, the cursor's position is the beginning of the 1ine following
the deleted text.

*2K$$ Deletes characters starting at the current
cursor position and ending at (and including)
the second <CR>.

*/K$$ Deletes all lines in the Text Buffer after the
cursor.

The C(hange command replaces n characters, starting at the
cursor, with the specified text string. Upon completion of the
command, the cursor immediately follows the changed text.

#QCAPPLES$$ Replaces the characters from the peginning of
the line up to the cursor with 'APPLES',
(equivalent to using 0X).

#*BGHOSE $=CLIZARD$$ Searches for the first occurrence of
'HOSE' in the Text Buffer and replace it with
'LIZARD'.

The eX(change command exchanges n lines, starting at the
cursor, with the indicated text string. The cursor remains at the end
of the changed text.

Page 70

#_SXTEXT$$ Exchanges all characters peginning with the
first character on the 5th line back and ending
at the cursor with the string '"TEXT'.

#OXTEXT $$ Exchanges the current line from the beginniﬁg to
the cursor with the string 'TEXT', (equivalent
to using 0C). .

*#/XTEXT$$ Exchanges the lines from the cursor to the end

of the Text Buffer with the text 'TEXT?,
(equivalent to using /C or /DI).

1.4.9 OTHER COMMANDS

S(ave, U(nsave, M(acro, N (macro execution) and '?'

The S(ave command copies the specified number of lines into
the Save Buffer starting at the cursor. The cursor position does not
change, and the contents of the Text Buffer are not altered. Each
time a S(ave is executed, the previous contents of the Save Buffer, if
any, are destroyed. If executing the S(ave command would have
overflowed the Text Buffer, the editor will generate a message to this
effect and not perform the save.

The U(nsave command inserts the entire contents of the Save
Buffer into the Text Buffer at the cursor. The cursor remains before
the inserted text. If there is not enough room in Text Buffer for the
Save Buffer, the editor will generate a message to this effect and not
execute the unsave.

The Save Buffer may be cleared with the command ou.

The M(acro command is used to define macros. A maximum of ten
macros, identified by.the integer (0..9) preceding the 'M', are
allowed. The default number is 1. The M(acro command is of the form:

mM%command string?

This says to store the command string into Macro Buffer number
m, where m is the optional integer 0..9. The delimiter, '9' in this
example, is always the first character following the M command and may
be any character which does not appear in the macro command string
itself. The second occurrence of the delimiter terminates the macro.

All characters except the delimiter are legal Macro command

string characters, including single <esc>s. A1l commands are legal in
a macro command string. Example of a macro definition:

Page T1

#5M4GBEGIN$=CEND BEGIN$V $3$$

This defines macro number 5. When macro number 5 is executed,
it will look for the string 'BEGIN', change it to 'END BEGIN', and
then display the change.

If an error occurs when defining a macro, the message
'Error in macro definition'
will be printed, and the macro will have to be redefined.

The execute macro command, N, executes a specfied macro
command string. The form of the command is:

nNm$

Here n is simply any command argument as previously defined; m
is the macro number (an integer 0..9) to be executed. If m is
omitted, 1 is assumed. Because the digit m is technically a command
text string, the N command must be terminated by an <esc>.

Attempts to execute undefined macros cause the error message
'Unhappy macnum'. Errors encountered during macro execution cause the
message 'Error in macro'. Errors encountered in macro command syntax
cause the message 'Error in macro definition'.

The ? commard prints a list of all the commands and the sizes

of the Text Buffer, Save Buffer, and available memory left for
expansion. It also lists the numbers of the currently defined macros.

Page 72

1.4.10

nA:

nC:
nD:
nF:
nG:
nd:
nk:
nL:

mM:
nNm:

nX:
Y:

SUMMARY OF ALL CCMMANDS

n

an argument m - macro number

Advance the cursor to the beginning of the n th line from
the current position.
Go to the Beginning of the file. :
Change by deleting n characters and inserting the following
text. Terminate text with <esc>.
Delete n characters.
Erase the screen.
Fird the n th occurrence from the current cursor position
of the following string. Terminate string with <esc>.
Get - ditto -
- invalid -
Insert the following text. Terminate text with <esc>.
Jump cursor n characters.
Kill n lines of text. If current cursor position is not at
the start of the line, the first part of the line remains.
List n lines of text.
Define macro number m.
Per form macro number m, n times.

- invalid -
- invalid -
Quit this session, followed by:
U: (pdate Write out a new SYSTEM.WRK.TEXT
E:(scape Escape from session
R: (eturn Return to editor

Read this file into buffer (insert at cursor);
'R' must be followed by <file name> <esc>;
WARNING: If the file will not fit into the buffer, the
content of the buffer becomes undefined!
Put the next n lines of text from the cursor position into
the Save Buffer.
- invalid -
Insert (Unsave) the contents of the Save Buffer into the
text at the cursor; does not destroy the Save Buffer.
Verify: display the current line
Write this file (from start of buffer);
'W' must be followed by <filename> <esc>.
Delete n lines of text, and insert the following text;
terminate with <esc>.
- invalid -
- invalid -

Page 73

-- Notes --

Page T4

!***!*l!!!llﬂll***l!*l“ l**!!&****!****

* INTERACTIVE DEBUGGER * * Section 1.5 ¥
IR I IR NI RN et L Ll

Version II.0 February 1979

To facilitate the debugging of Pascal programs, an interactive
debugger was included in the system in earlier releases. In order to
use it, it required more memory than was available with any
meaningfully sized program. We removed the debugger from the system
as it was more of a thorn in the side of progress than a statement of
progress itself. We are working on a new debugger and hope to have it
in a useful state soorm. The current changes in the P-machine may make
the task of writing the debugger somewhat easier, and therefor
quicker. Please do not inquire as to when the debugger will be ready
for release, as the answer you will get will be "soon".

Thank-you for your patience and cooperation in this matter.

Ed.

Page 75

-- Notes =-

Page 76

3636 36 36 069000 06 600 36 JHIEIE 3 SHE JHIEIHIN 3 3360 06O M

PASCAL COMPILER * * Section 1.6 *
e T L LR T T 2 R

Version 1.5 September 1978

The UCSD Pascal compiler, a one-pass recursive descent based on
the P2 portable compiler from Zurich, is invoked by using the C(ompile
or R(un command of the outermost level of the UCSD Pascal system. If a
workfile exists, it compiles that. Otherwise, it prompts the user for

a source file name. It generates codefiles to run directly on the
Pascal interpretive machine.

Unless the HAS SLOW TERMINAL boolean inside the system
communication area (see section 4.3) is true, the compiler, during the
course of compilation, will display on the CONSOLE device output
detailing the progress of the compilation. This output can be
suppressed with the Q+ compiler option (see section on compiler
options below). Below is an example of the output which appears on the
CONSOLE device:

PASCAL compiler [I.5 unit compiler]

€ ODivessesessnsonconns

P1 [7050]

< 19...... Ceeeenes cesesenas R R R

P2 [3040]

< 61>.... ‘.IC'O‘I.C...O..'.O... 000000
<CI1M>ieeeens

TEST [3003]

€ 119D eeessessosssesvseccasosnsocens cecesesacseanaen

The identifiers appearing on the screen are the identifiers of
the program and its procedures. The identifier for a procedure is
displayed at the moment when compilation of the procedure body is
started. The numbers within [] indicate the number of (16 bit) words
available for symbol table storage at that point in the compilation.
The numbers enclosed within < > are the current line numbers. Each
dot on the screen represents 1 source line compiled.

If the compilation is successful, that is, no compilation
errors were detected, the compiler writes a codefile to the disk
called *SYSTEM.WRK.CODE. This is the codefile which is executed if
the user types the R(un command. See Section 1.1 INTRODUCTION AND
OVERVIEW for a global description of the system commands.

Should the compiler detect a syntax error, the text surrounding
the error and an error number together with the marker '<<<< ' will
point to the symbol in the source where the error was detected. In
the event that both the Q and L options are set, the compilation will
continue, with the syntax error going to the listing file, and the
console remaining undisturbed. Otherwise the compiler will the give
the user the option of typing a space, an <esc> or 'E'. Typing a

Page T7

space instructs the compiler to continue the compilation, while escape
causes termination of the compilation, and "E" results in 2 call to
the editor, which automatically places the cursor at the symbol where
the error was detected.

The syntax errors detected by the ucsSD Pascal compiler
are listed in Table 5. All error numbers will be accompanied by a
textual message upon entry to the editor if the file #S YSTEM.SYNTAX is
available.

1.6.1 COMPILE TIME OPTIONS

Compile time options in the UCSD Pascal compiler are set
according to a convention described on pages 100-102 of Jensen and
Wirth, where compile time options are set by means of special "dollar
sign" comments inside the Pascal program text. The syntax used in
UcSD's compiler control comments is essentially as described in Jensen
and Wirth. The actual options and the letters associated with those
options bear 1ittle resemblance to the options 1isted on pages 101 and
102 of Jensen and Wirth. Following is a description the various
options currently available to the user of the UCSD Pascal compiler.

B:

Byte-flip. Causes the compiler to generate code for a machine
which is byte-flipped from the one upon which it is running.

C:

Places the line following the C character for character
somewhere in the codefile. The purpose of this is to have a copyright
notice imbedded in codefiles.

D:

This option causes the compiler to issue preakpoint
instructions into the codefile during the course of the compilation in
order that the interactive Debugger can be used more effectively. 3See
Section 3.2 "DEBUGGER" for details

Default value: D-

D-: causes. the compiler to omit breakpoint instructions
during the course of the compilation.

D+: causes the compiler to emit breakpoint instructions.

Page 78

G:

Affects the boolean variable GOTOOK in the compiler. This
boolean is used by the compiler to determine whether it should allow
the use of the Pascal GOTO statement within the program. .

Default value: G-
G+: allows the use of the GOTO statement.

G-: causes the compiler to generate a syntax error upon
encountering a GOTO statement.

The G-option has been used at UCSD to restrict novice
programmers from excessive uses of the GOTO statement in situations
where more structured constructs such as FOR, WHILE, or REPEAT
statements would be more appropriate.

When an 'I' is followed immediately by a '4+' or '-', the
control comment will affect the boolean variable IOCHECK within the
compiler. An alternative use of 'I' in a compiler control comment
causes the compiler to include a different source file into the
compilation at that point. See section INCLUDE-FILE MECHANISM for
syntax.

TOCHECK OPTION
Default value: I+

I+: instructs the compiler to generate code after each statement
which performs any 170, in order to check to see if the I/0
operation was accomplished successfully. In the case of an
unsuccessful I/0 operation the program will be terminated
with a run time error.

I-: instructs the compiler not to generate any 1/0 checking

code. In the case of an unsuccessful 1/0 operation the
program is not terminated with a run time error.

Page 79

The I-option is useful for programs which do many 1/0
operations and also check the TORESULT function after each 1/0
operation. The program can then detect and report the 1/0 errors,
without being terminated abnormally with a run time error. However
this option is set at the expense of the possibility that 1/0 errors,
(and possibly severe program bugs), will go undetected. ‘

INCLUDE FILE MECHANISM

The syntax for instructing the compiler to include another
source file into the compilation is as follows: ’

(*$IFILENAME®)

The characters between *I' and '#)' are taken as the filename of the

source file to be included. The comment must be closed at the end of the
filename, therefore no other options, such as G+, or L+, etc. can follow the
filename. Note that if a file name starts with '+' or '-' as the first
character of the filename, a plank must be inserted petween '(¥*$I' and
'FILENAME'. For example, the comment:

(*$ITURTLE. TEXT¥)

would cause the file TURTLE.TEXT to be compiled into the program at
that point in the compilation.

(#$1 +FARKLE.STUFF*)

would cause the source file +FARKLE.STUFF to be included into the
compilation.

If the initial attempt to open the include file fails, the
compiler concatenates a ".TEXT" to the file-name and tries again. If
this second attempt fails, or some 1/0 error occurs at some point while
reading the include file, the compiler responds with a fatal syntax
error.

The compiler accepts include files which contain CONST, TYPE,
VAR, PROCEDURE, and FUNCTION declarations even though the original
program has previously completed its declarations. To do so, the
include compiler control comment must appear between the original
program's 1ast VAR declaration and the first of the original program's
PROCEDURE or FUNCTION declarations. Note that an include file may be
inserted into the original program at any point desired, provided the
rules governing the normal ordering of Pascal declarations will not be
vio%ated. Only when these rules are violated does the above procedure
apply.

Page 80

The compiler cannot keep track of nested include comments, i.e.
an include file may not have an include file control comment. This
results in a fatal syntax error.

The include file option was added to the compiler at U.C.S.D in
order to make it easier to compile large programs without having to
have the entire source in one very large file which in many cases would
pe too large to edit in the existing editors' buffer.

L:

Controls whether the compiler will generate a program listing
of the source text to a given file. The default value of this option is
L-, which implies that no compiled listing will be made. If the
character following "L¥ is "+", then the compiled listing will be sent
to a diskfile with the title ' #SYSTEM.LST.TEXT'. The user may override
this default destination for the compiled listing by specifying a
filename following "L". For example the following control comment will
cause the compiled listing to be sent to a diskfile called
"DEMO 1. TEXT":

(*$L DEMO1.TEXT*)

To specify a file-name jnside a control comment, see the
section describing the include file mechanism.

Note that listing files which are sent to the disk may be
edited as any other text file provided the filename which is specified
contains the suffix ".TEXT". Without the ".TEXT" suffix the file will
be treated by the system as a datafile rather than as a text file.

The compiler outputs next to each source line the line number,
segment procedure number, procedure number, and the number of bytes or
words (bytes for code, words for data) required by that procedure's
declarations or code to that point. The compiler also indicates
whether the line lies within the actual code to be executed or is a
part of the declarations for that procedure by outputing a "D" for
declaration and an integer 0..9 to designate the lexical level of
statement nesting within the code part. If the D+ option is set then
the listing file will include an asterisk on each line where it is
appropriate for a user to specify a preakpoint while in the interactive
Debugger. This information can be very valuable for debugging a large
program since a run time error message will indicate the procedure
number, and the offset where the error occurred.

Page 81

Page. Pages listing file.
Q:

The Q compiler option is the nquiet compile" option which can
be used to suppress the output to the CONSOLE device of procedure names
and line numbers detailing the progress of the compilation.

Default value: is set equal to current value of the SLOWTERM
attribute of the system communication record
SYSCOM™. (actually SYSCOM‘.MISCINFO.SLOWTERM)

Q+: causes the compiler to Suppress output to CONSOLE device .

Q-: causes the compiler to send procedure name and line number
output to the CONSOLE device.

This option affects the value of the boolean variable
RANGECHECK in the compiler. If RANGECHECK is true, the compiler will
output code to perform checking on array subscripts and assignments to
variables of subrange types.

Default value: R+
R+: turns range checking on.
R-: turns range checking off.

Note that programs compiled with the R-option set will run
slightly faster; however if an invalid index occurs or a invalid
assignment is made, the program will not be terminated with a run time
error. Until a program has been completely tested and known to be
correct, it is strongly advised to compile with the R+ option left on.

S:

This option determines whether the compiler operates in
nswapping" mode. There are two main parts of the compiler: one
processes declarations; the other handles statements. In swapping
mode, only one of these parts is in main memory at a time. This makes
about 2500 additional words available for symbol table storage at the
cost of slower compilation speed due to the overhead of swapping the
compiler segment in from disk. On fullsize, single density floppy
disks this amounts to a factor of two reduction in compile speed. This
option must occur prior the the compiler encountering any Pascal
syntax.

Page 82

Default value: S-

S+: puts compiler in swapping mode.

S-: puts compiler in non-swapping mcde.
U:
USER PROGRAM OPTION:

This option sets the boolean variable SYSCOMP in the compiler
which is used by the compiler to determine whether this compilation is
a user program compilation, or a compilation of a system program.

Default value: U+

U+: informs the compiler that this compilation is to take place
on the user program lex level.

U-: informs the compiler to compile the program at the system lex
jevel. This setting of the U compile time option also causes
the following options to be set: R-, G+, I-.

NOTE: This option will generate programs that will not behave
as expected. Not recommended for non-systems work without knowing its
method of operation.

USE LIBRARY OPTION:

In this version of the 'U' option, the U is followed by a file
name. The named file becomes the library file in which subsequent
USEed UNITs are sought. The default file for the library is
#SYSTEM.LIBRARY. (see section 3.3.2 for more details on UNITs)

Following is an example of a valid USES clause using the A
option:

USES UNIT1,UNIT2, { Found in #SYSTEM.LIBRARY }
{$U A.CODE}
UNIT3,
{$U B.LIBRARY}
UNITH,UNITS;

Page 83

-= Notes --

Page 84

3696 96 9 96 36 3036 36 96 9 3 36 36 36 36 36 38 3 3 3 % 9690 060000 36 36 6 6 % 26 6

UCSD BASIC COMPILER * * Section 1.7 *
T L L LR T L bbb

Version 1.5 September 1978

This section is designed for programmers who are already
familiar with Basic. Its intent is to describe to those experienced
users the details of UCSD Basic in a manner sufficiently detailed so
as to enable the writing or modification of programs to be compatible
with the UCSD Basic Compiler.

The first sectdon contains a brief description of the features
included in UCSD Basic; the second, the descriptions of the features
unique to UCSD Basic, and the third a list of those features which we
intend UCSD Basic to allow, but which are not yet implemented.

The UCSD Basic Compiler has been written in the Pascal
language. Some of the intrinsics of the Pascal language, which are not
found in standard Basic, are found within the UCSD version of Basic.
Many of these are noted in the first section, all of them are noted or
recapped in the second.

'IX SYSTEM.COMPILER

The UCSD BASIC Compiler is invoked just like the Pascal
compiler, provided the compiler code is named *SYSTEM.COMPILER.
Originally it will be named BASIC.COMPILER. If you want a disk to be
BASIC oriented, you must change the name of, or remove, the Pascal
compiler, and change the name of BASIC.COMPILER to #SYSTEM.COMPILER.
That disk, and any copies of it, will now compile BASIC programs as a
result of the C(ompile or R(un command.

DESCRIPTION OF FEATURES INCLUDED

The Basic compiler has only real and string variables. When
applying a real to indexing or other integer purposes the rounded value
of the number is used. In the functions below x and y can be real
variables or expressions which evaluate to real values. Similarly s
and s2 can be string variables or expressions which evaluate to a
string.
VARIABLE NAMES

Real variables: letter(digit).

String variables: letter(digit)$. The digit is optional .
INTRINSIC ARITHMETIC FUNCTIONS

ATN(x) Returns the angle in radians whose tangent is x.

Page 85

EXP(x) Returns the pase of the natural logarithms raised to the power X.
INT(x) Returns the value of x rounded to the nearest integer.

LOG(x) Returns the 1log (base 10) of x.

LN(x) Returns the natural log of X.

MOD(x,y) Returns X modulo Y.

SIN(x) Returns the sine of the anéle Xx. Where x is in radians.

CB(x) Returns the cosine of an angle X. Where x is in radianms.

INTRINSIC STRING FUNCTIONS

CAT$(s1,s2,...) Returns a string which is equal to the concatenation of
all the strings in the parameter list.

COP$ (s1,x,y) Returns a copy of the portion of the string s1, ¥
consecutive characters, starting with the character at position Xx.

DEL$(s1,x,y) Returns the contents of the string s1 with y consecutive
characters deleted. The deletion starts witn the character at
position x.

INS$(s1,s2,x) Returns the contents of string s2 with string s1 inserted
jmmediately before the character which is at position x.

LEN(s1) Returns the length of the string st.
POS(s1,s2) Returns an integer which is equal to the position of the

first character in the first occurrence of the string s1 in the
string s2.

OTHER FUNCTIONS
ORD(s) Returns the ASCII value of the first character of the string s.

STR$(x) Returns the string containing the character associated with the ASCII
value Xx.

GET$ Reads a single character fram the keyboard without prompt or echoing,
and returns it as a string. GET$ requires no arguments.

oLD(c,s)
NEW(c,s) ¢ is a numeric constant without a fraction part, which becomesS

Page 86

associated with the disk file whose name is in s. OLD expects that
file to already exist, NEW creates a new one with the name s, removing
any previous file of that name. These functions must occur before
associated print or input statements. The numbers may not be
reassigned and must be in the range 1..16. For best results, use only
at the top of a program. In order that a file created by NEW be
editable with either of the system editors, '.text' must be appended to
the file title.

These functions return IORESULT as described in section 2.1.

PROGRAMMING STATEMENTS _

Arithmetic statements and operations

-y + subtract ,add
/ 4 ¥ divide,multiply
~o, W exponentiation

Relational operators

= equals
O, X not equals
> greater than
< less than
>z, = greater than or equal
<=, =< less than or equal
INPUT list
or

INPUT #fc list

Inputs from the main system device, usually the keyboard. If the
optional ftc is present, INPUT inputs from the disk file number

c. The input list may contain any combination of real variables and
string variables. When a program expects input the prompt "?" is
printed. Input of real numbers may be terminated with any non-numeric
character. Input of strings must be terminated with a return.

PRINT list

or

PRINT #c list

FOR var

Writes to the main output device the 1ist following the PRINT command .
If the optional ffic is present, PRINT outputs to the diskfile number c.
The output list may contain any variable, subscripted array variable,
any arithmetic or string expression, or any literal text. The list may
be separated by commas or semi-colons. If the list ends in a semi-colon
the carriage return is suppressed. Literals may be enclosed in either
type of quotation marks. Double quotation marks prints a single
quotation mark.

= expl TO exp2 STEP exp3

Page 87

QEXT var

IF expl

Each execution of the 1loop increments the loop counter "var" by the
amount of expression 3. If the STEP is omitted it is assumed to be 1
Only increasing STEP values are allowed. Evaluation of limits and
increments is done at the beginning of the loop. Note that RETURN's into
or GOTO's into a FOR loop may cause the loop to be undefined.

(relation operator) exp2 Tﬂ%g (1ine number)
GO

Either the reserved word THEN or GOTO can be used in this statement. If
the relation between the expl and exp2 is found to be true the branch
occurs. A string is considered to be less than another string if it is
lexicographically smaller.

ON exp GOTO(1n1,1n2..)

If the expression, when rounded, evaluates to 1 it goes to the first
line number (In1) if it evaluates to 2 it goes to In2, etc. This is the
only form of the computed GOTO which is available. If the expression is
out of range an error occurs.

DEF FNname(1ist)=zexpression or DEF FNname(list)

FNEND

Single line and multi-line functions are allowable. The function name
must be a legal variable namé for the type of value returned. Functions
may be defined recursively. The parameter list is called by value, that
is, changes inside the function don't affect the value of the external
par ameters.

LET var=exp

or
var=exp

DIM var

This command assigns a new value to the variable. If the variable is a
string, the expression must evaluate to a string, and if a real,
evaluation must be to a real.

(n1,n2y..)

A single or multidimensional array may be declared with this comand.
The variable name determines the type of the array. The array indices
are 0..n1,0..n2,... Both real and string multidimensional arrays can be
used. If no dimensions are declared the dimensions are assumed to be
0..10, 0..10, 0..1, 0..1 ... The number of dimensions automatically
declared depends on the number of dimensions which are used in the
program, but must be consistant over all uses of any given array.

Page 88

GOSUB 1inenumber

Executes a subroutine call. The calling address is placed on the
subroutine stack. Subroutine calls may be recursive.

RETURN
Returns to the
the top addres
return when no
GOTO linenumber
Program execut

REM text

This line is a

UNIQUE FEATURES OF UCS
Arithmetic

For loops: Note that v

line after the last GOSUB which is still pending. It pops
s off the stack and uses it as the return address. A
GOSUB's are pending is an error.

ion jumps to the given line number.
remark.

D BASIC

ar=exp1 is done before exp2 or exp3 are evaluated.

Continuation of statements is allowed. Any line not beginning with a
line number is assumed to be the continuation of the line above.

Functions: All parameters of functions are call by value. You are not
allowed to use the parameters to return values from a function.

Function calls

are allowed to be recursive.

Strings: The string functions and procedures are those found in the
UCSD Pascal language.

Arrays: Arrays of more

Print: Tab stops are n

than two dimensions are allowed.

ot allowed. All list elements are printed without

spaces between them. The carriage return can be suppressed by ";"
as the last symbol in the line.

Subroutines: Subroutines may be recursive.

Comments: In line comments may be inserted. The portion of any line

following the €

symbol is ignored by the compiler.

PASCAL FUNCTIONs: The code of PASCAL FUNCTIONs may be added to the
BASIC compiler as new standard BASIC functions. This is

accomplished by

a straight-forward addition to the BASIC compiler.

Page 89

FEATURES TO BE ADDED

Certain features of the UCSD Basic compiler are still in the
process of peing implemented. The most important of these are listed
below. :

Data and Read: The standard initialization statements.
Matrix statement for standard matrix operations.
Integer variables.

More standard functions. .

RUNNING A BASIC PROGRAM

Create the BASIC program using one of the system text editors.
Once you have ensured that the BASIC compiler has been named
SYSTEM.COMPILER, you can use the commands C(ompile and R(un at the
COMMAND level, just as if you were using Pascal on a disk which has the
Pascal compiler as its SYSTEM.COMPILER. For a more detailed
description of COMMAND see Section 1 1

Page 90

U060 06 000000 0000 06 060 06 JEIRIE 06 0606 360 36 00 0 36 0 36

% THE LINKER * * Section 1.8 *
JMEHMM NI 00T IR

Version II.O February 1979

The UCSD LINKER allows the user to combine pre-compiled files,
which may have been written either in PASCAL or in assembly language,
into the system workfile. The user may wish to incorporate certain
useful routines into programs without having to rewrite or even
recompile these routines. For example, one might wish to use a fast
assembly language routine for some "real-time" application. This
routine could be assembled separately, stored in a library, and
eventually accessed via the LINKER.

To link in routines (either procedures or functions), the
calling program declares those routines to be EXTERNAL, much as
PROCEDURES or FUNCTIONS may be declared FORWARD (see Section 3.3.1).
This notifies the compiler that the routines may be called, but are
not provided yet. The compiler will inform the system that linking is
required before execution.

The LINKER is also used to link in UNITs. A UNIT is a group of
related routines which will be used together to perform a common
task. UCSD TURTLEGRAPHICS is an example of a UNIT containing
procedures and functions with which a "turtle" can be moved on the
screen. A UNIT can be used by typing the reserved word USES
<unitname> directly after the PROGRAM <identifier>. For more
information on UNITs, see Section 3.3.2.

Any files which reference UNITs or EXTERNAL routines and have
not yet been linked may be compiled and saved, but will need to be
1inked before they can be executed.

1.8.1 USING THE LINKER

If the program in the workfile contains EXTERNAL declarations,
or uses UNITs, typing R(un will automatically invoke the LINKER after
the compiler. The LINKER will search the file #SYSTEM.LIBRARY for the
routines or UNITs specified, and will 1ink them into the workfile. If
the UNIT or EXTERNALly declared routine is not present in
*SYSTEM.LIBRARY, the LINKER will respond with an appropriate message:

Unit,
Proc,
Func,
Global,
or Public <identifier> urdefined

Page 91

The LINKER may also be invoked explieitly, and, in fact, must
pe invoked explicitly in cases where

(1) the file into which UNITs or EXTERNAL routines are to be
1inked is not the workfile, or

(2) the external routines to be linked reside in library files
other than #SYSTEM.LIBRARY.

In order to explicitly invoke the LINKER, the user types 'L' at
Command level and receives the prompt:

Host file?

The hostfile is the file into which the routines or UNITs are to be
linked. The LINKER appends .CODE to all file names typed in except for
#¢ret>. Typing a <ret> in response to the prompt causes the LINKER to
use the workfile as the hostfile. The LINKER then asks for the name(s)
of the library files in which the UNITs or EXTERNAL routines are to be
found:

Lib file? <codefile identifier>
Lib file? <codefile jdentifier>
Up to eight library files may be referenced. Typing '#' in
response to a request for a 1ibfile name will cause the LINKER to

reference #SYSTEM.LIBRARY. The user will be notified about each
library file that is successfully opened.

Example: Lib file? #® Lret>
Opening #SYSTEM.LIBRARY

For information on LIBRARIES and the LIBRARIAN see Section u.2.

When all relevant 1ibfile names have been entered the user
must type <ret> to proceed. The LINKER will now prampt with:

Map file? <file identifier> <ret>

The LINKER writes the map file to the file requested by the
user. The map file contains relevant LINKER info regarding the linking
process. Responding with <ret> to this prompt will suspend this option.
Note that .TEXT is appended unless a v.1 is the last letter of the
filename. .

The LINKER now reads up all segments required to enable the
linking process. The user is now prompted to enter the destination
file for the linked code output (this will often be the same file name
as that of the host file). Linking will commence after the <(ret>
following the output file name has been typed. An empty line, <ret>
only, causes the output file to be placed in the workfile e.g.

#SYSTEM .WRK. CODE.

Page 92

During the linking process the linker will report on all
segments being linked as well as all external routines being copied
into the output codefile. The linking process will be aborted if any
required segments or routines are missing or undefined. The user will
be informed of their absence with messages as described at the
beginning of this section. -

1.8.2 LINKER CONVENTIONS AND IMPLEMENTATION -

Codefiles may contain up to 16 segments. Block 0 of a codefile
contains information regarding name, kind, relative address and length
of each code segment. This information is called the segtable, and
is represented as a record:

RECORD
DISKINFO: ARRAY[0..15] OF
RECORD
CODELENG, CODEADDR:INTEGER
END;

SEGNAME: ARRAY[O..15] OF PACKED ARRAY[0..7] OF CHAR;

SEGKIND: ARRAY[O..15] OF (LINKED,HOSTSEG,SEGPROC, UNITSEG,
SEPRTSEG) ;

TEXTADDR: ARRAY[O..15] OF INTEGER;
END;

CODELENG and CODEADDR give, respectively, the length of the
code segment in bytes, and the block address of the code segment. A
description of SEGKINDs follows:

LINKED: The codesegment is fully executable. Either all external
references (UNITs or EXTERNALs) have been resolved, or
none were present.

HOSTSEG: the segkind assigned to the outer block of a PASCAL
program if the program has external references.

SEGPROC: the segkind assigned to a PASCAL segment procedure.

UNITSEG: the segkind assigned to a compiled SEGMENT. (see Section
3.3.1)

Page 93

SEPRTSEG: This segkind is assigned to a separately compiled
procedure or function. Assembly language codefiles are
always of this type, as well as Pascal UNITs which are
not SEGMENT UNITs.

For an unlinked code segment (that is, a segment containing
unresolved external references) the compiler generates linker
information. This information is a series of variable-length records,
one for each UNIT, routine or variable which is referenced in, but not
defined in the source. The first 8 words of each record contain the
following information:

LITYPES = (EOFMARK, UNITREF, GLOBREF, PUBLREF, PRIVREF, CONSTREF,

GLOBDEF, PUBLDEF, CONSTDEF, EXTPROC, EXTFUNC, SEPPROC,
SEPFUNC, SEPPREF, SEPFREF);

LIENTRY=RECORD
NAME :

: ALPHA;
CASE LITYPE: LITYPES oF
UNITREF,
GLOBREF,
PUBLREF,
PRIVREF,
SEPPREF,
SEPFREF,
CONSTREF:
(FORMAT: OFFORMAT; (format of lientry.name can be
any of BIG, BYTE or WORD.)
NREFS: INTEGER; (# of references to lientry.name in
compiled code segment)
NWORDS: LCRANGE); (size of privates in words)
GLOBDEF:
(HOMEPROC: PROCRANGE; (which procedure it occurs in)
ICOFFSET: ICRANGE); (byte offset in p-code)
PUBLDEF :
(BASECFFSET: LCRANGE); (compiler assigned word offset)
CONSTDEF :
(CONSTVAL: INTEGER); (users defined value)
EXTPROC, EXTFUNC,
SEPPROC,(SEPFUNC:

SRCPROC: PROCRANGE ; (procedure number in source segment)

NPARAMS: INTEGER); (number of parameters expected)
EOFMARK:
(NEXTBASELC: LCRANGE) (private var allocation info)
END(lientry);

If the LITYPE is one of the first case variant, then following
this portion of the record is a list of pointers into the code
segment. Each of these pointers is the absolute byte address within
the code segment of a reference to the variable, UNIT or routine named
in the lientry. These are 8 word records, but only the first NREFs of

them are valid.

Page 9U

+ i .

SR E KRR NN HRERHNHERR OO0 R RRNR

¥ ADAPTABLE ASSEMBLER * ¥ Section 1.9 ¥
RERHRARERAARREHEERRARHR HRRHRRRRRHHKNAR

Vorsion I1.0 February 1979

Users of UCSD Pascal occasionally need to write and execute
small assembly routines written in the lamguage of the host machine.
These routines would be used within a Pascal program to provide low-
level or time wribical facilities. The UCSD Adaptable Assembler (in
conjunction with the UCSD Linker) has been designed to meet those
needs. The UCSD Pascal Project will be maintaining all our Pascal
interpreters using this asscmbler in the near future. By this process
the users of the UCSD Pascal system will be independent of any
manufacturer's systoem software.

This assembler was modeled after The Last Assembler (TLA)
developed at the University of Waterloo. The basic concept behind
both the Ti.A =nd the UCSD Adaptable Assemblers is the use of a central
machine indepsaient core thab is common to all versions of the
azsambler. This central core is augmented with machine specific code
Lo nandle the peculiarities of each individual machine.

This docunent is intended for a reader who is already fluent in
at least one assenbly language.

