
IJCSD PASCAL

INTRODUCTION

TO PASCAL

Digitized by the Internet Archive

in 2015

https://archive.org/details/introductiontopaOOzaks

INTRODUCTION
TO PASCAL

(Including UCSD PASCAL)

RODNAY ZAKS

SECOND EDITION

NOTICES

UCSD Pascal is a trademark of the Regents of the University of California.

Technical Illustrations by J. Trujillo Smith.

Every effort has been made to supply complete and accurate information. However, Sybex assumes
no responsibility for its use, nor for any infringements of patents or other rights of third parties which
would result.

Copyright © 1981 SYBEX Inc. World Rights reserved. No part of this publication may be stored in a
retrieval system, transmitted, or reproduced in any way, including but not limited to photocopy,
photograph, magnetic or other record, without the prior agreement and written permission of the
publisher.

Library of Congress Card Number: 80-53282
ISBN 089588-066-0
Printed in the United States of America
10 987654321

Acknowledgements

The manuscript of this book has gone through many phases, and has

been shown to many people, the final form benefitting from the com-
ments and suggestions of all. I am particularly indebted to the following

educators or Pascal programmers who have provided valuable criti-

cisms or opinions on the original manuscript: Michael Farr, Joseph Faletti,

Jacques Tiberghien, Michael Powell, Eric Novikoff, and Elein Mustain.

I should also like to thank Salley Oberlin and Julie Sickert for many
editorial improvements.

This second edition contains many minor corrections and clarifica-

tions suggested by readers of the first edition. I will be grateful for any

further comments and suggestions for improvements that readers care

to make.

VII

Contents

PREFACE xv

HOW TO READ THIS BOOK xv»

1

BASIC CONCEPTS i

Introduction. Computer Programming. Algorithms and Data Structures.

Pascal. UCSD and Other Pascals. A Simple Pascal Program. A Second Pro-

gram Example. Summary. Exercises.

2

PROGRAMMING IN PASCAL 17

Introduction. Writing a Pascal Program. The Syntax of Pascal. Format of a

Pascal Program. Declarations. The Executable Program Body. Program

Organization Summary. Formal Organization of a Program. The Symbols

of Pascal. Reserved Symbols. Reserved Words. Standard Identifiers.

UCSD Comments. UCSD Program Headings. UCSD Listings. Summary.

Exercises.

3

SCALAR TYPES AND OPERATORS 31

Introduction. The Integer Type. The Real Type. The Character Type.

Operators and Functions for Characters. The Boolean Type. User-

Defined Types. Type Declaration. UCSD Long Integers. UCSD Standard

Arithmetic Functions. Summary. Exercises.

VIII4

EXPRESSIONS AND STATEMENTS 51

Introduction. Expressions. Arithmetic Expressions. Using Standard Func-

tions. Summary of Arithmetic Expressions. Boolean Expressions. Basic

Rules of Boolean Algebra. Statements. Summary. Exercises.

5

INPUT AND OUTPUT 63

Introduction. Communicating with a File or the Terminal. READ and

READLN. WRITE and WRITELN. UCSD Input/Output. Summary. Exer-

cises.

6

CONTROL STRUCTURES 75

Sequential Execution. Repetition Statements. Repeat Statement. WHILE
and REPEAT. Nested Loops. The Three Loop Statements—A Summary.

Conditional Statements. Multiple Choice: Case Statement. Unconditional

Branch: GOTO. UCSD Case Statement. Summary. Exercises.

7

PROCEDURES AND FUNCTIONS 103

Program Organization. Procedures. Block Structure and Scope Iden-

tifiers. Functions and Procedures as Parameters. Scope Revisited. Recur-

sion Revisited. Recursion Example. Forward References. External Pro-

cedures. Restrictions on Parameters. UCSD Procedures and Functions as

Parameters. UCSD Packed Variables as Parameters. UCSD EXIT. Sum-

mary. Exercises.

8

DATA TYPES 133

Types. Why Data Types ? General Rules for Data Types. Scalar Types.

Summary. Exercises.

9 ARRAYS 143

Data Structures. The Array. Referencing the Elements of an Array.

Operating on an Array. Multi-Dimensional Arrays. Array of Characters.

Case Study 1: Matrix Addition. Case Study 2: Quicksort. Packed Arrays.

Array Valued Functions. UCSD Arrays. UCSD String Type. UCSD Pack

and Unpack. Summary. Exercises.

10 RECORDS AND VARIANTS 183

Introduction. Record. Formal Definition. Operations on Records. The

WITH Statement. Scope of Identifiers. Case Study 1: Inventory Manage-
ment. Case Study 2: Credit Card Number Validation. Variants. UCSD
Packed Records. Summary. Exercises.

1 1 FILES 209

Basic Definitions. Pascal Files. Formal Definition. Standard Files. Writing

on a File. WRITE Summary. Reading a File. Case Study 1: Filemerge. Per-

manent and Temporary Files. Text Files. Text File Processing. The Input

and Output Files. Case Study 2: Cipher Program. Case Study 3: Find Oc-

currences of a String. UCSD Files. Summary. Exercises.

1 2 SETS 247

Sets in Pascal. Constructing a Set. Operations on Sets. Case Study: Identi-

fying Characters. Summary. Exercises.

1 3 POINTERS AND LISTS 258

Introduction. Dynamic Data Structures. Lists. Creating a Dynamic
Variable. Accessing an Element of a List. Adding and Removing an Ele-

ment. Other List Structures. Case Study I: A Librarian. Case Study 2: A
Binary Tree. UCSD Dispose. Summary. Exercises.

14 UCSD AND OTHER PASCALS 303

UCSD and Other Versions. Overview of UCSD Pascal. UCSD Units.

UCSD Segment Procedure. System-Related Routines. Summary.

1 5 PROGRAM DEVELOPMENT 309

The Program Development Process. The Five Steps of Program Develop-

ment. Writing a Pascal Program. Programming Style. Conclusion.

Appendices

A PASCAL OPERATORS 319

B RESERVED WORDS 321

C STANDARD FUNCTIONS AND PROCEDURES 323

D STANDARD IDENTIFIERS 325

E OPERATOR PRECEDENCE 327

F SYNTAX DIAGRAMS 329

G ASCII CODE 339

H UCSD SYNTAX DIAGRAMS 341

I USUAL UCSD LIMITATIONS 349

J UCSD INTRINSICS 351

K REFERENCES 353

L ANSWERS TO SELECTED EXERCISES 355

INDEX 416

421SYBEX LIBRARY

XI

Illustrations

Chapter 1

1.1: A CRT Terminal 5

1.2: A Variable is the name of a memory location 10

1.3: Variables with Values 11

Chapter 2

2.1: Overall Organization of a Pascal Program 18

2.2: Detailed Organization of a Pascal Program 19

2.3: Formal Organization of a Pascal Program 21

2.4: Reserved Symbols 22

2.5: Reserved Words 23

2.6: Standard Identifiers 25

2.7: UCSD Line Numbering 27

Chapter 3

3.1: Representation of Reals 35

3.2: Truth Tables 40

3.3: Additional Truth Tables 41

3.4: VAR Declaration Syntax 43

3.5: Following the Syntax Diagram 44

3.6: Syntax of a Constant 46

Chapter 4

4.1: Standard Functions 55

4.2: Syntax of the Assignment Statement 57

Chapter 5

5.1: The Concept of a File 63

Chapter 6

6.1: Flowchart for Integer Addition 76

6.2: Syntax of REPEAT 77

6.3: INTEGER SUM Program 77

6.4: Syntax for WHILE 79

6.5: INTEGER SUM Program-Version 2 80

6.6: WHILE vs. REPEAT 81

6.7: AVERAGE Program 82

6.8: FOR Syntax 83

6.9: AVERAGE Program-Version 2 84

6.10: MULTIPLICATION TABLE Program 85

6.11: IF Syntax 88

6.12: IF-THEN-ELSE Flowchart 88

XII

6.13: Program to COUNT NUMBERS 89

6.14: A FILTER Program 90

6.15: VOLTAGE TEST Segment 91

6.16: A Binary Decision Tree 92

6.17: CASE Syntax 93

6.18: Program for SPELLING THE MONTH 93

6.19: Symbolic Representation of a CASE 95

6.20: GOTO Jumps 97

Chapter 7

7.1 Declaration of PRINTHEADER Procedure

7.2 Calling the Procedure 105

7.3 Syntax of a Procedure 107

7.4 Syntax of a Function 111

7.5 Block Structures 114

7.6 Scope of Identifiers 116

7.7 Syntax of a Parameter List 118

7.8 FIBONACCI Program 123

7.9 The Two IF Clauses 125

7.10: SOLVE Program 126

Chapter 8

8.1: Order of Pascal Declarations 135

8.2: Enumerated Type Syntax 137

8.3 Subrange Syntax 139

Chapter 9

9.1: A Simple Array 143

9.2: Array Syntax 147

9.3: A Two-dimensional Array 147

9.4: A Mailing List Format 149

9.5: MATRIX ADDITION Program 151

9.6: Quicksort Example 155

9.7: QUICKSORT Program 157-160

9.8: Sample Quicksort Run 161

9.9: A Bubble Sort Example 164

9.10: SORTSECTION Flowchart 167

Chapter 10

10.1: Syntax for a RECORD 1 85
10.2: Record Component Syntax 187

10.3: WITH Statement Syntax 190
10.4: Sample Input for Inventory Program 193

10.5: Sample Output for Inventory Program 193

10.6: INVENTORY MANAGEMENT Program 194-195

10.7: Input to Validation Program 197

XIII

i r

10.8: Output from Validation Program 198

10.9: VALIDATION Program 199-200

10.10: Variant Syntax 205

11.11: CIPHER Program 225

Chapter 1

1

11.1: Syntax of a File Declaration 210

1 1 .2: Representation of a File 21

1

11.3: Magnetic Tape Moving in Front of a Read/Write Head
11.4: The Access Window 213

11.5: Creating a File 213

11.6: Writing into a File 214

11.7: Appending an Element to a File 214

11.8: Resetting the Window 215

1 1 .9: Input for a Cipher Program 223

11.10: Output of Cipher Program 224

11.11: CIPHER Program 225

11.12: Input File for MATCHCOUNT 227

11.13: Run of MATCHCOUNT 227

11.14: MATCHCOUNT Program 228

212

Chapter 12

12.1 : Formal Syntax of the Set Type 247

12.2: Set Elements 249

1 2.3: Union of Two Sets (SI U S2) 249

12.4: Intersection of Two Sets (SI Pi S2) 250

12.5: Difference of Two Sets 250

12.6: Input to CATEGORIZECHARS 252

12.7: Output Generated by CATEGORIZECHARS 252

12.8: CATEGORIZECHARS Program 253-254

Chapter 13

13.1: Three Elements in Memory 261

13.2: Creating Links 262

13.3: The Pointers 263

13.4: Formal Syntax of a Pointer Type 263

13.5: Pointer Assignments 264

13.6: Results of Pointer Assignments 264

13.7: A Similar Situation 265

13.8: Corresponding Sequence 267

13.9: Adding an Element at the Beginning of a List 269

13.10: Inserting an Element in the Middle of a List 270

13.11: Removing an Element from a List 271

13.12: A Stack and FIFO 271

13.13: A Doubly-Linked List Facilitates Two-Way Movement
13.14: A Circular List Facilitates Access 272

13.15: A Binary Tree 273

272

13.16: LIBRARIAN Input 273

13.17: Conversing with the LIBRARIAN 274

13.18: Final Library File 275

13.19: LIBRARIAN Program 276-280

13.20: Librarylist Structure 281

13.21: Inserting a New Book in the List 282

13.22: Input to the Binary Tree 288

13.23: The Resulting Binary Tree 289

13.24: Output of Tree Traversal 290

13.25: BINARY TREE Program 291-293

13.26: Beginning of Traversal 298

13.27: Moving Right 299

Chapter 15

15.1: The Five Steps of Program Development 309

15.2: Program Design Phase 310

15.3: The Role of the Editor 310

15.4: The File System 311

15.5: The Principle of a Compiler 312

15.6: Translating into P-Code 313

15.7: Interpreting the P-Code 313

15.8: The Debugger 314

15.9: The Linker 315

XV

Preface

I have written many books on computers, ranging from the introduc-

tory (Your First Computer) to the highly technical (A Microprogrammed

APL Implementation). Yet, this was one of the most difficult to write, as

this book was designed to be read and understood by everyone,

whether novice or experienced programmer, who wants to learn how
to program in Pascal.

Pascal is a powerful language, equipped with highly sophisticated

facilities. Explaining all of the features simply and progressively, without

losing the novice or boring the experienced programmer, was a signi-

ficant challenge.

The arrangement of the chapters will lead the reader from simple con-

cepts to complex data structures and all aspects of Pascal are covered

progressively.

The first five chapters present the basic definitions needed to use and

understand Pascal. After studying them, the reader will be able to write

simple programs. Specific techniques and data structures are presented

next, allowing the reader to write more complex programs.

Pascal is a powerful programming language requiring actual practice

to learn well. Many exercises are provided throughout the book to test

the reader's skills and comprehension while learning. Answers to

selected exercises appear at the end of the book.

The original definition of Pascal by Niklaus Wirth is referred to in this

book as Standard Pascal. A more recent version of Pascal, UCSD Pascal,

has also gained widespread acceptance for use on small computers.

Each chapter describes Standard Pascal, as well as the special features of

UCSD Pascal, where applicable. The more complex aspects of UCSD
Pascal are described in a special chapter at the end of the book.

An extensive Appendix provides a listing of all symbols, keywords and

rules of syntax for programming in Pascal. This Appendix provides a

concise summary that can be used as a reference.

XVI

How to Read This Book

This book is designed to be used primarily as a tutorial on Pascal, and

also as a reference text. Designing a book as a tutorial requires a linear

presentation: each concept must be defined before it is used. Designing

a book as a reference text requires a modular organization: all informa-

tion pertaining to a topic must be included in that section.

The approach chosen for this book is a tutorial one: concepts are

carefully defined, each in turn. Even those who have never programm-

ed before will be able to understand the entire book.

Since the reader may need to refer back to specific chapters when
programming, each chapter has been structured so that it may also be

used as a reference later on. The most simple concepts are presented at

the beginning of each chapter; more complex information is

systematically presented at the end of the chapter. Other sections in the

book are referenced.

The more complex concepts presented at the end of most chapters, as

well as the special features of UCSD Pascal, may be omitted during a

first reading. Later on, once the reader has acquired programming prac-

tice, these sections may be consulted as useful references.

The following sequence is recommended for the reader who wants to

learn as quickly as possible to program in Pascal.

First phase:

— Read Chapters 1 through 6 carefully.

— Try to solve the exercises.

— Read Chapter 15.

— Ignore the information on UCSD Pascal within the chapters.

The most important task for the reader, at this point, is to write many
real programs and execute them. The first six chapters may be used to

help accomplish this.

Second phase:

— Read Chapters 7, 8, and 9.

— If you are using UCSD Pascal, read all of the pertinent sections.

— Write as many programs as possible.

At this point, the reader will have learned most of the techniques re-

quired to write common Pascal programs.

XV/'/

Third phase:

— The specific data structures required for complex programs are

presented in Chapters 10, 11, 12 and 13.

— Advanced features of UCSD Pascal are presented in Chapter 14.

— The program development process is described in Chapter 15.

The time required to learn a programming language varies from one

person to another. The author can only express the hope that this book

will make it possible for everyone to learn Pascal quickly and enjoyably.

CHAPTER I

BASIC CONCEPTS

1

INTRODUCTION

The basic concepts of computer programming in the Pascal language

will be introduced in this chapter. Actual programs will be presented

and explained in order to give the reader realistic programming ex-

amples. The more formal concepts and definitions of the Pascal lan-

guage will be introduced in Chapter 2.

COMPUTER PROGRAMMING

A computer program is a sequence of instructions designed to be ex-

ecuted by a computer in order to obtain a specific result. For example,

computer programs may be written and used to play games, perform

scientific calculations, or execute business-oriented tasks.

Internally, a computer can only execute a limited set of instructions,

which must be expressed in a binary code, i.e., as a sequence of zeroes

and ones. Unfortunately, programs written in binary are difficult and

time-consuming for most users to write or read. To alleviate this pro-

blem, a number of programming languages have been invented that

facilitate the writing of programs.

A programming language is a subset of the English language that

allows the programmer to give unambiguous commands to the com-
puter. Of course, the most desirable way to give instructions to the com-
puter would be in English (or any other human language). Unfortunate-

ly, studies have shown that none of the common spoken languages, in-

cluding the English language, are adequate for this purpose. The English

language is ambiguous. Statements may be interpreted in many ways,

depending upon the context. Therefore, so-called "natural languages"

may not be used to program a computer. Only a restricted and well-

defined subset of this language, i.e., a programming language, may be

used. Hundreds and perhaps thousands of programming languages

have been proposed for computers.

Two different types of programming languages exist: assembly and

high-level languages. Assembly language is a symbolic representation of

the binary instructions the computer understands. This language is dif-

ficult to use, as the programmer must specify internal registers and

detailed internal operations. Assembly language is used whenever ex-

ecution speed is essential. However, it makes programming difficult.

High-level languages have been developed to facilitate writing com-
puter programs in specific environments such as: scientific, business or

educational.

Pascal is a high-level language. In order to be executed on a com-

puter, a high-level language requires a special program, called an inter-

2 BASIC CONCEPTS

preter or a compiler, which will translate the language into a sequence

of binary instructions that a computer can understand.

Now that we understand how languages are used, let us look at the

way in which a computer program is created.

ALGORITHMS AND DATA STRUCTURES

A computer program is created either to automate a process or to

solve a given problem. The sequence of steps or operations that must be

followed in order to solve a specific problem is called an algorithm.

An example will serve to clarify the concept of an algorithm. The pro-

blem to be solved is that of "preparing a soft boiled egg." A possible

algorithm for this task is:

1. Fill the pan with water.

2. Bring the water to a boil.

3. Place the egg in the pan of boiling water.

4. Remove the egg three minutes later.

This algorithm is a step-by-step specification of the process that will

solve our problem. Written for a human, it is somewhat loosely

specified. For example, extra steps could be added to indicate:

1 . The amount of water to be placed in the pan.

2. The way in which the egg should be lowered into the pan (gently).

3. The act of placing the pan on the range and then later removing it.

This method of first defining the algorithm loosely, and then defining it

in detail is often called "top-down design" or "stepwise refinement." It

will be discussed in Chapter 15.

Let us look at another example of an algorithm. The problem to be

solved in this case is the specification of directions necessary to locate a

specific building in Berkeley, California, assuming that the person driv-

ing is coming from San Francisco.

A possible algorithm for locating the building at 2344 Sixth Street in

Berkeley is:

1. Go over the Bay Bridge.

2. Follow Highway 17, North.

3. Take the University Avenue exit in Berkeley.

4. Turn right onto Sixth Street at the first traffic light.

5. Proceed to the intersection of Sixth and Channing Way. The
building is on the northwest corner.

This simple algorithm specifies the sequence of steps required to

reach the building. It is clear and unambiguous.
To be solved by a computer, all problems must first have a solution

expressed as an algorithm. Then, in order for the computer to be able to

execute the algorithm, the algorithm must be translated into a program

by a programmer using a programming language.

INTRODUCTION TO PASCAL 3

In addition, one other task may have to be performed: often data

structures must be defined to represent the required information. The
information or data used by a program must be organized by the pro-

grammer in a logical and efficient manner. This is called designing data

structures.

In summary, programming involves designing an algorithm and using

the appropriate data structures. Specifically,

— An algorithm is a step-by-step specification of a sequence of in-

structions that will solve a given problem.
— A data structure is a logical representation of information. Ex-

amples of data structures are tables, lists and arrays. They will be

described in other chapters of this book.

The Pascal language has been designed to facilitate the conversion of

algorithms into programs, as well as the construction or representation

of data structures. The origin and nature of the Pascal language will now
be described.

PASCAL

Pascal evolved from the search for a programming language that

would be complete, yet simple to learn and easy to implement on a

computer. The properties of Pascal reflect these aspirations.

Reviewing the history of programming languages, we find that one of the

earliest languages to be defined was FORTRAN (FORmula TRANslator).

FORTRAN is one of the most often used languages in the field of scientific

computation. Because it was an early programming language, FORTRAN
has, over time, become a complex collection of "facilities" that are

useful but cumbersome to learn or use on computers.

An attempt was made to define a simple language directly inspired by

FORTRAN which would be easy to learn and could also be executed in

an interactive (conversational) manner. The result was BASIC
(Beginner's All-Purpose Symbolic Instruction Code). The BASIC
language is easy to implement on a computer and requires only a small

amount of memory. Because of these two advantages (ease of im-

plementation and ease of learning), BASIC has become the most widely-

used language on microcomputers. Ftowever, it has many limitations

due to its rules of usage (its "syntax") and is often inadequate for writing

complex programs.

Another language, ALGOL (ALGOrithmic Language) resulted from an

attempt to define a computer language other than FORTRAN that would

be consistent and well-suited for use with complex algorithms. ALGOL
gained great popularity in educational circles yet was never widely used

by industry. Although the ALGOL language provides an excellent tool

for describing algorithms, it is somewhat complex to learn, and difficult

to implement on a computer.

4 BASIC CONCEPTS

Pascal was inspired by ALGOL and PL/I, and represents an attempt at

defining a programming language that is simple to learn yet well-suited

for the specification of algorithms and the definition of data structures.

Pascal was created by Niklaus Wirth of the ETH Technical Institute of

Zurich in 1970-1971 (upon his return from Stanford University). Pascal

gained acceptance in educational institutions as a good tool for learning

how to program. In addition, because Pascal is relatively simple and
highly coherent, the Pascal compiler (required in order to use the

language on a computer) can be implemented in a small amount of

memory. As a result, when low-cost microcomputers equipped with

limited memories appeared in the late 1970's, a number of Pascal im-

plementations became available, bringing Pascal within the reach of

almost anyone.

The name of the language is a tribute to the French mathematician

Blaise Pascal who in 1690 at age 18 invented the first mechanical calcu-

lating machine.

UCSD AND OTHER PASCALS

The original Pascal language defined by Niklaus Wirth will be called

"Standard Pascal" throughout this text for simplicity (reference [1] in

Appendix K). In fact, however, there is no longer a single standard for

Pascal.

As new implementations of Pascal were released, changes to the

original definition began to occur. Features were added to the language,

and operations were interpreted in different ways when ambiguities

existed.

As with any programming language, Pascal has become
implementation-dependent. In theory, learning Pascal involves not only

learning "Standard Pascal," but also learning the features and dif-

ferences inherent in the version being used at a specific installation.

Fortunately, in practice, all versions of Pascal to date implement

"Standard Pascal" with some additional features, as well as a few

changes.

In order to learn Pascal, the best procedure is, therefore, first to learn

Standard Pascal, and then to learn the advanced features as well as the

differences inherent in the specific implementation being used.

Pascal was originally designed for use on a traditional "batch-oriented"

computer, where a progam is submitted on a deck of cards, and data

are submitted on cards or stored on tape.

As Pascal gained popularity, the language became available on time-

sharing systems and small computers, where a user has direct access to

a terminal.

As a result of the user-computer interaction possible on such systems,

additional features became desirable, and one version called UCSD
Pascal became widely used. This version was developed at the University

INTRODUCTION TO PASCAL 5

of California at San Diego (UCSD), and is well-adapted to the needs of

small computer users. Because of its importance, UCSD Pascal is also

described in this book.

Many other versions of Pascal exist. For a comprehensive description

of these versions, the reader is referred to reference [1 1].

The basic concepts of computer programming have now been
described, and a short history of the Pascal language has been
presented. Let us now examine an actual Pascal program. This example
will serve to illustrate the features of the language and will provide a

basis for the additional definitions that follow.

A SIMPLE PASCAL PROGRAM

We will assume, when referring to the program examples in this

chapter, that you are sitting at a CRT terminal equipped with a keyboard

and a screen (see Figure 1.1).

Figure 1.1: A CRT Terminal

6 BASIC CONCEPTS

The keyboard is called the input device. The screen (or a printer) is

the output device. If you are using a batch system, >vhere the program is

first punched on cards and then executed on a computer, the input to

the program will be from cards. The output will generally be on a

printer.

Here is our first Pascal program:

PROGRAM GREETING (OUTPUT); (1

)

(* THIS IS A SIMPLE PASCAL PROGRAM *) (* COMMENT *) (2)

BEGIN (3)

WRITELN(/

HELLO
/

)
(* STATEMENT *) (4)

END. (5)

When executed, this program will print 'HELLO'. It may be surprising

that the program requires five lines for this simple action. This is because

the program has been formatted for clarity. This same program could be

written in one or two lines. This example will serve to introduce some of

the basic concepts in Pascal. Let us look at it more closely. The first line

of our program is:

PROGRAM GREETING(OUTPUT);

This line is the program definition or program heading. It tells the

computer (or more exactly, the compiler) that the lines which follow

the heading form a program called 'GREETING'. In addition, this line

contains a file declaration

:

'OUTPUT'. Whenever a program must ac-

cess data outside the program itself, it will read or write on or from a file,

and this file must be declared in the program heading. Input refers to

the transfer of data to the program. Output refers to the transfer of data

from the program, by the program. INPUT and OUTPUT are considered

as special cases of files. In this program example, this declaration warns

the compiler that the program will be performing an output operation,

i.e., it will be printing or displaying information. Standard Pascal re-

quires that such file declarations be made at the time of the program

definition.

Note that the word 'PROGRAM' appears in boldface type. This is

done to help the reader differentiate the word 'PROGRAM' from the

word 'GREETING'. PROGRAM has a predefined meaning for the com-
piler, while GREETING is a word defined by the user. Predefined words
in Pascal are called either reserved words or standard identifiers. In the

actual program listing produced by a printer, both PROGRAM and

GREETING would be printed in exactly the same way. However, when
reading a book, it is helpful to have reserved words differentiated from

INTRODUCTION TO PASCAL 7

other words. Therefore, all reserved words within a program are shown

in boldface type in this book.

In Pascal, either lowercase or uppercase letters may be used inter-

changeably. For example, the first line of our program could be written:

program greeting(output);

However, some implementations may impose restrictions.

Finally, note that this line is separated from the rest of the program by

a semicolon. The function of the semicolon is to separate two con-

secutive statements or declarations. In this way, for example, two

statements (terminated by may be written one after the other on

the same line. However, not all statements need to be terminated with a

semicolon. In particular, the semicolon is optional before an END.
The second line of the program is:

(* THIS IS A SIMPLE PASCAL PROGRAM *
)

(* COMMENT *

)

This line is called a comment. Comments are ignored by the computer,

thereby allowing the programmer to write explanations anywhere with-

in the program that will clarify what the program is doing. A comment
must be preceded by (* or { and terminated by *) or }, as in our example.

Blank lines, indentations, and extra spaces are also ignored by the

computer. Like comments, they are used to clarify programs.

Now let us look at the body of the program:

BEGIN

WRITELN('HELLO') (* STATEMENT *)

END

This program contains only one executable statement,

WRITELN('HELLO'), which is preceded by BEGIN and followed by

END. This section of three lines is called a program block. Every program

heading must be followed by a program block. The actual instructions of

the program, called statements, are listed between the reserved

words BEGIN and END. Pascal has been designed to encourage pro-

gramming in blocks. Other examples of blocks within a program will ap-

pear throughout the text. For this reason Pascal is said to encourage

structured programming.

The single executable statement in our program is:

WRITELN('HELLO')

This statement means "write 'HELLO' on the output device and skip to

a new line." The output device is usually the CRT terminal or a printer.

8 BASIC CONCEPTS

The only action taken by this particular program is to display or print the

characters 'HELLO'. WRITELN also does one more.thing: this command
terminates the line by moving the cursor (in the case of a screen) or the

printhead (in the case of a printer) to the beginning of the next line.

Let us now summarize the important aspects of our first Pascal pro-

gram. Each statement in the program is separated from the next one by

a semicolon. To improve program readability, comments and indenta-

tions are used. For example, the body of the program may be written:

BEGIN WRITELN('HELLO') (* STATEMENT *) END.

This line was written in a "block format" in our example:

BEGIN

WRITELN('HELLO') (* STATEMENT *)

END

Writing a program in "block format" is a recommended practice, but

not a mandatory one. The purpose of this practice is to identify clearly

each block bracketed by the words BEGIN and END. To achieve this,

the corresponding BEGIN and END are aligned vertically. The state-

ments within that block are indented.

Finally note that the word END, followed by a period, indicates the

end of the program.

A SECOND PROGRAM EXAMPLE

Let us look at another Pascal program:

PROGRAM SUM(INPUT, OUTPUT);

VAR A, B, TOTAL : INTEGER;

BEGIN

WRITELN('ENTER TWO NUMBERS TO BE ADDED...');

READ(A,B);

TOTAL := A + B;

WRITELN('THE SUM OF', A ,' AND ', B ,' IS ', TOTAL)

END

This program is more complex than the first one and will introduce

several new concepts. When the above program is executed, it will type

or display:

ENTER TWO NUMBERS TO BE ADDED...

INTRODUCTION TO PASCAL 9

Two integers, called A and B in the program, must then be typed in at

the keyboard, separated by blanks. The program will automatically add
these two integers and print on the next line:

THE SUM OF (first number) AND (second number) IS (total)

Before describing this program further, let us follow the correct pro-

cedure when designing any program. For reasons of clarity, the three

steps are labeled A, B, and C:

A. The problem to be solved is the following: read two integers and
add them.

B. The corresponding algorithm is:

1. Read the first integer.

2. Read the second integer.

3. Add both integers and display the result.

A new problem is introduced by this algorithm: the two integers must
be "remembered," i.e., stored in memory, before they can be added.

C. A simple data structure will be used to solve this problem: the two
integers will be represented internally by two variables of type in-

teger.

The total will also be represented by an integer variable. The concepts
of variable and type will be clarified as we use them. Let us now examine
this program in detail.

The first line is the program heading:

PROGRAM SUM(INPUT, OUTPUT);

This program is called SUM. The word PROGRAM is shown in boldface

type because it is a reserved word. Recall that reserved words in Pascal

have a special meaning to the Pascal compiler; thus, the word 'PRO-

GRAM' can be used only in the context of a program heading. Note that

a program may not be called "PROGRAM", since the word 'PRO-

GRAM' has a special meaning in Pascal, and would immediately be flag-

ged as an error by the compiler. Reserved words may only be used as

authorized by the rules or syntax of Pascal.

In the above program, the program heading specifies '(INPUT,OUT-
PUT)'. This means that the program will both read from the keyboard
(an input operation) and print on the printer or display on the CRT (an

output operation).

The second line of the program is:

VAR A, B, TOTAL : INTEGER;

This statement is called a variable declaration. It performs two func-

10 BASIC CONCEPTS

tions. First, it tells the Pascal compiler that the symbols A, B, and TOTAL
are variables. Second, it states that these variable^ are of type INTEGER.
This allows the compiler to reserve an adequate amount of memory for

each of the three variables.

Let us first clarify the concept of a variable, and then the concept of

type. Each variable has a name, a type and a value. In this program, the

symbol A will be used as the name of a variable that stores the value of

the first integer. The variable named B will be used to store the value of

the second integer. The variable named TOTAL will be used to store the

value of the sum. A variable can contain any (reasonable) value. The

value may vary during execution of the program. When this program is

first executed, A might receive the value "2" and B might receive the

value "11." When this program is executed another time, A might

receive the value "25V' and B might receive the value "3." Thus, the

actual values to be stored in A and B may vary with each program run.

Accordingly, A, B and TOTAL are called program variables. The char-

acters or the sequence of characters A, B and TOTAL are names as-

signed to internal memory locations. This concept is illustrated in

Figure 1.2.

SYMBOLIC
NAMES

MEMORY
LOCATIONS

Figure 1.2: A Variable is the name of a memory location

Initially, the contents of A, B and TOTAL in Figure 1 .2 are undefined.

Later, assuming that the values “2" and "11" are typed in, the contents

of A and B will be as shown in Figure 1 .3.

For clarity, the values shown as "2" and "11" in Figure 1.3 are

represented internally in the memory in a binary notation (with 0's and

Vs). If no value has yet been assigned to TOTAL, TOTAL is still undefin-

ed at that stage.

Let us now go back to the variable declaration:

VAR A, B, TOTAL : INTEGER;

This declaration declares the symbols A, B and TOTAL as variables,

INTRODUCTION TO PASCAL 11

Figure 7.3; Variables with Values

thereby automatically reserving memory locations to store their values

later on. In addition, this declaration specifies that these three variables

are of type integer.

The name of a variable is called an identifier. Identifiers will be formal-

ly defined in the next chapter. We have introduced the concept of

variable. We will now explain the concept of type. A type declaration

has two advantages. First, it simplifies the design of the Pascal compiler.

Second, it assists the programmer in preventing or detecting errors. Let

us examine these two points.

Once a variable has been declared, the compiler must allocate

storage to it. Internally, different numbers of bytes (a byte is a group of 8

bits) are allocated to each type of data. For example, a character may be

allocated one byte, while an integer may require two bytes, and a

decimal number may require four bytes. It is therefore very helpful for

the compiler to know ahead of time how much storage must be reserved.

Once the type of a variable has been declared, the compiler can easily

detect a number of obvious errors. For example, integers may be

multiplied together, while characters may not. If two variables were
declared of type 'char' (character), an attempt to add them will be

automatically detected as an error by the computer. A character is a let-

ter like 'F', 'X', or 'T', or any other symbol on the keyboard, like or
'5'. When a digit like '5' is declared as a character, it is not represented

in the same way as when it is declared as an integer. A character is

generally represented as a byte (8 bits) in the ASCII code, while an in-

teger is represented in two or more bytes, using a different internal code.

Returning to our program example, since A and B are declared as in-

tegers, any attempt to type illegal values, such as "TRUE" or "D" at the

keyboard, will be automatically rejected.

In summary, variable declarations simplify compiler design and
enhance programming discipline. It is possible, however, to design

language compilers that do not require such declarations. The disadvan-

tages may be an increased complexity in compiler design and greater

probability of errors in the program.

Pascal requires type definitions. This requirement is often viewed by

programmers as a nuisance, especially if they have programmed in

BASIC before. However, this feature is part of Pascal's overall

12 BASIC CONCEPTS

philosophy of disciplined programming, and enhances the probability

of successful program design. *

Having clarified the concepts of variable and type declaration, we
now enter the body of the program with the reserved word 'BEGIN'.

The lines that follow the VAR declaration are:

BEGIN

WRITELNf'ENTER TWO NUMBERS TO BE ADDED...');

We have already encountered this instruction in our previous example.

It will display or "type" the text: 'ENTER TWO NUMBERS TO BE ADD-
ED...'. Note that the actual text to be displayed is simply enclosed in

single quotes (apostrophes) in the program. This sequence of characters

is called a character string. This statement is terminated by a semicolon.

The next line in the program is:

READ(A,B);

This line means "read two numbers from the keyboard and call them A
and B." At this point, the program will wait for the user to type the

numbers at the keyboard. If the numbers are not typed, nothing will hap-

pen and the program will continue to wait. Once the two numbers have

been typed, this instruction will have been satisfied and the program will

proceed. A and B are names of variables. 'A' will contain the first

number typed. 'B' will contain the second number.

As explained before, A and B are called variables because their values

may be changed later on in the program, or may be different during

another program run. In this program, A and B have been declared of

type INTEGER in the second line of the program. As a result, the com-

piler will verify that any value given to A or B is indeed an integer.

Throughout this program, A and B will be integers, and the compiler will

check this every time A or B are referred to.

This particular feature is characteristic of Pascal: the type of each

variable must be declared prior to using the variable, and must be

respected throughout the program.

The next line in the program is: .

TOTAL : = A + B;

This statement means "compute A + B and call the result TOTAL." This

instruction is called an assignment statement. The symbol of the assign-

ment is ': = '. This symbol is created by typing ':' followed by ' =
', and is

called the assignment operator. This operator assigns the sum of A plus B

to a new variable called TOTAL. If we had typed 2 and 3 as the values of

INTRODUCTION TO PASCAL 13

A and B to be added, the resulting sum 5 would be assigned to the

variable TOTAL.

Naturally, the sum of two integers is an integer, and it can be verified

that TOTAL was declared to be of type INTEGER in line 2 of the pro-

gram.

'A + B' is an addition. This sequence of variables and operators is call-

ed an arithmetic expression. The rules for creating such expressions will

be presented in the following chapters.

The next line of the program is:

WRITELN(THE SUM OF ', A / AND ', B, ' IS ', TOTAL)

This instruction will display the following line on the CRT:

THE SUM OF 2 AND 3 IS 5

Again, note that any text to be printed is simply enclosed in single

quotes (this is called a character string). Also, note that the value of the

variables A, B, and TOTAL is printed when their names are used. The
name of a variable always stands for the value that it contains.
The program body is terminated with the usual END followed by a

period.

This program is longer than the previous one, and should be exam-
ined carefully until you are thoroughly familiar with its meaning.

SUMMARY

The basic concepts of computer programming, including the con-

cepts of algorithm, data structure, and program, have been introduced

and illustrated with actual examples.

The Pascal language was described as a high-level language designed

for disciplined programming, ease of use, completeness, and conve-

nience of implementation.

Another advantage often claimed by Pascal is portability. The term

"portability" is used to indicate that a program written in Pascal may be

transported to another computer and executed without change.

However, this is true only if both of the computers being used execute

exactly the same version of the language. Thus, true portability has

disappeared as various versions of Pascal have been introduced. Some
changes are usually required when using a different Pascal compiler.

Two simple programs were presented in this chapter in complete

detail, and additional concepts relating to Pascal programs were in-

troduced within the context of these examples. These concepts includ-

ed program headings, program blocks, the comment, variable declara-

tion, input and output instructions, the assignment statement, arith-

metic expressions and reserved words.

14 BASIC CONCEPTS

Here are examples of these concepts taken from the second program

presented in this chapter:

program heading

variable declaration i

and type definition j

4

PROGRAM SUM(IN PUT, OUTPUT);

VAR A,B,TOTAL : INTEGER;

BEGIN

program block

END

comment (* THIS PROGRAM ADDS
TWO NUMBERS *)

input and output READ(A,B); WRITELN(TOTAL);

assignment TOTAL : - A + B;

arithmetic expression A + B

reserved word PROGRAM

It is essential that these concepts be thoroughly understood. All of the

important concepts required to write and understand Pascal programs

will now be reviewed systematically in Chapter 2.

EXERCISES

1 - 1 : Modify the program SUM so that it prints the product of A and B (the

multiplication symbol is *).

1 -2 : Modify the program SUM so that it reads three numbers A, B, C, and

computes their sum.

1 -3 : Can a variable be used without being declared

?

1 -4 : What is a program ? What is an algorithm

?

1 -5 : Is the following a legal statement

?

TOTAL (* THIS IS THE SUM *') := A (* 1ST NBR *) + B (* 2ND *);

1 -6 : Is an algorithm the same as a program

?

\

CHAPTER ^

PROGRAMMING
IN PASCAL

17

INTRODUCTION

In Chapter 1 the concepts of algorithm, data structure, and program

were introduced and two simple Pascal programs were examined in

detail. In this chapter, we will describe the organization of a Pascal pro-

gram and introduce the concepts of syntax and modular program

organization, or "structured programming." Our goal is to learn the

basic rules of the Pascal language so that we can start solving simple pro-

blems with Pascal programs.

Three special entities— identifiers, scalars and operators—are defined

by the syntax of Pascal and must be understood before writing a simple

Pascal program. Once these three entities are understood, expressions

may be constructed, and Pascal statements written.

Identifiers will be presented in this chapter. Scalars and operators will

be studied in Chapter 3. Expressions and statements will be studied in

Chapter 4.

WRITING A PASCAL PROGRAM

Once the solution to a problem has been specified in the form of an

algorithm, the algorithm must be transformed into a Pascal program.

After the program is written, it will be translated by the compiler and ex-

ecuted. Various other programs such as the editor and the file system

can be used on an interactive computer to facilitate this process. These

programs are described in Chapter 15.

From now on, we will concentrate on the task of translating algo-

rithms into programs and data structures. The set of rules for construc-

ting a valid Pascal program is called the syntax of Pascal. We will learn

all of the syntactic rules of Pascal, one at a time. The first use of these

formal rules will be presented in this chapter.

THE SYNTAX OF PASCAL

Pascal is a high-level language. Pascal allows the programmer to

specify instructions in a language that is similar to the English language,

but is highly restricted. In order to avoid any ambiguity, and to facilitate

the translation of the program by the compiler into binary instructions,

the syntax of the language imposes strict rules.

Programming may require ingenuity and intelligence, but it also re-

quires a strict discipline. Every instruction or statement in a Pascal pro-

gram must strictly follow the rules of the Pascal syntax. Any instruction

that violates the rules will cause the program to fail. There are no excep-

tions. It is therefore essential to understand and strictly adhere to the

18 PROGRAMMING IN PASCAL

rules of the syntax. A single misplaced dot or comma will cause the pro-

gram to fail. The single largest source of failure irnall computer programs

is negligence. The importance of following a highly disciplined ap-

proach toward computer programming cannot be emphasized enough.

The rules of Pascal can be described in many ways. For example, they

can be described by using words, the BNF (Backus-Naur Form) nota-

tion, or syntax diagrams. Throughout this chapter, the syntax will be

described by using words. Then, in the following chapter, syntax

diagrams will be introduced to provide a concise and accurate repre-

sentation of the rules. Examples of BNF notation will be provided as

well.

FORMAT OF A PASCAL PROGRAM

Pascal has been designed to encourage modular programming. Thus,

each step or logical group of steps within the algorithm can generally

be translated into a Pascal module. Pascal modules are called blocks

functions or procedures> depending upon the way they are used. (These

modules will be described in turn later in the book.)

In addition, the syntax of Pascal requires that all of the declarations

and definitions must appear at the beginning of a program. The resulting

overall organization of a Pascal program is shown in Figure 2.1.

Program

Block

PROGRAM

Declarations

and Definitions

BEGIN

Program

Body

END.

Figure 2. 1: Overall Organization of a Pascal Program

As shown in Figure 2.1, all declarations appear at the beginning of a

program. The declarations are followed by the main block, which is

bracketed by the words BEGIN and END.

Let us now consider the organization of each of these modules in

more detail. A detailed description of a Pascal program is shown in

Figure 2.2.

INTRODUCTION TO PASCAL 19

DECLARATIONS <

AAAIN BODY <

PROGRAM HEADING

EXAMPLE: PROGRAM SUM (INPUT, OUTPUT);

LABEL DECLARATION

(COVERED IN CHAPTER 6)

CONSTANT DEFINITION

(COVERED IN CHAPTER 3)

TYPE DEFINITION

(COVERED IN CHAPTER 3)

VARIABLE DECLARATION

EXAMPLE: VAR A, B, TOTAL : INTEGER;

(COVERED IN CHAPTER 3)

PROCEDURE DECLARATION

(COVERED IN CHAPTER 7)

FUNCTION DECLARATION

(COVERED IN CHAPTER 7)

BEGIN
STATEMENTS(S);

EXAMPLE: TOTAL: = A + B;

BEGIN

STATEMENTS);

END;

LOGICAL

BLOCK

BEGIN

STATEMENTS);

END;

OTHER
BLOCK

STATEMENT(S);

END

PROGRAM HEADER

LABEL

DECLARATION(S)

DATA
DESCRIPTION(S)

SPECIAL

ALGORITHMS

MAIN PROGRAM
ALGORITHM BLOCK

Figure 2.2: Detailed Organization of a Pascal Program

20 PROGRAMMING IN PASCAL

Let us look more closely at the declarations and the main body.
4

DECLARATIONS

The various kinds of declarations in Pascal must appear exactly in the

order in which they are shown in Figure 2.2: first, the labels, then the

constants, etc. However, declarations are all optional. For example, in

our first program example:

PROGRAM GREETING(OUTPUT);

(* THIS IS A SIMPLE PASCAL PROGRAM *)

BEGIN

WRITELN('HELLO')

END.

there were no declarations. This program included only the program

header, followed by the main executable body. Recall that comments
do not count: they are ignored by the compiler.

Usually, any Pascal program that has more than a few lines uses

variables and must include one or more variable declarations. For ex-

ample, our second program was:

PROGRAM SUM(INPUT, OUTPUT);

VAR A, B, TOTAL : INTEGER;

BEGIN

WRITELN('ENTER TWO NUMBERS TO BE ADDED...');

READ(A,B);

TOTAL :
= A + B;

WRITELN('THE SUM OF ', A ,' AND B / IS ', TOTAL)

END

This program includes the program header and the variable declaration,

followed by the main executable body.

Referring back to Figure 2.2, labels are seldom used, and functions or

procedures are generally used only in long programs. The only three

declarations required for short programs are: CONSTant, TYPE, and

VARiable. They will all be described in Chapter 3. The remaining decla-

rations will be described in Chapters 6 and 7.

THE EXECUTABLE PROGRAM BODY

The program body, shown in Figure 2.2, contains the sequence of

statements that will execute the proper algorithms. Several types of

INTRODUCTION TO PASCAL 21

statements can be used in Pascal. The three most important statements

are:

1. The assignment statement (described in Chapter 4)

2. Input and output statements (described in Chapter 5)

3. Control statements (described in Chapter 6)

Other types of statements include procedure calls, 'GOTO', and
'WITH' statements. These statements will be described in subsequent
chapters.

PROGRAM ORGANIZATION SUMMARY
In summary, each Pascal program must contain at least a program

heading and a statement. In addition, a program may contain several

declarations or definitions following the heading (in the proper order),

as well as any number of statements. Comments, additional blanks, and
indentations may be placed anywhere in a program to improve
readability.

FORMAL ORGANIZATION OF A PROGRAM
For those readers who can already read syntax diagrams, the formal

syntax of a Pascal program is shown in Appendix F.

The corresponding program organization is shown in Figure 2.3.

Figure 2.3: Formal Organization of a Pascal Program

22 PROGRAMMING IN PASCAL

Note that, using the formal definition, a "program block" refers to

everything that follows the heading, including the declarations.

THE SYMBOLS OF PASCAL

All of the symbols in the alphabet available on your computer installa-

tion may be used in a Pascal program. Most computers use the ASCII

code (shown in Appendix G), and provide 128 characters. However, it

should be noted that many of these characters, or sequences of

characters have a special meaning for Pascal, and may be used only for

specific purposes.

These special symbols will be described in this section. Then the rules

for constructing additional symbols or identifiers will be presented.

RESERVED SYMBOLS

The reserved symbols used by Pascal are shown in Figure 2.4.

+ — * / :
=

/ <> < <=>= >

()]
(*°r{ *)°r} t

Figure 2.4: Reserved Symbols

Most of these symbols are used to denote operations such as + , -, *

(multiply), / (divide). Other symbols are used for specific syntax pur-

poses. For example, has already been used to separate statements,

and "(*" with "*)" have been used to enclose comments. These sym-

bols and others may be used freely within a text processed by a pro-

gram, but not within a program itself. Within a program, these reserved

symbols have a well-defined (pre-defined) meaning.

RESERVED WORDS

In addition to the reserved symbols, a number of predefined words

have a special meaning within a Pascal program. Some of these words

called reserved words may not be redefined by the programmer. Others

may be redefined by the programmer and are called standard identifiers.

The reserved words of Pascal are shown in Figure 2.5. Some reserved

words are used to denote operations: AND, OR, NOT, DIV. Other

reserved words are used for declarations or definitions: PROGRAM,
CONST, VAR, TYPE. Still others are used as part of statements: IF,

WHILE, REPEAT.

INTRODUCTION TO PASCAL 23

AND END NIL SET

ARRAY FILE NOT THEN

BEGIN FOR OF TO

CASE FUNCTION OR TYPE

CONST GOTO PACKED UNTIL

DIV IF PROCEDURE VAR

DO IN PROGRAM WHILE

DOWNTO LABEL RECORD WITH

ELSE MOD REPEAT

Figure 2.5: Reserved Words

Reserved words are always shown in boldface type in the programs

contained in this book. Remember that these words may never be used

by the programmer in any other way than as reserved words. For exam-

ple, a program may not be given the name "PROGRAM." We will now
show the ways the reserved words are used by the compiler.

Let us review again the first program introduced in Chapter 1 il-

lustrating a simple Pascal program:

PROGRAM GREETING(OUTPUT);

BEGIN

WRITELNf'HELLO')

END

The three words shown in boldface in the program are reserved words.

The reserved word PROGRAM must appear at the beginning of every

program. Once this word is recognized, the compiler expects the next

word to be the name of the program. Then, if any parentheses are

found, the compiler is told that the program will use files. The file used

in this case is OUTPUT. The word OUTPUT is not a reserved word, but

it has a predefined meaning. This type of word is called a standard iden-

tifier and will be described in the next section. Finally, the program

header is terminated by a

24 PROGRAMMING IN PASCAL

Next, the compiler finds the reserved word BEGIN. This tells the com-
piler that one or more executable statements folloNv.

The only executable statement in this program is:

WRITELN('HELLO')

where WRITELN is called a standard identifier, and 'HELLO' is called a

string of characters.

The program is terminated with the keyword END. Every program

must be terminated with the word END followed by a period.

We will see in Chapter 6 that blocks of statements delimited by BEGIN
and END may appear in various locations within the program.

However, the last END written in a program is the only one that is

followed by a period.

Having explained the meaning and role of reserved words, let us ex-

amine the standard identifiers, such as WRITELN and OUTPUT.

STANDARD IDENTIFIERS

Standard identifiers are words that have a predefined meaning in

Pascal, but that may be redefined by the programmer to take on a dif-

ferent meaning. These words are shown in Figure 2.6.

The novice or intermediate programmer is strongly advised not to

redefine these standard identifiers within a program. Standard iden-

tifiers are not shown in boldface type in the programs.

The facility to redefine these identifiers should only be used by the ad-

vanced programmer in highly specific cases, i.e., when the standard

identifier does not do exactly what is required by the program.

In practice, standard identifiers should be treated in the same way as

reserved words, unless there is a very good reason not to treat them this

way.

Let us look again now at the second program example introduced in

Chapter 1

:

PROGRAM SUM(IN PUT, OUTPUT);

VAR A, B, TOTAL : INTEGER;

BEGIN

WRITELN('ENTER TWO NUMBERS TO BE ADDED...');

READ(A,B);

TOTAL :
= A + B;

WRITELN('THE SUM OF ', A ,' AND ', B ,' IS ', TOTAL)

END.

INTRODUCTION TO PASCAL 25

The reserved words in this program are:

PROGRAM, VAR, BEGIN, END

The standard identifiers are:

INPUT, OUTPUT, INTEGER, WRITELN, READ

STANDARD IDENTIFIERS

FILES:

INPUT OUTPUT

CONSTANTS:

FALSE TRUE MAXINT

TYP'S:

BOOLEAN CHAR INTEGER REAL TEXT

FUNCTIONS:

ABS EOLN SIN TRUNC

ARCTAN EXP SQR

CHR IN SORT

COS ODD SUCC

EOF

PROCEDURES:

GET PAGE READLN UNPACK

NEW PUT RESET WRITE

PACK READ REWRITE WRITELN

Figure 2.6: Standard Identifiers

Finally, one more type of identifier called a user-defined identifier is us-

ed in this program. The user-defined identifiers in this program are:

SUM, A, B, TOTAL

26 PROGRAMMING IN PASCAL

The role and meaning of these identifiers will now be explained.
4

Identifiers

An identifier is a name. This name may be given to a variable, pro-

gram, type, constant, function, procedure, etc. Three types of identifiers

are distinguished in Pascal:

— Reserved words
— Standard identifiers

— User-defined identifiers.

Reserved words and standard identifiers have already been described.

User-defined identifiers will now be explained.

Four examples of identifiers appear in the second program example in

Chapter 1. These identifiers are:

— The name of the program: SUM
— The names of the three variables: A, B, TOTAL

An identifier must start with a letter and may contain any combination

of letters and digits. An identifier may have any length, but only the first

eight characters will be recognized and used by the compiler to dif-

ferentiate between identifiers. However, an identifier may never be a

reserved word, since a reserved word already has a special meaning for

the compiler.

Here are examples of valid identifiers:

A

B

Alpha

Alpha!

Numberofemployees

Numberofcustomers

Note that although the identifiers above are valid, the last two will ap-

pear identical to the compiler because, in Standard Pascal, the compiler

will only look at the first eight characters. Although long names may be

used, be careful that the first eight characters always appear differently.

Listed below are examples of invalid identifiers:

FIRST-A

2nd

program

BETA 2

(includes a

(starts with a digit)

(reserved word)

(includes a blank)

INTRODUCTION TO PASCAL 27

UCSD COMMENTS

A comment may be bracketed by (*...*) or by {...}, interchangeably.

Whenever a comment is started with (*, it must terminate with *). When
a comment is started with {, it must terminate with }.

For example, the following comments are legal in UCSD Pascal:

(* THIS IS A {SPECIAL} PROGRAM *)

(* THIS IS A (* SPECIAL PROGRAM *)

In the second example, note that the first (* triggers the "comment
mode." All subsequent characters are ignored, including the second oc-

currence of (*, up to the matching *).

However, a $ in the first position of a comment is interpreted as a

compiler command. Compiler commands are specific to the installa-

tion.

UCSD PROGRAM HEADINGS

Unlike Standard Pascal, UCSD requires no file parameters such as (IN-

PUT, OUTPUT) in the program heading. A file parameter list may be us-

ed, but it is ignored.

For example:

PROGRAM TEST;

is equivalent to:

PROGRAM TEST(INPUT, OUTPUT);

UCSD LISTINGS

When listing a program, UCSD Pascal provides the option to have line

numbers appear to the left of every line in the program. The general for-

mat of such a listing is shown in Figure 2.7.

Line No. Optional Other Information Program Text

1 1

1 1

1 1

(*$L*)
1

2 1 1 : D 1 Declarations

3 1 IX 0 Program

• •

•

statements

Figure 2.7: UCSD Line Numbering

28 PROGRAMMING IN PASCAL

A line number is automatically generated to the left of the program.

Other optional information may appear in the second field to the right

of the line number. In order to generate a listing with numbers, one

simply includes (*$L*) in the program text. This facility is specific to

UCSD Pascal and may not be available on other installations or it may
be supplied in a different form.

SUMMARY

The overall structure of a Pascal program has been described in this

chapter. Each program starts with a program heading, followed by op-

tional declarations, and one or more statements bracketed with BEGIN
and END.
Three types of identifiers are used in Pascal: reserved words, standard

identifiers, and user-defined identifiers. Each of these three types was

described in this chapter.

By this point in the text, the reader should easily follow the organiza-

tion of the first two program examples that were introduced in Chapter

1 . In order to construct more complex programs in Pascal, we must first

study the rules that will allow us to perform computations. We will now
study the way that numbers are represented and the operations that

may be performed on them.

EXERCISES

2- 1 : Are the following identifiers legal in Pascal

?

1: A 2: 2B 3: A1B3D2 4: ALPHA + 1 5: SIMPLE NAME

2-2: What will be the effect of using the following three identifiers in a pro-

gram?

PERSONNO 7, PERSONN02, PERSONN03
Are these identifiers legal?

2-3: Without looking at the examples provided in the text write a simple

Pascal program that will print 'HELLO', followed by your name.

CHAPTER <J

SCALAR TYPES
AND OPERATIONS

31

INTRODUCTION

I n order to design simple Pascal programs, we must first learn the rules

relating to data, as well as the rules relating to the operations that may
be performed on data.

In Pascal, there are four fundamental data types which are called the

standard scalar types: integer, real, character and Boolean. These four

types and the rules that apply to them will be studied in this chapter.

Once these data types and the corresponding operators are understood,

we will then be able to assemble them into expressions, and write pro-

gram statements.

There are two kinds of scalar types in Pascal: the built-in types, and

the user-defined types. Both scalar types will be described. Let us first

examine the four built-in or "standard" scalar types: INTEGER, REAL,

CHAR, and BOOLEAN.

THE INTEGER TYPE

Integers, i.e., whole numbers, may be positive or negative. The max-

imum and the minimum size for integers that may be represented in a

given Pascal installation is limited by the precision used. In practice, it is

only possible to represent the integers between -MAXINT and +MAX-
INT, where MAXINT represents the largest number provided by the in-

stallation. MAXINT is a predefined constant that may be used to deter-

mine or print out the maximum value for integers that is available.

UCSD Pascal allows integers of up to 36 digits (long integers). The

following are examples of valid Pascal integers:

1234

0

1

-234
MAXINT
+ 10

Here are examples of illegal integers:

(a comma is not allowed)

(this is not an integer)

1,234

1.2

32 SCALAR TYPES AND OPERATORS

Operators for Integers

For each data type, Pascal defines valid operators. Operators operate

on one or two operands (values) and perform a specific operation.

Operators are generally represented by mathematical symbols, such as

+ and -
,
or by reserved words, such as DIV for integer division.

Let us first define the operators and then look at examples of their use.

The standard built-in Pascal operators for integers include arithmetic

operators and relational operators. The five arithmetic operators are:

+ addition (plus sign)

subtraction (minus sign)

* multiplication

DIV division (yields a truncated integer result-

truncation is the dropping of any digits to the

right of the decimal point).

MOD modulus (A MOD B yields the remainder of

the division of A by B). Thus:

A MOD B = A - (A DIV B) * B

The six relational operators are:

> greater than

>= greater than or equal to

< less than

<= less than or equal to

= equal to

<> not equal to

These six relational operators may be used on any standard scalar data

type. They produce a Boolean value that is TRUE or FALSE. Boolean

values will be defined later on in this chapter.

Note that the division operator for integers that will give an integer

result is DIV. The symbol "/" is used to obtain a real number result. The

operator DIV always results in an integer result. This convention helps to

avoid errors.

Examples of arithmetic operators are:

4 - 3=1

5 + 6=11

2 * 12 = 24

INTRODUCTION TO PASCAL 33

20 DIV 6 is 3 (note that when using decimal (real)

numbers, the / would be used, and the

result of 20/6 would be 3.333)

(-20) DIV 6 is -3 (if a negative operand is allowed by the

implementation)

9 MOD 4 is 1 (the result of 9/4 is 2, with a remainder

of 1).

If A is exactly divisible by B, then A MOD B is 0.

Standard Functions for Integers

Since only a few symbols are available as part of the character set on

most computers, traditional mathematical symbols used to denote a

square root, a power or an integral, are not available. Standard iden-

tifiers are used instead.

A Pascal identifier that performs an operation on one or more
operands and yields a result is called a function. User-defined functions

will be discussed in Chapter 7. In this chapter, we will simply describe

those standard functions that may be used with the four scalar types.

The standard functions are essentially similar to operators, but

generally perform more complex operations. Traditionally, in program-

ming languages, the most-often used operations are represented by the

special symbols called operators, while the less-often used ones are

called functions. In Pascal, functions are always represented by a stan-

dard identifier followed by parentheses. The argument(s) on which they

operate must be enclosed within the parentheses.

Four standard functions are provided in Pascal that yield an integer

result:

ABS(I)

SQR(I)

TRUNC(R)

absolute value of the integer I. For ex-

ample:

ABS(- 4) is 4

ABS(3) is 3

square of the integer I. For example:

SQR(2) is 4 (2*2)

SQR(- 3) is 9 (
- 3* - 3)

integer portion of R where R is a real

(decimal) number. For example:

TRUNC(1 .2) is 1

TRUNC(- 2.3) is -2

34 SCALAR TYPES AND OPERATORS

ROUND(R) integer closest to R. It is analogous to

TRUNC, except thjit R is rounded to the

nearest integer, either up and down.
Whenever the fractional part of R is ex-

actly 0.5, it is rounded up if R is positive,

or down if R is negative. For example:

ROUNDO.2) is 1

ROUNDO.8) is 2

ROUND(- 2.4) is -2.

In the following example using Pascal functions, the mathematical ex-

pression:

may be expressed as:

A * SQR(X) + B * X + C

and the expression:

I'lxJ

becomes:

ABS(I) *
J

THE REAL TYPE

In Pascal, real numbers correspond to the usual decimal (floating

point) numbers. The minimum and maximum magnitudes of real

numbers depend upon the implementation. In Pascal, a real number
must have a decimal point, at least one digit to the left of the decimal

point, and at least one digit to the right. The following are examples of

legal real values in Pascal:

AX2 + BX + C (where all numbers are integers)

+ 12.0

- 12.1

+ 0.1

3.14159

The following are examples of invalid real values:

.123 (digit missing to the left of the decimal point)

12 (decimal point missing. This is an integer.

However, most implementations will con-

vert an integer into a real, i.e., 12 into 12.0)

(digit missing to the right of the decimal

point).

1 .

INTRODUCTION TO PASCAL 35

The representation of reals with a decimal point is the most common
representation. However, another representation of reals, often used in

physics, is also allowed in Pascal: it is called the exponential notation or

scientific notation. An example of this notation is:

1.0E+2 which represents 1 x 102 = 100

In this example, 1.0 is called the mantissa or characteristic, and the

number following the E is called the exponent. The exponent specifies

the power of ten used. It indicates that the decimal point should be

moved to the right (or to the left if the exponent is negative) by that

many positions. Another example is 1.2E-3, which represents 0.0012

or 1.2 x 1CT 3
.

This representation is a shorthand notation which is convenient for

very small or very large numbers, i.e., whenever there are several

zeroes in a number. The plus sign in front of the number following the E

may be omitted.

As indicated previously, the range of real numbers that may be

represented depends upon the installation. Usually, six digits are allo-

cated to the mantissa and two digits are allocated to the exponent. Let us

call MINREAL the smallest positive real that may be represented, and

MAXREAL the largest one. As a result of the limited precision, it is only

possible to represent positive reals between the installation-dependent

MINREAL and MAXREAL, and negative reals between - MINREAL and

-MAXREAL. There is a range of numbers between -MINREAL and

+ MINREAL which cannot be represented, although zero itself can be

represented. In short, very small values as well as very large values can-

not be represented.This is illustrated in Figure 3.1.

yyyyyyyyyy yyyyyyyyyX /yyyyy. ^
^’7/7/Z

-MAXIREAL -MINI

T77777777Z

REAL

V////////A

0
MINREAL MAXI

yyy/Z^
REAL

t
cannot be

represented

(except 0)

Figure 3.7: Representation of Reals

As a result of the limitation on the precision with which a real may be

represented, arithmetic operations performed on real numbers will

36 SCALAR TYPES AND OPERATORS

usually not result in an exact value. Using an example in the decimal

system, Vi may be represented by 0.333333 if only seven decimal digits

are available to represent the result. This is an approximation of the ex-

act value of Vi, since the exact representation of Vi requires an infinite

number of 3's after the decimal point. This is why it is advisable not to

test the value of any real number for equality. For example, !A

multiplied by 3 will probably not be equal to 1. If many operations are

carried out, the error due to the truncation or to the rounding off of the

result will increase with the number of operations, and can become
quite large in some cases.

In most simple calculations, the approximation due to the limited

precision of the internal representation will be almost invisible.

However, in numerical computations which are complex and must be

accurate, special care must be exercised and the rules of numerical

analysis must be followed in order to obtain results that are as accurate

as possible. In particular, the following recommendations apply:

— Do not test a real value for equality. Instead, test that the dif-

ference between two real values is less than a specified amount.

— Avoid subtracting two nearly equal real numbers.

— Minimize the number of calculations involved.

Operators for Reals

In addition to the six relational operators, which were introduced in

the preceding section and apply to all reals, there are four arithmetic

operators available for the real data type. They are:

+ addition

- subtraction

* multiplication

/ division (unlike the case with integers, DIV may not be used for

real numbers).

Here are examples of operations:

1.2 +1.3 is 2.5

1.2 - 1.3 is -0.1

2.0 * 3.1 is 6.2

2.2/ 2.0 is 1.1

Functions for Reals

The following standard functions will yield a real value:

INTRODUCTION TO PASCAL 37

ABS (R) absolute value of R.

SQR(R) square of R, or R x R

(These two func-

tions may operate

on a real or an in-

teger argument,

yielding a result of

the same type)

SIN(R) sine of R

COS(R) cosine of R

ARCTAN(R) arc tangent of R (in radians)

LN(R) natural logarithm of R

EXP(R) exponent of R

SQRT(R) square root of R

(These six func-

tions may operate

on a real or

an integer

argument yielding

a real result)

Here are examples of the standard functions:

ABS(- 5.21) is 5.21

ABS(6.789) is 6.789

SQR(4.0) is 16.0

SQRT(4.0) is 2.0.

Two standard functions will convert a real into an integer: TRUNC(R)
and ROUND(R). These functions were described in the section on

integers.

THE CHARACTER TYPE

Characters are any of the symbols available on the installation. For ex-

ample:

A B Z + / * ?

Characters are always represented in single quotes or apostrophes in

Pascal:

W 'B' 'Z' ' +
'

'/' T '' (a blank)

The single quote must be written twice, in quotes:

/ / / /

Characters wifi be used when processing, reading or printing text. Inter-

nally, each character is represented by a numeric code of binary digits

(or bits) such as: '1011 000 1
' . Generally, 8 bits (one byte) are used for

each character.

Therefore, when two characters are compared, it is actually their cor-

responding codes that are compared. A will be less than B provided that

the binary code used to represent A is less than the binary code used to

represent B. This rule applies to all characters, including digits and

punctuation marks.

38 SCALAR TYPES AND OPERATORS

Characters, like any other scalar type, are ordered, i.e., they follow

each other in a given sequence. However, a practical constraint is in-

troduced on their ordering by the implementation: characters are

represented by different codes, depending upon the computer

manufacturer. For example, on IBM computers, the EBCDIC code is

used. On small computers, the ASCII code is universally used (see Ap-

pendix G). The internal ordering of the alphanumeric symbols (the

characters) depends upon their internal code, since it is the value of the

codes that is compared.

In practice, any code guarantees that the letters of the alphabet are

"in the right order." However, a code will not guarantee that they are

adjacent. The digits from 0 to 9 are always in the correct order and are

contiguous:

'A' < 'B' < 'C' < ... < Z' and 'O' < T < '2
' < ... < '9'

Also, the number of characters is code-dependent, and may vary from

64 to 256. The most common number with the ASCII code is 128.

Note: 'AB' is not a character
,
but a string of characters, a different type

which will be introduced in a later chapter.

Also, when referring to the ASCII code table in Appendix G,

remember that a digit declared as a character is represented as an ASCII

code (8 bits). In contrast, a digit declared as an integer is represented in

a different code that may use 16 or 32 bits. The two internal representa-

tions of that digit are different.

OPERATORS AND FUNCTIONS FOR CHARACTERS

There are no arithmetic operators available to perform computations

on characters. However, the six standard relational operators are

available, as well as four standard functions. These functions are

described here for a more complete text, but they will not be used in

our simple programs.

ORD(C) Ordinal function: yields the ordinal value of that

character, i.e., the internal integer code that

represents it.

CHR(I) Character function: yields the character C cor-

responding to the integer I in the internal rep-

resentation of the character set.

PRED(C) Predecessor function: yields the previous

character in the representation used.

SUCC(C) Successor function: yields the next character in

the representation used.

INTRODUCTION TO PASCAL 39

Here are examples:

PRED('B') is 'A'

SUCC('E') is 'F'

The following relationships hold:

PRED(C) = CHR(ORD(C) - 1)

SUCC(C) = CHR(ORD(C) - 1)

CHR(ORD(C)) = C
ORD(CHR(l))- I

They also hold with the ASCII code:

ORD('G') = ORD('H') -1

ORD('Y') = ORD('Z') - 1

ORD(/

Z') = ORD('Y') + 1

Note: the PRED and the SUCC functions have been introduced for

characters, as this is the way in which they are ordinarily used.

However, these functions also apply to integers and Booleans. They do
not, however, apply to real numbers.

Remember when using the relational operators on characters that the

ordering of the characters is implementation-dependent. In general, the

ordering of the upper-case letters and the digits will be the "normal" (or

common) one. However, do not compare other characters unless you

know the internal ordering used in your particular system. If the ASCII

code is used, for example, refer to Appendix G to establish the internal

ordering of the characters. It is important to know the ordering of

characters when processing text.

THE BOOLEAN TYPE

The word "Boolean" is derived from the algebra theory developed by

Boole. The type BOOLEAN may take two values: TRUE or FALSE. It is

called a logical type. Combinations of Boolean values are called

Boolean expressions, and are used to make logical decisions. A Boolean

data type may only take one of the logical values TRUE or FALSE. Such

Boolean values are usually obtained as the result of a comparison.

For example: I
= 4 will be FALSE if I has the value 5. Here are other

examples:

2=3 is FALSE

10 = 10 is TRUE
11 > 9 is TRUE
1.2 <= 2.1 is TRUE

40 SCALAR TYPES AN D OPERATORS

The use of Boolean expressions to control the execution of a program

will be discussed in Chapter 6.

Operators for Booleans

In addition to the six usual relational operators, three special Boolean

operators are also available:

AND logical AND
OR logical OR
NOT logical negation

These three Boolean operators are traditionally defined by truth tables
,

as shown in Figure 3.2.

A B A AND B

F F F

F T F

T F F

T T T

A B A ORB

F F F

F T T

T F T

T T T

A NOT A

F T

T F

Figure 3.2: Truth Tables

INTRODUCTION TO PASCAL 41

In Figure 3.2:

- (A AND B) is TRUE only if both A and B are TRUE. It is FALSE in all

other cases.

- (A OR B) is TRUE if either A or B or both are TRUE. It is FALSE only

if A and B are both FALSE.

- (NOT A) is the opposite of A: if A is TRUE, NOT A is FALSE.

Additional logical operators can be defined using the relational

operators:

A = B (denotes equivalence)

A <> B (denotes an exclusive OR)
A<= B (denotes an implication)

The truth table for these three types is shown in Figure 3.3.

A B A = B AOB A <= B

F F T F T

F T F T T

T F F T F

T T T F T

Figure 3.3: Additional Truth Tables

In Figure 3.3:

— (A = B) is TRUE if A and B are both TRUE or FALSE, i.e., have the

same Boolean value.

— (A <> B) is TRUE if A and B have different Boolean values.

— (A <= B) is TRUE if A<B or A = B. (F<T by definition.)

Functions for Booleans

A few Boolean functions are available in Pascal that will yield a

Boolean value of TRUE or FALSE. They are called predicates. For clarity,

only one example of this type of function, ODD(I), will be presented

here.

ODD(I) is TRUE if integer I is odd, and FALSE if I is even.

The other two Boolean functions available in Pascal that will yield a

Boolean value are EOF and EOLN. They will be described in Chapter 1 1

.

42 SCALAR TYPES AND OPERATORS

USER-DEFINED TYPES

Additional types may be defined by the programmer with the TYPE
declaration. This declaration will be introduced later on in this chapter,

after the VAR declaration has been presented.

TYPE DEFINITIONS

The type of each variable must always be described before the

variable is used. Three mechanisms are provided to define the type of

an identifier: the built-in variable declaration (VAR), the implicit TYPE
declaration of constants, and the explicit TYPE definition. They will be

examined in turn.

The VAR Declaration

We have already used the VAR declaration. Here is an example:

VAR X,Y : REAL;

This statement declares X and Y as REAL variables. Similarly:

VAR I, J,K : INTEGER;

defines I, J and K as INTEGER variables.

Here are other examples of variable declarations:

VAR A : REAL;

B : REAL;

M,N : CHAR;

TEST : BOOLEAN;

or:

VAR A,B : REAL;

K,L : INTEGER;

Note that A,B may be declared together or separately, and that VAR
may be used only once at the beginning of the list of variables to be

declared.

Here is another example where several variables are declared at the

same time:

VAR DAY,MONTH,WEEK : INTEGER;

INTRODUCTION TO PASCAL 43

These examples show the syntax of a VAR declaration very clearly.

However, the symbolic syntax diagrams are often used to provide a for-

mal definition. We will introduce this concept here. Use it if you feel

comfortable with it. Do not use it if you do not readily understand it.

Other diagrams will be presented throughout the book. However, they

are more useful as concise references than as learning tools. The formal

syntax diagram for a VAR definition is shown in Figure 3.4.

—(v7r> identifier

o
o type O
optional path

rr optional path

Figure 3.4: VAR Declaration Syntax

In such diagrams, a box with rounded edges is used to represent

predefined words, i.e., reserved words and standard identifiers, such as

'VAR'. A circle is used to represent reserved symbols such as or

A rectangle is used for syntax elements that are defined elsewhere in

their own diagram. In the example in Figure 3.4, there are two such rec-

tangles: 'identifier' and 'type'. Finally, the lines and the arrows are used

to indicate authorized paths. For example, let us use the diagram of

Figure 3.4 to verify the syntax of:

VAR A,B,C : INTEGER;

The corresponding path is shown in Figure 3.5.

This diagram shows how the VAR declaration is constructed step-by-

step by following the rules of the syntax. We can thus verify that the

VAR declaration is indeed legal.

Once you become familiar with such diagrams, they provide a con-

cise and convenient way to verify the syntax in a specific case. The com-

plete syntax diagrams are shown in Appendix F.

The VAR declaration serves two syntactic purposes:

1 . It tells the compiler that the identifiers in the VAR declaration are

VARiables, and not another kind of identifier, such as function or

procedure names.

2. It defines the type of each of these variables as REAL, INTEGER,

BOOLEAN, or CHAR.

44 SCALAR TYPES AND OPERATORS

The use of VAR has three resulting advantages:

1. It simplifies the compiler design.

2. It enforces greater programming discipline by requiring the pro-

grammer to declare all of the variables explicitly before they are

used.

3. It allows the compiler to check the validity of operations per-

formed on specific data types.

VAR

VARA

• <VAR> A

VARA,

VARA, B,

— -(var)-

VARA, B, C

> ^(var)-

VAR A, B, C : INTEGER ,

V
</

Figure 3.5: Following the Syntax Diagram

INTRODUCTION TO PASCAL 45

Implicit Type Declaration (Constants)

A constant is an actual value of a given data type. In the case of in-

tegers, the following are constants: 22, 3, 15. In the case of characters,

examples of constants are: 'S' or 'T'. Symbolic constants are used
whenever it is convenient to represent a value by a name. For example,
the following symbolic constants could be useful:

PI = 3.14159

SALESTAX = 6.5

The CONST declaration is used to define a symbolic constant. It

defines the type of the constant identifier implicitly; i.e., the symbolic

constant is given the type of the value assigned to it. For example:

CONST I = 2;

defines I as an integer constant (and assigns I the value 2).

CONST NAME = 'ABC25?';

defines NAME as a character string constant (a sequence of characters).

Here is another example:

CONST TWO = 2;

VAR A : INTEGER;

BEGIN

A :
= TWO;

The first line in this program defines the constant named TWO as an IN-

TEGER, and assigns it the value 2. The symbol TWO may now be used in

the program as a constant with the value 2.

As a typical example, it may be desirable to define PI = 3.14159 as a

constant. In general, if a number or a string of characters is used more
than once in a program, or if this number or string might be changed

throughout the program in a later version, it is advantageous to declare

this number or string of characters as a constant at the beginning of the

program. In this way, if the value of the constant has to be changed

throughout the program, then only one statement has to be changed.

This technique leads to what is called a "cleaner program," i.e., a pro-

gram less prone to errors in the event of future changes.

In summary, constant values may be used freely within the statements

as long as the constants are expressed as literals, i.e., as values or

46 SCALAR TYPES AND OPERATORS

characters. However, if a name is used for a constant, this name must be

explicitly declared in a CONST declaration.
4

As another example of a syntax diagram, the formal syntax of a con-

stant is shown in Figure 3.6.

User-Defined TYPE

Pascal provides standard type identifiers such as INTEGER, REAL,

BOOLEAN, and CHAR. However, it is often convenient to use different

names for these standard types, or even to create names for new types

that the programmer may construct.

The TYPE definition allows the programmer to define an identifier as

being the name of a new type. For example:

TYPE SCORE = INTEGER;

This definition defines the new type SCORE (an INTEGER type). SCORE
may at first appear to be of little value if it is used only to relabel the ex-

isting type designator INTEGER, however, its value will become appar-

ent after we have described the mechanisms used for constructing new
data types in Pascal in Chapter 8.

Here is an additional example that demonstrates the convenience of

renaming a type:

TYPE DAYOFWEEK, MONTH = INTEGER;

The following variable declaration then becomes legal:

VAR PAYDAY : DAYOFWEEK;

BIRTHMONTH : MONTH;

I

INTRODUCTION TO PASCAL 47

This is not just a mnemonic convenience, but a syntactic one. We will

later see that DAYOFWEEK can be restricted to the values 1 through 7.

Then, whenever a variable of type PAYDAY is used, the compiler will

automatically check that the value of the variable is an integer between

1 and 7.

The TYPE definition is, therefore, a powerful facility for defining new
types, especially when the new type is associated with a set of values.

Many examples will be provided in the following chapters.

UCSD LONG INTEGERS

In UCSD Pascal, the length of an integer may be optionally specified.

When this option is used, the resulting type is called a LONG INTEGER.

This is an important facility for computations requiring a high degree

of accuracy. Long integers may be used in conjunction with + , -, DIV,

*, unary + and -
,
and conversion to strings or standard integers is pro-

vided. Long integers may be used in all structured types where integers

are legal.

A long integer is formally declared as:

INTEGER[length]

where length is a positive integer with a value of up to 36 that indicates

the number of digits. For example:

VAR NUMBER : INTEGER[10];

Constants are automatically converted to long integers whenever re-

quired. For example:

CONST LARGE = 123456789;

When operating with long integers, it is recommended that the pro-

grammer refrain from mixing types and generating results too large for

the number of digits used.

Conversion of Long Integers

Two functions are provided that accept long integers. They perform

conversions:

TRUNC(L) converts the long integer or real L to an integer

(must be less than MAXINT)

converts the long integer or real L into the string S.STR(L,S)

48 SCALAR TYPES AND OPERATORS

UCSD STANDARD ARITHMETIC FUNCTIONS

Three additional standard numerical functions, PWROFTEN, LOG
and TIME, are provided in UCSD Pascal:

PWROFTEN (exponent) This function computes ioexponent

where exponent is an integer in the

range 0.37. The result is real.

LOG (number) This function computes log 10

(number). The result is of type real.

TIME (high, low) This procedure is hardware-

dependent and is not always

available. It returns (in high, low)

the value of the system clock,

generally in 1/60ths of a second.

High and low are two integer

variables that will contain respec-

tively the most significant and the

least significant part of the result.

SUMMARY

The four fundamental data types in Pascal are called the scalar types:

integer, real, character and Boolean. Specific operators and functions

are defined for each data type.

In Pascal, the type of a variable must always be defined before it is

used. The basic declaration is the VAR declaration, which assigns a type

to a variable.

The way in which additional type names may be created with TYPE
and how constants are declared with CONST was also shown.

Knowledge of the four scalar types is fundamental to using Pascal. All

four types will be used extensively in the chapters that follow. If you do
not feel sufficiently familiar with the definitions, read this chapter once

again. Once you feel that you understand the material presented, move
on to the next chapter, where we will construct expressions and

statements, and begin writing actual programs.

INTRODUCTION TO PASCAL 49

EXERCISES

3- 1 : Define the term variable.

3-2 : Is an identifier always a variable

?

3-3: Are the following legal integers?

I: 24 2: -32 3: -200,000 4: 1.24

3-4: What is the result of:

I: TRUNC(32. 12) 2: ROUND(0.5) 3: ROUND(32. 12)

3-5: Are the following legal reals?

1: 1234 2: 24,232.00 3: 1.234 4: .12

3-6: Assuming that characters are internally represented in ASCII code (as per

Appendix G) compute:

7: ORD('f') 2: CHR(8) 3: PRED('z') 4: SUCC('a')

3-7: Assume that A is TRUE and B is FALSE. What is the value of:

7: A AND B 2: A OR B 3: NOT B

3-8: When is it legal to write:

A := TWENTYFOUR

3-9: What operations can be done on characters (excluding the relational

operators and the reserved functions)?

3- 10: What is the type of the result of the following expressions:

I: A < B

3: (1 + 6) = (6 + I)

2: 3.0/1.5

4: 5 * 6 DIV 3

3- 11 : Compute the result of:

7: TRUNCd .75)

3: TRUNC(2.3)

2: ROUNDd .75)

4: ROUND(2.3)

3- 12: Give examples for each of the four scalar types.

CHAPTER H
EXPRESSIONS

AND STATEMENTS

51

INTRODUCTION

The four types of scalar variables available in Pascal, as well as the

operators and standard functions that may be used with each type, have

been presented. In this chapter, we will show how combinations of

variables and operators may be used to build expressions to perform

calculations. Expressions will be used in the programs presented

throughout the text and should be studied carefully. Next, we will in-

troduce our first statement: the assignment statement. We will then be

able to write simple programs.

EXPRESSIONS

Loosely defined, an expression consists of a sequence of terms

separated by operators. The following are examples of expressions:

10 + 6

6 * 21

A + 16

A - B + 6

Note that when writing expressions, all the operators used in an expres-

sion must be valid for the type of data that they operate upon. The for-

mal syntax for an expression is shown in Appendix F. Because the for-

mal definition is complex, we will not present the complete definition

here, but rather a simplified one. In this chapter, we will define typical

expressions that will be used in subsequent chapters. Then, as we
become more knowledgeable about Pascal, we will complete this

definition by indicating other possibilities that can be used to specify

valid expressions.

So far, the informal definition given for an expression is a sequence of

constants or variables separated by valid operators. Let us now refine

this definition by listing the four basic rules that must be used when con-

structing expressions.

1. A single constant or variable is a valid expression. It may be

preceded by a plus or a minus sign. Examples are: 22, ALPHA,
-2.5.

2. A sequence of terms (variables, constants, functions) separated

by operators is a valid expression. Examples are: 1.1 + 2.25 - 3.2

or A + B * 6.

52 EXPRESSIONS AND STATEMENTS

3. Two operators adjacent to each other are not valid. Parentheses

must be used. For example, to multiply^ by -3, we may not

write: 2 * - 3, as this would be confusing. Instead, we must write

2 * (-3).

4. Finally, any variable or constant may be replaced by a function

call. In the case of Boolean (logical) expressions we will see that

any expression may also be preceded by “NOT" and be valid.

We will now examine in detail the two most important types of ex-

pressions: arithmetic expressions and Boolean expressions.

ARITHMETIC EXPRESSIONS

Recall that the basic rule in an arithmetic expression is that all types

must be consistent. In an integer expression

,

all variables, constants and

results of functions must be integers. In a real expression
,

all variables,

constants and results of functions must be real.

However, there is an exception: integers may be used in a real expres-

sion. Integer values will be converted automatically into a real type. For

example, if N is a real, writing N + 1 will result in 1 being internally con-

verted to 1.0. However, when learning how to program, this practice is

not encouraged as it may lead to errors.

Let us present examples of simple expressions using a binary operator

and two operands. A binary operator, also called a dyadic operator, is an

operator that requires two operands. Multiply and divide are binary

operators. A unary, or monadic operator requires only a single operand.

For example, the monadic plus and minus signs are unary operators. If

we assume that I and J are of type integer, the following are valid integer

expressions:

J + 1

I + J

I
*

J

I DIV 2

And the following are invalid integer expressions:

1+1.0 (1.0 is not an integer)

.01 *
J (.01 is not an integer)

Let us now examine examples of valid real expressions. A and B are

assumed to be of type real.

A + 10 (the integer 10 is automatically converted to real)

A * B

B / 1.5

INTRODUCTION TO PASCAL 53

Here are examples of invalid real expressions:

A * * B (two multiplication symbols in sequence)

A DIV 2 (DIV is integer division)

Operator Precedence

An ambiguity may arise when specifying a sequence of operations.

For example:

A := 2 + 3 * 2

The above instruction probably means A := 2 + (3 *2) = 2 + 6= 8.

However, it might mean (using the rules of many pocket calculators):

A:= (2+ 3) *2 = 5*2 = 10

"2 + 3 * 2"is an arithmetic expression. In any programming language, it

is important to specify the order in which expressions are evaluated. In

Pascal, a precedence technique is used. In the case of our example, * is

said to have a higher precedence than + . As a result, the multiplication

will be performed first:

3 * 2 (= 6)

Then the addition will be performed:

2 + 6

Each Pascal operator has a precedence level. When two operators are

adjacent, the one with the higher precedence is executed first.

Whenever an ambiguity remains, the expression is evaluated from left

to right. The following list shows the various operators and their priority

level:

— The relational operators (=, <, >, < =
, >=, < » have the

lowest precedence.

— Next come: +, -, OR

— Then: *, /, DIV, MOD, AND

— At a higher priority is: NOT

— At the highest precedence level is: ()

For example:

The expression: Means: The result is:

2*3 + 2 (2 * 3) + 2 8

2 * 3 + 2 * 4 (2 * 3) + (2 * 4) 14

6 * 2 DIV 3 (6 * 2) DIV 3 4

3 + 4 - (5 * 2 - 1) (3 + 4) - ((5 * 2) - 1) -2

4.0/3.0 * 2.0 (4. 0/3.0) * 2.0 2.6666

54 EXPRESSIONS AND STATEMENTS

In summary, remember that parentheses have the highest precedence,

followed by multiplication and division, and then addition and subtrac-

tion.

USING STANDARD FUNCTIONS

We have indicated that an expression consists of variables, constants,

or functions separated by operators. Thus far, in our examples, we have

used only variables or constants. However, we have seen in the

previous chapter that a number of standard functions are predefined in

Pascal. These functions may also be used in expressions. A function is

called (used) by writing the name of the function followed by an argu-

ment enclosed in parentheses. For example, the mathematical expres-

sion for a quadratic equation is:

AX2 + BX + C

where A and X are assumed to be real variables, may be expressed as:

A * SQR(X) + B * X + C

where SQR() is the square function. The computer looks at the argu-

ment within the parentheses, obtains its value, then computes the value

of the function.

Similarly, the root of a quadratic equation will depend upon the deter-

minant. The value of this determinant is:

B 2 - 4AC

and the square root of the determinant will be expressed as:

SQRT(SQR(B) - 4.0 * A * C)

where SQRT() denotes the square root function. The standard functions

provided by Pascal are listed in Figure 4.1.

A function may be placed in an expression anywhere we might place

a variable or a constant of the same type.

When using a standard function, do not forget to watch for the data

type of the arguments of the function as well as the data type of the

result. The argument type must be valid for the function. The result type

must be valid for the type of expression considered. These two types

(argument and result) are not necessarily the same. For example, the

ROUND function requires a real argument and will yield an integer

result. The rules relating to data types must always be strictly respected.

A summary of the legal data types for each Pascal function is shown in

Figure 4.1

.

INTRODUCTION TO PASCAL 55

FUNCTION OPERAND(S) RESULT

ABS integer, real same as operand

ARCTAN integer, real real

CHR integer character

COS integer, real real

EOF text file Boolean

EOLN text file Boolean

EXP integer, real real

LN integer, real real

ODD integer Boolean

ORD scalar except real integer

PRED scalar except real same as operand

ROUND real integer

SIN integer, real real

SQR integer, real same as operand

SORT integer, real real

SUCC scalar except real same as operand

TRUNC real integer

Figure 4.1: Standard Functions

SUMMARY OF ARITHMETIC EXPRESSIONS

An arithmetic expression may be loosely defined as a succession of

operators and operands. Standard Pascal functions may be used instead

of variables. User-defined functions may also be used. They will be ex-

amined in Chapter 7.

Finally, in order to eliminate any ambiguity when evaluating an ex-

pression, each operator has a precedence level.

BOOLEAN EXPRESSIONS

We learned in the previous chapter that the three logical operators

AND, OR, and NOT operate only on Boolean values (TRUE or FALSE).

They may be used to create a Boolean expression. In addition, the rela-

tional operators may be used to compare any two real variables and will

result in a Boolean value TRUE or FALSE as well. They may also be used

within a Boolean expression.

56 EXPRESSIONS ANE) STATEMENTS

/
In the case of Boolean expressions, Pascal imposes an additional

requirement. All subexpressions must be enclosed in parentheses unless

they start with a NOT.
Let us assume that K, L, M have been defined as Boolean variables.

The following are examples of Boolean expressions:

K AND L (a Boolean operator is used)

NOT K

M = N (a relational operator is used)

More complex examples of Boolean expressions are:

K AND M = NOT N (three operators are used)

I
*

J
= 2 (an arithmetic expression is compared to 2)

KANDMOR NOT N
(A = B) OR (C = D) AND (A - C = 0) (subexpressions are parenthesized)

The rules of precedence also apply. For example:

B > C + 5 will be evaluated as B > (C + 5).

In this last example, the expression on the right of the relational

operator is an arithmetic expression and therefore does not have to be

enclosed in parentheses. The + operation has a higher precedence than

the relational operator and will be evaluated first. However, when in

doubt, do not hesitate to use parentheses. They will improve the

readability of the program and avoid errors.

THE BASIC RULES OF BOOLEAN ALGEBRA

When using Boolean variables, it is useful to know some of the basic

rules of Boolean algebra that may be used to simplify Boolean expres-

sions. For example:

NOT(NOT K) is equivalent to K

NOT(J OR K) is equivalent to (NOT J) AND (NOT K)

NOT(J AND K) is equivalent to (NOT J) OR (NOT K).

Similarly,

NOT(J < K) is equivalent to J
>= K

NOT(J <> K) is equivalent to J
= K, and vice versa.

When testing the equality of numbers, do not test a real number for

strict equality if this number was the result of a computation. This is

because the computer uses a fixed number of bits internally to represent

any number, which means that the computer will represent any real

number with a limited precision. It may happen that a real number

NTRODUCTION TO PASCAL 57

should be equal, for example, to 1.0. However, internally, this number
might be stored as 0.999999. Equality is defined only within the limits of

the precision of the representation being used. If you must test for

equality, the correct way of doing it is to verify that the difference be-

tween the two numbers is less than 10
_n where n specifies the precision

of the comparison. For example, using n = 3 insures that the two

numbers are within 10“ 3 = 1/1000 of each other. In other words, the dif-

ference between two computed numbers will almost never be exactly

zero.

STATEMENTS

We have indicated that each Pascal program must include at least one

statement and usually includes many statements. The formal syntax for a

statement in Pascal is shown in Appendix F. It is rather complex. We
will, therefore, introduce the various types of statements in turn as we
go along. We have already encountered two types of statements in our

first two program examples. In our first example, we encountered the

statement:

WRITELN('HELLO');

This is an output statement. Input and output statements will be described

in the next chapter.

The next example we encountered was:

TOTAL :=A + B;

This is an assignment statement. The assignment statement is probably

the most important type of statement. The formal syntax of an assign-

ment statement is shown in Figure 4.2.

variabU <= expressi

Figure 4.2: Syntax of the Assignment Statement

The statement consists of a variable identifier followed by the symbol

followed by a valid expression. The symbol ': = ' is called the

assignment operator. The assignment means that the expression on the

right will be evaluated and that the resulting value will be assigned

(given) to the variable on the left. In other words, the computed value of

the expression will become the value of the variable from now on. In

order for this statement to be meaningful, the expression must naturally

58 EXPRESSIONS AND STATEMENTS

evaluate to a correct value. This implies in particular that any variables

contained within the expression already have a value assigned to them.

For example, the following are valid assignments:

A := 2.0;

B :
= A T- 4.0; (* A has been defined above *)

C :
= 2.0 * 3.0 + 4.0;

The assignment may be performed on any data type. For example, if the

variable LETTER has been declared as type CHAR, the following is a

valid assignment:

LETTER :
= 'A';

Similarly, if I and J are integers, the following are valid assignments:

I := 2;

J :
= 2 + 2;

It is legal, but not recommended, to assign an integer value to a real

variable. In that case, the integer value will be automatically converted

to a real number.

As another example, assuming that I and J are of type integer and that

Z is of type Boolean, the following is a valid assignment:

Z := I < J;

The assignment operator ': = ' must be distinguished from the rela-

tional operator ' = ' (' = ' tests for equality). This is important to

remember if you have programmed in BASIC or FORTRAN, where both

operators are represented by the same symbol (=).

The Empty Statement

The empty statement is only explained here in order to cover the sub-

ject completely, and will not be used in this book. A non-existent state-

ment may generally be used wherever a statement is legal. It is called

the empty statement and includes no symbols and has no effect.

For example:

A := 2; ;

INTRODUCTION TO PASCAL 59

includes two statements:

A := 2;

The empty statement (terminated by ;)

One of the effects of the empty statement is to allow the use of spurious

where they are not required, without causing a syntax error. For ex-

ample:

A : = 2;

END

is legal, even though the semi-colon is not necessary. The semi-colon is

interpreted as an empty statement.

The Compound Statement

Generally, a group of statements may be used wherever a single state-

ment is legal. Such a group of statements is called a compound state-

ment. A compound statement must be bracketed by BEGIN and END.
Here is an example:

BEGIN

I := 3;

J := 4;

WRITELN(I,J)

END;

Such compound statements will be used in Chapter 6 as we use control

structures. A semi-colon is not necessary after BEGIN or before END.
The semi-colon is used only to separate statements, not to terminate

them.

SUMMARY

We have now learned how to combine variables, constants, operators

and functions into valid expressions. We have seen that types may not

be mixed freely and that consistency of types must be used in any ex-

pression. We have learned to resolve possible ambiguities in complex

expressions by using the precedence of operators or parentheses. And
finally, we have learned to use one of the most important types of

statements, the assignment. In order to receive and display data, we will

need to study another important type of statement: the Input and Out-

put statements, which will allow us to communicate with the user of the

program. This will be the topic of the next chapter.

60 EXPRESSIONS AND STATEMENTS

EXERCISES

4

4-1: Evaluate the following expressions:

1. l*4*2-4*2 + 3

2. 1.1 * 2.2 / 1.1 * 33/2.2 - 5.5

3. SQR(2 + 3*4)

4-2: Evaluate the following expressions:

1. 1 + 2 * 3 + 10 DIV5
2. (6 DIV 3 - 2) * 8

3. 12.0/4.0 - 3.0 * 3.0

4. 16*2-8*2 + 4*4

4-3: Are the following assignments legal

?

1. A := 2 + 3.0;

2. A + 2 : - 8;

3. 3 : = 2 + 1;

4. A:- 2 - (-(- 1 + 2) - 3) - 2 * 4;

4-4: Are the following assignments legal?

1. A := 2 * -3;

2. B : = (-6.73) 2;

3. Q := 2 + B = 7 * 12;

4. R := 6.4 DIV 8;

5. Q:= 2 + B := 8;

4-5: Translate the following mathematical expressions into Pascal expressions

,

using appropriate functions.

1. 3x2 + 2x~ 2

2- \4a\

3. V6a - 2x2

INTRODUCTION TO PASCAL 61

4-6: What is the effect of the following program

?

PROGRAM BOOLEANTEST(OUTPUT);

VAR P,Q,R,S, RESULT : BOOLEAN;

BEGIN (* BOOLEANTEST *)

P :
= TRUE;

Q :
= P;

R : = FALSE;

S := R;

WRITELN;WRITELN; (* SKIP TWO LINES *)

RESULT :
= NOT(P);

WRITELN(RESULT);

RESULT := NOT(NOT(Q));

WRITELN(RESULT);

RESULT := Q OR S;

WRITELN(RESULT);

RESULT :
= P AND S;

WRITELN(RESULT);

RESULT : = P AND Q AND R;

WRITELN(RESULT);

RESULT := (P OR R) AND Q
WRITELN(RESULT)

END. (* BOOLEANTEST *)

CHAPTER 3

INPUT
AND OUTPUT

63

INTRODUCTION

I nput and output statements are used in nearly every program in Pascal

so that values may be entered and displayed or printed. In the first pro-

gram example in Chapter 1 , a WRITELN statement was used to display a

message ("HELLO"). This is an output statement. Similarly, a READ(A,B)
statement was later used to read the values of two variables A and B

typed at the keyboard.

From a hardware standpoint, input statements and output statements

allow the program to communicate with a computer peripheral such as

a terminal, a printer or a disk. An input statement is used to read

characters from the terminal. An output statement is used to print or

display characters on the terminal.

From a logical standpoint, all of the terminals are considered as files

by the program. The various types of input/output statements provided

by Pascal will be described in this chapter.

COMMUNICATING WITH A FILE OR THE TERMINAL

Input and output statements operate on files. For our purposes, a file

is defined here as a sequential collection of information that may be

referred to by name. Since they fulfill these requirements, the keyboard,

the screen and the printer are considered as files. Since we have not yet

learned about generalized files, the examples given in this chapter will

only communicate with the terminal. The terminal is viewed by the pro-

gram as two files, named INPUT and OUTPUT. This is the purpose of

the (INPUT,OUTPUT) file declaration in the program header. We will

use the computer keyboard as our input medium. Our output medium
will be the terminal screen or the printer (if a printing terminal is

available).

The concept of a file is illustrated by the diagram in Figure 5.1.

Figure 5.1: The Concept of a File

64 INPUT AND OUTPUT

The diagram in Figure 5.1 shows how a READ operation might copy the

value of one element of the file, (here the letter "T"), into a program

variable and how a WRITE operation can transfer a value from the pro-

gram into the file. The file is terminated by a special marker, called EOF
(End Of File). Let us now look at some input statements.

READ AND READLN

READ and READLN statements are called input statements. These two
statements serve to read values from an input file, the keyboard in our

case. An example of a READ statement is:

PROGRAM SUM(INPUT, OUTPUT);

VAR A, B,TOTAL;

BEGIN

READ(A,B);

In this example the input medium is the keyboard: the values of A and

B are read from the keyboard. This choice is communicated to the com-
puter by including the word 'INPUT' in the program definition:

PROGRAM SUM(INPUT,OUTPUT);

The READ and READLN statements must be written in a specific man-

ner. As shown in the example above, the READ or READLN is normally

followed by a left parenthesis, one or more variables separated by com-

mas, and terminated by a right parenthesis. The result of a READ or

READLN is to read values from the INPUT and assign them to variables.

Here are additional examples of READ and READLN statements:

READ(A,B,C);

READLN(TAXRATE,GROSSINCOME);

Data typed in at the keyboard may be any type valid for the type of

variable that is used. In all cases, except when characters are used as in-

put, data may be typed in and separated by one or more spaces, or a

new line.

The difference between a READ statement and a READLN statement is

that the READ statement allows the next READ to continue to read

values on the same line, while the READLN statement will move to a

new line after it is executed. The difference between the two types of

read instructions evolves from the time when most computer input was

accomplished through punched cards and each punched card stored

one line of text. These punched cards were usually divided into fields

NTRODUCTION TO PASCAL 65

containing values. In many cases, it was desirable for the program to

read only (for example) four fields out of the ten fields present on a data

card. In such a case, the READLN statement would be used to force the

card reader to eject to the next card (the next line). However, READ can

also be used in an interactive environment to read characters and re-

spond on the same line. Examples will illustrate the use of READ and

READLN.
An example of a READ statement is:

READ(A,B,C,D);

The data will appear on the terminal exactly as we type it in, for example

it might appear in the following form:

2.0 3.5 -6.1 2.3

The line is terminated with blanks, or with a "return" (a special key on

the keyboard).

The same data read with the following statements:

READ(A,B);

READLN(C);

READ(D);

would appear at the terminal like this:

2.0 3.5 -6.1

2.3

Note how the READLN statement causes the display to "move up" after

input, so that "2.3" will automatically appear on the next line.

When reading numerical data, spaces and new lines added between

numbers are ignored. When reading a real number, the two usual nota-

tions may be used: decimal and scientific.

For example, the real 12.0 may be read as:

12.0

or equivalently, as:

+ 1.2E+01

or even as:

12

An integer may be read as a real.

66 INPUT AND OUTPUT

When reading character-type data, each character is significant. Once
all of the characters on a line have been read, an attempt to read the

next character, past the last character on the line will yield a space. That

is, reading a "carriage return" yields a space.

As stated, all of the characters on a line do not have to be read. For ex-

ample, the program may read only the first ten characters of a line with

a READ, and proceed on to the next line by specifying a READLN. The

remaining characters (past the first ten characters) will then be ignored.

Here is an example program with various types being read:

PROGRAM INEXAMPLEfINPUT, OUTPUT);

VAR l,J : INTEGER;

A,B : REAL;

M,N : CHAR;

BEGIN

READ(U);

READ(AA,N);

READLN(A,B)

END.

Here is a possible input at the keyboard:

4 92SY

1.23 -5.6

Here is another example:

PROGRAM INEX2(INPUT);

VAR l,J : INTEGER;

A,B : REAL;

M,N : CHAR;

BEGIN

READ(A,AA,N,I)

END.

Here are four possible inputs and the resulting values of the variables:

INPUT A M N i

1.25Y2344 1.25 'Y'
'2' 344

+ 1 .2E + 05Y2344 1 .2E + 05 'Y'
'2' 344

1 .2E05Y2344 1.2E-F05 'Y '2' 344

1.25Y 2344 1.25 ’Y
' ' 2344

INTRODUCTION TO PASCAL 67

Terminating the Input

Two standard functions are provided to facilitate input: EOLN and

EOF. Their role will be briefly described here. However, they will be

described in detail in the next chapter, as they are almost always used

with control structures.

It may be necessary to read a sequence of numbers or characters on a

line for which we do not know the precise length. The EOLN function is

provided for this purpose. The EOLN (End Of Line) function is a stan-

dard Boolean function which is TRUE when the end of line is detected;

otherwise it is FALSE. Thus, we can keep reading until the end of line

function becomes TRUE. When it becomes TRUE, the complete line has

been read.

Another standard function, called EOF (End-Of-File), will detect the

end-of-file. This function corresponds, for example, to the case where

the last card has been read by the card-reader. The function EOF(IN-

PUT) may be used to ensure that all data has in fact been read. EOF by

itself means EOF(INPUT). EOF becomes TRUE once all data has been

read.