.91 USAGE

Hefore attanpting to oxecute the assembler program for a
specific machine, an opcodes file (Z30.0PCODES or 11.0PCODES) must be
Tocated on the systan dist. The errors file (Z80.ERRORS or 11.ERRORS)
contains the error messaes that are used for error flagging during the
assembly. This file is optional; if used, 1t must also appear on the
system disk.

To use the UCSD assembler, type A(ssem from the Command line.
This will oxcoute SYSTFM.ASSMBLER. (The user should arrange that the
right version of the assembler (PDP-11 or Z80) have that title.)

The program displays, the version of the asssembler being
executed and assumes that the current workfile is the one to be
assembled. If there is no current workfile then the program asks which
file is to be assembled.

The next prompt line is:

Page 95

Output file for the assembled listing (<CR> for none):

As usual for a console or printer output the words CONSOLE or
PRINTER must be followed by a colon, i.e. CONSOLE:. If the colon is
neglected the output is sent to a file of the name given. At this
point, the program reports whether or not the output device (if any) is
on line. The assembled code is written out to a file called
®¥SYSTEM.WRK.CODE which cannot be executed by itself but must be changed
to link in with a host file.

The program then starts assembling the workfile, flagging
errors as they are found. If an a error, other than an I/0
error, is found, a general message indicates the nature of the error
and also gives the option to continue or exit. The error message will
be taken from the ERRORS file if possible. If that is not possible, due
to space limitations or the absence of the errors file, the error
message number 1s given. The assembly is aborted if the I/0 error
encountered is not due to data typed in by the user, otherwise the user
is prompted to try again. (See the complete list of Assembler syntax
errors and machine specific errors in Table 6.)

The console displays, on the left hand side of the screen, one
dot for each line of code assembled and a line counter every 50 lines. ...
When an include file is started, the console displays:

. INCLUDE <FILE ID>
indicating which file has been included.

At the end of the assembly the assembler program indicates that
it is finished and tells the user how many errors were found. In
addition an alphabetic symbol table is generated.

The reference symbol table consists of three parts. The first
column represents the symbol identifier, the second, the symbol type,
and the third, the location that it is defined or the value it has.
Actual values are given for the symbols representing absolutes and
definition locations are given for the symbols representing labels.

The location number is given as a hi-byte first number and corresponds

to the index numbers on the left hand side of the listing. Only symbols
which have definition locations or absolute values have numbers in the

third column; other types have dashes.

Following is an example of an assembled listing with symbol
table.

Page 96

Page 97

Page numbening errnon. ..

Page 98

“ed.

PAGE - 1

0000} .PROC PRIMARYZ
gggg?y after initialization: 6068
i
0000} FLOPPY .EQU OBFDH
0000 SECMEM .EQU 9000H
0000} SECENT .EQU 9000H
0000, SECDSK .EQU 084 + 1700H
0000 | BIDSK .EQU 10H + 1700H
880%E B2DSK .EQU 18H + 1700H
00,
?OO%& .ORG 1000H
000
1000} FD 21 #x¥x PRIMARY LD IY,SECREAD
1004} CD FDOB CALL FLOPPY
1007 FD 21 #%#¥ LD IY,B1READ
100B} CD FDOB . CALL FLOPPY
100E| FD 21 %*%&% LD IY,B2READ
1012} CD FDOB CALL FLOPPY
181%: C3 0090 JP SECENT
10181
1002% 1810
1018 SECREAD
10181 00 BYTE $-$
1019} OA . BYTE OAH
101A} 0090 .WORD SECMEN
101C} 0002 .WORD 2004
101E} 0000 .WORD $-%
1020} 0010 .WORD PRIMARY
1022 00 .BYTE $-$
102%5 0817 .WORD SECDSK
10251
1009% 2510
10251 B1READ
1025} 00 .BYTE $-$
1026, OA .BYTE OAH
1027} 0093 .WORD SECMEN+300H
1029} 0002 .WORD 200H
102B} 0000 .WORD $-%
102D} 0010 .WORD PRIMARY
102F| 00 .BYTE $-$
1030} 1017 .WORD B1DSK
10321
1010% 3210
10321 B2READ
1032} 00 .BYTE $-$
10331 OA .BYTE OAH
1034} 0095 .WORD SECMEN+500H
1036 0002 .WORD 200H
1038} 0000 JWORD $-$
103A 0010 .WORD PRIMARY
103C} 00 .BYTE $-$
103D} 1817 .WORD B2DSK
103F |
103F | .END

PRIMARYZ FILE: #5:PRIMARY.Z

;Rom-based floopy driver
;First location in memory
;Entry point of bootstrap
;Sector start of 2nd bootstrap
;Sector start of BIOS part 1
:Sector start of BIOS part 2

;Pri.mary boot for ZILOG [0S
;Get.block for second bootstrap
:Get block for part 1 of BIOS
:Get block for part 2 of BIOS

;Jump into second bootstrap

s Unused

;Read command

:Memory loc. for second boot
;Number of bytes in boot
;Completion return address
;Error in return address
;Completion result code
;Disk block of second boot

; Unused

;Read command

‘Memory location or BIOS part 1
:Number of bytes in BIOS part 1
;Completion return address
;Error return address
;Completion result code

:Disk block of BIOS part 1

; Unused

;Read command

sMemory location of BIOS part 2
;Number of bytes in BIOS part 2
:Completion return address
;Error return address
;Completion result code

;Disk block of BIOS part 2

Page 99

PAGE- 2 PRIMARYZ FILE:#5: PRIMARY.Z SYMBOLTABLE DUMP

AB - Absolute LB - Label ub - Undefined MC - Macro
RF - Ref DF - Def PR - Proc FC - Func
PB - Public PV - Private ¢S - Constant

B1DSK AB 1710} BIREAD LB 105! B2DSK AB 1718} B2READ LB 10321
FLOPPY AB OBFD} PRIMARY LB 1000i PRIMARYZ PR ——-~| SECDSK AB 1708)
SECENT AB 9000 SECMEM AB 9000} SECREAD LB 10181

NOTES:

The location values in the symbol table dump refer to the
locations in the listing.

The ¥##¥'s in the 1isting call attention to the use of a label
not yet defined.

If a star (%) appears after the location number at the left of
the listing, it indicates that 2 forward reference occurring earlier in
the assembly has been resolved. The number to the 1eft of the t# is
the location where the reference occurred while the number o the right
is the new contents of that location.

1.9.2 HIGH-LEVEL SYNTAX

A1l objects declared before the first .PROC or .FUNC are
available for use throughout the assembly. No code is allowed to be
generated pefore the first _PRCC or .FUNC. The symbol table is reduced
at the beginning of each .PROC or .FUNC to the point where it was at
the start of the first .PROC or FUNC.

Only labels may pbegin in the first column and may optionally
pe followed by a colon. Local 1abels must have 1$' in the first
column and may be up to 8 digits long. If the statement has no label,
the first column must contain 2 space.

A1l assemblies must end with a .END. However each .PROCOr
_FUNC need not because they are ended by the occurrence of the next
.PROC or .FUNC. Only the last one needs a .END.

A general railroad diagram for all assembly files 1ooKs 1ike:

Page 100

| .PROC

/ any non-code
————4¢ denerating
operations

.FUNC

—
l code qereratin

operations an .END
directives

The non-code generating operations are:
.EQuU, .DEF, .REF, .PAGE, .TITLE, .LIST, .MACRO, .IF

The code generating operations are any other pseudo-ops and all
assembly code for the program.

1.9.3 EYPRESSIONS (one-pass restrictions)

Since the Adaptable Assembler makes only one pass through the
source, something must be assumed (upon encountering an undefined
identifier in an expression) about the nature of the identifier in
order for the assembly to continue. It is therefore assumed that the
undefined identifier will eventually be defined as a label, which is
the most probable case. Any identifier which is not a label must be
defined before it is used.

Labels may be equated to an expression containing either labels and/or
absolutes. One must define a label pefore it is used unless it will
simply be equated to another 1abel. Local labels may not occur on the
left hand side of an equate (.EQU).

Local labels are mainly used to jump around within a small
segment of code without having to use up storage area needed by regular
labels. The local label stack may hold up to 21 labels. These are cut
back every time upon encountering a regular label and are thus rendered
invalid. An example of the use of local 1abels is shown below, the
jump to label $04 being illegal.

Page 101

$03 STA & sLEGAL USE OF LOCAL LABEL

JP NZ,$03

.

JP NZ,$04 s ILLEGAL USE OF LOCAL -LABEL

REALLAB .EQU $
$ou .EQU §

Identifiers are character strings starting with an alpha
character. Other characters must be al phanumeric or the ASCII
underline ('_'). Only the first 8 characters are meaningful to the

assembler even though more may be entered.

The following operators can be used in expressions processed
by this assembler.

For unary operations:
'y! plus
tat! minus
Ve ones complement

For binary operations:

‘4! plus
‘-t minus }
e exclusive or

v multiplication

/' truncating division (DIV)

191 remainder division (MOD)

t11 pit wise OR

'&' bit wise AND

12t equal (valid only in .IF)

1¢>' not equal (valid only in .IF)

A1l constants must start with an integer 0-9.
All operations are applied to whole words.

The default radix is(ggiﬁfor the 280 version and Octal for the PDP-11.

1.9.4 ASSEMBLER DIRECTIVES: OVERVIEW

Assembler directives (also referred to as "pseudo-ops") allow
the programmer to instruct the assembler to do various functions other
than provide direct executable code. The following directives are
common to all UCSD versions but may differ from manufacturer's standard
syntax.

Page 102

In the following pseudo-op descriptions square brackets, {1,
are used to denote optional elements. If an element type is not
listed it cannot be used in that situation. Angle brackets,<>, denote
meta symbols. '

For example: [label] .ASCII "<charcater string>"
indicates that a label may be given but is not necessary
and that between the double quotes must go the character

string to be converted (not necessarily the words
"character string"). g

The following terms represent general concepts in the
explanation of each directive:

value = anyrnnkrical value, label, constant, expression.
valuelist = is a list of one or more values separated by commas .
jdlist = a list of one or more identifiers separated by commas.
expression = any legal expression as defined in Section 1.9.3.

identifier:integer 1list = a list of one or more identifier-integer
pairs seperated by commas. The
colon-integer is optional in each pair
and the default is 1.

Small examples are included after each pseudo-op definition to
supply the user with a reference to the specific syntax and form of
that directive. The larger example, included in section 3.3.2, is used
to show the combined use and detailed examples of directive operations.

1.9.4.1 DELIMITING DIRECTIVE FOR ROUTINES

Every assembly must include at least one .PRCC or .FUNC, and
one .END, even in the case of stand-alone code which will not be linked
into a Pascal host(i.e. an interpreter). The most frequent use of the
assembler, however, will be small routines intended to be linked with a
Pascal host. In this case, .PROCs and .FUNCs are used to identify and
delimit the assembly code to be accessed by a Pascal external procedure
or function. The .END appears at the end of the last routine and
serves as the final delimiter.

References to a .PROC or .FUNC are made in the Pascal host by
use of EXTERNAL declarations. At the time of this declaration the
actual parameter names must be given. For example, if the Pascal
declaration is:

Page 103

PROCEDURE FARKLE(X,Y:REAL);EXTERNAL;
the associated declaration for the .PROC would be

.PROC FARKLE,4

A .PROC, .FUNC, or any assembly routine should be inserted into
the #SYSTEM.LIBRARY (execute LIBRARIAN) so that it can be referenced DY
the #SYSTEM.LINKER and linked in at run time. An alternate method would

be to execute the LINKER and tell it what files to 1ink in. Either

method works. However, if the Pascal host is updated and the assembly
routines aren't in the %S YSTEM. LIBRARY, the linker will have to be

executed after each update. Therefore, we suggest that the routines be

inserted into the *SYSTEM.LIBRARY to avoid this repetition. If the
1inker is called automatically using the Run command, it will search
the #SYSTEM.LIBRARY for the appropriate definition of the assembly
routine and link the two together.

.PROC Identifies a procedure that returns no yalue. A .PROC is
ended by the occurrence of a new .PROC, .FUNC, or .END.
FORM: .PRCC <identifier>[,expressionl
[expression] indicates the number of words
of parameters expected by this routine.
The default is 0.
EXAMPLE: .PROC DLDRIVE,?2
.FUNC Identifies a function that returns a value. Two words of
space to be used for the function value will be placed on
the stack after any parameters. A .FUNC is ended the sameé
way as the .PRCC
FORM: .FUNC <identifier>[,expression]
[expression] indicates the number of words
of parameters expected by this routine.
The default is O.

EXAMPLE: .FUNC RANDOM, 4
.END Used to denote the physical end of an assembly.
1.9.4.2 LABEL DEFINITIONS AND SPACE ALLOCATION DIRECTIVES

.ASCII Converts character values to ASCII equivalent byte

Page 104

Note:

.BYTE

.BLOCK

constants and places the equivalents into the code stream.

FORM: [label]l] .ASCII "<character string>" ,
where <character string> is any string of printable
ASCII characters, including a space. The length
of the string must less than 80 characters. The
double quotes are used as delimeters for the
characters to be converted. If a double quote is
desired in the string, it must be specifically
inserted using a .BYTE. :

EXAMPLE: .ASCII "HELLO"

for the insertion of AB"CD the code must be
constructed as:

.ASCII "AB"
.BYTE 34 ; 42 octal
.ASCII nepn

The 34 is the ASCII number for a double quote in hex.
The representation actually used will depend on the default
radix of the particular machine in use.

Allocates a byte of space into the code stream for each
value listed. Assigns the associated label, if any, to the
address at which the byte was stored. Expression must
have a value between =128 and +255. If the value is
outside of this range an error will be flagged.

FORM: [label]l .BYTE [valuelist]

the default for no stated value is O.
EXAMPLE: TEMP .BYIE y

the associated output would be: OU
Allocates a block of space into code stream for each value
listed. Amount allocated is in bytes. Associates the label
(if present) with the starting address of the block
allocated.

FORM: [label] .BLOCK <length>[,value]

Page 105

<length> is the the number of bytes to hold the <value>
specified. The default for no stated value is O.
EXAMPLE: TEMP .BLOCK 4,6
the aazsociated output would be:
06 (four bytes with the value 06)

06
06

.WORD Allocates a word of space in the code stream for each value
in the valuelist. Associates the declaration label with
the word space allocation.
FORM: [label] .WORD ¢valuelist>
EXAMPLE: TEMP .WORD 0,2,4,...
the associated output would be:
0000

0002
0004 (words with these values in them)

EXAMPLE: L1 .WORD L2

L2 .EQU §$ § represents the LC on the 280
.WORD 5.

if LC was 50 at the .EQU
the associated output would be:

0050 (* assignment due to the L2 value %)

0005 (* assignment due to the WORD 5 ¥)

.EQU Assigns a value to a label. Labels may be equated to an
expression containing either lables and/or absolutes. One
must define a label before it is used unless it will simply
be equated to another 1abel. A local label may not appear
on the left hand side of an equate (.EQU).

Page 106

FORM: <label> EQU <value>

EXAMPLE: BASE .EQU R6

.ORG Sets the current location counter (LC). to the value of the
.ORG. It would normally be used in a stand-alone program.
For example, there is one .ORG in the 8080/Z80 interpreter.
The current implementation allows one to .ORG only in the

forward direction.
e ALTGN 4Nalvey
1.9.4.3 MACRO FACILITY DIRECTIVES ;
- } TN A &

A macro is a named section of text that can be defined once and
repeated in other places simply by using its name. The text of the
macro may be parameterized, so that each invocation results in a
different version of the macro contents. The parameters to the macro
are separated by commas.

At the invocation point, the macro name is followed by a list
of parameters which are delimited by commas or spaces (except for the
last one, which is terminated by end of line or the comment indication
(';")). At invocation time, the text of the macro is inserted
(conceptually speaking) by the assembler after being modified by
parameter substitution. Whenever %n (where n is a single decimal digit
greater that zero) occurs in the macro definition, the text of the nth
parameter is substituted. Leading and trailing blanks are stripped
from the parameter before the substitution. If a reference occurs in
the macro definition to a parameter not provided in a particular
invocation, a null string is substituted.

A macro definition may not contain another macro definition. A
definition can certainly, however, include macro invocations. This
"nesting" of macro invocations is limited to five levels deep.

The expanded macro is always included in the listing file (if
listing is enabled at the point of invocation). Macro expansion text
is flagged, in the listing, by a '#' just left of each expanded line.
Comments occurring in the macro definition are not repeated in the
expansion.

MACRO Indicates the start of a macro and gives it an identifier.

.ENIM Indicates the end point of a MACRO.

Page 107

FORM: MACRO <identifier>

: (macro body)

.ENDM
EXAMPLE: .MACRO HELP
STA %1 ; < comment >
LDA %2 s < comment >
.ENDM

The listing where the macro call is made may looK like:

HELP FIRST,SECOND
i STA FIRST
LDA SECOND

The statement HELP, calls the macro and sends it two
parameters, FIRST and SECOND. These parameters aré in turn
referenced inside the macro using the identifiers %1 for the
variable FIRST, and %2 for the variable SECOND.

1.9.4.4 CONDITIONAL ASSEMBLY DIRECTIVES

Conditionals are used to selectively exclude or include
sections of code at assembly time. When the assembler encounters an
_IF directive, it evaluates the associated expression. In the simplest
case, if the expression is false, the assembler simply discards the
text until a .ENDC is reached. If there is an .ELSE directive between
the .IF and .ENDC directives, the text before the JELSE is selected if
the expression is true, and the text after the .ELSE if the condition
is false. The unassembled part of the conditional will not be
included in any listing. Conditionals may be nested.

The conditional expression takes one of two forms. The first
is the normal arithmetic/logical expression used elsewhere in the
assembler. This type of expression is considered false if it
evaluates to zero; true otherwise. The second form of conditional
expression is comparison for equality or inequality (indicated by rs!
and 'Y, respectively). One may compare strings, characters, or
arittmetic/logical expressions.

JIF Identifies the peginning of the conditional.
.ENDC Identifies the end of a conditional JF

.ELSE Identifies the alternate to the JIF. If the conditional
expression is egual to O then the else is used.

Page 108

1.9.4.5

FORM: [label] .IF <expression>

ELSE (* only if there is an else ¥)
.ENDC
where the expression is the corditional expression to be met.

EXAMPLE: .IF LABEL1-LABEL?2 sarithmetic expression
; This text assembled only if subtraction
; result is now zero

JIF "gin =nSTUFF" jcomparison expression
; This text assembled if subtraction above
; was true and if text of first parameter
; (assume we are in macro) is equal to "STUFF"

.ENDC yterminate nested cond.
ELSE
; This text assembled if subtraction result
; was zero
.ENDC ;terminate outer level
sconditional

PASCAL HOST COMMUNICATION DIRECTIVES

The directives .CONST, .PURLIC, and .PRIVATE allow the sharing

of information and data space between an assembly routine and a Pascal

host.
Linker.

.CONST

These external references must eventually be resolved by the

Refer to Section 1.8 Linker, for further details.

Allows access of globally declared constants in the PASCAL host
by the assembly routine. .CONST can only be used in a program
to replace 16 bit relocatable objects.

Page 109

.PUBLIC

FORM: .CONST <idlist>

EXAMPLE: (* see example after .PRIVATE *)

Allows a variable declared in the global data segment of
the PASCAL host to be used by an assembly language routine
and the host program.

FORM: .PUBLIC <idlist>

EXAMPLE: (* see example after .PRIVATE ®)

.PRIVATE Allows variables of the assembly routine to pe stored in the

global data segment and yet be inaccessable to the Pascal host.

Y

These variables retain their values for the entire execution of
the program.

FORM: .PRIVATE ¢identifier:integer list>

the integer is used to communicate the number of
words to be allocated to the jdentifier.

EXAMPLE: (¥ for .CONST, .PRIVATE, .PUBLIC *)
Given the following Pascal host program:

PROGRAM EXAMPLE;
CONST SETSIZE=50; LENGTH=80;

VAR I,J,F,HOLD,COUNTER, LDC : INTEGER;
LST1:ARRAY[0..9] OF CHAR;

BEGIN

L]

END.
and the following section of an assembly routine:

" .CONST LENGTH
.PRIVATE PRT,LST2:9
.PUBLIC LDC,I,d

This will allow the const LENGTH to be used in the assembly
routine almost as if the line LENGIH .EQU 80 had been
written. (Recall the limitation mentioned above for the use
_CONST identifiers.) The variables Lpc,I,Jd to be used by both
the Pascal host and the assembly routine, ard the variables
PRT, LST2 to be used only by the assembly routine. Further,

Page 110

the LST2:9 causes the variable LST2 to correspond with the
beginning of a 9 word block of space in the global data
segment .

1.9.4.6 EXTERNAL REFERENCE DIRECTIVES

The use of .DEF and .REF is similar to that of .PUBLIC. .DEFs
and .REFs associate labels between assembly language routines rather
than between an assembly routine and a Pascal host program. Just as
with .PRIVATE and .PUBLIC, these external references must eventually be
resolved by the Linker. If such resolution cannot be accomplished, the
Linker will indicate the offending label. Naturally, the assembler
cannot be expected to flag these errors, since it has no knowledge of
other assemblies.

.DEF Identifies a label that is defined in the current routine
and available to be used in other .PROCs or .FUNCs.

FORM : .DEF <identifierlist>

EXAMPLE: (* see listing in section 3.3.2.3 for example ¥)

.REF Identifies a label used in this routine which has been
declared in an external .PROC or .FUNC with a .DEF.
During the linking process, corresponding .DEFs and .REFs
are matched.

FORM: .REF <identifierlist>
EXAMPLE: (* see listing in section 3.3.2.3 for example ¥)

Note: The .PROC and the .FUNC directive also generates
a .DEF with the same name. This allows assembly
procedures to call .PROC and .FUNCs if they have
been defined in a .REF.

1.9.4.7 LISTING CONTROL DIRECTIVES

If no listing output file is specified then all .LIST and
.NOLIST directives are simply ignored.

LIST Allows selective listing of assembly routines.

& If no output file is declared then the default is CONSOLE:

.NOLIST when a .LIST is encountered. The .NOLIST is used to turn off
the .LIST option. Listing may be turned on and of f repeatedly
within an assembly.

Page 111

FORM: _LIST or .NOLIST

.PAGE Allows the programmer to explicitly ask for top of form
page preaks in the listing.

FORM: .PAGE

The title is only cleared at the start of the file. In
section 1.9.1 the title SYMBOLTABLE DUMP was not set by a JTITLE
directive. That heading is always -used on pages containing

symboltable dumps. Upon assembling a further procedure the heading
printed returns to what it was pefore the symboltable dump.

.TITLE Allows the titling of each page if desired. The title may be up
to 80 characters in length. At the start of each procedure the
title is set to.blanks and must be reset if title is desired.

The title,
INTERP SYMBOLTABLE DUMP
shown in Section 1.9.1 was caused by a LTITLE directive.

FORM LTITLE <title>
where <title> is a string

EXAMPLE .TITLE QRC12 interpreter

1.9.4.8 FILE DIRECTIVES
_INCLUDE Causes the indicated source file to be included at that point.
FORM: _INCLUDE «file identifier.TEXT) where the file
jdentifier is any file to be included. Only spaces
are allowed between the end of the file name and the
end of the Include line.
CORRECT EXAMPLE: . INCLUDE SHORTSTART.TEXT

CRRECT EXAMPLE: . INCLUDE SHORTSTART.TEXT
;s calls starter

IN-CORRECT EXAMPLE: .INCLUDE SHORTSTART.TEXT ; calls starter

For a list of general errors and also notes on the 280 and pDP-11 based
machines see Table 6.
machines see Table 6.

Page 112

FIIIIIE I 200 0 0063600 0 JEE AT NN NN

SYSTEM INTRINSICS * * Section 2.1 *
T T S LT T T R LR A E 2t L

Version II.0 February 1979
WARNING

Most of the UCSD intrinsics assume that users are fluent in the
use of PASCAL and are experienced in the use of the system. Any
necessary range or validity checks are the responsibility of the user.
Since some of these intrinsics do no checking for range validity, they
may easily cause the system to die a horrible death. Those intrinsics
which are particularily dangerous are noted as such in their
descriptions. .

PARAMETERS

Required parameters are listed along with the function/procedure
identifier. Optional parameters are in [square brackets]. The
default values for these are in {metabrackets} on the line below
them.

Following are some definitions of terms used in these documents.
They tend to take the place of formal parameters in the dummy
declaration headers that preface each description of a particular
routine, or set of routines.

ARRAY : a PACKED ARRAY OF CHARacters
BLOCK : one disk block, {512 bytes}
BLOCKS + an INTEGER number of blocks
BLOCKNUMBER . an absolute disk block address
BOOLEAN : any BOOLEAN value
CHARACTER : any expression which evaluates to a character
DESTINATION . a PACKED ARRAY OF CHARacters to write into or
a STRING, context dependent
EXPRESSION : part or all of an expression, to be specified
FILEID : a file identifier, must be
VAR fileid: FILE OF <type>;
or TEXT;
or INTERACTIVE;
or FILE;
INDEX . an index into a STRING or PACKED ARRAY OF CHARacters,
context dependent or as specified.
NUMBER . a literal or identifier whose type is either INTEGER
or REAL.
RELBLOCK . a relative disk block address, relative to the start

of the file in context, the first block being
block zero.
SIMPLVARIABLE : any declared PASCAL variable which is of one of the
following TYPEs:
BOOLEAN CHAR REAL STRING

Pages 113 and 114 -- numbering eron,. .. ed.
Page 115

SIZE
SOURCE

SCREEN
STRING

TITLE
UNITNUMBER

VOLID

or PACKED ARRAY[..] OF CHAR

. an INTEGER number of bytes or characters; any

integer val

ue
« a STRING or PACKED ARRAY OF CHARacters to be used

as a read-only array, context dependent or as
specified. In the case of string intrinsics, it
must be STRING. -

. an array 9600 bytes long; or as needed.
: any STRING, call-by-value wnless otherwise specified,

i.e. may be a quoted string, or string variable
or function which evaluates to a STRING

. a STRING consisting of a file name
: physical device number used to determine device

handler used by the interpreter

. a volume identifier, STRING[7]

Page 116

T 036 96 00 06 3696 36 36 36 96 36 06 6 0606 3 36 36 36 96 38 36 36 36 36 36 36 3¢ 06 96 36 3¢ 3¢ 3¢

* STRING INTRINSICS * # Section 2.1.1 ¥
BRI I I 00006 D060 D000 JE0E 000003000 0606 0 960036 36 3

Version 1I.0 February 1979
FUNCTION LENGTH (STRING) : INTEGER

Returns the integer value of the length of the STRING.

Example:

GEESTRING := '1234567';
WRITELN (LENGTH (GEESTRING), ' ' LENGTH('"));

Will print:
7 0
FUNCTION POS (STRING , SOURCE) : INTEGER

This function returns the position of the first occurrence of
the pattern in SOURCE to be scanned. The INTEGER value of the position
of the first character in the matched pattern will be returned; or if
the pattern was not found, zero will be returned. Example:

STUFF := 'TAKE THE BOTTLE WITH A METAL CAP';
PATTERN := 'TAL';
WRITELN (POS(PATTERN, STUFF));
Will print:
26
FUNCTION CONCAT (SOURCEs) : STRING

There may be any number of source strings separated by commas.

This function returns a string which is the concatenation of
all the strings passed to it. Example:

SHORTSTRING := 'THIS IS A STRING';

LONGSTRING := 'THIS IS A VERY LONG STRING.';

LONGSTRING := CONCAT ('START ',SHORTSTRING, '-',LONGSTRING);
WRITELN(LONGSTRING);

Will print:

Page 117

START THIS IS A STRING-THIS IS A VERY LONG STRING.

FUNCTION COPY (SOURCE , INDEX , SIZE) : STRING

This function returns a string containing SIZE characters
copied from SOURCE starting at the INDEXth position in SOURCE.
Example:

TL := 'KEEP SOMETHING HERE'; KEPT := COPY(TL,POS('S',TL),9);
WRITELN (KEPT);

Will print:
SOMETHING
PROCEDURE DELETE (DESTINATION , INDEX , SIZE)

This procedure removes SIZE characters from DESTINATION
starting at the INDEX specified. Example:

OVERSTUFFED := 'THIS STRING HAS FAR TOO MANY CHARACTERS IN IT.';
DELETE (OVERSTUFFED, POS('HAS' ,OVERSTUFFED)+3,8) ;
WRITELN(OVERSTUFFED);

Will print:
THIS STRING HAS MANY CHARACTERS IN IT.

PROCEDURE INSERT (SOURCE , DESTINATION , INDEX)

This inserts SOURCE into DESTINATION at the INDEXth positior in
DESTINATION.

Example:

ID := 'INSERTIONS';
MORE := ' DEMONSTRATE';
DELETE (MORE , LENGTH(MOR E), s
INSERT (MORE, ID, POS('10',1ID));
WRITELN(ID);

Will print:

INSERT DEMONSTRATIONS

PROCEDWRE STR (LONG , DESTINATION)

Page 118

This converts the long integer LONG into a string. The
resulting string is placed in DESTINATION. See section 3.3.3 for more
about the use of long integers. _

Example:
INTLONG := 102039503;
STR (INTLONG, INTSTRING);

INSERT('.',INTSTRING,PRED(LENGTH(INTSTRING)));
WRITELN('$',INTSTRING) ; i

Will print:
$1020395.03

Note about using strings and string functions:

In order to maintain the integrity of the LENGTH of a string,
only string functions or full string assignments should be used to
alter strings. Moves and/or single character assignments do not affect

the length of a string which means it probably becomes wrong. The
individual elements of SIRING are of type CHAR and may be indexed
1..LENGTH(STRING). Accessing the string outside this range will have

wnpredictable results if range-checking is off or cause a run-time
error (1) if range checking is on.

Page 119

-- Notes ==

Page 120

630 1636 96 96 36 36 06 36 0606 96 9606 96 36 36 06 06 06 06 260630 30 36 3 0606 39096 36 3 36 3 36 30 3636 3 3 %

% INPUT AND OUTPUT INTRINSICS ¥ # Section 2.1.2 *
PP PPt TTTTTTTTTTTITT I LI S L2 L d L hbddddde

Version I.5 September 1978

PROCEDURE RESET (FILEID [, TITLE]);
PROCEDURE REWRITE (FILEID, TITLE)3

These procedures open files for reading and writing and mark the
file as open. The FILEID may be any PASCAL structured file as
defined in Section 2.1, and the TITLE is a string containing any legal
file title as defined in Section 1.2 Figure 2.

The difference between them is that REWRITE creates a new file on
disk for output files; RESET marks an already existing file open for
1/0. (MNote: if the device specified in the title is a non- directory
structured device, e.g. PRINTER: , then the file is opened for input,
output, or both in either case.) If the file was already open, and
another RESET or REWRITE is attempted to it, an error will be returned
in IORESULT. The file's state will remain unchanged.

RESET (FILEID) without optional string parameter "rewinds" the
file by setting the file pointer s back to the beginning (zero th
record) of the file. The boolean functions EOF and EOLN are set by
the implied GET in RESET.

These procedures behave differently with files of type
INTERACTIVE. RESET on files of types other than INTERACTIVE will do
an initial GET to the file, setting the window variable to the first
record in the file (as described in Jensen & Wirth). RESET on a file
of type INTERACTIVE will not do an initial GET.

Note that RESETting a file to an output only device, such as the
lineprinter may cause an non-zero IORESULT as a result of the implied
GET caused by the RESET.

PROCEDURE UNITREAD (UNITNUMBER, ARRAY, LENGTH, [BLOCKNUMBER], [INTEGER]);
PROCEDURE UNITWRITE (UNITNUMBER, ARRAY, LENGTH, [BLOCKNUMBER], [INTEGER]);
- { sequential } { 0}

THESE ARE DANGEROUS INTRINSICS

These procedures are the 1ow-level procedures which do I/0s to
various devices. The UNITNUMBER is the integer name of an I/0 device.
Unitnumber is the index into the physical device table, Table 3
describes these numbers. The ARRAY is any declared packed array,
which may be subscripted to jndicate a starting position some machines
may be sensitive to having the starting position be on a word
pboundary. This is used as the starting address to do the transfers

from/to. The LENGTH is an integer value designating the number of

Page 121

FI ! s
L. BloCkNuwBCE = ahkoalok. Se ol
e T e et S

G s Lo Lot

?3»'9)

S |

bytes to transfer. The BLOCKNUMBER is required only when using a

block=-structured device (i.e. a disk) and is the absolute bloclknumber

: at which the transfer will start from/to. If the BLOCKNUMBER is left

\ [out, O is assumed. The INTEGER value is optional (assumed 0) and

\{ irdicates (if 1) that the transfer is to be done asynchronously. The
1ocknumber is not necessary. A ', , INTEGER' will be sufficient.
(See UNITBUSY and UNITWAIT.) :

FUNCTION UNITBUSY (UNITNUMBER) @ BOOLEAN;

This function returns a BOOLEAN value, indicating if TRUE that
the device specified is waiting for an 1/0 transfer to complete.

Example:
UNITREAD(2 {non-echoing keyboard} ,CH[O0],
1{for one characterl, {no block no.},1{asynchronous});
WHILE UNITBUSY(2){While the READ has not been completed} DO
WRITELN (OUTPUT, 'T am waiting for you to type something');
WRITELN(OUTPUT, 'Thank you for typing a ' ,CH[OD);

Execution of this example will continuously type out the line
‘T am waiting for you to type something' until a character is struck on
the keyboard. Suppose @ 111 were typed. The message 'Thank you for
typing a !' will then appear, and progranm execution will proceed
normally.

Currently implemented only on DEC computers.
PROCEDURE UNITWAIT (UNITNUMBER);

This waits for the specified device to complete the I/0 in
progress. It can be simulated by:

WHILE UNITBUSY(n) DO {waste a small amount of time}l;
Currently implemented only on DEC computers .
PROCEDURE UNITCLEAR (UNITNUMBER);
UNITCLEAR cancels all I/0s to the specified unit and resets the

hardware to its power-up state. Sets TORESULT non-zero if unit is no%
present.

Page 122

FUNCTION BLOCKREAD (FILEID, ARRAY, BLOCKS, [RELBLOCK]) : INTEGER;
FUNCTION BLOCKWRITE (FILEID, ARRAY, BLOCKS, [RELBLOCK]) : INTEGER;
{ sequential }

These functions return an INTEGER value equal to the number of
blocks of data actually transferred. The FILE must be an untyped file
(i.e. FILEID: FILE;). The length of ARRAY should be an integer
multiple of 512. ARRAY may be indexed to indicate a starting position
‘in the array, however care must be taken as some machines may be -
sensitive to having the I/0 take place to a word boundary. BLOCKS is
the number of blocks you want transferred. RELBLOCK is the blocknumber
relative to the start of the file, the zeroeth block being the first
block in the file. If no RELBLOCK is specified, the reads/writes will
be done sequentially. Specifying RELBLOCK for an 1/0 moves the file
pointers. CAUTION should be exercised when using these, as the array
bounds are not heeded. EOF(FILEID) becomes true when the last block in
a file is read.

PROCEDURE CLOSE (FILEID OPTION);

OPTION may be null or ', LOCK', or ', NORMAL', or ', PURGE', or
', CRUNCH'. (Note the commas!)

If OPTION is null then a NORMAL close is done, i.e. CLOSE
simply sets the file state to closed. If the file was opened using
REWRITE and is a disk file, it is deleted from the directory.

The LOCK option will cause the disk file associated with the
FILEID to be made permanent in the directory if the file is on a
directory-structured device and the file was opened with a REWRITE;
otherwise a NORMAL close is done.

The PURGE option will delete the TITLE associated with the
FILEID from the directory. The unit will go off-line if the device is
not block structured.

The CRUNCH option LOCKs the file to the point of last access.
i.e. the position of the last GET or PUT to the file is where the file
will end.

A1l CLOSEs regardless of the option will mark the file closed
and will make the implicit variable FILEID” undefined. CLOSE on a
CLOSEed file causes no action.

FUNCTION EOF (FILEID) : BOOLEAN;
FUNCTION EOLN (FILEID) : BOOLEAN;

If (FILEID) is not present, the fileid INPUT is assumed (e.8:
IF ECF THEN...). EOLN and EOF return false after the file specified 1s
RESET. They both return true on a closed file. When EOF (FILEID) is
true, FILEID" is undefined. When GET (FILEID) sets FILEID" to the EOLN
character or the EOF character, EOLN (FILEID) will return true, and
FILEID" (in a FILE OF CHAR) will be set to a plank. If, while doing

Page 123

puts or writes at the end of a file, the file cannot be expanded to
accommodate the PUT or WRITE, EOF(FILEID) will return true.

FUNCTION IORESULT : INTEGER ;

After any 1/0 operation, IORESULT contains an INTEGER value
corresponding to the values given in Table 2. If the compiler is
allowed (i.e. (#$I-%) has not been used), it will generate checks
after each I1/0 operation, causing the program to get a run-time
error on any bad 1/0 operation. These are not generated any time
after any UNITREAD or UNITWRITE.

PROCEDURE GET (FILEID);
PROCEDURE PUT (FILEID); .

These procedures are used for operations on typed files. A typed
file is any file for which a type is specified in the variable
declaration, ie. ‘FILEID : FILE OF <type>'. This is as opposed to
untyped files which are simply declared as: ' FILEID: FILE;". In a
typed file each logical record is a memory image fitting the
description of a variable of the associated <type?.

GET (FILEID) will leave the contents of the current logical
record pointed at by the file pointers in the implicitly declared
nindow" variable FILEID” and increment the file pointers.

PUT (FILEID) puts the contents of FILEID" into the file at the
location of the current file pointers and then updates those pointers.
The actual physical disk access may not occur until the next time the
physically associated block of the diskis no-longer considered the
current working block. The kinds of operation which tend to force the
block to be written are: a SEEK to elsewhere in the file, a RESET, ana
CLOSE. Successive GETs or PUTs to the file will cause the physical
1/0 to happen when the block boundaries are crossed.

PROCEDURE READ{LN} (FILEID, SOURCE)3
PROCEDURE WRITE{LN} (FILEID, SOURCE)5

These procedures may be used only on TEXT (FILE OF CHAR) or
INTERACTIVE files for 1/0. If 'FILEID, ' is omitted, INPUT or OUTFUT
(whichever is appropriate) is assumed. A READ(STRING) will read up £
and not including the end-of-line character (£a carriage return>) ant
1eave EOLN(FILEID) true. This means that any subsequent READs of
STRING variables will return the null string until a READLN or
READ(chararacter) 1is executed.

Page 124

There are three files of type INTERACTIVE which are
predeclared: INPUT, OUTPUT, and KEYBOARD. INPUT results in echoing of
characters typed to the console device. KEYBOARD does no echoing and
allows the programmer complete control of the response to user typing.
OUTPUT allows the user to halt or flush the output.

PROCEDURE PAGE (FILEID);

This procedure, as described in Jensen & Wirth (ibid.), sends a
top-of-form (ASCII FF) to the file. .

PROCEDURE SEEK (FILEID, INTEGER);

This procedure changes the file pointers so that the next GET
or PUT from/to the file uses the INTEGERth record of FILEID. Records in
files are numbered from O. A GET or PUT must be executed between
SEEK calls since two SEEKsS in a row may cause unexpected, unpredictable
juk to be held in the window and associated buffers. Sets EOF and
EOLN to false.

move optimization in the section on MOVELEFT.
The notes about MOVELEFT also apply to FILLCHAR.

The intrinsic SIZEOF (Section 2.1.6) is meant for use with these
intrinsics; as it is convenient not to have to figure out or remember
the number of bytes in a particular data structure. (Which may charge
at the programmers whim.)

Page 125

-- Notes =-

Page 126

BRI 063636 06 3036 30 00 30 36 3696 06 36 36 06 3636 96 3036 36 696 96 36 36 36 3% 96 3 3¢ 36 36 36 96 6 3¢ 3

MISCELLANEOUS ROUTINES * # Section 2.1.3 ¥
T T R AT I A A R A T i A L

Version II1.0 February 1979

FUNCTION SIZEOF (VARIABLE OR TYPE IDENTIFIER) : INTEGER;

This function returns the number of bytes that the "jitem"
passed as a parameter occupies. SIZEOF is particularly
useful for FILLCHAR and MOVExxxx intrinsics.

FUNCTION LOG (NUMBER) : REAL;

This function returns the log base ten of the NUMBER passed as
a parameter.

PROCEDURE TIME (VAR HIWORD, LOWORD: INTEGER);
(* may not be implemented in all machines ¥)

This procedure returns the current value of the system clock. It is in
60ths of a second. (This is somewhat hardware-dependent; we assume a
16-bit integer size and 32-bit clock word. The HIWORD contains the
most significant portion. WARNING! The sign of the LOWORD may be
negative since the time is represented as a 32-bit unsigned number.)
Both HIWORD and LOWORD must be VARiables of type INTEGER.

FUNCTION PARCFTEN (EXPONENT: INTEGER) : REAL;

This function returns the value of 10 to the EXPONENT power.
EXPONENT must be an integer in the range 0..37.

PROCEDURE MARK (VAR HEAPPTR: “INTEGER)
PROCEDURE RELEASE (VAR HEAPPTR: “INTEGER);

These procedures are used for returning dynamic memory
allocations to the system. HEAPPTR is of type "INTEGER. MARK sets
HEAPPTR to the current top-of-heap. RELEASE sets top-of-heap pointer
to HEAPPTR.

PROCEDURE HALT;

This procedure generates a HALT opcode that, when executed,
causes a non-fatal run-time error to occur. At this point in

execution, the Debugger is invoked, therefore, if the Debugger is not
in core when this occurs, a fatal run-time error, #14, will occur.

PROCEDURE GOTOXY(XCOORD , YCOORD: INTEGER);

Page 127

This procedure gsends the cursor to the coordinates specified by
(XCOORD, YCOORD). The upper left corner of the screen is assumed to be
(0,0). This procedure is written to default to a Datamedia-type
terminal. If your system uses other than a Datamedia or Terak 8510a,
you will need to bind in a new GOTOXY using the GOTOXY package
described in Section U4.7.

FUNCTION MEMAVAIL: INTEGER;

This function returns the number of words currently between
the top-of-stack and top-of-heap. This can be Interpreted as the
amount of memory available at that time. One must take into
czssideration the size of evaluation stacks, and error-procedure
calls.

Page 128

T 0600060000 0000600600 30 B HIE 36 06 3606 0606 06 0 6 NN

® 0 O P S # ¥ Section 2.1.4 %
BN I006 0600000 60600 000 00 00 00 0 36 0000 30 26 360

Version 1.5 September 1978

Out Of Place Section

Page 129

-- Notes --

Page 130

263696 36 7% 9 9 96 3 36 96 96 96 36 96 36 36 36 38 38 38 30 36 30 30 38 38 30 36 38 36 36 30 36 30 36 36 36 06 36 30 36 ¢ Y YY1 3132 0]

* CHARACTER ARRAY MANIPULATIONS INTRINSICS * ¥ Section 2.1.5 *
J 0 00000006060 BRI R R SRR R RRRRARE

Version I.5 September 1978

CAUTION

These intrinsics are all byte oriented. Use them with care.
Read the descriptions carefully before trying them out as no range
checking of any sort is performed on the parameters passed to these
routines. The programmer should know exactly what he is doing before
he does it since the system does not protect itself from these
operations. There may lurk some machine dependencies in the
implementations of these, beware of byte/word and byte-sex problems.

FUNCTION SCAN (LENGTH, PARTIAL EXPRESSION, ARRAY) : INTEGER;

This function returns the number of characters from the
starting position to where it terminated, i.e. the number of
characters scanned. It terminates on either matching the specified
LENGTH or satisfying the EXPRESSION. The ARRAY should be a PACKED
ARRAY OF CHARACTERS and may be subscripted to denote the starting
point. If the expression is satisfied on the character at which ARRAY
is pointed, the value returned will be zero. If the length passed was
negative, the number returned will also be negative, and the function
will have scanned backward. The PARTIAL EXPRESSION must be of the
form:

neoO" or "=" followed by <character expression>

Examples:
Using the array:
DEM := '.....THE TERAK IS A MEMBER OF THE PTERODACTYL FAMILY.';

SCAN (-26,=":',DEM[301);

will return =26
SCAN(100,<>'.',DEM);

will return 5
SCAN(15,=' ',DEM[0D);

Wwill return 8

PROCEDURE MOVELEFT (SOURCE, DESTINATION, LENGTH);
PROCEDURE MOVERIGHT (SOURCE, DESTINATION, LENGTH);

Page 131

]

These functions do mass moves of bytes for the length specified.
MOVELEFT starts from the left end of the specified source and moves
bytes to the left end of the destination. MOVERIGHT starts from the
right ends of both arrays and also moves byte by byte. :

Some implementations of these intrinsics may do optimization of
such a move for the specific hardware involved. .

In short: MOVELEFT starts at the left end of both arrays and
copies bytes traveling right. MOVERIGHT starts at the right end of
both arrays and copies bytes traveling left. The reason for having
both of these is if you are working in a single array and the order in
which characters are moved is critical. The following chart is an
attempt to show what happens if you use the procedure which moves in
the wrong direction for your purposes.

VAR ARAY: PACKED ARRAY [1..30] OF CHAR;

(#123U56789a123456789b123U56789c*)
ARAY: !THIS IS THE TEXT IN THIS ARRAY;
MOVERIGHT(ARAY[10],ARAY[1],10);
ARAY: !'HE TEXT INE TEXT IN THIS ARRAY|
MOVELEFT(ARAY[11, ARAY[3],10)
ARAY: !HEHEHEHEHEHETEXT IN THIS ARRAY|
MOVELEFT(ARAY[23],ARAY[2],8);
ARAY: !HIS ARRAYENETEXT IN THIS ARRAY

PROCEDURE FILLCHAR (DESTINATION, LENGTH, CHARACTER);

This procedure takes a (subscripted) PACKED ARRAY OF CHARACTERS
and fills it with the number (LENGTH) of CHARACTERs specified. This
can be done by:

A[0] := <character expression>;
MOVELEFT(A[O],A[1],LENGTH-1);

pbut FILLCHAR is twice as fast, as no memory reference is needed for 2
source.

See the note about move optimization in the section on MOVELEFT.
The notes about MOVELEFT also apply to FILLCHAR.

The notes about MOVELEFT also apply to FILLCHAR.

The intrinsic SIZECF (Section 2.1.6) is meant for use with these
intrinsics; as it is convenient mot to have to figure out or remember
the number of bytes in a particular data structure. (Which may change
at the programmers whim.)

Page 132

!***!**l**********i************l*********%************ 2638 2 3 36 36 3 36 3 36 3 3% 3 3 %

% DIFFERENCES BETWEEN UCSD PASCAL AND STANDARD PASCAL* #* Section 2.2 *
ST 0 0030 6 306301600 0696 26900006 36 3630 000 0000 000006 36 ST 00 00 060000000 A OO DI BRI RN

Version 1I.0 February 1979

This section is a summary and quick referrence guide which
notes the areas in which UCSD Pascal differs from Standard Pascal,
and refers the user to the appropriate documents which explain various
aspects of UCSD Pascal. The Standard Pascal referred to by this
section is defined in PASCAL USER MANUAL AND REPORT (2nd edition) by
Kathleen Jensen and Niklaus Wirth (Springer-Verlag, 1975).

Many of the differences lie in the area of FILES and I/0 in
general. It is recommended that the reader first concentrate upon the
sections which describe the differences associated with the standard
procedures EOF, EOLN, READ, WRITE, RESET, and REWRITE.

2.2.1 CASE STATEMENTS

Jensen and Wirth on page 31, state that if there is no label
equal to the value of the case statement selector, the result of the
case statement is undefined. UCSD Pascal defines that if there is
no label matching the value of the case selector then the next
statement executed is the statement following the case statement. For
example, the following sample program will only output the line "THAT 'S
ALL FOLKS" since the case statement will "fall through" to the WRITELN
statement following the case statement:

PROGRAM FALLTHROUGH;
VAR CH:CHAR;
BEGIN
CH:='A';
CASE CH OF
'B': WRITELN(OUTPUT,'HI THERE');
'C': WRITELN(OUTPUT, 'THE CHARACTER IS A ''C''")
END;
WRITELN (OUTPUT, 'THAT''S ALL FOLKS');
END.

Page 133

2.2.2 COMMENTS

The UCSD Pascal compiler recognizes any text appearing
petween either the symbols "(*" and ")" or the symbols "{" and "}" as
a comment. Text appearing between these symbols is ignored by the
compiler unless the first character of the comment is a dollarsign, in
which case the comment is interpreted as a compiler control comment.
See section 1.6 "Pascal Compiler" for details on compiler control
comments. .

If the beginning of the comment is delimited by the "(¥*"
symbol, the end of the comment must be delimited by the matching nEyn
symbol, rather than the "}" symbol. When the comment begins with the
n{" symbol) the comment continues until the matching "}" symbol
appears. This feature allows a user to "comment out" a section of a
program which itself contains comments. For example:

{ XCP := XCP + 1; (® ADJUST FOR SPECIAL CASE... ®) }

The compiler does not keep track of nested comments. When a
comment symbol is encountered, the text is scanned for the matching
comment symbol. The following text will result in a syntax error:

(* THIS IS A COMMENT (* NESTED COMMENT #) END OF FIRST COMMENT *)
“error here.

2.2.3 DYNAMIC MEMORY ALLOCATION

The standard procedure DISPOSE defined on page 158 of Jensen
and Wirth is not implemented in UCSD Pascal. However, the function
of DISPOSE can be approximated by a combined use of the UCSD
intrinsics MARK and RELEASE. The process of recovering memory space
described below is only an approximation to the function of DISPOSE as
one cannot explicitly ask that the storage occupied by one particular
variable be released by the system for other uses.

The current UCSD implementation allocates storage for
variables created by use of the standard procedure NEW in a stack=-like
structure called the "heap". The following program is a simple
demonstration of how MARK and RELEASE can be used to change in the size
of the heap.

PROGRAM SMALLHEAP;

TYPE PERSON=
RECORD
NAME: PACKED ARRAY[O0..15] OF CHAR;
ID: INTEGER
END;

Page 134

VAR P: “PERSON;(* """ means "pointer to" as defined in J&W %)
HEAP: “INTEGER,;

BEGIN
MARK (HEAP) ;
NEW (P);
P~.NAME:='FARKLE, HENRY J.';
P~.ID:= 999;
RELEASE (HEAP);
END.

The above program first calls MARK to place the address of the
current top of heap into the variable HEAP. HEAP must be declared to
be a pointer to an INTEGER. The parameter supplied to MARK must be a
pointer to an INTEGER. This is a UCSD restriction. This is a
particularly handy construct for deliberately accessing the contents
of memory which is otherwise inaccessable. Below is a pictorial
description of the heap at this point in the program's execution:

TOP OF HEAP -=> {--- HEAP

contents of heap at

]
|
[}
|
1
|
]
]
i
start of program |
'
|

Next the program calls the standard procedure NEW and this
results in a new variable P~ which is located in the heap as shown 1n
the diagram below:

TOP OF HEAP =--->

i |

[}]

| |

| P” i
i ! {-== HEAP

| i

' contents of heap at |

! start of program |

]]

1 1

After the RELEASE the heap is as follows:
TOP OF HEAP ---> === HEAP

1
|
l
contents of heap at |
start of program |

|

[}

Page 135

Once the program no longer needs the variable P” and wishes to
nrelease" this memory space to the system for other uses, it calls
RELEASE which resets the top of heap to the address contained in the
variable HEAP.

If the above sample program had made a series of calls to the
standard procedure NEW between the calls to MARK and RELEASE, the
storage occupied by several variables would have been released at
once. Note that due to the stack nature of the heap it is not possible
to release the memory space used by a single item in the middle of the
neap. It is for this reason the use of MARK and RELEASE can only
approximate the function of DISPOSE as described in Jensen and Wirth.

Furthermore, it should be noted that careless use of the
intrinsics MARK and RELEASE can leave "dangling pointers", pointing to
areas of memory which are no longer part of the defined heap space.

2.2.4 EOF(F)

To set EOF to TRUE for a textfile F being used as an input file
from the CONSOLE device, the user must type the EOF character. The
EOF character can be altered by a suitable reconfiguration of the
system variable SYSCOM~.CRTINFO.EOF using SETUP. For further
information concerning system configuration and the SETUP program see
Section 4.3.

If F is closed, for any FILE F, EOF(F) will return the value
TRUE. If EOF(F) is TRUE , and F is a FILE of type TEXT, EOLN(F) is
also TRUE. After a RESEI(F), EOF(F) is FALSE. If EOF(F) becomes TRUE
during a GET(F) or a READ(F,...) the data obtained thereby is not
valid.

When a user program starts execution, the system performs a
RESET on the predeclared files INPUT, OUTPUT, and KEYBOARD. See
zgction 2.2.11 READ for further details concerning the predeclared file
YBOARD.

As defined in Jensen and Wirth, EOF and EOLN by defzuit wil.
refer to the file INPUT if no file jdentifier is specified.

2.2.5 EOLN(F)

EOLN(F) is defined only if the Ctype> of the window variabis
F~, is of type CHAR. EOLN becomes TRUE only after reading the =¢
line character. The end of line character is a carriage return.
the example program below, care must be taken as regards when ~he
carriage return is typed while inputing data:

e

Page 136

PROGRAM ADDLINES;
VAR K,SUM:INTEGER;

BEGIN
WHILE NOT EOF (INPUT) DO
BEGIN
SWM:=0;
READ (INPUT,K) ;
WHILE NOT EOLN(INPUT) DO
BEGIN
SUM:=SUM+K;
READ (INPUT,K);
END;
WRITELN (OUTPUT);
NgRITELN(OUTPUT,'THE SWM FOR THIS LINE IS ', SUM);
END;
END.

In order for EOLN(F) to be TRUE in the above program, the
carriage return must be typed immediately after the last digit of the
last integer on that line. If instead a space is typed followed by the
carriage return, EOLN will remain FALSE and another READ will take
place. See Section 2.2.11 for details on the behavior of
READ(integer).

2.2.6 FILES
A. INTERACTIVE FILES

Files of <type> INTERACTIVE behave exactly as files of <type>
TEXT. The standard predeclared files INPUT and OUTPUT will always be
defined to be of <type> INTERACTIVE. All files of any <type> other
than INTERACTIVE, are defined to operate exactly as described in Jensen
and Wirth. For files which are not of <type> INTERACTIVE, the
definitions of EOF(F), EOLN(F), and RESET(F) are exactly as presented
in Jensen and Wirth. For more details concerning files of <type>
INTERACTIVE see section 2.2.11 "READ AND READLN" and section 2.2.12
"RESET" and section 2.1.2..

B. UNTYPED FILES
UCSD Pascal has one type of file declaration which in not

found in the syntax of Jensen and Wirth. This type and its use is
demonstrated in the sample program below:

Page 137

(*$I-*)
PROGRAM FILEDEMO;

VAR
BLOCKNLMBER,BLOCKSTRANSF ERRED: INTEGER ;
BADIO: BOOLEAN;
G,F: FILE;
BUFFER: PACKED ARRAY[O. .511]1 OF CHAR;

(* This program reas a diskfile called 'SOURCE.DATA' and
copies the file into another diskfile called 'DESTINATION'
using untyped files and the intrinsics BLOCKREAD and
BLOCKWRITE *)

BEGIN
BADIO: =FALSE;
RESET (G, 'SOURCE.DATA ')
REWRITE(F, 'DESTINATION');
BLOCKNUMBER: =0;
BLOCKSTRANSF ERRED: =BLOCKREAD (G, BUFFER, 1 ,BLOCKNUMBER) ;
WHILE (NOT EOF(G)) AND (IORESULT=0) AND (NOT BADIO) AND
(BLOCKSTRANSFERRED=1) DO

EGIN
BLOCKSTRANSF ERRED: =BLOCKWRITE(F,BUFFER, 1 ,BLOCKNUMBER) ;
BADIO: = ((BLOCKSTRANSFERRED<1) OR (IORESULT<>0));
BLOCKNUMBER : =BLOCKNUMBER+1;

ENBLOCKSTRANSFERRED: -BLOCKREAD (G,BUFFER, 1 ,BLOCKNUMBER) ;
D;
CLOSE(F,LOCK) ;
END.

The two files which are declared and used in the @ove sample
program are both untyped files. An untyped file F can be thought of as
a file without a window variable F* to which all I/0 must be
accomplished by using the functions BLOCKREAD and BLOCKWRITE. Note
that any number of blocks can be transferred using either BLOCKREAD or
BLOCKWRITE. The functions return the actual number of blocks read. A
somewhat sneaky approach to doing a quick transfer would be:

WHILE BLOCMITE(F,BUFFER,BLOCKREAD(G,BUFFER,BUFBL(XIKS))>0 DO (¥IT*);

This is, however considered unclean. The program above has
peen compiled using the (#41-%) Compile Time Optionm, thereby requiring
that the function IORESULT and the number of blocks transferred be
checked after each BLOCKREAD or BLOCKWRITE in order to detect any 1/0
errors that might have occurred.

Page 138

C. RANDOM ACCESS OF FILES

The UCSD implementation of structured files supports the
ability to randomly access individual records within a file by means
of the intrinsic SEEK. SEEK expects two parameters, the first being
the file identifier, and the second, an integer specifying the record
number to which the window should be moved. The first record of a
structured file is numbered record 0. The following sample program

demonstrates the use of SEEK to randomly access and update records in
a file:

PROGRAM RANDOMACCESS;
VAR
RECNUMBER: INTEGER;
CH: E€HAR;
DISK: FILE OF RECORD
NAME: STRING[201];
DAY,MONTH, YEAR: INTEGER;

ADDRESS: PACKED ARRAY[O..49] OF CHAR;
ALIVE: BOOLEAN
END;

BEGIN

RESET (DISK, '"RECORDS.DATA') ;

WHILE NOT EOF(INPUT) DO
BEGIN

WRITE (OUTPUT, 'Enter record number --=>');
READ(INPUT, RECNUMBER);

SEEK(DISK, RECNUMBER);
GET(DISK);

WITH DISK™ DO
BEGIN

WRITELN (OUTPUT, NAME, DAY ,MONTH, YEAR ,ADDRESS) ;

WRITE (OUTPUT, 'Enter correct name ===>');
READLN (INPUT ,NAME) ;

END;

(* Must point the window back to the record
since GET(DISK) advances the window to
the next record after loading DISK” ¥)

SEEK (DISK, RECNUMBER) ;
PUT (DISK);
END;
END.

Page 139

Attempts to PUT records beyond the physical end of file will
set EOF to the value TRUE. (The physical end of file is the point
Where the next record in the file will overwrite another file on the
disk.) SEEK always sets EOF and EOLN to FALSE. The subsequent GET or
PUT will set these conditions as is appropriate. See Section 2.1.2.

D. READ AND WRITE FROM ARBITRARILY TYPED FILES

It is not currently possible to READ or WRITE to files of type
other than TEXT or FILE OF CHAR.

2,2.7 GOTO AND EXIT STATEMENTS

UCSD has a more limited form of GOTO statement than is defined
as the standard in Jensen and Wirth. UCSD's GOTO statement prohibits
a GOTO statement to a 1abel which is not within the same procedure
block as the GOTO statement itself. The examples presented on pages
31- 32 of Jensen and Wirth are not legal in UCSD Pascal.

EXIT is a UCSD extension which accepts as its single parameter
the identifier of a procedure to pe exited. The use of an EXIT
statement to exit a FUNCTION can result in the FUNCTION returning
undefined values if no assigmment to the FUNCTION identifier is made
prior to the execution of the EXIT statement. Below is an example of
the use of the EXIT statement:

PROGRAM EXITDEMO;
VAR T: STRING;
CN: INTEGER;

PROCEDURE Q; FORWARD;

PROCEDURE P;
BEGIN
READLN(T) ;
WRITELN(T);
TF T[1]='#' THEN EXIT(Q);
WRITELN('LEAVE P');
END;

Page 140

PROCEDURE Q;
BEGIN
P;
WRITELN('LEAVE Q');
END;

PROCEDURE R;
BEGIN
IF CN <= 10 THEN Q;
WRITELN('LEAVE R');
END;

BEGIN
CN:=0;
WHILE NOT ECF DO
BEGIN .
CN:=CN+1;
R;
WRITELN;
END;
END.

If the above program were supplied the following input

THIS IS THE FIRST STRING
it
LAST STRING

the following output will result:

THIS IS THE FIRST STRING
LEAVE P
LEAVE Q
LEAVE R

it
LEAVE R

LAST STRING
LEAVE P
LEAVE Q
LEAVE R

The EXIT(Q) statement causes the PROCEDURE P to be terminated
followed by the PROCEDURE Q. Processing continues following the call
to Q inside PROCEDURE R. Thus the only line of output following "#" is
W EAVE R" at the end of PROCEDURE R. In the two cases where the
EXIT(Q) statement is not executed, processing proceeds normally through
the terminations of procedures P and Q.

Page 141

If the procedure identifier passed to EXIT is a recursive
procedure, the most recent invocation of that procedure will be
exited. If, in the above example, one or both of the procedures P and
Q declared and opened some local files, an implicit CLOSE(F) is done
when the EXIT(Q) statement is executed, as if the procedures P and Q
terminated normally.

The EXIT statement may also be used to exit a Pascal program
by EXIT(PROGRAM) or EXIT(programnane).

The creation of the EXIT statement at UCSD was inspired by the
occasional need for a straightforward means to abort a complicated and
possibly deeply nested series of procedure calls upon encountering an
error. An example of such a use of the EXIT statement can be found in
the recursive descent UcSD Pascal compiler. The routine use of the
EXIT statement is, nevertheless, discouraged.

2.2.8 PACKED VARIABLES
A. PACKED ARRAYS

The UCSD compiler will perform packing of arrays and
records if the ARRAY or RECORD declaration is preceded by the word
PACKED. For example, consider the following declarations:

A: ARRAY[0..9] OF CHAR;
B: PACKED ARRAY([0..9] OF CHAR;

The array A will occupy ten 16 bit words of memory, with each
element of the array occupying 1 word. The PACKED ARRAY B on the other
hand will occupy a total of only 5 words, since each 16 bit word
contains two 8 bit characters. In this manner each element of the
PACKED ARRAY B is 8 bits long.

PACKED ARRAYs need not be restricted to arrays of type CHAR,
for example:

C: PACKED ARRAY[O..1] OF 0..3;
D: PACKED ARRAY[1..9] OF SET OF 0..15;
D2: PACKED ARRAY[O..239, 0. .319] OF BOOLEAN;

Each element of the PACKED ARRAY C is only 2 bits long, since
only 2 bits are needed to represent the values in the range 0..3.
Therefore C occupies only one 16 bit word of memory, and 12 of the bits
in that word are unused. The PACKED ARRAY D is a 9 word array, since
each element of D is a SET which can be represented in a minimum of 16
bits. Each element of a PACKED ARRAY OF BOOLEAN, as in the case of D2
in the above example, occupies only one bit.

Page 142

The following 2 declarations are not equivalent due to the
recursive nature of the compiler:

E: PACKED ARRAY[0..9] OF ARRAY[O0..3] OF CHAR;
F: PACKED ARRAY[0..9,0..3] OF CHAR;

The second occurrence of the reserved word ARRAY in the
declaration of E causes the packing option in the compiler to be turned
off E becomes an unpacked array of U40 words. On the otherhand, the
PACKED ARRAY F occupies 20 total words because the reserved word ARRAY
ocecurs only once in the declaration. If E had been declared as

E: PACKED ARRAY[0..9] OF PACKED ARRAY[0..3] OF CHAR;
or as

E: ARRAY[O..9] OF PACKED ARRAY[O0..3] OF CHAR;

F and E would have had identical configurations.

The reserved word PACKED only has true significance before the
last appearance of the reserved word ARRAY in a declaration of a PACKED
ARRAY. When in doubt a good rule of thumb when declaring a
multidimensional PACKED ARRAY is to place the reserved word PACKED
before every appearance of the reserved word ARRAY to insure that the
resultant array will be PACKED.

The resultant array will only be packed if the final type of
the array is scalar, or subrange, or a set which can be represented in
8 bits or less. The final type can also be BOOLEAN or CHAR. The
following declaration will result in no packing whatsoever because the
final type of the array cannot be represented in a field of 8 bits:

G: PACKED ARRAY[0..3] OF 0..1000;
G will be an array which occupies 4 16 bit words.

Packing never occurs across word boundaries. This means that
if the type of the element to be packed requires a number of bits which
does not divide evenly into 16, there will be some unused bits at
the high order end of each of the words which comprise the array.

Note that a string constant may be assigned to a PACKED ARRAY
OF CHAR but not to an unpacked ARRAY OF CHAR. Likewise, comparisons
between an ARRAY OF CHAR and a string constant are illegal. (These are
temporary implementation restrictions which will be removed in the next
major release.) Because of their different sizes, PACKED ARRAYs cannot
be compared to ordinary unpacked ARRAYs. For further information
regarding PACKED ARRAYs OF CHARacters see section 2.2.16 "STRINGS".

Page 143

A PACKED ARRAY OF CHAR may be output with a single write statement:

PROGRAM VERYSLICK;
VAR T: PACKED ARRAY([0..10] OF CHAR;
BEGIN
T:='HELLO THERE';
WRITELN(T);
END.

Initialization of a PACKED ARRAY OF CHAR can be accomplished
very efficiently by using the UCSD intrinsics FILLCHAR and SIZECF:

PROGRAM FILLFAST;
VAR A: PACKED ARRAY[Q.,10] OF CHAR;

BEGIN
FILLCHAR(A[0],SIZEOF(A)," ");

EL\D .

The above sample program fills the entire PACKED ARRAY A with
blanks. For further documentation on FILLCHAR, SIZEOF, and the other
UCSD intrinsics see section 2.1.5 n(HARAGTER ARRAY MANIPULATION
INTRINSICS".

B. PACKED RECORDS

The following RECORD declaration declares a RECORD with 4
fields. The entire RECORD occupies one 16 bit word as a result of
declaring it to be a PACKED RECORD.

VAR R: PACKED RECORD
1,J,K: 0..31;
B: BOOLEAN
END;

The variables I, J, K each take up 5 bits in the word. The
boolean variable B is allocated to the 16'th bit of the same word.

In much the same manner that PACKED ARRAYs can be
multidimensional PACKED ARRAYs, PACKED RECORDS may contain fields which
themselves are PACKED RECORDS or PACKED ARRAYS. Again, slight
differences in the way in which declarations are made will affect the
degree of packing achieved. For example, note that the following two
declarations are not equivalent:

VAR A:PACKED RECORD VAR B:PACKED RECORD
C:INTEGER; C:INTEGER;
F:PACKED RECORD F :RECORD
R: CHAR; R:CHAR;
K: BOOLEAN K:BOOLEAN
END; END;
H:PACKED ARRAY[O..3] OF CHAR H:PACKED ARRAY([O..3] OF CHAR
END; END;

Page 144

As with the reserved word ARRAY, the reserved word PACKED must
appear with every occurrence of the reserved word RECORD in order for
the PACKED RECORD to retain its packed qualities throughout all fields
of the RECORD. In the above example, only RECORD A has all of its
fields packed into one word. In B, the F field is not packed and
therefore occupies two 16 bit words. It is important to note that a
packed or unpacked ARRAY or RECORD which is a field of a PACKED RECORD
will always start at the beginning of the next word boundary. This
means that in the case of A, even though the F field does not
completely fill one word, the H field starts at the beginning of the
next word boundary.