The following is an example using EOF and EOLN. This example is on-

ly shown here for completeness and you will better understand this ex-

ample after you have studied Chapter 6. This program will successively

read each character in a file line-by-line, and then process each

character. In the example, "process" stands for any valid Pascal

statements that may be used to process the character C.

PROGRAM ALLTHEFILE(INPUT, OUTPUT);

VAR C : CHAR;

BEGIN

WHILE NOT EOF DO
BEGIN

WHILE NOT EOLN DO
BEGIN

READ(C);

process(C)

END; (* WHILE *)

READLN

END (* WHILE *)

END. (* ALLTHEFILE *)

68 INPUT AND OUTPUT

WRITE AND WRITELN

We have already encountered several examples of the WRITELN in-

struction in previous chapters:

PROGRAM GREETING(OUTPUT); (* PROGRAM HEADING *)

(* A SIMPLE PASCAL PROGRAM *)

BEGIN

WRITELN('HELLO') (* STATEMENT *)

END

and:

PROGRAM SUM(INPUT, OUTPUT);

VAR A, B,TOTAL : INTEGER;

BEGIN

WRITELN('ENTER TWO NUMBERS TO BE ADDED...');

READ(A,B);

TOTAL :=A + B;

WRITELN('THE SUM OF /A,' AND ',B/ IS /TOTAL)

END

Like the READ and READLN statements, the WRITE and WRITELN
statements are normally followed by a left parenthesis and a list of

strings or values to be printed, separated by commas, and terminated by

a right parenthesis. As we can see in the first example above a character

string enclosed in single quotes will be printed as it is stated
,
including

any blanks that it may contain. In the second example, we can see that

variables will be evaluated and that their values will be printed. When
printing a character string, remember that in order to print out a quote,

the quote itself must be enclosed in quotes.

A Boolean value will be printed as either TRUE or FALSE. A real value

will be printed in exponential notation. All items to be printed in the list

within the parentheses will be printed on the same line. If several WRITE
instructions are used in succession, then all of these items will be

printed on the same line. Using WRITELN will force the printer to move
to the beginning of the following line after printing. For example:

WRITE(THIS IS AN ');

WRITEf'EXAMPLE');

will result in:

THIS IS AN EXAMPLE

INTRODUCTION TO PASCAL 69

and:

WRITELN(THIS IS AN')

WRITE('EXAMPLE');

will result in:

THIS IS AN
EXAMPLE

Here are some examples of output with various types of data:

VAR U,K : INTEGER;

A,B : REAL;

C,D : CHAR;

U,V : BOOLEAN;

(...program statements...)

I:= l;

J : = I + 1

;

K :
= 5;

A :
= 1.1 + 3.5 *2.0;

B :
= A/2;

C :
= '?';

D :
= ' = ';

U : = I
= J;

V :
= A > B;

WRITELN('INTEGERS ARE'J^K);

WRITELNf'REALS ARE',A,B);

WRITELNf'OTHERS ARE'.C/ ',0/

(* the value of I will print as 1 *)

(* J will print as 2 *)

(* K will print as 5 *)

(* A will print as 8. 1 *)

(* B will print as 4.05 *)

(* C will print as ? *)

(* D will print as = *)

(*U will print as FALSE*)

(*V will print as TRUE*)

U,V);

The output will be the following three lines:

INTEGERS ARE 1 2 5

REALS ARE 8. 1000000000E+00 4. 0500000000E + 00

OTHERS ARE? = FALSE TRUE

Note that spaces have been automatically added to the left of integers,

reals, and Booleans. This is called an automatic output formatting

feature of the Pascal compiler.

70 INPUT AND OUTPUT

Formatting the Output

When printing a given data type such as INTEGER, REAL, OR
BOOLEAN, each Pascal implementation uses a standard number of col-

umns. Unfortunately, the conventions vary with each installation. For

example, an implementation might use twelve columns for integers, ten

columns for a Boolean, and twenty-four columns for a real number.

It is often desirable to produce neatly tabulated data. In this case, it

becomes necessary to override the standard number of columns provid-

ed by the particular implementation. Therefore each item to be printed

may be followed by a colon and an integer (value or expression). This

positive integer specifies the minimum field width for that item. If the

item to be printed requires fewer characters, it will be preceded by

leading blanks. If the item should require more space, then as many
characters as necessary will be used. For example:

WRITE(THE TEXT IS RIGHT': 18);

WRITELN('AUGNED': 8);

will produce:

THE TEXT IS RIGHT ALIGNED.

The first field specification allocates eighteen spaces to THE TEXT IS

RIGHT'. This will be printed as:

bTHE TEXT IS RIGHT

where b denotes a blank.

The second field specification allocates eight spaces to 'ALIGNED' so

that is will be printed on the same line as: 'bALIGNED', where b denotes

a blank.

Note: in some installations, the first character of a line is not printed, as

it is interpreted as a command to the printer. In such a case, be careful

never to use this first character to represent data.

In the case of REAL items only, a dual field specification may be used

with a colon followed by an INTEGER, followed by another colon,

followed by an INTEGER. The first integer still specifies the minimum
field width. If the second field specification is used, the number will be

printed in fixed-point notation rather than exponential notation and the

integer value specifies the number of digits to be printed after the

INTRODUCTION TO PASCAL 71

decimal point. Here is an example:

VAR I : INTEGER;

A : REAL;

C : CHAR;

BEGIN

I := 12;

A :
= 2. 1

;

C := '?';

WRITE('INDENT': 10 , I : 3 , A : 4 : 1 , C : 2)

END.

This will print:

, . I 1

1 N
I

D
,

E
,

N
1

T
1

1

,

2
1

2
1

•
i

1
?

1

‘

1 10 1 3 1 4 1 2

Blanks are inserted to the left where needed. This format may be used to

obtain neatly aligned printouts, such as tables.

Other control facilities may be provided depending upon the installa-

tion. Most printers will not print more than 1 32 characters per line. Also,

in many cases, the first character in each line is not printed and has a

special meaning:

— A space means a line feed (single spacing).

— A + means overprinting (no line feed).

— AO means double spacing.

— A 1 means "go to the top of the next page."

However, these conventions depend upon the installation. Generally

a PAGE command is available to move to the next page.

In order to skip a line, a standard programming "trick" may be used.

For example:

WRITELN('ONE');

WRITELN;

WRITELN (THREE');

produces the following output:

ONE

THREE

with a blank line in the middle.

72 INPUT AND OUTPU

Finally, an expression may be used in an output statement instead of a

value. For example:

WRITELN('ONE + TWO = 1 + 2);

produces the output:

ONE + TWO = 3

This also applies^to the field specifications. For example:

WRITEfA : I + 1 : J + K);

might produce

-12.41

UCSD INPUT/OUTPUT

UCSD input/output facilities are described in Chapter 11. The opera-

tion of READ and WRITE for communication with the terminal is essen-

tially as described in this chapter. Slight differences occur with respect

to EOF and EOLN.

SUMMARY

The input and output instructions are quite easy to use. The format-

ting of the actual output becomes a little more complex. Practice is

strongly recommended to understand the actual formatting of any output.

All of the basic concepts required to write simple programs have now
been introduced. The power of the computer does not simply lie in its

capability to carry out arithmetic or other operations, but also in its

capability to make decisions and execute different actions based upon
the results of tests. One of the most important characteristics of a com-

puter program is the ability to change the way in which a program is ex-

ecuted depending upon values which have been read or computed. In

the next chapter, we will study the ways to alter the flow of control

within a program.

INTRODUCTION TO PASCAL 73

EXERCISES

5-7: Write a program to print out the squares of the first ten integers.

5-2 : Read ten real numbers, and print them out in reverse order.

5-3: Read the first ten characters in two consecutive lines of text, then write

them out.

5-4: Print a neatly formatted table of squares and square-roots. Label it. Use

dashes and exclamation points to draw horizontal and vertical lines.

5-5: Compute the sales table that applies to your state. Prices may range from

$0.01 to $100.00. Once a price is typed in , the program should print the

price, the sales tax, and the total.

5-6: Print a multiplication table.

5-7: Using the following lines of input, what is the output of the program

READWRITE?

1.063 27 06.488 2 17.26 58.0 11

2.3 1 76.523 7 .641 -5 18.3 45.7 -7

8.6 2 5.154 6 .729 628

3.16 8 7.5 -10 4.108 14 6.74

PROGRAM READWRITE (INPUT, OUTPUT);

VAR A, C, E: REAL;

B, D: INTEGER;

BEGIN (* READWRITE *)

WRITELN; WRITELN;

READLN (A, B, C, D, E);

WRITELN (A:5:l
, C:6:2, E:7:3, B:4, D:4);

WRITELN;

READLN (A, B);

READLN (C, D, E);

WRITELN (A:5: 1 , C:6:2, E:7:3, B:4, D:4);

WRITELN;

READLN (E, D, A, B, C);

WRITELN (E:5: 1 ,
A: 6: 2, C:7:3, D:4, B:4);

WRITELN

END. (* READWRITE *)

CHAPTER O
CONTROL

STRUCTURES

P $ /" ID

75

SEQUENTIAL EXECUTION

I n the previous chapters we learned the rules for writing simple Pascal

programs. We also examined several examples of simple programs,

which consisted of a small number of statements to be executed in se-

quence. Executing each statement in turn, in the order that it appears in

the program listing, is known as sequential execution.

A computer can do more than just execute statements sequentially. If

the computer were only capable of sequential execution, it would in a

sense be nothing more than a good pocket calculator. A computer can

make decisions based on specific tests. In other words, depending upon

the value of a specific variable or variables when the program is ex-

ecuted, decisions can be made that will result in one part of the pro-

gram or another being executed. Instructions that allow such condi-

tional tests modify the flow of control within the program.

A related concept is the capability that computers have to

automatically execute a group of instructions over and over again, in a

repetitive manner. This is called a program loop facility.

In this chapter we will study the facilities provided in Pascal for alter-

ing the flow of control within the program, i.e., those instructions that

will result in the non-sequential execution of a group of instructions.

Three categories of instructions will be distinguished: the repetition

statements, the conditional branch statements, and the unconditional

branch statements.

REPETITION STATEMENTS

Repetition statements allow the convenient execution of a loop. Let

us first clarify the concept of a loop through an example. We will com-

pute the sum of the first twenty-five integers. This can be accomplished

by using a formula. Here, however, we will use the following algorithm:

1: SUM = 0

2: NUMBER = 1

3: NEWSUM =SUM + NUMBER
4: NEWNUMBER = NUMBER + 1

5: If NEWNUMBER is greater than 25, then stop.

Otherwise, go back to step 3.

This algorithm can be represented symbolically by a flowchart as

shown in Figure 6.1

.

76 CONTROL STRUCTURE!

Figure 6.1: Flowchart for Integer Addition

In a flowchart, rectangles are used for simple statements and

diamonds or rounded rectangles are used for test decisions. Each step in

the algorithm, labeled 1 through 5, is represented by a box in the

flowchart in Figure 6.1. Note that the arrow pointing from the bottom

diamond-shaped box in the flowchart goes back into the third statement

(box). The three statements numbered 3, 4, and 5 in the flowchart will

therefore be executed repeatedly until the value of the variable

NUMBER becomes greater than 25. This is an example of a loop.

In the conventional language of flowcharts, statements such as state-

ment 3 are usually written:

SUM = SUM + NUMBER

This statement means that the new value of SUM is equal to the old

value of SUM plus NUMBER. However, the equal sign should not be in-

terpreted in the traditional mathematical sense. Rather, it is meant as an

assignment statement. In order to avoid possible confusion, Pascal uses

a specific symbol for the assignment and this is the symbol we will

use from now on. The Pascal form of that statement is:

SUM := SUM + NUMBER

INTRODUCTION TO PASCAL 77

Pascal provides three facilities for automatic looping: REPEAT,

WHILE, and FOR. Any of these three statements could be used for our

integer addition problem. However, each of these statements provides

specific convenience features which we will now describe.

REPEAT STATEMENT

The REPEAT statement can be used to repeat a group of statements in

a program. The informal syntax of this statement is:

REPEAT statement(s) UNTIL (condition is true)

The formal syntax for this statement is shown in Figure 6.2.

Figure 6.2: Syntax for REPEAT

One or more statements may appear between the reserved words

REPEAT and UNTIL. The condition is specified with a Boolean expres-

sion. For example, the Boolean expression may use the six relational

operators:

= ><>=<=<>
or any of the legal Boolean operators. Here is a program that will com-
pute the sum of the first 25 integers:

PROGRAM SUM25 (INPUT, OUTPUT);

(* SUM OF FIRST 25 INTEGERS *)

VAR SUM, NUMBER : INTEGER;

BEGIN

SUM : = 0;

NUMBER := 1;

REPEAT

SUM := SUM + NUMBER;

NUMBER := NUMBER + 1

UNTIL NUMBER > 25;

WRITELN ('THE SUM OF THE FIRST 25 INTEGERS IS',SUM)

END

Figure 6.3: INTEGER SUM Program

78 CONTROL STRUCTURES

The program in Figure 6.3 represents one example of translating the

algorithm previously described into a Pascal program. Several points are

worth noting. For example, the variables SUM and NUMBER are

declared as integer.

VAR SUM,NUMBER : INTEGER;

The next two statements in the program are called the initialization

phase. They assign initial values to the two variables SUM and NUMBER
before the loop is entered:

SUM : = 0;

NUMBER := 1;

Variables that will be used to accumulate a result within a loop must

generally be initialized. Usually, each loop is preceded by an initializa-

tion phase like the one previously described.

The loop follows:

REPEAT

SUM := SUM + NUMBER;

NUMBER := NUMBER + 1

UNTIL NUMBER > 25;

This loop will cause the two statements contained within it to be

executed until NUMBER becomes greater than 25. Each time that the

loop is executed, NUMBER is incremented by one. As a result, the loop

will be executed exactly 25 times.

After a program has been written, it should always be checked by

hand, before executing it on the computer. We will now check this par-

ticular program and verify the correct operation of the loop.

When the program is started, SUM becomes 0, and NUMBER
becomes 1. The first time the loop is entered, SUM becomes:

SUM := SUM + NUMBER;

or SUM : = 0 + 1 (
= 1)

and:

NUMBER := NUMBER + 1;

or NUMBER := 1 + 1 (
= 2)

Remember that the expression to the right of the assignment symbol

INTRODUCTION TO PASCAL 79

(: =) is evaluated first. This reads as:

new-value-of-NUMBER is old-value-of-NUMBER 4- 1

Then UNTIL is reached. NUMBER is 2.

'NUMBER > 25'

evaluates as '2 > 25' which is FALSE. The loop is then repeated. The

second time around, NUMBER takes the value 3, and the loop is repeated,

etc.

Once NUMBER takes the value 26, the Boolean expression (NUMBER
> 25) evaluates as TRUE, and the loop terminates. By examining the

program you should be able to verify that SUM is indeed the sum of

1 + 2 + 3 + + 25.

Note: It is always important to check the initial and the end value of the

loop control variable. Here, the end value of NUMBER is 26.

Even though they are legal, we have not used BEGIN. ..END within the

loop, because they are not necessary. The program finally terminates by

printing a message, and the value of the SUM:

WRITELN('THE SUM OF THE FIRST 25 INTEGERS IS', SUM)

Remember, that when using the REPEAT UNTIL statement, the

statements placed between REPEAT and UNTIL will be executed at least

once. The condition that is being tested will be examined only at the

end of the loop. We will see that the WHILE statement allows us to do
the reverse, i.e., to test for a condition at the beginning of the loop.

WHILE STATEMENT

The informal syntax of the WHILE statement is:

WHILE (Boolean expression is true) DO statement

The formal syntax for this statement is shown in Figure 6.4.

while)-
Boolean

) expression

Figure 6.4: Syntax for WHILE

When examining the syntax, by convention, "statement" in a rec-

tangle stands for either an isolated statement or a compound statement

80 CONTROL STRUCTURES

delimited by BEGIN and END. As long as the specified expression holds

true, the statement or group of statements following the DO will be ex-

ecuted repeatedly. Unlike REPEAT, a group of statements must be made
into compound statements by bracketing them with BEGIN and END.

For example, let us now rewrite our previous program and compute the

sum of the first 25 integers using the WHILE statement. The correspon-

ding program is:

PROGRAM SUAA25B(INPUT,OUTPUT);

(* SUM OF FIRST 25 INTEGERS *)

VAR SUM, NUMBER : INTEGER;

BEGIN

SUM : = 0;

NUMBER := 1;

WHILE NUMBER < 26 DO
BEGIN

SUM := SUM + NUMBER;

NUMBER := NUMBER + 1

END;

WRITELN ('THE SUM OF THE FIRST 25 INTEGERS IS',SUM)

END.

Figure 6.5: INTEGER SUM Program— Version 2

This program contains the same number of statements as the program in

Figure 6.3. The difference between the two programs is that with the

program in Figure 6.5, the test is performed before the group of

statements is executed. As a result, in some cases the group of

statements may not be executed at all, whereas in the case of REPEAT,

the group of statements will always be executed at least once.

Notice that the test is reversed when compared to the REPEAT: the

test is performed for NUMBER < 26 instead of NUMBER > 25 (i.e.,

NUMBER >= 26). This is because the WHILE statement is executed as

long as the condition remains TRUE. It stops being executed when the

condition is no longer TRUE. By contrast, the REPEAT statement is ex-

ecuted as long as the condition is FALSE. It stops whenever the condi-

tion becomes TRUE.

INTRODUCTION TO PASCAL 81

REPEAT statement(s)

UNTIL condition

WHILE condition

DO statement(s)

r

FALSE

y

'

TRUE

r

statement(s)
1 1

Figure 6.6: WHILE vs. REPEAT

Using the symbolic representation of a flowchart (see Figure 6.6), the

difference between the two types of repetition statements is illustrated

in this figure.

Another Example

Figure 6.7 shows another example of the use of the WHILE statement.

We will compute the average of the first n integers, where the value of n

will be supplied at the keyboard. In this program, NUMBER will suc-

cessively take the values 0, 1,2, up to a maximum value MAX, which is

entered at the keyboard.

A loop is used to compute the sum of the first MAX integers (as in the

previous example). After the loop is executed, the SUM is divided by the

number of integers, i.e., MAX. This is the AVERAGE:

AVERAGE :
= SUM / MAX;

Note that SUM and MAX are of type INTEGER, and that AVERAGE is a

REAL. This is a legal statement.

82 CONTROL STRUCTURES

Finally, the value of AVERAGE is printed:
4

WRITELN ('THE AVERAGE OF THE FIRST', AAAX, 'NUMBERS IS', AVERAGE)

END

PROGRAM AVERAGE (INPUT,OUTPUT);

VAR AVERAGE : REAL;

SUM, NUMBER,MAX : INTEGER;

BEGIN

READLN(MAX);

SUM :
= 0;

NUMBER :
= 0;

WHILE NUMBER < MAX DO
BEGIN

NUMBER := NUMBER + 1;

SUM := SUM H- NUMBER

END;

AVERAGE : = SUM / MAX;

WRITELN ('THE AVERAGE OF THE FIRST', MAX, 'NUMBERS IS', AVERAGE)

END.

Figure 6.7: AVERAGE Program

WHILE and REPEAT

Remember that, in the case of a WHILE statement, a group of

statements found in a compound statement must be bracketed by

BEGIN and END. In the case of REPEAT, this format is optional.

As a practical recommendation, on installations where execution time

is restricted, the Boolean expression tested by WHILE or REPEAT should

be as simple as possible in order to reduce execution time, since it is

evaluated every time the loop is executed. This consideration also holds

true for the statement(s) within the loop.

For the two repetitive statements we have studied thus far, i.e., the

WHILE statement and the REPEAT statement, we have repeatedly ex-

ecuted a statement or group of statements until some condition held

true or false. This condition may result from the value of a variable read

from the keyboard or an input file, or from a counter variable (a frequent

occurrence) that is regularly incremented each time that the loop is ex-

ecuted. In the program examples we have presented thus far, the value

of NUMBER was incremented by one every time that the loop was ex-

ecuted. NUMBER is called a counter variable.

INTRODUCTION TO PASCAL 83

A special mechanism is provided in Pascal (as well as in nearly all

high-level languages) for the automatic execution of the loop coupled

with the automatic incrementation of such a counter variable. This

mechanism is called the DO or FOR loop in various languages; it is

known as the FOR statement in Pascal.

FOR STATEMENT

A simple example of a FOR statement is:

SUM :
= 0;

FOR I :
= 1 TO N DO SUM : = SUM + I;

The effect of this statement is to execute the statement following the

DO N times. The first time this statement is executed, I has the value 1

.

The second time it is executed, I has the value 2, etc. Thus, SUM is given

the value of the sum of the integers from 1 through 10.

The informal syntax of the FOR statement is:

FOR counter variable := initial value TO final value DO statement

Optionally, DOWNTO may be used instead of TO.

When using this type of repetition statement, the number of times the

loop will be executed becomes fixed at the time that the FOR statement

is entered. First, the counter variable (I in our example) is assigned the

'initial value'. Then, before each execution of the statement or com-

pound statement in the loop, the counter variable is tested to see if it is

greater than (or less than, with DOWNTO) the final value. If this condi-

tion is true, execution of the loop is terminated. After each execution of

the loop, the counter variable is incremented by 1 ,
or decremented by 1

if DOWNTO is used.

The syntax diagram for the FOR statement is presented in Figure 6.8.

Figure 6.8: FOR Syntax

84 CONTROL STRUCTURES

Here is an example of the FOR statement used in an AVERAGE pro-

gram:

PROGRAM AVERAGE2(INPUT, OUTPUT);

VAR SUM,AVERAGE : REAL;

I,MAX,SUM : INTEGER;

BEGIN {For typographical reasons, no indentation is used after BEGIN}

READLN(MAX);

SUM :
= 0;

FOR I : = 1 TO MAX DO
BEGIN

SUM := SUM + I {This BEGIN-END pair is optional}

END;

AVERAGE :
= SUM / MAX;

WRITELN('THE AVERAGE OF THE FIRST', MAX, 'NUMBERS IS', AVERAGE)

END. (* AVERAGE2 *)

Figure 6.9: AVERAGE Program— Version 2

A comparison of this program to the one in Figure 6.7 shows that this

program has been significantly shortened. In the program in Figure 6.9,

the FOR statement performs the initialization and automatic incremen-

ting of I (called NUMBER in the program in Figure 6.7), and specifies the

end of the loop test (when I reaches the values MAX).

Many program loops are implemented with this type of counter or

control variable (I in the example above). This facility is important and

should be thoroughly understood. However, the following restrictions

apply to this statement:

1. The control variable (I, in our example) may be used for com-

putations within the loop (as we have done). However, its value

may not be modified within the loop. For example, it would be il-

legal to write I := 4 within the loop itself.

2. Neither the starting value nor the ending value for the control

variable may be changed within the loop. Further, the control

variable, the start value and the end value must all be of the same

type. They are usually integers and may be any scalar type but

real.

3 The FOR statement will not have any effect if the start value is

greater than the end value (less than in the case of a DOWNTO)
because the test for completion is made prior to each execution

of the loop.

85

\

INTRODUCTION TO PASCAL

The value of the control variable (I in our example) is undefined after a

normal exit from the loop. For example, one should not write:

J :
=

I + 1 ;

after the loop, since the value of I is undefined.

NESTED LOOPS

It is entirely legal to have a loop appearing as part of a statement

within another loop. A loop embedded within another loop is called a

nested loop. Any number of loops may be embedded within a loop. For

example, Figure 6.10 displays a program that will print the multiplica-

tion table for the first N integers to be multiplied by integers from 1 to M:

PROGRAM MULTABLE(INPUT,OUTPUT);

VAR I, J,K,AA,N, : INTEGER;

NUMBER : REAL;

BEGIN

READLN(M,N);

FOR I := 1 TO M DO
BEGIN

WRITELN;

FOR J :
= 1 TO N DO

BEGIN

K : = J *
I

;

WRITELN(J,
/ X /

,I,
, = /

,K)

END

END (* FOR *)

END. (* MULTABLE *)

Figure 6.10: MULTIPLICATION TABLE Program

Looking at this program in more detail, M and N are read at the

keyboard:

READLN(M,N);

The FOR loop is then executed M times:

FOR I .
= 1 TO M DO

86 CONTROL STRUCTURES

A blank line is typed:
4

WRITELN;

Then a new loop is executed N times:

FOR J : = 1 TO N DO

The loop computes the product K of I and J:

K := J * I;

and prints it on a new line:

WRITELN (J/X /

/ l/=
,

/ K)

This is done N times, then the control variable I is incremented by 1

(outer loop), a blank line is printed, and the inner loop is started again.

Assuming M = 12 and N - 9, the result will be:

1X1=1
2X1=2
3X1=3
4X1=4
5X1=5
6X1=6
7X1=7
8X1=8
9X1=9
1X2 = 2

2X2 = 4

3X2 = 6

Note that the inner loop cycles completely before the outer loop can ex-

ecute again.

THE THREE LOOP STATEMENTS - A SUMMARY

In many cases, any of the three loop statements may be used:

REPEAT UNTIL

WHILE ... DO
FOR DO

INTRODUCTION TO PASCAL 87

However, each of the three loop statements has restrictions previously

described which may make it unsuitable in specific cases. Here are sum-

maries of the three loop statements.

The REPEAT statement always executes the associated statement(s) at

least once. This statement should not be used if this action could cause a

problem (for example, if a division by zero, or some other meaningless

case could occur).

The REPEAT statement tests at the end of the loop, therefore it may be

used to test for conditions that have just occurred, such as the value of a

variable read or computed within the loop.

The WHILE statement tests for the specified condition before ex-

ecuting the loop. The statement(s) within the loop may not be executed

at all. The WHILE statement may also test for conditions that may have

just occurred within the loop. However, these conditions will have oc-

curred within the prior loop iteration.

The FOR statement executes for a set number of times. The number of

times it executes may not be altered within the loop. The FOR statement

is efficient, as it results in fewer instructions and it automatically in-

crements or decrements the counter variable. However, the FOR state-

ment does not test for a condition.

CONDITIONAL STATEMENTS

We have now learned how to conveniently execute loops. However,

we require more facilities than those already described. In particular,

we need the capability to execute one statement if a condition is true,

and another statement if the condition is not (in the case of a binary

choice). Another useful facility involves a case in which a variable may
have more than two values (such as the set of values 1 2 3 4 5 6) and we
need to execute only one out of six statements, depending upon the

value of the variable. Both of these conditional statements are provided

in Pascal. They are called the IF statement and the CASE statement. IF is

used for a binary choice. CASE is used for an n-ary choice, when n is

greater than 2.

Binary Choice: The IF Statement

A simple example of the IF statement is:

IF NUMBER > 10 THEN WRITELN('NUMBER > 10')

The formal syntax for the IF statement is shown in Figure 6.11.

88 CONTROL STRUCTURES

Figure 6.11: IF Syntax

The IF clause is used in the case of a binary (two-possibilities) choice.

The expression tested must be Boolean, i.e., evaluate to either TRUE or

FALSE. The IF statement may take two forms:

IF Boolean expression THEN statement

ELSE statement

or

IF Boolean expression THEN statement

The ELSE clause is optional. The I F-TH EN-ELSE statement is illustrated in

Figure 6.12 by means of a flowchart representation.

Figure 6. 12: IF-THEN-ELSE Flowchart

Figure 6.12 shows that if the specified Boolean expression after the IF

is true, then statement 1 will be executed. If the condition is not true,

then statement 2 will be executed. However, the ELSE clause is op-

tional.

To help us better understand the IF statement let us consider another

example. We will type numbers at the keyboard and count those

INTRODUCTION TO PASCAL 89

numbers greater than 10. This program will stop when we type 0 at the

keyboard. Here is the program:

PROGRAM COUNT(INPUT, OUTPUT);

VAR COUNT,NUMBER : INTEGER;

BEGIN

COUNT := 0;

REPEAT

READLN(NUMBER);

IF NUMBER >10 THEN COUNT := COUNT + 1

UNTIL NUMBER = 0;

WRITELN('NUMBERS > 10 COUNT)

END

Figure 6.13: Program To COUNT NUMBERS

In this simple example, we have omitted the ELSE clause which was not

required.

This program reads a NUMBER at the keyboard:

READLN(NUMBER);

If this NUMBER is greater than 10, COUNT is incremented by 1 . Other-

wise nothing happens.

IF NUMBER > 10 THEN COUNT := COUNT + 1

This action is REPEATed until a 0 is typed in:

UNTIL NUMBER = 0;

Then the program prints the value of COUNT and stops:

WRITELN('NUMBERS >10 :',COUNT)

In contrast with the preceding loop statements, the IF statement does

not cause execution of a loop. The IF statement simply tests for a condi-

tion. If this condition is true, the IF statement causes the execution of

the statement that follows THEN; this statement is executed once.

If the condition is false, the statement that follows the ELSE is ex-

ecuted. If there is no ELSE, nothing happens, and the next statement in

the program is executed.

90 CONTROL STRUCTURES

In order to specify the test conditions, a complex Boolean expression

may be used. For example, let us write a program that will generate a

diagnostic whenever we type an integer number smaller than 50 and

greater than 60. This is called a filter program. This filter accepts only

those integer numbers whose values are between 50 and 60 inclusive.

PROGRAM FILTER(INPUT, OUTPUT);

VAR NUMBER : INTEGER;

BEGIN

REPEAT

READLN(NUMBER);

IF (NUMBER < 50) OR (NUMBER > 60) THEN

WRITELN('ILLEGAL NUMBER')

UNTIL NUMBER = 0

END

Figure 6.74: A FILTER Program

This program terminates whenever a 0 is typed at the keyboard.

If we review this program in more detail, we see that the condition

specified after the IF is:

(NUMBER < 50) OR (NUMBER > 60)

If NUMBER is equal to 53, then

NUMBER < 50 is FALSE

and NUMBER > 60 is FALSE

The resulting Boolean expression

(NUMBER < 50) OR (NUMBER > 60)

is FALSE and the IF statement has no effect.

Whenever NUMBER is less than 50 or greater than 60, the IF is ex-

ecuted and a message is printed: 'ILLEGAL NUMBER'.

INTRODUCTION TO PASCAL 91

Nested Tests

Any type of statement may be used after a THEN or after an ELSE. In a

case in which a sequence of binary choices is required, an IF statement

may be used within another IF statement.

For example:

IF VOLTAGE > 2 THEN

IF VOLTAGE > 20 THEN

IF VOLTAGE > 100 THEN

WRITELNf'VOLTAGE OUT OF RANGE')

ELSE SCALE := HIGH

ELSE SCALE :
= NORMAL

ELSE WRITELN('VOLTAGE BELOW 2V');

Figure 6.75: VOLTAGE TEST Segment

The program segment above will set the proper SCALE for the

VOLTAGE value:

— A voltage greater than 100V will be out of range.

— A voltage between 20V and 100V will set the SCALE to HIGH (a

constant).

— A voltage between 2V and 20V will set the SCALE to NORMAL (a

constant).

— A voltage less than 2V will also be out of range.

In this example, there are three IF statements that are nested. The use

of nested IF statements corresponds to a binary decision tree. Such a

tree is illustrated in Figure 6.16.

Look at each box in the tree, and see how it corresponds to an

IF. .THEN. .ELSE clause in the program. Whenever more than two alter-

natives exist, another statement may be considered; this is the CASE
statement.

MULTIPLE CHOICE: CASE STATEMENT

The CASE statement is provided in Pascal for situations in which the

number of alternatives available is greater than two. Depending upon
the value of an expression which may take n different values, one of the

n statements will be executed.

92 CONTROL STRUCTURES

SCALE : = HIGH VOLTAGE OUT OF RANGE

(20 < VOLTAGE <100) (1 00 < VOLTAGE

)

Here is an example of a CASE statement:

Figure 6.16: A Binary Decision Tree

CASE MONTH OF

1: WRITELN('JANUARY');

2: WRITELN('FEBRUARY');

3: WRITELN('MARCH');

12: WRITELN('DECEMBER')

END;

The formal syntax of the CASE instruction is shown in Figure 6.17.

The expression following the CASE must evaluate to a non-real scalar

type. For example, we could not directly test for (VOLTAGE > 2) with

this expression, as we did in the previous examples, because we would

be testing for a range of numbers.

As long as the expression following the CASE evaluates to a constant

listed in the statement (called a CASE label), the corresponding state-

ment will be executed.

INTRODUCTION TO PASCAL 93

Figure 6.17: CASE Syntax

If n (constant : statement) pairs are listed, this statement provides an

n-ary choice.

Figure 6.18 shows a program example using the CASE statement. It

will read a number representing a month, then spell it out.

A number is typed at the keyboard. If this number is greater than 1 2 or

less than 1, it is rejected and a message is printed: ('ERROR - NO SUCH
MONTH'), since there is no month less than 1 or greater than 1 2. Other-

wise, if the month number typed was 1, then 'JANUARY' will’ be

printed; if the number typed was 2, then 'FEBRUARY' will be printed,

etc.

PROGRAM SPELLMONTHfINPUT, OUTPUT);

VAR MONTH : INTEGER;

BEGIN

WRITELN('TYPE MONTH NUMBER');

READLN(MONTH);

IF (MONTH > 12) OR (MONTH < 1)
THEN WRITELN('ERROR - NO SUCH MONTH ')

ELSE

CASE MONTH OF
1 : WRITELN('JANUARY');

2: WRITELN('FEBRUARY');

3: WRITELN('MARCH');

12: WRITELN('DECEMBER')

END (* CASE *)

END. (* SPELLMONTH *)

Figure 6. 18: Program For SPELLING THE MONTH

94 CONTROL STRUCTURES

This example shows that, depending upon the value of the number
MONTH, one of 13 events will occur:

— One of the twelve months of the year will be printed;

— A message will be printed if the value of MONTH is incorrect.

This example can be called a 13-way branch. Formally, the CASE
statement is a multi-way branch. It allows the selective execution of a

statement or group of statements, depending upon the value of the ex-

pression following the CASE. If the expression following the CASE ever

evaluates to a value not specified in the constants following the CASE, it

is an error, and the program fails. Remember that the CASE statement

must be terminated by an END. There is no matching BEGIN.

The CASE labels may be any non-real scalar type. More than one label

may be associated with a statement. For example, here is a CASE state-

ment where the labels are characters and are grouped:

CASE SYMBOL OF
'A': WRITELNf'FOUND A');

'B', 'C, 'D': WRITELNf'FOUND B,C,D');

'E', 'F', 'G': WRITELNf'FOUND E,F,G');

'*': WRITELNf'FOUND *')

END;

CASE Summary

The CASE statement is an n-way branch. This branch is symbolically il-

lustrated in Figure 6.19.

The CASE statement is generally used when a variable or an expres-

sion may evaluate to one of n values. This value may be any legal non-

real scalar, such as character, integer, Boolean.

If computer time is restricted, and one particular value has a much

higher probability of coming up than the others, it is usually more effi-

cient to use an IF statement first, so that this value is tested for, before

other alternatives are considered.

UNCONDITIONAL BRANCH; GOTO

We now know about the IF and CASE statements, and how to use

them to perform conditional branching, i.e., to execute selected

statements depending upon the value of an expression. This branching

does not alter the sequential execution of the program as a whole.

There are times in a program, however, when it may be desirable to skip

over a portion of the program, jump out of a loop, or go back to a

specific point. This action is called an unconditional branch, and is ac-

complished by using a GOTO statement.

INTRODUCTION TO PASCAL 95

Figure 6. 7 9: Symbolic Representation of a CASE

The syntax of a GOTO statement is:

GOTO label

where label is a number (up to 4 digits) associated with a statement.

Executing a GOTO statement will cause the labeled statement to be

executed next. This statement may appear after or before the GOTO in-

struction. However, there are some restrictions that apply. We will

point them out later in this section, when discussing the concept of

scope.

In summary, the GOTO statement specifies which statement will be

executed next. A label is used to allow a GOTO statement to specify the

statement that should be executed next. A label is an integer number
followed by a colon and placed before a statement in a program. A label

may not be longer than four digits. For example:

GOTO 100;

• • •

100: statement

96 CONTROL STRUCTURES

GOTO 100 will result in the statement labeled as 100 being executed

next. Labels must be declared using a LABEL declaration. The LABEL
declaration must appear before the CONSTant or VARiable declara-

tions. Here is an example of a GOTO statement within a program:

PROGRAM TEST(INPUT,OUTPUT);

LABEL 100;

VAR A,B,C : INTEGER;

• • •

GOTO 100;

The GOTO command is powerful, and may lead to confusion when
reading a program. A GOTO statement forces a branch to an arbitrary

location within the program, which may make the flow of control dif-

ficult to follow. For this reason, GOTO statements are discouraged in

Pascal. Whenever possible, the other control constructs such as WHILE,
REPEAT, etc. should be used. In fact, many compilers will even generate

warning diagnostics whenever a GOTO statement is used. In cases

where the programmer feels that a GOTO statement is indispensable,

comments should be used within the program to clarify what is happen-

ing.

As a general rule, whenever a GOTO statement must jump backwards

in a program, the programmer could have used one of the structured

statements instead. In the case of a forward jump, the use of the GOTO
may be indispensable.

Let us look at an example of a forward jump:

IF VALUE = N, THEN GOTO 100

100 : ...

The concept of scope is defined in the next chapter. If you decide to

use GOTO statements, you might want to read the next chapter, and

then come back to the rest of the section on GOTO statements. (No,

this recommendation is not a GOTO NEXT CHAPTER this is a PRO-

CEDURE call — but we have not explained procedures yet!)

A GOTO may only jump within the scope of the label that it uses. As a

general rule, if a label is defined in an external (enclosing) block, one

may jump to it from within. If a label is defined within a block, one can

only jump to it from within that block, but not from outside the block.

Examples of legal and illegal GOTO statements are shown in Figure

6 .20 .

INTRODUCTION TO PASCAL 97

Figure 6.20: GOTO Jumps

98 CONTROL STRUCTURES

UCSD CASE Statement

In Standard Pascal, the result of a CASE statement is undefined (an er-

ror) if there is no label equal to the value of the selection variable. In

UCSD Pascal, the result of the CASE is to execute the next statement in

the program.

For example:

VAR SELECTOR : INTEGER;

BEGIN

SELECTOR : = 4;

CASE SELECTOR OF
1: WRITELNf'CASEl EXECUTED 7

);

2: WRITELN(7CASE2 EXECUTED 7

);

3: WRITELN(
7CASE3 EXECUTED 7

)

END; (* CASE *)

WRITELN(7

THIS IS ALWAYS PRINTED 7

)

END

® :

1 ^ Jiii

B •%>(

U C
v

S Dj

UCSD GOTO

The GOTO statement is generally considered as
77
unclean

77 and

"dangerous" in the philosophy of structured programming. UCSD
Pascal restricts GOTO statements to a branch within the procedure

block of that statement. Unlike Standard Pascal GOTO may not branch

outside the procedure.

SUMMARY

All of the Pascal statements available for modifying the sequential ex-

ecution of a program have been presented in this chapter. These

statements included the repetition statements (REPEAT.. .UNTIL,

WHILE.. .DO, FOR. ..DO), the conditional statements (IF. .THEN. .ELSE,

CASE. .OF), and the unconditional GOTO statement.

The power of computer programs stems on one hand from their

capability to test and decide, and on the other hand, to execute loops a

number of times.

The repetition and the conditional statements that have been describ-

ed will be used throughout the rest of this book, in nearly all of the pro-

grams. The contents of this chapter are, therefore, essential and should

be thoroughly understood before proceeding to the next chapter.

The chapters that follow are not essential to the novice programmer.

The information presented up to and including this chapter should

enable the beginning programmer to write many interesting programs.

It is recommended that you test your comprehension of the material by

solving many of the exercises at the end of this chapter.

INTRODUCTION TO PASCAL 99

EXERCISES

6-7: Compute the sum of the first N integers using a FOR statement.

6-2: Is the following program equivalent to the program presented in Figure

6.3 , where the sum of the first 25 integers is computed

?

SUM : = 0;

NUMBER :
= 0;

REPEAT

NUMBER := NUMBER + 1;

SUM := SUM + NUMBER

UNTIL NUMBER > 25;

6-3: Is the previous program equivalent to the one in Figure 6.3 with:

UNTIL NUMBER = 26;

6-4: Modify the program in Figure 6.3 so that it can compute the sum of the

first N integers, where N is a positive integer entered at the keyboard.

6-5: Follow the example of the program shown in Figure 6.3, and write a pro-

gram that will compute the average of the first 25 integers.

6-6: If the compound statement in the program in Figure 6.7 is changed as

follows:

SUM := SUM + NUMBER;

NUMBER := NUMBER + 1;

what other change(s) must be made to the program

?

6-7: Rewrite the AVERAGE program in Figure 6.7 using the REPEAT. ..UNTIL

statement.

6-8: Compute the average of n numbers which are typed at the keyboard and

are not necessarily consecutive integers.

6-9: Do the same exercise as above except change it so the average must be

computed until an end-of-file marker is encountered in the input. All

numbers are read from the keyboard. You may choose any end-of-file

symbol.

6-10: Rewrite the Filter program of Figure 6. 14 so that the minimum and max-

imum legal values are specified at the keyboard. In addition, count the

numbers accepted and rejected.

6-11: Using the example of the program in Figure 6. 18, write a program that

will read a date in the format MM DD YY, where DD is the day, MM is

the month, and YY is the year. The program must convert it to a standard

date, such as March 15, 1981. The program should continue to convert

dates until a 00 is typed as part of any input. In addition, the program

should check for input validity and reject unreasonable input.

100 CONTROL STRUCTURES

6-12: Rewrite the program in Figure 6.17 so that the typing of the first three

characters of a MONTH at the keyboard causes the program to complete

the typing of the name of the month automatically. For example, 'JAN'

should result in the printing of 'UARY'.

6-13: Write a program that prints the equivalence table between Celsius and

Fahrenheit in both directions between two values specified by the user at

the keyboard. For example, it should be capable of printing the Celsius

equivalent of Fahrenheit temperatures from 0 to 200 F. The formula is:

C = 5/9(F — 32)

6-14: Write a program that will plot a vertical curve representing a function as a

sequence of stars or dots. Choose a simple function such as sine.

Hint: For each line, compute the position where a star should be printed using

the ROUND function. Print an appropriate horizontal sequence of

blanks, then a star. Do not forget to scale your printout in function of the

width of your paper.

For the dedicated programmer: print the x and the y axis, plus gradua-

tions.

6-15: (Secret Code) Read a sequence of characters typed at the keyboard. Stop

whenever the letters STOP have been typed at the keyboard in this order,

but not necessarily one after the other. For example, the sequence ABC
j>/4 B C T A O A B CP should cause the program to stop.

6-16: What is the effect of the following instructions (look carefully)?

IF A > 2 THEN;

BEGIN

B : = 2;

C := 3

END;

Hint: Observe the program very carefully.

6-17: Explain the difference between an IF and a CASE.

6-18: When using the following conditional statements, how many times will

the loop be executed?

1. REPEAT 2. WHILE .

V.

CHAPTER /

PROCEDURES
AND FUNCTIONS

103

PROGRAM ORGANIZATION

When developing a program, the programmer often needs to give a

name to a group or block of statements that accomplish a specific task

within the program. This block used within the main program is often

referred to as a subprogram or a subroutine. In Pascal two different

methods are provided for giving a name to a block: procedures and

functions.

The essential difference between a procedure and a function is that a

function returns a value that may be used in an expression, while a pro-

cedure has no value associated with its name. In short, a procedure may
be used instead of a statement. A function may be used instead of a

variable.

Functions are generally used to create new operations (or

"functions") that are not provided in standard Pascal. Procedures are

generally used to structure a program, and to improve its clarity and

generality.

Functions and procedures make a program more readable, and

therefore less prone to errors. They also make a program easier to

debug. Functions and procedures may often be reused in other pro-

grams. Libraries of common functions and procedures are available for

most installations.

Like types in Pascal, functions and procedures may be either

"built-in" or user-defined. The built-in functions are called standard

functions. The standard functions that operate on scalar types were

previously described in Chapter 3.

In this chapter, the rules for defining and using procedures and func-

tions will be described.

PROCEDURES

A procedure is used to identify a subprogram within a program. The

procedure name defines a block of statements that will be executed as a

program every time the name of the procedure is invoked.

For example, a Pascal program might include the following

statements:

BEGIN

GETDATA;

PRINTHEADER;

COMPUTE;

PRINTRESULT

END.

104 PROCEDURES AND FUNCTIONS

where each of the four statements is simply the name of a procedure.

Writing the name of a procedure causes the procedure to be executed.

This type of structuring makes this program segment very readable.

Naturally, this requires that each procedure has previously been defined.

Each of these procedures is formally defined at the beginning of the pro-

gram, and will perform the actions required. For example, Figure 7.1

shows the declaration of the PRINTHEADER procedure.

PROCEDURE PRINTHEADER;

CONST WIDTH = 20;

VAR I : INTEGER;

BEGIN

FOR I := 1 TO WIDTH DO WRITE ('*');

WRITELNf* THIS IS THE TABLE *');

FOR I := 1 TO WIDTH DO WRITEf*');

WRITELN

END; (* PRINTHEADER *)

Figure 7.1: Declaration of PRINTHEADER Procedure

This simple procedure will print:

* THIS IS THE TABLE *

and could be easily modified to print any other header.

Here is a simplified example of a program that defines and uses two

procedures:

PROGRAM CHECKBALANCE(INPUT,OUTPUT);

VAR OLDBALANCE, NEWCHECK, NEWBALANCE : INTEGER;

PROCEDURE READCHECKAMOUNT; (* PROCEDURE DEFINITION *)

(declarations)

BEGIN

(statements)

END; (* READCHECKAMOUNT *)

PROCEDURE COMPUTEBALANCE; (* PROCEDURE DEFINITION *)

(declarations)

BEGIN

(statements)

END; (* COMPUTE BALANCE *)

INTRODUCTION TO PASCAL 105

BEGIN

(statements)

READCHECKAMOUNT; (* PROCEDURE CALL *)

COMPUTEBALANCE; (* PROCEDURE CALL *)

(statements)

END. (* CHECKBALANCE *)

Procedures offer two advantages:

1 . They improve program readability by giving a name to a task and

thereby clarifying its purpose.

2. They shorten the program (if the procedure is used more than

once), as they eliminate the need to write out the corresponding

statements repeatedly.

For example, assuming that the COMPUTE procedure is used twice in

the main program, the resulting flow of execution is illustrated in Figure

7.2.

Figure 7.2: Calling the Procedure

In Figure 7.2, the COMPUTE procedure is called (used) for the first

time when the statement:

COMPUTE;

is encountered in the main program. The result is to execute the

106 PROCEDURES AND FUNCTIONS

"body" of the procedure, as defined at the beginning of the main pro-

gram. This procedure-body or procedure-block is shown conceptually

on the right side of the diagram in Figure 7.2. This procedure call results

in a transfer of control to the procedure, shown by the arrows labeled

"1." Once the procedure has been executed, the next statement

(following 'COMPUTE') in the main program is then executed.

In the Figure 7.2, the procedure COMPUTE is invoked a second time

in the main program:

COMPUTE;

This results in the second procedure call illustrated by the arrows la-

beled "2." The body of the procedure is executed once again. Note

how this procedure, or any other procedure can be used any number of

times in the program. The procedure is called by merely writing its

name.

In summary, a procedure may be called from different points in the

main program. All of the statements in the procedure definition, however,

only have to be written out once, at the beginning of the program. A pro-

cedure may then be executed as many times as desired within the rest of the

program. Conceptually, everything happens as if the body of the pro-

cedure were inserted into the program at every point where it is called.

A procedure is written in essentially the same way as a program. For

example, the PRINTHEADER procedure is declared with:

PROCEDURE PRINTHEADER;

It is followed by the usual declarations, and a BEGIN. ..END block of

statements.

At the end of a procedure, it is good programming practice to write

the name of the procedure in brackets as a comment on the same line as

the END, in order to improve program readability.

For example:

PROCEDURE PRINTHEADER;

(declarations)

BEGIN (* PRINTHEADER *)

(statements)

END; (* PRINTHEADER *)

Note: the rule in Pascal is that the PROCEDURE and FUNCTION
declarations must appear immediately after any VAR declarations in the

main program.

INTRODUCTION TO PASCAL 107

For example:

PROGRAM SAMPLER NPUT, OUTPUT);

VAR A,B,C : REAL;

PROCEDURE ALPHABETIZE; (* PROCEDURE DECLARATION *)

BEGIN

(statements)

END; * ALPHABETIZE *)

Unlike a PROGRAM, one may not declare (INPUT,OUTPUT) for a

procedure. These declarations are not needed because the procedure

block is defined within the PROGRAM block. INPUT and OUTPUT
must be declared for the PROGRAM and are therefore accessible to the

procedure. {Block structure and the scope of identifiers will be discussed

later in this chapter.)

Figure 7.3: Syntax of a Procedure

The formal definition of a procedure is shown in Figure 7.3. This

definition must always include the word PROCEDURE, followed by a

name and one or more statements that define the effect of the pro-

cedure (the "block"). The definition of a procedure may also include

one or more parameters. Parameters will now be explained.

Parameters

Thus far, we have only shown an example of a procedure that ac-

complishes a "stand-alone" action ("print a header"). This procedure

does not receive information from the main program nor does it

transmit information back to it. For example, the PRINTHEADER pro-

cedure may be used to conveniently print a variety of headers

throughout the program. Ideally, we would simply specify the message

to be printed and say something like:

PRINTHEADER ('LIST OF SQUARES');

or perhaps:

PRINTHEADER ('RESULTS');

In other words we would like to pass information to the procedure. An

108 PROCEDURES AND FUNCTIONS

item of information formally passed to or from a procedure is called a

parameter.

Parameters may be used to transmit information to a procedure as

well as to receive values the procedure may have computed or obtained.

A parameter is a mechanism used for formal communication with a pro-

cedure. All parameters must be listed in parentheses in the procedure

definition statement. This is the "parameter list" shown in Figure 7.3.

Each parameter is followed by its type.

The parameters in the parameter list are called formal parameters. A
formal parameter declared in the procedure definition statement may
be viewed as a "place marker." An actual value or variable will be

substituted for this parameter at the time the procedure is called. This

substitution occurs throughout the procedure body. The parameters in

the procedure call are called actual parameters.

Let us illustrate this concept by going back to the procedure in Figure

7.1 and modifying it to print a variable number of asterisks. The revised

procedure takes the following form:

PROCEDURE PRINTHEADER(WIDTH : INTEGER);

VAR I : INTEGER;

BEGIN

(modified statements)

END; (* PRINTHEADER *)

In this procedure WIDTF1 is a parameter. Note that each parameter

must be followed by its type (in this case INTEGER). In order to print

twenty asterisks, we would simply say:

PRINTHEADER(20);

Similarly, in order to print thirty asterisks, we would say:

PRINTHEADER(30);

Of course, we would also modify the program to center the text within

the header.

So far we have only used parameters to pass information to a pro-

cedure. When a procedure must pass a result(s) back to the calling pro-

gram, the parameter(s) used to that effect must be declared as variable

parameters
,

i.e., preceded with VAR.