A case variant may be used as the last field of a PACKED
RECORD, and the amount of space allocated to it will be the size of the
largest variant amoung the various cases. The actual nature of the
packing is beyond the scope of this document.

VAR K: PACKED RECORD
B: BOOLEAN;
CASE F: BOOLEAN OF
TRUE: (Z:INTEGER);
FALSE: (M: PACKED ARRAY[O0..3] OF CHAR)
END
END;

In the above example the B and F fields are stored in two bits
of the first 16 bit word of the record. The remaining 14 bits are not
used. The size of the case variant field is always the size of the
largest variant, so in the above example, the case variant field will
occupy two words. Thus the entire PACKED RECORD will occupy 3 words.

C. USING PACKED VARIABLES AS PARAMETERS

No element of a PACKED ARRAY or field of a PACKED RECORD may be
passed as a variable (call-by-reference) parameter to a PROCEDURE or
FUNCTION. Packed variables may, however, be passed as call by value
parameters, as stated in Jensen and Wirth.

D. PACK AND UNPACK STANDARD PROCEDURES

UCSD Pascal does'not support the standard procedures PACK
and UNPACK as defined in Jensen and Wirth on page 106. If a type or
variable is declared as packed, the packing and unpacking in UCSDs
Pascal system is implicit.

Page 145

2.2.9 PARAMETRIC PROCEDURES AND FUNCT JONS

UCSD Pascal does nob support the construct in which
PROCEDURES and FUNCTIONS may be declared as formal parameters in the
parameter 1ist of a PROCEDURE or FUNCTION.

See Section 5.9 for a revised syntax diagram of {parameter-
list>. ‘

2.2.10 PROGRAM HEADINGS

Although the UCSD Pascal compiler will permit a 1ist of
file parameters to be present following the program identifier, these
parameters are ignored by the compiler and will have no affect on the
progran being compiled. As a result the following two program headings
are equivalent:

PROGRAM DEMO (INPUT,OUTPUT) ; and PROGRAM DEMO;

With either of the above program neadings, a user progranm will
have three files predeclared and opened by the system. These are:
INPUT, OUTPUT, and KEYBOARD and are defined to be of <{type>
INTERACTIVE. If the program wishes to declare any additional files,
these file declarations must be declared together with the program's
other VAR declarations.

2.2.11 READ AND READLN
Given the following declarations:

VAR CH:CHAR;
F: TEXT; (¥ TYPE TEXT = FILE OF CHAR %)

the statement READ(F,CH) is defined by Jensen and Wirth on page 85 to
pbe equivalent to the two statement sequence:

CH:=F"; J&W
GET(F); method

In other words, the standard definition of the standard
procedure READ requires that the process of opening a file load the
"window variable" F~ with the first character of the file. In an
interactive programning environment, it is not convenient to require a
user to type in the first character of the input file at the time when
the file is opened. If this were the case, every program would "hang"
until a character was typed, whether or not the program performed any
input operations at all. In order to overcome this problem, ucsh
Pascal defines an additional file <type> called INTERACTIVE. Declaring
a file F to be of <type? INTERACTIVE is equivalent to declaring F to be
of type TEXT, the difference being that the definition of the statement
READ(F,CH) is the reverse of the sequence specified by the standard

Page 146

definition for files of <type> TEXT: i.e.

GET(F); UCSD
CH:=F"; method

This difference affects the way in which EOLN must be used
within a program when reading from a textfile of type INTERACTIVE. As
in section 5, EOLN becomes true only after reading the end of line
character, a carriage return. When this is read, EOLN is set to true
and the character returned as a result of the READ.will be a blank.

In the following example, the left fragment is taken from Jensen and -
Wirth; only the RESET and REWRITE statements have been altered. The
program on the left will correctly copy the textfile represented by
the file X to the file Y. The program fragment on the right performs
a similiar task, except that the source file being copied is declared
to be a file of <type> INTERACTIVE, thereby forcing a slight change in
the program in order to produce the desired result.

PROGRAM JANDW; PROGRAM UCSDVERSION;
VAR X,Y:TEXT; VAR X,Y:INTERACTIVE;
CH: CHAR; CH:CHAR;
BEGIN BEGIN
RESET (X, 'SOURCE. TEXT ') ; RESET (X, 'CONSOLE: ') ;
REWRITE(Y, 'SOMETHING. TEXT '); REWRITE(Y, 'SOMETHING. TEXT');
READ (X, CH);
WHILE NOT EOF(X) DO WHILE NOT EOF(X) DO
BEGIN BEGIN
WHILE NOT EOLN(X) DO WHILE NOT EOLN(X) DO
BEGIN BEGIN
READ(X, CH); WRITE(Y,CH);
WRITE(Y,CH); READ (X, CH);
END; END;
READLN (X) ; READLN (X);
WRITELN(Y); WRITELN(Y);
END; END;
CLOSE (Y, LOCK); CLOSE(Y,LOCK);
END. END.

Note that the textfiles X and Y in the above two programs had
to be opened by using the UCSD extended form of the standard
procedures RESET and REWRITE.

The CLOSE intrinsic was applied to the file Y in both versions
of the program in order to make it a permanent file in the disk
directory called "SOMETHING.TEXT". Likewise, the textfile X could
have been a diskfile instead of coming from the CONSOLE device in the
right hand version of the program.

There are three predeclared textfiles which are automatically

opened by the system for a user program. These files are INPUT,
OUTPUT, and KEYBOARD. The file INPUT defaults to the CONSOLE device

Page 147

and is always defined to be of <type> INTERACTIVE. The statement
READ(INPUT,CH) where CH is a character variable, will echo the
character typed from the CONSOLE back to the CONSOLE device. WRITE
statements to the file OUTPUT will, by default, cause the output to
appear on the CONSOLE device. The file KEYBOARD is the non-echoing ‘
equivalent to INPUT. For example, the two statements

READ (KE YBOARD, CH) 5
WRITE(OUTPUT, CH);

are equivalent to the single statement READ(INPUT,CH).

Reading the type integer causes preceding blanks and end-of -
lines to be flushed until a non-blank character is observed. Reading
the type BOOLEAN is not implemented.

For more documentation regarding the use of files see sections:
2.2.6 "FILES"
2.2.4 "“ECF"
2.2.5 "EOLN"
2.2.17 "WRITE AND WRITELN"
2.2.12 "RESET"

See section 2.1.2 wINPUT/OUTPUT INTRINSICS" for more details
on the UCSD intrinsics.

2.2.12 RESET(F)

The standard procedure RESET, as defined on page 9 of Jensen
and Wirth, resets the file window to the beginning of the file F. The
next GET(F) or PUT(F) will affect record number 0 of the file. In
addition, the standard definition of RESET(F) states that the window
variable F” be loaded with the first record in the file. The UCSD
implementation of RESET(F) operates exactly as the standard definition,
unless the file F is declared to be of <type> INTERACTIVE in which case
the statement RESET(F) points the file window to the start of the file,
but does not load the window variable F*. Thus, for files of <type>
INTERACTIVE, the UCSD equivalent of the standard definition of
RESET(F) is the two statement sequence:

RESET(F); makes INTERACTIVE
GET(F); ook like TEX

UCSD Pascal defines an alternative form of the standard
procedure RESET which is used to open a pre-existing file. In it,
RESET has two parameters, the first being the file identifier; the
second, either a STRING constant or variable which corresponds to the
directory filename of the file being opened. See section 2.1.2
" INPUT/OUTPUT INTRINSICS" for more information on this use of RESET.

Page 148

2.2.13 REWRITE(F)

The standard procedure REWRITE is used to open and create a
new file. REWRITE has two paramelers, il irst, eing the file
identifier, the second corresponds to the directory filename of the
file being opened, and must be either a STRING constant or variable.
For example, the statement REWRITE(F,'SOMEINFO.TEXT') causes the file
F to be opened for output, and, if the file is locked onto the disk,
the filename of the file in the directory will be "SOMEINFO.TEXT".
See section 2.1.2 "INPUT/OUTPUT INTRINSICS" for further documentation
regarding the use of REWRITE to open a file.

2.2.14 SEGMENT PROCEDURES

The concept of the SEGMENT PROCEDURE is a UCSD extension to
Pascal, the primary purpose of which is to allow a programmer the
ability to explicitly partition a large program into segments, of which
only a few need be resident in memory at any one time. The UCSD
Pascal system is necessarily partitioned in this manner because it is
too large to fit into the memory of most small interactive computers
at one time.

The following is an example of the use of SEGMENT PROCEDURES:

PROGRAM SEGMENTDEMO;
(* GLOBAL DECLARATIONS GO HERE %)
PROCEDURE PRINT(T:STRING); FORWARD;
SEGMENT PROCEDURE ONE;

BEGIN

PRINT('SEGMENT NUMBER ONE');
END;

SEGMENT PROCEDURE TWO;
SEGMENT PROCEDURE THREE;

BEGIN
ONE ;
PRINT('SEQYENT NUWBER THREE');
END;
BEGIN (* SEGMENT NUMBER TWC *)
THREE;
PRINT('SEQMENT NUMBER TWO');
END;
PROCEDURE PRINT;
BEGIN
WRITELN(OUTPT,T);
END;
BEGIN
TWO;
WRITELN('I''M DONE');
END.

Page ™9

The above program will give the following output:

SEGMENT NUMBER ONE
SEGMENT NUMBER THREE
SEGYENT NWMBER TWO
I'M DONE

For further documentation on SEGMENT PROCEDURES, their use and
syntax governing their declaration, see Section 3.3 - 'SEGMENT PROCEDURES'.

2.2.15 SETS

UCSD Pascal supports all of the constructs defined for sets
on pages 50-51 of Jensen and Wirth. Sets (of enumeration values) are
limited to positive integers only. Space is assigned, rounding up to
word boundaries, in a bitwise fashion, starting at zero, up to 4079,
inclusive. Therefor a set can be at most 255 words in size, and have
at most 4080 elements.

Comparisons and operations on sets are allowed only between
sets which are either of the same base type or subranges of the same
underlying type. For example, in the sample program below, the base
type of the set S is the subrange type 0..49, while the base type of
the set R is the subrange type 1..100. The underlying type of both
sets is the type INTEGER, which by the above definition of
compatability, implies that the comparisons and operations on the sets
S and R in the following program are legal:

PROGRAM SETCOMPARE;
VAR S: SET OF 0..49;
R: SET OF 1..100;

BEGIN
s:= (0,5, 10, 15,20, 25,30, 35,40, 451;
R:= [1 ,20,30,“0,50,60,70,80,90];
IF S = R THEN
WRITELN('... oops ...'")
ELSE
WRITELN('sets work');
S :=S + R;
END.

In the following example, the construct I =J is not legal since the
two sets are of two distinct underlying types.

Page 150

PROGRAM ILLEGALSETS;
TYPE STUFF=(ZERO,ONE,TWO) ;
VAR I: SET OF STUFF;

J: SET OF 0..2;

BEGIN
I:= [ZERO);
J:= [1,2];
IF T = J THEN ... <<« error here
END.

2.2.16 STRINGS

UCSD Pascal has an additional predeclared type STRING.
Variables of type STRING are essentially PACKED ARRAYs OF CHAR that
have a dynamic LENGTH attribute, the value of which is returned by the
intrinsic LENGTH. The default maximum LENGTH of a STRING variable is
80 characters but can be overridden in the declaration of a STRING
variable by appending the desired LENGTH of the STRING variable within
[] after the reserved type identifier STRING. Examples of
declarations of STRING variables are:

TITLE: STRING; (* defaults to a maximum length of 80 characters %)

NAME: STRING[20]; (* allows the STRING to be a maximum of 20
characters¥)

Note that a STRING variable has an absolute maximum length of
255 characters. Assignments to string variables can be performed using
the assignment statement, the UCSD STRING intrinsies, or by means
of a READ statement:

TITLE:=' THIS IS A TITLE 's
or

READLN(TITLE);
or

NAME:= COPY(TITLE, 1,20);

The irdividual characters within a STRING are indexed from 1 to
the LENGTH of the STRING, for example:

TITLE[1]:= 'A';

Page 151

TITLE[LENGTH(TITLE) l:= AR

A variable of type STRING may not be indexed beyond its current
dynamic LENGTH; beware of strings of length zero! The following
sequence Will result in an invalid index run time error:

TITLE:= '1234';
TITLE[5]:= '5";

A variable of type STRING may be compared to any other variable
of type STRING or a string constant no matter what its current dynamic
LENGTH. Unlike comparisons involving variables of other types, STRING
variables may be compared to items of a different LENGTH. The
resulting comparison is 1exicographical. The following program is a
demonstration of legal comparisons involving variables of type STRING:

PROGRAM COMPARESTRINGS;
VAR S: STRING;
T: STRING[40];

BEGIN
S:= 'SOMETHING';
T:= 'SOMETHING BIGGER';

IF S = T THEN
WRITELN('Strings do not work very well')
ELSE
IF S > T THEN
WRITELN(S,' is greater than 1)
ELSE
IF S < T THEN

WRITELN(S,' is less than I3
IF S = 'SOMETHING' THEN
WRITELN(S,' equals 1,S);
IF S > 'SAMETHING' THEN
WRITELN(S,' is greater than SAMETHING');
IF S = 'SOMETHING ' THEN
WRITELN ('BLANKS DON''T COUNT')
ELSE
WRITELN ('BLANKS APPEAR TO MAKE A DIFFERENCE');
S:="XXX";
T:='ABCDEF ';
IF S > T THEN
WRITELN(S,' is greater than ',T)

LSE
WRITELN(S,' is less than LT,
END.

Page 152

The above program produces the following output :

SOMETHING is less than SOMETHING BIGGER
SOMETHING equals SOMETHING

SOMETHING is greater than SAMETHING
BLANKS APPEAR TO MAKE A DIFFERENCE

XXX is greater than ABCDEF

One of the most common uses of STRING varizles in the UCSD
Pascal system is reading file names from the CONSOLE device:

PROGRAM LISTER;

VAR BUFFER: PACKED ARRAY[0..511] OF CHAR;
FILENAME: STRING;
F: FILE;

BEGIN
WRITE('Enter filename of the file to be listed --->');
READLN(FILENAME) ;
RESET(F,FILENAME);
WHILE NOT EOF(F) DO
BEGIN

END;
END.

When a variable of type STRING is a parameter to the standard
procedure READ and READLN, all characters up to the end of line
character (a carriage return) in the source file will be assigned to
the STRING variable. Note that care must be taken when reading STRING
variables, for example, the single statement READLN(S1,S2) is
equivalent to the two statement sequence READ(S1); READLN(S2). 1In both
cases the STRING variable S2 will be assigned the empty string.

For further information concerning the predeclared type STRING
see Section 2.1.1 "STRING INTRINSICS".

2.2.17 WRITE AND WRITELN

The standard procedures WRITE and WRITELN are compatible with
Standard Pascal, except with respect to a WRITE or a WRITELN of a
variable of type BOOLEAN. UCSD Pascal does not support the output
of the words TRUE or FALSE when writing out the value of a BOOLEAN
variable.

Page 153

For a description of WRITE statements of variables of type
STRING see Section 2.1.1 "STRING INTRINSICS'.

UCSD's WRITE and WRITELN do support the writing of entire
PACKED ARRAYs OF CHAR in a single WRITE statement:

VAR BUFFER: PACKED ARRAY[O..10] OF CHAR;
BEGIN
BUFFER:= 'HELLO THERE'; (* contains exactly 11 characters *)
N\gRITELN (OUTPUT, BUFFER);
END.

The above construct will work only if the ARRAY is a PACKED
ARRAY OF CHAR. See section 2.2.8 PACKED VARIABLES for further
information.

The following proér‘an demonstrates the effects of a field width
specification within a WRITE statement for a variable of type STRING:

PROGRAM WRITESTRINGS;
VAR S:STRING;

BEGIN
S:='THE BIG BROWN FOX JWPED..."';
WRITELN(S);
WRITELN(S:30);
WRITELN(S:10);
END.

The above program will produce the following output :

THE BIG BROWN FOX JUMPED...
THE BIG BROWN FOX JUMPED...
THE BIG BR

Note that when a string variable is written without specifying
a field width, the actual number of characters written is equal to the
dynamic length of the string. If the field width specified is longer
than the dynamic length of the string, leading blanks are inserted and
written. If the field width is smaller than the dynamic length of the
string, the excess characters will be truncated on the right.

2.2.18 IMPLEMENTATION SIZE LIMITS

The following is a list of maximum size limitations imposed
upon the user by the current implementation of UCSD Pascal:

Page 154

1. Maximum number of bytes of object code in a PROCEDURE or
FUNCTION is 1200. Local variables in a PROCEDURE or FUNCTION
can occupy a maximum of 16383 words of memory.

2. Maximum number of characters in a STRING variable is 255.

3. Maximum number of elements in a SET is 255 * 16=4080.-

4. Maximum number of SEGMENT PROCEDUREs and SEGMENT FUNCTIONs
is 16. (9 are reserved for the Pascal system, 7 are
available for use by the user program)

5. Maximum number of PROCEDUREs or FUNCTIONs within a segment
is 127.

2.2.19 EXTENDED COMPARISONS.

UCSD Pascal allows = and <> comparisons of any array or
record structure.

2.2.20 LONG INTEGERS.

UCSD Pascal allows integers of up to 36 digits. See section
3.3.3 for details regarding long integers.

2.2.21 UNITS.

UCSD Pascal now supports the modularity concept of UNITs. See
section 3.3.2 for details regarding UNITs.

2.2.22 SIMMARY OF UCSD INTRINSICS

INTRINSIC SECTION # DESCRIPTION

BLOCKREAD 2.1.2 Function which reads a variable number of blocks
from an untyped file.

BLOCKWRITE 2.1.2 Function which writes a variable number of blocks
from an untyped file.

CLOSE 2.1.2 Procedure to close files.

CONCAT 2.1.1 STRING intrinsic used to concatenate strings together.

DELETE 2.1.1 STRING intrinsic used to delete characters from

STRING variables.

EXIT , 2.2.3 Intrinsic used to exit PROCEDURES cleanly.

Page 155

GOTOXY

FILLCHAR

HALT

IDSEARCH

INSERT

IORESULT

LENGTH

MARK

MEMAVAIL
MOVELEFT
MOVERIGHT
REWRITE
RESET
POS

PWROFTEN

RELEASE

SEEK
SIZEC(F

STR

2.1.3

2.105
2.1.3

2.1.1
2.1.2
2.1.1
2.1.3

2.1.3
2.1.5
2.1.5
2.1.2
2.1.2
2.1.1

2.1.3

2.1.3

2.1.2
2.1.3

2.1.1

Procedure used for cursor addressing whose two
parameters X and Y are the column and line numbers
on the screen where the cursor is to be placed.

Fast procedure for initializing PACKED ARRAYs OF CHAR.

Halts a user program which may result in a call to
the interactive Debugger.

Routine used by the Pascal compiler, and the PDP-11
assembler.)

STRING intrinsic used to insert characters in STRING
variables.

Function returning the result of the previous I/0

operation. (See Table 2 for a list of values)

STRING intrinsic which returns the dynamic length
of a STRING variable.

Used to mark the current top of the heap in dynamic
memory allocation.

Returns number of words between Heap and Stack.

low level intrinsic for moving mass amounts of bytes.
Low level intrinsic for moving mass amounts of bytes.
Procedure for opening a new file.

Procedure for opening an existing file.

STRING intrinsic returning the position of a
pattern in a STRING variable.

Function which returns as a REAL result the number
10 raised to the power of the integer parameter
supplied.

Intrinsic used to release memory occupied by
variables dynamically allocated in the heap.

Used for random accessing of records withing a file.

Function returning the number of bytes allocated
to a variable.

Procedure to convert long integer into string.

Page 156

TIME 2.1.3 Function returning the time since last bootstrap

of system. (returns zero if microcomputer has
no real time clock)

TREESEARCH - Routine used solely by the Pascal compiler.

UNITBUSY 2.1.2 Low level intrinsic for determining the status of
a peripheral device.

UNITCLEAR 2.1.2 Low level intrinsic to cancel I/0 from a peripheral
device. :

UNITREAD 2.1.2 Low level intrinsic for reading from a peripheral
device.

UNITWAIT 2.1.2 Low level intrinsic for waiting until a peripheral
device has completed an I/0 operation.

UNITWRITE 2.1.2 Low level intrinsic used for writing to a peripheral
device.

device.

Page 157

-= Notes -~

Page 158

B30 36 0636 36 0036 6 06 06 06 36 30 00 06 00 06 96 96 06 36 36 36 36 06 96 96 00 06 0600 360606 360036 36 36 36 36 36 30 36 3¢ 3¢ 3¢ 3¢ 3¢

IMPLEMENTATION NOTES - DRAWLINE * * Section 3.1 *
I Il LTt T R AR 2 R D S S it il bt

Version II.0 February 1979

The DRAWLINE intrinsic uses an incremental technique to.plot
line segments on a point-addressable matrix. The algorithm guarantees a
best (least squares) approximation to the desired line. In general this
approximation is not unique. DRAWLINE may pick different
representations for a line depending on the starting point. (This could
be corrected by always starting at the same end of the line.) No range
checking is performed on parameters passed to this intrinsic.

The algorithm is essentially the one described in Newman and
Sproul, Principles of Interactive Computer Graphics as the Digital
Differential Analyzer. It has been modified to perform only integer
arithmetic. Pascal source code is included below. The procedure first
determined whether the line will be more horizontal or vertical. In the
discussion below, we assume the horizontal case; vertical is similar.

There will be DELTAX points plotted with horizontal increment
of 1 each. The vertical increment will be ABS (DELTAY / DELTAX) <= 1.
The Y coordinate arithmetic is scaled by DELTAX to eliminate fractions.
An additional savings in execution time has been gained by maintaining
the address of the previous point, and doing only addition and
subtraction to reach the next point to be plotted.

The RADAR function is complicated as two intersecting lines may
have no plotted points in common. The detection condition is either (M
the computed point is TRUE, or (2) both the next horizontal and the
next vertical points are TRUE. Condition (2) could be weakened: when
the line is more horizontal, only the next vertical point need be
checked .

Refer to Section 2.1.U4 for a description of the parameter calling sequence.
A PASCAL implementation follows:

PROCEDURE DRAWLINE (VAR RANGE: INTEGER; VAR SCREEN: SCREENTYPE;
ROWWIDTH, XSTART, YSTART, DELTAX, DELTAY, INK: INTEGER);

VAR X, Y, XINC, YINC, COUNT: INTEGER;

PROCEDURE DRAWDOT ;

Page 159

PROCEDURE RADAR;
VAR GOTIT: BOOLEAN;
BEGIN
GOTIT := FALSE;
COUNT := COUNT + 1;
IF SCREEN [Y, X] THEN GOTIT := TRUE (®LANDED ON THE POINT#*)
ELSE (*WE MIGHT GO THROUGH A LINE*) ‘
IF SCREEN [Y+1, X] THEN
GOTIT := SCREEN [Y, X+11;
IF GOTIT THEN

BEGIN
RANGE := COUNT;
EXIT (DRAWLINE)
END;
END (*RADAR™);
BEGIN (*DRAWDOT*)
CASE INK OF
0 (*NONE*): EXIT (DRAWLINE); (¥*THEY HAD NO BUSINESS HERE®)
1 (*WHITE®): SCREEN [Y, X] := TRUE;
2 (BLACK*): SCREEN [Y, X] := FALSE;
3 (*REVERSE*): SCREEN [Y, X] := NOT SCREEN [Y, XI;
4 (*RADAR*): RADAR

END (*CASE¥)
END (*DRAWDOT*);

PROCEDURE DOFORX; (*MORE HORIZONTAL*)
VAR ERROR, I: INTEGER;
BEGIN
IF DELTAX = O THEN EXIT (DRAWLINE); (*THEY'RE GOING NOWHERE¥)
ERROR := DELTAX DIV 2;
I := DELTAX;
REPEAT
ERRCR := ERROR + DELTAY;
IF ERROR >= DELTAX
THEN BEGIN ERROR := ERROR - DELTAX; Y :=Y + YINC END;
X := X + XINC;
DRAWDOT;
I:=1-1;
UNTIL I = O;
END (*DOFORX¥);

PROCEDURE DOFORY; (*MORE VERTICAL¥)
VAR ERROR, I: INTHGER;
BEGIN)
ERROR := DELTAY DIV 2;
I := DELTAY;
REPEAT
ERROR := ERROR + DELTAX;
IF ERROR >z DELTAY
THEN BEGIN ERROR := ERROR - DELTAY; X := X + XINC END;
'Y := Y + YINC;

Page 160

DRAWDCT ;
I :=1-1;
UNTIL I = O;
END (¥DOFORY#*);

BEGIN (*DRAWLINE¥®)
X := XSTART;
. IF DELTAX < O
THEN BEGIN XINC :
ELSE XINC := 1;
Y := YSTART;
IF DELTAY < O
THEN BEGIN YINC :
ELSE YINC := 1;
COUNT := Oy -
IF DELTAX >= DELTAY THEN DOFORX ELSE DOFORY;

IF INK = 4 (*RADAR®) THEN RANGE := COUNT; (®HIT THE LIMIT GIVEN¥)
END (*DRAWLINE¥*);

-1; DELTAX :

-DELTAX END

-1; DELTAY :

-DELTAY END

Page 161

— Notes --

Page 162

FEUEIE 060060000 06066 3606 06 3600 036 36 36 06 30 26 96 36 06 96 06 36 3¢ %

% FILE FORMATS # * Section 3.2 *
BRI I IO 000600000606 060000 6000 0

Version II.0 February 1979

Text files are of the format:

<1024 bytes> header page, information for editors. This space
is reserved for use by the text editors, and is respected by all
portions of the system. When a userprogram opens-a TEXT file, and
REWRITEs or RESETs it with a title ending in '.TEXT', the I/0
subsystem will create and skip over the initial page. This is done to
facilitate users editing their input and/or output data. The file-
handler will transfer the header page only on a disk-disk transfer,
and will omit it on a transfer to a serial device. (i.e. transfers to
PRINTER:, and CONSOLE: will omit the header page)

<1024 byte pages> where a page is defined:
<[DLE][indent)[text][CRI[DLE])[indent][text][CR]...[nulls]>

Data Link Escapes are followed by an indent-code, which is a byte
containing the value 32+(# to indent). The nulls at the end of the
page follow a [CR] in all cases, and are a pad to the end of a page.
Because the compiler wants integral numbers of lines on a page. The
Data Link Escape and corresponding indentation code are optional. In
a given text file some lines will have the codes, and some won't.

Foto files are declared in PASCAL as follows:

TYPE SCREEN = PACKED ARRAY[0..239,0..319] OF BOOLEAN;
VAR FOTOFILE: PACKED FILE OF SCREEN;

or something similar, which takes up the same dimensional
space.

Data files are up to the user.

Code files have one block of information which describes the
code kept in the file. First is an array of 16 word pairs, the first
word in the pair describes the block which starts the code of the
segment which is numbered as the position in the array. The second
word is the number of bytes in that segment. For example if the third
word in the first block of a code file is an 8, and the fourth work is
1084, you now know that segment 1 of this code file starts on block 8
of the file, and has 1084 bytes of code. See Sections 3.4 and 3.5 for
notes on codefiles.

Page 163

Following this array is an array of arrays of characters. The
array is an array of 8 character arrays which describe the segments by
name. These 8 characters are those which identify the segment at
compile time. Here again, the position in this array corresponds to
the segment number. : »

Following the array of names is an array, again 16 words- long,
of state descriptors. The values in this array indicate what kind of
segment is at the described location. The values for this array, at
present, are: LINKED,HOSTSEG,SEGPROC,UNITSEG,SEPRTSEG.

The remainder of the block, 144 words, is reserved for future

use by later versions of the system. The format of the first block
will most probably change completely for version I1.0.

Page 164

2036 96 3638 36 30 00 06 0000 38 36 36 96 06 06 30 36 36 3 96 30 00 06 06 3¢ 26969696 36 36 3 36 36 96 36 96 26 6 06 3¢ 3¢

SEQMENT PROCEDURE NOTES * * Section 3.3.1 *
SREREEEER R I IR R

Version I.5 September 1978

Declarations of SEGMENT procedures and functions are identical
to standard Pascal procedures and functions except they are preceded by
the reserved word 'SEQMENT', for example:

SEGMENT PROCEDURE INITIALIZE;
BEGIN

(* PASCAL code %)
END;

Program behavior differs, however, as code and data for a
SEQMENT procedure (function) are in memory only while there is an
active invocation of that procedure.

Mvantages and benefits:

The user may now put large pieces of one-time code, eg.
initialization code, into a SEGMENT procedure. After per forming the
initialization, for example, the now-useless code is taken out of
memory thus increasing the available memory space.

Furthermore the user may now compile his/her program in chwnks,
specifically in SEGMENTS. The LIBRARIAN program (described in Section
4.8) can be used to link together the separate segments to produce one
large code file.

Requirements and limitations:

The disk which holds the codefile for the program must be on-
line (and in the same drive as when the program was started) whenever
one of SEGMENT procedures is to be called. Otherwise the system will
attempt to retrieve and execute whatever information now occupies that
particular location on the disk, usually with very d ispleasing and
certainly unexpected results.

Page 165

A maximum of seven (7) SEGMENT procedures are ordinarily
available to the user, including the main body segment.

SEGMENT procedures must be the first procedure declarations
containing code-generating statements.

For further details and examples see Section 3.5, INTRODUCTION
TO THE PASCAL PSEUDO MACHINE.

Page 166

E0E 000006000606 00 06 0000 T8 0606 00 06 36 96 36 06 0606 36 36 3606 16 6 9606 360636 96 36 6 9606 36 36 30 9 36 366 36 6 36 X

LINKAGE TO EXTERNALLY COMPILED * # Section 3.3.2 *

* AND ASSEMBLED ROUTINES " *
B30 0000060036 006 B0 06 00 IO 3E J0E0 D BEEE 0E DN N

Version I.5 September 1978
EXTERNAL COMPILATION UNITS

The UCSD Pascal I.5 system supports a facility for integrating
externally compiled and assembled routines and data structures. Use of
separately compiled structures allows the user to create files of
frequently used routines. After a structure is compiled, the user adds
it to a library, using the librarian. Files that reference that
structure need not compile it directly into their code file, rather,
the linker copies the existing code into the host code file. Separate
compilation or assembly is supported in these areas: between portions
of programs written in Pascal; between assembly language routines and
Pascal hosts; and finally, between assembly language routines. Each
of these areas is discussed in turn by the following sections.

3.3.2.1 PASCAL TO PASCAL LINKAGES -- UNITS

A UNIT is a group of interdependent procedures, functions, and
associated data structures which perform a specialized task. Whenever
this task is needed within a program, the program indicates that it
USES the UNIT. A UNIT consists of two parts, the INTERFACE part, which
declares constants, types, variables, procedures and functions that are
public and can be used by the host program, and the IMPLEMENTATION
part, which declares constants, types, variables, procedures and
functions that are private. These are not available to the host program
and are used by the UNIT. The INTERFACE part declares how the program
will communicate with the UNIT while the IMPLEMENTATION part defines
how the UNIT will accomplish its task.

TURTLEGRAPHICS (example B) is a UNIT which enables the user
to draw pictures using a graphics turtle. The INTERFACE consists of
procedures like MOVE, TURN, and PENCOLOR, which allow the user to move
the turtle and change colors. TURTLEGRAPHICS also employs DRAWLINE, an
externally assembled procedure, to draw the lines and the turtle.

Page 167

A program that uses TURTLEGRAPHICS has no need for DRAWLINE,
and, consequently, DRAWLINE is private to that UNIT.

PROGRAM DRAWPOLYGON;
USES TURTLEGRAPHICS;
VAR I:INTEGER;
S IZE,NUMSIDES: INTEGER;

BEGIN
INITTURTLE; (* Initialize the UNIT's variables ¥)
WRITE('What size polygon?');
READLN(SIZE);
WRITE('How many sides?');
READLN(NUMSIDES);
FOR I:=1 TO NUMSIDES DO
BEGIN
MOVE(SIZE);
TURN(360 DIV NUMSIDES);
END;
END.

EXAMPLE A

A program must indicate the UNITs that it USES before the LABEL
declaration part of the program. At the occurrence of a USES
statement, the compiler references the INTERFACE part of the UNIT as
though it were part of the host text itself. Therefore all public
constants, types, variables, functions, and procedures are global. Name
conflicts may arise if the user defines an identifier that has already
been defined by the UNIT. Procedures and functions may not USE UNITs
locally.