Let us look at an example:

PROCEDURE COMPUTER(VAR A,B : INTEGER: VAR RESULT : REAL);

INTRODUCTION TO PASCAL 109

where A,B are used to supply values to the procedure, and RESULT will

hold the value of the result computed by the procedure.

When calling procedures, four kinds of parameters may be used:

values (fixed numbers), variables (identifiers), functions
,
and procedures.

When a value is specified as a parameter, this parameter is said to be

passed by value. When a variable is specified as a parameter, the

parameter is said to be passed (or called) by reference. Parameters are

passed by value or by reference for essentially the same reasons that

constants and variables are used in the main program: a value is fixed, a

variable may take various values.

In the PRINTHEADER example above, the parameter WIDTH is pass-

ed by value. Generally, whenever information must only be passed to a

procedure, it is passed by value. Whenever information must be passed

to a procedure and a new value obtained from it after processing, it is

passed by reference
,
so that the main program may use the resulting

values later. In short, passing by reference is used when an assignment

will be done to the named variables and the new values will be used

later on in the main program. Functions and procedure parameters are

described in a separate section in this chapter.

Now, let us look at an example of a simple procedure that replaces

two numbers by their squares:

PROCEDURE SQUARE(VAR A,B : REAL);

BEGIN

A :
= A * A;

B := B * B

END; (* SQUARE *)

The effect of this procedure is to assign to A the value of its square,

and then do the same to B. The identifiers appearing within the defini-

tion are called formal parameters. In this procedure definition, A and B

are the formal parameters. The identifiers used in the call are called the

actual parameters. To use the procedure, we will write, for example:

SQUARE(X,Y);

WRITELN(X,Y);

X and Y are two variables defined within the main program, that must

have a value at the time the SQUARE procedure is called. These

variables are called the actual parameters. The statements shown above

will result in printing the squares of the values of X and Y. Note that, in

this example, the two parameters are called by name since the variables

A and B represent X and Y throughout the procedure.

110 PROCEDURES AND FUNCTIONS

Let us now look at the VAR parameter declaration. An abbreviated

VAR parameter declaration was used in the parameter definition:

PROCEDURE SQUAREfVAR A,B : REAL);

The declaration:

VAR A,B : REAL

accomplishes three purposes:

1. It defines A and B as REAL.

2. It declares A and B as variables within SQUARE.
3. It allows the values of the actual parameters to be changed.

In this case, the actual parameters must be variables.

Note that each actual parameter must correspond to a formal

parameter. In the above example, X corresponds to A, and Y cor-

responds to B. In addition, in Pascal, the actual variables must be

distinct from one another.

The Four Parameter Types

We have discussed two types of parameters so far: value and variable.

To be complete, Pascal defines two more types of parameters: pro-

cedure parameters, and function parameters in which the names of func-

tions and procedures may also be used as parameters. These two addi-

tional types of parameters will be described later in this chapter once

functions have been explained.

Passing a Parameter by Reference and by Value—A Summary

When passing a parameter by reference, VAR must be used in the

procedure definition. However, when passing a parameter by value,

VAR is not used.

In the procedure call, when passing by reference, a variable name
must be used for the actual parameter. When passing by value, any ex-

pression may be used, including a constant or a variable.

In the case in which a variable is passed by value, the variable's value

is substituted for the formal parameter at the time of the call. The cor-

responding formal parameter in the procedure might receive a new
value as the result of an assignment when the procedure is executed.

However, contrary to passing by reference, this will have no effect on

the variable that was used for the parameter in the call.

A variable passed by value can only be used to pass information into a

procedure; it may not be used to receive information from the procedure.

INTRODUCTION TO PASCAL 111

Recursion

A procedure name may be invoked within the procedure definition;

that is a procedure may call itself. This is known as a recursion
,
and will

be explained later in the chapter.

Standard Procedures

Standard procedures are provided in Pascal. They are listed in Appen-

dix C. Most implementations provide additional built-in procedures. Ex-

amples of standard procedures will be provided for UCSD Pascal.

FUNCTIONS

A function is a name given to one or more statements that perform a

specific task. A function results in a value being assigned to its name
upon execution of that function. A call to a function is always used in an

expression. Unlike a procedure, a function identifier has a value. For ex-

ample, here is a simple function that computes the mean of A and B:

FUNCTION MEAN (A, B : REAL) : REAL;

BEGIN

MEAN : = (A + B) / 2.0

END; (* MEAN *)

This function declaration defines a function called MEAN with two

parameters of type REAL called A and B. The value of the result of the

function will be of type REAL. The body of the function follows the

declaration. Here, it includes only a single statement, bracketed by

BEGIN and END.
The formal definition of a function in Pascal syntax is shown in Figure

7.4.

Figure 7.4: Syntax of a Function

A function is defined in the same way as a procedure, except that with

a function a result is returned and the type of the result must always be

specified. Parameters are optional. For completeness, let us indicate

112 PROCEDURES AND FUNCTIONS

that the result must be either a scalar, a subrange type, or a pointer. (The

subrange data type will be studied in the next chapter; pointers will be

described in Chapter 13.)

A special requirement exists in the case of a function: the function

identifier must be assigned a value within the function block. This value

is the value taken by the function once it is executed. For example, the

function MEAN that we have just defined includes the assignment:

MEAN := (A + B) / 2.0

The function identifier may not be used like a variable. It may only be

assigned a value and cannot be tested or accessed.

A function is used in much the same way that a variable is used, i.e.,

by placing it in an expression. However, unlike a variable, a function

may have one or more parameters.

Generally, a function is used to give a name to a group of statements

which perform a computation that must be done several times in the

program. Different values for the parameters may be used each time.

This way, it is only necessary to define the computation process once; it

can then be used repeatedly by the various program parts when need-

ed. For example, the SQRT is a (built-in) function and may be used

many times within a program.

Recall again that the essential difference between a function and a

procedure is that a function takes a value and is used within an expres-

sion. For example, we could write:

VALUE := MEAN(X,Y);

where X and Y are actual parameters; and later write:

NEWVAL := MEAN (M, No-

where M and N are new parameter values.

Like procedures, functions may be called recursively. Also, standard

functions are provided by Pascal. Standard functions are listed in Ap-

pendix C.

We have now defined functions, procedures and parameters. In the

process, we have indicated that variables may be declared within a

function or within a procedure.

We must now examine the possible conflicts this may create with

names of variables that already exist. We will discuss the concept of

block structure, and define the scope of identifiers.

INTRODUCTION TO PASCAL 113

BLOCK STRUCTURE AND SCOPE OF IDENTIFIERS

When a function or a procedure is called, the function or the pro-

cedure may need to perform internal computations. Thus, variables

(e.g., A, B, C) may be defined and used within the function or pro-

cedure for this purpose.

For example, assuming that the values of A and B must be exchanged,

a variable TEMP is required. We write:

TEMP :
= A;

A := B;

B : = TEMP;

You should verify that:

A := B;

B :
= A;

does not work. TEMP is needed.

Or, more formally:

PROCEDURE EXCHANGE(VAR A,B : REAL);

VAR TEMP : REAL;

BEGIN

TEMP :
= A;

A :
= B;

B :
= TEMP

END; (* EXCHANGE *)

To be able to use standard or library functions or procedures without

encountering problems, internal variable names such as A, B, and C
should not interfere with other variables also named A, B, and C which

might be declared and used in the main program. For example, if there

is a variable A in the main program, an assignment to A within a func-

tion might change the value of A in the main program. This fact would

make functions unsafe to use.

In Pascal, and in several other programming languages, this problem

is solved by defining the scope of each variable. The scope of a variable

is its domain of accessibility which will be defined in this section. For ex-

ample, a variable defined within a procedure or a function is said to be

local to that procedure or function. A local variable will have no effect

outside the procedure or function, and will disappear once the pro-

cedure or function has been executed.

Conversely, a variable defined in the main program header is said to

114 PROCEDURES AND FUNCTIONS

be global and may be used, referenced, or changed anywhere in the

program, including any functions or procedures.

Now, let us consider the case where A, B, and C are defined in the

main program, and A, B, and C are also defined as (local) variables for a

FUNCTION. In this case, there are six variables all together. Within the

function, A, B, and C are local variables
,
and they will have no effect on

the global variables A, B, C in the main program, even though they have
the same name. A local name is said to supersede a global one. By using

local variables, one may safely define any variable that a function or a

procedure will use. Any name may be used, even if it is already used

elsewhere. A variable defined within a function is local to that function

and cannot be used outside the function.

The scope of a variable is limited to only the block for which it is defin-

ed. An example is shown below:

PROGRAM DEMO(INPUT, OUTPUT);

CONST ONE = 1

;

VAR l,J,K, : INTEGER;

A,B,C : REAL;

PROCEDURE GETDATAfVAR X : REAL);

VAR L,M : INTEGER;

Y : REAL;

BEGIN

END; (* GETDATA *)

FUNCTION COMPUTE (P,Q : INTEGER) : INTEGER;

VAR J,K : INTEGER;

BEGIN

END; (* COMPUTE *)

BEGIN

END. (* DEMO *)

Figure 7.5: Block Structures

This program (DEMO) defines one constant (ONE) and six variables

(l,J,K,A,B,C). These identifiers belong to the main program and, as such,

are said to be global variables. Global variables are accessible to any

procedure or function within the program that does not use the same

identifiers.

INTRODUCTION TO PASCAL 115

Let us examine the procedure GETDATA in Figure 7.5. The procedure

GETDATA defines a formal variable parameter X, and three identifiers

(L, M, Y). These four new identifiers are said to be local to the pro-

cedure. They have a meaning only within the block of the GETDATA
procedure and their definition will 'die' as soon as the procedure exits.

In other words, within the procedure, it is legal to use the identifiers

ONE,l,J,K,A,B,C of the main program as well as X,L,M,Y. Once the pro-

cedure exits, the seven identifiers ONE,l,J,K,A,B,C will still have a mean-
ing, as they are global identifiers. The other four will be undefined.

Let us now look at the function COMPUTE in Figure 7.5. This function

may use all of the global identifiers defined in the main program, such as

ONE,l,J,K,A,B,C, GETDATA, COMPUTE. In addition, it has two formal

parameters, P and Q, and defines two local variables, J and K whose

meaning will "die" upon function exit. However, this time, we may
have a problem! Notice that the variables J and K are defined within the

function COMPUTE, however, they have already been defined within

the main program.

Will this have an effect on the main program? You already know that

the answer is no: within each block such as a function or a procedure,

variables may be redefined as being local by listing them in the defini-

tion of the function. The J and K appearing within the function COM-
PUTE will have a different meaning within that function, and no effect

whatsoever on the global variables named J and K in the main program.

Recall that this allows the programmer to use or create a library of

system functions, without having to worry about the fact that a function

might accidentally modify or erase some of the variables in the main

program.

Within the body of the main program in Figure 7.5, the only user-

defined identifiers that have a meaning are: ONE, l,J,K,A,B,C, GET-

DATA and COMPUTE.
The scope of the identifiers used in the DEMO program in Figure 7.5 is

illustrated in Figure 7.6.

In summary, using an identifier within the block where it is defined is

a legal use of a local reference. Using (anywhere in a program) an iden-

tifier defined in an (enclosing) outer block, is a legal use of a non-local

reference. Using an identifier defined in an inner block outside that

block is illegal unless the same identifier has also been defined in the

outer block. (An example of such a case would be if the identifier would

simply happen to have the same spelling as the one in the inner block,

but is otherwise unrelated.)

In principle, with the scope mechanism, the programmer no longer

has to worry about the fact that a procedure or a function might in-

advertently change or destroy the values of some variables in the main

program. Well, that is almost the case. In fact, a procedure or a function

116 PROCEDURES AND FUNCTIONS

may change the value of a global identifier in two ways:

1. Through an explicit parameter

2. By assigning a value to a global identifier.

This mechanism is called a side-effect.

When the name of a parameter called by reference, or the name of a

global variable (defined within the main program) is used to the left of

an assignment statement within a procedure, or a function, the value of

that variable will be altered by the procedure or the function.

Here is an example:

PROGRAM DEMO(INPUT,OUTPUT);

VAR A,B,C : REAL;

PROCEDURE RESET(VAR M,N : REAL);

BEGIN

A :
= 0; M : = 0; N : = 0

END; (* RESET *)

INTRODUCTION TO PASCAL 117

BEGIN

READ(A,B,C);

RESET(B,C);

WRITELN(A,B,C)

END. (* DEMO *)

Let us examine the procedure RESET. This procedure sets the two

parameters M and N to zero. However, it also sets the global variable A
to zero. When the DEMO program is executed, values will be typed in

for A, B, C. When RESET is called, B and C are substituted for M and N
and they are zeroed. In addition, A is also zeroed.

When the values of A, B, C are printed, A, B and C are 0. This may be

what was intended. The danger, however is the following: the pro-

cedure RESET only lists M and N as parameters.

When a variable has been declared as a parameter, it is expected and

normal that its value might be changed. However, when the variable

belongs to the main program and is not listed as a parameter, this

technique may result in unwanted accidents.

For example, if RESET were used at a later date, or by someone else,

we might forget that RESET also changes A. This would result in an error.

Whenever possible, all variables affected by a procedure should be

listed as parameters.

To summarize the example above, a procedure may be used that

modifies a variable named A which belongs to the main program and is

not a parameter. Since often one does not look at the complete listing of

a procedure, this "side-effect" of calling the procedure could be

catastrophic.

The parameter mechanism is provided to prevent such catastrophes.

The recommended procedure is to always list as formal parameters all

the identifiers that one wishes to make available to an inner block, such

as a procedure or a function.

It is possible to legally modify global identifiers with a procedure or a

function, but this is a dangerous and error-prone technique and should

be avoided if possible. Furthermore, when writing your own functions

and procedures, avoid using the names of identifiers that have already

been used in an outer block. Even though it is legal to use identifiers

having names identical to global identifiers, this should be avoided as it

creates a situation in which errors could cause disastrous results.

FUNCTIONS AND PROCEDURES AS PARAMETERS

Thus far, we have only discussed two types of parameters: constants

and variables. We have however, indicated that functions and pro-

cedures may also be passed as parameters. The complete syntax for the

parameter list is shown in Figure 7.7.

118 PROCEDURES AND FUNCTIONS

Figure 7.7: Syntax of a Parameter List

The syntax shows that variables, functions and procedures may be us-

ed as parameters. Here are examples of declarations:

PROCEDURE COAAPUTEIT(FUNCTION SHMOO : REAL; A,B : REAL);

PROCEDURE ALPHA(PROCEDURE BETA);

FUNCTION GAMMA(FUNCTION DELTA : INTEGER) : REAL;

Here is a specific example:

PROCEDURE PRINTIT(FUNCTION FI, F2 : REAL; A, B, C : REAL);

BEGIN

X : = F1(C) - A;

Y :
= F2(C) -F B;

• • •

END (* PRINTIT *)

The PRINTIT parameter list includes:

— Two real functions: FI and F2

— Three real variables: A, B, C

INTRODUCTION TO PASCAL 119

This allows PRINTIT to use the two functions FI and F2 within the pro-

cedure:

X : = FI (C) — A;

Y :
= F2(C) + B;

Because FI and F2 are formal parameters, the PRINTIT procedure may
be called with any actual functions passed as parameters. This way, a

repetitive procedure may be written only once, using symbolic names
for the functions FI, F2 and F3. The actual names of the functions are

then provided at the time of the procedure call. For example, the pro-

cedure call for the above procedure might be:

PRINTIT(SQUARE,COMPUTE, 1,10,8)

where SQUARE is a function that will be substituted for FI, and COM-
PUTE a function that will be substituted for F2. This procedure may be

executed any number of times using different functions as parameters.

However, some implementations forbid the use'of the Standard Pascal

functions as parameters.

Standard Pascal imposes one restriction: when passing procedures or

functions as parameters, these procedures or functions may only use

value parameters. Thus, if a procedure or a function is used as a

parameter within another one, the only way it can bring results back

with it is by using assignments to global variables.

Caution: Passing functions and procedures as parameters is a powerful

facility, especially if your implementation allows passing them as

variable parameters.

Two problems may occur:

1. It is the programmer's responsibility to always use the correct

number of parameters during calls. Most compilers do not check

this and may execute the call incorrectly.

2. Assignments to global variables (not declared as parameters)

within a function or procedure may cause catastrophic side ef-

fects.

SCOPE REVISITED

The concept of scope has already been defined: variables are accessi-

ble only within the block where they are defined.

This concept also applies to functions and procedures passed as

parameters. For example, when a function is passed as a parameter in a

procedure, all of its variables become accessible within the block where

120 PROCEDURES AND FUNCTIONS

it is used. Conversely, the local variables of the procedure that uses this

function become global to the function. Here is an example:

PROGRAM MAIN(INPUT,OUTPUT);

FUNCTION ALFA(X : REAL): REAL;

BEGIN

END; (* ALFA *)

PROCEDURE BETA (FUNCTION F : REAL; M, N, : REAL);

VAR A,B,C : REAL;

BEGIN

END; (* BETA *)

BEGIN (* PROGRAM MAIN *)

END. (* MAIN *)

In this example, the function F is a parameter to the procedure BETA.

The local variables A, B and C of BETA become global to the function F.

If F ever assigns values to variables A, B and C that are not local to F, side-

effects will occur as the values of A, B, C within BETA will be modified.

In summary, remember that when a function or a procedure is used,

its block becomes imbedded within the block where it is used. Thus,

those variables that are global to a function or a procedure will be dif-

ferent if that function is used within different blocks. Similarly, a pro-

cedure may be defined within a procedure. For example:

PROCEDURE P (X,Y : REAL);

VAR A,B,C : REAL;

PROCEDURE Q (I : INTEGER);

BEGIN

END; (* Q *)

BEGIN

END; (* P *)

In this example, Q is defined within P. Q is then always within the block

of P. All declarations made in P may be used in Q, and the procedure Q
may be used within P.

INTRODUCTION TO PASCAL 121

RECURSION REVISITED

We have already indicated that the scope of a function or a procedure

declaration includes (only) its own block. The name of the function or a

procedure may therefore be used within the function or the procedure.

For example, a function may call itself within that function. This is called

the recursion facility. For example, we could compute the factorial of N,

defined as:

N! = 1
* 2 * 3 * ... * N

with:

0! = 1 by convention

by using the formula:

FAC(N) = FAC(N - 1) * N

where FAC is an integer function. This is legal and it works. This formula

is applied in the following way:

Assume N = 1 and FAC(l) = 1

Then FAC(2) is computed as:

FAC(2) = FAC(1
)

* 2;

= 1*2
= 2

And FAC(3) is computed as:

FAC(3) = FAC(2) * 3;

Automatically, FAC(2) is computed as defined by the formula:

FAC(3) = (FAC(l) * 2) * 3

=1*2*3
= 6

And generally FAC(N) is computed as

FAC(N) = FAC(N - 1)
* N

= (FAC(N - 2) * (N -
1))

* N

= ((FAC(N - 3) * (N - 2)) * (N -
1))

* N

= 1
* 2 * 3 * ... * (N - 2) * (N - 1)

* N

122 PROCEDURES AND FUNCTIONS

However, recursion uses a large amount of memory inside the com-
puter, and usually consumes more time than if a simpler computation

had been used. If time and memory space are not important, then

recursion can be used indiscriminately. However, since computer time

is usually valuable, and memory space limited, a mathematical formula or

algorithm should be used rather than recursion wherever possible. Recur-

sion is, however, a powerful facility, and should be considered, especially

when performing logical decisions or logical analysis. For example, func-

tions or procedures are often called recursively when traversing a deci-

sion tree.

In summary, recursion is an extremely valuable facility, as no other

convenient alternative exists. Recall that recursion is less desirable when
computing a mathematical result that could also be obtained with a

simpler formula.

RECURSION EXAMPLE

The Fibonacci sequence is defined in the following way. It is a se-

quence of numbers such that each consecutive number is equal to the

sum of the two preceding numbers. The beginning of the sequence ap-

pears as:

0,1,1,2,3,5,8,13,21,34

And we can easily verify that:

0 -I- 1 =
1 (element 2)

1+1=2 (element 3)

1+2 = 3 (element 4)

2 + 3 = 5 (element 5)

etc.

A program is presented in Figure 7.8 that calculates the value of the n
th

element in the Fibonacci sequence. The equation used to compute the

n
th element is:

FIB(N) = FIB(N-l) + FIB(N — 2)

This formulation lends itself well to the use of a recursive function call.

For example, FI B(4) would be effectively computed as:

FI B(4) = FIB(3) + FIB(2)

= FIB(2) + FIB(l) + FI B(1)+ FIB(O)

= FIB(1)+ FIB(O) +1 +1+0
= 1 + 0 +2
= 3

INTRODUCTION TO PASCAL 123

Figure 7.8 presents the corresponding program and a typical run.

PROGRAM FIBONACCI (INPUT, OUTPUT);

(* PROGRAM TO CALCULATE FIBONACCI NUMBER GIVEN *)

(* ITS PLACE IN THE SERIES *)

VAR FIBNUM: INTEGER;

FUNCTION FIB(COUNT: INTEGER): INTEGER;

BEGIN (* FIB *)

IF COUNT > 1 THEN FIB := FIB(COUNT-l) + FIB(COUNT-2)

ELSE IF COUNT= 1 THEN FIB := 1

ELSE FIB :
= 0

END; (* FIB *)

BEGIN (* FIBONACCI *)

REPEAT

WRITE ('ENTER NUMBER :');

READLN (FIBNUM);

UNTIL FIBNUM >= 0;

WRITELN('THE FIBONACCI NUMBER IS FI B(FIBNUM))

END. (*FIBONACCI*)

Figure 7.8 FIBONACCI Program

Here is a typical run:

ENTER NUMBER : 14

THE FIBONACCI NUMBER IS 377

Note: in the run, boldface type is used to indicate characters that were

typed by the user.

Let us examine the program in Figure 7.8. First a single global variable

is declared:

VAR FIBNUM: INTEGER;

This variable will hold the value typed at the keyboard by the user in-

dicating the number of the Fibonacci element to be computed. This

124 PROCEDURES AND FUNCTIONS

value must be an integer >= 0. A specific check to verify this fact will

be made later in the program.

Then, the function FIB is defined to compute the value of the Fibonac-

ci element:

FUNCTION FIB(COUNT: INTEGER): INTEGER;

This function has one parameter called COUNT. The result will be

stored in FIB. The compound statement appearing within the function

implements the formula that was presented, and two special cases:

— When the argument is 0, FIB(O) is defined as 0

— When the argument is 1, FI B(1) is defined as 1

This statement is accomplished with two IF clauses:

BEGIN (* FIB *)

IF COUNT > 1 THEN FIB := FIB(COUNT-l) + FIB(COUNT-2)

ELSE IF COUNT= 1 THEN FIB := 1

ELSE FIB :
= 0

END; (* FIB *)

The use of the two IF clauses in this program is illustrated in Figure

7.9. This statement assumes that COUNT > = 0. Also note the use of

recursion to compute the value of FIB: the function FIB is used (called)

within the IF clause.

Finally, the main program body reads a FIBNUM that rejects any nega-

tive value, and prints the result.

BEGIN (* FIBONACCI *)

REPEAT

WRITE ('ENTER NUMBER :');

READLN (FIBNUM);

UNTIL FIBNUM > = 0;

WRITELN ('THE FIBONACCI NUMBER IS ', FIB(FIBNUM))

END. (* FIBONACCI *)

INTRODUCTION TO PASCAL 125

Note how this program keeps reading until it gets a non-negative

number. This simple example illustrates the use of a recursive function

call, and the use of proper input techniques (e.g., the rejection of invalid

numbers).

RETURN RETURN

Figure 7.9: The Two IF Clauses

FORWARD REFERENCES

Normally, a function or a procedure may be called by another func-

tion or procedure only if the function or procedure being called has

been defined before the function or procedure calling it. There are

cases where this is undesirable, or even impossible, if many different

functions and procedures must call each other. The forward reference is

provided in Pascal to overcome this problem.

A forward reference is accomplished by declaring the function or pro-

cedure as FORWARD at the beginning of the program before the actual

function or procedure definitions are given. An example is shown in

Figure 7.10

126 PROCEDURES AND FUNCTIONS

PROGRAM SOLVE) INPUT, OUTPUT);

PROCEDURE DRAW(I : INTEGER); FORWARD;

FUNCTION QUADRATIC(X : REAL) : REAL; FORWARD;

PROCEDURE COMPUTE (Y,Z : REAL);

VAR P : REAL;

BEGIN

END; (* COMPUTE *)

PROCEDURE DRAW;

BEGIN

END; (* DRAW *)

FUNCTION QUADRATIC;

BEGIN

END; (* QUADRATIC *)

BEGIN

END. (* SOLVE *)

Figure 7.10: SOLVE Program

In this example, DRAW and QUADRATIC are declared as FOR-

WARD. Now let us examine the order of the actual declarations. It is:

COMPUTE

DRAW
QUADRATIC

Without the FORWARD declarations, COMPUTE would not be allowed

to use DRAW or QUADRATIC which are declared afterwards.

However, both DRAW and QUADRATIC could use COMPUTE. Using

the two FORWARD declarations, DRAW and QUADRATIC may be us-

ed within COMPUTE.
Note that the FORWARD declaration is identical to any subprogram

declaration; however, the body is replaced by the word FORWARD.
When the full declaration appears further on in the program, the

heading is reduced to the name of the specified procedure or function.

INTRODUCTION TO PASCAL 127

EXTERNAL PROCEDURES

On many computer installations, library procedures or functions are

provided which are written in Pascal, FORTRAN or other languages.

They are already compiled (i.e., translated into executable code), and

may be executed directly. Using the EXTERNAL declaration, such library

procedures or functions can be used in a Pascal program in essentially

the same way that a FORWARD reference is used. The word FOR-

WARD is replaced by EXTERN or FORTRAN, depending upon the in-

stallation. The procedure or the function being used is not listed within

the body of the program, but may still be called. For example:

PROCEDURE : FINDCHARACTER(X:REAL) : FORTRAN;

would be called from the main program by writing:

FINDCHARACTER(2.5);

No procedure body appears in the program in the case of an external

declaration. The system will automatically find the external program

within the library and execute it. Only formal parameters may be used

when communicating with an external function or procedure. Global

variables are not accessible.

RESTRICTIONS ON PARAMETERS

To make our definition of parameter more complete, two additional

restrictions on parameters should be mentioned:

1. File parameters must always be variable parameters, i.e., passed

by reference.

2. An element of a packed structure may not be listed as an actual

variable parameter. (Packed structures will be defined in a later

chapter.)

Additional restrictions or extensions may exist for each version of Pascal

as well.

UCSD PROCEDURES AND FUNCTIONS AS PARAMETERS

This feature of Standard Pascal (declaring procedures and functions as

parameters) is not supported by UCSD Pascal. Procedures and functions

may not be declared as formal parameters to a procedure or a function.

UCSD PACKED VARIABLES AS PARAMETERS

As in Standard Pascal, packed variables may be passed as value

parameters. However, an element (or field) of a PACKED RECORD or a

PACKED ARRAY may not be passed as a reference parameter.

128 PROCEDURES AND FUNCTIONS

UCSD EXIT
4

EXIT is a special UCSD statement that may be used to exit from a pro-

cedure or a function.

The syntax for EXIT is:

EXIT (identifier)

The effect of EXIT is somewhat analogous to the END at the end of a

function, or a procedure. Exit accepts one parameter: the identifier of

the procedure or function to be exited. The parameter may be an iden-

tifier of any function or procedure such that the EXIT is within its scope.

In particular, EXIT will CLOSE any local files opened within the pro-

cedure block. EXIT will abort only the most recent call of a recursive

procedure or function.

Whenever EXIT is used within a function, care must be taken to assign

a value to the function before the EXIT, or the function will return

undefined values.

A general example of EXIT is:

BEGIN

IF testcondition THEN EXIT (procedure name);

END.

SUMMARY

Functions and procedures provide a convenient way to treat a block

of statements as a module. Functions take a value and must be part of an

expression. Procedures may be used instead of a statement.

Communication with a function or a procedure is performed by

means of parameters. A function or a procedure may define its own
local variables, which have no effect on the outside program.

The functions and procedures used with parameters significantly

enhance the power and flexibility of Pascal. Therefore, functions and

procedures are used extensively throughout Pascal.

In practice, large programs are normally designed to include a collec-

tion of functions and procedures that perform specific actions. Each

function or procedure may then be designed, refined and debugged

separately.

INTRODUCTION TO PASCAL 129

EXERCISES

7-7: Read a character and a number typed at the keyboard. Design a pro-

cedure that will draw a line including N times that character, where N is

the number that was read at the keyboard. For example, after typing
'*'

and '3', the procedure might print '***'. Your program should check the

reasonableness of the number typed at the keyboard.

7-2: As a variation of the previous exercise, write a program that will read ten

characters from the keyboard, then print a line of ten times each

character. Each successive line should be offset by one character to the

right of the previous one. Use a procedure or a function wherever possi-

ble.

7-3: Write a procedure that converts a length expressed in inches into miles,

yards, feet, and inches. Read LENGTH at the keyboard.

7-4: Write a function that computes the maximum value of X, Y,Z where X, Y,Z

are REAL.

7-5: In the program PARAMTEST below, what are the global variables ? Can

they be used in both VARVAL and SHOWSCOPE? What is the output of

the program

?

PROGRAM PARAMTEST (INPUT, OUTPUT);

VAR Gl, G2: INTEGER;

PROCEDURE VARVAL (PM1 : INTEGER; VAR PM2: INTEGER);

VAR PR1
,
PR2 : INTEGER;

BEGIN (* VARVAL *)

PR1 := 1;

PR2 : = 2;

PM1 := PM1 + PR1 + PR2;

PM2 :
= PM2 + PR1 + PR2

END; (* VARVAL *)

FUNCTION SHOWSCOPE (PM1: INTEGER): INTEGER;

VAR Gl, FN: INTEGER;

BEGIN (* SHOWSCOPE *)

Gl := 0;

FN :
= 2;

PM1 := PM1 + FN;

WRITELN (PM1);

WRITELN (Gl);

SHOWSCOPE := Gl

END; (* SHOWSCOPE *)

130 PROCEDURES AND FUNCTIONS

BEGIN (* PARAMTEST *)

WRITELN; WRITELN;

G1 := 1;

G2 :
= 2;

VARVAL(G1,G2);

WRITELN(G1);

WRITELN(G2);

G2 := SHOWSCOPE(Gl);

WRITELN(Gl);

WRITELN(G2);

WRITELN; WRITELN

END. (* PARAMTEST *)

7-6: Which numbers will the PARAMTEST program (defined above) print?

7-7: In the following statements, explain which variables are actual

parameters, and which are formal parameters:

PROCEDURE TEST 1 (VAR A,B,C : INTEGER);

TEST 1 (X,Y,Z);

7-8: Examine the program RECURSE below. What does this program do to

the input? What is the output?

PROGRAM RECURSE (INPULOUTPUT);

PROCEDURE READWRITE;

VAR CH: CHAR;

BEGIN (* READWRITE *)

READ(CH);

IF CH <> 7 ' THEN READWRITE;

WRITE(CH)

END; (* READWRITE *)

BEGIN (* RECURSE *)

WRITELN; WRITELN;

WRITELN ('TYPE A WORD IN RESPONSE TO THE PROMPT ');

WRITELN ('TO STOP TYPE A BLANK.');

WRITE(' ');

READWRITE;

WRITELN; WRITELN; WRITELN

END. (* RECURSE *)

CHAPTER U
DATA TYPES

133

TYPES

I n this chapter, we will present a complete overview of the data types

available in Pascal and the rules that apply to them. But first, let us con-

sider the reasons for distinguishing one data type from another. Thus

far, we have encountered four examples of data types: integers, reals,

Booleans, and characters. These types are logically or mathematically

distinct, and specific operators are used with each type. For example,

adding two characters together does not have an obvious result! The ad-

dition operation is unavailable for characters in Pascal. Formally, addi-

tion is not defined for the data type 'characters'. From this example,

therefore, we can conclude that each data type will have a set of

operators that can be reasonably used with that particular type.

Data types are distinguished for two purposes:

1. So that the compiler may use the proper internal representation

for each type.

2. So that the programmer will use the proper operators for each

type.

The type definition is used for distinguishing data types.

In this chapter, we will review the reasons for distinguishing data

types, then we will present an overview of all the types available in

Pascal, and finally examine the mechanisms for defining data types.

WHY DATA TYPES?

We have just stated two purposes for data types. Let us examine them.

Recall that throughout the book we have always declared the data type

of each variable before using it:

VAR l,J : INTEGER;

A,B : REAL;

LETTER : CHAR;

The first advantage of declaring a data type prior to its use is so that the

compiler (the computer program that translates our Pascal program into

machine-executable code) will be able to detect erroneous operators

applied to the wrong type. This is very useful if the programmer is

careless or if the program is long. The second advantage resulting from

the formal declaration of data types is to facilitate the design of the com-

piler.

134 DATA TYPES

Each data type is represented inside the computer's memory in a

specific format. If identifier types could change dynamically, i.e., as the

program is being executed, this would complicate the proper allocation

of the computer's memory. This dynamic change would also slow down
the execution of the program.

Since the easy implementation of Pascal on a computer (i.e., design-

ing a Pascal compiler with reasonable ease) was one of the considera-

tions when the Pascal language was created, Pascal requires that all data

types be formally declared before they are used. As such, when the

compiler translates the program prior to execution, it can make all of

the correct decisions relative to space allocation for each type of

variable. A resulting advantage, which has just been mentioned, is that

the compiler can verify the syntactic correctness of expressions at the

time that they are being translated, rather than when they are actually

executed. This process speeds up execution.

Some programmers feel that formal data type declarations such as

those required by Pascal are a disadvantage: "the computer should

know." However, bear in mind that every programming language is the

result of many compromises between ease of use by the programmer

and ease in compiler construction for the implementer. Languages exist

that do not require formal type declarations and that allow data types to

be modified dynamically as execution proceeds. However, compilers or

interpreters for these languages tend to be much more difficult to imple-

ment. This is the case, for example, with the APL language.

Let us summarize the main requirements of data types in Pascal.

GENERAL RULES FOR DATA TYPES

The main rules that apply to data types in Pascal are:

— Every variable may have only one type. Naturally this applies only

to the block where the identifier is declared.

— The type of each variable must be declared before the variable is

used in an executable statement.

— The formal rules of Pascal declarations are specified by the syntax

in Appendix F. In particular, declarations must be made in a

specified order. This order is summarized in Figure 8.1.

— Finally, only specific operators may be applied to each data type.

Additional user-defined operators may be created using the PRO-

CEDURE and the FUNCTION facilities provided by the language. In

general, at least five standard operators should be logically available for

all scalar data types: the assignment : = ,
and the tests for not equal

(< >), equal (=), greater than (», and less than (<). However, addi-

tional restrictions are placed by Pascal upon these operators. These

INTRODUCTION TO PASCAL 135

PROGRAM

LABEL

CONST

TYPE

VAR

PROCEDURE

FUNCTION

Figure 8. 1: Order of Pascal Declarations

restrictions will be explained later. It is important therefore to read this

chapter carefully in order to efficiently and correctly use the data types

provided by Pascal.

Note that Pascal provides many valuable facilities for defining and us-

ing additional data types. In this chapter, we will study the rules for

creating new data types that are defined by the user. We will study in

detail the many structured types defined by Pascal in the following

chapters.

The various data types that are allowed by the language are an impor-

tant and powerful facility in Pascal and should be thoroughly

understood. Designing a program involves the design of a suitable

algorithm (a step-by-step specification of the solution to a problem) and

the use of effective data structures. Thus far, we have presented only

simple programming examples using simple algorithms and a few

variables. In the following chapters, we will present more complex pro-

grams requiring more complex data structures.

Having understood why data types are necessary, let us learn the

various types and their correct uses.

SCALAR TYPES

Scalar types are the basic data types available in Pascal. Each scalar

data type is composed of a set of distinct, ordered values. This means
that for any two values A and B, one of the following relationships holds

true:

A > B

A = B

A < B

As a result, all of the relational operators may be applied to all of the

scalar types, as long as the two operands A and B are of the same type.

Recall that the six relational operators are:

= <>>>=<<=

136 DATA TYPES

In addition, three standard functions operate 0/1 scalar types (excluding

REAL):

SUCC(N) the successor of N
PRED(N) the predecessor of N
ORD(N) the ordinal number of N

The number of elements contained in a given data type is called the car-

dinality of that type. The ordinal number of the first value in a set is 0.

The two basic kinds of types are unstructured types which are scalars

and structured types which are constructed from unstructured types.

The unstructured types will be reviewed in this chapter. We have

already learned about and used most of the unstructured data types. Let

us review them systematically for clarity.

Two kinds of unstructured data types may be distinguished: standard

(built-in), and user-defined. Let us examine the standard types first.

Standard Scalar Types

Four standard data types are automatically provided by Pascal. They

are: INTEGER, REAL, CHAR, and BOOLEAN. They were descibed in

Chapter 3 and have been used in all of the program examples thus far.

User-Defined Scalar Types

The TYPE statement was introduced in Chapter 3 to create new names

for the four standard data types. For example:

TYPE DAY = INTEGER;

Thus far however, this facility has not been used as it has not offered any

significant advantage.

The value of the TYPE declaration will now become apparent after we
define the other possibilities.

Enumeration

Thus far, when we have used TYPE or VAR we have only listed iden-

tifiers. For example:

VAR A,B : REAL;

However, there are three possibilities to choose from. Following a TYPE

or a VAR, one may either:

1 . List type identifiers of previously defined types such as REAL, IN-

TEGER, CHAR, etc.

2. List a sequence of identifiers such as (RED,GREEN, BLUE). This is

called an enumeration.

3. List two constants separated by such as '0..1000'. This is called

a subrange.

INTRODUCTION TO PASCAL 137

When a type is defined by enumeration, a list of constants must be given

which establishes the values contained in the data type and their order

with respect to one another.

Enumerated types are defined in TYPE or VAR statements as follows:

TYPE type name = (constant, constant,...

)

VAR variable name = (constant, constant,...)

The syntax diagram for enumerated type declarations is shown in

Figure 8.2.

Figure 8.2: Enumerated Type Syntax

Let us consider some examples:

TYPE BASICOLOR = (RED, GREEN, BLUE); {enumeration}

DAY = (SUNDAY,MONDAY,TUESDAY,WEDNESDAY,THURSDAY, FRIDAY, SATURDAY);

COOKED = (RARE,MEDRARE,MEDIUM,MEDWELL,WELLDONE);

With the above definitions, the following relationships hold:

RED < GREEN < BLUE

SUNDAY < MONDAY < ... < SATURDAY

RARE < MEDRARE < MEDIUM < MEDWELL < WELLDONE

This is a powerful facility for giving a name to an ordered sequence com-

posed of known elements.

An advantage that results from using this facility is that the compiler

138 DATA TYPES

will automatically verify that a variable of the type BASICOLOR may on-

ly take the values RED, GREEN or BLUE. Here are additional examples:

TYPE MONTH = (JAN, FEB, MAR, APR,MAY, JUN,JUL,AUG, SEP, OCT, NOV, DEC);

RANK = (LIEUTENANT, CAPTAIN,GENERAL);

NAMES = (ALBERT, CHARLES, DANIEL, FRANK);

Then, variables can be declared as belonging to this user-defined type:

VAR MEETINGDAY : WORKDAY;

FISCAL : MONTH;

OFFICER : RANK;

PERSON : NAMES;

An abbreviated declaration may also be used. For example, we could

write:

VAR WORKDAY
:
(MON,TUES,WED,THUR,FRI);

SUMMER
:
(JUNE, JULY,AUGUST);

In this case, the variable SUMMER is assigned an unnamed type which

can take on the values JUNE, JULY, and AUGUST. The only drawback

to the above notation is that the new data type does not have a specific

name. Therefore, other variables cannot be defined as belonging to that

type.

Let us now examine the subrange type.

Subrange

Pascal permits the definition of types that are a subsequence of any

scalar type (except REAL) that has been previously defined. This type is

called a scalar subrange data type. The following are examples of

subrange types:

TYPE WORKDAY = MONDAY .. FRIDAY; {SUBRANGE OF DAY}

SUMMER = JUN .. AUG; {SUBRANGE OF MONTH}

MONTHDIGITS = 1 .. 12; {SUBRANGE OF INTEGERS}

PASSINGSCORE = 6 .. 10;

GOODVOLTAGE = 100 .. 1 20;

TYPE EARLYWEEK = MONDAY .. WEDNESDAY; {SUBRANGE OF WORKDAY}

BESTSCORES = 8 .. 10; {SUBRANGE OF PASSINGSCORE}

FIRSTHALF = 'A' .. 'L'; {SUBRANGE OF ALPHABET}

INTRODUCTION TO PASCAL 139

In these examples, when assigning types to variables, TYPE can be

legally replaced by VAR, as in the previous section.

The formal definition for this type is:

TYPE typename = lowerlimit. . upperlimit

VAR variable name(s) : lowerlimit. .upperlimit

The traditional Pascal diagram is shown in Figure 8.3.

Figure 8.3: Subrange Syntax

Restrictions

In the definition of an enumerated type or a subrange type, three

restrictions apply:

1. The lower limit must be less than the upper limit.

2. There must be at least one element.

3. There may not be a partial overlap between two subranges.

Operations on User-Defined Scalars

The six relational operators, as well as SUCC, PRED, and ORD, may all

be applied to user-defined scalar types. The other arithmetic and

Boolean operators may not be applied to these types. When using PRED
and SUCC, the ordinal value of the first constant in the definition of the

type is 0. There is clearly no predecessor to the first constant, and no

successor to the last one. The ordering of the data type is as shown in

the data definition.

SUMMARY

All user-defined Pascal types must be declared with a TYPE definition

or a VAR declaration before they are used. There are two fundamental

types: unstructured (scalar and subranges) and structured (non-scalar).

140 DATA TYPES

The unstructured types have been defined in this chapter: INTEGER,

REAL, BOOLEAN, CHAR, and user-defined.

The structured types such as arrays, sets, records, and files are built

from these unstructured types.

EXERCISES

8-1: Find the declarations that are illegal:

1 . CONST
2.

3.

4 TYPE

5.

6.

7.

8 VAR
9.

10.

11.

12.

13.

14.

15.

16.

17.

ONE = 1;

RANGE = 1..5;

DOT = V;

GAME = (POKER, BRIDGE, BLACKJACK, ROULETTE);

MUSIC = (PIANO, HARP, GUITAR);

POSINT = 0..1000;

WEEK = (MON,TUES,WED,THUR,FRI
/
SAT

#
SUN);

'A' : CHAR;

BRIGHT
:
(YELLOW,ORANGE);

LASVEGAS
:
(BLACKJACK, ROULETTE);

INSTRUMENT : PIANO.. GUITAR;

EARLYWEEK : MON.. WED;

DAY : 1 ..31

;

MONTH : 1..12;

WEEK : 1 . .52;

LARGE : 100.. MAXI NT;

INSTRUMENT : MUSIC;

8-2: Give five examples of an enumerated data type and five examples of a

subrange type.

8-3: Is the TYPE statement indispensable

?

8-4: What is the advantage of an enumerated and a subrange data type

?

CHAPTER J

ARRAYS

143

DATA STRUCTURES

^)esigning a computer program involves the solution of two prob-

lems:

1. Devising an efficient algorithm.

2. Designing or specifying appropriate data structures.

Converting the algorithm into a programming language is called coding.

Programming also involves the design of suitable data structures.

Examples of simple data structures are lists and tables. The ability to

use or create complex data structures is an important characteristic of

any programming language. Pascal offers excellent facilities for specify-

ing complex data structures. They are: arrays, records, files, sets, and

lists. Each will now be described in this and the following chapters.

Data structures are collections of data elements. These structures will

now be constructed from the primary data types defined in the previous

chapter. Then, more complex structures will be created by using these

primary data types as well as the new structured types as building

blocks. The structuring method of each new type will be studied.

THE ARRAY

The array type is the simplest structured type in Pascal. Let us first in-

troduce the concept of an array by looking at the example in Figure 9.1

.

'A' 'B' 'C 'D' 'E' 'F

1 2 3 4 5 6

'V' 'W' 'X' 'Y'
#

Z
;

22 23 24 25 26

Figure 9.7: A Simple Array

The array in Figure 9.1 has 26 components, the letters of the alphabet.

We will refer to the first element of the array POSITION as:

POSITION^
]

Its value is 'A'. 1 is called the index that refers to the first entry.

This simple example is called a simple array. It is a one-dimensional

structure. More complex examples will be presented later.

144 ARRAYS

In Pascal, the basic array type is a one-dimensional list of elements.

More complex array types will be constructed from this simple type.

Let us now introduce the formal type ARRAY. An ARRAY, like any

Pascal type, must be declared before it is used. The formal definition is

shown in Figure 9.2.

Here is a formal array type definition:

TYPE RANK = ARRAY[1..26] OF CHAR;

that defines the new type RANK. It is followed by:

VAR POSITION : RANK;

This definition could also be abbreviated as:

VAR POSITION = ARRAY[1..26] OF CHAR;

Remember from the previous chapter that [1..26] represents the

numbers 1,2, 3, 4,5, ...,25,26, and that CHAR is the type "character."

Here is another simple example, defining the array GRADE:

TYPE GRADE = ARRAY[1..10] OF INTEGER;

This definition is followed by a variable definition such as:

VAR SCORE : GRADE;

GRADE is a new (array) type. This new type contains 10 components.

They must all be of the same type. Their type here is INTEGER, and it is

called the base type.

The specification [1 ..10] is called the index type ,
and must be enclos-

ed in square brackets. The index is used to refer to a specific component

INTRODUCTION TO PASCAL 145

of an array. For example, the ten components of the array SCORE are:

SCORE[l
]

SCORE [2]

SCORE [3]

SCORE [4]

SCORE [5]

SCORE [6]

SCORE [7]

SCORE [8]

SCORE [9]

SCOREflO]

In order to give a value to SCORE[1], we may write:

SCORE[l
]
:= 124;

Remember from the definition of GRADE that each component of this

array must be of the type INTEGER.

Each component of an array may be used like any other variable of

the same type. For example, the following is legal:

SCORE[l
]
:= 124;

SCORE [2] := 100;

WRITELN(TOTAL SCORE 1 + 2 =', SCORE[l] + SCORE[2]);

Refer to the formal syntax in Figure 9.2. Note that an ARRAY may also

be specified as PACKED. This feature will be explained at the end of this

chapter.

Here is a second simple example:

TYPE MONTHNBR = ARRAY[MONTH] OF INTEGER;

VAR MM : MONTHNBR;

In this second example, we assume that MONTH has been defined as a

subrange data type as in the previous chapter; the values of MONTH are

JAN, FEB, up to DEC. Here, MM is a twelve-element integer array. Its

elements are referenced as MM[JAN], MM[FEB], etc. This array defini-

tion enables us to refer to the MM value as JAN, FEB, etc., instead of

having to use an integer between 1 and 12.

Note that in the formal definition of Figure 9.2, any unstructured

scalar or subrange type may be used for the index type except REAL.

146 ARRAYS

REFERENCING THE ELEMENTS OF AN ARRAY
4

Elements of an array are referenced by using the name of the array

variable, followed by a left bracket and a legal expression, and ter-

minated by a right bracket. Here are some examples:

SCORE[l
]

SCORE [9]

SCORE [2 * 5 - 2]

OPERATING ON AN ARRAY

Components of an array may be used in any manner that is legal for

their type. For example, assuming that the elements of SCORE are of

type INTEGER, the following statements are legal:

TOTAL3 := SCORE[l] + SCORE[2] + SCORE[3];

AVERAGE56 := (SCORE[5] + SCORE[6])/2;

SCORE [7] := SCORE[l];

In addition, two operators may be used on an array as a whole: assign-

ment (: =) and equality (=). For example, assuming that A and B are ar-

rays of the same size and type, we may write:

A := B;

It is important to remember that these two operations concern entire

arrays. It should also be noted that some Pascal compilers may not pro-

vide the equality operation.

MULTI-DIMENSIONAL ARRAYS

The examples we have given so far are lists or one-dimensional arrays.

However, more complex arrays may be defined in PASCAL: they are

called multi-dimensional arrays.

We will first introduce the concept of a two-dimensional array by

looking at an example, as shown in Figure 9.3. This example shows the

keys of a standard touch-tone telephone. This arrangement is called a

two-dimensional array or a matrix. The elements of this array are: 0, 1 , 2,

3, 4, 5, 6, 7, 8, 9, *, #. The array is organized in four rows and three

columns.

Let us call this array 'K'. The usual convention is to designate each ele-

ment of the array K by the notation K[I,J], where I is the row number and

J is the column number that the key belongs to. For example, the key

INTRODUCTION TO PASCAL 147

1 2 3

1 1 2 3

2 4 5 6

3 7 8 9

4 * 0 n

Figure 9.3: A Two-dimensional Array

belongs to row 4 in column 1 . In array notation, the value of K[4,1] is

This example illustrates a two-dimensional data structure. An array

can also have additional dimensions. An array with n dimensions is call-

ed an n-dimensional array.

Formally, looking at the syntax of an array in Figure 9.2, note that the

components of an array may be other arrays. A multi-dimensional array

can be defined in the following way:

VAR MULTIDIM : ARRAY[N1 ..N2] OF ARRAY[N3..N4] OF type;

As another example, a 4-by-4 keyboard can be defined as a 4-by-4 array

in the following manner:

TYPE KEYBOARD = ARRAY[1 4] OF ARRAY[1..4] OF KEY;

VAR POSITION : KEYBOARD;

or like this:

TYPE ROW = ARRAY[1 4] OF KEY;

KEYBOARD = ARRAY[1..4] OF ROW;

which may also be abbreviated as:

TYPE KEYBOARD = ARRAY[1..4, 1..4] OF KEY;

This abbreviated notation is convenient, as it resembles the usual

mathematical convention.

148 ARRAYS

Using this abbreviation, the definition of MULTIDIM above may be

written as:

VAR MULTIDIM : ARRAY[N1 ..N2, N3..N4) OF type;

An element of MULTIDIM is referred to as:

MULTIDIM[I][J]

or, using the abbreviated notation, as:

MULTIDIM[I, J]

For example, assuming the statement:

VAR LAYOUT : KEYBOARD;

the key on the second row and the third column of a KEYBOARD matrix

is referred to as:

LAYOUT[2,3]

or equivalently as:

LAYOUT[2][3]

It is, of course, possible to use any valid operators on elements of

multi-dimensional arrays. For example, assuming that A is a two-

dimensional array of reals, and that B is a mono-dimensional array, we
can write:

B[l] := A[I,J] H- 2.1;

or even:

M := N[l];

As a result of this last statement, M will become equal to the Ith row of N
where N is a two-dimensional array. This statement is valid only if the

row dimension of N is equal to the dimension of M.