UNIT TURTLEGRAPHICS;
INTERFACE
TYPE

TGCOLOR= (NONE, WHITE, BLACK, REVERSE);

PROCEDURE INITTURTLE;

PROCEDURE TURN(RELANGLE: Integer);
PROCEDURE MOVE(RELDISTANCE: Integer);
PROCEDURE MOVETO(X, Y: Integer);
PROCEDURE TURNTO(ANGLE: Integer);
PROCEDURE PENCOLOR(PCOLOR: TGCOLOR);

Page 168

IMPLEMENTATION

CONST
TERXSIZE = 319;
TERYSIZE = 239;
RADCONST = 57.29578;
TYPE

SCREEN = Packed :
Array [0..TERXSIZE, 0..TERYSIZE] of Boolean;

VAR
(* Private variables *)
TGXPOS: Integer;
TGYPOS: Integer;
TGHEADING: Integer;
TGPEN: TGCOLOR,

I, J: Integer;
S: SCREEN;

(* Externally assembled procedure *)
PROCEDURE DRAWLINE(Var RADAR: Integer; Var S: SCREEN;
ROW, X0, YO, DX, DY, PEN: Integer);

EXTERNAL; (* External declaration %)

PROCEDURE INITTURTLE;

BEGIN
Fillchar(SCREEN, Sizeof(SCREEN), 0);

Unitwrite(3, SCREEN, 63);

HEADING := O3

TGXPOS := 0O;

TGYPOS := 0;
END;

PROCEDURE MOVE; (% Public procedure, par ameters declared above *)

BEGIN
MOVETO(Round (TURTLEX + DIST*Cos(TURTLEANGLE/RADCONST),
Round (TURTLEY + DIST#Sin(TURTLEANGLE/RADCONST));

END;

Page 169

PROCEDURE MOVETO;
VAR R: Integer;
BEGIN
DRAWLINE(R, S, 20, 160+TURTLEX, 120-TURTLEY,
X-TURTLEX, TURTLEY-Y, ORD(TURTLEPEN)) ;-

END;
PROCEDURE TURN;(* Public procedure, parameters declared above %)
BEGIN
HEADING := (HEADING+RELANGLE) mod 360;
END; .
PROCEDURE TURNTO;
BEGIN
HEADING := ANGLE;
END;
PROCEDURE PENCOLOR;
BEGIN
TGPEN := PCOLOR;
END;

END. (* End of unit *)

EXAMPLE B

Example B is a skeleton for a TURTLEGRAPHICS UNIT. Note that
the procedures MOVE, TURN, and INITTURTLE, and the TYPE TGCOLOR, are
declared in the INTERFACE part and are available for use by the host
program. Since the procedure DRAWLINE is not part of the INTERFACE, it
is private, and may not be used by the host. The syntax for a UNIT
definition is shown below. The declarations of routine headings in the
INTERFACE part are similar to forward declarations; therefore, when the
corresponding bodies are defined in the IMPLEMENTATION part, formal
parameter specifications are not repeated.

A UNIT may also USE another UNIT, in which case the USES
declaration must appear at the beginning of the INTERFACE part. In
example C, PICTUREGRAPHICS indicates in the INTERFACE part that it
USES TURTLEGRAPHICS. Note that the program USEGRAPHICS, which USES
PICTUREGRAPHICS, indicates that it USES TURTLEGRAPHICS before using
PICTUREGRAPHICS. It is important that the INTERFACE part of
TURTLEGRAPHICS be defined before PICTUREGRAPHICS makes references to
it, therefore this ordering is required.

Page 170

NOTE: Variables of type FILE must be declared in the INTERFACE
part of a UNIT. A FILE declared in the IMPLEMENTATION part will cause
a syntax error upon compilation. This is due to the nature of
generation of initialization code for FILEs.

PROGRAM USEGRAPHICS;
WNIT PICTUREGRAPHICS;

INTERFACE
USES TURTLEGRAPHICS; (* TURTLEGRAPHICS is defined in the
TYPE (* #*system.library see section III below

PVECTOR="VECTOR;
VECTOR=RECORD
DELHEADING: INTEGER;
DELDISTANCE:INTEGER;
PENDOWN: BOOLEAN;
NEXTVEC: PVECTOR
END; (¥ record %)

VAR
START:PVECTOR; (* Head of list of lines ¥)
HEAP: “INTEGER;
PROCEDURE MAKESUBPICTURE ;

PROCEDURE DRAWSUBPICTURE;

IMPLEMENTATION
PROCEDURE MAKESUBPICTURE;
BEGIN
(¥ Calculates next subpicture and stores on heap *)
END;
PROCEDURE DRAWSUBPICTURE;
BEGIN
LPVEC: =START; (* Start at beginning of list ¥)

WHILE LPVECONIL DO (* and draw each that's there *)
WITH LPVEC”™ DO

BEGIN
TURN(DELHEADING);
MOVE (DELDISTANCE) ;
IF PENDOWN THEN TGPEN:=WHITE

ELSE TGPEN: =NONE ;

LPVEC: =NEXTVEC;

END;

END; (* drawsubpicture ¥)

Page 171

*)
*)

END;

USES TURTLEGRAPHICS,PICTUREGRAPHICS; (* picturegraphics uses *)

BEGIN
INITTURTLE ;

REPEAT
MARK(HEAP);
MAKESUBPICTURE ;
DRAWSUBPICTURE;
RELEASE (HEAP) ;

UNTIL START=NIL;

END.

< Compilation unit >

< Unit definition >

< Unit heading >

< Unit identifier >

< Interface part >

< Implementation part> ::

< Uses part >

(* turtlegraphics: *)

EXAMPLE C

< Program heading > ; { < Unit definition > ; }
< Uses part > < Block > |
< Unit definition > { ; < Unit definition > }.

< unit heading >;

< Interface part >

< Implementation part >
End

Unit < Unit identifier >
Separate unit < Unit identifier >

< Identifier >

Interface

< Uses part >

< Constant definition part >

< Type definition part >

< Variable declaration part >

¢ Procedure heading > | < Function heading >

Implementation

< Label declaration part >

¢ Constant definition part >

< Type definition part >

¢ Variable declaration part >

< Procedure and Function declaration part >

Uses < Unit identifier >
{ , < Unit identifier> } ; | < Empty >

See Section 5.9 for Syntax diagrams.

DIAGRAM D
Page 172

The user may define a UNIT in-line, after the heading of the host
program. In this case the user compiles both the UNIT, and the host
program together. Any subsequent changes in the UNIT or host program
require the user to recompile both. The user may also define and
compile a UNIT (or a group of UNITs) separately, and use the library
manager to store it (or them) in a library. After compiling a host
program that uses such a UNIT, the user must link that UNIT into the
code file by executing the LINKER. Trying to R(un an unlinked code
file will cause the LINKER to run automatically, trying to X(ecute an
unlinked file causes the system to remind you to link the file .

Changes in a host program require only that the user recompile
the program and link in the UNIT. Changes in the IMPLEMENTATION part
of a UNIT only require the user to compile the UNIT, and then to
relink all compilation units that use that UNIT. Changes in the
INTERFACE part of a UNIT require that the user recompile both the UNIT
and all compilation units that use that UNIT. In this case all these
compilation units must again be linked. For more information see
section 1.8 LINKER or section 4.2 LIBRARIAN.

The compiler generates LINKER information in the contiguous
blocks following the code for a program that uses UNITs. This
information contains locations of references to externally defined
identifiers. Section 1.8 explains the format of this information.

3.3.3.2 PASCAL TO ASSEMBLY LANGUAGE LINKAGES -- EXTERNAL PROCEDURES

External procedures are separately assembled assembly language
procedures or separately compiled procedures, stored in a LIBRARY on
disk. Host programs that require external procedures must have them
linked into the compiled code file. Typically the user writes external
procedures in assembly language, to handle low-level operations that
Pascal is not designed to provide. External assembly language
procedures are also used for their comparative speed in 'real time'
applications.

Page 173

A host program declares that a procedure is external in much
the same way as a procedure is declared FORWARD. A standard heading
is provided, followed by the keyword EXTERNAL. Calls to the external
procedure use standard Pascal syntax, and the compiler checks that
calls to the external agree in type and number of parameters with the.
external declaration. It is the user's responsibility to assure that
the assembly language procedure respects the Pascal external
declaration. The linker checks only that the number of words of
parameters agree petween the Pascal and assembly language
declarations. For more information see section 1.8 Linker and 1.9
Assembler(s). .

The conventions of the surrounding system concerning register
use and calling sequences must be respected by writers of assembly
language routines. These conventions for the PDP-11 and 780/8080
implementations are given here.

First, for the PDP-11, registers RO and R1 are available for
use; any others affected by a routine must be saved on entry and
restored on exit. The following call and return sequence is
recommended for procedures. It has the advantage that calls can be
made directly from assembly language as well as from Pascal.

.PROC ENTRY, 2

PARAM1 EQU 6 ;0f fset for first parameter
PARAM2 .EQU y :Offset for second paramter
~ RETADDR .EQU 2 ;0ffset for return address

OLDRS .EQU 0 :0ffset for original value of RS

LOCAL1 .EQU =2 ;0f fset for first local

LOCAL2 .EQU -4 ;0ffset for second local
MOV R5,-(SP) :Save contents of R5
MOV SP,R5 sUse R5 to get at locals and parameters
CLR -(SP) :Reserve and Initialize
CLR -(SP) :Two local variables

;Inside routine
MOV PARAM(R5),LOCAL1(R5) ;Sample statement

EXIT: MOV RS,SP s Cut back to entry SP
MOV (SP)+,R5 ;Restore previous R5
MOV (SP)+,R0O :Get return address
ADD #NPARAMS, SP :Discard parameters, number of bytes
JMP @RO :Return to caller

Page 174

In 780 assembly language routines, all registers are available
for use, and the recommended interface sequence follows: (This code
would work for both 8080's and Z80's. Optimizations are possible if
the Z80 instructions are available.) .

.PROC ENTRY, 2

.PRIVATE RETADDR,LOCAL1,LOCAL2,FARAM1,PARAM2
;Reserve static storage for this routine. Much easier to
;reference objects like this rather than relative to
sregister as on PDP-11

POP HL ;Get return address
LD (RETADDR) ,HL ;and save it
POP HL :Get and save PARAMZ
LD (PARAM2) ,HL
POP HL . ;Get and save PARAM1
LD (PARAM1) ,HL
LD HL, (PARAM2) ;Move PARAMZ
LD (LOCAL1),HL ;to LOCAL1

EXIT: LD HL, (RETADDR) :Get return address
JP (HL)
.END

For assembly language functions (.FUNC's) the sequence is
essentially the same, except that:

1) Two words of zeros are pushed by the compiler after any
parameters are put on the stack.

2) After the stack has been completely cleaned up at the
routine exit time, the .FUNC must push the function result on the
stack. ‘

Here is an example of an external assembly language procedure,
and a program that uses it. This example takes a very primitive
approach to interrupt handling (which might still be useful in some
applications). There is no provision for handling interrupts from the
device where a collected buffer is being written to disk. Support for
continuous interupts would be more complex, involving multiple buffers
and exclusion mechanisims to assure that buffer switching would occur
reliably. The Project intends eventually to provide synchronization
capabilities at the Pascal level, so that interrupt handling can be
accomplished with greater convenience and safety.

Page 175

.PROC

DRADDR
DRVECT

LOOP:

HANDLR:

. CONST
.PUBLIC

EQU
.EQU
MOV
MOV
MOV
MOV
BIS

TST
BNE
BIC
RTS

MOV

DEC
RTI

PROGRAM COLLECTDATA;

CONST

DRBUFLENG = 256;

TYPE

DRCOLLECT, O ; Name of routine for use by linker.

—_

DRBUFLENG ; Public constant.

DRBUFFER ; Public variable.

167770

140 :
#HANDLR,@#DRVECT ;Load address of interrupt
#340,84DRVECT+2 ;handler and set priority.
##DRBUFLENG, RO ;Load RO with size of buffer.
#DRBUFFER, R1 ;Load R1 with address of buffer.
#100,@#DRADDR ;Enable interrupts on DR interface.
RO ;Exit loop when buffer full.
LOOP

#100, @#DRADDR
PC

@/#DRADDR+2, (R1)+
RO

;Disable interrupts.
;Return to PASCAL host program.

;Load buffer with next word,
;increment R1, decrement RO.
;Return from interrupt.

DATABUFFER = Array [1..DRBUFLENG] of integer;

VAR

I: Integer;
DRBUFFER: DATABUFFER;
DATAFILE: File of DATABUFFER;

PROCEDURE DRCOLLECT;
External;

BEGIN (¥of Collect Data*)
Rewrite(DATAFILE, 'SAMPLE.DATA');
For I:=1 to 10 do

BEGIN

DRCOLLECT ;
DATAFILE" : =DRBIFFER;

Put(DATAFILE);

END;

Close(DATAFILE, Lock);

END.

Page 176

3.3.2.3 ASSEMBLY LANGUAGE TO ASSEMBLY LANGUAGE LINKAGES

The third way in which separate routines may share data
structures and subroutines is by linkage from assembly language to
assembly language. This is made possible through the use of the .DEF
and .REF pseudo-ops provided in the UCSD assemblers. These generate
link information that allows two separately assembled procedures to be
L(inked together. One possible use for this will be the linking of
separate routines and drivers in constructing new UCSD interpreters.

The following are very abbreviated versions of two assembly
language routines which make separate references. They are used
externally by the UNIT PSGRAPHICS: '

The first routine declares three public variables and declares
a .DEF for a label to be referenced by the second routine (Note that
this is only a skeleton of the actual MOVETO routine):

.PROC MOVETO,6 ; THE 3 REAL PARAMETERS OCCUPY 6 WORDS
PROCEDURE MOVETO(X, Y, Z: REAL);

9

]

: OOMPUTES A NEW PSXPOS & PSYPOS FROM PSMATP AND
! AN ASSIMED 1.0 AS THE INPUT VECTOR HOMOGENOUS
! COORDINATE...

! (XY Z1) dot PSMATP™ = (X' Y' Z' W')

1
H

PSXPOS :z X'/W';
PSYPOS := Y'/MW';

; THESE ARE GLOBALS IN THE PASCAL HOST
.PUBLIC PSXPXS
.PUBLIC PSYPOS
.PUBLIC PSMATP

; MOVETO ENTRY POINT
MOV R5,-(SP) ; R5 USED AS FRAME POINTER
MOV SP,R5
MOV @#PSMATP, RO ; RO IS TOS MATRIX POINTER

PARAMETER DISPLACEMENTS FROM R5 FRAME POINTER

’

X .EQU 14
Y .EQU 10
Z EQ y
W .EQU -4

COMPUTE W', HOMOGENEOUS COORD
AND LEAVE IT ON STACK

e we we wo @

Page 177

COMPUTE PSXPOS
NO4 COMPUTE PSYPOS

CLEAN UP STACK AND RETURN

“owe we W we we we

ROUND: ; ROUND REAL ON STA TO INTEGER
; IF < 0 THEN SUBTRACT 0.5 ELSE
; ADD 0.5, THEN TRUCATE.

.END

The second routine references the first routine as well as the
separately assembled DRAWLINE routine. MOVETO must be linked into
LINETO before the routine can be linked in as an external procedure to
a PASCAL UNIT or PROGRAM.

.PROC LINETO,6 ; PARAMETERS OCCUPY 6 WORDS
PROCEDURE LINETO(X, Y, Z: REAL);

DRAWS A LINE FROM THE LAST POINT CONTAINED IN
PSXPOS & PSYPOS TO THE NEW TRANSFORMED POINT
GIVEN BY X, Y, & Z...

SAVEX := PSXPOS; SAVEY := PSYPOS;

MOVETO(X, Y, Z);

DRAWLINE(JUNK, PSBUFP", 20, 160+SAVEX, 120-SAVEY,
PSXPOS-SAVEX, SAVEY-PSYPOS, 1);

we we Wwe Wws W Wwe W we Lo ws

.PUBLIC PSXPOS
.PUBLIC PSYPOS
.PUBLIC PSBUFP
.PRIVATE RANGE

. REF MOVETO
.REF DRAWLINE

; LINETO ENTRY POINT

Page 178

MOV SP,R5 ; USE R5 AS STACK FRAME POINTER

SAVEY .EQU U

X .EQU 14
Y .EQU 10

JA .EQU y

SAVEX := PSXPOS; SAVEY := PSYPOS;

.
:
% MOVETO(X, Y, 2); .
JSR PC,@MOVETO
; DRAWLINE(...);
JSR PC,@IDRAWLINE

! ALL DONE... RETURN

MP @RO
.END

For examples and more information see section 1.9 ASSEM

Page 179

-= Notes --

Page 180

9636 38 36 38 96 6 36 36 36 36 3 2 3¢ 3¢ 2696 9696 36 96 36 36 36 3% 3 96 3¢ 3 6 3¢

% LONG INTEGERS * * SECTION 3.3.3 ¥
T I LTI AR TR 2 e A T L

Version I.5 September 1978

With the predeclared type INTEGER the optional use of a length .
attribute constitutes a new type and will, in the remainder of this
document, be referred to as LONG INTEGER. The LONG INTEGER is
suitable for business, scientific or other applications which

need extended number lengths with complete accuracy. This

extension supports the four basic standard INTEGER arithmetic
operations (addition, subtraction, division and multiplication) as
well as routines facilitating conversion to strings and standard
INTEGERs. Strong type checking is enforced throughout in the Pascal
spirit. Input/Output, 4in line declaration of constants and inclusion

in structured types are all fully supported and are analogous to the
usage of standard INTEGERs.

LONG INTEGERs are declared using the standard identifier
INTEGER followed by a length attribute in square brackets. This
length is an unsigned number, not larger than 36, denoting the minimum
number of decimal digits representable by the LONG INTEGER. For
example, a variable called 'X' capable of storing at least an eight
decimal digit signed number would be created by:

VAR X: INTEGER[81];

Constants are defined in the normal manner:
CONST RYDBERG = 10973731;

In the above example RYDBERG would be by default a LONG INTEGER
and could be used anywhere a LONG INTEGER could be used.

In general LONG INTEGERs may be used anywhere it is
syntactically correct to use REALs, however care must be taken to
ensure that sufficient words have been allocated by the declared
length attribute for storage of the result of assignment or arithmetic
expression statements (see note in next subsection for complete
details). INTEGER expessions are implicitly converted as required
upon assignment to, or arithmetic operations with, a LONG INTEGER.

The reverse is not true.

Page 181

Examples:

VAR I: INTEGER;
: INTEGERN; {where N is an integer constant

<= 361}
S: REAL;
I:=L; {syntax error, see TRUNC(L) below}
L:=-L; {correct, with the usual exception}
L:= I; {always correct}
L:= S; {never accepted}
S:= L; {will be implemented with II. O}

Arithmetic operations which may be used in conjunction with LONG
INTEGERs are any or all from the set {+,-,%,DIV,unary plus/minus}. On
assignment the length of the LONG INTEGER is adjusted (during
execution) to the declared length attribute of the variable, therefore
overflow may result. Overflow occurs only when the intermediate
result exceeds the number of words required to store (as a minimum)
thirty-seven decimal digits, or when the final result is assigned to a
variable with insufficient length attribute. A length attribute of 5
thru 9 may store up to and including 2147483647, length attributes of
10 thru 14 may store thru 140737488355327, 15 thru 18 ..
9223372036854775807. It is left to the interested reader to compute
any larger length attribute storage capacities. This range of length
attributes all having the same upper bound is a result of the
allocation of a full word as the least amount of additional storage,
i.e. 5 thru 9 represent a two word INTEGER.) All of the standard
relational operators may be used with mixed LONG INTEGER and INTEGER.

The function TRUNC(L), where 'L' is a LONG INTEGER, will convert
'L' to an INTEGER (i.e. TRUNC will accept a LONG INTEGER as well as a

REAL as an argument). Overflow will result if L is greater than
MAXINT.

The procedure STR(L,S) converts the INTEGER or LONG INTEGER
'L', into a string (complete with minus sign if needed) and places it
in the STRING 'S'. The following program segment will provide a
suitable dollar and cent routine:

STR(L,S); INSERT('.',S,LENGTH(S)-1); WRITELN(S);

Where 'L' and 'S' are appropriately declared. TRUNC and STR are
the only two routines which currently will accept LONG INTEGERs as
parameters. An attempt to declare a LONG INTEGER in a parameter list

will result in a syntax error, which may be circumvented by creating a
type which is a LONG INTEGER. For example:

Page 182

TYPE LONG = INTEGER18;
PROCEDURE BIGNUMBER(BANKACCT: LONG);

. The LONG INTEGER is stored as a multi-word, twos compl ement
binary number. System and interpreter routines do the 1/0 conversions
as required. Maximum storage efficiency is achieved by dynamic -
expansion and contraction of word allocation as required. During

LONG INTEGER operations the length is placed on the stack above the
number itself, the declared length attribute need not be the same and
can be less than this length. '

Page 183

-- Notes ==

Page 184

B30 06 0006 366 0600 000 06 06 00 0006 00 6 06 0036 636 06 3606 600 D606 J6 6 06 6 360 J6 00 O R K

% PSUEDO-MACHINE ARCHITECTURE * # Section 3.4 ¥
T L LTI T T T T T T A i 2 R L h

Version I.5 September 1978

The UCSD Pascal P-machine, designed specifically for the
execution of Pascal programs on small machines, is an extensively
modified descendant of the P-2 pseudo-machine from. Zurich. It
supports variable addressing, including strings, byte arrays, packed
fields, and dynamic variables; logical, integer, real, and set top-of-
stack arithmetic and comparisons; multi-element structure comparisons;
several types of branches; procedure/function calls and returns,
including overlayable procedures; miscellaneous procedures used by
systems programs; and basic I/0 subsystem.

This Section, to be used in conjunction with Section 3.5,
describes the P-machine "hardware," communication with the operating
system, exceptional condition handling, the instruction set, the I/0
system, and the bootloading process.

3.4.1 HARDWARE (emulation)

The P-machine uses 16-bit words, with two 8-bit bytes per
word. It has several registers and a user memory, in which are kept a
stack and a heap. All registers are pointers to word-aligned
structures, except IPC, which is a pointer to byte-aligned
instructions. The registers are:

SP: Stack Pointer is a pointer to the top of the execution stack. The
stack starts in high memory and grows toward low memory. It
contains code segments and activation records, and is used to pass
parameters, return function values, and as an operand source for
many instructions. The stack is extended by loads and procedure
calls, and is cut back by stores, procedure returns, and arithmetic
operations.

NP: New Pointer is a pointer to the top of the dynamic heap. The heap
starts in low memory and grows upward toward the stack. It
contains all dynamic variables (see Jensen and Wirth, Chapter 10).
It is extended by the standard procedure 'new', and is cut back by
the standard procedure 'release’.

JTAB: Jump TABle pointer is a pointer to the procedure attribute table
of the currently executing procedure. (See Section 3.5, figure 5.)

SEG: Segment Pointer points to the procedure dictionary of the segment

to which the currently executing procedure belongs. (See Section
3.5, figure 6.)

Page 185

MP: Most recent Procedure is a pointer to the activation record of the
currently executing procedure. (See Section 3.5, figure 7.)
Variables local to the current procedure are accessed by indexing
of f MP.

BASE: BASE Procedure is a pointer to the activation record of the most
recently invoked base procedure (lex level 0). Global (lex -
level 0) variables are accessed by indexing off BASE.

3.4.2 OPERATING SYSTEM/P-MACHINE COMMUNICATION - SYSCOM

It is sanetimes necessary for the operating system and the P-
machine to exchange information. Hence there exists a variable SYSCOM
in the outer block of the operating system, and a corresponding area in
memory known to the hardware. The fields in SYSCOM actually relevant
to this communication are:

IORSLT: contains the error code returned by the last activated or

terminated I/O operations. (See I/0 section below, and operating
system read and write procedures.)

XEQERR: contains the error code of the last run-time error. (See
exception handling below.)

SYSUNIT: contains the unit number of the device the operating system
was booted from (usually 4 or 5).

BUGSTATE: contains the current bugstate. (See BPT instruction below.)

GDIRP: contains a pointer to the most recent disk directory read in,
unless dynamic allocation or deallocation has taken place since then.
(See MRK, RLS, and NEW instructions below.)

STKBASE, LASTMP, SEG, JTAB: copies of the BASE, MP, SEG and JTAB
registers.

BOMBP: contains a pointer to the activation record of the operating
system routine EXECERROR when a runtime error occurs. (See
exception handling.)

BOMIPC: contains the value of IPC when a run-time error occurs.

HLTLINE: contains the line number of the last conditional halt executed.
(See BPT instruction.)

BRKPTS: contains up to four line numbers of breakpointed statements.
(See BPT instruction.)

CRTINFO.ECF: contains the end-of-file character (see console input
driver).

Page 186

CRTINFO.FLUSH: contains the flush-output character (see console input,
output drivers).

CRTINFO. STOP: contains the stop-output character (see console output
and input drivers).

CRTINFO.BREAK: contains the break-execution character (see console
input driver).

SEGTABLE: contains the segment dictionary for the pascal system.

3.4.3 EXCEPTION HANDLING - XEQERR

Whenever a run-time error occurs, the P-machine stops executing the
current instruction (ideally leaving the evaluation stack in as nice a
condition as possible) and transfers control to the XEQERR routine.
This routine

1) enters the error code into SYSCOM™.XEQERR.

2) calculates what MP will be after step 4, and sets SYSCOM".BOMBP to
that. (The size of EXECERROR's activation record must be known
by the P-machine.)

3) stores the current value of IPC into SYSCOM".BOMIPC.

4) points IPC to a CXP 0,2 (call operating system procedure
EXECERROR) instruction.

5) resumes execution of interpreter code, starting with the CXP.

3.4.4 OPERAND FORMATS

Although an element of a structure may occupy as little as one bit,
as in a PACKED ARRAY OF boolean, variables in the P-machine are
always aligned on word boundaries. All top-of-stack operations expect
their operands to occupy at least one word, even if not all the
information in a word is valid. The least significant bit of a word is
bit 0, the most significant is bit 15.

BOOLEAN: One word. Bit O indicates the value (false=0, true=1), and
this is the only information used by boolean comparisons. However,
the boolean operators LAND, LOR, and LNOT operate on all 16 bits.

INTEGER: One word, two's complement, capable of representing values in
the range -32768..32767.

SCALAR (user—-defined): One word, in range 0..32767.
CHAR: One word, with low byte containing character. The internal

character set is "extended" ASCII, with 0..127 representing the
standard ASCII set, and 128..255 as a user-defined character set.

Page 187

REAL: Two words, with format implementation dependent. The system
is arranged so that only the interpreter needs to know the detailed
internal format of REALs (beyond the fact that they occupy two

words) Following are the two detailed formats for the CPUs we now
(as of I.4) support.

PDP11:
15 0
word 1: ! low mantissa : !
15 14 7 6 0
word O: I1s! ' exponent ! high mantissa !
280/8080:
15 8 7 0
word 1: ! low mantissa ! middle mantissa !
15 14 8 7 0
word O: s ! high mantissa ! exponent !

Both representations have an excess-128 exponent, a fractional
mantissa that is always normalized, exponent base 2, an implicit
2U4th mantissa bit, and zero represented by a zero exponent. (See

PDP11 processor manual or Z80/8080 interpreter listing for greater
detail.)

POINTER: One or three words, depending on type of pointer.
Pascal pointers, internal word pointers: one word, containing a word
address.
Internal byte pointers: one word, containing a byte address.
Internal packed field pointers: three words.
word 2: word pointer to word field is in.
word 1: field width (in bits).
word 0: right bit number of field.

SET: 0..255 words in data segment, 1..256 words on stack. Sets are
implemented as bit vectors, always with a lower index of zero. A
set variable declared as set of m..n is allocated (n+15) div 16

words. When a set is in The data segment, all words allocated
contain valid information.

Page 188

When a set is on the stack, it is represented by a word
containing the length, and then that number of words, all of which
contain valid information. All elements past the last word of a

~ set are assumed not to be elements of the set. Before being stored
back in the data segment, a set must be forced back to the size
allocated to it, and so an ADJ instruction must be issued.

RECORDS and ARRAYS: any number of words (up to 16384 words in one
dimension). Arrays are stored in row-major order, and always have
a lower index of zero. Only fields or elements are loaded onto the
stack - never the structure itself. Packed arrays must have an
integral number of elements in each word, as there is no packing
across word boundaries (it is acceptable to have unused bits in
each word). The first element in each word has bit 0 as its low-
order bit.

STRINGS: 1..128 words. Strings are a flexible version of packed
arrays_of char. A string(n] occupies (n div 2)+1 words. Byte 0
of a string is the current length of the string, and bytes
1..length(string) contain valid characters.

CONSTANTS: constant scalars, sets, and strings may be imbedded in
the instruction stream, in which case they have special formats.
A1l scalars (excluding reals) not in the range 0..127: two bytes,
low byte first.
Strings: all string literals take length(literal)+1 bytes, and
are byte aligned. The first byte is the length, the rest are the
actual characters. This format applies even if the literal should
be interpreted as a packed array of char (see S1P and S2P
below) .
Reals and sets: word aligned, and in reverse word order.

3.4.5 INSTRUCTION SET FORMAT

Instructions on the P-machine are one or two bytes long, followed
by zero to four parameters. Most parameters specify one word of
information, and are one of five basic types.

UB unsigned byte: high order byte of parameter is implicitly zero.

SB signed byte: high order byte is sign extension of bit 7.

DB don't care byte: can be treated as SB or UB, as value is always in
the range 0..127.

B big: this parameter is one byte long when used to represent values in
the range 0..127, and is two bytes long when representing
values in the range 128..32767. If the first byte is in
0..127, the high byte of the parameter is implicitly zero.
Otherwise, bit 7 of the first byte is cleared and it is used as the
high order byte of the parameter. The second byte is used
as the low order byte.

W word: the next two bytes, low byte first, is the parameter value.

Page 189

Any exceptions to these formats are noted in the instructions where
they occur.

3.4.6 ENGLISH INSTRUCTION SET DESCRIPTION

In the following section, references to an element on the stack are
context-dependent, and can mean anywhere from one word to 256 words.
Also, unless specifically noted to the contrary, operands are popped off
the stack - they are not left around.

fobreviations are used widely, but use fairly simple conventions.
Parameters are written as X or X n, where X is UB, SB, DB, B, or W, and
n is an integer indicating the parameter position in the instruction.
Tos means the operand on the top of stack, tos-1 the next operand,

etc. Mark Stack Control Word is abbreviated to MSCW.

Many instructions refer to the activation record of a procedure, and
this document assumes the reader has a general knowledge of procedure
calling in stack machines, and the concept of stack frames. An
activation record as defined in this document specifically consists of:

1) the local data segment of the procedure, and

2) the MSCW, containing addressing information (static links), and

information on the calling procedures environment when the procedure

was called.
(See Section 3.5, figure 7.)
The dynamic chain refers to the calling chain, traversed using the

MSCW.MSDYN links. The static chain refers to the lexical or ancestor
chain, traversed using the MSCW .MSSTAT links.

MNEMONIC OP-CODE PARAMETERS FULL NAME AND OPERATION

5.A VARIABLE FETCHING, INDEXING, STORING, AND TRANSFERING
5.A.1 ONE WORD LOADS AND STORES
5.A.1.a CONSTANT ONE WORD LOADS

SLDC 0..127 Short load word constant. Pushes the
opcade, with high byte zero, onto stack.

LDCN 159 Load constant nil. Pushes the
implementation-dependent value of nil.

LDCI 199 W Load constant word. Pushes W.

Page 190

5.A.1.b LOCAL ONE WORD LOADS AND STORE

SLDL1 216 Short load local word. SLDLx fetches
.. - the word with offset x in MP activation
SLDL16 231 record and pushes it.

LDL 202 B Load local word. Fetches the word with

offset B in MP activation record and pushes it.
LLA 198 B Load local addresé. Fetches address of
the word with offset B in MP activation record
and pushes it.
STL 204 B Store local word. Stores tos into word
with offset B in MP activation record.

5.A.1.c GLOBAL ONE WORD LOADS AND STORE

SLIO1 232 Short load global word. SLDOx fetches

.o . the word with offset x in BASE activation

SLDO16 247 record and pushes it.

LDO 167 B Load global word. Fetches the word with
offset B in BASE activation record and pushes
it.

LAO 165 B Load global address. Pushes the word

address of the word with offset B in BASE
activation record.

SRO 171 B Store global word. Stores tos into the
word with offset B in BASE activation record.

5.A.1.d fNTERMEDIATE ONE-WORD LOADS AND STORE

LOD 182 DB,B Load intermediate word. DB indicates tnhe
number of static links to traverse to find the
activation record to use. B is the of fset
within the activation record.

LDA 178 DB,B Load intermediate address.

STR 184 DB,B Store intermediate word.
5.A.1.e INDIRECT ONE-WORD LOADS AND STORE

STO 154 Store indirect. Tos is stored into the
word pointed to by tos-1.

Page 191

SINDC 2ug Load indirect.

5.A.2 MULTIPLE WORD LOADS AND STORES (SETS AND REALS)

LDC 179 UB,<block> Load multiple word constant. UB is the
number of words to load, and <block> is a
word aligned block of UB words, in reverse
word order. Load the block onto the stack.

LDM 188 uB load multiple words. Tos is a pointer
to the beginning of a block of UB words.
Push the block onto the stack.

S™ 189 UB Store multiple words. Tos is a block of
UB words, tos-1 is a word pointer to 3
similiar block. Transfer the block from the
stack to the destination block.

5.A.3 BYTE ARRAYS

BYT 210 Byte conversion. Convert word nointer
tos to a byte pointer. (NOP on the PDP11 ani
780/8080 implementations.)

LDB 190 Load byte. Push the byte (after zeroing
high byte) pointed to by byte pointer tos.

STB 191 Store byte. Store byte tos into the
location specified by byte pointer tos-1.

MVB 169 B Move bytes. Tos is a byte source
pointer to a block of B bytes, tos~1 is a
byte destination pointer to a similiar
block. Transfer the source block to the
destination block. (This instruction is
redundant due to word alignment, and will
be replaced by MOV in the future.)