We can also write:

A[2,3] := A[1 ,2] 4- A[2,3];

INTRODUCTION TO PASCAL 149

Arrays are not limited to two dimensions, and more dimensions may be

used, following the same rules for declaration and use.

ARRAY OF CHARACTERS

An array of characters may be used to store a string
,
i.e., a sequence

of characters. However, any array of characters must have a finite

dimension. Such an array requires that the maximum length of the string

be known in advance. For example, assume that we are designing a

mailing list program. Twenty characters may be used to represent the

name, and thirty characters for each of the following two lines (com-

pany name, or profession or address), etc. The complete format for the

proposed mailing list program is shown in Figure 9.4.

NAME

ADDRESS 1

ADDRESS2

CITY

STATE

1 20

Figure 9.4: A Mailing List Format

When an array of characters is used, the individual components of

the array are characters. Whenever the relational operators >,<,< =

and >= are used, the internal code used to represent the character set

determines the ordering of the characters.

When comparing strings, the usual 'lexicographic" (alphabetical)

ordering rules are used so that: "Roger" is greater than "Peter."

Only strings of equal length may be compared. Whenever a string

150 ARRAYS

contains characters other than letters of the alphabet and digits, care

must be exercised when comparing them: remember that the result of

the comparison will depend on the internal code used to represent

those characters.

CASE STUDY 1: MATRIX ADDITION

Theory

A matrix is generally defined as a two-dimensional array, although

more dimensions can be used. A telephone keyboard is a visual exam-

ple of a matrix.

Matrix addition is performed by adding the corresponding elements of

two matrices of identical dimensions. For example:

"12 3“ '0
1
2“ "1 3 5“

0 1 2 + 3 4 5 = 3 5 7

.00 1. J 00. _1 0 1 _

A B R

If R is the result, and A and B are the two matrices to be added, the

equation is:

R[I,J] = A[l, J] + B[I,J] for each valid pair [l,J]

Figure 9.5 presents a Pascal program that prints the sum of several

matrices.

Three constants are used in the program in Figure 9.5:

ROWSIZE and COLSIZE specify the dimensions of each matrix.

ADDNUM specifies the number of matrices to be added together.

ADDNUM is set to 2 in this example.

In this program, the first matrix, MATX, is read at the keyboard. Then,

each matrix that is to be added to the first matrix is typed element by ele-

ment into HOLDIN, and then immediately added to MATX.
The row and column positions of the element being entered are in

ROWIN and COLIN. ADDIN is a dummy variable used in the addition

loop. The corresponding program declarations are:

PROGRAM ADDMATX (INPUT,OUTPUT);

CONST ROWSIZE = 5;

COLSIZE = 5;

ADDNUM = 2;

VAR MATX : ARRAY[1 ..ROWSIZE, 1 ..COLSIZE]OF INTEGER;

ADDIN, HOLDIN, ROWIN, COLIN: INTEGER;

INTRODUCTION TO PASCAL 151

PROGRAM ADDMATX (INPUT, OUTPUT);

CONST ROWSIZE = 5; (* ROW SIZE OF MATRIX *)

COLSIZE = 5; (* COLUMN SIZE OF MATRIX *)

ADDNUM = 2;(* NUMBER OF MATRICES TO BE ADDED *)

VAR MATX: (* ADDEND MATRIX *)

ARRAY [1.. ROWSIZE, 1.. COLSIZE] OF INTEGER;

ADDIN, (* SUMMATION INDEX *)

HOLDIN, (* HOLDS MATRIX ELEMENT AS IT IS INPUT *)

ROWIN, (* ROW INDEX *)

COLIN: (* COLUMN INDEX *)

INTEGER;

BEGIN (* ADDMATX *)

(* INPUT FIRST MATRIX *)

FOR ROWIN := 1 TO ROWSIZE DO
FOR COLIN := 1 TO COLSIZE DO
READ(MATX[ROWIN, COLIN]);

(* THIS LOOP IS ADDED SO THAT THE NUMBER OF MATRICES TO BE ADDED *)

(* CAN BE CHANGED BY SIMPLY CHANGING THE CONSTANT ADDNUM. *)

FOR ADDIN := 1 TO (ADDNUM -
1)
DO

FOR ROWIN := 1 TO ROWSIZE DO
FOR COLIN := 1 TO COLSIZE DO

BEGIN (* READ, ADD *)

READ(HOLDIN);

MATX[ROWIN, COLIN] := MATX[ROWIN, COLIN] + HOLDIN

END; (* READ, ADD *)

(* PRINT MATRIX *)

FOR ROWIN := 1 TO ROWSIZE DO
BEGIN (* PRINT ONE ROW *)

FOR COLIN := 1 TO COLSIZE DO
WRITE(MATX[ROWIN,COLIN] :3);

WRITELN

END (* PRINT ONE ROW *)

END. (* ADDMATX *)

Figure 9.5: MATRIX ADDITION Program

152 ARRAYS

The first matrix is read:

BEGIN

FOR ROWIN := 1 TO ROWSIZE DO
FOR COLIN := 1 TO COLSIZE DO

READ (MATX[ROWIN, COLIN]);

Note that the elements are read a row at a time:

MATX[1 ,
1]

AAATX[1 ,2] MATX[1,3] . . .

until all rows have been read.

The next matrix is read in the same way:

FOR ADDIN := 1 TO (ADDNUM -
1)
DO

FOR ROWIN := 1 TO ROWSIZE DO
FOR COLIN := TO COLSIZE DO

BEGIN

READ (HOLDIN);

and the current element is immediately added to the proper element of

MATX:

MATX[ROWIN, COLIN] := MATX[ROWIN,COLIN] 4- HOLDIN

END;

The result is then printed:

FOR ROWIN := 1 TO ROWSIZE DO
BEGIN

FOR COLIN := 1 TO COLSIZE DO
WRITE(MATX[ROWIN,COLIN]:3);

WRITELN

END
END

INTRODUCTION TO PASCAL 153

A typical input is shown below:

11111
2 2 2 2 2

3 3 3 3 3

4 4 4 4 4

5 5 5 5 5

5 5 5 5 5

4 4 4 4 4

3 3 3 3 3

2 2 2 2 2

11111
Followed by a typical output:

6 6 6 6 6

6 6 6 6 6

6 6 6 6 6

6 6 6 6 6

6 6 6 6 6

Matrix Addition Summary

This program demonstrates the input and output of array elements in

"row-major order" (row by row), along with the use of multiple indices

and nested DO loops.

CASE STUDY 2: QUICKSORT

Sorting

A frequent task that arises with arrays is to sort elements in ascending

or descending order. The task seems simple, but the solution is not. A
simple algorithm can be designed that will sort elements of an array.

However, such an algorithm is usually very inefficient when sorting a

large array: it may require minutes or even hours. The real problem lies

in designing an efficient algorithm that will sort a large array within a

short period of time.

This latter problem is complex, and many solutions have been devised.

For a discussion of the merits of various techniques, see reference [18].

One of the simplest sorting techniques is the "bubble sort" technique

which can be implemented using a short program. This technique re-

quires approximately Vi N 2 operations, where N is the number of items

to be sorted.

154 ARRAYS

The "Quicksort" technique is a fast algorithm that divides the search

interval into sections to achieve higher speed, and requires only N x
Log2 N operations to sort N items. For example, if N = 1000 items,

Quicksort is about 50 times faster than a bubble sort or similar

algorithm. The speed of Quicksort is even more noticeable as N
becomes larger.

Quicksort Algorithm

The Quicksort algorithm will be described here, along with its Pascal

implementation. The implementation of Quicksort uses a bubble sort

procedure, so that both sorting techniques will have been presented.

The bubble sort algorithm will be described withi'n the context of the

bubble sort procedure, when we describe the Pascal implementation.

Quicksort operates as follows:

1. Quicksort selects an approximate median value for the elements

to be sorted.

2. The array is scanned, and elements are exchanged until the

resulting array contains two sections: elements greater than the

median element, and elements less than or equal to the median

element.

3. The two steps above are repeated on each section that has more

than P elements (P will be equal to 6 in our program).

4. Once the sections have become small enough, each section is

then sorted with a bubble sort (an efficient algorithm for a small

number of elements). The result is a sorted array.

Quicksort Example

An example of Quicksort is shown in Figure 9.6. The eleven array

elements are shown on the first horizontal line. They include:

91, 4, 27, 63, 32, 55, 87, 43, 16, 74, 9

Let us look at the steps listed in Figure 9.6 in detail.

Step 1
— A median value is selected by comparing the first, middle

and last elements, i.e.; the elements in positions 0, 5 and 10. Their

values are:

91 (position 0)

55 (position 5)

9 (position 10)

The median value is 55.

Step 2 — The median value is placed in position 0 of the array by ex-

changing it with the element that is there. This is illustrated on line 2 of

Figure 9.6, where the values 55 and 91 have been exchanged.

INTRODUCTION TO PASCAL 155

Step 3 — The elements of the array are examined from right to left and

compared to the median until a value is found that is less than the me-

dian. This value is then exchanged with the median. In our example, the

value of the last element (position 10) is compared to the value of the

median (now in position 0). These values are:

9 (position 10) : element examined

55 (position 0) : median

9 is less than the median, and the exchange is performed, as shown in

line 3 of Figure 9.6.

STEP# 01 23456789 10

Figure 9.6: Quicksort Example

156 ARRAYS

Step 4 — Location 0 now contains a value smaller than the median.

Location 10 contains the median. In this step, the array is scanned from

left to right until a value larger than the median is found. This value is ex-

changed with the median.

In our example the situation is the following:

Position 10 : 55 (median)

Position 0 : 9 ("small element")

Position 1 : 4 : less than median

Position 2:2

7

: less than median

Position 3 : 63 : greater than median.

63 is, therefore, exchanged with the median, resulting in the situation

shown in line 4 of Figure 9.6.

Steps 5 to 8 — The array is scanned alternately in each direction until it

contains two sections, as shown in line 8 of Figure 9.6. The leftmost sec-

tion of the array, containing elements in positions 0 to 5, contains

elements with values that are less than the median. The median is in

position 6.

The rightmost section of the array, containing elements in positions 7

to 10, contains values that are greater than the median.

The rightmost section (called section 1 in the illustration) contains on-

ly four elements. The leftmost section contains six elements.

Steps 9 — 10 — The Quicksort algorithm is applied to the leftmost sec-

tion, resulting in the situation shown in line 10 of Figure 9.6. At this

point, the two new resulting sections (called sections 2 and 3 in the il-

lustration) contain three elements and two elements, respectively.

Step 11 — A bubble sort is now applied to each of the three sections,

resulting in a completely sorted array, as shown in line 1 1 of Figure 9.6.

Quicksort Program

The Quicksort program for this algorithm is shown in Figure 9.7.

A sample run of the program is shown in Figure 9.8. Twelve values are

entered at the keyboard, and the result of the Quicksort is typed under-

neath.

The program in Figure 9.7 uses one array and six procedures:

SWAP exchanges two elements

GETARRAY reads the elements of the array to be sorted, as

typed at the keyboard

BSORT performs a bubble sort

FINDMEDIAN finds a median value

SORTSECTION quicksorts an array section.

INTRODUCTION TO PASCAL 157

PROGRAM QSORT(INPUT,OUTPUT);

(* PROGRAM TO SORT A NUMERIC ARRAY USING 'QUICKSORT' ALGORITHM *)

(* ADAPTED FROM VOLUME 3, 'ART OF COMPUTER PROGRAMMING' BY KNUTH *)

(* GLOBAL IDENTIFIERS *)

CONST MAX =100; (* MAXIMUM ARRAY SIZE *)

TYPE STANDARDARRAY = ARRAY[0..MAX] OF REAL;

VAR NUMBERS: STANDARDARRAY; (* NUMERIC ARRAY *)

LAST: INTEGER;

PROCEDURE SWAP(VAR A,B: REAL);

VAR T: REAL;

BEGIN

T := A;

A := B;

B := T

END;

PROCEDURE GETARRAY(VAR TOP: INTEGER); (* FILL ARRAY FROM INPUT *)

VAR INDEX: INTEGER;

TEMP : REAL;

BEGIN (* GETARRAY *)

INDEX := 0;

WHILE NOT EOF(INPUT) DO
BEGIN

WRITE('INPUT ARRAYS INDEX:4/) :');

READLN(TEMP);

(* VALIDATION TEST WOULD GO HERE *)

NUMBERS[INDEX] := TEMP;

INDEX := SUCC(INDEX)

END;

WRITELN;

WRITELN(INDEX— 1 :4/ VALUES ENTERED');

TOP := INDEX -2
END; (* GETARRAY *)

PROCEDURE PRINTARRAY(TOP: INTEGER); (* OUTPUT ARRAY *)

VAR INDEX: INTEGER;

BEGIN (* PRINTARRAY *)

Figure 9. 7: QUICKSORT Program

158 ARRAYS

FOR INDEX :
= 0 TO TOP DO

BEGIN

IF INDEX/4 = TRUNC(INDEX/4) THEN WRITELN;

WRITE(NUMBERS[INDEX]:8:2)

END
END;

PROCEDURE BSORT(START,TOP : INTEGER; VAR ARRY: STANDARDARRAY);

(* BUBBLE SORT PROCEDURE, SORTS ARRAY FROM START TO TOP, INCLUSIVE *)

VAR INDEX: INTEGER;

SWITCHED: BOOLEAN;

BEGIN (* BSORT *)

REPEAT

SWITCHED :
= FALSE;

FOR INDEX := START TO TOP-1 DO
BEGIN

IF ARRY[INDEX] > ARRY[INDEX+
1]
THEN

BEGIN

SWAP(ARRY[INDEX],ARRY[INDEX +
1]);

SWITCHED := TRUE

END
END;

UNTIL SWITCHED = FALSE

END;

PROCEDURE FINDMEDIAN(START,TOP: INTEGER; VAR ARRY: STANDARDARRAY);

(* PROCEDURE TO FIND A GOOD MEDIAN VALUE IN ARRAY AND PLACE IT *)

(* AT BEGINNING OF SECTION TO BE SORTED *)

VAR MIDDLE: INTEGER;

SORTED: STANDARDARRAY;

BEGIN (* FINDMEDIAN *)

MIDDLE : = (START+TOP) DIV 2;

SORTED[l
]
:= ARRY [START];

SORTED[2] := ARRYfTOP];

SORTED[3] := ARRY[MIDDLE];

BSORT(l ,3, SORTED);

IF SORTED[8] = ARRAY[MIDDLE] THEN

SWAP(ARRY[START],ARRY[MIDDLE])

Figure 9.7: QUICKSORT Program (continued)

INTRODUCTION TO PASCAL 159

ELSE IF SORTED[2] = ARRY[TOP] THEN

SWAP(ARRY[START],ARRY[TOP])

END; (* FINDMEDIAN *)

PROCEDURE SORTSECTION (START, TOP: INTEGER);

(* PROCEDURE TO SORT A SECTION OF THE MAIN ARRAY, AND *)

(* THEN DIVIDE IT INTO TWO PARTITIONS TO BE SORTED *)

VAR SWAPUP: BOOLEAN;

S,E,M: INTEGER;

BEGIN (* SORTSECTION *)

IF TOP-START < 6 THEN (* SORT SMALL SECTIONS WITH BSORT *)

BSORT(START, TOP, NUMBERS)

ELSE

BEGIN

FINDMEDIAN(START, TOP, NUMBERS);

SWAPUP := TRUE;

(* START SCANNING FROM ARRAY TOP *)

S := START; (* LOWER COMPARISON LIMIT *)

E := TOP; (* UPPER COMPARISON LIMIT *)

M := START; (* LOCATION OF COMPARISON VALUE *)

WHILE E > S DO
BEGIN

IF SWAPUP = TRUE THEN
(* SCAN DOWNWARD FROM PARTITION TOP *)

(* AND EXCHANGE IF SMALLER THAN MEDIAN *)

BEGIN

WHILE (NUMBERS[E] >= NUMBERS[M])AND(E>M) DO
E := E-l

;

IF E > M THEN

BEGIN

SWAP(NUMBERS[E], NUMBERS [M]);

M := E

END;

SWAPUP := FALSE

END

Figure 9.7: QUICKSORT Program (continued)

160 ARRAYS

ELSE

(* SCAN UPWARD FROM PARTITION START *)

(* AND EXCHANGE IF LARGER THAN MEDIAN *)

BEGIN

WHILE (NUMBERS[S] <= NUMBERS[M])AND(S<M) DO
S := S+l;

IF S < M THEN

BEGIN

SWAP(NUMBERS[S],NUMBERS[M]);

M := S

END;

SWAPUP := TRUE

END

END;

SORTSECTION (START,M — 1);
(* SORT LOWER HALF OF PARTITION *)

SORTSECTION(M+l,TOP) (* SORT UPPER HALF OF PARTITION *)

END

END; (* SORTSECTION *)

BEGIN (* QSORT - AAAIN PROGRAM *)

GETARRAY (LAST);

SORTSCTION(0,LAST);

PRINTARRAY(LAST)

END. (* QSORT *)

Figure 9.7 QUICKSORT Program (continued)

The program body includes only three executable statements and is self-

explanatory:

BEGIN

GETARRAY (LAST);

SORTSECTION (0,LAST);

PRINTARRAY (LAST)

END.

Each procedure will be explained in turn.

Program Variables

This program declares one constant, MAX (the maximum array size)

INTRODUCTION TO PASCAL 161

INPUT ARRAY(0) 12.5

INPUT ARRAY(1) 22

INPUT ARRAY

(

2) 3.3

INPUT ARRAY(3) 92.67

INPUT ARRAY(4) 400

INPUT ARRAY(5) 606.1

INPUT ARRAY

(

6) -4

INPUT ARRAYf 7) 56

INPUT ARRAY(8) 44

INPUT ARRAY(9) 0

INPUT ARRAY(10) 22

INPUT ARRAY(11) 78

INPUT ARRAY(12)

12 VALUES ENTERED

-4.00 0.00 3.30 12.50

22.00 22.00 44.00 56.00

78.00 92.67 400.00 606.10

Figure 9.8: Sample Quicksort Run

and two variables: NUMBERS (the array) and LAST (the position of the

last element in the array):

PROGRAM QSORT(INPUT, OUTPUT);

CONST MAX = 100;

TYPE STANDARDARRAY = ARRAY[0..MAX] OF REAL;

VAR NUMBERS: STANDARDARRAY;

LAST: INTEGER;

Procedure SWAP

The procedure SWAP exchanges the values of A and B, using a tem-

porary variable T. The need for T has already been indicated earlier in

this chapter.

PROCEDURE SWAP(VAR A,B: REAL);

VAR T: REAL;

BEGIN

T :
= A;

A :
= B;

B := T

END;

162 ARRAYS

A and B are variable parameters. T is a local variable. A, B and T are

local identifiers.

Procedure GETARRAY

The procedure GETARRAY reads values typed at the keyboard until

an EOF character is typed. These values are placed in the global array

called NUMBERS. The position of the last element is returned via the

parameter TOP.

This procedure uses two local variables: INDEX and TEMP. INDEX is

the position of the current element within the array, and TEMP stores

the last value typed:

PROCEDURE GETARRAYfVAR TOP: INTEGER);

VAR INDEX : INTEGER;

TEMP : REAL;

BEGIN (* GETARRAY *)

INDEX := 0;

Values are read with a WHILE loop until an EOF is found:

WHILE NOT EOF(INPUT) DO
BEGIN

WRITE('INPUT ARRAYS INDEX:4/) :');

READLN(TEMP);

NUMBERS[INDEX] :
= TEMP;

INDEX := SUCC(INDEX)

END;

WRITELN;

WRITELN(INDEX — 1 : 4/ VALUES ENTERED');

TOP := INDEX-2

END; (* GETARRAY *)

Note that this procedure (like others in this program) modifies the value

of the global variable NUMBERS. This is a (voluntary) side-effect.

Procedure PRINTARRAY

The procedure PRINTARRAY prints the array NUMBERS up to posi-

tion TOP in a four-column format. This procedure uses the local

variable INDEX. Since INDEX is local to PRINTARRAY, this variable has

no relationship with the INDEX used in the previous GETARRAY pro-

cedure. INDEX is used again simply because it is convenient to use the

name INDEX and legal to do so. The values are printed with a FOR. ..DO

INTRODUCTION TO PASCAL 163

statement:

PROCEDURE PRINTARRAY(TOP: INTEGER);

VAR INDEX: INTEGER; (* THIS IS ANOTHER LOCAL VARIABLE *)

BEGIN

FOR INDEX : = 0 TO TOP DO
BEGIN

IF INDEX/4 = TRUNC(INDEX/4) THEN WRITELN;

WRITE(NUMBERS[INDEX]:8:2)

END

END;

Note the '"programming trick" used to print in a 4-column format:

IF INDEX/4 = TRUNC(INDEX/4) THEN WRITELN;

The output is moved to the next line after every fourth number output,

since the equality specified in the IF-clause is TRUE only when INDEX is

a multiple of 4.

Procedure BSORT

Procedure BSORT is a bubble sort procedure. This procedure accepts

three parameters: the array ARRY to be sorted, and the beginning and

end positions: START and TOP.

The bubble sort algorithm operates by letting the "lightest" element

"bubble up" to the top, just like air bubbles in a tall container of liquid.

This algorithm operates as follows:

Step 1
— The first element is compared to the second element. If the

second element is smaller, the two are exchanged.

Step 2 —1 The second and third elements are compared. If the third

element is smaller than the second, the two are exchanged.

Step 3 — The process continues with the third and fourth element,

etc., until the end of the array is reached.

Step 4 — If no exchange has occurred, the algorithm terminates. If any

exchange has occurred during this "pass," the process is repeated.

Eventually, all elements are ordered, no exchange occurs, and the

algorithm terminates. An example is shown in Figure 9.9.

The BSORT procedure uses two local variables:

— INDEX points to the current array element. (INDEX + 1 will point

to the following one.)

— SWITCHED indicates whether or not an exchange has taken

place during the current pass.

164 ARRAYS

PASS 1
:

(START)

4

(FINISH)

Q

9-^t— ^ 3-*— 3
-,X

3 3-^9^ 6
—

6 6 6^^ 9

—

PASS 2: (START) (FINISH)

-w 1 -1

3^- 3 3

6 6 6^

—

9 9 9^

—

No change. Sort complete.

Figure 9.9: A Bubble Sort Example

SWITCHED is set to FALSE at the beginning of each pass, and tested at

the end of each pass. If SWITCHED is still FALSE at the end of the pass,

the sort is complete. Otherwise, the pass is repeated.

A REPEAT. ..UNTIL loop is used since the value of SWITCHED must be

tested at the end of the loop.

This procedure uses the SWAP procedure (described in a previous

section) to exchange the elements

ARRY[INDEX]

and ARRY[INDEX + 1]

whenever the second element is less than the first:

PROCEDURE BSORT(START,TOP: INTEGER; VAR ARRY: STANDARDARRAY);

VAR INDEX: INTEGER;

SWITCHED: BOOLEAN;

BEGIN

REPEAT

SWITCHED : = FALSE;

FOR INDEX := START TO TOP -1 DO

NTRODUCTION TO PASCAL 165

BEGIN

IF ARRY[INDEX] > ARRY[INDEX + 1] THEN

BEGIN

SWAP(ARRY[INDEX]
/
ARRY[INDEX + 1]);

SWITCHED := TRUE

END

END;

UNTIL SWITCHED = FALSE

END;

Notice the two nested loops used in this procedure. The outer loop is

created by the REPEAT.. .UNTIL and causes successive passes. The inner

loop is created by the FOR. ..DO and compares the values of all suc-

cessive element pairs in ARRY in sequence. A SWAP occurs whenever

the IF is satisfied and the "flag variable" SWITCHED is turned on ac-

cordingly to memorize the event.

Procedure FINDMEDIAN

The procedure FINDMEDIAN finds an approximation of the median

value in a specified section of the array and places it at the beginning of

that section. The procedure uses three parameters:

— ARRY for the array to be examined, and,

— START, TOP to specify the positions of the first and last elements

to be examined.

The procedure FINDMEDIAN uses two local variables:

— MIDDLE points to the middle element.

— SORTED is used to store the values of the first array element, mid-

dle element, and last element.

In the case where the array section has an odd number of elements

(such as 5), the middle element is the element residing in position 2 (the

third position, starting at 0).

PROCEDURE FINDMEDIAN(START,TOP: INTEGER; VAR ARRY: STANDARDARRAY);

VAR MIDDLE: INTEGER;

SORTED: STANDARDARRAY;

BEGIN

MIDDLE := (START + TOP) DIV 2;

Note the use of the integer divide DIV in order to obtain an integer

result (the position of the "middle" element).

166 ARRAYS

Once the value of the middle element has been read, this value is

then compared to the values of the first arid last element. Three

possibilities can exist:

1. The value of the middle element is the middle value, i.e., it is

between the other two values.

2. The first element contains the middle value.

3. The last element contains the middle value.

A test is, therefore, performed to determine which element of the array,

if any, should be exchanged with the first element. This test is ac-

complished by writing the values of the three elements into the array

SORTED:

SORTED[l
]
:= ARRY [START];

SORTED[2] : = ARRYfTOP];

SORTED[3] := ARRY[MIDDLE];

Then these three values are sorted with a bubble sort:

BSORTfl ,3, SORTED);

The value of the 'True middle" is contained in SORTED[2]. This value is,

therefore, compared to the middle and the last elements of the array to

determine which values to exchange:

IF SORTED[2] = ARRY[AAIDDLE] THEN

SWAP(ARRY[START],ARRY[AAIDDLE])

ELSE IF SORTED[2] = ARRYfTOP] THEN

SWAP(ARRY[START],ARRY[TOP])

END;

Procedure SORTSECTION

The procedure SORTSECTION sorts the elements of the array into two

groups:

1. Less than the middle value

2. Greater than the middle value.

The corresponding flowchart is shown in Figure 9.10. In this procedure,

four local variables are used:

— SWAPUP is used to remember which direction the array section

is to be scanned.

— S, E, and M are used to represent the positions of the start

element, the end element, and the median value, respectively.

INTRODUCTION TO PASCAL 167

168 ARRAYS

The procedure SORTSECTION sorts sections of the main array as long

as there are 6 elements (or more) in a section. When groups have less

than 6 elements, they are sorted with a bubble sort.

The first scan starts at the 'top' of the array section, i.e., with the last ele-

ment (at position E). SWAPUP is initially set to TRUE:

PROCEDURE SORTSECTION(START, TOP: INTEGER);

VAR SWAPUP: BOOLEAN;

S,E,M : INTEGER;

BEGIN

IF TOP- START < 6 THEN BSORT(START, TOP, NUMBERS)

ELSE

BEGIN

FINDMEDIAN(START, TOP, NUMBERS);

SWAPUP := TRUE;

S : = START;

E : = TOP;

M : = START;

E initially points to the last element. The value of that element is com-

pared to the value of the middle element. If the value of the last element

is greater, that element does not need to be moved (as long as E > M)

and the pointer E is decremented:

WHILE E > S DO
BEGIN

IF SWAPUP = TRUE THEN

BEGIN

WHILE (NUMBERS[E] >= NUMBERS[M]) AND (E > M)

DO E :
= E - 1;

This WHILE loop is repeated until E becomes equal to M. However, if

the value of the last element is less than the value of the middle element,

a swap must be performed (as long as E > M):

IF E > M THEN

BEGIN

SWAP(NUMBERS[E],NUMBERS[M]);

M := E

END;

SWAPUP := FALSE

END

INTRODUCTION TO PASCAL 169

The swap is recorded by setting SWAPUP to FALSE. With SWAPUP set

to FALSE, the array will next be scanned from the bottom up, as long as

S < M, or until a swap is made.

The ELSE clause will be executed next. This alternate pass operates

essentially in reverse of the earlier IF clause.

ELSE (* UPWARD SCAN *)

BEGIN

WHILE (NUMBERS[S] <= NUMBERS[M])AND

(S < M) DO S := S + 1;

IF S < M THEN

BEGIN

SWAP(NUMBERS[S],NUMBERS[M]);

M : = S

END;

SWAPUP := TRUE

END

END;

Once the two sections have been created, the process is repeated on

each section:

SORTSECTION(START,AA— 1);

SORTSECTION(AA+ 1 ,TOP)

END
END;

Quicksort Summary

This program illustrates many practical programming techniques: use

of nested loops, global and local variables, decision flags, use of pro-

cedures and parameters, and use of arrays. The Quicksort program

should be studied carefully.

PACKED ARRAYS

Often, one byte (8 binary bits) is used internally to represent a

character. Most microcomputers store all data in bytes, and are well

suited to the representation of characters.

However, Pascal was originally implemented on large computers that

use a smaller number of bits per character (6), and a much larger

number of bits per data element (32 or 60 bits, for example). In such a

case, storing a 6-bit character in a 60-bit word wastes a substantial

amount of memory space.

170 ARRAYS

To remedy this problem, the PACKED forrp of type is provided in

Pascal. The effect of this statement is to compact an array so that each

element occupies a minimum amount of. storage. For example, a

character would occupy only one byte. The formal definition is:

PACKED ARRAY[TYPE1] OF TYPE2;

The usual operations are available on the components of a packed ar-

ray:

:=, =,<>,<,>, < = , > =

For example, the following is legal:

VAR TITLE : PACKED ARRAY[1..16] OF CHAR;

HEADING : PACKED ARRAY[1..5] OF CHAR;

followed in the program by:

TITLE := TABLE OF SQUARES';

HEADING := '10-50';

In this example, the string variables TITLE and HEADING are assigned

the value of string constants. This requires that the index type for the

string variable be [1..N], where N is greater than or equal to the length

of the string constant.

However, using a packed array also generally results in slower access

to individual array elements. As a result, two built-in procedures are

provided: PACK() and UNPACK() that perform the obvious function.

For example, assume:

VAR A : ARRAY[M..N] OF X;

B : PACKED ARRAY[U..V] OF X;

with N-M >= V-U. The unpacking procedure is performed by

executing:

FOR I := U TO V DO A[l - U + J] := B[l];

where J is the starting position in A into which the unpacked array

should be copied. This is accomplished automatically by the built-in

procedure:

UNPACK (B, A, J);

INTRODUCTION TO PASCAL 171

Conversely, the procedure:

PACK (A,J,B);

automatically performs:

FOR I :
= U TO V DO B[l] : = A[l - U + J];

where J is the position in A where the string that is to be packed into B

begins.

In summary, packed arrays normally result in a savings of memory
space. However, for computers using 16 bit words or more that do not

have built-in byte access, the use of packed arrays results in a loss of ex-

ecution speed if characters have to be accessed frequently: several

characters are packed in a single word so that the retrieval of any

specific character takes a longer time. In order to improve the execution

speed, it may be advantageous to use the UNPACK procedure before

performing complex or multiple selections on the elements of an array.

After performing these selections, the array can be repacked again with

the PACK procedure.

TABLES OF FUNCTION VALUES

It is often convenient to store a set of values for a function in a table. If

the value of the function cannot be computed exactly, or if the com-

putation requires a long time, it is often advantageous to look up a table

value rather than to compute it. If precision is required, table values can

be used together with an interpolation method between two successive

entries in the table. This technique can be implemented in Pascal by us-

ing arrays to store the values. The following is an example of a

straightforward application of an array where the function Y = F(X) is

stored as:

VAR F : ARRAY[X] OF Y;

For example, the TRANSCEND function could be defined as:

VAR TRANSCEND : ARRAY[O..N] OF 0.. MAXINT;

where we assume that 0 is the value of TRANSCEND[0] and N is the

largest integer such that TRANSCEND[N] <= MAXINT.

Of course, the table must be filled in order to be usable. It can be fill-

ed by explicitly assigning the values of the table with constants, or by

computing the values of all the elements of the table once. This way, a

complex computation is executed only once, resulting in improved pro-

gram efficiency.

172 ARRAYS

Using this array technique, any reasonable function may be im-

plemented, i.e., any reasonable correspondence may be applied

between the array value and its index. For example, the usual numbers

can be spelled out as 'ONE', 'TWO', etc. An array function will establish

a correspondence between '5' and 'FIVE', '6' and 'SIX', etc. However,

note that it is unfortunately not possible to go back from 'FIVE' to '5',

since a string may not be directly used as an index.

UCSD ARRAYS

UCSD Pascal arrays differ somewhat from Standard Pascal arrays.

UCSD Pascal also incorporates several extensions to the array handling

facilities of Standard Pascal.

The main differences between UCSD and Standard array facilities are:

— Two comparisons are allowed between compatible types: =
,
and

<> .

— All arrays are packed and unpacked automatically when
operating on a PACKED ARRAY.

The main extensions to Standard Pascal are the additional facilities

provided for STRINGS and character arrays. The additional reserved

functions and procedures provided by UCSD Pascal are called intrin-

sics.

UCSD Packed Arrays

PACKED ARRAYS may have any type, such as CHAR, INTEGER or

BOOLEAN. However, packing this type of array has an effect only if the

array elements may be represented with 8 bits or less. Thus, packing

large integers (which require multiple bytes) has no effect.

When the PACKED option is used, the minimum number of bits re-

quired to represent the information is used.

For example:

PACKED ARRAY[0 1] OF 0 .7,

packs each integer into three bits, since only three bits are required to

represent the integers 0 to 7.

Similarly, a BOOLEAN array, when packed, allocates a single bit to

each element: 0 and 1 are used to represent FALSE and TRUE.

Arrays of Arrays

The PACKED option is turned on whenever PACKED ARRAY is en-

countered. It is turned off whenever ARRAY (by itself) is encountered.

NTRODUCTION TO PASCAL 173

Thus the result of:

PACKED ARRAY[1 .. 10] OF ARRAY[1..15] OF CHAR;

is an UNPACKED array. The PACKED option has been turned off by the

second occurrence of ARRAY.

In order to obtain a packed array, one of three declarations may be

used:

ARRAY[1..10] OF PACKED ARRAY[1..15] OF CHAR;

PACKED ARRAYfl .. 10] OF PACKED ARRAY[1..15] OF CHAR;

PACKED ARRAY[1..10,1..15] OF CHAR;

UCSD STRING TYPE

UCSD Pascal also defines the predeclared type STRING. A STRING is

stored as a PACKED ARRAY OF CHARs and has a 'LENGTH'. The UCSD
function LENGTH returns the length of the string.

Unless declared otherwise, the default value of LENGTH is 80.

The length can be modified by indicating the desired length in square

brackets in the string definition:

CITY : STRING[12];

STATE : STRING[2];

The maximum length of a STRING is limited to 255 characters.

A string value may be assigned or modified with an assignment, a

READ, or the STRING intrinsics described in this chapter.

For example:

STATE :
= 'CA';

READLN(CITY); (* READS UP TO EOLN OR EOF *)

When using READ or READLN on a STRING, all characters are read

up to and excluding the end of line character (or end-of- file). Thus, only

one STRING may be read at a time.

An attempt to read:

READLN(STRING1 ,STRING2,STRING3)

will result in STRING2 and STRING3 being empty strings.

The first character of a STRING is designated as 1 . Using the above ex-

ample:

STATE[1] contains 'C

STATE[2] contains 'A'

174 ARRAYS

STRING variables may be compared to any other strings, regardless of

length.

The result of the comparison is based on the lexicographical ordering.

This is an important feature when processing text or sorting.

For example:

'ABC is less than 'ABCDEF'

and:

'ABD' is greater than 'ABC'

String variables are commonly used to read a file name typed at the

keyboard:

VAR FILENAME : STRING;

F : FILE;

BEGIN

WRITEf'SPECIFY FILENAME...');

READLN(FILENAME);

RESET(F, FILENAME);

A Restriction

In the current implementation of UCSD Pascal (version II. 0), a string

constant may not be assigned to an ARRAY OF CHAR.

UCSD Operations on Character Arrays

UCSD Pascal provides four special operators specifically designed to

facilitate processing a text array. However, these operations require an

exact understanding of the operation performed and of the internal

representation.

In the case of an 8-bit computer, there is no memory organization

problem. However, for a computer with 16 bits or more, the program-

mer must be aware of the organization of character bytes into words.

Whenever 'LENGTH' or 'N' is shown, the SIZEOF function may be used

to advantage.

SCAN(Length,partial expression,array): INTEGER

This function scans a PACKED ARRAY OF CHARacters for the occur-

rence of a character that will satisfy the expression. At the most, it scans

the number of characters specified by length. The partial expression is:

<> character-expression

or

character-expression

INTRODUCTION TO PASCAL 175

Here is an example:

TEST := 'AN INTERESTING FEATURE.';

SCAN(50, = 'T'JEST);

returns 5. The first character is numbered as zero.

The search can be started at a given character by subscripting the ar-

ray. For example:

TEST[3]

will start the search at the third character.

The length of the scan may be negative for a reverse scan. In this case,

the result will also be negative.

MOVELEFT(Source, destination, length)

MOVERIGHT(Source, destination, length)

Source and destination refer to a string or a packed array of

characters. These two procedures move a block containing N bytes

(characters) from the source to the destination. MOVELEFT transfers the

first N bytes starting at the left end. Here is an example:

SOURCE STRING S

c Y B E X P u B L 1 S H 1 N G

After the move, the destination string D becomes

'SYBEXFGHIJKLMNOPQR'.

MOVERIGHT transfers the last N bytes of the source, starting at the

right end.

Note that the order of transfer for bytes is:

- Left to right for MOVELEFT
- Right to left for MOVERIGHT.

The order of transfer is important when the source string and the

destination string are identical or overlap.

176 ARRAYS

Here is an example:
4

VAR SOURCE : PACKED ARRAY[1..16] OF CHAR;

SOURCE := 'SYBEX PUBLISHING';

MOVELEFT(SOURCE[l],SOURCE [4], 9);

The result is: 'SYBSYBSYBSYBHING'

FILLCHAR(desti nation, N, character)

This procedure fills a destination (packed) array of characters with N
times the specified character. It can be used, for example, to blank out

or to zero N character positions.

UCSD PACK AND UNPACK

The Standard Pascal procedures PACK and UNPACK are not provided

in UCSD Pascal. The packing and unpacking process is automatic when
operating on a packed variable. Thus, the two procedures are un-

necessary.

UCSD String Operations

In UCSD Pascal, five additional functions and two procedures are pro-

vided for string operations: CONCAT, COPY, DELETE, LENGTH, POS
(functions), INSERT, STR (procedures).

CONCAT (string1,string2,... stringn): STRING

This function concatenates n strings and returns the resulting string as

its value. For example, if:

STRING1 := 'THIS' ;

STRING2 :
= ' IS' ;

STRING3 := ' AN';

Then, the function:

CONCAT(STR ING1 ,STRING2,STRING3,' EXAMPLE');

returns the string:

'THIS IS AN EXAMPLE'

COPY(string,index,n): STRING

This function copies n characters from the string, starting at the index

INTRODUCTION TO PASCAL 177

position and returns them. For example:

TESTSTRING :
= 'THIS IS A STRING';

RESULTSTRING : = COPY(TESTSTRING, 6,8);

WRITELN(RESULTSTRING);

will print:

IS A STR

This function has a result of type string.

DELETE(string, index, n): STRING

This function returns the string resulting from leaving out the n

characters from 'string', starting at the index-th position.

For example:

TESTSTRING := 'THIS IS A STRING';

RESULTSTRING := DELETE(TESTSTRING,6,5);

WRITELN(RESULTSTRING);

will print:

THIS STRING

This function has a result of type string.

INSERT(sourcestring, destinationstring, index)

This procedure inserts the sourcestring into the destinationstring, star-

ting at the index position of the destinationstring.

For example:

SOURCESTRING = 'LONG ';

DESTINATIONSTRING = 'THIS IS A STRING';

INSERT(SOURCESTRING, DESTINATIONSTRING, 1
1);

WRITELN(DESTINATIONSTRING);

will print:

THIS IS A LONG STRING

LENGTH(string): INTEGER

This function returns the integer representing the value of the length

of the string.

178 ARRAYS

For example:
4

STRING1 := '01 23456';

WRITELN(LENGTH(STRING1));

will print:

7

POS(string 1,string2) : INTEGER

This function returns an integer representing the position of stringl

within string2. If stringl occurs several times within string2, POS returns

the first occurrence. If stringl does not occur within string2, POS returns 0.

For example:

STRING1 := 'AN'

STRING2 := 'THIS IS AN EXAMPLE'

WRITELN(POS(STRINGl ,STRING2));

will print:

9

This function can be combined with the other string operators to

facilitate certain operations. For example:

STRING1 := 'A LONG AND COMPLEX TEXT';

STRING2 := 'RATHER

INSERT(STRING2,STR ING 1 , POSf'C', STRING 1));

WRITELN(STRINGl);

will print:

A LONG AND RATHER COMPLEX TEXT.

STR(longinteger,string)

This procedure transforms a long integer into a string. For example:

LONGNBR := 123456789;

STR(LONGNBR,LSTRING);

INTRODUCTION TO PASCAL 179

Now, the number 123456789 may be manipulated like a string. For ex-

ample:

WRITELN(CONCAT(LSTRING/FF /

));

will print:

1 23456789FF

SUMMARY

The array is traditionally one of the most widely used data structures

in programming. Arrays are widely used in mathematical computations

and logical representations. Tables, which are implemented as two-

dimensional arrays, are often used to determine the logical behavior of

a program.

Pascal allows the definition of simple one-dimensional arrays (lists) as

well as multi-dimensional arrays (arrays of arrays). Arrays may also be

optionally packed to conserve memory.

Arrays can often be used to advantage to represent values of a

frequently-used function, resulting in improved execution speed of a

program.

EXERCISES

9-1: Define an array-valued function that gives 'ONE' the value 7, 'TWO' the

value 2, etc., up to 'TEN'.

9-2: Design a suitable array and program whereby the program can spell out

any digit between 7 and 10.

9-3: Same as exercise 9-2 but for:

7. The days of the week (1 to 7)

2. The months of the year (1 to 12)

9-4: Write a program that spells out a dollar and cents amount

("checkwriter").

9-5: Given ten names, sort them in alphabetical order.

9-6: Type in a sentence. Output the words in alphabetical order. Assume a

maximum word size of twenty characters and the maximum number of

words to be thirty.

9-7: Read a sentence. Print out the number of times each letter is used in the

sentence.

9-8: Read a sequence of integers. Print out the largest and the smallest integer.

Indicate the number of times the largest integer was input.

180 ARRAYS

9-9: Store 20 words of a language dictionary as word-pairs. Type in a word
—output the translation. For example, the program starts in dictionary

mode. You type:

BLUE BLEU

YELLOW JAUNE

TREE ARBRE

HOUSE MAISON

IS EST

SEE VOIR

MAN HOMME
WOMAN FEMME

(etc. — up to 20 words)

Now
, go into translation mode. You type:

TREE

and the answer must be:

ARBRE

9-70: Same as Exercise 9-9, but translate an entire sentence of words. For exam-

ple
, you type:

AAAN SEE BLUE HOUSE

and you obtain:

HOMME VOIR BLEU MAISON

9-77: Read a word. Spell it backwards.

9- 12: Write a program to read in and multiply two five by five matrices
,
prin-

ting the result. (Matrix multiplication is defined A * B = C where element

c[i,j] is the sum of a[i,k] times b[k,j] as k ranges from 1 to the size of the

matrix.)

9- 13: (Spelling) Type in a set often words. Then , type any word. The program

must detect misspellings. Any word typed that does not match one in the

set of ten words is considered a misspelling.

9- 14: Write a program that prints giant headlines. Each character is stored as a

7 by 9 matrix of asterisks. Print each character 'sideways' so that a com-

plete word may be printed on paper. For example, the letter I may be

represented as:

* *

* *

INTRODUCTION TO PASCAL 181

9- 75: Write a program to read from the keyboard a series of ten names. Then

read ten social security numbers. The names and numbers are assumed

to be in corresponding order. The output should consist of a list of the

names, each followed by the corresponding social security number.

CHAPTER IVJ

RECORDS
AND VARIANTS

183

INTRODUCTION

Each programming language provides facilities for specifying algo-

rithms and representing data structures. An important limitation of many
languages is the representation of suitable data structures. Most program-

ming languages, especially scientific languages such as FORTRAN, do
not supply any facility for defining or constructing data structures more

complex than simple arrays. Pascal provides an unusually large variety

of constructs for defining complex structures. These structures include

arrays, records, files, and sets. The facilities for defining records will be

described in this chapter.

RECORD

The record type in Pascal is probably the most convenient data struc-

ture available. It is well-suited for business-oriented applications, but

may also be used for scientific calculations. It is therefore important to

understand what records are, and how they can be used.

A record is conceptually analogous to the information contained in a

business file. For example, a school record might include:

1 . Name
2. Address

3. Telephone number
4. Birthdate

5. Reference number
6. Courses taken

7. Grades

Let us consider the possible Pascal data types that can be used to repre-

sent each element of the above record:

1 . Name: array of characters

2. Address: array of characters

3. Telephone number: integer (or array of characters)

4. Birthdate: array of characters

5. Reference number: integer

6. Courses taken: array of strings

7. Grades: array of integers

This record is a collection of diverse data types. It could easily be

represented by a Pascal record.

A record in Pascal is a collection of data of various types. Each item in

a record is called a field. Each of the lines in the school record above is a

184 RECORDS AND VARIANTS

field of that record. In other words, a record is a collection of fields that

may be of different types.

As another example, let us consider a sales record. This record may
combine the name of the customer, the address, the telephone number,
the internal customer number, and the total sales to date. A Pascal

record can also be easily constructed to represent this information. It is

declared as follows:

TYPE SALESLIST =

RECORD

NAME : PACKED ARRAY[1..30] OF CHAR;

ADDRESS : PACKED ARRAY[1..80] OF CHAR;

TELNBR : PACKED ARRAY[1..15] OF CHAR;

CUSTOMERNBR : 1..999;

TOTALSALESTODATE : REAL

END;

This record type is called a SALESLIST.

— The first field in the record is NAME. It is of type string and

represents the customer name. It uses 30 characters.

— The second and the third fields are respectively called ADDRESS
and TELNBR and are also arrays of characters. The address has 80

characters. The telephone number has 15 characters.

— The fourth field is called CUSTOMERNBR and is of type INTEGER.

Its value must be between 1 and 999.

— The fifth field is called TOTALSALESTODATE and is of type REAL.

Note that the RECORD definition is terminated by an END. Each field in

a record may be of any type, including the type RECORD.
We have informally defined a record and provided an example. We

will now present the formal definition.

FORMAL DEFINITION

The formal syntax of a record is shown in Figure 10.1.

We can see by examining the 'field list' in Figure 10.1 that a record

declaration may have a fixed part and/or a variant part. The variant part

will be described later in this chapter. The fixed part consists of one or

more identifiers followed by a colon and the type specification.

NTRODUCTION TO PASCAL 185

Record type definition syntax

Fixed part

Figure 10.1: Syntax for a RECORD

Here is an example:

TYPE DATE = RECORD

MONTH : 1..12;

DAY : 1 . .31

;

YEAR : 1900.. 2000

END;

Note that each element of the record is declared separately. The
RECORD definition is terminated by an END.

In this simple example, an ARRAY could also have been used. We
could also define an LDATE record as:

TYPE LDATE = RECORD

DAY : 1 ..31

;

MONTH : (JAN,FEB /MAR /APR /MAY / JUN,JUL /AUG /

SEP, OCT, NOV, DEC);

YEAR : 1900.. 2000

END;

186 RECORDS AND VARIANTS

A simplified definition of a record type at this.point is:

identifier = RECORD fixed part END

As usual, we may use TYPE or VAR to declare a record. The fields defin-

ed within the record may have any type, including the type record. As

an example, here is a record that uses the previous record LDATE within

two of its fields:

TYPE EMPLOYEERECORD =

RECORD

NAME : PACKED ARRAY[1..12] OF CHAR;

POSITION : PACKED ARRAY[1..20] OF CHAR;

EMPLOYEENBR : INTEGER;

BIRTHDATE : LDATE;

SEX
:
(M,F);

SALARYRATE : REAL;

EXEMPTIONS : REAL;

DATEHIRED : LDATE;

VACATIONTIME : REAL;

SICKLEAVE : REAL

END;

OPERATIONS ON RECORDS

In order to reference an element of a record, a special notation is us-

ed. A record element is designated by:

record name.field identifier

For example, let us define:

VAR FULLTIMER : EMPLOYEERECORD;

Elements of EMPLOYEERECORD above are referenced as follows:

FULLTIMER. NAME := 'JOHN HIGGINS';

FULLTIMER. EXEMPTIONS := 2.5;

Here is a more complicated example, still referring to the same record:

FULLTIMER. BIRTHDATE. YEAR := 1938;

The formal definition of a record component is shown in Figure 10.2.

INTRODUCTION TO PASCAL 187

record identifier o field identifier

Figure 10.2: Record Component Syntax

To reference a field within a record, the name of the record must be

specified, followed by a period, and then the name of the field.

The following example shows the way in which values can be assign-

ed to all of the fields of FULLTIMER.

We first define:

VAR FULLTIMER : EMPLOYEERECORD;

We now assign values to the components of FULLTIMER:

FULLTIMER. NAME := 'ALFRED GREEN';

FULLTIMER. POSITION := 'SENIOR PROGRAMMER-';

FULLTIMER. EMPLOYEENBR := 241;

FULLTIMER. BIRTHDATE. DAY :
= 10;

FULLTIMER. BIRTHDATE.MONTH := MAR;

FULLTIMER. BIRTHDATE. YEAR := 1948;

FULLTIMER. SEX := M;

FULLTIMER. SALARYRATE := 8.50;

FULLTIMER. EXEMPTIONS := 3.5;

FULLTIMER. DATEH I RED. DAY := 25;

FULLTIMER. DATEHIRED.MONTH := JAN;

FULLTIMER. DATEHIRED. YEAR := 1980;

FULLTIMER.VACATIONTIME := 45.5;

FULLTIMER. SICKLEAVE := 39.5;

Note that no quotes are required (or allowed) around JAN and MAR.
These identifiers have been defined as values of an enumeration type.

They are not strings.

Here is another example. We first define three variables of type

SALESLIST:

VAR INDIVIDUALS, RETAILERS, DISTRIBUTORS : SALESLIST;

where SALESLIST is the record previously defined. The customer

number 1234 may then be assigned to an individual by the following

188 RECORDS AND VARIANTS

statement:

INDIVIDUALS.CUSTOMERNBR := 1234;

Similarly, the name of the ABC Company may be entered in the ap-

propriate sales list by writing:

RETAILERS. NAME := 'ABC COMPANY '

Note: blank spaces are indicated by----. If you do not supply enough
blanks, Pascal will pad with blanks automatically.

When operating on elements of a record, any operator compatible

with the element's type may be used. However, no operator may be us-

ed on a complete record except the assignment operator (: =).

When assigning one record variable to another record variable, one

record is copied into another that has a different name. Of course, both

must be of the same type.

For example, using the following variable definitions:

VAR TODAYSDATE, DATEH I RED, DATEOFCHANGE : DATE;

we can write:

DATEOFCHANGE :
= TODAYSDATE;

Provided that TODAYSDATE had a value, this will result in assigning this

value to DATEOFCHANGE. The day, the month, and the year fields of

DATEOFCHANGE will be updated simultaneously.

Records may also be used as parameters in functions and procedures.

When used as parameters, records may be referred to by value or by

variable. Records may also be declared as part of other structures such

as arrays.

THE WITH STATEMENT

When operating on fields within a record, one must use the record

identifier, followed by a period, and then one or more field identifiers.

This is required in order to avoid any ambiguity, since any identifier us-

ed in the field of a record may also legally appear in other places within

a Pascal program. However, if there are many identifiers, this require-

ment may become cumbersome.

Here is an example using the EMPLOYEERECORD that we have

already defined:

INTRODUCTION TO PASCAL 189

TYPE DATE =

RECORD

DAY : 1 ..31

;

MONTH
: (JAN^FEB^AR.APR.MAYJUNJUUAUG^EP^CLNOV.DEC);

YEAR : 1900.. 2000

END; {DATE}

EMPLOYEERECORD =

RECORD

NAME : PACKED ARRAY[1..12] OF CHAR;

POSITION : PACKED ARRAY[1..20] OF CHAR;

EMPLOYEENBR : INTEGER;

BIRTHDATE : DATE;

SEX :
(M,F);

SALARYRATE : REAL;

EXEMPTIONS : REAL;

DATEHIRED : DATE;

VACATIONTIME : REAL;

SICKLEAVE : REAL

END; (EMPLOYEERECORD)

We could complicate the program further by redefining NAME within

EMPLOYEERECORD as:

NAME : RECORD FIRSTNAME,SECONDNAME,LASTNAME : NSTRING END;

with the prior definition:

TYPE NSTRING = PACKED ARRAY[1..15] OF CHAR;

A value is assigned to NAME as follows:

FULLTIMER.NAME.FIRSTNAME := 'ALFRED

15 characters

FULLTIMER. NAME. SECONDNAME := 'JOHN-

—

FULLTIMER. NAME. LASTNAME := 'GREEN

This example demonstrates how cumbersome this notation can be.

Ideally, we should avoid repeating record names so many times.

190 RECORDS AND VARIANTS

The WITH statement is provided to alleviate 4this problem. The WITH
statement allows the record identifier to be specified only once and to

have one or more statements operate on the field identifiers, thus

eliminating the need to specify the record identifier every time. For ex-

ample:

WITH EMPLOYEERECORD DO
BEGIN

NAME := 'JOHN BROWN';

POSITION := 'SUPERVISOR';

EMPLOYEENBR := 24

END; (* EMPLOYEERECORD *)

The effect of the WITH statement is to insert implicitly the required

'EMPLOYEERECORD' before the name of the fields within the WITH
block.

The above WITH statement is equivalent to:

EMPLOYEERECORD. NAME := 'JOHN BROWN';

EMPLOYEERECORD. POSITION := 'SUPERVISOR';

EMPLOYEERECORD. EMPLOYEENBR := 24;

The formal syntax of the WITH statement is shown in Figure 10.3.

WITH y record identifier

o
<£2>—*\

statement

Figure 10.3: WITH Statement Syntax

The record identifier in Figure 10.3 must be an actual record variable,

not an identifier used to define a record type.

The WITH statement may also be used with multiple variables in

order to extend the scope of field identifiers. For example, assume that

A is a variable of type RECORD, that B and C are fields of type RECORD,
and that X, Y, Z are field identifiers within these records. Assume that we
need to specify:

A.B.X := 3;

A.B.Y := 'ALPHA';

A.C.Z := 1;

NTRODUCTION TO PASCAL 191

We can simplify these specifications by writing:

WITH A,B,C, DO
BEGIN

X := 3;

Y :
= 'ALPHA';

Z := l;

END;

The notation:

WITH A,B,C, DO

is equivalent to:

WITH A DO
WITH B DO

WITH C DO

Note that the WITH statement automatically defines a scope for the

identifiers (or fields) within its block.

In the formal definition in Figure 10.3, DO may be followed by any
statement. For example, an IF. ..THEN clause may be used to advantage:

VAR CALLDATE : DATE;

...{ASSUME CURRENTMONTH = JAN}

WITH CALLDATE DO
IF MO = CURRENTMONTH THEN MO := SUCC(CURRENTMONTH);

The above program moves the CALLDATE ahead by one month. When
run once a month, this program would be used to schedule an

automatic call or letter. (Note: this does not work when MO = DEC.)

Without the WITH statement, this program becomes:

VAR CALLDATE : DATE;

IF CALLDATE.MO = CURRENTMONTH THEN

CALLDATE.MO := SUCC(CURRENTMONTH);

192 RECORDS AND VARIANTS

SCOPE OF IDENTIFIERS

The scope of an identifier used within a record is that particular

record. This means that, for example, if DAY is used as a field within the

record DATE, the variable DAY may appear in any other program seg-

ment, including other records. Any possible confusion is eliminated by

the requirement that every field name must be preceded by the name of

the record in which it appears. In order to refer to DAY within the

record LASTDATE, one must write:

LASTDATE.DAY

If DAY also appeared in the record called ALFA, we would refer to it

by writing:

ALFA. DAY

Naturally, within a given RECORD, all field names must be distinct.

Remember that the statement following the WITH behaves as a block,

for the purpose of defining the scope of the variables that appear within

that statement.

CASE STUDY 1: INVENTORY MANAGEMENT

The Problem

The Inventory Management program will read a series of values into

records containing four fields:

Managing an inventory is a common business problem. Typically, the

items that make up an inventory are kept in stock and the total number

of available parts must be updated each time a part is sold or purchased.

The Inventory Management program will read a series of values into

records containing four fields:

Field A: part identification number
Field B: number of parts in stock

Field C: number of parts purchased

Field D: number of parts sold

The end of input is indicated by four zero values.

Field B, containing the number of parts in stock, will be updated

automatically, using the information in Fields C and D. The two fields C
and D, containing the number of parts purchased and the number of

parts sold, will be reset to zero. The program then prints the list of parts,

along with the number of items in stock and a message indicating

whether or not the stock has been increased or decreased.

A sample input is shown in Figure 10.4.

INTRODUCTION TO PASCAL— 193

05763 18 20 16 A = part #

84502 25 15 30 B = in stock

23476 63 50 42

52873 12 10 18

62481 14 15 12

21965 82 60 71

17248 10 05 07

00000 00 00 00

C

D

= purchased

= sold

A BCD
Fields

Figure 10.4: Sample Input for Inventory Program

A sample output is shown in Figure 10.5.

PART

AMOUNT
IN

STOCK

5763 22 INCREASED

84502 10 DECREASED

23476 71 INCREASED

52873 4 DECREASED

62481 17 INCREASED

21965 71 DECREASED

17248 8 DECREASED

Figure 10.5: Sample Output for Inventory Program

The program listing is shown in Figure 10.6.

194 RECORDS AND VARIANTS

PROGRAM UPDATE (INPUT, OUTPUT);

TYPE PARTREC = RECORD

NUMBER : INTEGER;

INSTOCK : INTEGER;

PURCH : INTEGER;

SOLD : INTEGER

END; (* RECORD *)

(* PART NUMBER *)

(* NUMBER IN STOCK *)

(* NUMBER PURCHASED *)

(* NUMBER SOLD *)

VAR PART: PARTREC; (* PART BEING UPDATED *)

INC: BOOLEAN; (* FLAG FOR INCREASED OR DECREASED *)

(* NUMBER IN STOCK *)

BEGIN (* UPDATE *)

(* PRINT HEADINGS *)

WRITELN; WRITELN;

WRITELNf
7 AMOUNT7

);

WRITELNf
7 IN

7

);

WRITELN(
7 PART STOCK7

);

WRITELN(
7 = = === = = = = = =');

WRITELN;

WITH PART DO
BEGIN (* WITH PART RECORD *)

READLN(NUMBER, INSTOCK, PURCH, SOLD);

WHILE NUMBER < > 0 DO
BEGIN (* FOR EACH RECORD *)

(* UPDATE RECORD *)

IF PURCH > SOLD THEN INC := TRUE

ELSE INC := FALSE;

INSTOCK := INSTOCK 4- PURCH - SOLD;

PURCH := 0;

Figure 70.6: INVENTORY MANAGEMENT Program

INTRODUCTION TO PASCAL 195

I

SOLD : = 0;

(* OUTPUT RECORD *)

WRITE (' ',NUAABER:5/ ',INSTOCK:3);

IF INC = TRUE THEN WRITELN (' INCREASED')

ELSE WRITELN (' DECREASED');

(* READ NEXT RECORD *)

READLNf NUMBER, INSTOCK, PURCH, SOLD)

END (* FOR EACH RECORD *)

END (* WITH PART RECORD *)

END. (* UPDATE *)

Figure 10.6: INVENTORY MANAGEMENT Program (cont.)

The Program

A four-field record is used to store the four numbers that characterize

a part:

PROGRAM UPDATE(INPUT,OUTPUT)

TYPE PARTREC RECORD

NUMBER : INTEGER; (* PART NUMBER *)

INSTOCK : INTEGER; (* FIELD B *)

PURCH : INTEGER; (* FIELD C *)

SOLD : INTEGER (* FIELD D *)

END; (* RECORD *)

Two variables are used:

VAR PART : PARTREC;

INC : BOOLEAN;

PART denotes the part record being updated. INC is a Boolean flag

196 RECORDS AND VARIANTS

used to remember if the stock has been increased or decreased.

In order to reference the four fields of PART, the correct notation is:

PART. NUMBER

PART. INSTOCK

PART.PURCH

PART. SOLD

However, a shorthand notation may be used with the WITH facility.

This approach is the solution used in this program:

WITH PART DO
BEGIN

READLN(NUMBER, INSTOCK, PURCH, SOLD);

A part number of zero terminates the input. Otherwise, a processing

loop is executed:

WHILE NUMBER <> 0 DO
BEGIN

IF PURCH > SOLD THEN INC := TRUE

ELSE INC := FALSE;

INSTOCK := INSTOCK + PURCH - SOLD;

PURCH := 0;

SOLD : = 0;

The record is immediately updated and a negative number of parts in

stock would correspond to a back order situation. The updated con-

tents of the record are then displayed, and a special message is gener-

ated, depending upon the value of the flag variable INC:

WRITER NUMBERS,

—MNSTOCK.-3);

IF INC = TRUE THEN WRITELN('~INCREASED')

ELSE WRITELN('~DECREASED');

and the next record is read:

READLN(NUMBER, INSTOCK, PURCH, SOLD)

END

END
END.

introduction to pascal 197

CASE STUDY 2: CREDIT CARD NUMBER VALIDATION

The Problem

Most numbers used as identification codes, such as credit card ac-

count numbers, contain a validation or "check digit." The value of this

digit is computed as a function of the other digits in the number. Thus, if

one digit is changed in the number (by accident or otherwise) or is read

incorrectly, the check digit will reflect this change. When the number is

read into the computer, the actual validation digit is computed from the

digits read, and then it is compared to the check digit stored with the

number. Both check digits should match.

This Validation program (shown in Figure 10.9) will read a series of

records containing the following fields:

— Field A: credit card number (10 individual digits)

— Field B: purchase amount
— Field C: store or dealer number (8 individual digits)

The program will verify the validity of the numbers in Fields A and C, us-

ing a check digit technique. The last digit of each number must be the

sum of the preceding digits modulo 9 (i.e., the remainder when the sum
of all the digits is divided by nine). The program must print all entries

that have an erroneous identification number or an erroneous dealer

number.

A typical input is shown in Figure 10.7.

457631 8200 684.50 22515300
2347663504 252.87 31210187
2481 141510 219.65 82607156
1724810050 723.70 38642964
2641 807798 642.89 9 7 1 3 7 900
31 74064362 123.87 9 5 2 1 5 6 7 8

2567456864 368.86 34678907
41 24688543 754.84 56788543
0000000000 000.00 00000000

Credit Card tt Purchase
Amount

Dealer tt

Figure 10.7: Input to VALIDATION Program

The corresponding output is shown in Figure 10.8.

198 RECORDS AND VARIANTS

BAD CREDIT CARD NUMBER

credit card number: 2347663504

amount: 252.87

dealer number: 31210187

BAD DEALER NUMBER

credit card number: 2481141510

amount: 219.65

dealer number: 82607156

BAD CREDIT CARD NUMBER

BAD DEALER NUMBER

credit card number: 1724810050

amount: 723.70

dealer number: 38642964

BAD CREDIT CARD NUMBER

credit card number: 3174064362

amount: 1123.87

dealer number: 95215678

BAD DEALER NUMBER

credit card number: 2567456864

amount: 368.86

dealer number: 34678907

BAD CREDIT CARD NUMBER

BAD DEALER NUMBER

credit card number: 4124688543

amount: 754.84

dealer number: 56788543

Figure 7 0.8: Output from Validation Program

INTRODUCTION TO PASCAL 199

PROGRAM VERIFY (INPUT, OUTPUT);

TYPE CHECKNUM = ARRAY [1..10] OF 0..9;

CREDITREC = RECORD

CCNUM: CHECKNUM; (* CREDIT CARD NUMBER *)

AMT: REAL;

DLRNUM: CHECKNUM(* DEALER NUMBER *)

END; (* RECORD *)

VAR PURCHASE: CREDITREC;

CCOK, DLROK: BOOLEAN;

FUNCTION NUMOK(LN: INTEGER; NUMBER: CHECKNUM): BOOLEAN;

VAR INDX, CHKDIGIT: INTEGER;

BEGIN (* NUMOK *)

CHKDIGIT := 0;

FOR INDX := 1 TO LN - 1 DO
CHKDIGIT := CHKDIGIT + NUMBER[INDX];

CHKDIGIT := CHKDIGIT MOD 9;

IF CHKDIGIT < > NUMBER[LN] THEN

NUMOK :
= FALSE

ELSE NUMOK := TRUE

END; (* NUMOK *)

PROCEDURE READREC;

VAR INDX: INTEGER;

BEGIN (* READREC *)

FOR INDX := 1 TO 10 DO
READ(PURCHASE.CCNUM[INDX]);

READ(PURCHASE.AMT);

FOR INDX := 1 TO 8 DO
READ(PURCHASE.DLRNUM[INDX]);

READLN

END; (* READREC *)

PROCEDURE PRINTREC;

VAR INDX: INTEGER;

Figure 10.9: VALIDATION Program

200 RECORDS AND VARIANTS

BEGIN (* PRINTREC *)

WRITER CREDIT CARD NUMBER: ');

FOR INDX := 1 TO 10 DO
WRITE(PURCHASE.CCNUM[INDX]:1);

WRITELN;

WRITELN(' AMOUNT: ', PURCHASE. AMT:5:2);

WRITER DEALER NUMBER: ');

FOR INDX := 1 TO 8 DO
WRITE(PURCHASE. DLRNUM[INDX] : 1);

WRITELN; WRITELN

END; (* PRINTREC *)

BEGIN (* VERIFY *)

READREC;

WHILE PURCHASE.AMT < > 0 DO
BEGIN (* CHECK RECORD *)

IF NUMOKflO, PURCHASE. CCNUM) THEN

CCOK :
= TRUE

ELSE CCOK :
= FALSE;

IF NUMOK(8, PURCHASE. DLRNUM) THEN

DLROK := TRUE

ELSE DLROK :
= FALSE;

IF (NOT CCOK) OR (NOT DLROK) THEN

BEGIN (* BAD RECORD *)

IF NOT CCOK THEN

WRITELN(' BAD CREDIT CARD NUMBER');

IF NOT DLROK THEN

WRITELNf' BAD DEALER NUMBER');

PRINTREC;

END; (* BAD RECORD *)

READREC

END (* CHECK RECORD *)

END. (* VERIFY *)

Figure 10.9: VALIDATION Program (cont.)

INTRODUCTION TO PASCAL 201

The Program

The program listing is shown in Figure 10.9. This program uses a

three-field record type called CREDITREC, where each account number

is stored as an array of integers:

PROGRAM VERIFY(INPUT, OUTPUT);

TYPE CHECKNUM = ARRAY[1..10] OF 0..9;

CREDITREC = RECORD

CCNUM : CHECKNUM;

AMT : REAL;

DLRNUM : CHECKNUM
END;

VAR PURCHASE : CREDITREC;

CCOK,DLROK : BOOLEAN;

The two variables CCOK and DLROK are used to remember whether or

not the credit card number is okay, and if the dealer code is okay.

One function and two procedures are used. The Boolean function

NUMOK is used to determine the validity of the check digit in an ac-

count number. The algorithm is straightforward. If the account number
has LN digits, the first (LN - 1) digits are added together, and the modulo
9 is obtained. This computation yields a computed check digit. This

computed digit is then compared to the check digit stored in position

LN. If both digits match, NUMOK is set to TRUE; otherwise, it is set to

FALSE.

FUNCTION NUMOK(LN: INTEGER; NUMBER: CHECKNUM): BOOLEAN;

VAR INDX,CHKDIGIT : INTEGER;

BEGIN (* NUMOK *)

CHKDIGIT := 0;

FOR INDX := 1 TO LN -
1 DO

CHKDIGIT := CHKDIGIT + NUMBER[INDX];

CHKDIGIT := CHKDIGIT MOD 9;

IF CHKDIGIT <> NUMBER[LN] THEN

NUMOK := FALSE

ELSE NUMOK := TRUE

END; (* NUMOK *)

202 RECORDS AND VARIANTS

The procedure READREC is used to read a record, a field at a time, in

the appropriate format:

PROCEDURE READREC;

VAR INDX : INTEGER;

BEGIN (* READREC *)

FOR INDX := 1 TO 10 DO
READ(PURCHASE.CCNUM[INDX]);

READ(PURCHASE.AMT);

FOR INDX := 1 TO 8 DO
READ(PURCHASE. DLRNUM[INDEX1]);

READLN

END; (* READREC *)

The procedure PRINTREC is used to print a record in a clear format,

including field names:

PROCEDURE PRINTREC;

VAR INDX : INTEGER;

BEGIN (* PRINTREC *)

WRITER CREDIT CARD NUMBER: ');

FOR INDX := 1 TO 10 DO
WRITE(PURCHASE.CCNUM[INDX]:1);

WRITELN;

WRITELN(' AMOUNT: ',PURCHASE.AMT:5:2);

WRITER DEALER NUMBER: ');

FOR INDX := 1 TO 8 DO
WRITE(PURCHASE.CLRNUM[INDX]:1);

WRITELN; WRITELN

END; (* PRINTREC *)

The program reads the first record:

BEGIN

READREC;

Then, as long as the purchase amount is not 0, the program executes

INTRODUCTION TO PASCAL 203

\

repeatedly:

WHILE PURCHASE.AMT <> 0 DO
BEGIN

The program uses the NUMOK function to verify the value of the check

digit in the two relevant fields, and remembers the logical result in

CCOK and DLROK:

IF NUMOK(1 0, PURCHASE.CCNUM) THEN

CCOK : = TRUE

ELSE CCOK :
= FALSE;

IF NUMOK(8, PURCHASE. DLRNUM) THEN

DLROK := TRUE

ELSE DLROK :
= FALSE;

Once these checks have been performed, any erroneous record must

be printed along with a diagnostic:

IF (NOT CCOK) OR (NOT DLROK) THEN
BEGIN (* BAD RECORD *)

IF NOT CCOK THEN WRITELN('—BAD CREDIT CARD NUMBER');

IF NOT DLROK THEN WRITELN('—BAD DEALER NUMBER');

PRINTREC;

END;

READREC

END

END.

VARIANTS

The records we have defined thus far are rigid structures that cannot

be changed. Often when defining a data structure such as a record, it

would be convenient to have two or three sub-types of the record,

depending upon the value of a field in the record. For example, in a

personnel file an extra field might be required to store the maiden

name of a married woman. This specific field would not be required for

a man.

Such a facility is provided in Pascal. It is called the variant record

204 RECORDS AND VARIANTS

facility. Variant records can be specified conveniently by using a ver-

sion of the CASE statement. For example:
4

TYPE CATEGORIES = (INDIVIDUAL,COMPANY);

INVOICE = RECORD

INVOICENBR : 0.. 99999;

TODAYSDATE : DATE;

ITEMCODE : 0..9999;

DESCRIPTION : ARRAY[1..40] OF CHAR;

QUANTITY : 0.. 99999;

PRICE : REAL;

NAME : ARRAYfl ..32] OF CHAR;

ADDRESS : ARRAY[80] OF CHAR;

TOTALDUE : REAL

CASE CUSTOMERTYPE : CATEGORIES OF
INDIVIDUAL: ();

COMPANY:

(CREDITRATING : BOOLEAN;

CUSTOMERNBR : 0..9999;

MINDISCOUNT : REAL)

END;

In this example, if the CUSTOMERTYPE is an INDIVIDUAL, no new
fields are added to the basic record. This is shown as: (). However, if the

CUSTOMERTYPE is a COMPANY, three additional fields are added to

the record: CREDITRATING, CUSTOMERNBR, and MINDISCOUNT.
This optional record field specification is called a variant. Using the

variant facility, a single record type may be constructed that will include

one or more fields, depending upon the type of the specific variable.

This is a powerful facility which significantly improves program

readability and provides convenience. However, variants also increase

the risk of error. For example, when referring to an INDIVIDUAL in the

example above, one must never try to access the CREDITRATING or the

CUSTOMERNBR, as these fields are not defined in the case of an IN-

DIVIDUAL.
The special field following the CASE, i.e. CUSTOMERTYPE, is called

the tag field. This tag field is defined as being of type CATEGORIES and

belongs to the record INVOICE. It is the value of the tag field which

determines which fields of the variant are valid. The formal definition for

a variant part is shown in Figure 10.10.

Looking at the syntax for a variant in Figure 10.10, it is apparent that

the tag field identifier following the CASE may be omitted. Such a record

introduction to pascal 205

Variant part

variant with no tag field is called a free union. Free unions are used infre-

quently, and may not be provided by some implementations. They

should not be used by an inexperienced programmer, as the probability

of error is very high.

Only one variant may be used in a list of fields and it must occur last.

However, this does not prevent variants from being nested.

In summary, a variant allows a single record type to be used in two or

more cases. This concept is illustrated in Figure 10.11. Note that the

fields allocated to CASE 1 and CASE 2 in Figure 10.1 1 may also be sub-

divided.

Figure 10.11: The Variant Concept

206 RECORDS AND VARIANT

UCSD PACKED RECORDS

As in the case of ARRAYS, RECORDS may be packed in order to use

less room in memory.

The same precaution that applies with ARRAYS applies when packing

records containing records or arrays. In order to be safe it is recom-

mended to use the word PACKED in front of every RECORD or ARRAY.

SUMMARY

Records provide an important facility for structuring data in complex

ways. They are generally used for business or text-oriented applications,

but may be used for any other application. A record is basically a collec-

tion of values of various data types that has a name and may be conve-

niently manipulated as a unit. Special rules apply to records that allow

references to an element and the specification of variants.

EXERCISES

70-7: Design a record structure that will contain a sequence of names and birth

dates typed in the format NAME-mm/dd/yy, where mm is the month, dd

is the day, and yy is the year. Print this list by chronological age.

10-2: Improve the previous exercise by checking for illegal birth dates. For ex-

ample> February 30 should be rejected.

10-3: Write a program that reads a student's name followed by a sequence of

grades. Sort and print the list of students in order, highest to lowest, ac-

cording to the total of each one's scores.

10-4 : Examine the section of the program in Figure 10.9 after

BEGIN (* CHECK RECORD *)

Can you shorten it by using

CCOK := NUMOK (...) and DLROK := NUMOK (...)

rather than the IF...ELSE clauses?

CHAPTER

FILES

209

BASIC DEFINITIONS

file is the basic module of information handled by the operating

system. The operating system is the program in charge of managing the

computer system's resources for the user. For example, a program is

stored as a file. First it is typed in with an editor program, then it is stored

as a text file. Once compiled by the compiler, the translated program

becomes a binary file.

Informally, a file can be defined as an information module that has a

name. Also, all data within the file is homogeneous, i.e., of the same
type. For example, a file may be either binary or text.

The format and the properties of files are generally defined by the

operating system of the computer on which they reside. Each operating

system stores and organizes files differently. In addition, the operating

system may provide a number of file attributes such as Read/Write,

Read Only, Owner Number, and others.

Pascal provides facilities for accessing, creating and manipulating files.

However, files created by a Pascal program obey specific rules and are

subject to a number of restrictions.

PASCAL FILES

The essential property of a file in the Pascal language is that it may be

read or written one element at a time. In theory, files of information may
be accessed in a number of ways. Two examples are random access and

sequential access. In practice, specific access mechanisms are provided

to examine, read, or write each element of a file. Pascal restricts the ac-

cess to files to a sequential access mode. This can be contrasted to the

direct, or random access mode, which is often used by the operating

system. Thus a Pascal file is generally accessed as if it were stored on a

magnetic tape (a sequential device), rather than on a disk (a random ac-

cess device).

A Pascal file is a collection of units or blocks having the same struc-

ture. For example, a file may consist of characters, arrays, or records.

Each Pascal file is terminated by a special End-Of-File marker, called

EOF. All Pascal files are sequential files: elements of a file must be ac-

cessed one after the other. It is not possible to jump ahead or backwards

in a file. In Pascal, a file may be empty. For example, an empty file is

usually created at the time a file is originally defined. The operations that

create and manipulate files will now be described.

210 FILES

FORMAL DEFINITION

The syntax for a file type definition is shown jn Figure 11.1.

<jvpT)— flic *0 K F'“)—»<of> type

Figure 11.1: Syntax of a File Declarator

For example:

TYPE VALUES = FILE OF INTEGER;

In principle, any legal data type may be used to specify the elements of

the file. However, in practice, a file of files is usually not allowed by

most systems even though it is legal. Since files of characters occur fre-

quently, a standard file type called TEXT is provided in Pascal. It is de-

fined as:

TYPE TEXT = FILE OF CHAR;

The type TEXT will be studied separately in the following section.

In order to use a file, the file itself must be declared as a variable. If the

file is permanent, i.e., exists prior to program execution, the file must:

1 . Be declared as a variable.

2. Appear in the program header.

For example, the file SPEED is declared by:

VAR SPEED : FILE OF INTEGER;

and in the program header as:

PROGRAM COMPUTE (INPUT, OUTPUT, SPEED);

It is important to remember that the TYPE or the VAR definition assigns a

type to a file, but not a length. The file is the only data structure in Pascal

with a length that may vary dynamically at execution time. A file is emp-

ty when created. Elements are then added or examined. In Standard

Pascal, elements may not be removed or modified.

Here is an example showing how elements are accessed. The file

'SENTENCE' is defined:

VAR SENTENCE : FILE OF CHAR;

INTRODUCTION TO PASCAL 211

An empty file will be created by a REWRITE:

SENTENCE

(empty)

An element is then added to it (the command will be described below):

SENTENCE

element 1 EOF

And then another:

element 1 element 2 EOF

At this point, SENTENCE is a file of length 2.

STANDARD FILES

Two standard files are provided in Pascal: INPUT and OUTPUT, and a

standard type: TEXT. The standard files INPUT and OUTPUT must not

be declared as variables, and do not need to be included in the program

header, unless a READ or a WRITE appears within the program without

a corresponding file name. However, in order to avoid the risk of an er-

ror, it is usually a good precaution to include INPUT and OUTPUT in

the program header. In fact, many implementations insist that this be

done in any case. The standard type TEXT was mentioned earlier and

will be described in more detail later on in this chapter.

WRITING ON A FILE

A file is a sequence of elements that have the same type or structure.

For example, a file may be a sequence of characters, numbers, or

records. A file may be logically represented as a sequence of identical

modules, as shown in Figure 11.2.

element 1 element 2 element 3 element 4 element 5 EOF

Figure 11.2: Representation of a File

212 FILES

In Figure 11.2, the file contains five elements. In order to refer to an

element within a file, we must know the numeric position of the ele-

ment we want to access or examine.

In Pascal, only one element of a file may be accessed at any time. A
pointer points to the current element at all times. Every time that an ele-

ment is added to a file, the pointer is moved to point to the end of the

file. FHere is an example:
pointer

1
element 3 EOF

nter

1

an element: poii

i

element 3 element 4 EOF

This is called a window system. The process is analogous to a magnetic

tape moving in front of a read/write head (see Figure 11.3).

Figure 11.3: Magnetic Tape Moving in Front of a Read/Write Head

The window is called the buffer variable

,

and is represented as Ft

where F is the name of a file. By definition Ft always contains the current

element that may be accessed within the file.

For example, the buffer variable

,

or access window for the file called

SPEED at a given time is shown in Figure 11.4.

Writing a new value in a file F is accomplished by assigning the new
value to Ft, then PUTting it in the file. A new value is always added at

the end of a file. This requires that the window be correctly positioned.

Recall that when a file is initially defined, it is empty. A non-empty file

will be created by writing an element into the file. We will now study

the appropriate commands.

INTRODUCTION TO PASCAL 213

SPEED t

Figure 11.4: The Access Window

A file does not exist before writing into it. If a new file has already

been declared, the file must formally be created with a special com-

mand called REWRITE before it is used. Thus, to actually create the

(empty) file SPEED, we will execute the statement:

REWRITE(SPEED);

If the file SPEED has already been used, and contains any values or

elements, they are erased by this command. The location pointer or ac-

cess window is set at the first possible position within the file, which is

the empty file (see Figure 1 1 .5).

(SPEED!)

1 r

EOF

Figure 11.5: Creating a File

Next, the value NUMBER is assigned to SPEED!, and written into the

file. This is accomplished with the special built-in procedure PUT:

SPEED! := NUMBER;

PUT(SPEED);

The result of these two statements is shown in Figure 1 1 .6. One element

has been added to the file, and the access window has been

automatically moved to the right by one position.

214 FILES

Since this sequence of two Pascal instructions is very common, a stan-

dard command has been provided to abbreviate it in the case of a text

file. It is called WRITE. The two instructions in our example may be ab-

breviated as:

WRITE(SPEED, NUMBER);

This applies to text files only. When using WRITE or PUT, the buffer

variable is undefined at the end of the instruction, as illustrated in Figure

11.6. The file name may be omitted from the WRITE command. It will

then be assumed to be OUTPUT.
In summary, when the buffer variable is pointing to the end of the file,

the WRITE command appends a new element to the end of the file, as il-

lustrated in Figure 1 1 .7. This requires that the file was opened for writing

and that the end-of-file was reached by successive writing. The pointer

is generally advanced with the standard procedure PUT.

Figure 11.7: Appending an Element to a File

INTRODUCTION TO PASCAL 215

WRITE SUMMARY

Two procedures may be used to write into a file:

Put(F) appends the value of Ft to the file F. The value

of Ft is undefined afterwards. PUT must always

write at the end of a file. (EOF(file), described

below, must be TRUE before using PUT.)

WRITER ELEMENT) assign ELEMENT to Ft, then performs a PUT(F).

This function works only on a TEXT file.

In addition, a file is opened or erased with:

REWRITE(F) the file becomes the empty file and is opened
for writing.

READING A FILE

Once a file has been created, and values have been entered into it,

the file may then be read. Four procedures are provided for reading or

examining a file: EOF, RESET, GET, and READ. Each will be described in

turn.

The EOF Function

The standard Boolean function EOF(F) tests to see whether or not the

current window Ft points to the End-Of-File, i.e., past the last element

of a file. If it does, EOF(F) is TRUE. Otherwise, it is FALSE. For example,

PUT(F) may only be used when EOF(F) = TRUE and the file is open for

writing.

The RESET Procedure

The RESET procedure positions the window to the first element of the

file. Thus, executing:

RESET(SPEED);

results in:

Figure 11.8: Resetting the Window

216 FILES

In this example, the file SPEED contained five elements. After ex-

ecuting the RESET procedure, the buffer variable contains the first ele-

ment of the file. If the file had been empty, the buffer variable would be

undefined. This condition may be tested with an EOF. EOF(SPEED) is

TRUE whenever the end of the file has been reached or the file is empty.

The GET Procedure

In order to read a specific element of a file, usually the file pointer

must be reset to the first element, then moved to the appropriate ele-

ment. The file pointer may be advanced by one element at a time, using

the GET procedure. The EOF function is normally used before a GET, to

test whether or not the file is empty, because a GET on an empty file

results in an error condition.

The READ Procedure

A standard READ procedure, similar to the WRITE procedure, is also

available in Pascal, for use on text files only. Thus:

READ(SPEED, ELEMENT);

is equivalent to:

ELEMENT := SPEEDt;

GET(SPEED);

READ Summary

EOF(F)

RESET(F)

GET(F)

READ(F, ELEMENT)

Important Notes

In Standard Pascal, the READ and WRITE procedures were originally

supplied only for TEXT files. However, in most implementations, they

are generally available for any type of file. Of course, when reading or

writing a file, the element being read or written must be compatible

with the type of the file. Also, whenever there is no file specification

given as part of a READ or EOF, it is automatically assumed to be an IN-

PUT. Similarly with a WRITE, the file is assumed to be OUTPUT.
It is important to remember that Pascal files are organized sequential-

ly. They must be opened for input or output. In practice this means that

a READ may not be followed by a WRITE, and that a WRITE may not be

is a function used to test if Ft is the EOF. In that

case, EOF(F) is TRUE.

moves the window back to the first element of

the file (Ft is set to the first element of F) and

opens it for reading only.

moves the window to the next element of F:

Ft is set to the next element of F. EOF(F) must

be FALSE prior to the GET.

is equivalent to: ELEMENT := Ft ;GET(F).

INTRODUCTION TO PASCAL 217

followed by a READ. The file must be RESET before any READs, and a

REWRITE must be executed before any WRITES.

CASE STUDY 1: FILEMERGE

The following program merges two files (A and B) containing integers.

Each file is ordered in ascending order so that:

— In file A, A(l) > = A(l — 1)

- In file B, B(l) >= B(l-1)

The resulting file C is obtained by merging the elements of A and B in

such a way that:

C(l) >= C(l-1)

This program includes three WHILE loops. The first loop will extract

elements from A or B (the smallest element first), until either A or B is

empty. The loop will test whether the current element of A is smaller

than the current element of B. If it is smaller, then this element of A goes

into C:
PROGRAM AAERGEAB(INPUT, OUTPUT, FILEA, FILEB, FILEC);

(* PROGRAM TO MERGE TWO INTEGER FILES *)

VAR FILEA,FILEB, FILEC : FILE OF INTEGER;

LASTELEMENT : BOOLEAN;

BEGIN

RESET(FILEA);

RESET(FILEB);

REWRITE(FILEC);

LASTELEMENT := EOF(FILEA) OR EOF(FILEB);

WHILE NOT LASTELEMENT DO BEGIN

IF FILEAt < = FILEBt THEN

BEGIN

FILECt -: = FILEAt ;

GET(FILEA);

LASTELEMENT := EOF(FILEA)

END

ELSE

BEGIN

FILECt := FILEBt;

GET(FILEB);

LASTELEMENT := EOF(FILEB)

END;

218 FILES

PUT(FILEC);

END;

WHILE NOT EOF(FILEB) DO
BEGIN

FILECt := FILEBt ;

PUT(FILEC);

GET(FILEB)

END;

WHILE NOT EOF(FILEA) DO
BEGIN

FILECt := FILEAt ;

PUT(FI LEC);

GET(FILEA)

END

END.

After files A, B, and C have been defined, they are initialized. A and B

will be read:

RESET(FILEA);

RESET (FI LEB);

C will be written:

REWRITE(FILEC);

A logical variable called LASTELEMENT is defined. It will be TRUE
whenever either the EOF for A or the EOF for B is reached.

LASTELEMENT := EOF(FILEA) OR EOF(FILEB);

Then, the buffer variables for files A and B are compared within a

WHILE loop:

WHILE NOT LASTELEMENT DO BEGIN

IF FILEAt < = FILEBt THEN

The lowest value is assigned to the buffer variable for file C. For exam-

ple, if the buffer variable for file B is less than that for file A, then the

INTRODUCTION TO PASCAL 219

FILEA:

following block of code is executed:

ELSE

BEGIN

FILECt := FILEBt ;

GET(FILEB);

LASTELEMENT := EOF(FILEB)

END;

The element is now written into file C, and the window is advanced:

PUT(FILEC);

The WHILE loop terminates:

END;

This loop will continue until LASTELEMENT becomes TRUE, i.e., until

either EOF(FILEA) or EOF(FILEB) becomes TRUE.
Note: when examining this statement remember that LASTELEMENT is a

BOOLEAN value.

At the end of this loop, the entire contents of one of the files has been

transferred to C, along with (possibly) some elements of the other file (B

or A).

Now, the remaining elements of the file which have not been com-

pletely copied into C must be transferred. Two loops are provided for

this purpose: one, in case the file is B, and another, in case the file is A.

Note that using REPEAT. ..UNTIL is not practical in either of the cases,

since it is guaranteed that either EOF(A) or EOF(B) is TRUE. Therefore,

one of the loops will not be executed at all. REPEAT would execute a

loop at least once.

Here is a numerical example:

A contains:

1 4 6 EOF

B contains:

2 5 7 21 50 EOFFILEB:

220 FILES

After execution of the WHILE loop terminates, FILEC contains:

FILEC: 1 2 4 5 6
|

EOF
|

The EOF for A has been reached: t
Ct

FI LEA: 1 4 6 EOF

T
At

FILEB: 2 5 7 21 50 EOF

A

Bt

The effect of the second loop in the program is to transfer the remaining

elements of B into C:

1 2 4 5 6 7 21 50 EOF

The body of the third loop is not executed because EOF(FILEA) is TRUE.

PERMANENT AND TEMPORARY FILES

Files may be permanent or temporary. A file becomes permanent

when it is written on a permanent storage device such as a disk or a

tape. Each installation provides specific commands for storing perma-

nent files. For example, text may be typed in as input to an editor pro-

gram written in Pascal. Obviously, the resulting file should be preserved

for future use.

In case text must be added to the file, the editor program will need to

access this existing text file. This is an example of an external file. Files

that may already exist at the time a program is run are called external

files. Their names must be included in the program heading, in the same

way that parameters are passed to a procedure or a function.

Whenever a file is used within the program and then discarded, the

file is called a local file.

TEXT FILES

The file type TEXT is a special built-in type within Pascal. It is defined

as:

TYPE TEXT = FILE OF CHAR;

Because text files are so common and important, three special

INTRODUCTION TO PASCAL 221

operators are provided in Pascal for processing text files. These three

procedures are: EOLN, READLN, and WRITELN. They will be described

in this section.

Text files are composed of lines, separated by end of line (EOLN)

markers. The actual end of line marker depends upon the code used. In

the case of the ASCII code, the combination carriage-return/linefeed is

used. However, this is made transparent in Pascal. Each line is compos-

ed of characters. The three special operators automatically recognize or

generate the end of line markers, thus respecting the text structure:

EOLN(F) is a Boolean function that tests for the end of

line marker. It is true if the end of line will be

the next character to be read. In this case, Ft

will be a blank after a READ or a GET,

regardless of the actual control characters used

internally to denote an end of line.

READLN(F, variable list) reads as many lines as necessary to fulfill the

variable list, then skips to the next line of text

from the file F. READLN(INPUT) is equivalent

to READLN. If no variable list is given, READLN
will skip to the beginning of the next line in the

text file.

WRITELN(F, variable list) writes a complete line of text, up to the end of

line marker, plus a carriage return and a

linefeed. WRITELN(OUTPUT) is equivalent to

WRITELN. If no variable list is given, WRITELN
will terminate the current line of the text file.

In addition, the READ and WRITE procedures offer other facilities when
operating on text files. For example, they will automatically convert any

integer, real or Boolean (for a WRITE operation), into a string of CHARs
on writing to a file. A series of parameters may also be used to read or

write a sequence of characters simultaneously. For example:

READ(LETTER,C1 ,C2,C3);

is equivalent to:

READ(LETTER,C1);

READ(LETTER,C2);

READ(LETTER,C3);

Note that READ(C1 ,C2,C3) means:

READ(INPUT,C1 ,C2,C3)

222 FILES

The parameters Cl, C2, C3 must be CHAR, INTEGER or REAL variables.

The same rule applies to READLN, WRITE, and WRITELN. However, in

the case of a WRITE, Cl, C2, C3 may be expressions.

Additional facilities are available on most Pascal implementations

which facilitate the processing of text files. However, they are generally

specific to the implementation, and should be handled accordingly.

TEXT FILE PROCESSING

The following are examples of typical text-processing program blocks :

Line Transfer:

VAR C : CHAR;

A,B : TEXT;

{TRANSFER A LINE FROM FILE A TO FILE B}

RESET(A); REWRITE(B);

WHILE NOT EOLN(A) DO
BEGIN

READ(A,C);

WRITE(B,C)

END; {WHILE}

File Copying:

{TRANSFER FILE ALONG WITH EOLNs}

RESET(A); REWRITE(B);

WHILE NOT EOF(A) DO
BEGIN

WHILE NOT EOLN(A) DO
BEGIN

READ(A,C);

WRITE(B,C)

END; {WHILE}

READLN(A);

WRITELN(B)

END; {WHILE}

These examples can be easily modified. In particular, the character read

from A may be processed instead of written into B. For example, the fre-

quency of occurrences of a given letter could be tallied, or, the message

in A could be encrypted (see the section of this chapter on exercises).

INTRODUCTION TO PASCAL 223

\

THE INPUT AND OUTPUT FILES

INPUT and OUTPUT are pre-defined Pascal text files. They normally

refer to the input medium (usually a keyboard) and the output medium
(CRT screen or printer). When no text file type is indicated, either IN-

PUT or OUTPUT is automatically assumed.

In other words, the following pairs of expressions are equivalent:

Expression: Means:

EOF EOF(INPUT)

EOLN EOLN(INPUT)

READ(CH) READ(INPUT,CH)

READLN READLN(INPUT)

WRITE(CH) WRITE(OUTPUT,CH)

WRITELN WRITELN (OUTPUT)

where CH represents a character.

When using INPUT or OUTPUT, RESET or REWRITE may not be used

for these two files.

CASE STUDY 2: CIPHER PROGRAM
The Problem

In order to protect the contents of a file from unauthorized reading,

the contents of the file are sometimes enciphered. The principle of a

simple cipher is to replace each letter in the text by another symbol in

such a way that no two letters are enciphered into the same symbol, or

so that the result cannot be deciphered anymore. One of the simplest

algorithms is to replace each letter by the n
th one following it in the

alphabet. Here, n is set to 3, but this could be easily changed. In this

case, an A will be a D, an E will be an H, etc.

The program must work both ways in order to encipher and decipher

a file. The first digit typed at the keyboard will specify the function to be

performed:

'O' means encipher.
'1

' means decipher.

Input to the program is shown in Figure 1 1 .9.

The Ecology Center is expanding its curbside recycling program. In addi-

tion to newspapers, we now pick up your recyclable glass containers,

aluminum, and cans from right in front of your home.

This latest program should more than triple the amount of materials we
collect. Besides drastically reducing the quantity of materials destined for

landfill, we will be saving valuable natural resources and lessening the

need for imported fuels.

Figure 77.9: Input for a Cipher Program

224 FILES

The corresponding output is shown in Figure 11.10.

1

#####WKH#HFRORJ
J
#FHGWHU#LWSDGGLAJ#LWV#FXUEVLGH#UHF

j
FOLGJ

SURJUDP1 ##LG#DGGLWLRG#WR#GHZVSDSHUV/#ZH#ARZ#SLFN#XS# RXU

UHF
J
FODEOH#JODVWFRGWDLGHUV/#DOXPLGXP/#DAG#FDGWJURP#ULJKW

LG#JURQW#RJ#
j
RXU0KRPH1

^^WKLV^ODWHVW#SURJUDP#VKRXOG#PRUH#WKDG#WULSOH#WKH#DPRXGW^RI
PDWHULDOV#ZH#FROOHFWl WEHVLGHWGUDVW1 FDOO

|
#UHGXFLGJ#WKH#TXDGWLW

RI#PDWHULDOV#GHVWLGHG#JRU#ODAGILOO/#ZH#ZLOO#EH#VDYLGJ#YDOXDEOH#

ADWXUDO#UHVRXUFHV#DGG#OHWHGLGJ#WKH#CHHG#IRU#LPSRUWHG#IXHOVl

Figure 11.10: Output of Cipher Program

Once enciphered, the file contains a 'V in the first line.

Note: this output of this program can now be used as input to decipher

the file.

The Program

The Cipher program listing is shown in Figure 11.11. Two files are

used:

INFILE holds the text typed in at the keyboard.

OUTFILE holds the modified text after enciphering or decipher-

ing.

Two variables are used:

CH holds the character read.

ENCIPH is a flag indicating whether or not the enciphering

mode is TRUE.

The corresponding declarations are:

PROGRAM ENDECIPHER(INPUT,OUTPUT, INFILE, OUTFILE);

VAR CH: CHAR;

ENCIPH: BOOLEAN;

INFILE, OUTFILE: TEXT;

The two files must be opened for input and output respectively:

BEGIN

RESET(INFILE);

REWRITE(OUTFILE);

INTRODUCTION TO PASCAL 225

PROGRAM ENDECIPHER(INPUT, OUTPUT, INFILE, OUTFILE);

VAR CH: CHAR; (* HOLDS CHARACTER READ *)

ENCIPH: BOOLEAN; (* FLAG FOR ENCIPHERING *)

INFILE, OUTFILE: TEXT;

BEGIN (* ENDECIPHER *)

RESET (I NFI LE);

REWRITE(OUTFILE);

READLN(INFILE, CH);

(* SET FLAG AND WRITE THE KEY LINE *)

IF CH = 'O' THEN

BEGIN (* ENCIPHER FLAG *)

ENCIPH := TRUE;

WRITELN(OUTFILE, 'l')

END (* ENCIPHER FLAG *)

ELSE (* CH = '1' *)

BEGIN (* DECIPHER FLAG *)

ENCIPH := FALSE;

WRITELN(OUTFILE, 'O')

END; (* DECIPHER FLAG *)

WHILE NOT EOF(INFILE) DO
BEGIN (* READ FILE *)

WHILE NOT EOLN(INFILE) DO
BEGIN (* READ LINE *)

READ(INFILE, CH);

IF ENCIPH THEN

CH := SUCC(SUCC(SUCC(CH)))

ELSE

CH := PRED(PRED(PRED(CH)));

WRITE(OUTFILE, CH)

END; (* READ LINE *)

WRITELN(OUTFILE);

READLN(INFILE)

END (* READ FILE *)

END. (* ENDECIPHER *)

Figure 11.11: CIPHER Program

226 FILES

The first character typed in specifies encipher ('0') or decipher ('V):

READLN(INFILE, CH);

The ENCIPH flag is set accordingly, and the "opposite" character is

written on the output file:

IF CH = 'O'* THEN

BEGIN

ENCIPH := TRUE;

WRITELN(OUTFILE/r)

END

ELSE

BEGIN

ENCIPH := FALSE;

WRITELNfOUTFILE/O')

END;

The text from the input file will be read until an end-of-file character is

found:

WHILE NOT EOF(INFILE) DO

A line is read:

BEGIN

WHILE NOT EOLN(INFILE) DO

A character is read in and either enciphered or deciphered, depending

on the value of the ENCIPFH flag, and then it is saved in OUTFILE:

BEGIN

READ(INFILE,CH);

IF ENCIPH THEN CH := SUCC(SUCC(SUCC(CH)));

ELSE CH := PRED(PRED(PRED(CH)));

WRITE(OUTFILE,CH)

END;

The program moves to the next line:

WRITELN(OUTFILE);

READLN(INFILE)

END
END

INTRODUCTION TO PASCAL 227

Cipher Summary

This program illustrates the use of an input and an output file, and

shows how text is read a character at a time, line by line, until the end of

the input. Each character is processed as it is read and the contents of

INFILE and OUTFILE are printed separately.

CASE STUDY 3: FIND OCCURRENCES OF A STRING

The Problem

The goal of this exercise is to design a program that will search a file of

text for a given string and display each occurrence of the string, coun-

ting the total number of times the string has been found in the text. This

is a common task when processing text files.

The corresponding program will illustrate the use of arrays of

characters, files, and text-processing.

A typical input file is shown in Figure 11.12.

NOW IS THE TIME FOR ALL GOOD MEN TO

)

COME TO THE AID OF THEIR COUNTRY. INPUT FILE

THIS IS THE END.)

Figure 1 1. 12: Input File for MATCHCOUNT

A run with the input given above results in the output shown in Figure

11.13.

ENTER STRING TO SEARCH FOR : THE
'

LINE# POSITION

1 : NOW IS THE TIME FOR ALL GOOD MEN TO
j

t
1

2 : COME TO THE AID OF THEIR COUNTRY. (

t
'

2 : COME TO THE AID OF THEIR COUNTRY. I

t
\

3 : THIS IS THE END.

t

4 : OCCURRENCES FOUND.