IXB 209 Index byte array. Push a byte pointer
formed from the integer index tos and the byte
pointer tos-1.

5.A.4 STRINGS
LCA 166 UB,<chars> Load constant string address. Push a
byte pointer to the location UB is contained

in, and skip IPC past <chars>.
in, and skip IPC past <chars>.

Page 192

SAS 170 UB String assign. Tos is either a source
byte pointer or a character. (Characters
always have a high byte of zero, while
pointer never do.) Tos-1 is a destination
byte pointer. UB is the declared size of
the destination string. If the declared
size is less than the current size of the
source string, a run-time error occurs;
otherwise all bytes of source containing
valid information are transferred to the
destination string.

S1P 208 String to packed conversion on tos. Tos
is a byte pointer to a string, and is
incremented by one byte in order to point te
the first character of the string.

S2P 157 String to packed conversion on tos-1.
Tos and tos-1 are byte pointers, and tos-1 is
incremented by one byte.

IXS 155 Index string array. Performs the same
operation as IXB, except pefore indexing the
index is checked to see if it is in the range
1..current length. If not, a run-time error
oceurs.

5.A.5 RECORD AND ARRAY INDEXING AND ASSIGNMENT

MOV 168 B Move words. Tos is a source pointer to
' a block of B words, tos-1 is a destination
pointer to a similiar block. Transfer the
block from the source to the destination.

SINDO 2u8 Short index and load word. SINDx indexes
.. .. the word pointer tos by X words, and pushes
SIND7 255 the word pointed to by the result.

IND 163 B Static index and load word. Indexes the

word pointer tos by B words, and pushes the
word pointed to.

INC 162 B Increment field pointer. The word
pointer tos is indexed by B words and the
resultant pointer is pushed.

IXA 164 B Index array. Tos is an integer index,
tos-1 is the array base word pointer, and B
is the size (in words) of an array slement.
A word pointer to the indexed element 1is
pushed.

Page 193

IXP

LDP

STP

192

186

187

uB 1, 2 Index packed array. Tos is an integer

index, tos=-1 is the array base word pointer.
DB 1 is the number of element per word, and
DB 2 is the field width (in bits). Compute
and push a packed field pointer.

Load a packed field. Push the field
described by the packed field pointer tos.

Store into a packed field. Tos is the
data, tos-1 is a packed field pointer. Store
tos into the field described by tos-1.

5.A.6 DYNAMIC VARIABLE ALLOCATION AND DE-ALLOCATION

NEN

MRK

RLS

158

1

158 31

158 32

New variable allocation. Tos is the size
(in words) to allocate the variable, and
tos-2 is a word pointer to a dynamic
variable. If GDIRP is non-nil, cut NP
back to GDIRP and set GDIRP to nil. O3tore
NP into word pointed to by tos-1, and
increment NP by tos words.

increment NP by tos words.

Mark heap. Release GDIRP and szt ©o nil
if necessary, then store NP into word pointed
to by tos.

Release heap. Set GDIRP to nil, then
store word pointed to by tos into NP.

5.8 TOP OF STACK ARITHMETIC AND CCQMPARISONS

5.B.1 LOGICAL

LAND
LOR
LNOT

EQUBOOL
NEQBOOL
LEQBOOL
LESBOOL
GEQBOOL
GTRBOOL

132
141
147

175
183
180
181

176
177

ANV

Logical and. And tos into tos-1.

Logical or. Or tos into tos-1.

RN

Logical not. Take one's complement »f tos.

Boolean

n
-

>=,
and > comparisons.

Compare bit 0 of tos-1 to bit 0 of tos and push
true or false.

Page 194

5.B.2 INTEGER

ABI 128 Absolute value of integer. Take absolute
value of integer tos. Result is undefined if
tos is initially -32768.

ADI 130 Add integers. Add tos and tos-1.
NGI 145 Negate integer. Take the two's
complement of tos.
SBI 149 Subtract integers. Subtract tos from tos-1.
MPI 143 _ Multiply integers. Multiply tos and tos-1.

This instruction may cause overflow if result
is larger than 16 bits.

SQI 152 Square integer. Square tos. May cause
overflow.
DVI 134 Divide integers. Divide tos-1 by tos ani

push quotient. (PDP11 quotient defined as in
Jensen and Wirth; 280/8080 quotient defined
by floor(tos-1/tos).)

MODI 142 Modulo integers. Divide tos-1 by tos ard
push the remainder (as defined in Jensen and
Wirth) .
CHK 136 Check against subrange pounds. Insure

that tos-1 <= tos-2 <= tos, leaving tos-2 on
the stack. If conditions are not satisfied
a run-time error occurs.

EQUI 195 Integer =,

NEQI 203 <O,

LEQIL 200 <=,

LESI 201 <,

GEQI 196 >=,

GTRI 197 and >

comparisons. Compare tos-1to tos and pusi
true or false.

Page 195

5.B.3 REALS

All over/underflows cause a run-time error.

FLT

FLO

TNC

RND

ABR

ADR
NGR
SBR
MPR
SQR
DVR

POT

SIN
COoS
ATAN
EXP

LN
LOG
SQT

EQUREAL
NEQREAL

LEQREAL

138

137

158 22

158 23

129

131
146
150
14y

153
135
158 35

158 24
158 25
158 27
158 29
158 28
158 26
158 30

175 2
183 2
180 2

Float top-of-stack. The integer tos is
converted to a floating point number .

Float next to top-of-stack. Tos is a real,
tos-1 is an integer. Convert tos-1to a real
number .

Truncate real. The real tos is truncated
(as defined in Jensen and Wirth) and
converted to an integer. .

Round real. The real tos is rounded (as
defined in Jensen and Wirth), then truncated
and converted to an integer.

Add reals. Take the absolute value of
the real tos.

Add reals. Add tos and tos-1.

Negate real. Negate the real tos.
Subtract reals. Subtract tos from tos-1.
Multiply reals. Multiply tos and tos-1.
Square real.

Divide reals. Divide tos-1 by tos.

Power of ten. The integer tos is checked
for 0 <= tos <= 38, a run-time error
occurring if the conditions aren't satisfied.
The implementation dependent value 10 © tos
is pushed. This facility allows the rest of
the system to be independent of floating
point format.

Sine. Take the sine of the real tos.
Cosine.

Arctangent.

Exponential. e ~ tos.

Natural logarithm.

Log base 10.

Square root.

Real =,

Page 196

LESREAL 181
GEQREAL 176
GTRREAL 177
5.B.4 SETS

ADJ 160
SGS 151
SRS 148
INN 139
UNI 156
INT 140
DIF 133
EQUPOWR 175
NEQPOWR 183
LEQPOWR 180
GEQPOWR 176

5.B.5 STRINGS

EQUSTR
NEQSTR
LEQSTR
LESSTR
GEQSTR

175
183
180
181
176

NN

0o 0o Co 0o

I i g)

uB

2=,
and > comparisons.
Push TRUE or FALSE.

Adjust set. The set tos is forced to
occupy UB words, either by expansion (putting
zeroes "between" tos and tos-1) or
compression (chopping of high words of set),
and its length word is discarded.

Build a singleton set. The integer tos
is checked to insure that 0O <= tos <= 4079, a
run-time error occurring if not. The set
[tos] is pushed.

Build a subrange set. The integers tos
and tos-1 are checked as in SGS, and the set
[tos-1..tos] is pushed. (The set [] is
pushed if tos-1 > tos.)

Set membership. See if integer tos_1 is
in set tos, pushing TRUE or FALSE.

Set union. The union of sets tos and
tos-1 is pushed. (Tos or tos-1.)

Set intersection. The intersection of
sets tos and tos-1 is pushed.
(Tos and tos-1.)

Set difference. The difference of sets
tos-1 and tos is pushed.
(tos-1 and not tos.)

Set =,
<,
<= (subset of),
and >=
(superset of) comparisons.

String =,

Page 197

GTRSTR 177 4 and >
comparisons. The string pointed to by word
pointer tos-1 is lexicographically compared
to the string pointed at by tos.

5.B.6 BYTE ARRAYS

EQUB YT 175 10 Byte array =,

NEQBYT 183 10 <>,

LEQBYT 180 10 {=,

LESBYT 181 10 <

GEQBYT 176 10 >=,
GTRBYT 177 10 and >

comparisons. <=, £, >=, and > are only
emitted for packed arrays of char.

5.B.7 ARRAY AND RECORD CQMPARISONS

EQUWORD 175 12 Word or multiword structure =
NEQWORD 183 12 and <
comparisons.

5.C JUMPS

Simple (non-case statement) jumps are all two bytes long. The
first byte is the op-code, the second is a SB jump offset. If this
offset is non-negative, it is simply added to IPC. (A value of zero
for the jump offset will make any jump a two-byte nop.) If SB is
negative, then SB div 2 is used as a word offset into JTAB, and IPC
is set to the byte address(JTAB"[SB_div 2]) - JTAB[SB div 2].

UJp 185 B Unconditional jump. Jump as described
above.

FJP 161 SB False jump. Jump if tos is false.

EFJ 21 3B Equal false jump. Jump if integer tos <

tos-1. Not implemented in I.A.

NFJ 212 SB Not equal false jump. Jump if integer
tos = tos-1. Not implemented in I.4.

XJP 172 W 1,W_2,W_3, <case table>

Page 198

Case jump. W 11is word-aligned, and is
the minimum index of the table. W 2 is the
maximun index. W_3 is an unconditonal
jump instruction past the table. The case
table is W 2-W_1+1 words long, and contains
self-relative locations.

If tos, the actual index, is not in the
range W_1..W 2, then IPC is pointed at
W 3. Otherwise, tos-W_1 is used as an
index into the table, and IPC is set to
byte address(casetable[index-min index])-
casetablelindex-min_index]. -

5.D- PROCEDIRE AND FUNCTION CALLS AND RETURNS
The general scheme used in procedure/function invocation is

1) Calculate the data size and parameter_size of the called
procedure by using the information in the current procedure
dictionary (pointed to by SEG).

2) Extend stack by data size bytes.

3) Copy parameter size bytes from the old top-of-stack to the
beginning of the space just allocated.

4) Build a MSCW, saving SP, IPC, SEG, JTAB, MP, and a pointer
to the most recent activation record of the called procedure's
immediate parent.

5) Calculate new values for SP, IPC, JTAB, MP, and if necessary,
SEG. Check for stack overflow.

6) If the called procedure has a lex level of -1 or O save BASE
and calculate a new BASE.

CLP 206 UB Call local procedure. Call procedure UB,
which is an immediate child of the currently
executing procedure and in the same segment.
Static 1ink of MSCW is set to old MP.

CGP 207 UB Call global procedure. Call procedure
UB, which is at lex level 1 and in same
segment. The static 1ink of the MSCW is set
to BASE.

CIP 174)] Call intermediate procedure. Call
procedure UB in same segment as the
currently executing procedure. The static
1ink of the MSCW is set by looking up the
call chain until an activation record is
found whose caller had a lex level one 1
less than the procedure being called. Use
that activation record's static link as the

Page 199

CBP

CSP
RNP

RBP

EXIT

194

205

158
173

193

158 &4

UB

static link of the new MSCW.

Call base procedure. Call procedure UB,
which is at lex level -1 or 0. The static
1ink of the MSCW is set to the static link
in BASE's activation record. The BASE is
saved, after which it is pointed at the
activation record just created.

DB 1,UB 2 Call external procedure. Use: to call

any procedure not in the same segment as
The calling procedure, including procedures
at lex level =1 or 0. It works as follows:
1) Is desired segment in memory? This
is determined by traversing up the call
chain until an activation record of a
procedure in the desired segment is found,
or the operating system's resident
activation record is encountered.
2a) no: read in segment from disk using
the information in the segment dictionary,
then build an activation record. However,
gxtend stack by data_size+paramsize in step
2b) yes: build activation record normally .
3) calculate the dynamic link for the
MSCW: If the called procedure has a lex
level of -1 or 0, set as in CBP, otherwise
set as in CIP.

Scan this document for op of 158.

Return from non-base procedure. DB is
the number of words that stould be returned
as a function value (0 for procedures, 1 for
non-real functions, and 2 for real functions).
DB words are copied from the bottom of the
data segment and "pushed" onto the caller's
top-of-stack. The information in the MSCW
is then used to restore the caller's
correct environment.

Return from base procedure. The saved
base is moved into BASE, after which things
proceed as in the RNP instruction.

Exit from procedure. Tos is the
procedure number, tos-1 is the segment
number. This operator sets IPC to point to
the exit code of the currently executing
procedure, then sees if the current
procedure is the one to exit from. If it

Page 200

is, control returns to the instruction
fetch loop.

Otherwise, each MSCW has its saved IPC
changed to point to the exit code of the
procedure that invoked it, until the
desired procedure is found.

If at any time the saved IPC of main body
of the operating system is about to be
changed, a run-time error occurs.

5.E SYSTEMS PROGRAMS SUPPORT PROCEDURES

See Section 2.1 for description of these procedures.

BYTE ARRAY PROCEDURES

FLC 158 10
SCN 158 11
MVL 158 02
MVR 158 03

Fillchar(dst, len, char).
Scan(maxdisp, start, forpast, char, mask).
Moveleft(src, dst, numbytes).

Moveright(src, dst, numbytes).

COMPILER PROCEDURES (still undocumented)

TRS 158 08

IDS 158 07
DEBUGGER

BPT 213
MISCELLANEOUS

™M 158 09

XIT 214

NOP 215

Treesearch.

Idsearch.

Breakpoint (conditional HALT)
B = souce Qe \me o akszw,ﬁm&‘.

Time.
Bxit. — JwC % zell w \vﬁﬁéﬁP. -~

No operation.

Page 201

-- Notes --

Page 202

606 6 36 36 96 36 36 6 36 36 96 36 3606 36 36 36 36 36 369636 36 36 36 96 36 3696 96 96 36 36 96 36 36 6 36 36 36 J6 96 69 36 06 96 26 36 3¢ 96 96 b 3k 3 3¢ 3¢ N

¥ INTRODUCTION TO THE PASCAL PSEUDO-MACHINE * ¥ Section 3.5 ¥
BHEIEIE IO I I I I 00 I IE I I0 0606 0006600060600 36 060 060000006 06 6 0 36 ¢

Version II.0 February 1979

UCSD uses an interpreter based implementation of Pascal. This
means that the compiler emits code for a pseudo-machine which is
emulated at run time by a program written in the machine language of
the host. The compiler, program editor, stand-alone operating system,
and various utilities are themselves written in Pascal and run on the
same interpreter. Thus the entire system can be moved to a new host
machine by rewriting the interpreter for the new host. This document
describes the Pseudo-machine codefiles as they were in version I.3.
Many of the segments mentioned are no longer resident in the codefile
used as an example. This does not affect the functionality of the
description of the mechanisims put forth by this document.

Figure 3.5.10 (the last page of this document) is a skeleton
version of a large Pascal program, here-in-after referred to as "The
Program". This document is a top-down description of the realization
of that program on the UCSD Pascal system. We will make occasional
use of a helpful coincidence: The Program is the framework of the
portion of the UCSD Pascal environment that's written in Pascal.

If The Program were expanded to a complete Pascal system, it
would consist of at least 6000 lines of Pascal and compile to more
than 50,000 bytes of code--too big to fit all at once into the memory
of a small machine (by our current definition of small). We have
therefore extended Pascal so that a programmer can explicitly
partition a program into segments; only some of which need be
resident in main memory at a time. The syntax of this extension is
shown in figure 3.5.1. (Any syntactic objects not defined explicitly
there retain their standard interpretation as defined by Jensen &
Wirth: Pascal User Manual and Report.) See Section 5.9 for revised
syntax diagrams.

{program> ::= <program heading> <segment block> .

<{segment block> ::= <label declaration part)>
{constant declaration part> <type definition part>
{variable declaration part> <{segment declaration part>
<{segment body>

<{segment declaration part> ::= SEGMENT <procedure heading>
<segment block>; \ SEQMENT <function heading>
<{segment block>;

<segment body>::= <procedure and function declaration part>
<{statement part>

FIGURE 3.5.1. SEQMENT DECLARATION SYNTAX.

Page 203

Segment declaration syntax (figure 3.5.1) requires that all nested

segments be declared before the ordinary procedures or functions of
the segment body. Thus, a code segment can be completely generated
pefore processing of code for the next segment starts. This is not a
functional limitation,since forward declarations can be used to allow
nested segments (COMPILER in The Program) to reference procedures in
an outer segment body (CLEARSCREEN). Similarly, segment praocedures
and functions can themselves be declared forward. -

Segmenting a program does not change its meaning in any

fundamental sense. When a segment is called (e.g. the COMPILER
segment in line A), the interpreter checks to see if it is present in
memory due to a previous invocation. If it is, control is transferred
and execution proceeds: if not, the appropriate code segment must be
loaded from disk before the transfer of control takes place. When no
more active invocations of the segment exist, its code is removed from
memory. For instance, in The Program, the code for the COMPINIT
segment is not present in memory either before or after the execution
of line A. Clearly, a program should be segmented in such a way that
(non-recursive) segment calls are infrequent; otherwise, much time
could be lost in unproductive thrashing (particularly on a system with
low performance disk).

high address

f=—> | DEBUGGER 0 |
not | -- ——
- FILER 17
shown | -— - -
; ! EDITOR 12

in | — -
! ' COMPINIT 7 |
the | - : - -
i i COMPILER 41 i
program | . ——————
> | INITIALIZE 30
i USER PROGRAM 1 '
| PASCALSYSTEM 17
i SEGMENT DICITONARY 1 i

low address

FIGURE 3.5.2. PASCAL SYSTEM CODE FILE.

Page 204

The code file resulting from compilation of The Program is
diagrammed in figure 3.5.2%. The file is a sequence of code segments
preceded by a segment dictionary. The size of each segment is noted
in blocks, the 512-byte disk allocation quantum used on most PDP-11
operating systems. The sizes indicated are representative of a full
Pascal system. Each code segment begins on a block boundary. The
ordering (from low address to high address) is determined by the order

that one encounters segment procedure bodies in passing through The
Progranm.

% An overview of the relationship between figures 3.5.2 through
3.5.8 (to be discussed in the following pages) is given in figure 3.5.9
at the end of this section. It is helpful to study figure 3.5.9 at this
point for a better understanding of the section.

The segment dictionary in the first block of a code file contains
an entry for each code segment in the file. The entry includes the
disk location and size(in bytes) for the segment. The disk location
is given as relative to the beginning of the segment dictionary (which
is also the beginning of the code file) and is given in number of
blocks. This information is kept in the system communications area
(also called SYSCOM) during the execution of the code file, and is
used in the loading of non-present segments when they are needed.
Figure 3.5.3 details the layout of the table and shows representative
contents for the Pascal system code file.

location ! 1 :
.............. PASCALSYSTEM
size i 8500 |
| 18 !
.............. USERPROGRAM
! variable i
t 22 i
.............. COMPILER
i 20932 i
| 63 i
-------------- COMPINIT
' 3480 i
H 70 |
-------------- DEBUGGER
H 5880 H

FIGURE 3.5.3. THE SEGMENT DICTIONARY
Page 205

A code segment contains the code for the body of each of its
procedures, including the segment procedure,itself. Figure 3.5.4 is a
detailed diagram of the code segment of The Program (Pascalsystem).
Each of a code segment's procedures are assigned a procedure number,
starting at 1 for the segment procedure, and ranging as high as 255
(current temporary limit of 127). All references to a :rocedure are
made via its number. Translation from procedure number to location in
the code segment is accomplished with the procedure dictionarg at the
end of the segment. This dictionary is an array indexed by the
procedure number. Each array element is a self-relative pointer to the
code for the corresponding procedure. Since zero is not a valid
procedure number, the zero'th entry of the dictionary is used to store
the segment number (even byte) and number of procedures (odd byte).
Observe that CLEARSCREEN is the first procedure for which code is
generated and that it appears at the beginning of the segment. The
outer block code is generated and appears last.

high addresses
odd even

Number of procedures | Segment Number
in dictionary |

Procedure #1 PASCALSYSTEM |--
[}
e e e e e m e m = mm === = === ,
! === | Procedure #2 CLEARSCREEN |
------- rest of = = = = = = = = = |

|
!
L]
'
!
[}
e
-3
o
0
0]
Q.
[
-3
[0}
Q
.—l-
[e]
pars
[ot
o]
D
-3
<3
[
!
]
!
]

PASCALSYSTEM's outer block code

N\
1

other procedures of the Pascal system

PROCEDURE #3 code

1
\%4

[}
!
\%4

PROCEDURE #2 (clearscreen) code

low addresses

FIGURE 3.5.4. A CODE SEGMENT

Page 206

A more detailed diagram of a single procedure code section is
seen in figure 3.5.5. It consists of two parts: the procedure code

itself in the lower portion of the section) and a table of attributes
of the procedure. These attributes are:

LEX LEVEL: This odd byte is the depth of absolute lexical nesting

for the procedure. (i.e. Lex Level (LL) Pascalsystem=-1, LL COMPILER
or CLEARSCREEN=0, LL COMPINIT=1, etc.).

PROCEDURE NUMBER:This even byte refers to the number given in the

procedure dictionary of the parent segment procedure. For example,
the Procnum of CLEARSCREEN is 2. (see figure 3.5.4).

ENTER IC:This is a self-relative pointer to the first instruction
to be executed for this procedure.

EXIT IC:This is a self-relative pointer to the beginning of the

block of procedure instructions which must be executed to terminate
procedure properly.

PARAMETER SIZE:The param size is the number of bytes of
parameters passed to a procedure from its caller.

and DATA SEGMENT SIZE:The data size is the size of the data
segment (See below) in bytes, excluding the markstack and PARAM SIZE.

Between these attributes and the procedure code there may be an
optional section of memory called the "jump table". Its entries are
addresses within the procedure code. JTAB is a term commonly applied
to the six attributes just discussed and the jump table itself.

high addresses

odd even ‘
-
' pProcedure ff |{===—-=- - -——
Lex Lever | . | PASCALSYSTRM's |
Enter IC - ! Procedure !
! Dictionary |
|- Exit IC E Pointer E
| i

Data Segment Size

[]
I

]

1

]

]

Parameter Size E
\

|

1

]

1

K
'
'
'
'
C.
c
3
S
|
)
o
—
o
'
'
'
'
'
'

CODE

\

\

1

\

CLEARSCREEN {
.

|

[}

]

low addresses
FIGURE 3.5.5. PROCEDURE CODE SECTION (OF CLEARSCREEN)

Page 207

high addresses

System Resident Segment

System Data Segment

mark stack

Compiler Code Segment

Compiler Data Segment

mark stack

Compinit Code Segment

— e ———————— -

-Compinit Data Segment

mark stack

CLEARSCREEN Data Segment

mark stack

temporaries

Interpreter

1
'
1
|
t
'
1
|
|
|
)
1
]
!
[
|
|
|
|
1
|
|
[}

SYSCOM 1 ¢~ <segment dictionary>

'
i
i
'
i
i
i
1
i
i
! H E A P
i
]
i
[]
]
|
\
i
g
g |

low addresses

FIGURE '3.5.6. SYSTEM MEMORY DWRING CLEARSCREEN EXECUTION

Page 208

Figure 3.5.6 is a snapshot of system memory during the execution of a
call to procedure CLEARSCREEN from line C in COMPINIT. The Pascal

interpreter occupies the lowest area in memory. In it is the system
communications area(also called SYSCOM),which is accessible both to
assembly language routines in the interpreter and (as if it were part
of the heap) to system routines coded in Pascal. It serves as an
important communication link between these two levels of the system.
The Pascal heap is next in the memory layout; it grows toward high
memory. The single stack growing down from high memory is used for 3
types of items: 1) temporary storage needed during expression
evaluation; 2) a data segment containing local variables and
parameters for each procedure activation; and 3) a code segment for
each active segment procedure. (See figure 3.5.6)

Consider the status of operations just before COMPINIT is called
in line B. Conceptually, there are six pseudo-variables which point
to locations in memory:

a STACK POINTER(SP):which points to the current top of the stack,

a MARK STACK POINTER(MP):which points to the "topmost" markstack
in the stack,(remember that the the stack grows down!),

a SEQMENT(SEG) variable:which points to the base of the procedure
dictionary for the currently active segment procedure. For example,
just before COMPINIT is called, SEG points to the COMPILER segment's
procedure dictionary,

an INTERPRETER PROGRAM COUNTER (IPC):which contains the address of

the next instruction to be executed in the code segment of the current
procedure,

Page 209

a JTAB pointer:which points to the collection of procedure
attributes and jump table entries in the body of the current procedure
code section,

and a NEW POINTER (NP):which points to the current top of the
heap.

When segment procedure COMPINIT is called in line B, its code
segment (including all compiler initialization procedures) is loaded
on the stack. The COMPINIT data segment is built on top of the stack.
Figure 3.5.7 is a diagram of the data segment for COMPINIT.

high addresses

Other COMPINIT variables

BOOL

I

J

MSIPC

1
1
- -
]
|
---—-—-————-————-—'.
MSSEG i
MSJTAB i
- ——'
|
1
]
- -1
1
i
-

MSDYN

i
]
|
|
|
t
i
i
|
]
|
i
1
|
3
i MSSP
i
'
|
|
]
1
i
[}
\
i
i
[}
|
i

MSSTAT

(=

===
P MP =D -
===
low addresses

FIGURE 3.5.7. A DATA SEGMENT

In the upper portion of the data segment, space is allocated for
variables local to the new procedure. For example,COMPINIT's data

segment allocates space for integer variables I and J, as well as
boolean BOOL.

Page 210

In the lower portion of the data segment is a "markstack". When
a call to any procedure is made, the current values of the
pseudo-variables, which characterize the operating environment of the
calling procedure, are stored in the markstack of the called
procedure. This is so that the pseudo-variables may be restored to
pre-call conditions when control is returned to the calling procedure.

For example, the call to COMPINIT causes conditions in COMPILER
just before the call to be stored in COMPINIT's markstack in the
following manner: :

MarkStack DYNamic link (MSDYN) <-- MP
" " IPC(MSIPC) <-- IC
" " SEGment Pointer(MSSEG) <-- SEG
" " Jump TABle (MSJTAB) <-- JTAB
" " Stack Pointer (SP) <-- SP

In addition a Static Link field becomes a pointer to the data
segment of the lexical parent of the called procedure. In particular,
it points to the Static Link field of parent's merkstack. After the
pbuilding of the data segment new values for IC, SEG, SP, MP, and JTAB
are established for the new procedure.

When the call to CLEARSCREEN is made on line C, another data
segment is added to the stack and again the pseudo-variables are
stored in the new markstack, as well as the appropriate Static Link,
and updated. Note that now the SEG no longer pints to the COMPINIT
procedure dictionary, but to the Pascalsystem dictionary.

No code segment for CLEARSCREEN is added to the stack before
the data segment since the code for CLEARSCREEN is already present in
segment Pascalsystem. Its invocation causes only a data segment to be
added to the stack. When CLEARSCREEN and INIT are completed, the
COMPILER data segment will again be the top element on the stack.

Figure 3.5.8 is a detailed diagram of the stack during
execution of an instruction in CLEARSCREEN, including appropriate
pointers for static, dynamic, ete. links of CLEARSCREEN's markstack.
Note where the pseudo-variables point in the stack. In particular,
JTAB points inside CLEARSCREEN code section which is in the
Pascalsystem code segment, IC points inside that CLEARSCREEN code, and
SEG points to the base of the Pascalsystem code segment.

Page 211

to PASCALSYSTEM resident code segment
to PASCALSYSTEM resident data segment ~
~ {t 8EC¢ 1<- in

{mewm———— high addresses cmmeem=e==] | JTAB {<-PASCALSYSTEM
} I 1t IPC i<-code segment
' COMPILER code segment H
H {
{ COMPILER data segment !
= = = = = == === ===~ === -1
! markstack
t
jmmm———=D1 20 ¢ 4 —————ean |

{

Pointer to COMPINIT code

——————— e e

I
& o =
1

{
H
[]
{ Pointer to Procedure #2 H code
H | segment
{ =+ >t | of
{ | ==—==Di COMP INIT - code <=1} COMPINIT
t o+ { H - o e o
[! Procedures of COMPINIT =1 H
$ H H ———— e
(I B H COMP INIT variables H H
I T ' H {
(A | { MSSP H !
[H H !
14 ' MSIPC ! ——————————
I T | H H data
[! MSSEG ! segment
(I T | t i of
L I | H MSJUTAB $ COMPINIT
t ottt $ { e
t i MSDYN i t
(I | { H H
I I | { MSSTAT <=1 }
I I H { { ——————cme |
HE I H evaluation stack H H
O I T £ 3 t $ —————— |
I T T I H CLEARSCREEN variables ! $ H
A T T H H H !
O T I I £ MSSP { { !
t ot Lt i { i H
j § ! jem———] MSIPC { { e o e e
LI I { { ! data
{ § jmm————i . MSSEG $! segment
L t H { of
| |mm—ee————-] MSJUTAB ! ! CLEARSCREEN
H t ! $ - e 0 o
! t MSDYN {1 $
$ t { !
e sttt | MSSTAT {Cmem—=}{ MP | H
{ v { ———————-—]
{ evaluation stack !
t v {
jm = = = = = === === === @} ===~} SP |
! L
o = = = = = = = === == - = = = =|====] NP |
! HEAP t $op 0f hean
! |

low addresses

FIGURE 3.95.8. THE STACK DURING CLEARSCREEN
Page 212

Figure 3.5.9 illustrates a top-down process by showing the
relationships among diagrams 2 through 7.

code file
figure 3.5.2

- R G G S W G S S !
[l

| PASCALSYSTEM |-==>| figure 3.5.4}
] . [} 1]
] ¥]]
' ' i CLEARSCREEN |--->| figure 3.5.5]
| | | code detail | | proc. code |
i i | detail |
| segment i
a dictionary |===>)| figure 3.5.3

]
1]

i segment dictionary detail

system memory

figure 3.5.8

code segment |-==>| figure 3.5.4 |

COMPINIT

data segment |--->| figure 3.5.7

!
[}
[}
1
1
|
1
i
]
'
i i

' i\ data segment detail

|
I
[
!
|
|
|
t
]
1
|
1
!
|

FIGURE 3.5.9. RELATIONSHIP OF DOCUMENT FIGURES

FIGURE 3.5.10. THE PROGRAM

PROGRAM PASCALSYSTEM;
VAR
SYSCOM: SYSCOMREC;
CH:CHAR;

Page 213

PROCEDURE CLEARSCREEN: FORW ARD ;

SEQMENT PROCEDURE USERPROGRAM;
BEGIN
END;
SEGMENT PROCEDURE COMPILER;
VAR

SY,OP: INTEGER ;
SYMCURSOR : INTEGER;

PROCEDURE INSYMBOL; FORWARD;

SEGMENT PROCEDURE COMPINIT;
VAR
I,J:INTEGER; -
BOOL:BOOLEAN;;
BEGIN

i;;1;
CLEARSCREEN; --LINE C
INSYMBOL;

END;
PROCEDURE INSYMBOL;
BEGIN ... END;

PROCEDURE BLOCK;
BEGIN ... END;
BEGIN (¥COMPILER*)

COMPINIT; _-LINE B
INSYMBOL;

END; (¥COMPILER#*)

SEGMENT PROCEDURE EDITOR;
BEGIN ... END;

PROCEDURE CLEARSCREEN
BEGIN

WRITE (~-r);
END;

BEGIN (*PASCALSYSTEM®)
REPEAT
READ(CH);
CASE CH COF
C:COMPILER; mmmmmmm—===mm===——==-====-o===== LINE A

Page 214

E:EDITR;
U: USERPROGRAM

END(*CASE®)
UNTIL CH = 'H'
END.

Page 215

-- Notes --

Page 216

J3 33 I 060 006 JEIEE 06 063 36 B JIE JHE I M NEH

* BYTE-SWAPPING * * Section 3.6 *
BRERBRRRRIINNINIE RRRRERENRRRRRRR

Version II1.0 February 1979

Byte-swapping problems occur when code generated on one machine
is transferred to another or programs which directly interface with
memory (e.g. the Patch utility) are written on or for one machine and
transferred to another which has a different ordering for its memory.

There are two different ways to order bytes in a given memory:
A) Byte Zero is the byte containing the least significant

half of the word. Byte One contains the most significant
half.

B) Byte Zero is the byte containing the most significant
half of the word. Byte One contains the_least significant
half.

The difference between these is the way Byte quantities are
read and stored in memory. Word quantities, such as integers, will be
read and looked at in the same way on poth types of machines. However,
byte quantities such as P-code or characters will be reversed within
each word.

An example:
DEF INITION (R) (B)
1s* ms¥* ms¥* 1s¥*
VALUE(Hex) ! o4 ! o7 ! ! 07 ! O4 -:
BYTE 0 1 0 1 h

(least/most significant bit, thereby least/most significant byte)

1f both of the words shown above were read as an integer , a
word quantity, they would give the value 3,588. However, if the value
of byte Zero was wanted (as in: C: PACKED ARRAY[O..1] OF CHAR;) then
Definition A would show a value of OUH and Definition B would show a
value of OTH. Both definitions would show the value O7TH if the most
significant byte were specified.

Byte-swapping is not a hard problem to solve, it just requires
a little thought. The Patch utility has type declarations for both
types of machines and a study of it should suffice to show how to

satisfy your programming needs.