)
RUN OUTPUT

Figure 11.13: Run of MATCHCOUNT

228 FILES

PROGRAM MATCHCOUNT(INPUT,OUTPUT, SRCFIL);

(* PROGRAM TO COUNT NUMBER OF OCCURRENCES OF A GIVEN STRING *)

(* IN A FILE AND PRINT THE LINES CONTAINING THE STRING *)

TYPE STRING = ARRAY[1 .. 120] OF CHAR;

VAR WDCOUNT,LINECOUNT,WDLEN, LI NELEN,WDPOS, INDEX: INTEGER;

LINE,WORD: STRING;

SRCFIL: TEXT;

PROCEDURE PRINT(VAR STRNG: STRING; LENGTH: INTEGER);

VAR INDEX: INTEGER;

BEGIN

FOR INDEX := 1 TO LENGTH DO WR!TE(STRNG[INDEX]);

WRITELN

END;

PROCEDURE FIND(VAR STR1,STR2: STRING; LEN1 ,LEN2: INTEGER;

VAR POSITION: INTEGER):

(* PROCEDURE TO FIND LOCATION OF STR1 IN STR2 *)

(* STARTS LOOKING AT POSITION, RETURNS LOCATION IN POSITION *)

(* RETURNS POSITION > LEN2-LEN1 -hi IF NO MATCH *)

VAR CNT1 ,CNT2,CMPVAL: INTEGER;

BEGIN
CMPVAL := LEN2-LEN1 +1; (* SPEEDS UP LOOP *)

REPEAT

POSITION := POSITION + 1 ;

IF STR2[POSITION] = STR1 [1]
THEN (* CHK IF 1ST CHRS MATCH *)

BEGIN (* CHECK IF REST OF STRING MATCHES *)

CNT1 := 1;

CNT2 :
= POSITION;

REPEAT

CNT1 := CNT1 + 1

;

CNT2 := CNT2+1

UNTIL (STR2[CNT2] <> STR1[CNT1]) OR (CNT1 > LEN1

)

END;

UNTIL (POSITION > CMPVAL) OR (CNT1 > LEN1
)
(* EOLN OR WORD FOUND *)

END;

BEGIN (* MATCHCOUNT *)

WDCOUNT := 0;

Figure 11.14: MATCHCOUNT Progran

INTRODUCTION TO PASCAL 229

LINECOUNT : =0;

WDLEN : = 0;

WRITE('ENTER STRING TO SEARCH FOR :');

REPEAT (* GET STRING TO MATCH *)

WDLEN := WDLEN + 1;

READ(WORD[WDLEN])

UNTIL EOLN;

WDLEN := WDLEN — 1 ;

WRITELN;

RESET(SRCFIL);

WRITELN('LINE# POSITION');

WHILE NOT EOF(SRCFIL) DO
BEGIN

LINELEN := 0;

REPEAT (* GET LINE TO CHECK *)

LINELEN := LINELEN + 1 ;

READ(SRCFIL,LINE[UNELEN])

UNTIL EOLN(SRCFIL);

LINECOUNT := UNECOUNT+ 1

;

WDPOS :
= 0;

REPEAT (* LOOP TO CHECK FOR MULTIPLE MATCHES *)

FI ND(WORD, LINE, WDLEN, LINELEN,WDPOS);

IF (WDPOS > 0) AND (WDPOS < = LINELEN -WDLEN +
1)
THEN

BEGIN (* MATCH FOUND - SHOW IT *)

WDCOUNT := WDCOUNT+1;

WRITE(LINECOUNT:5/ :');

PRINTLINE, LINELEN);

FOR INDEX := 1 TO WDPOS + 6 DO
WRITER ');

WRITELN('t')

END
UNTIL WDPOS > LINELEN -WDLEN -hi

END,

WRITELN;

WRITELN(WDCOUNT:6/ OCCURRENCES FOUND/)

END. (* MATCHCOUNT *)

Figure 11.14: MATCHCOUNT Program (continued)

230 FILE!

The Program

The program listing is shown in Figure 1 1 .14. The program uses a file

called SRCFIL, of type TEXT, to store the text to be searched:

PROGRAM MATCHCOUNT(INPUT, OUTPUT, SRCFIL);

The type STRING is defined as an array of 120 characters, the max-

imum width of a line on most printers. The two variables LINE and

WORD are declared as STRINGS:

TYPE STRING = ARRAY[1 .. 120] OF CHAR;

VAR WDCOUNT,LINECOUNT,WDLEN, LI NELEN,WDPOS, INDEX: INTEGER;

LINE,WORD: STRING;

SRCFIL: TEXT;

This program uses two procedures: PRINT and FIND. The PRINT pro-

cedure displays or types a string, STRING, up to a given position within

the string called LENGTH:

PROCEDURE PRINT (VAR STRNG: STRING; LENGTH: INTEGER);

VAR INDEX : INTEGER;

BEGIN

FOR INDEX :
= 1 TO LENGTH DO WRITE(STRNG[INDEX]);

WRITELN (* MOVE TO NEXT LINE *)

END;

The procedure FIND searches the string STR2 for the occurrence of

the string STR1 . The search starts at the location following POSITION. If

a match is found, POSITION returns the location of the match. Other-

wise, POSITION returns a value greater than LEN2-LEN1, indicating a

no-match situation. LEN2 is the length of STR2. LEN1 is the length of

STR1

.

The procedure declares three local variables. CNT1 and CNT2 are

counter variables used in the search loop. CMPVAL is the last position of

STR2 that should be examined. When the POSITION counter exceeds

CMPVAL, the search has failed.

PROCEDURE FIND (VAR STR1,STR2: STRING; LEN1 ,LEN2: INTEGER;

VAR POSITION: INTEGER);

VAR CNT1,CNT2, CMPVAL: INTEGER;

BEGIN

CMPVAL := LEN2-LEN1 -FI;

INTRODUCTION TO PASCAL 231

A REPEAT loop is used to implement the search. The variable POSI-

TION points to the first letter within STR2 that is tested for a match with

the first letter of STR1 . The first letters of STR1 and STR2 are compared:

REPEAT

POSITION := POSITION + 1 ;

IF STR2[POSITION] = STR1 [1]
THEN

If the first letters of each string match, the remaining ones are com-

pared. CNT1 points to the next letter of STR1. CNT2 points to the next

letter of STR2.

BEGIN

CNT1 := 1;

CNT2 := POSITION;

REPEAT

CNT1 := CNT1+1;

CNT2 := CNT2 + 1

The characters respectively pointed to by CNT1 and CNT2 are com-
pared:

UNTIL (STR2[CNT2] <> STR1 [CNT1])

OR (CNT1 > LEN1

)

END;

This REPEAT loop stops in either of two cases:

1. STR2[CNT2] <> STR1[CNT1] : the characters do not match, i.e.,

no string match was found.

2. CNT1 > LEN1 : all LEN1 characters of STR1 matched those star-

ting at location POSITION of STR2, i.e., a match was found.

The external REPEAT loop is repeated:

UNTIL (POSITION > CMPVAL) OR (CNT1 > LEN1

)

END;

This loop stops in two cases:

1 . CNT1 > LEN1 : a match had been found within the inner REPEAT
loop.

2. POSITION > CMPVAL : the end of STR2 has been reached

without a match.

232 FILE

Note that, in either case, POSITION holds the information relative to

the match when the FIND procedure terminates.

The program itself is straightforward:

WDCOUNT
LINECOUNT
WORD
LINE

WDLEN

LINELEN

WDPOS

is used to hold the number of successful matches,

is used to count and display the lines of text,

holds the string to be looked up in the text,

holds a line of text.

holds the number of characters within the

WORD.
holds the number of characters within the LINE,

holds the position just before the one at which

the search will start.

Counter variables are initialized to 0 and the WORD is read from the

keyboard, a character at a time, until an EOLN is found:

BEGIN

WDCOUNT :
= 0;

LINECOUNT := 0;

WDLEN :
= 0;

WRITE ('ENTER STRING TO SEARCH FOR: ');

REPEAT

WDLEN := WDLEN + 1;

READ(WORD[WDLEN])

UNTIL EOLN;

The REPEAT loop executes until an EOLN is read, i.e., "one too many"
characters are read. The actual length of WORD is therefore:

WDLEN := WDLEN- 1;

The program now reads the text from the SRCFIL, a line at a time.

WRITELN;

RESET(SRCFIL);

WRITELN('LINE 0 POSITION');

WHILE NOT EOF(SRCFIL) DO
BEGIN

LINELEN := 0;

REPEAT

LINELEN := LINELEN -F 1 ;

READ(SRCFIL,LINE[LINELEN])

UNTIL EOLN(SRCFIL);

INTRODUCTION TO PASCAL 233

A line has now been read and is contained in LINE. This line of text is

now examined for occurrences of the specified WORD; using the FIND
procedure:

LINECOUNT := LINECOUNT+1;

WDPOS := 0;

REPEAT

FIND(WORD,LINE,WDLEN,LINELEN,WDPOS);

IF(WDPOS > 0) AND (WDPOS < = LINELEN-WDLEN-F
1)
THEN

Once FIND has executed, the resulting value of WDPOS is examined to

determine whether or not a match has been found. If so, the match is

displayed, using the PRINT procedure:

BEGIN

WDCOUNT := WDCOUNT+ 1;

WRITE(UNECOUNT:5/ :');

PRINTLINE, LINELEN);

FOR INDEX := 1 TO WDPOS + 6 DO
WRITER ');

WRITELN(' t ')

END

This process is repeated for possible multiple occurrences of WORD
within LINE, until no more characters remain to be tested in LINE:

UNTIL WDPOS > LINELEN —WDLEN H-

1

The outer WHILE loop is executed until an EOF character is en-

countered in one input file and the number of matches is displayed:

END;

WRITELN;

WRITELN(WDCOUNT : 6/ OCCURRENCES FOUND/)

END. (* MATCHCOUNT *)

234 FILE!

UCSD FILES

In Standard Pascal, files are formally defined in a manner that is in-

dependent of the medium on which they reside. In fact, the definition of

files was obviously inspired by magnetic tape files and the core

technology used for main memories. (Magnetic tapes and core were

storage media for files that were prevalent at the time that Pascal was
defined.) Thus, all access to files is sequential.

In UCSD Pascal, files are thought of as disk files, although they may
also reside on tape. Disks have become the most prevalent storage

device for small computers. As a result, the access mechanisms provid-

ed in Standard Pascal are insufficient and inconvenient for disk-based

files. Additional structures and access mechanisms are provided in

UCSD Pascal.

UCSD Volumes

Each physical input/output device (or combination of devices) is call-

ed a volume. Examples of such devices are the printer, the console, and

a disk. The keyboard and the screen of the console are also considered

as separate volumes.

Each volume is given a volume name. Several common volumes have

reserved names. For example:

CONSOLE: refers to the screen and keyboard combination

with echo.

PRINTER: refers to the line printer.

UCSD Structure of I/O Devices

UCSD Pascal distinguishes between block-structured devices and

non-block-structured devices. A block-structured device stores informa-

tion in blocks or records of equal size. For example, a disk may use

128-byte blocks. A block-structured device always has a directory and

may contain several files.

A non-block-structured device is a sequential device where data is not

organized in internal blocks. Examples of such devices are a keyboard

and a printer.

Note that files handled by the operating system will be called external

files to differentiate them from the file type defined by a Pascal program.

UCSD External Filenames

A file is referred to by volume and by name. A file name includes up to

15 characters and must end with .TEXT or .CODE in order to be com-

pilable or executable respectively as a program.

TEXT and CODE are called type suffixes. They designate the valid use

NTRODUCTION TO PASCAL 235

of a file. Here are examples of valid filenames for programs:

DI SKI : PROG EX.TEXT

DISK2 : DEMO.TEXT

UCSD External File Types

Each file stored on a disk has a type that designates the nature of the

file. Eight file types are pre-defined, i.e., reserved types in UCSD Pascal.

They include:

.TEXT ASCII characters, i.e., ordinary readable text

or .BACK .BACK is generally used when creating a back-up

copy of a file during editing

.CODE Executable code (compiled)

.DATA Data

.BAD Used to cover a defective area on the disk

.GRAF Not implemented

.FOTO Memory image of a screen contents

.INFO Information for the debugger

UCSD Pascal File Types

UCSD Pascal distinguishes between typed files and untyped files.

Typed files are those of Standard Pascal. Untyped files are specific to

UCSD Pascal. A Standard Pascal file is defined by:

FILENAME : FILE OF type;

An untyped file is declared without a type:

FILENAME : FILE;

In addition, UCSD Pascal defines an additional type called INTERAC-

TIVE.

UCSD INTERACTIVE FILES

When a user program is executed, three special files are automatically

opened: INPUT, OUTPUT, and KEYBOARD. These three files are defin-

ed as INTERACTIVE:

INPUT has the usual effect of echoing the character

typed at the keyboard.

KEYBOARD does not echo. This feautre may be used for typ-

ing a secret password, or for echoing a different

character.

OUTPUT allows control of the output, which may be stop-

ped or discontinued.

236 FILE

INPUT may be defined by the user. Otherwise it is set by default to the

CONSOLE device. Whenever a character is typed at the console, and

read by READ(INPUT,CH), it is echoed automatically at the console.

OUTPUT may be defined by the user. Its default value is the CON-
SOLE. KEYBOARD operates like INPUT, but it does not echo.

A file variable may be declared as INTERACTIVE. For example:

VAR F1,F2,F3 : INTERACTIVE;

An INTERACTIVE file is a file of type TEXT which is read differently than

other files.

When reading a normal file, READ(F,CH) is equivalent to:

CH := Ft (obtain character from the window variable)

GET(F); (move window)

This means that the process required to open a file must load a value in-

to the window variable Ft .

If the input file is the keyboard, this means that the file cannot be

opened until a character is typed at the keyboard. This happens

because Pascal was originally defined in a non-interactive environment.

In order to provide the convenience of interaction, INTERACTIVE files

are such that READ(F,CH) operates as follows:

GET(F);

CH := Ft

This way, a file may be opened without immediately loading the buffer

variable with the first character of the file. Then a character may be

typed at a later time.

In the case of INTERACTIVE files, EOF, EOLN and RESET present slight

differences from Standard Pascal.

As a result of this definition, EOLN is used differently for a UCSD IN-

TERACTIVE file. When reading, EOLN becomes TRUE only after reading

a carriage-return (the end of line character). The result of reading the

carriage-return is a blank.

UCSD EOF, EOLN, and RESET

EOF, EOLN, and RESET operate as in Standard Pascal for all non-

INTERACTIVE files. Differences exist for INTERACTIVE files and are

described below.

UCSD EOF(file)

When typing text at the console, EOF remains FALSE. In order to set

EOF to TRUE, the proper EOF character must be explicitly typed at the

INTRODUCTION TO PASCAL 237

keyboard. EOF(file) is also TRUE if the file is closed. EOF(file) is FALSE

after a RESET(file). If EOF ever becomes TRUE during a file read such as

READ(file,...) or GET (file), the data is undefined (the end of the file has

been passed).

UCSD EOLN(file)

This function is defined only for a text file. The end of line character is

a carriage-return. EOLN is TRUE after reading past the carriage-return.

Whenever EOF(file) is TRUE for a text file, EOLN(file) is automatically

TRUE.

UCSD RESET(F)

For non-interactive files, RESET operates essentially like it does in

Standard Pascal. In the case of INTERACTIVE files, the UCSD RESET

merely positions the buffer variable at the beginning of the file, but does

not load it. In this case UCSD RESET will behave like the RESET of Stan-

dard Pascal if it is followed by a GET, as shown below:

RESET (F);

GET(F);

UCSD Pascal provides a second form of RESET that may be used to

open an existing file:

RESET(fileidentifier, directoryfilename);

where directoryfilename may be a string variable or a string constant.

For example:

RESET(FI,'CONSOLE

:

7

)

RESET(F 1 ,
'SAMPLE. TEXT'

)

If a RESET is performed on a file that has already been opened, an er-

ror will be returned in IORESULT, and the file is left unchanged. RESET

brings the file pointer back to the beginning of the file (element 0).

When operating on a usual file (non-INTERACTIVE), RESET also gets the

value of the first element of the file into the window variable.

However, remember that, when operating on a file of type INTERAC-
TIVE, RESET does not accomplish this last action, i.e., it does not per-

form a GET.

UCSD Input-Output

In UCSD Pascal, READ and WRITE may be used only with TEXT or

FILE OF CHAR.

238 FIL

GET(filename)

This procedure is the usual one. However, jt may only be used with

typed files, i.e., files defined with a type as in Standard Pascal. This pro-

cedure may not be used on untyped files.

PUT(filename)

This procedure is also the usual one. It may only be used on typed

files.

READ(filename, characters)

READLN(filename, characters)

The characters may be a STRING or a PACKED ARRAY OF
CHARacters. These procedures are restricted to text files and to interac-

tive files.

As in Standard Pascal, if no filename is specified, INPUT or OUTPUT
is the default value.

Unlike Standard Pascal, READ may read a complete string rather than

a character. When reading a STRING, the line will be used up to the

carriage-return (the end of line). At this point, EOLN(filename) becomes

TRUE. No more string may be read as READ(string). The solution is

either to use READLN_or READ(character).

A Boolean value may not be read. When reading an integer, leading

blanks and the end of line are eliminated automatically.

WRITEffilename, characters)

WRITE LN(filename, characters)

In UCSD Pascal, WRITE and WRITELN do not operate on a Boolean

variable and will not print 'TRUE' or 'FALSE'. However, they allow

printing an entire PACKED ARRAY of CHARs or a STRING with a single

statement. For example:

VAR COUNTRY : PACKED ARRAY[0..2] OF CHAR;

BEGIN

COUNTRY := 'USA'

WRITELN(OUTPUT,COUNTRY);

END

Field width specifications may be used with UCSD STRINGS. If the

field width is longer than the length of the string, leading blanks are in-

serted. If the field width W is smaller, only the first W characters are

INTRODUCTION TO PASCAL 239

printed. For example:

VAR A : STRING;

BEGIN

A :
= 'ABCDEF ETC;

WRITELN(S);

WRITELN(S : 3);

WRITELN(S : 12);

END

will produce:

ABCDEF ETC

ABC

ABCDEF ETC

UCSD REWRITE (filename, directory filename)

REWRITE must be written with two parameters instead of one as in

Standard Pascal:

REWRITE(filename,directory filename);

where directory filename may be a string variable or a constant. For ex-

ample:

REWRITE(F, 'EXAMPLE. TEXT')

The directory filename must always be supplied. It is any legal file title

(a string).

If a file is already open, a REWRITE will cause an error to be returned

in IORESULT and the file is left unchanged. This is one case where a

Standard Pascal program will not run in UCSD Pascal and must be

modified.

CLOSE(filename[,parameter])

When no parameter is used, this procedure sets the file to the closed

state. A disk file that was opened with REWRITE will be "erased," i.e.,

removed from the directory by a CLOSE. When a parameter is used, the

file is marked as closed, and secondary effects occur.

The parameter is optional and, when present, may take three values

240 FILES

(it must be preceded by the comma, as shown above):

LOCK if the file was opened with REWRITE and resides

on a directory-structured device, the file becomes
locked, i.e., permanent. Otherwise, it is simply

closed.

PURGE if the file resides on a block-structured device, the

TITLE of the filename is removed from the direc-

tory. Otherwise, the device is disconnected from

the system.

CRUNCH the file gets blocked at the last position of a GET
or a PUT and ends there.

At the end of any CLOSE, filename! is undefined.

IORESULT

This function is provided to check the result of an I/O operation. The

function yields an integer result. The result is 0 if there is no error, and

has a value between 1 and 15 if an error has occurred. The error

numbers are:

0 No error

1 Bad block, parity error (CRC)

2 Bad unit number

3 Bad mode, illegal operation

4 Undefined hardware error

5 Lost unit, unit is no longer on-line

6 Lost file, file is no longer in directory

7 Bad title, illegal file name
8 No room, insufficient space

9 No unit, no such volume on line

10 No file, no such file on volume

11 Duplicate file

12 Not closed, attempt to open an open file

13 Not open, attempt to access a closed file

14 Bad format, error in reading real or integer

15 Ring buffer overflow

UNITBUSY(unitnumber)

This function is TRUE if the specified device is busy, i.e., waiting for

the completion of an I/O transfer. This function is implemented only for

DEC computers.

INTRODUCTION TO PASCAL 241

UNITWA IT(unitnumber)

This procedure waits until the specified device is no longer busy, i.e.,

until it has completed an I/O transfer. This function is implemented only

on DEC computers.

UNITCLEA R(unitnumber)

This procedure cancels any I/O for the specified device. It resets it to

its "clear" state, corresponding to the power-up state. If the device does

not exist, IORESULT becomes non-zero.

UCSD Pascal UNITREAD and UNITWRITE

These two procedures are provided for the experienced programmer,

and should not be used by the novice. The format for each procedure is:

UNITREAD(unitnumber;packedarray, length, [blocknumber], [integer]);

UNITWRITE(unitnumber,packedarray, length, [blocknumber], [integer]);

These procedures are used to transfer bytes conveniently from one

device to another. The block specification is optional.

unitnumber

packedarray

length

blocknumber

integer

is the number of the I/O device,

may be subscripted to indicate the starting

address of the transfer,

is the number of bytes to be transferred,

must be used with a block-structured I/O

device such as a disk. It indicates the block

number at which the transfer starts. 0 is the

default value.

is 0 unless a 1 is specified. A 1 specifies an

asynchronous transfer.

UCSD Untyped Files

Untyped files are declared as:

VAR filename, filename, ..., filename : FILE;

Such files have no internal structures and no window variable. All in-

put/output to an untyped file must be performed with the two special

functions BLOCKREAD and BLOCKWRITE. The files are opened and
closed with the usual procedures (e.g., RESET, REWRITE, CLOSE).

242 FILES

BLOCKREAD(filename, array,blocks, [relblock])

BLOCKWRITE(filename, array,blocks, [relblock])

These functions perform a transfer and return the number of blocks of

data actually transferred. This number is an integer. The parameters are:

filename must have been declared as an untyped file.

array is a PACKED ARRAY OF CHARacters. Its

length must be a multiple of 512. The array

may be indexed if the transfer is to start in

the middle of the array.

blocks represents the number of blocks of data to

be transferred. One block has 512 bytes.

relblock this parameter is optional. If none is

specified, the transfers will occur sequential-

ly. Relblock may be specified as the position

of the block within the file. (The first block

in a file is numbered zero).

BLOCKREAD and BLOCKWRITE are used to transfer blocks between
untyped files. The "array" is generally a buffer, [relblock] is generally

used to specify a block number. A single block is transferred by using 1

as the specification for 'blocks' in the parameter list.

After the transfer, BLOCKREAD and BLOCKWRITE return the number
of blocks actually transferred. Returning a 0 indicates an error.

Throughout a transfer loop, IORESULT is checked for a non-zero

value that would detect an error.

UCSD Random Access to a File

In Standard Pascal, all access to a file is sequential. In UCSD Pascal,

records may be randomly accessed within a file with the SEEK pro-

cedure. The syntax is:

SEEK(fileidentifier,recordnumber)

The first record number in a file is record 0. SEEK may be used to access

the record. Then GET(fileidentifier) may be used to get the record and

advance the window.

In case the record must be written, PUT(fileidentifier) may be used.

Naturally, records should not be SEEKed or PUT after the end of a file.

INTRODUCTION TO PASCAL 243

For example, record 3 of file SAMPLE stored as 'DEMO. DATA' is access-

ed by:

VAR SAMPLE : FILE OF RECORD

BEGIN

RESET(SAMPLE, 'DEMO. DATA');

SEEK(SAMPLE,3);

GET(SAMPLE); {WINDOW IS ADVANCED}

SEEK(SAMPLE,3); {MOVE BACK WINDOW}
PUT(SAMPLE);

END;

In summary, the SEEK procedure moves the file pointer to the

specified position. This procedure operates only on structured files (not

TEXT files). A GET or a PUT must be executed between two SEEKs. The

procedure exits with EOF and EOLN FALSE.

UCSD Input and Output Summary

In UCSD Pascal, the following functions or procedures differ slightly

from Standard Pascal:

EOF, EOLN, GET, PUT, READ, WRITE, READLN, WRITELN, RESET, REWRITE

The following additional functions or procedures are provided:

BLOCKREAD, BLOCKWRITE, UNITREAD, UNITWRITE, UNITBUSY,

UNITWAY, UNITCLEAR, CLOSE, IORESULT, SEEK

These additional functions or procedures facilitate writing systems pro-

grams or control programs.

In UCSD Pascal, three files of type INTERACTIVE are automatically

opened when a program is executed. They are: INPUT, OUTPUT, and

KEYBOARD. Any additional files used by the program must be declared

in the usual way.

244 FILES

SUMMARY

The files are the only data structure that may vary in size. In Standard

Pascal, all access to files is sequential. Special operators are provided to

read and write files one element at a time, as well as to position the win-

dow over the proper file element.

A special predefined type, the TEXT file, is supplied by Pascal along

with special operators, to facilitate text processing.

EXERCISES __
77 - 7 : Write a program that prints the number of times each letter of the

alphabet occurs in a given text file.

11 -2 : Write a program that reads a file and prints it in double or triple space

,

depending upon the user specifications.

11 -3: Write another program like that in Exercise 11-2 but number all of the

lines on the output.

11 -4: Write a procedure to skip blanks in a line of text being read.

1

1

-5: Sort a file of integers in ascending order. Can this be done with one file ? Is

it faster to use two

?

11 -6: Write a text editor program with commands to delete, append, insert

,

display and change lines in a text file.

11 -7: Read a file of records containing the following fields: name, customer

number, amount, a field containing a 0 or a 1 (1 if the amount is a credit,

0 if the amount is a debit), address, city, state, and Zip Code. Divide the

file into two files, one file of names of people with credit, the other file of

names of people with debits. Write only the name and complete address

on the output files, not any other information.

CHAPTER

SETS

247

TYPE CARS

FLEET

SETS IN PASCAL

set in Pascal is a collection of objects of the same type. The max-

imum number of elements in the set is defined by the specific im-

plementation. This number is generally small, and may be on the order

of 64 to 256. The type of the objects belonging to the set is called the

"base type" of the set. They may be of any scalar type, but not of a

structured type. The formal definition of a set is shown in Figure 12.1.

simple type

Simple type syntax

Figure 12. 1: Formal Syntax of the Set Type

For example, let us look at a set declaration:

(DODGE, FORD, GM, VOLVO, VW, JEEP, HONDA, TOYOTA, PEUGOT,

MERCEDES, RENAULT);

SET OF CARS;

CARS is an enumeration, and FLEET is a set type. Variables of type FLEET

are declared as:

VAR AVIS, HERTZ, NATIONAL, FUTURECO : FLEET;

248 SETS

The base type of FLEET (a set) is CARS. We could write the following

assignments in the program:

4

AVIS : = [FORD, GM];

HERTZ := [FORD, DODGE];

NATIONAL := [GM];

FUTURECO :=
[];

Variables of the type FLEET are sets with 0 to 1 1 members which were

listed in the declaration for the type CARS. If a set has no value, it is call-

ed an empty set and is denoted by [].

Sets are given values by specifying set constants as a list of constants

enclosed in square brackets. (See the previous examples of AVIS,

HERTZ, NATIONAL and FUTURECO.) The usual abbreviation may
be used for an ordered enumeration, and may, for example, be written:

RENTACAR := [DODGE .. JEEP];

This is equivalent to:

RENTACAR : = [DODGE, FORD, GM, VOLVO, VW, JEEP];

In general, if a base type has n values (n is called the cardinality of the

base type), then the cardinality of the corresponding set type is 2
n
(the

number of different combinations of values.)

CONSTRUCTING A SET

Sets may be constructed by enumerating their elements. For example:

[
1 , 2

, 8 , 10
]

[T, 'M', T, 'S']

[ALPHA, BETA -f 2, DELTA]

[
1 - 10

]

['A' .. 'L']

['A' .. 'L', ' + ', '0'
.. '9']

Note that an expression may be used to specify an element. The

enumeration symbol may also be used.

The syntax for set construction is shown in Figure 12.2.

INTRODUCTION TO PASCAL 249

OPERATIONS ON SETS

The three main operations on sets are the union, intersection, and dif-

ference (or complement). All three of these operations are provided in

Pascal.

The union of two sets is a set that contains the elements of both sets.

This operation is denoted by a " + ". For example:

['A', 'B'] + ['C, 'D', 'E']

results in:

['A' .. 'E']

Symbolically, the union of two sets, SI and S2, is shown in Figure 12.3.

Figure 12.3: Union of Two Sets (S1US2)

250 SETS

The intersection of two sets is the set that contains elements common
to both sets. The intersection operator is

// *' /

. For example:

['A', 'B', 'D', 'F'] * ['B', 'G', X]

results in:

m

The intersection of two sets is illustrated in Figure 12.4.

The difference of two sets, or the complement, is the set of elements of

the first set which are not included in the second set. The corresponding

operator is" - ". For example:

['A', 'B', 'D', 'F'] - ['B', 'G', X]

results in:

['A', 'D', 'F']

The difference of two sets is illustrated in Figure 12.5.

Relational Operators

The assignment instruction may be used on sets as well as four of the

relational operators: =, < >, <=, >=, and a special operator, IN'.

INTRODUCTION TO PASCAL 251

The relational operators have the following meanings:

= Set equality

< > Set inequality

<= Inclusion (contained in)

>= Inclusion (contains)

To be more specific, the set A is contained in the set B if all of the

elements of A are in B. For example:

[FORD.. VOLVO] <= [DODGE. .JEEP] is TRUE

An example of inequality is:

AVIS< > HERTZ which is TRUE

Set Membership

A special operator, represented by IN, provides the set membership

function. This function tests if a value is a member of a set. IN is preced-

ed by an expression which must yield a value, and is followed by an ex-

pression of the set type. The syntax is:

expression IN set

This operator results in a TRUE or FALSE value. For example, if we must

determine whether a character is a digit between 0 and 9, we can write:

CH IN ['0'./9']

The membership function can be used to advantage when testing

characters or values against permissible sets.

Here is an example where GRADE must be between 5 and 10:

GRADE IN [5.. 10]

Sets are often combined with the CASE statement. For example:

IF LETTER IN ['.', ';']

THEN

CASE LETTER OF

V, '/ : WRITELN('DOT OR COMMA');
'?'

: WRITELN('QUESTIONMARK');

y : WRITELNf'COLON OR SEMICOLON')

END {CASE}

ELSE WRITELN ('NO SPECIAL SYMBOL');

252 SETS

CASE STUDY: IDENTIFYING CHARACTERS

The Problem

A common problem when processing text is that of identifying

characters or strings as belonging to a specific category. In this program,

the characters typed at the keyboard will be classified in one of five

categories:

— Upper case letters

— Lower case letters

— Digits from 0 to 9

— Punctuation marks

— Special symbols

A typical input is shown in Figure 12.6.

ENTER LINES TO BE EVALUATED:

TO SEE is to BELIEVE.

This one weighs 1 1 .27 lbs!

Testing, testing 1 2 3 ...

Figure 72.6: Input to CATEGORIZECHARS

A typical output is shown in Figure 12.7.

FOUND

:

13 UPPERCASE CHARACTERS

33 LOWERCASE CHARACTERS

7 NUMERIC CHARACTERS

7 PUNCTUATION CHARACTERS

0 SPECIAL CHARACTERS

17 UNDEFINED CHARACTERS

77 TOTAL

Figure 12.7: Output Generated by CATEGORIZECHARS

INTRODUCTION TO PASCAL 253

PROGRAM CATEGORIZECHARS(I NPUT, OUTPUT);

(* READS LINES AND FINDS CHARACTERS OF THE FOLLOWING CATEGORIES: *)

VAR UPPERALPHA: SET OF CHAR;

LOWERALPHA: SET OF CHAR;

NUMERIC: SET OF CHAR;

PUNCTUATION: SET OF CHAR;

SPECIAL: SET OF CHAR;

UXN.P.S, UNDEFINED: INTEGER;

CHR: CHAR;

BEGIN (* CATEGORIZE CHARS *)

UPPERALPHA := ['A'./Z'];

LOWERALPHA := ['a'..'z'];

NUMERIC := ['0'..'9'];

N :
= 0;

P := 0;

S :
= 0;

UNDEFINED := 0;

WRITELN('ENTER LINES TO BE EVALUATED:');.

WHILE NOT EOF DO
BEGIN

WHILE NOT EOLN DO BEGIN

READ(CHR);

IF NOT(CHR IN UPPERALPHA + LOWERALPHA + NUMERIC +
PUNCTUATION + SPECIAL)

THEN UNDEFINED := SUCC(UNDEFINED)

ELSE IF CHR IN UPPERALPHA THEN U := SUCC(U)

ELSE IF CHR IN LOWERALPHA THEN L := SUCC(L)

ELSE IF CHR IN NUMERIC THEN N := SUCC(N)

ELSE IF CHR IN PUNCTUATION

THEN P := SUCC(P)

ELSE S := SUCC(S)

PUNCTUATION :=

SPECIAL :=

U :
= 0;

L := 0;

Figure 12.8: CATEGORIZECHARS Program

254 SETS

END;

READLN

END;

WRITELN;

WRITELN('FOUND :');

WRITELN(U:5, ' UPPERCASE CHARACTERS');

LOWERCASE CHARACTERS');

NUMERIC CHARACTERS');

PUNCTUATION CHARACTERS');

SPECIAL CHARACTERS');

UNDEFINED CHARACTERS');

WRITELN(L:5,

WRITELN(N:5,

WRITELN(P:5,

WRITELN(S:5,

WRITELN(UNDEFINED:5

WRITELNf' ');

WRITELN(U + L + P + S+ UNDEFINED:5,' TOTAL.

END. (* CATEGORIZECHARS *)

Figure 12.8: CATEGORIZECHARS Program (cont.)

The Program

Looking at the program presented in Figure 12.8 we see that each of

the five categories of characters is declared as a set, and the proper

values are assigned to each set.

PROGRAM CATEGORIZECHARS(INPUT, OUTPUT);

(* READS LINES AND FINDS CHARACTERS OF THE FOLLOWING CATEGORIES: *)

VAR UPPERALPHA:, SET OF CHAR;

LOWERALPHA: SET OF CHAR;

NUMERIC: SET OF CHAR;

PUNCTUATION: SET OF CHAR;

SPECIAL: SET OF CHAR;

U^N.P.S, UNDEFINED: INTEGER;

CHR: CHAR;

BEGIN (* CATEGORIZE CHARS *)

UPPERALPHA := ['A'..'Z'];

LOWERALPHA := ['a'./z'];

NUMERIC := ['0'..'9'];

PUNCTUATION :=

SPECIAL := ['#'/$'/%'/&',' f / _ / /r/ ty / if /*/ /

/ / L / J / ' / >

""/n
'/@1;

NTRODUCTION TO PASCAL 255

Five counter variables named U, L, N, P, S are used to count the

number of characters found in the text that belong to each of the five

groups. These counter variables are initialized to 0:

U : = 0;

L := 0;

N : = 0;

P := 0;

S := 0;

A variable called UNDEFINED is used to count the number of

characters that do not belong to any of the five groups. This variable is

also initialized to 0:

UNDEFINED := 0;

A prompt is generated:

WRITELN('ENTER LINES TO BE EVALUATED:');

and a WHILE loop is executed to capture the text being typed in:

WHILE NOT EOF DO

The text is read line by line, as explained in the previous chapter:

BEGIN

WHILE NOT EOLN DO BEGIN

(statements)

END;

Within the WHILE loop, each character is read in turn, and tested:

READ(CHR);

If the character does not belong to the union of the five sets, it is

undefined:

IF NOT (CHR IN UPPERALPHA + LOWERALPHA + NUMERIC +
PUNCTUATION 4- SPECIAL)

THEN UNDEFINED := SUCC(UNDEFINED)

If the character belongs to one of the five sets, the corresponding

256 SETS

counter is incremented:

ELSE IF CHR IN UPPERALPHA THEN U •= SUCC(U)

ELSE IF CHR IN LOWERALPHA THEN L := SUCC(L)

ELSE IF CHR IN NUMERIC THEN N := SUCC(N)

ELSE IF CHR IN PUNCTUATION

THEN P := SUCC(P)

ELSE S : = SUCC(S)

Once the WHILE NOT EOLN has been satisfied, the next line is read,

until an EOF is found:

READLN

END;

The values of the occurrence counters are then printed out:

WRITELN;

WRITELNfFOUND :');

WRITELN(U:5/ UPPERCASE CHARACTERS');

WRITELN(L:5,' LOWERCASE CHARACTERS');

WRITELN(N:5,' NUMERIC CHARACTERS');

WRITELN(P:5,' PUNCTUATION CHARACTERS');

WRITELN(S:5,' SPECIAL CHARACTERS');

WRITELN(UNDEFINED:5,' UNDEFINED CHARACTERS');

WRITELN(' ');

WRITELN(U + L+ N + P+ S+ UNDEFINED:5,' TOTAL.')

END. (* CATEGORIZECHARS *)

NTRODUCTION TO PASCAL 257

UCSD SETS

Sets may have (at most) 4080 elements, and are limited in size to 255

words. Set comparisons and operations on two sets are valid, provided

that the type of both sets is identical (same base type) or both sets are

subranges of the same base type.

SUMMARY

The set is a convenient data structure provided by Pascal when a

variable can only take a small number of values. Note, however, that

Pascal sets are not as general as the definition of sets in mathematics.

Many implementations impose specific restrictions on the way in which

sets may be used or operated on. The set type is, therefore, one of the

available alternatives that should be considered when devising an ap-

propriate data structure. Often, other data structures such as files or

records can be used to advantage instead of a set. It is important to be

familiar with all of the data structures available.

EXERCISES

12-1: Specify all of the items in your refrigerator as a set. Specify the ingredients

required to make five dishes as sets. Determine whether or not each dish

can be prepared by checking whether you have the required ingredients.

12-2: Write a program to read text and count all the words in that text that con-

tain both the vowels A and E.

12-3: Write a program to read a list of names followed by three numbers in-

dicating sex, age and hair color. List all persons of a given sex and hair

color within a given age bracket.

12-4: Convert the above program into a program for a computerized dating

service.

12-5: Use sets to determine whether or not a given animal is a member of the

set of herbivores, carnivores, or omnivores.

CHAPTER I <J

POINTERS
AND LISTS

NTRODUCTION TO PASCAL 259

INTRODUCTION

This chapter describes another complex data structure that can be easily

implemented in Pascal, the list. Strictly speaking, Pascal defines not a list

structure, but a pointer type, which may be used to construct list struc-

tures. Most programmers will not use lists in simple programs. However,

lists are the most flexible data structure available when developing com-

plex programs. Lists are used in many sophisticated programs, including

"systems software," such as interpreters, assemblers and compilers.

The basic concepts of lists will be introduced first, then the particular

facilities provided in Pascal will be described. This chapter should be

read by those readers who intend to make full use of Pascal resources.

DYNAMIC DATA STRUCTURES

All of the data structures that have been defined thus far (with the ex-

ception of the file) are static, i.e., they do not change in size as the pro-

gram executes. In fact, the very purpose of the type definitions is to

facilitate the allocation of space by the compiler in the memory of the

computer by defining (ahead of time) the maximum amount of space

that a structure or a variable is going to require.

When the ordering of elements as well as the number may fluctuate

dynamically during program execution, more flexible data structures

are required. A list provides this flexibility. An element may be removed

or added anywhere in the list without altering the rest of the list. For ex-

ample, if an extra element were added in the middle of an array, all of

the components of the array would have to be moved up or down.
Similarly, if one element of the array were removed, all of the remaining

elements would have to be moved over the empty position. If one ele-

ment were added to or removed from a file, the entire file would have to

be copied.

Building and manipulating lists requires one fundamental facility, the

pointer. Pointers and lists will now be defined.

LISTS

A list is a collection of elements of the same type, arranged in an ar-

bitrary, yet definite order. For each element of a list, there is a

predecessor and a successor element. The predecessor of the first ele-

ment is the empty element. The successor of the last element is also

260 POINTERS AND LISTS

empty. Lists are characterized by several essential properties:

— The way in which the elements are chained together, (i.e., the

way in which the predecessor or the successor of a given element

can be identified). Pointers are usually used for this purpose.

— How and where the elements may be inserted or removed in the

list. Usually, this may be done anywhere in the list. However,

some lists, such as a stack, permit access to only the last element.

— The number of successors or predecessors an element may have.

For most lists, there is only one. However, a binary tree allows

two siblings for each element: a left and a right sibling, in addition

to one parent.

The file, the array, the set and the record are special lists where all

elements are contiguous (stored next to each other). This space is allo-

cated by the compiler prior to program execution, and cannot be ex-

panded, except for a file.

At times, it is desirable to define a more general list structure in which

elements may be added or removed freely during program execution.

In this case, the size of the list is not known in advance, and a block of

contiguous memory locations cannot be allocated by the compiler.

Each list entry must reside at whatever location is available in the

memory. The problem then becomes one of locating the successor or

the predecessor of a given element. Pointers are used for this task.

POINTERS

Here is an example in which the elements of a list are: 'T', 'H', 'E'.

They are stored at memory locations 1000, 2222, and 4123, as shown in

Figure 13.1.

In order to find the successor of T when examining T, it is necessary to

know the address of H. The solution is obvious: the address of H should

be stored with T. The same case applies to E. This type of organization of

elements in memory is illustrated in Figure 13.2.

Note in Figure 13.2 that the successor of E is 'NIL' as E is the last ele-

ment in the list. We have created a simple list. The value "2222"

associated with the T is the address of the next entry. It is called a

pointer. The role of each pointer is illustrated symbolically in Figure

13.3.

Note that in Figure 1 3.3, one additional pointer is necessary to access

the list: the FIRST ENTRY pointer. This pointer must be stored at a

known memory location of type tUST (read "pointer to the list").

A pointer may be thought of as a position designator, or, graphically,

as an arrow pointing to an element of a list. The FIRST ENTRY pointer in

Figure 13.3 points to the first element. By moving a pointer up or down

sITRODUCTION TO PASCAL 261

(addresses)
COMPUTER MEMORY

Figure 13.1: Three Elements in Memory

a list, it becomes possible to access any element. In our example,

elements of the list are singly-linked together, i.e., they contain a single

pointer to the next element. As a result, a pointer may only move up.

Elements of a list may also contain two or more pointers so that they

may point up, down, left or right. A number of list structures may be

constructed with pointers. The most important list structures - simple

lists, doubly linked lists, and trees - are presented in this chapter.

A pointer is represented in Pascal as:

TYPE NEXT = tELEMENT;

262 POINTERS AND LISTS

Figure 13.2: Creating Links

This statement is read as "a variable of type NEXT is a pointer to an ob-

ject of type ELEMENT." ELEMENT is called a dynamic data type.

The formal syntax of a pointer type is shown in Figure 13.4.

One may write:

VAR PTR : t ELEMENT

where PTR is a pointer and PTRt has a value of type ELEMENT. The nota-

tion PTRt refers to the actual value of the element towards which PTR is

pointing. This will be clarified by examples in the next section.

Generally, a pointer that does not point to an element, i.e., which is

NTRODUCTION TO PASCAL 263

- type identifier

Figure 13.4: Formal Syntax of a Pointer Type

not associated with any element, is given the predefined value NIL:

PTR := NIL;

The value NIL is usually used to indicate the value of a pointer at the

end of a list or sublist.

264 POINTERS AND LISTS

Assignment

Pointers may be assigned. For example, on£ might write:

PI := P2;

where PI and P2 are two pointers. Observe the situation shown in

Figure 13.5.

12

24

Figure 13.5: Pointer Assignments

The result of the assignment is shown in Figure 1 3.6. It is important to

remember that the element "1 2" is not destroyed. Rather, PI no longer

points to it. However another pointer may exist elsewhere (such as P4),

which points to it. In this case, the value of 12 would still be accessible

through P4.

If we had written:

Pit := P2t

the situation would be similar to the one shown in Figure 13.7.

In this case, the first element has taken the value '24'. If there were no

other pointers pointing to these two elements, then the effect is ap-

parently the same as obtained by PI := P2. However, if there were

NTRODUCTION TO PASCAL 265

Figure 13.7: A Similar Situation

other pointers pointing to the elements, it is important to remember that

these two assignments are two different operations: PI := P2 is different

from Pit := P2t. One operation refers to the pointers, the other refers

to the values that are being pointed to.

CREATING A DYNAMIC VARIABLE

In this section, we will create an actual list structure. Elements will be

added to it, and pointers will be created in order to link the elements.

To create a dynamic data structure, one or more pointers need to be

associated with one or more values. The resulting object, therefore,

contains at least one pointer and one value, which are generally of dif-

ferent types. As a result, the list element is best represented as a record.

Let us look at an example:

TYPE PTR = t OBJECT;

OBJECT = RECORD

NEXT : PTR;

VALUE : VALTYPE

END;

VAR P,LLINK,RLINK,LISTBASE : PTR;

Note that, as an exception to the general rule, the type used in the

definition of a pointer may be defined after it is used. Such is the case for

OBJECT in the above example. This is called a forward reference and is

the only instance in which this may occur in Pascal. (A FORWARD
declaration must be used for functions or procedures.)

In order to create a structure, we may define a pointer called

LISTBASE, which points to the first element of the list. Initially, this

pointer will not be pointing to any element and we will write:

LISTBASE := NIL;

This is called initializing the list, which is originally empty. Next, we

266 POINTERS AND LISTS

must create one or more elements that will be inserted into the list. A
standard procedure called NEW performs this task in Pascal. The pro-

cedure NEW operates on a pointer argument, and "creates" a dynamic

variable of the type to which the pointer points. This variable is known
as a dynamic variable because it is created dynamically during execu-

tion, rather than statically, like other variables. For example:

NEW(P);

will create an OBJECT. The name (i.e., the address of this OBJECT) is

stored in the pointer P. In fact, NEW(P) creates storage for the OBJECT
PT within the memory. P is set to point to the new storage.

Once the dynamic variable has been created, both its value and the

next pointer fields (as defined in the RECORD) must receive a value.

This can be accomplished, for example, by writing:

NEW(P);

Pt.VALUE := 24;

Pt.NEXT := LISTBASE;

LISTBASE :
= P;

P points to an OBJECT, i.e., a record. The record associated with P is Pt.

Recall that the VALUE field of the record Ptis designated as Pt. VALUE.

The two fields of Pt are assigned a value:

Pt.VALUE := 24

Pt.NEXT := LISTBASE;

Then the LISTBASE pointer is updated from the value NIL to the value of

P:

LISTBASE :
= P;

The corresponding sequence is shown in Figure 13.8.

Another form of NEW is available which will not be described in detail

here, as it is beyond the scope of an introductory book. It is:

NEW(P,T1 , ..., Tn)

where T1, ..., Tn are constants representing 'tag' field values. The con-

stants Ti, where i = 1 ..n, are used to designate variants in a record. This

other form of NEW is generally used for space optimization. It is prone

sITRODUCTION TO PASCAL 267

LISTBASE NIL

NEW (P)

LISTBASE NIL

Pt. VALUE = 24

P

LISTBASE

P

LISTBASE

P

Figure 13.8: Corresponding Sequence

to errors, and may also be restricted in various ways by the specific im-

plementation.

Note that when removing an element from a list, the pointers are

simply changed, and the element remains untouched. If elements are

large, or removed frequently, a considerable amount of storage space

may be lost. One solution to this problem is to place all of the removed

elements on a free-list, and then allocate new element storage from it.

Another solution is to use the built-in function DISPOSE to erase a

268 POINTERS AND LISTS

variable, and then reclaim the storage that it was using. The syntax of

DISPOSE corresponds to the syntax of NEW:

DISPOSE(PTR) releases the storage of PTRt.

DISPOSE(PTR,T1,T2, ...,Tn) should be used if the form

NEW(PTR,T1 ,T2, ...Jn) had been used.

Unfortunately, the DISPOSE procedure is seldom implemented, so you

will usually have to recover storage yourself. Other procedures may be

provided by specific implementations.

ACCESSING AN ELEMENT OF A LIST

In order to access an element of a list, we will usually access the first

component, then move down the chain of pointers until we have iden-

tified the element that we are looking for. The end of the list is detected

by finding NIL as the value of a pointer.

For example, we could write:

P :
= LISTBASE;

WHILE P < > NIL DO
BEGIN

EXAMINE (Pt. VALUE);

P := Pt .NEXT

END;

In this example, P is used as a running pointer. It is first set to LISTBASE

(i.e., to the first element). If no match is found, P is set to Pt.NEXT (i.e.,

to the pointer field of the element it is pointing to). P now points to the

second element, and the loop is repeated until each element has been

processed (which is informally denoted by the procedure EXAMINE in

the program), and the end of the list is detected (i.e., a NIL is found).

The same program could be used to print all of the elements of the list

by using the function WRITE instead of 'EXAMINE'.

ADDING AND REMOVING AN ELEMENT

An element may be added to a list by simply updating two pointers.

Let us add a new element (pointed to by P) at the beginning of a list:

Pt.NEXT := LISTBASE;

LISTBASE := P;

This is illustrated in Figure 13.9.

The process of inserting an element in the middle of a list is slightly

more complicated. First, the location in the list where the new element

INTRODUCTION TO PASCAL 269

LISTBASE

Initial element Element to be added

LISTBASE

Figure 13.9: Adding an Element at the Beginning of a List

is to be inserted must be found. This can be accomplished with a pro-

gram segment that searches the list (like the one given above). Then, the

pointer of the new element is set equal to its predecessor, and the

pointer of its predecessor is given the value of the pointer to the new
element:

Pt .NEXT := RUNNINGPOINTERt.NEXT;

RUNNINGPOINTERt.NEXT := P;

The process is shown in Figure 13.10:

Inserting an element requires that two pointers be updated (assuming

that a simple list with single pointers or a singly-linked list is used).

Similarly, an element may be removed from the middle of a list by mere-

ly modifying the pointers of the element preceding it. This is illustrated

in Figure 13.1 1

.

A typical property of the list structure is that no element is physically

moved; one or two pointers are simply modified. List structures facilitate

sorting: items can be sorted by merely inserting them into the proper

place in a list.

OTHER LIST STRUCTURES

Thus far we have used a simple linked list as an example of a list struc-

ture. Pointers make it possible to build a larger variety of list structures,

which may be used for the efficient representation of structured infor-

mation. For example, a list that is only accessed through its first element

270 POINTERS AND LISTS

Figure 13.10: Inserting an Element in the Middle of a List

every time (i.e., a list to which an element is added or removed in the

first position), represents a "stack," and is called a "last in first out"

(LIFO) list. A list to which elements are added at one end and are re-

moved at the other is called an FIFO list ("first in, first out") or queue.

Both of these structures may be implemented with a linked list (see

Figure 13.12).

A doubly-linked list may be used whenever elements need to be

quickly and efficiently retrieved to the left or right of the current posi-

tion. An example of a doubly-linked list is shown in Figure 13.13.

INTRODUCTION TO PASCAL 271

LISTBASE

LISTBASE

Figure 13.11: Removing an Element from a List

Figure 13.12: A Stack and FIFO

272 POINTERS AND LISTS

START

*

• W NIL

r-K ir-NNIL

Figure 13.13: A Double-Linked List Facilitates Two-Way Movement

Note that each element has two pointer fields or links. They are usual-

ly called the right link and the left link.

For fast access, a circular list may be used, in which the last element
points back to the first one. A doubly-linked circular list is shown in

Figure 13.14.

Figure 13.14: A Circular List Facilitates Access

Binary or other structures may also be built. A binary tree is shown in

Figure 13.15.

Note that the items in the tree presented in Figure 13.15 are sorted.

The left sibling is always of lower value than the parent, while the right

sibling is always of greater value.

Another example of a tree is a genealogical tree. This is not a binary

tree but a general tree in which each element may have a large number
of siblings.

For each type of data structure, various methods have been devised

for accessing the elements, i.e., traversing the structure. Entire books are

dedicated to this topic; therefore, it will not be addressed here.

CASE STUDY 1: A LIBRARIAN

The Problem

A list of books must be read into a library file. Each record contains

the book title, author name and call number. The file should be sorted

INTRODUCTION TO PASCAL 273

Figure 13.15: A Binary Tree

by call number, and books may be added or deleted from the file.

This problem is similar to the one encountered in managing most

business files, from mailing lists to personnel records.

A typical input list to the LIBRARIAN program is shown in Figure 13.16.

Programming the 6502

Rodnay Zaks

202

Programming the 8080

Rodnay Zaks

208

Programming the Z80
Rodnay Zaks

280

6502 Games Book
Rodnay Zaks

402

Figure 13.16: LIBRARIAN Input

274 POINTERS AND LISTS

A typical interactive dialogue is shown in Figure 13.17.

Would you like to INSERT or DELETE a book?

Type I or D: I

Type the name of the book:

6502 Applications

Type the name of the author:

Rod nay Zaks

Type the call number of the book:

302

Type I to insert, D to delete, or F to finish: D

Type the call number of the book: 202

Type I to insert, D to delete, or F to finish: D

Type the call number of the book: 100

No Such Book

Type I to insert, D to delete, or F to finish: F

Library file is now updated

Figure 13.17: Conversing with the LIBRARIAN

The final library file is shown in Figure 13.18. Notice that book 202 has

been deleted.