Page 217

-- Notes --

Page 218

I I 16 0626 I 3636 U060 JEE 36 26 36 36 36 36 06 36 36 36 3¢ 3¢

0 0 P S % % Section 4.1 ¥
BRMMMIIN NN RN I I NN

Out Of Place Section

Page 219

-~ Notes ==

Page 220

AN E IEIE0 I 0 T 06 06 060630 UHIK DG 606 36 36 36 6 06 36 96 36 3¢ ¢

% LIBRARIAN UTILITY * * Section 4.2 *
JHMERII IR NI IR IR RN NN RRR

Version I1I.0 February 1979

LIBRARY.CODE is a utility program that allows the user to link
separately compiled PASCAL units and separately assembled subroutines
into a LIBRARY file. It is based upon the original pre-I.5 utility
LINKER.CODE and operates in basically the same way.

To add a segment to *SYSTEM.LIBRARY it is necessary to create a
new file into which each segment that is wanted from the original
#SYSTEM.LIBRARY is first linked. It is then possible to add segments
by linking from another code file into the new file being created.

EXAMPLE

Consider the case of adding a segment called TURTLE to the
already existing file #SYSTEM.LIBRARY which is assumed to contain the
segments PSGRAPHICS and MOVETO.

On executing LIBRARY.CODE, the user is prompted for the name of
the output codefile. For this example, respond with the name
NEW.LIBRARY. The program now asks for a 'Link Code File'. The
response here is #SYSTEM.LIBRARY. The names of all segments currently
linked into the input library, i.e. #SYSTEM.LIBRARY, as well as their
length in bytes is now displayed. Currently there are a maximum of 16
segments in any PASCAL program or LIBRARY.

0- MOVETO 2398 4- 0 8- 0 10- 0
1- PSGRAPHI 864 5- 0 9- 0o 1- 0
2= 0 - 0 10~ 0 14- 0
3- o T7- 0 11- 0 15- 0

The following promptline appears: |
Segment # to link and <space>, N(ew file, Q(uit, A(bort

The user now enters the number of a segment within the link
code file that is to be linked into the new library file, followed by
<{space>. Next, the number of the segment in the output file to be
linked into (i.e. NEW.LIBRARY) is typed followed by <space>. For each
segment linked the librarian reads that segment from the input file and
writes it to the output file at the segment requested. It then
displays the segment table for the current state of the output library
file. In this example, respond with the following:

Page 221

0<space>
Seg to link into? 0<space>
1<{space>
Seg to link into? 1<space>

when all needed segments have been linked a new input file is
requested by typing 'N' for N(ew file. In this example, a separately
compiled PASCAL UNIT called TURTLE is assumed to exist in a codefile
called TGRAPHICS.CODE. See section 3.2, UNITS. On entering the name
of this file the following display appears:

0- 0 U4- 0 8- 0 10- 0
1- 0 65- 0 9- 0 1M- 0
2- 0 6- 0 10- TURTLE 230 14- 0
3- o T7- 0 11- 0 15- 0

The Unit TURTLE occurs in segment 10 and is to be linked into
segnent 2 within NEW.LIBRARY. The user responds:

10<space>
Seg to link into? 2<{space>

The final display of the output library segment table is thus:

0- MOVETO 2398 4- 0 8- 0 10- 0
1- PSGRAPHI 864 5- 0 9- 0o 11- 0
2- TURTLE 230 6- 0o 10- 0 14- 0
3- o 7- 0o M- 0 15- 0

The output library codefile length is displayed and in this
example is 16 (blocks long).

Once the needed segments from all input files have been linked
in the user locks the output file by typing 'Q' followed by a return,
(unless a copyright notice is desired within the codefile). Type A
to abort the linking process. The old #SYSTEM.LIBRARY should either be
removed or its name changed if it resides upon the same disk and the
name NEW.LIBRARY must be changed to #SYSTEM.LIBRARY in order to be
used.

Page 222

NOTE

In response to the initial prampt "Output Code File ->" we
could have just as easily said *SYSTEM.LIBRARY followed by another
#SYSTEM.LIBRARY in response to the prompt "Link Code File ->".
However, in this case the original #SYSTEM.LIBRARY will be removed
automatically upon completion of the linking process. Typing just *
is a sufficient abbreviation for ¥*SYSTEM.LIBRARY.

Page 223

-- Notes ==

Page 224

36960 96 96 96 36 36 06 96 36 36 36 36 96 96 36 96 36 36 36 06 6 96 6 06 96 36 36 36 3¢ 3 X ¢ 2696 36 96 96 36 3 36 16 96 36 3 3 3¢ %

* SETUP - SYSTEM RECONFIGURATION * ¥ Section 4.2 *
PPt PR TP TTTTE S DR ALl bbb

Version I1I.0 March 1979

The UCSD Pascal Operating System keeps certain information
about the user in a file called SYSTEM.MISCINFO. During each system
initialization this file is read into memory, and from there it is
accessed by many parts of the system, particularly (if the user has a
terminal suitable for it) by the screen oriented editor.

Much of this information needs to be initially set up by the
user to conform to his particular hardware configuration or his taste
or convenience. Most of this information concerns the nature of his
terminal and keyboard, although there are a few miscellaneous fields.

SETUP is run like any other compiled Pascal program, by
entering the Command level of the system, typing X for eXecute and
typing the filename SETUP followed by a carriage return. You should
see the following (user input underlined):

Execute what file? SETUP
INITIALIZING. ceoveerenocvoscnces

oooooooooooooooooooooo

If this does not happen it may be because the setup program is
not on the disk. If so, the system will display the message

no file SETUP.CODE

If neither of the above happens, something is drastically wrong.
Contact UCSD. Assuming all is well, continue.

A1l commards to the SETUP program are invoked by typing a
single letter chosen from the promptline.

SETUP: C(HANGE) T(EACH) H(ELP) Q(UIT)

Type 'H' to find out what the commands at this level do. The
program is self teaching, so the rest of this document explains the
information SETUP was designed to change.

SETUP does not tell the system how to do random access cursor
addressing on the user's terminal (for those terminals which have this
capability). To allow the system to use that feature, please refer to
Section 4.7 of this document package.

Page 225

4.3.1 MISCELLANEOUS INFORMATION

It is interesting to note that on all PDP-11 systems, the key
which generates ASCII DC1 (or control-R); functions as an alpha-lock.

HAS CLOCK

Values: TRUE, FALSE

A real time clock is available. A real time clock module, such
as the DEC KW11, may pe found on many processors. It is assumed to be 2
line frequency (60 cycle) clock. If available it is used by the PASCAL
system to optimize disk directory updates. See section 2.1.6 TIME intrinsic.

STUDENT
Values: TRUE, FALSE :
If true, tells the system to simplify certain parts of the

system for novice use. E.g., an error detected while compiling sends
student back to the editor without choice.

HAS 8510A
values: TRUE, FALSE
The system is running on a Terak 8510a hardware configuration.

HAS BYTE FLIPPED MACHINE

Values: TRUE, FALSE

True if low order byte is in bits 0-7 of words on your
processor. (PDP11, 8080, 6502, FALSE. 9900, 6800, GAHUO, TRUE)

HAS WORD ORIENTED MACHINE

Values: TRUE, FALSE

True if sequential addresses address sequential 16 bit words,
False if sequential addresses address sequential 8 bit bytes.

4.3.2 GENERAL TERMINAL INFORMAT ION

HAS SLOW TERMINAL

Values: TRUE, FALSE.

When this field is true, the system issues abbreviated
promptlines and messages.

Suggested setting: 600 baud and under -- True, otherwise False.

HAS RANDOM CURSOR ADDRESSING

Values: TRUE, FALSE

Only applies to video terminals. See Section 4.7 in order to
allow the system to make use of this feature.

HAS LOWER CASE
Values: TRUE,FALSE

SCREEN WIDTH
The number of characters per 1ine of a terminal.

SCREEN HEIGHT
: The number of lines per display screen of a video terminal.
Set to 0 for a hard copy terminal or other terminal in which paging is

Page 2%

not appropriate.

NONPRINTING CHARACTER
Values: Any printing character. ;
What should be displayed by the terminal to indicate the
presence of a non-printing character.
Recommended setting: ASCII "?2".

VERTICAL MOVE DELAY

The number of nulls to send after a vertisal cursor move. Many
types of terminals require a delay after certain cursor movements which
enables the terminal to complete the movement before the next character
is sent. This number of nulls will be sent after carriage returns,
ERASE TO END OF LINE, ERASE TO END OF SCREEN and MOVE CURSOR UP.

4.3.3 CONTROL KEY INFORMATION

The user may choose which control keys suit his particular
keyboard arrangement and his taste.

Some Keyboards generate two codes when some single key is
pressed. If that is the case for any of the keys mentioned here, it
must be noted in the field PREFIXED [<fieldname>] which has either the
value TRUE or the value FALSE. The prefix for all such keys must be
the same and must be noted in the field LEAD IN FROM KEYBOARD. This
feature may also be used to access control functions with two-
character sequences if a user's keyboard is unable to generate many
control characters. As an example, suppose the user's keyboard had a
vector pad which generated the value pairs ESC "y", ESC "D", ESC "L"
and ESC "R" for the keys for Uparrow, Downarrow, Leftarrow and
Rightarrow, respectively. Assume also that all other keys on the
keyboard generate only single codes. Then the user would give the
following fields the following values:

KEY FOR MOVING CURSOR UP ASCII "U"
KEY FOR MOVING CURSOR DOWN ASCII "D"
KEY FOR MOVING CURSOR LEFT ASCII "L"
KEY FOR MOVING CURSOR RIGHT ASCII "R"
LEAD IN KEY FOR KEYBOARD ESC

PREF IXED[KEY FOR MOVING CURSOR UP] TRUE
PREFIXED[KEY FOR MOVING CURSOR DOWN] TRUE

PREF IXED[KEY FOR MOVING CURSOR LEFT) TRUE
PREFIXED[KEY FOR MOVING CURSOR RIGHT] TRUE

KEY FOR STOP

Console output stop character. The STOP character is a toggle;
when pressed, the key will cause output to the file '"QOUTPUT' to cease.
When the key is depressed again, the write to file 'OUTPUT' will resume
where it left off. This function is very useful for reading data which
is being displayed faster than one can read.

Suggested setting: ASCII DC3

Page 227

KEY FOR FLUSH
Console output cancel character. Similar in concept and usage
to the STOP key, the FLUSH key will cause output to the file 'QUTPUT!
to go undisplayed until FLUSH is pressed again or the system writes to
file 'KEYBOARD'. Note that, unlike the STOP key, processing continues
uninterrupted while output goes undisplayed.
Suggested setting: ASCII ACK

KEY FOR BREAK
Typing the character BREAK will cause the program currently
executing to be terminated with a run-time error immediately.
Suggested setting: Something difficult to hit accidentally.

KEY TO END FILE -

Console end of file character. When reading from the files
KEYBOARD or INPUT or the unit 'CONSOLE:', this key sets the Boolean
function EOF to TRUE. See section 2.2.4 EOF intrinsic.

Suggested setting: ASCII ETX

KEY TO DELETE CHARACTER
Each time you press this key one character is removed from the
current line, until nothing is left on that line.
Suggested setting: ASCII BS

KEY TO DELETE LINE

Depressing LINE DELETE will cause the current line of input to
be erased.

Suggested setting: ASCII DEL

The rest of this section contains information
only of interest to users who are using video
display terminals with a selective erase
capability and may be safely ignored by users
having any other kind of terminal, such as
hardcopy terminals or storage tube terminals.

KEY TO MOVE CURSOR UP
KEY TO MOVE CURSOR DOWN
KEY TO MOVE CURSOR LEFT
KEY TO MOVE CURSOR RIGHT

These keys are used by the screen oriented editor to control
the basic motions of the cursor. If the keyboard has a vector pad, set
these fields to the values it generates, otherwise, we suggest
choosing 4 keys in the pattern of a vector pad and use the control
codes which correspond to them, for example the keys '0', '.', 'K and
';' on most keyboards encircle an imaginary vector pad. You may wish
to use a prefix character before such keys as described above.

Page 228

EDITOR ESCAPE KEY

The key which, in the system screen oriented editor, is to be
used to escape from commands, reversing any action taken.
Suggested setting: ASCII ESC

EDITOR ACCEPT KEY

The key which, in the system screen oriented editor, is to be
used to accept commands, making permanent any action taken.

Suggested setting: ASCII ETX

4,3.4 VIDEO SCREEN CONTROL CHARACTERS

This section describes the characters which, went sent to the
terminal by the computer, controls the terminals actions. Yoou should
consult the manual for your terminal to find the appropriate values.
If a terminal does not have one of these characters, the field should
be set to O unless otherwise directed.

Sane screens require a two character sequence to exercise some
of their functions. If the first character in all of these sequences
is the same, it can be set as the value of the field LEAD IN TO SCREEN
and for each <fieldname> which requires that prefix, the user must set
the field PREFIX[<fieldname>] to TRUE. For example, suppose ERASE TO
END OF LINE and ERASE TO END OF SCREEN were respectively performed by
the sequences ESC "L" and ESC "S" but all the other screen controls
were single characters. The user would then set the following fields
to the following values:

LEAD IN TO SCREEN ASCII ESC
ERASE TO END OF LINE ASCII "L"
ERASE TO END OF SCREEN ASCII "3"
PREFIXED[ERASE TO END OF SCREEN] TRUE
PREFIXED[ERASE TO END OF LINE] TRUE.

ERASE TO END OF SCREEN
The character which erases the screen from the current cursor
position to the end of the screen.

ERASE TO END OF LINE

The character which, when sent to the screen, erases all
characters from the current cursor position to the end of the line the
cursor is on.

ERASE LINE
The character which, when sent to the screen, erases all the
characters on the line the cursor is currently on.

ERASE SCREEN

The character which, when sent to the screen, erases the entire
screen.

BACKSPACE
The character which, when sent to the screen, causes the cursor
to move space to the left.

Page 229

MOVE CURSOR HOME

The character which moves your cur sor to the upper lef

current page. IMPORTANT: If your terminal does not have such a
character, set this field to CARRIAGE RETURN, ASCII mnemonic CR.

MOVE CURSOR UP
MOVE CURSOR LEFT

The characters which move your cursor non-destructively one

space in those directions.

4.3.5 QUIT

The quit mode of SETUP gives many options: Memory update, which

places the definitions in the memory cells which are appropriate.

Disk update, which creates the file NEW.MISCINFO. Return, which takes
to the Pascal

the user back to setup, and Exit, which returns the user
command level.

fFor-3hy 3 6 QUICK REFERENCE SUMMARY
N4 |BACKSPACE

AC_ |EDITOR ACCEPT KEY
ng;é;if}?.DITOR ESCAPE KEY
|- |ERASE LINE

p__z- ERASE SCREEN

" ERASE TO END OF LINE
= |ERASE TO END OF SCREEN
& THAS 85104

HAS BYTE FLIPPED MACHINE

-

F~ HAS SLOW TERMINAL
~F__|HAS WORD ORIENTED MACHINE
. TKEY FOR BREAK

" AF_|KEY FOR FLUSH
'AS | KEY FOR STOP
" AR | KEY TO DELETE CHARACTER
" vew |KEY TO DELETE LINE
_ Ac__|KEY TO END FILE
A3 KEY TO MOVE CURSOR DOWN
~ AW KEY TO MOVE CURSOR LEFT
AL |KEY TO MOVE CURSOR RIGHT

A 'KEY TO MOVE CURSOR UP
- "TLEAD IN FROM KE YBOARD
"2 _ILEAD IN TO SCREEN
Ao | MOVE CURSOR HOME
“w[__IMOVE CURSOR RIGHT

~ ¢ TMOVE CURSOR UP

“ 7 | NON PRINTING CHARACTER

N
i
!
|
{
|

Page 230

t of the

l

|

;
PREFIXED [DELETE CHARACTER] LR
PREFIXED [EDITOR ACCEPT KEY] _F
PREFIXED [EDITOR ESCAPE KEY] =
PREFIXED [ERASE LINE] . E
PREFIXED [ERASE SCREEN] =
PREFIXED [ERASE TO END OF LINE] TR
PREFIXED [ERASE TO END OF SCREEN] = F
PREFIXED [KEY FOR BREAK] LB
PREFIXED [KEY FOR FLUSH] B
PREFIXED [KEY TO MOVE CURSOR DOWN] _ F

PREFIXED [KEY TO MOVE CURSOR LEFT] _ I
PREFIXED [KEY TO MOVE CURSOR RIGHT]
PREFIXED [KEY TO MOVE CURSOR UP] ~ T
PREFIXED [KEY FOR STOP] F

PREFIXED [KEY TO DELETE CHARACTER] . F

PREFIXED [KEY TO DELETE LINE] : -
PREFIXED [KEY TO END FILE]

PREFIXED [MOVE CURSOR HOME] __F
PREFIXED [MOVE CURSOR RIGHT] L
PREFIXED [MOVE CURSOR UP] L F
PREFIXED [NON PRINTING CHARACTER] _ F .
SCREEN HEIGHT <.
SCREEN WIDTH _ 80
STUDENT __F
VERTICAL MOVE DELAY -

Page 231

-~ Notes --

Page 232

360606 306 3006 98 06 96 96 3 30 36 96 36 96 36 96 136 36 36 36 3% 3 9 3¢ 96 36 36 3¢ 3¢ %

BOOTSTRAP COPIER * # Section 4.4 ¥*
BHIIIIMI I N NI IE I IIE DI 0TI RN

Version I.5 September 1978
The bootstrap copier BOOTER.CODE asks for the unitnumber of the
volume on which to write the bootstrap. Refer to Table 5 for a list of
volume numbers. It will then ask for a file name to write as the
bootstrap. It writes the first two blocks of that file, so in order to
copy the bootstrap from an existing disk, give it the diskname, and it
will copy the bootstrap from the disk named to the unit numbered.

To execute the BOOTER program, type X BOOTER to Command level
(assuming that there a copy of BOOTER.CODE on the disk).

Page 233

-- Notes =--

Page 234

PrrrTTTTTaR T IR A L A 20 L by

PATCH * ¥ Section 4.5 ¥
e T T T 1 2 1 1

Version I.5 September 1978

PATCH is a utility which was written as a personal piece of
software, and has become part of the soul of the system. Even in the
wonderful world of Pascal programming, it seems that the need to see
disk blocks in the not so wonderful world of HEX remains. The
usefulness of this proves itself over and over again. Usually this
pertains to studying the output of a Pascal program which has created
a file of some structured type, however the data in the output file
just doesn't seem right. Patch comes to the rescue. Patch lets you
see just exactly what bits are where, and even lets you change them to
be the way they should be.

On X(ecuting PATCH, the promptline is
C(onsole, P(atchwrite, W(holewrite, Q(uit
The options available are:
Working with, and altering the file in the C(onsole mode.

Dumping the file in a Hex, Decimal, Octal, or ASCII format, in
the P(atchwrite mode.

Dumping/concatenating and/or moving blocks in files with the
W(holewrite mode.

Leaving PATCH with the Q(uit commamd.

In the C(onsole mode, the promptline changes with each command.
The promptline always reflects the commands available at any given
time, and no more. The full promptline is:

Patch: R(ead, S(ave, H(ex, M(ixed, G(et, Q(uit [nn]

The number in square brackets at the end of the prompt is the current
block being patched. The first command to use is G(et. G(et will
prompt

Filename: <cr for unit i/o>

Page 235

Respond to this prompt with the name of the file to be
patched. If the disk/device has no directory, or has some problem with
the directory, reference it by its Pascal unitnumber. Type a carriage
return to this prompt, and the prampt is:

Unitnum to patch [4,5,9..12] (0 will Quit)

Having typed a successful entry to one of the two above prompts; the
prompt will now be extended by the R(ead command. R(ead will read up a
block from the file/unit. The prampt on entering R(ead command 1is

BLOCK:

Respond with a block nunber in the file/unit specified. There
is no range checking provided on this read, so exercise care in the
number typed. The promptline is now extended with H(ex, M(ixed and
the block number in square brackets. H(ex and M(ixed display the
block read. Using the H(ex command displays the block entirely in
hexadecimal characters, using the M(ixed command will display printing
ASCII characters where possible, and hexadecimal values elsewhere.

The promptline is:

Alter: H(ex, T(ext, S(tuff, Q(uit

The vector Kkeys on the terminal causes the cursor to move
around in the data, notice that there the cursor will remain only on
the data, and will not move off the data. On terminals without vector
keys, or poorly done setups, the character - motion table is as
follows:

- up

down
left
right

o NCa
]

Typing a hexadecimal character changes the character the cursor
is over provided that only one or more of the data positions is
changed, when Q(uitting from Alter mode, the Patch promptline will be
extended with the S(ave command. Typing S(ave writes the changed data
back to from where it was read. In the Alter mode, there is one
optional command: S(tuff. Typing the S(tuff command displays the

promptline:
Stuff for how many bytes:

Key a number fram 0 to 512. Type carriage return to cause
patch to accept the number, the promptline changes to:

Page 236

Fill with what hex pair:

Key a byte value in hexadecimal. The data reappears on the
screen, with the number of bytes specified, from the position of the
cursor filled with the data value specified, to the hex pair prompt.

Using the Patchwrite command causes a full screen prompt to
appear:

This procedure writes out sequential blocks to any file as a patch
dump. Type the prefix character of the option to be changed. Type 'P'
to PRINT, 'Q' to QUIT.

A(Input File
B(Begin Block #
C(Num. of Blocks

E(Output File

G(Hexadecimal
H(ASCII

I(Decimal

J(Octal

K(Decimal Bytes
L(Octal Bytes
M(Krunch

N(Double Space

Following each of the fields is the current value of that
field. Typing the character in front of the field places the cursor
after the field, and removes the current value. Typing 'Y' or 'T' sets
a boolean value to True, any other character sets the field to False.
The Input File and Output File fields require a filename to be typed
followed by carriage return. The integer fields (Begin Block, and Num.
of Blocks) require a number to be typed followed by carriage return or
space. Any other character sets the value of the field to some
unspecified value.

The other options at the Patchwrite level are Print and Quit.
Both cause Patch to return to the outer level. Qit does it straight
away, Print dumps out the file in the requested format on the way. The
options available for the dump need to be selected, the default is
none. The options Krunch and Double Space affect the formatting of the
output. Krunch, when true, removes blank 1ines between logical output
lines. Double Space when true, double spaces all output.

Page 237

Using the W(holewrite command causes the full page prompt:

This procedure writes any number of blocks from an existing file
to a new file, unchanged. Simply specify the necessary parameters
Type 'P' to PUT, 'Q' to QUIT .

I(nput File
S(tart Block
N(umber of Blcks

O(utput File

The protocol for changing the fields at this level is the same
as that for the Patchwrite level. The Wholewrite level is that which
allows one to mix/match and mingle files. Put and Quit both cause
Patch to return to the outer level, Put writes to the file on its way,
Quit does not.

Notice that the Patchwrite and Wholewrite levels remember their
vital parameters across sessions (while remaining in Patch). The
Console level will clear all memory of the session. The Patchwrite
level paginates its output, after each block written, a form-feed is
generated. (Specifically PAGE (OUTPUTFILE)).

Page 238

U TETE T30 230 0600 0600 00 00 00 06 06 06000606 0606 26 06 06 30 00 00 0060 0006 06 NN N

RT11 to PASCAL CONVERSION KIT * * Section 4.6 ¥
T Tttt e A T 2 A I 22 it L bt

Version I.5 September 1978

The utility file labeled RT11TOEDIT is intended for use with
RT-11 disks. It assumes the presence of an RT-11 directory spanning
blocks 6-7. Wien the file is executed it asks the user to specify the
Pascal system unitnumber of the volume of which the user wants to view
the directory. Once a legal on-line unit has been specified,
RT11TOEDIT reads each entry on blocks 6-7. The program uses the
UNITREAD intrinsic to read the directory and does not open the file in
the usual manner. It lists on the screen the entire contents of the
directory. For each entry it specifies the file title, file kind, the
size of the file in blocks, and the starting block location of the file
(in base 10). All unused portions are identified as such. The user
will be prompted for an RT-11 file name, a Pascal system file name, and
finally a mode of transfer.

Page 239

-- Notes --

Page 2u0

0036 9606 696 36 00 000 00 06 JE 6600 D00 1696 06 36 996 06638 3 3 ¥

GOTOXY BINDER * # Section 4.7 ¥
SERERERN IR IR NN RN

Version I.5 September 1978

This program alters the SYSTEM.PASCAL on the default P(refix
disk. It prompts for 'local GOTOXY', a procedure which must be
created and bound into the system (only once) in order to make the
system communicate correctly with the screen.

An ex ample of a GOTOXY procedure for a relatively stupid
terminal follows. More intelligent terminals will require less effort
to have the proper cursor addressing happen. It is suggested that you
might want to fill an array or string with the appropriate characters
to cause your terminal-to do its absolute addressing, and then
UNITWRITE the stream all at once. This will improve the performance
of the screen editor noticably. An example of this for the Datamedia
1520 follows the example for the DECscope VT-50.

If the GOTOXY cursor-addressing scheme for the terminal is not
there, create one. The procedure may not be named GOTOXY because
this identifier is predeclared at the "$U-" level of compilation.

Possible error: Fix:

Nil memory reference at Remove the program heading
compile time and try again

Value range error when executing (*$U-%*) should be the first
BINDER thing in the GOTOXY file

Assumptions:
1.) A screen terminal
2.) A PASCAL system
3.) The upper left-hand corner of the screen is X=0, Y=0.
L4.) GOTOXY corrects for bad input data.
See Section 2.1.2 for more information on GOTOXY.
EXAMPLE:

(*$U-,S+%) (¥ the psuedo comments inform the compiler of the correct
state to be in for compiling this little routine ¥)

Page 241

PROCEDURE MYGOTOXY (X, Y: INTEGER);
(* the procedure must NOT be called GOTOXY *)
BEGIN
(* check the input data to see that it is within the screen
dimensions, on some smarter terminals, if a cursor position
command is sent for a position that does not exist, the
results are unpredictable *)
IF X < O THEN X := 0
ELSE
IF X > 79 THEN X := 79;
IFY<COTHEN Y := 0
ELSE
IF Y > 11 THEN Y := 113 .
(* for a DECscope VT-50, GOTOXY needs to be implemented by: *)
(* send the cursor home, 0,0 ®)
WRITE(CHR(27),'H");
(* while TAB is meaningful, use it to move the cursor ¥)
WHILE X > 8 DO
BEGIN
WRITE(CHR(9));
X := X=8;
END; .
(% finish off what portion of the x coordinate could not be absorbed
with TAB characters ¥)
WHILE X > 0 DO

BEGIN
WRITE(CHR(27),'C");
X 1= X=1

END;

(* send line-feeds to access the y coordinate *)
WHILE Y > 0 DO

BEGIN
WRITE(CHR(10));
Y := Y-
END
END;
BEGIN

(* this dummy body of the operating system is needed to keep the
Pascal compiler happy about having complete programs to compile.
The method used for 'binding' the GOTOXY procedure is somewhat
unclean, and only the code for the above procedure is used by
the binder to add to SYSTEM.PASCAL %)
END. . '

(*$U-, S+#)

{,PR(EEDURE ITSGOTOXY (X, Y: INTEGER);
AR
T: PACKED ARRAY[O0..2] OF CHAR;
BEGIN
T{0] := CHR(30); (* RS is Datamedias absolute cursor address flag ®)

Page 2U2

(% set appropriate character for x coordinate *)
IF X < 0 THEN T[1] := CHR(32)

-~ ELSE
IF X > 79 THEN T[1] := CHR(32+79)

ELSE

T[1] := CHR(X+32);

(* set appropriate character for y coordinate %)
IF Y < 0 THEN T[2] := CHR(32)

ELSE
IF Y > 23 THEN T[2] := CHR(32+23)

ELSE ° .
T[2] := CHR(Y+32);
(* send the cursor where it belongs..... WHAPPO! *)

UNITWRITE(1,T,3)
END;
BEGIN
(% same comment applies ¥*)
END.

Page 243

-- Notes ==

Page 2ul

FE3E 36300696 36 0630 36 3006 36 36 3636 36 06 06 38 96 36 96 96 96 36 9636 3696 36 36 36 696 36 36 96 36 36 36 36 26 3¢ ¢ 3¢ 3¢ 3

% DUPLICATE DIRECTORY UTILITIES * * Section 4.8 *
B0 IS0 0E 0000600 00000000000 060000 000000 000 D000 06 6.0 96 000 6600

Version 1.5 September 1978
COPYDUPDIR

This program will copy the duplicate directory into the primary
directory location. If the disk is not currently maintaining a current
directory the program will tell you so. To use this program e(x)ecute
COPYDUPDIR. The program will ask for the drive in which the copy is to
take place (4 or 5). If no duplicate directory is found it will tell
you after you indicate the drive unit. If the duplicate is found then
it will ask you if you are sure you want to destroy the directory in
blocks 2-5. A 'Y' will execute the copy, any other character will
abort the program.

MARKDUPDIR

This program will mark a disk that is currently not maintaining a
duplicate directory so that it will. Caution must be exercised to be
sure that blocks 6-9 are free for use. If they are not one must re-
arrange the files as to make them free. One can tell if there
available by getting an E)xtended listing in the Filer and checking to
see where the first file starts. If the first file starts at block 6
or the first file starts at block 10 but there is a 4 block unused
section at the top, then the disk has not been marked. If however, the
first file starts at block 10 and there is no unused blocks at the
beginning of the directory then the disk has been marked.

SYSTEM. PASCAL 31 30-Aug-78 6 Codefile
OR

<unused> y 6

SYSTEM.PASCAL 31 30-Aug-T78 10 Codefile

Both of the above cases indicate disks that have not been
marked. Below is the directory of a properly marked disk.

Page 245

SYSTEM. PASCAL 31 30-Aug-T8 10 Codefile

To execute this progran e(X)ecute MARKDUPDIR. The program will
ask you which unit contains the disk to be marked (4 or 5). The
program will check to see if it thinks that the blocks 6-9 are free. If
the program doesn't think so it will ask you if you are sure they are
free ? Typing 'Y’ will execute the mark, any other character will abort
the program. Be sure that the space is free before marking it as a
duplicate directory.

Page 246

T 006060006 J6 06 06003006 200606 00 06 0696 26 3038 030 96 9696 36 30 36 3036 06 36 36 36 ¢

P-CODE DISASSEMBLER * * Section 4.9 *
TIPS PR A A R T AR i il

Version I.5 September 1978

The disassembler reads a standard UCSD code file and outputs
symbolic psuedo-assembly (P-Code) along with various statistics
concerning opcode frequency, procedure calls, and data segment
references. The disassembler was originally written to collect
statistics on opcode frequency, etc. as an aid in making architecture
improvements. It has since been found helpful in debugging
interpreters, optimizing programs, and provides a source of further
information regarding some of subtleties of our implementation of
Pascal. All statistics gathered are collected by making a pass
through the code file instead of collecting them while the code file
is actually running.

4.9.1 DISASSEMBLY

The Disassembler reads a code file that has been generated by
the UCSD Pascal Compiler. If a program USES a UNIT the disassembly
will include the UNIT only if the code file has been linked. Assembly
routines linked into a Pascal host will never be included in the
disassembly.

The Disassembler is invoked by eXecuting DISASM.I5 and requires
the file OPCODES.I5 to be on the system disk. The Disassembler will
first prompt for an input code file, the suffix .CODE being assumed
and thus not required. The next question refers to the byte sex of
the machine the code file is intended to run on, that is whether the
first physical byte (byte 0) of a machine word is the most significant
byte of the word. For more information, see section 3.6 BYIE-
SWAPPING. For the PDP-11 and the 8080 families, physical byte 0 is
the least significant byte. Next the prompt will be for an output
file for the disassembled output. Since the output file is untyped,
CONSOLE: or PRINTER: (if it is on-line) may be used. The final
question at this stage is whether the user wishes to take control of
the disassembly, i.e. decide which procedures are disassembled as
opposed to all the procedures in the file.

The following question regards the collection of statistics on
references to a particular Procedure's data segment. Should you
decide to control the disassembly you will be warned that all
statistics gathered are only gathered on those procedures which are
disassembled. Next you will be taken into the Segment Guide. This
level displays the segments you have by name and lets you decide on
which one you are interested in. The Procedure Guide follows to let
you decide on the particular procedure(s) that you wish to
disassemble. Typing an "L" at this point will list the procedure(s)

Page 2U7

contained in this segment. A more complete description of this step
occurs in the next section. The Segment Guide may be re-entered by
typing "Q" in the Procedure Guide. Thus in this manner you may
disassemble several procedures in several different segments without
disassembling the entire file. The Segment Guide is exited by typing
"Q"_

N 1:D 0 (%$L CONSOLE:*)
t2 1 1:D 1 PROGRAM DISASMDEMO;
'3 01 1:D 3 VAR I:INTEGER;
A S 1:D y TOMORROW : BOOLEAN §
15 1 1:D 5 COMMENT: STRING;
161 1:C 0 BEGIN
Y 1:C 0 I:=0;
P8 1 1:C 5 TOMORROW: =FALSE;
P9 1 1:C 8 REPEAT
110 1 1:C 8 I:=I+1;
1111 1:C 13 WRITELN('Disassembly -- a step backwards...');
112 1 1:C 74 UNTIL TOMORROW;
1131 1:C 77 END.
i
FIGURE 1 SAMPLE PASCAL PROGRAM
| BLOCK # 1 OFFSET IN BLOCK= O
'SEGMENT PRQC OFFSET# HEX CODE
' 1 1 0(000): BPT 7 D507
i 1 1 2(002): SLDC 0 00
' 1 1 3(003): SRO 3 ABO3
i 1 1 5(005): SLIC 0 00
' 1 1 6(006): SRO 4 ABOY
! 1 1 8(008): SLDO 3 EA
! 1 1 9(009): SLDC 1 01
| 1 1 10(00A): ADI 82
' 1 1 11(00B): SRO 3 ABO3
d 1 1 13(00D): LOD 1 3 B60103
' 1 1 16(010): LCA 42 'Disassembly -- a step backwards..
]
' 1 1 60(03C): SLDC 0 00
! 1 1 61(03D): CXP WRITESTR CD0013
' 1 1 6u(ouo): CSP TOCHECK 9E0O
| 1 1 66(0U2): LOD 1 3 B60103
i 1 1 69(ou5): CXP WRITELN CD0016
\ 1 1 72(048): CSP IOCHECK SE00
| 1 1 7u(04a): SLDO y EB
! 1 1 75(0uB): FJP 8 ATF6
d 1 1 T7(O4D): RBP 0o Cc100

FIGURE 2 SAMPLE PROGRAM DISASSEMBLED

Page 2u8

Figure 1 displays a sample Pascal program that has been listed
during compilation. Figure 2 displays the disassembled code of the
file generated by the compiler. The left 3 colums in figure 2
correspond to the 3 columns to the right of the line number in figure
1. They are segment number, procedure number, and offset within
procedure, respectively. The offset is also given in hex in
parentheses. A complete description of UCSD P-Code mneumonics is given
in section 3.4. The actual code that exists in the file is given in
hex in the rightmost column. The parameters to CXP's and CSP's are
converted to the procedure name if it is a known system procedure or
function. WRITESTR, WRITELN, and IOCHECK are some examples. The
string operand for LCA is printed as a string as evidenced by the line
with offset 16. Jumps have their operand(s) converted to an offset
from the start of the procedure so that the offset may act as a label.
Thus the 8 displayed in the operand field of the FJP at offset 75
really means a jump to the SLDO at offset 8. This is also true of case
jumps (XJP's). The block number and byte offset of the start of the
procedure are given relative to the start of the code file. Thus this
procedure starts at block 1, offset 0 of the code file. The segment
dictionary resides in block O for all code files.,

4.9.2 DATA SEGMENT REFERENCE STATISTICS

The fourth prompt the Disassembler provides is a question
asking if you would like to keep track of all references to a
particular procedure's data segment. The most common use of these
statistics is in optimization of a given procedure's code file. By
re-arranging the order of declaration of variables one may change the
offset within a data segment that applies to a given variable. For
p-machine architecture reasons the first 16 words offset into the data
segment are the fastest and have optimized 1 byte instructions. Of fsets
from 17 to 127 result in instructions as least 2 bytes long, while
references to greater than 127 require at least 3 bytes. By making the
most frequently used variables have the smaller offsets one may save
considerable code file space and possibly time during execution.

iData Segment size: 45 Data references: 5 Lex level

'For segment DISASMDE Procedure # 1

'0f fset(word) Total %
! 3 3 60.00
! 4 2 40.00

[}
|
]
¥
FIGURE 3 SAMPLE PROGRAM'S DATA SEGMENT STATISTICS

Page 2U9

0

Figure 3 shows the data segment statistics for our sample
progranm. Clearly there is 1ittle to be gained fram optimizing such a
small program but the general idea can still be presented. By using

the compiled listing shown in figure 1 one can match offsets to
variables as such:

variable of fset
I 3
TOMORROW 4
COMMENT 5

Now by using the figures in figure 3 one can Sseeé that offset 3
or the variable I occurs most frequently and thus deserves it's
position. This same idea carried out on a large program may result in
substancial size savings. Notice that offset 6 nevers occurs and thus
is not included in the statistics in figure 3.

The prompt for the output file for these statistics occurs
after the disassembly has been completed. If you elect to collect
these statistics you will be taken into the Segment and Procedure
Guides as described in the previous section except that the prompt
requests the selection of a data segment on which to collect
statistics. In the Procedure Guide, "L" gives a 1isting of all the
procedures in the selected segment by number, lex level, and data
segment size. After the selection of a data segment, processing
continues, as described in the previous section, from the point after
the data segment question.

4.9.3 OPCODE, PROCEDURE CALL, AND JUMP STATISTICS

These statistics are collected as an aid in optimizing the
architecture of P-Code and although they are interesting to look at
they are of no real use to the typical user. For this reason they will
be described only superficially.

Each opcode is given with a complete breakdown of which bit was
most significant for each operand on any given occurrence of the
opcode. These are presented in terms of totals and percentages of the
number of occurrences of the opcode. In addition a histogram of the
opcode occurrence as a percentage of the total number of opcodes
disassembled runs along the righthand margin. There is also a table of
jumps in terms of the number of bits required to represent the distance
of the jump for both positive and negative jumps. Finally there are
counts of all procedure calls listed by segment and procedure number.

Page 250

The last prampt of the program is the file to which these
statistics are to be written.

Page 251

-- Notes --

Page 252

63636 36 36 36 36 96 36 3 638 96 96 96 96 96 36 36 9696 I 36 6 I 96 6 36 3 6 30 3¢ 6 36 3¢ 3¢ 3¢

¥ LIBRARY MAP UTILITY * ¥ Section 4.10 ¥
BRI I I I I 000060 IR0

Version 1.5 September 1978

The program LIBMAP produces a map of a library (or code) file
and lists the linker information maintained for each segment of the
file. In the case of segments which are Pascal.Units the map file
will also contain the interface section of the Unit. See section
3.3.2 for greater detail.

The program first prompts for a library file name. As in the
linker, this may be an asterisk to indicate "*SYSTEM.LIBRARY". The
".CODE" suffix may be suppressed by appending a period to the full
file name.

Example
typing references file
¥ ¥SYSTEM.LIBRARY
FARKLE <FARKLE.CODE
OLD.LIBRARY. :OLD.LIBRARY

Typically, the map utility will be used to list library
definitions but the option is available to include intra-library symbol
references. Should this feature be desired, type a "Y" when queried

for a reference list. A space (or carriage return) is considered a
n N" .

The user is now prompted for an output file name. (".TEXT"
will be appended unless an extra period is used.) Typing just
carriage return defaults outpt to CONSOLE:. Several libraries may be
mapped at the same time. To quit, type a carriage return when
prompted for any file name.

A sample map follows
LIBRARY MAP FOR *SYSTEM.LIBRARY

Segment # 0: PASCALIO separate procedure segment
PASCALIO separate proc P i1
'FSEEK separate proc P i1
FSEEK separate byte reference (once)
FREADREA separate proc P #2
FREADREA separate byte reference (once)
FREADDEC separate proc P #4

Page 253

FREADDEC
FWRITERE
FWRITERE

separate byte reference (once)

separate proc P #3
separate byte reference (once)

FWRITEDE separate proc P #

FWRITEDE
DECOPS

Segment # 1:

DECOPS
DECOPS

GDEC

separate byte reference (once)
separate byte reference (8 times)

DECOPS separate procedure segment
separate proc
global addr p#, Ii40
global addr P #1, I1#0

Segment # 3:
POWER
P OWER

MAGIC separate procedure segment
separate proc P #
separate byte reference (once)

Page 254

(unsigned integer>

e

Cidentifierd

{unsigned constantd

constant identifier —y—"

unsigned number

< O~

Page 255

(constant)

constant identifier

unsigned number

{unsigned number>

—» unsigned inteder | . @

. - et

E | unstigned integer

Page 256

igld ligtd

N -
2

j - |
~’Ldentlﬂer~l-@——f,gpe],, — —

- ———

tv@SE)’[identifier -—@—L- type identifier i

constant | ----’®-O®——’ flg\d list) 3

—

(simple typed

1

type Ldentifler . i— e amm

tdentifler

J |

N\
. L/
o —

Page 257

{Factor>

unsigned constant --n—r¢-
---svartable - 4%
~__4~;Q52££é;“;;;ézzfser ¢ expression

L %{ED———~*expresston--*(i}- =
O ==

expressuon-l(::k'expresslon

- — -

L W

r_.___.,_._T,

”___4::>,__* A —

Lerimd

[%0888

{expresstiond

———-— simple expression

22911

simple expresstion -————-*J

<parameter 1isi’>

identifier

*@" type identifier Jo@—---.

Page 259

et -

 unstgned tnteger

function
tdentifier

procedure |
tdentifier

(statenenty

T expres- ——p

= ston “{
’

¢ expression p) ~ﬂ

statement |

X ,C) | expres= THEN state—| state-
ston ment ELSE ment ‘
—
expres—|
—\ CASE slon 3 —?4<:E§EL;}M
constant | : statement | ’

‘ WHILE expresston|

pa

statement

statement

expresston

~,<:?un lvnrtqble

dentifler

w@‘\:xprussi.on |

Guor)
()

WITH

!
[:—{;xpresslon

t.nt.enem.

-

vartable]

pa

statement ———%

.
I. gned Lnteger

Page 260

blocky

_@ é " unsigned tnteger

O

3 —(r

L_.__J\.__._J

.-(—— tdentifier -@ -@
@

Ldentifler —e{(: —ltupe
| 9

e S

L

SEGMENT procedure
3
‘——-’I procedure
@ statement “v\ END }

Page 261

\j

(campl latlon>

@demttﬂet‘

lﬁ
;
P
s

untt declaration

pan—

PROCEDU

9

o

tdentifier|

-_.@Ncr

I

ke

ON} Ldentifier —'Fnro.neber st

C-que LdentiLiter

page 262

BIMMMII I N JI 2N IR I I I KN B I 26K

TABLE 1 * * EXECUTION ERRORS ¥
I ERRRINR IR NN RN RN

Version I.5 September 1978

0 System error . FATAL
1 Invalid index, value out of range (XINVND&)

2 No segment, bad code file (XNOPRCC)

3 Procedure not present at exit time (XNOEXIT)

y Stack overflow (XSTKOVR)

5 Integer overflow (XINTOVR)

6 Divide by zero (XDIVZER)

Invalid memory reference <bus timed out> (XBADMEM)
8 User break (XUBREAK)
9 System 1/0 error (XSYIOER) FATAL

10 User 1/0 error (XUIOERR)

1" Unimplemented instruction (XNOTIMP)

12 Floating point math error (XFPIERR)

13 String too long (XS2LONG)

14 Halt, Breakpoint (without debugger in core) (XHLTBPT)
15 Bad Block

All fatal errors either cause the system to rebootstrap, or if
the error was totally lethal to the system, the user will have to
reboot. All errors cause the system to re-initialize itself (call
system procedure INITIALIZE).

Page 263

-=- Notes --

Page 264

~N o U =

1
12
13
14

15

PPPTTTTYIT TR TTE I 212220 4

* TABLE 2 * * JORESULTS *
BAENERENMERN RRINNNRRRNNE

Version I.5 September 1978

No error

Bad Block, Parity error (CRC)

Bad Unit Number

Bad Mode, Illegal operation

Undefined hardware error

Lost unit, Unit is no longer on-line

Lost file, File is no longer in directory
Bad Title, Illegal file name

No room, insufficient space

No unit, No such volume on line

No file, No such file on volume

Duplicate file

Not closed, attempt to open an open file
Not open, attempt to access a closed file
Bad format, error in reading real or integer

Ring buffer overflow

Page 265

-- Notes --

Page 266

ERERRRNRRNE RRRRRRERANRRRRN

% TABLE 3 * % UNITNUMBERS *
NN NN NN NN NRWNN

Version I.5 September 1978

NUMBER VOLUME NAME

0 <empty>
1 CONSCLE
2 SYSTERM
3 GRAPHIC
y floppyO
5 floppy
6 PRINTER
7 REMIN
REMOUT
9 block1
10 block2
1 block3
12 blockd

Devices 9 - 12 are block-structured devices, in most cases (RK-05).

Page 207

-- Notes --

Page 265

(31221322 TITIIITT IS 2L 20 Ll

% TABLE 4 * % RESERVED WORDS #
FIM I 1690 3636 06 96 30 3¢ 6 36 96 36 36 30 96 36 ¢

Version 1.5 September 1978

STANDARD PASCAL RESERVED WORDS UcsD RESERVED WORDS

AND
ARRAY
BEGIN
BOOLEAN

UNIT
CASE
CHAR INTERFACE

CONST IMPLEMENTATION

DIV

DO
DOWNTO
ELSE
END
FILE
FOR
FUNCTION
GOTO
IF

IN
INTEGER
LABEL
MOD

NIL

NOT

OF

OR
PACKED
PROCEDURE
PROGRAM
REAL
RECORD
REPEAT
SET
STRING
THEN
TO
TYPE
UNTIL
VAR
WHILE
WITH

SEGMENT
SEPERATE

Page 2069

-- Notes =--

Page 270

RN FI 632006 0036 366 30 06 00 36 9600 JETEHE J6 00 36 I 00 I I

TABLE 5 * # SYNTAX ERRORS IN UCSD PASCAL *
FRN I IR I 0 S 00 I I I N

Version 1.5 September 1978

The syntax errors this compiler gives are not the best it can
do. When time comes available to do so, the error generation of the
compiler is going to be seriously re-vamped .

Error in simple type
Identifier expected
'PROGRAM' expected

')' expected

': ' expected

Illegal symbol

Error in parameter list
'OF ' expected

' (' expected

: Error in type

'[' expected

']' expected

'END' expected

' expected

: Integer expected

'=1' expected

'BEGIN' expected

: Error in declaration part
: error in <field-list>
',' expected

1#' expected
'Interface' expected
'Implementation' expected
'Unit' expected

DN PNV = a3 e 333
§f99rv:af?uocnfacnu1J:uun):aCDuacn-qcm\n.zuurv-a

50: Error in constant

51: ': =' expected

52: 'THEN' expected

53: 'UNTIL' expected

54: 'DO' expected

§5: 'TO' or 'DOWNTO' expected in for statement
56: 'IF' expected

57: 'FILE' expected

58: Error in <factor> (bad expression)

59: Error in variable

101; Identifier declared twice

102: Low bound exceeds high bound

103: Identifier is not of the appropriate class
104: Undeclared identifier

Page 271

105:
106:
107:
108:
109:
110:
111:
112:
113:
114
115:
116:
17
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131
132:
133:
134:
135:
136:
137:
138:
139:
140:
141
142:
143:
144
145:
146:
147
148:
149:
" 150:

151:
152:
153:
154:
155:

sign not allowed

Number expected

Incompatible subrange types

File not allowed here

Type must not be real

<tagfield> type must be scalar or subrange
Incompatible with <tagfield> part

Index type must not be real

Index type must be a scalar or a subrange

Base type must not be real

Base type must be a scalar or a subrange

Error in type of standard procedure parameter
Unsatisified forward reference

Forward reference type identifier in variable declaration
Re-specified params not OK for a forward declared procedure
Function result type must be scalar, subrange or pointer
File value parameter not allowed

A forward declared function's result type can't be re-specified
Missing result type in function declaration

F-format for reals only

Error in type of standard procedure parameter

Number of parameters does not agree with declaration
Illegal parameter substitution

Result type does not agree with declaration

Type conflict of operands

Expression is not of set type

Tests on equality allowed only

Strict inclusion not allowed

File comparison not allowed

Illegal type of operand(s)

Type of operand must be boolean

Set element type must be scalar or subrange

Set element types must be compatible

Type of variable is not array

Index type is not compatible with the declaration
Type of variable is not record

Type of variable must be file or pointer

Illegal parameter solution

Illegal type of loop control variable

Illegal type of expression

Type conflict

Assignment of files not allowed

Label type incompatible with selecting expression
Subrange bounds must be scalar

Index type must be integer

Assignment to standard function is not allowed

Assignment to formal function is not allowed
No such field in this record

Type error in read

Actual parameter must be a variable

Control variable cannot be formal or non-local

age 272

156: Multidefined case label

157: Too many cases in case statement

158: No such variant in this record

159: Real or string tagfields not allowed

160: Previous declaration was not forward

161: Again forward declared

162: Parameter size must be constant

163: Missing variant in declaration

164: Substition of standard proc/func not allowed
165: Multidefined label

166: Multideclared label

167: Undeclared label

168: Undefined label

169: Error in base set

170: Value parameter expected

171: Standard file was re-declared

172: Undeclared external file

174: Pascal function or procedure expected

182: Nested units not allowed

183: External declaration not allowed at this nesting level
184: External declaration not allowed in interface section
185: Segment declaration not allowed in unit

186: Labels not allowed in interface section

187: Attempt to open library unsuccessful

188: Unit not declared in previous uses declaration
189: 'Uses' not allowed at this nesting level
190: Unit not in library

191: No private files

192: 'Uses' must be in interface section

193: Not enough room for this operation

194: Comment must appear at top of program

195: Unit not importable

201: Error in real number - digit expected

202: String constant must not exceed source line
203: Integer constant exceeds range

204: 8 or 9 in octal number

250: Too many scopes of nested identifiers

251: Too many nested procedures or functions
252: Too many forward references of procedure entries
253: Procedure too long

254: Too many long constants in this procedure
256: Too many external references

257: Too many externals

258: Too many local files

259: Expression too complicated

300: Division by zero

301: No case provided for this value

302: Index expression out of bounds

303: Value to be assinged is out of bounds
304: Element expression out of range

Page 273

398:
399:

400:
401:
4o2:
§03:
4ou:
uos:
406:

Implementation restriction
Implementation restriction

Illegal character in text

Unexpected end of input

Error in writing code file, not enough room
Error in reading include file

Error in writing 1ist file, not enough room
Call not allowed in separate procedure
Include file not legal

age 274

TR I I T 2636 0000 00 00 00 00 00 30 06 30 06 36 36 00 6 6

® TABLE 6 * *# ASSEMBLER SYNTAX ERRORS *
BN MMNN NN RARNRRRRNR

Version 1.5 September 1978
This section lists all the general errors found in the ERRORS
file, specific machine errors are found in the sections below
dealing with machine specifics.

Undefined label

: Operand out of range

: Must have procedure name

Number of parameters expected

: Extra garbage on line

Imput line over 80 characters

Not enough ifs

Must be declared in ASECT before use
Identifier previously declared

10: Improper format

11: EQU expected

12: Must EQU before use if not to a label
13: Macro identifier expected

14: Word addressed machine

15: Backward ORG not allowed

16: Indentifier expected

17: Constant expected

18: Invalid structure

19: Extra special symbol

20: Branch too far

21: Variable not PC relative

22: Illegal macro parameter index

23: Not enough macro parameters

24: Operand not absolute

25: Illegal use of special symbols
26: Ill-formed expression

27: Not enough operands

28: Cannot handle this relative

29: Constant overflow

30: Illegal decimal constant

31: Illegal octal constant

32: Illegal binary constant

33: Invalid key word

3Y4: Unexpected end of input - after macro
35: Include files must not be nested
36: Unexpected end of input

37: Bad place for an include file

38: Only labels & comments may occupy column one
39: Expected local label

40: Local label stack overflow

41: String constant must be on 1 line
42: String constant exceeds 80 chars
43: Illegal use of macro parameter

‘:?gpﬂoxmzwm—'

Page 275

uu.
45:
46:
Y
u8:
u9:
50:
51:
52:
53:
54
55:
56:
5T7:
58:
59:
60:
61:
62:

63

780 Based

No local labels in ASECT

Expected key word

String expected

Bad block, parity error (ere)

Bad unit number

Bad mode, illegal operation

Undefined hardware error

Lost unit, no longer on-line

Lost file, no longer in directory

Bad title, illegal file name

No room, insufficient space

No unit, no such volumn on-line

No file, no such file on volumn

Duplicate file

Not closed, attempt to open an open file
Not open, attempt to access a closed file
Bad format, error in reading real or integer
Nested macro definitions not allowed

v=1 or '<>' expected

: May not EQU to urdefined labels

machines

For constants, Hex is the default type,

a 'B' defines binary eX. 10010B ,
a '.' defines decimal ex. 5674. .

Location Counter (LC) = $

A1l reserved words may not be used for any other purpose
such as an identifier. For example, the reserved word "C"
currently is being used as a register and in a condition
code, therefore it may not be used for any other purpose
(this is contrary to usual Zilog assembly language, but is
restricted in the UCSD assembler).

Specific error messages:

76:
T7:
T8:
79:
80:
81:
82:
83:
8u:
85:
86:

Incorrect operand format
Close paren ")" expected
Comma "," expected

Plus "+" expected

Open paren "(" expected
Stack pointer "SP" expected
wHL" expected

Illegal "CC" condition code
Register "C" expected
Register "R" expected
Register "A" expected

age 276

PDP11 Based machines:

For constants, Octal is the default type for both input V

and output,

a 'H' defines hexadecimal ex. O056H ,
a '.' defines decimal ex. 5U6. ,
a 'B' defines binary ex. 1001B .

Location Cownter (LC) = ¥
Specific error messages:

76: Closing paren ")" expected

77: Register expected

78: Too many special symbols

79: Unrecognizable operand

80: Register reference only

81: First operand must be a register
82: Comma expected

83: Unimplimented instruction

84: Must branch backwards to label

Page 277

-~ Notes =--

Page 278

34 36 3 3 36 36 3 3 3 % **************************************l***il**********

% TABLE 7 * * American Standard Code for Information Interchange ¥
JIRIR NI D660 06060606 036 3696 36 06 6 0 30 06 06 36 36 06 06 636 96 00 3020 9606 96 96 96 9000 3 36 06 90 00 36 0606 06 0600 0 X

Version I.5 September 1978

0 000 00 NUL 32 040 20 SP 64 100 4O € 96 140 60 °
1 001 01 SOH 33 041 21 1 65 101 41 A 97 141 61 a
2 002 02 STX 34 o42 22 66 102 42 B 98 142 62 b
3 003 03 ETX 35 043 23 # 67 103 43 C 99 143 63 ¢
4 004 o4 EOT 36 Oul4 24 3 68 104 44 D 100 144 64 d
5 005 05 ENQ 37 045 25 % 69 105 45 E 101 145 65 e
6 006 06 ACK 38 046 26 & 70 106 46 F 102 146 66 f
7 007 07 BEL 39 047 27 ! 71 107 47 G 103 147 67 g
8 010 08 BS 40 050 28 (72 110 48 H 104 150 68 h
9 011 09 HT 41 05129) 73 111 49 I 105 151 69 i
10 012 OA LF 42 052 24 * 74 112 4A J 106 152 6A j
11 013 OB VT 43 053 2B + 75 113 UB K 107 153 6B K
12 014 OC FF uy 054 2¢ 76 114 4C L 108 154 6C 1
13 015 OD CR 45 055 20 - 77 115 4D M 109 155 6D m
14 016 OE SO 46 056 2E . 78 116 4 N 110 156 6E n
15 017 OF SI u7 057 2F / 89 117 UF O 111 157 6F o
16 020 10 DLE 48 060 30 O 80 120 50 P 112 160 70 p
17 021 11 DC1 49 061 31 1 81 121 51 Q 113 161 71 q
18 022 12 DC2 50 062 32 2 82 122 52 R 114 162 72 r
19 023 13 DC3 51 063 33 3 83 123 52 S 115 163 73 s
20 024 14 DCU 52 064 34 U4 84 124 54 T 116 164 T4 t
21 025 15 NAK 53 065 35 5 85 125 55 U 117 165 75 u
22 026 16 SYN 54 066 36 6 86 126 56 V 118 166 76 v
23 027 17 ETB 55 067 37 7 87 127 57 W 119 167 77 W
24 030 18 CAN 56 070 38 8 88 130 58 X 120 170 78 x
25 031 19 ™M 57 071 39 9 89 131 56 Y 121 171 79 y
26 032 1A SUB 58 072 3A : 90 132 54 Z 122 172 TA z
27 033 1B ESC 59 073 B ; 91 133 5B [123173 B |
28 034 1C FS 60 074 3C < 92 134 5C \ 124 174 7C |
29 035 1D GS 61 075 3D = 93 135 5D 1 125 175 7D '}
30 036 1E RS 62 076 3E > o4 136 5E 126 176 7E ~
31 037 IF US 63 077 3F 2 95 137 SF 127 177 TF DEL

Page 279

-- Notes =--

Pag@, 280

0 000 00
1 001 01

126 176 TE
127 177 TF
128 200 80
129 201 81
130 202 82
131 203 83
132 204 84
133 205 85
134 206 86
135 207 87
136 210 88
137 211 89
138 212 8A
139 213 8B
140 214 8C
141 215 8D
142 216 8E
143 217 8&F
44 220 90
45 221 91
146 222 92
147 223 93
148 224 9u
149 225 95
150 226 96
151 227 97
152 230 98
153 231 99
154 232 9A
155 233 9B
156 234 9C
157 235 9D
158 236 9E
159 237 9F
160 240 AO
161 241 A1
162 242 A2
163 243 A3
164 244 AY
165 245 A5
166 246 A6

L LT T P e i i
% TABLE 8 * * P_MACHINE OP-CODES ¥

630 36 38 36 36 3 3 ¥ % %

SLDC O
SLDC 1

SLDC 126
SLDC 127
ABI
ABR
ADI
ADR
AND
DIF
DVI
DVR
CHK
FLO
FLT
INN
INT
IOR
MOD
MPI
MPR
NGI
NGR
NOT
SRS
SBI
SBR
SGS
SQI
SQR
STO
IXS
UNI

CSP
LDCN
ADJ
FJP
INC
IND
IXA
LAO
LSA

Version II.O

171 253 AB
172 254 AC
173 255 AD
174 256 AE
175 257 AF
176 260 BO
177 261 B1
178 262 B2
179 263 B3
180 264 B4
181 265 B5
182 266 B6
183 267 BT
184 270 B8
185 271 B9
186 272 BA
187 273 BB
188 274 BC
189 275 BD
190 276 BE
191 277 BF
192 300 CO
193 301 C1
194 302 C2
195 303 C3
196 304 C4
197 305 C5
198 306 C6
199 307 C7
200 310 C8
201 311 C9
202 312 CA
203 313 CB
204 314 CC
205 315 CD
206 316 CE
207 317 CF
208 320 DO
209 321 D1

FHIE 396 36 36 36 26 36 36 36 36 36 I 6 3 3 36 3¢ 36 3 %

February 1979

LDB

CBP
EQUI
GEQI
GRTI
LLA
LDCI
LEQI
LEST
LDL
NEQI
STL

CLP
CGP
LPA

214 326 D6
215 327 D7
216 330 D8
217 331 D9
218 332 DA
219 333 DB
220 334 IC
221 335 DD
222 336 DE
223 337 DF
224 340 EO
225 341 E1
226 342 E2
227 343 E3
228 344 E4
229 345 E5
230 346 E6
231 347 ET
232 350 E8
233 351 E9
234 352 EA
235 353 EB
236 354 EC
237 355 ED
238 356 EE
239 357 EF
240 360 FO
241 361 F1
242 362 F2
243 363 F3
2ul4 364 FU
2U5 365 FS
2U6 366 F6
2UT 367 F7
248 370 F8
249 371 F9
250 372 FA
251 373 FB
252 374 FC

XIT

NOP
SLDL 1
SLDL 2
SLDL 3
SLDL 4
SLDL 5
SLDL 6
SLDL 7
SLDL 8
SLDL 9
SLDL 10
SLDL 11
SLDL 12
SLDL 13
SLDL 14
SLDL 15
SLDL 16
SLDO 1
SLDO 2
SLDO 3
SLDO 4
SLDO 5
SLDO 6
SLDO 7
SLDO 8
SLDO 9
SLDO 10
SLDO 11
SLDO 12
SLDO 13
SLDO 14
SLDO 15
SLDO 16
SIND O
SIND 1
SIND 2
SIND 3
SIND 4

Page 281

210 322 D2 253 375 FD SIND 5

167 2u7 AT
168 250 A8 MOV 211 323 D3 EFJ o5l 376 FE SIND 6
169 251 A9 LDO 212 324 D4 NFJ o55 377 FF SIND 7
170 252 AA SAS 213 325 D5 BPT

170 252 AR SAS 213 325 DS BPT

age 282

ARRAY,
ASSEMBLER,

BAD BLOCK SCAN,
BANISH,

BASIC,

BLOCK,
BLOCKNUMBER,
BLOCKREAD,
BLOCKS,
BLOCKWRITE,
BOOTSTRAP,
BOWLES,

CASE STATEMENTS,
CHANGE,
CHARACTER,
CLOSE,

COMMENTS,
COMPILED LISTING,
COMPILER,
CONCAT,

RRFRREREXFHRER FRXRERRAR

* Appendix A * # Index *
BRRIIN IR E IR

115

4, 97, 98, 1M
25

59

85

115

15

122, 138, 155
30

122, 138, 155
233

1

123

18

115 ’
123, 147, 155
133

81

3, 77, 8
117, 155

CONDITIONAL ASSEMBLY, 108
CONTROL CHARACTERS, 63

COPY,

CP/M,
CURSOR,
DATE,
DEBUGGER,
DELETE,
DESTINATION,
DIRECTIVES,
DIRECTORY,
DISK ERROR,
DISK SIZE,
DISK SPACE,
DLE,
DRAWLINE,
EDITOR,
EOF,

EOLN,
EXAMINE,
EXCHANGE,
EXECUTE,
EXIT,
EXPRESSION,
EXTENDED LIST,
EXTERNAL,
FILE,
FILEID,
FILENAMES,
FILER,
FILES,
FILLCHAR,
FIND,
FORWARD,

55, 118

5

31, 37, 66, 68
2u

4, 75, 78

FUNCTION,
GENERAL ERRORS,
GET,

GOTO,

GOTOXY,
GRAPHICS,
HALT, -

HEAP,

IDSEARCH,
IMPLEMENTATION,
INCLULE,
INDENTATION CODE,
INDEX,
INITIALIZE DISKS,
INPUT,

INSERT,
INTERACTIVE,
INTERFACE,
INTRINSICS,
I0-ERRORS,
IORESULT,

JIMP,

KEYBOARD,
KRUNCH,

L2 EDITOR,
LENGTH,

35, 41, 42, 55, 56, 69, 118, 155

115

102

15, 17

25

30

27

163

159

2, 31

123, 136, 140
123, 136, 140, W7
26

69

3

140, 155

115

17

91, 100, 173
121, 124, 146
115

7, 9, 32

2, 3, 7

137

132, 144, 156
Ly, 45, 55, 68
u7, 173

LIBRARY,

LINKER,

LIST DIRECTORY,
LOCK, |
LOG,

LONG INTEGERS,
MACRO,

MACROS,

MAKE,

MARK,

MARKERS,
MEMAVAIL,

MEMORY ALLOCATION,
MEMORY MANAGEMENT,
MOVELEFT,
MOVERIGHT,

NEW,

NEXT,

NORMAL,

NUMBER,

OUTPUT,

PACK,

PACKED ARRAYS,
PACKED RECORDS,
PACKED VARIABLES,
PAGE,

104

275

12, 124

79, 88, 89, W0
127, 156, 226, 241’
159

127, 156

134

156

167

79, 98, 112
163

115

28

136, 147

34, 39, 55, 69, 118, 156

7
167

155

124, 263, 265

79, 124, 156, 186
55

136, 147

27

57

117, 152, 156

173

4, 91, 173
15, 17
123

127

118, 181
101

71, 107
28

127, 156
38, 49, 55, 5€
128, 156
134

127

131, 156
131, 156
14, 136
59

123

115

136, 147
145

142

o

142

125 Page 283

PASCAL,

PDP-11,

PDP11,

POS,

PREFIX,
PROCEDURE,
PROGRAM HEATINGS,
PSEUDO COMMENTS,
PSEUDO-OPS,
PURGE,

PUT,

PWROFTEN,

QUIET,

QUIT,

RADAR,
RANGECHECK,
READ,

READLN,
RELBLOCK,
RELEASE,

REMOVE,

REPLACE,

RESET,

RESTR ICTIONS,
REWRITE,

RT-11,

RUN,

SAVE,

SCAN,

SCREEN,

SCREEN CONTROL,
SCREENCONTROL,
SEEK,

SEGMENT PROCEDURE,
SET,

SETS,
SIMPLVARIABLE,
SIZE,

SIZEOF,

SOURCE,

STR,

STRING,

STRINGS,
SWAPPING,

SYNTAX ERRORS,
SYSCOM,

SYSTEM COMPILATION,
* SYSTEM.COMPILER,
SYSTEM.LIBRARY,
SYSTEM.WRK. CODE,
TEXT, |
TIME,

Page 284

1

97

5, 188
117, 156
25

104

146

78

102

123

124

127, 156

82

1, 52, 55, 66
159

82

124, 146, 153

146

115

127, 156

20

44, U6, 56

121, 147, 148, 156
154

121, 147, 148, 156
239

3

13

131

116

5, 82, 127

225, 241

125, 138, 156
149, 165

49

150

115

116

127, 144, 156

116

118, 156, 182

g6, 116, 117

151

82

271

77

83

85

4, 81, 83, 91, 104
3, 36, 77, 93, 98
146, 163

127, 157

TITLE,

TOKEN,
TRANSFER,
TREESEARCH,
TRUNC,

UNIT,
UNITBUSY,
UNITCLEAR,
UNITNUMBER,
UNITREAD,
UNITWAIT,
UNITWRITE,
UNPACK,
UNTCLEAR,

USE LIBRARY,
USES,

VOLID,

VOLWE,

VOLUME NAMES,
VOLWE NUMBERS,
VOLMES,

WHAT,
WILDCARDS,
WORD PROCESSING,
WORKF ILE,
WRITE,
WRITELN,

YALOE SUMMARY,
780,

ZERO,

116

Ly

21

157

182

83, 9u, 167, 168
122, 157
122

116, 267
121, 157
122, 157
121, 157
145

157

83

168

116

25

7

267

15

15

10
39, 48, 49, 55

2, 8, 333 36’ 631
124, 153

153

73

5, 97, 188

28

77, 93, 9

	000001
	000002
	000003
	000004
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284