The Program

A file in Pascal cannot be directly updated. A copy of it must be made
to another structure, which is then updated, and copied back to the file.

To do this, the structure must possess the following characteristics:

— Easy insertion or deletion of any element

— Sequential ordering of the elements

A simple structure that meets these requirements is a linked list. We will

use a linked list in this example. The corresponding program listing is

shown in Figure 13.19.

INTRODUCTION TO PASCAL 275

Programming the 8080

Rodnay Zaks

208

Programming the Z80
Rodnay Zaks

280

6502 Applications

Rodnay Zaks

302

6502 Games Book
Rodnay Zaks

402

Figure 13.18: Final Library File

In the program, each entry in the library list is defined as a four-field

record of type LI BUST

:

TYPE CHARARR = ARRAY [1..20] OF CHAR;

LIBPTR = t LI BUST;

LIBLIST =

RECORD

NEXT: LIBPTR;

NAME: CHARARR;

AUTHOR: CHARARR;

CALLNO: INTEGER

END; (* RECORD *)

The list structure is shown in Figure 13.20.

Note that the pointer to LIBLIST is defined before the element it will

point to:

LIBPTR = t LIBLIST;

Six global variables are used:

VAR FRONT,

BOOK: LIBPTR;

INCALLNO,

INDX: INTEGER;

SELECTION: CHAR;

LIBFILE: TEXT;

276 POINTERS AND LISTS

PROGRAM LIBLIST(INPUT, OUTPUT, LIBFILE);

TYPE CHARARR= ARRAY [1..20] OF CHAR;

LIBPTR= tLIBLIST;

LIBLIST =

RECORD
NEXT: LIBPTR;

NAME: CHARARR;

AUTHOR: CHARARR;

CALLNO: INTEGER

END; (* RECORD *)

FRONT,

BOOK: LIBPTR;

INCALLNO,

INDX: INTEGER;

SELECTION: CHAR;

LIBFILE: TEXT;

PROCEDURE INSERT(BOOK: LIBPTR);

VAR P,Q: LIBPTR;

BEGIN (* INSERT *)

IF FRONT = NIL THEN

FRONT :
= BOOK

ELSE

IF FRONTt.CALLNO > BOOKt.CALLNO THEN

BEGIN (* INSERT AT FRONT *)

BOOKt.NEXT := FRONT;

FRONT :
= BOOK

END (* INSERT AT FRONT *)

ELSE

BEGIN (* INSERT IN MIDDLE *)

P :
= FRONT;

Q :
= FRONT;

WHILE (Pt.NEXT < > NIL) AND (P = Q) DO
BEGIN (* TRAVERSE *)

P := Pt.NEXT;

IF Pt.CALLNO > BOOKt.CALLNO THEN

BEGIN (* ATTACH *)

Figure 13.19: LIBRARIAN Program

INTRODUCTION TO PASCAL 277

Qt.NEXT := BOOK;

BOOKt.NEXT := P

END (* ATTACH *)

ELSE

Q := P

END; (* TRAVERSE *)

IF (Pt.NEXT = NIL)AND (Pt.CALLNO < BOOKt.CALLNO) THEN

(* ATTACH AT END *)

Pt.NEXT := BOOK

END (* INSERT IN MIDDLE *)

END; (* INSERT *)

PROCEDURE DELETE(CALLNO: INTEGER);

VAR P,Q: LIBPTR;

DELETED: BOOLEAN;

BEGIN (* DELETE *)

DELETED :
= FALSE;

IF FRONT = NIL THEN

WRITELN('NOTHING TO DELETE/)

ELSE

IF FRONT!. CALLNO = CALLNO THEN

BEGIN (* DELETE FIRST ELEMENT *)

FRONT := FRONT!. NEXT;

DELETED : = TRUE

END (* DELETE FIRST ELEMENT *)

ELSE

BEGIN (* SEARCH LIST *)

P :
= FRONT;

Q :
= FRONT;

WHILE (Pt.NEXT < > NIL) AND (P = Q) AND
(Pt.CALLNO < CALLNO) AND (DELETED = FALSE) DO

BEGIN (* TRAVERSE AND DELETE *)

P := Pt.NEXT;

IF Pt.CALLNO = CALLNO THEN

BEGIN (* DELETE BOOK *)

Figure 13.19: LIBRARIAN Program (cont.)

278 POINTERS AND LISTS

Qt.NEXT := Pt. NEXT;

DELETED := TRUE

END (* DELETE BOOK *)

ELSE

Q := P

END; (* TRAVERSE AND DELETE *)

IF DELETED = FALSE THEN

WRITELN (' NO SUCH BOOK ');

WRITELN

END (* SEARCH LIST *)

END; (* DELETE *)

PROCEDURE READFILE;

VAR INDX: INTEGER;

BOOK: LIBPTR;

BEGIN (* READFILE *)

RESET (LIBFILE);

WHILE NOT EOF(LIBFILE) DO
BEGIN (* READ BOOK *)

NEW(BOOK);

FOR INDX := 1 TO 20 DO
READ(LIBFILE, BOOKt.NAME[INDX]);

READLN(LIBFILE);

FOR INDX := 1 TO 20 DO
READ(L!BFILE, BOOKt.AUTHOR[INDX]);

READLN(LIBFILE);

READLN(UBFILE, BOOKt.CALLNO);

INSERT(BOOK)

END (* READ BOOK *)

END; (* READFILE *)

PROCEDURE WRITEFILE;

VAR P: LIBPTR;

INDX: INTEGER;

BEGIN (* WRITEFILE *)

REWRITE(LIBFILE);

P :
= FRONT;

Figure 13.19: LIBRARIAN Program (cont.)

INTRODUCTION TO PASCAL

i

279

WHILE P < > NIL DO
BEGIN (* WRITE BOOK *)

FOR INDX := 1 TO 20 DO
WRITE(UBFILE, Pt. NAME [INDX]);

WRITELN(LIBFILE);

FOR INDX := 1 TO 20 DO
WRITE(UBFILE, Pt.AUTHOR[INDX]);

WRITELN(LIBFILE);

WRITELN(LIBFILE, Pt.CALLNO);

P :
= Pt.NEXT

END (* WRITE BOOK *)

END; (* WRITEFILE *)

BEGIN (* LIBLIST *)

FRONT := NIL

READFILE;

WRITELN ('WOULD YOU LIKE TO INSERT OR DELETE A BOOK?');

WRITE ('TYPE I OR D: ');

READLN(SELECTION);

WRITELN;

WHILE SELECTION < > 'F' DO
BEGIN (* UPDATE LIST *)

IF SELECTION = T THEN

BEGIN (* READ, INSERT BOOK *)

NEW(BOOK);

WRITELN('TYPE THE NAME OF THE BOOK: ');

FOR INDX := 1 TO 20 DO
IF NOT EOLN THEN

READ(BOOKT.NAME[INDX])

ELSE

BOOKt. NAME[INDX] :
= '

';

READLN;

WRITELN;

WRITELNfTYPE THE NAME OF THE AUTHOR: ');

FOR INDX := 1 TO 20 DO
IF NOT EOLN THEN

Figure 13.19: LIBRARIAN Program (cont.)

280 POINTERS AND LISTS

READ(BOOKt.AUTHOR[INDX])

ELSE

BOOKt.AUTHOR[INDX] := ";

READLN;

WRITELN;

WRITELN('TYPE THE CALL NUMBER OF THE BOOK: ');

READLN(BOOKt.CALLNO);

WRITELN;

INSERT(BOOK);

END; (* READ, INSERT BOOK *)

IF SELECTION = 'D' THEN

BEGIN (* GET NUMBER, DELETE BOOK *)

WRITE(TYPE THE CALL NUMBER OF THE BOOK: ');

READLN(INCALLNO);

WRITELN;

DELETE(INCALLNO);

END; (* GET NUMBER, DELETE BOOK *)

WRITE('TYPE I TO INSERT, D TO DELETE, OR F TO FINISH: ');

READLN(SELECTION);

WRITELN

END; (* UPDATE LIST *)

WRITEFILE;

WRITELN(' LIBRARY FILE IS NOW UPDATED '
);

WRITELN; WRITELN

END. (* LIBLIST *)

Figure 13.19: LIBRARIAN Program (cont.)

This program uses four procedures:

INSERT

DELETE

READFILE

WRITEFILE

to insert a new book in the list

to remove a book from the list

to read the library file and create the correspon-

ding list structure

to copy the list structure to the library file.

Each of these procedures will now be examined in turn.

The INSERT procedure inserts a new book at its proper place in the

INTRODUCTION TO PASCAL 281

FRONT NEXT NIL

NAME

AUTHOR

CALLNO

FIRST ENTRY SECOND ENTRY LAST ENTRY

Figure 13.20: Librarylist Structure

list. The proper place f<5r the book is such that all call numbers in the list

are sequential.

If the list is empty, the book is inserted at the beginning of the list:

PROCEDURE INSERT(BOOK: LIBPTR);

VAR P,Q: LIBPTR;

BEGIN

IF FRONT = NIL THEN FRONT := BOOK

If the call number of the book to be inserted is smaller than the call

number of the first element of the list, the new book is inserted at the

beginning of the list:

ELSE

IF FRONTt .CALLNO > BOOKt .CALLNO THEN

BEGIN

BOOK. NEXT := FRONT;

FRONT :
= BOOK

END

Otherwise, the list is scanned element by element until the correct posi-

tion is found, i.e., the call number of each book is read and examined.

Two pointers Q and P are used to point to two consecutive elements.

Q points to element n, and P points to element n + 1. Once the

CALLNO of the book to be inserted is found to be less than the CALLNO
of the element pointed to by P, the new book is inserted between the

two elements pointed to by Q and P, as illustrated in Figure 13.21. The

new pointers are shown by dashed lines.

282 POINTERS AND LISTS

Q P

(NEW BOOK)

Figure 13.21: Inserting a New Book in the List

ELSE

BEGIN (* INSERT IN MIDDLE *)

P :
= FRONT;

Q =: FRONT;

WHILE (Pt NEXT < > NIL) AND (P = Q) DO
BEGIN (* TRAVERSE *)

P := P t . NEXT;

IF Pt.CALLNO > BOOKtCALLNO THEN

The insertion is performed by simply updating two pointers, as shown

in Figure 13.21:

BEGIN

Q t .NEXT := BOOK;

BOOK t. NEXT := P

END

If the proper place has not been found, the pointers are moved to the

INTRODUCTION TO PASCAL 283

right:

ELSE Q : = P

END;

If the last element is found, and the new call number is still too large,

then the new book is inserted at the end of the list.

IF (Pt.NEXT = NIL) AND (Pt.CALLNO < BOOKt.CALLNO) THEN
(* ATTACH AT END *)

Pt.NEXT := BOOK

END (* INSERT IN MIDDLE *)

END; (* INSERT *)

The DELETE procedure performs the opposite function and operates in

the same manner.

A check is made for an empty list:

PROCEDURE DELETE(CALLNO: INTEGER);

VAR P,Q: LIBPTR;

DELETED: BOOLEAN;

BEGIN

DELETED :
= FALSE;

IF FRONT = NIL THEN

WRITELNf'NOTHING TO DELETE/)

Then, a check is made to determine if the book to be removed is the first

element:

ELSE

IF FRONTt.CALLNO = CALLNO THEN

BEGIN

FRONT :
= FRONT t.NEXT;

DELETED :
= TRUE

END

Otherwise, the list is scanned to the end:

ELSE

BEGIN

P : = FRONT;

284 POINTERS AND LISTS

Q :
= FRONT;

WHILE (Pt.NEXT < > NIL) AND (P = Q) AND
(Pt.CALLNO < CALLNO) AND (DELETED = FALSE) DO

BEGIN (* TRAVERSE AND DELETE *)

P := Pt.NEXT;

IF Pt.CALLNO = CALLNO THEN

BEGIN

Qt.NEXT := Pt.NEXT;

DELETED := TRUE

END (* DELETE BOOK *)

ELSE

Q := P

END; (* TRAVERSE AND DELETE *)

If the end is found with no match, a failure is reported:

IF DELETED = FALSE THEN

WRITELN (' NO SUCH BOOK ');

WRITELN

END

END;

The READFILE procedure copies LIBFILE into the appropriate list

structure. READFILE reads the file field by field. Each time a new record

is found, space must be allocated to the list element, and the NEW pro-

cedure is used:

PROCEDURE READFILE;

VAR INDX: INTEGER;

BOOK: LIBPTR;

BEGIN

RESET(LIBFILE);

WHILE NOT EOF(LIBFILE) DO
BEGIN

NEW(BOOK);

Each line of the record is then read and stored within the new BOOK

INTRODUCTION TO PASCAL 285

record:

FOR INDX := TO 20 DO
READ(LIBFILE, BOOKt.NAME[INDX]);

READLN(LIBFILE);

FOR INDX := 1 TO 20 DO
READ(LIBFILE, BOOKt.AUTHOR[INDX]);

READLN(LIBFILE);

READLN(LIBFILE, BOOKt.CALLNO);

INSERT(BOOK)

END
END;

The reading proceeds until the end of the file is found.

The WRITEFILE procedure operates in reverse of the procedure

READFILE. Each list element is written into LIBFILE one field at a time:

PROCEDURE WRITEFILE;

VAR P: LIBPTR;

INDX: INTEGER;

BEGIN

REWRITE(LIBFILE);

P :
= FRONT;

WHILE P < > NIL DO
BEGIN

FOR INDX := 1 TO 20 DO
WRITE(UBFILE, Pt .NAME[INDX]);

WRITELN(LIBFILE);

FOR INDX := 1 TO 20 DO
WRITE(LIBFILE, Pt . AUTHOR[INDX]);

WRITELN(LIBFILE);

WRITELNfUBFILE, Pt.CALLNO);

P := Pt.NEXT

END

END;

The main program allows the user to insert or delete from the list.

First, the program initializes the FRONT pointer:

FRONT := NIL;

286 POINTERS AND LISTS

and reads any existing LIBFILE to create the working list:

READFILE;

The user is then given a choice of two commands:

WRITELN ('WOULD YOU LIKE TO INSERT OR DELETE A BOOK?');

WRITE ('TYPE T OR D: ');

READLN(SELECTION);

WRITELN;

An F typed by the user causes the program to copy the new list to a file

and exit:

WHILE SELECTION < > 'F' DO

An 'I' specification results in a new entry being added to the list. First,

space is allocated for it:

BEGIN

IF SELECTION = 'I' THEN

BEGIN (* READ, INSERT BOOK *)

NEW(BOOK);

The user is then prompted, and each of the three information fields

are filled in:

The name of the book:

WRITELN('TYPE THE NAME OF THE BOOK: ');

FOR INDX := 1 TO 20 DO
IF NOT EOLN THEN

READ(BOOKt.NAME[INDX])

ELSE

BOOKt . NAME[INDX] :=

READLN;

WRITELN;

Then the author's name:

WRITELN('TYPE THE NAME OF THE AUTHOR: ');

FOR INDX :
= 1 TO 20 DO

INTRODUCTION TO PASCAL 287

IF NOT EOLN THEN

READ(BOOKt.AUTHOR[INDX])

ELSE

BOOKt .AUTHOR[INDX] := '

READLN;

WRITELN;

Then the call number:

WRITELN('TYPE THE CALL NUMBER OF THE BOOK: ');

READLN(BOOKt.CALLNO);

WRITELN;

The resulting element is then stored in the appropriate position within

the list.

INSERT(BOOK)

END;

In the case of a 'D'
,

i.e., a delete, the process is simpler:

The call number is obtained:

IF SELECTION = 'D' THEN

BEGIN (* GET NUMBER, DELETE BOOK *)

WRITE('TYPE THE CALL NUMBER OF THE BOOK: ');

READLN(INCALLNO);

WRITELN;

And the corresponding book is deleted, using the DELETE procedure:

DELETE(INCALLNO)

END;

The user is then prompted again, and the process is repeated:

WRITE('TYPE I TO INSERT, D TO DELETE, OR F TO FINISH: ');

READLN(SELECTION);

WRITELN

END;

Once an 'F is typed, the new list is saved in the file, and the program

288 POINTERS AND LISTS

terminates:

WRITEFILE;

WRITELN)' LIBRARY FILE IS NOW UPDATED ');

WRITELN; WRITELN

END

CASE STUDY 2: A BINARY TREE

The Problem

A binary tree must be constructed where each node contains an in-

teger. The resulting tree node values must be printed in order, i.e., left

subtree, root, right subtree. They will be in order of increasing values.

A typical input is shown in Figure 13.22.

The corresponding tree is shown in Figure 13.23. The traversal of the

tree results in the values shown in Figure 13.24. The tree is built in the

following way (see Figure 13.23):

— The first element is entered ("47").

— The next element ("94") is compared to "47." Since it is larger, it

becomes its right sibling.

INTRODUCTION TO PASCAL 289

Figure 13.23: The Resulting Binary Tree

— The next element ("23") is compared and it is smaller than "47,"

thus it becomes its left sibling.

— "87" is larger than "47," thus it is compared to the right sibling of

"47," i.e., "94." Since "87" is smaller than "94," it becomes its

left sibling.

— And so on.

Each new element is compared to the root of the tree. The left branch

(down the tree) is examined if the new element is smaller, and the right

branch is examined if it is larger. This procedure is repeated, going

down the tree, until a NIL pointer is found. Then the new element is in-

serted and the NIL pointer is altered to point to it.

290 POINTERS AND LISTS

The traversal of the tree is also quite simple. The left subtree is ex-

amined first.

— Starting at the root node of the tree, the leftmost node is found. It

is "2." 2

— Then the root of "2" is visited. It is "12." 12

— Then the right subtree of this root is visited. It is "16." 16

— At this point, the subtree 2-1 2-16 has been visited. The correspon-

ding root node is visited. It is "23." 23

— Then the right subtree of 23 is visited. The leftmost node of that

subtree is visited first. "35" does not have any left node. 35

— Then "46" is visited. It has a left node: "38." 38

— Etc.

Binary trees are used for many purposes. They are used in particular

when encoding decision algorithms, or analyzing the structure of text or

data.

The Program

The program uses a tree structure constructed with pointers. Each

node is a three-fold record that includes a value and two pointers, as

shown in Figure 13.23. The complete program listing is shown in Figure

13.25.

INTRODUCTION TO PASCAL 291

\

PROGRAM BINARYTREE(INPUT,OUTPUT,INTFILE);

TYPE TREEPTR = tTREE;

TREE

RECORD

DATA: INTEGER;

RIGHT: TREEPTR;

LEFT: TREEPTR

END; (* RECORD *)

STACKPTR = tSTACKELEMNT;

STACKELEMNT=

RECORD

TREELINK: TREEPTR;

STACKLINK: STACKPTR

END; (* RECORD *)

VAR INTFILE: TEXT;

ROOT,

P,

NODE: TREEPTR;

TOP: STACKPTR;

PROCEDURE INNODE;

(* READS ONE INTEGER FROM INTFILE AND CREATES A NEW NODE, INTIALIZING *)

(* ALL ELEMENTS *)

BEGIN (* INNODE *)

NEW(NODE);

NODEt. RIGHT := NIL;

NODE!. LEFT := NIL;

IF EOF(INTFILE) THEN

NODEt. DATA := 0

ELSE

READLN(INTFILE, NODEt. DATA)

END; (* INNODE *)

Figure 13.25: BINARY TREE Program

292 POINTERS AND LISTS

PROCEDURE BUILDTREE(PARENT: TREEPTR);

VAR P,Q: TREEPTR;

BEGIN (* BUILDTREE *)

P :
= PARENT;

Q :
= PARENT;

IF NODEt.DATA < Qt.DATA THEN

BEGIN (* SEARCH LEFT *)

P := Qt.LEFT;

IF P = NIL THEN (* ATTACH TO EMPTY LEFT *)

Qt.LEFT := NODE

ELSE

BUILDTREE(P)

END (* SEARCH LEFT *)

ELSE

BEGIN (* SEARCH RIGHT *)

P := Qt. RIGHT;

IF P = NIL THEN (* ATTACH TO EMPTY RIGHT *)

Qt. RIGHT := NODE

ELSE

BUILDTREE(P)

END (* SEARCH RIGHT *)

END; (* BUILDTREE *)

PROCEDURE TRAVERSE;

(* TRAVERSES THE TREE IN ORDER, REWRITING INTFILE IN THE SORTED ORDER *)

VAR STACK: STACKPTR;

BEGIN (* TRAVERSE *)

WHILE P < > NIL DO
BEGIN (* GO LEFT AND STACK *)

NEW(STACK);

Figure 13.25: BINARY TREE Program (cont.)

INTRODUCTION TO PASCAL 293

STACKt.TREELINK := P;

STACKt.STACKLINK := TOP;

TOP : = STACK;

P := Pt.LEFT

END; (* GO LEFT AND STACK *)

IF TOP < > NIL THEN

BEGIN (* VISIT AND GO RIGHT *)

P := TOPt.TREELINK;

TOP := TOPt.STACKLINK;

WRITELN(INTFILE,Pt.DATA);

P := Pt. RIGHT;

TRAVERSE

END (* VISIT AND GO RIGHT *)

END; (* TRAVERSE *)

BEGIN (* BINARYTREE *)

RESET (I NTFI LE);

INNODE;

ROOT : = NODE;

INNODE;

WHILE NODEt.DATA < > 0 DO (* EOF MARKER *)

BEGIN (* ADD TO TREE *)

BUILDTREE(ROOT);

INNODE

END; (* ADD TO TREE *)

REWRITE(INTFILE);

TOP := NIL;

P: = ROOT;

TRAVERSE

END. (* BINARYTREE *)

Figure 13.25: BINARY TREE Program (cont.)

294 POINTERS AND LISTS

The corresponding declarations for a node are:

PROGRAM BINARY TREE(INPUT,OUTPUT, INTFILE)

TYPE TREEPTR = tTREE;

TREE

RECORD

DATA: INTEGER;

RIGHT: TREEPTR;

LEFT: TREEPTR

END; (* RECORD *)

A stack structure will be required by the TRAVERSE procedure. Each

element of the stack is a record containing two pointers. Their role will

be explained below.

STACKPTR = tSTACKELEMNT:

STACKELEMNT =

RECORD

TREELINK: TREEPTR;

STACKLINK: STACKPTR

END; (* RECORD *)

Five global variables are used:

VAR INTFILE : TEXT;

ROOT, P, NODE : TREEPTR;

TOP : STACKPTR;

This program uses three procedures:

INNODE reads an integer from INTFILE and creates a

new node.

BUILDTREE attaches the new node at the proper posi-

tion in the tree.

TRAVERSE implements the preorder traversal of the

tree and writes the values of the nodes into

INTFILE.

The INNODE procedure simply allocates space for a new node:

PROCEDURE INNODE;

BEGIN

NEW(NODE);

INTRODUCTION TO PASCAL 295

initializes the two pointer fields to NIL:

NODEt. RIGHT := NIL;

NODEt.LEFT := NIL;

and reads the integer value of the node from the INTFILE until the EOF is

found:

IF EOF(INTFILE) THEN

NODEt. DATA := 0

ELSE

READLN(INTFILE, NODEt. DATA)

END; (* INNODE *)

The end of file is indicated to the main program by a zero in the data

field.

The BUILDTREE procedure adds a new node to the binary tree. The

root of the tree or subtree is called PARENT and is a parameter to the

procedure. The tree is examined in a top down fashion until a proper

node is found to which the new node can be attached. Two pointers, P

and Q, are used. The search starts at the PARENT node:

PROCEDURE BUILDTREE(PARENT: TREEPTR);

VAR P,Q : TREEPTR;

BEGIN (* BUILDTREE *)

P :
= PARENT;

Q :
= PARENT;

If the value field of the new node is less than the value of the current

tree node, then we move to the left. The pointer P is set to point to the

left sibling of Qt.

IF NODEt. DATA < Qt.DATA THEN

BEGIN (* SEARCH LEFT *)

P := Qt.LEFT;

Two cases may arise:

— The node pointed to by P is empty. In this case, P = NIL and the

new node may be attached there.

— The node is occupied. In this case, the procedure must be

repeated:

296 POINTERS AND LISTS

IF P = NIL THEN (* ATTACH TO EMPTY LEFT *)

Qt.LEFT := NODE

ELSE

BUILDTREE(P)

END (* SEARCH LEFT *)

In this example, BUILDTREE is used recursively. The new point of

departure for the search is pointed to by P.

Otherwise, if the DATA field of the new node is greater than or equal

to the value of the current node, the search proceeds to the right.

The running pointer P is set to point to the right sibling of Qf.

ELSE

BEGIN (* SEARCH RIGHT *)

P := Qt. RIGHT;

Then, the same two cases (as shown above) are considered:

— The node pointed to by P is empty. In this case, P = NIL and the

new node may be attached there.

— The node is occupied. In this case, the procedure must be

repeated:

IF P = NIL THEN (* ATTACH TO EMPTY RIGHT *)

Qt. RIGHT := NODE

ELSE

BUILDTREE(P)

END (* SEARCH RIGHT *)

END; (* BUILDTREE *)

The TRAVERSE procedure uses a stack structure to "remember" its

traversal path on the tree. Each stack element stores two pointers:

— A pointer to the next stack entry.

— The value of the tree pointer to be remembered.

The STACKELEMNT type has been declared in the program header:

STACKELEMNT = RECORD

TREELINK:TREEPTR;

STACKLINK :STACKPTR

END;

INTRODUCTION TO PASCAL 297

Two global pointer variables are used:

TOP points to the top of the stack

P points to the current element in the tree.

The declarations were made at the beginning of the program:

VAR TOP : STACKPTR;

P : TREEPTR;

One local variable called STACK is used which is a pointer to the current

element in the stack:

PROCEDURE TRAVERSE;

VAR STACK : STACKPTR;

In order to find the smallest node value in the tree, the search proceeds

leftwards until a NIL left link is found. All elements traversed are

memorized in the stack, up to the node:

WHILE P < > NIL DO
BEGIN

NEW is used to allocate space for each new stack entry:

NEW(STACK);

The new stack entry is created:

STACKt.TREEELINK := P;

STACKt.STACKLINK := TOP;

and the two pointers are updated:

TOP : = STACK;

P := Pt .LEFT

END;

Looking at the example in Figure 13.23, the initial scan results in the

situation shown in Figure 13.26.

298 POINTERS AND LISTS

— 2 —

— 12 —

— 23 —

— 47 —

(TREELINK)

(STACKLINK)

(STACK)

Figure 13.26: Beginning of Traversal

The stack is then examined. If the stack is not empty, the top element

is the smallest element, and is written to INTFILE. In our example, this

would be "2."

IF TOP < > NIL THEN

BEGIN (* VISIT AND GO RIGHT *)

P := TOP!. TREELINK;

TOP := TOP!. STACKLINK;

WRITELN(INTFILE,Pf .DATA);

The TOP of the stack has been moved to the next stack entry. Once this

is done, the search moves to the right subtree of the node "just remov-

ed," and the procedure is repeated (a recursive call).

P := PT. RIGHT;

TRAVERSE

END (* VISIT AND GO RIGHT *)

END; (* TRAVERSE *)

This time (in our example) the pointer P becomes NIL. The new call of

TRAVERSE has the following result:

— The WHILE is not executed since P = NIL

— TOP <> NIL, and one element ("12") is removed from the stack

and written to INTFILE. P is reset to point to the right sibling of

"12," i.e., to point to "16." The situation is shown in Figure

13.27.

INTRODUCTION TO PASCAL 299

Figure 13.27: Moving Right

The new call to TRAVERSE will result in "1 6" being stacked, then writ-

ten out to INTFILE. At this point, the top element in the stack is "23,"

and the traversal proceeds until the entire tree has been written out to

INTFILE.

The program proper operates quite simply. A first node is obtained:

BEGIN (* BINARYTREE *)

RESET(INTFILE);

INNODE;

This is the root of the tree. The next node is obtained:

ROOT : = NODE;

INNODE;

As long as a node's value is not 0, each new node is read in and added
to the tree.

WHILE NODE t. DATA < > 0 DO (* EOF MARKER *)

BEGIN (* ADD TO TREE *)

BUILDTREE(ROOT);

INNODE

END; (* ADD TO TREE *)

The contents of INTFILE are no longer needed, and the tree will be

300 POINTERS AND LISTS

traversed and written out to INTFILE:

REWRITE(INTFILE);

TOP :
= NIL;

P :
= ROOT;

TRAVERSE

END. (* BINARYTREE *)

This program is relatively short, but it implements a complex

algorithm in a few statements, using recursion. Study the program

carefully, noting the way the tree is constructed and how a stack is

designed with a singly-linked list. Notice how, when traversing a com-

plex list such as the one used for the tree, two pointers are kept in order

to be able to back up when needed.

UCSD DISPOSE
The DISPOSE procedure is not implemented in UCSD Pascal.

Memory can often be recovered in a similar way by using MARK and

RELEASE.

SUMMARY
Pointers and lists provide an important facility for creating complex

data structures and manipulating them efficiently. Pointers and lists are

particularly useful for constructing models or analyzing a given logical

structure. They can be of specific value in business-oriented applica-

tions and in system software design.

INTRODUCTION TO PASCAL 301

EXERCISES

13- 1 : Construct your own genealogical tree and print it. Input in the following

format:

PARENT1
, PARENT2

= SIBLINGS SIBLING2 SIBLINGN

Terminate input with: "0,0". Make provisions for identical parent names

(the program should request additional information), and for the fact that

each sibling may marry and become a parent.

13-2: Write a program with which you can construct a list of appointments or

things to do and then modify it by adding or removing entries. Keep en-

tries sorted by date and time.

13-3: Modify the program in Exercise 13-2 so that you can record car expenses

and maintenance operations. Also, make it so that if you type in the cur-

rent mileage, the program will alert you to required oil changes and

other maintenance operations.

CHAPTER I *T

UCSD AND
OTHER PASCALS

\

303

UCSD AND OTHER VERSIONS

Standard Pascal was designed at a time when computers were generally

used in a batch mode, i.e., programs and data were submitted as decks

of cards, and files were stored on magnetic tapes. Many of the Pascal

input/output features as well as the file access mechanisms reflect this

fact.

With the advent of microprocessors, it became practical to use low-

cost personal computers to execute Pascal programs. However, the

Pascal language was not originally designed to be interactive (i.e., to in-

teract with a user), therefore changes and extensions proved necessary.

Many versions of Pascal as well as an ISO Standard have now been

defined (see reference [12]). One of the most popular interactive ver-

sions of Pascal is the UCSD Pascal version, which was developed at the

University of California, San Diego. This version essentially incorporates

Standard Pascal, with many extensions, and some differences.

UCSD Pascal is, however, more than a language compiler. It is an

operating system, and includes programs such as:

— A file system (the 'Tiler")

— Text editors (to enter text or program code)

— A linker

— Several assemblers

— And a library of utilities.

Only those features of UCSD Pascal that relate to the Pascal compiler

have been described in this book. A description of the operating system

facilities can be found in reference [8].

The main extensions and differences of UCSD Pascal have been

described within the corresponding chapters. In this chapter, we will

summarize the essential features of UCSD Pascal and present additional

facilities specific to UCSD Pascal.

OVERVIEW OF UCSD PASCAL

In order to facilitate user interaction, UCSD Pascal defines a file type

called INTERACTIVE. Each time a program is started, three standard IN-

TERACTIVE types are automatically provided: INPUT, OUTPUT, and

KEYBOARD.
Note the difference between INPUT and KEYBOARD. During the

usual input, each character is echoed on the screen as it is typed.

However, there are instances where data is typed that should not be

displayed, or that should be displayed differently. This is the case, for

example, when a secret password is typed in. In such a case,

304 UCSD AND OTHER PASCALS

KEYBOARD may be used instead of INPUT and characters will not be

echoed when typed. Echoing becomes the responsibility of the pro-

grammer.

UCSD Pascal assumes that files are stored on disk, therefore it supplies

an additional random-access mode, with the proper functions or intrin-

sics. (Intrinsics are the additional functions and procedures provided by

UCSD Pascal.) UCSD Pascal also defines untyped files, which may be

transferred block by block. And, UCSD Pascal provides a number of

useful extensions for the processing of text strings.

As a result of these additional facilities, UCSD Pascal may be used not

just for applications programs, but also to write "systems software,"

such as communication routines between two computers.

The limitations of UCSD Pascal are given in Appendix I.

In addition to the EXTERNAL declaration described in Chapter 7,

UCSD provides two other methods for breaking a program into separate

pieces or reassembling a program from separate pieces. These two addi-

tional procedures, UNIT and SEGMENT, are described in the following

sections.

UCSD UNITS

A program that performs a specific task may be called a UNIT. A UNIT
is organized as follows:

1 . UNIT heading

2. INTERFACE
3. IMPLEMENTATION
4. PROGRAM BODY, delimited by BEGIN and END

A UNIT may be linked to other programs with the USES declaration.

The INTERFACE declares all of the types, variables, constants, pro-

cedures and functions that may be used by another program that USES

the UNIT. The interface can be compared to the knobs of a control

panel.

The IMPLEMENTATION declares all of the constants, types, variables,

procedures and functions that are strictly local to the UNIT.

Here is an example of a UNIT program.

UNIT SAMPLE;

INTERFACE

CONST FACTOR = 10;

TYPE POWER = (1,2,4,8,16,32);

VAR NUMBER : INTEGER;

PROCEDURE COMMUNICATE (VALUE : INTEGER);

FUNCTION COMPUTE: INTEGER;

INTRODUCTION TO PASCAL 305

IMPLEMENTATION

CONST TWO = 2;

TYPE RANK = 1..8;

VAR REMAINDER : INTEGER;

PROCEDURE COMMUNICATE;

BEGIN

(* statements here *)

END;

FUNCTION COMPUTE;

BEGIN

(* statements here *)

END;

BEGIN

(* statements here *)

END.

Once compiled, the above unit can be used by writing:

PROGRAM SPECIAL;

USES SAMPLE;

Library programs supplied with UCSD Pascal are often constructed as

UNITs so that any user program can use them conveniently.

The program that uses a UNIT must declare it before a LABEL declara-

tion is used. For example:

PROGRAM DEMO;

USES MAGIC;

LABEL 100;

where MAGIC is a UNIT.

UCSD SEGMENT PROCEDURE

UCSD Pascal has been designed so that Pascal programs may be run

on small computers with a limited amount of memory. As a result of the

limited memory, a large program must be broken into pieces or

segments that will reside in memory successively rather than

simultaneously. This is called a memory overlay technique.

The SEGMENT procedure allows the programmer to partition a large

306 UCSD AND OTHER PASCALS

program into segments. For example:

PROGRAM SAMPLE;

(declarations)

SEGMENT PROCEDURE ALPHA;

BEGIN

END; (* ALPHA *)

SEGMENT PROCEDURE BETA;

BEGIN

END; (* BETA *)

BEGIN

END. (* SAMPLE *)

A procedure or a function may be preceded by a SEGMENT declara-

tion. SEGMENT declarations must always precede other blocks of the

program which generate code. A user may use seven segments at most,

including the main one.

SYSTEM-RELATED ROUTINES

SIZEOF (name)

This function indicates the actual memory space occupied by the type

or the variable whose name is specified. The size is expressed in bytes.

SIZEOF is generally used with FILLCHAR and MOVExxxx.
The SIZEOF intrinsic may be used to advantage. For example, let us fill

a character array with blanks:

VAR UNIT : PACKED ARRAY[0..80] OF CHAR;

BEGIN

FILLCHAR(UNIT[0],SIZEOF(UNIT)/ ');

END

MARK(heappointer)

RELEASE(heappointer)

The "heap" is a dynamic memory structure created by the Pascal

system at the time of execution, when storage is dynamically allocated.

The heap is a stack with a pointer that points to its top. Heappointer is a

user-declared pointer to an integer designating the location of the heap

INTRODUCTION TO PASCAL 307

in memory. MARK(heappointer) and RELEASE(heappointer) are two

procedures used to release memory within the heap. MARK assigns to

heappointer the current location of the actual top of the heap. RELEASE

sets the top-of-heap pointer to heappointer.

HALT

This procedure is used to generate a breakpoint, i.e., to stop a pro-

gram at a given point during execution, so that partial results may be ex-

amined. When HALT is inserted in a program, it causes the program to

stop immediately at the indicated point. The debugger is automatically

invoked by the system.

GOTOXY (xcoord, ycoord)

This procedure positions the cursor on the screen of the terminal at

the position specified by xcoord and ycoord. The upper left-hand cor-

ner of the screen is defined as 0,0. GOTOXY must be adapted to each

specific terminal.

MEMAYAIL

This function is used to measure the remaining amount of memory
available at a given time. MEMAVAIL measures the number of words

between the top of the stack and the top of the heap.

SUMMARY

UCSD Pascal includes Standard Pascal with extensions that facilitate

interaction, text processing and disk access. Additional differences exist,

and these have been presented at the end of each relevant chapter in

this book. UCSD Pascal is well-suited for use on CRT terminals such as

those used in time-sharing systems or personal computers.

CHAPTER I «J

PROGRAM
DEVELOPMENT

309

THE PROGRAM DEVELOPMENT PROCESS

Throughout this book, you have learned the rules for developing Pascal

programs that perform specific actions. With the skills you have acquired,

you should now be able to write simple Pascal programs that automate
the process of obtaining solutions to simple problems. However, once a

program has been written, it must then be entered and executed on a

computer. The complete process required to achieve this result is re-

viewed in this chapter.

First, the five basic steps required to actually write and execute a

Pascal program will be described. Then, the programming phase during

which an algorithm is transformed into a program will be analyzed in

detail.

THE FIVE STEPS OF PROGRAM DEVELOPMENT

The five steps used to create and use a Pascal program are listed in

Figure 15.1.

STEP 1. Designing the program

STEP 2. Entering the program

STEP 3. Listing the program

STEP 4. Compiling and executing the program

STEP 5. Debugging the program

Figure 15.1: The Five Steps of Program Development

Depending upon the circumstance, some steps may be omitted, while

other, additional steps may be required. Let us look at each of the five

steps.

Step 1. Designing the Program

The word "programming" is used in many ways. It may simply refer

to the creation of a program on paper, or it may encompass all of the

phases that might be necessary to design a program and get it to work
correctly. Because programming usually involves this complete process,

the second definition for programming is most often used. We will,

therefore, define the action of creating a program on paper as "design-

ing the program." This action is one of the most important phases of the

programming process.

310 PROGRAM DEVELOPMENT

Let us look at the program design phase as it is illustrated in Figure

15.2.

Figure 15.2: Program Design Phase

When outlining a solution to a problem, or describing a sequence of

actions to be performed, an algorithm should first be specified and data

structures (to be manipulated by the algorithm) should be created.

Next, the algorithm may be translated into a program, using a program-

ming language such as Pascal.

At this stage, a program is written down on a piece of paper. If possi-

ble, each handwritten program should be tested manually in order to

verify its validity. In particular, it is highly recommended that the pro-

grammer check the validity of the handwritten program in a few typical

cases by computing values manually. It is usually the case that in the

complete programming sequence the phase requiring the largest

amount of time is that of debugging the actual program (i.e., identifying

and correcting errors). By using proper design steps and checking the

handwritten program, the programmer can often save a significant

amount of time during the debugging phase.

After the handwritten program is checked manually for errors, it is

entered into the computer system. This is the second phase: entering

the program.

Step 2. Entering the Program

The program must now be entered into the computer system as a file.

The program that allows the convenient typing of text into a file is called

the editor. The role of the editor is illustrated in Figure 15.3.

(optional)

Figure 15.3: The Role of the Editor

INTRODUCTION TO PASCAL 311

The editor is a special program designed to facilitate text entry. It

allows the user to erase characters or words, insert or append text,

substitute letters or words, and search for given character combinations.

The more powerful the editor, the more convenient the program entry

phase. A useful feature offered by the editor that is of special value to

Pascal users is indented paragraphs. Indented paragraphs are an impor-

tant aspect of program readability in Pascal.

Once the handwritten program has been typed into the computer

system with the assistance of the editor, the program is usually stored on

disk as a file. The next step is to examine the file to ascertain that no er-

rors have been introduced by the typing process. The file will need to be

listed. This is the third phase: listing the program. (On a small computer,

this step may be performed by the compiler.)

Step 3. Listing the Program

The program stored as a file will now be listed on the printer, i.e.,

typed out. This function is performed by the file system
,
a program

which is part of the computer's operating system. The file system allows

the transfer of a file from the disk to the printer, as well as the transfer of

files from one disk to another. In addition, the file system provides

facilities that can be used to change the names of files and specify

various attributes. This phase is illustrated in Figure 15.4.

Figure 15.4: The File System

If a printer is not available for listing a file, the file can be shown on the

screen of the terminal in order to check it against the handwritten

listing. In practice, a printout is a significant convenience as it improves

program readability and reduces the risk of errors.

The program has now been entered into the computer as a file and is

presumed "correct" from all standpoints. It is ready to be executed. In

Pascal as well as in most compiled languages, execution proceeds in the

two phases described in Step 4.

Step 4. Running the Program

Step 4. 1 Compilation

A program written in a high-level language cannot be executed direct-

ly by the computer since the processor can only understand a limited

312 PROGRAM DEVELOPMENT

set of binary instructions. The program must, therefore, be either

translated into this binary format, or decoded by an interpreter pro-

gram. In the case of Pascal, a special "compiler" is generally used. The
principle of a compiler is illustrated in Figure 15.5.

(translation) (execution)

Figure 15.5: The Principle of a Compiler

Figure 1 5.5 shows that the program is compiled into object code. The
high-level instructions (the Pascal statements), are translated into a set of

equivalent machine-language instructions. The resulting translated pro-

gram is called the object code file. If the program contains syntax errors,

the compiler will generate diagnostics
,
or error messages which inform

the programmer as to the type and location of the errors.

Step 4.2 Execution

Once translated, the object code is ready to be executed. The execu-

tion phase is performed by a separate module of the compiler, called

the execution module

,

and results in program execution. If the program

was correct, results will be displayed or printed. If the program was in-

correct, diagnostics will be generated.

The important point here is that most compilers work in at least two

phases: a translation phase, followed by an execution phase. In addi-

tion, some compilers compact and increase the speed of the object

code by optimizing the use of internal computer registers and moving

instructions out of loops. Such an optimization pass is important for the

speed of execution, but is costly to implement, and therefore seldom

provided.

In the case of some Pascal implementations, the approach used is

identical in principle, but differs in actual details. Because Pascal was

designed to be highly portable, i.e., easy to implement on any com-

puter, the Pascal program is first translated into another standarized rep-

resentation called P-Code (rather than the binary object code). This pro-

cess is illustrated in Figure 15.6.

INTRODUCTION TO PASCAL 313

Figure 15.6: Translating into P-Code

In the second phase, the execution phase, this P-Code is interpreted

by a program module, usually part of the 'compiler/ called the P-Code

interpreter. This process is illustrated in Figure 15.7.

Figure 15.7: Interpreting the P-Code

The logical effect of using P-Code rather than object code is

equivalent to the standard approach but results in lower efficiency. The

advantage is that a standard compiler module, written in P-Code, may
be designed which translates a Pascal program into its P-Code

equivalent. The only remaining problem would then be to design a

P-Code interpreter on the host machine. (This is a reasonably simple

task.) Compiling to an interpreted P-Code therefore facilitates the im-

plementation of Pascal on a variety of processors. However, the inter-

preter for the P-Code is less efficient than executing the object code

directly and, as a result, execution is slower. Most Pascal implementa-

tions use the P-Code approach.

At this point in the programming process, either diagnostics are

generated or they are not. If diagnostics are generated as a result of the

translation phase or the execution phase, errors have been detected

and the programmer must correct them in the original program. The
programmer must then go back to step 2 and type in the corrections. In

severe cases, it may be necessary to return to step 1 and modify the

algorithm, the data structures or the encoding performed earlier. Once
corrections have been made, the program (hopefully) works. However,

314 PROGRAM DEVELOPMENT

if the program runs and no diagnostics are generated, it does not

necessarily mean that the program works correctly in all cases.

In order to test a program, the program must be executed as many
times as possible with different data, so that its correct operation can be

verified in all cases. In order to facilitate program debugging, a de-

bugger program may be available.

Step 5. Debugging the Program

The function of a debugger program is to facilitate program de-

bugging. The main feature provided by a debugger is the use of break-

points. A breakpoint is a special command that may be used to force a

program to stop at a given location. By being able to stop the program,

the programmer may examine values of variables as well as the contents

of memory. Thus, it is possible to verify the correct operation of the pro-

gram at selected breakpoints. In addition, sophisticated debuggers may
allow the programmer to keep a "picture" or "snapshot" of the pro-

gram by recording key values that can be examined at selected break-

points. When a breakpoint is reached the debuggers will automatically

display the value of specified variables and memory locations. The use

of a debugger is illustrated in Figure 15.8.

Figure 15.8: The Debugger

If a debugger is not an available facility, and it generally is not

available in most Pascal implementations, other techniques must be

used. Let us now look at two of the more common techniques.

The first technique is to debug each program module separately. Each

function and each procedure is then tested separately in "typical cases"

until each one proves to work satisfactorily. At this stage it is important

to remember that even perfectly operational procedures may not work

satisfactorily together because of incompatibilities in their shared

parameters or unexpected side-effects.

The second technique consists of inserting a number of WRITE
statements throughout the program, so that a trace of program execu-

tion is automatically printed. The trace is the sequence of values printed

as execution proceeds. For example, the values of crucial variables and

INTRODUCTION TO PASCAL 315

data structures may be printed every time that a loop is entered, or

every time that a procedure or a function is invoked. In this way,

whenever something goes wrong, it is usually possible to determine the

exact group of instructions that caused the error to occur. The most dif-

ficult problem, once an error has been found, is to identify the instruc-

tion or the group of instructions that caused it. Because Pascal is a

block-structured language, a well-designed program facilitates de-

bugging by allowing the programmer to determine which block is at

fault. In the case of programs that use advanced techniques, additional

steps may be required.

Additional Steps

Many Pascal implementations allow the programmer to use assembly-

level language routines within a Pascal program, or to invoke programs

written in another language such as FORTRAN. In these cases, such pro-

gram elements must be linked to the main Pascal program by means of a

linker program. The actual details are specific to each implementation.

Summary of Program Development

The programming process involves many steps. The most crucial step

is the program design phase. The rules for constructing Pascal programs

have already been presented in this book.

After constructing a program, the next step is to enter the program on

the computer, and execute it. The details of the editor program as well

as the specific commands required to execute the editor program or the

compiler are specific to each installation, and are described in the

supplier's manual. These commands are generally not standardized.

One exception is the UCSD Pascal system, which defines not only a ver-

sion of Pascal, but also an operating system which includes the editor,

the compiler, and the linker as well as other programs. These facilities

are described throughout this book and in Chapter 14. The interested

reader is referred to reference [8] for more information.

WRITING A PASCAL PROGRAM

Programming is generally considered an art rather than an exact

science. This is because there is almost never a unique way in which to

316 PROGRAM DEVELOPMENT

devise a program solution for a given problem. Many equivalent pro-

grams may be constructed for any one problem, using different

algorithms, data structures or coding techniques. As a result, pro-

gramming refers to a great number of techniques that may be used by

the program designer. Because there is no single solution, many choices

must be made by the programmer in an attempt to optimize his or her

time, the program's efficiency, and the size of the program.

A number of theories have been proposed as to the best approach to

programming. In practice, it is often claimed that a small number of in-

dividuals, perhaps 10% of the programming population, have a natural

gift for programming, and will be capable of designing correct programs

quickly, and without effort. Such exceptional people tend to have their

own theories as to the best approach to programming, and regardless of

the theory, they usually achieve their programming objectives.

The bulk of the programming population, however, does not have

this natural gift. Unfortunately, most programmers within the remaining

90% of the programming population are convinced that they have this

unique programming talent. As a result, they have a tendency to avoid

the rules proposed, and they usually fail repeatedly. Experience will

eventually correct this.

The purpose of most programming theories is therefore to facilitate

the design of programs by those individuals who will benefit from being

guided by a set of rules. Almost any set of rules relating to programming

is probably better than no rules at all, as rules encourage disciplined

programming.

Discipline is the key to success in the design of any program. An im-

portant technique used for the disciplined design of computer programs

is called the Structured Programming approach. In this approach, the

overall problem is expressed as a series of simpler steps. Then each step

is broken down into simpler steps, and so on. It is also called a step-wise

refinement approach or a top-down approach.

The Pascal language has been designed to facilitate programming us-

ing this approach. In particular, a Pascal program can generally be

written as a set of procedures and functions that correspond exactly to

the sub-steps of the algorithm. It is good practice to keep these pro-

cedures and functions under one page (usually 66 lines) or even one

screen (24 lines) in length. This insures that the program is assembled

from individually comprehensible pieces. Structured Programming is

described in several publications, such as references [13] and [14].

PROGRAMMING STYLE

A structured approach to programming in Pascal generally results in a

clear and well-organized program that is both easy to read and debug. A
program should be clearly documented and well-formatted. Descriptive

INTRODUCTION TO PASCAL 317

comments should be included wherever possible. The operation of

each program module should be thoroughly explained by comments
embedded in the proper place in the program. This aspect is crucial to

the debugging of a program, as well as to the reuse of that program by

another person or by the designer later on, in case any changes should

be required. In Pascal it is also important to use the formatting oppor-

tunities provided by logical blocks such as functions and procedures, as

well as the indentation of subelements in a statement within the pro-

gram, in order to facilitate readability.

Several different indenting and spacing methods have been used in

the programming examples throughout this book. This was done so that

the reader can become familiar with the different styles.

In summary, there are three essential objectives when designing a

program. They are:

1. Correctness. The program must work.

2. Clarity. The organization, appearance, and documentation must

facilitate the understanding of the program.

3. Efficiency. The program should operate as fast as possible and use

as little memory as possible if these resources are expensive or

limited.

CONCLUSION

For all those who want to learn how to program effectively, there is

one essential recommendation: practice. There is no substitute for it. All

other rules relating to program design simply provide overall guidance

for the mental process. And no amount of reading can substitute for the

actual design of programs. Be aware that the overwhelming majority of

programs fail the first time they are executed. Also, almost no large pro-

gram is ever entirely correct. Because of the complexity involved in the

design of a program, the possibilities for errors are almost endless. A
program generally qualifies as being correct when it behaves correctly

in all conceivable cases. This does not mean that it will not fail some day

when some condition will have changed. To become an effective pro-

grammer, write a number of programs, and experience all of the usual

failures until you are able to correct them by becoming more
knowledgeable and by developing good programming habits.

For those readers who wish to learn more about Pascal, several books

are available that will provide additional help, guidance and examples.

They are listed at the end of this book.

As a final point, the author welcomes suggestions from readers re-

garding additional help or guidance they would like to receive, as well

as all constructive criticism. Every suggestion will be acknowledged, and

will be taken into account in successive editions of this book.

APPENDIX r\

PASCAL OPERATORS

INTRODUCTION TO PASCAL 319

TYPE FUNCTION TYPE OF OPERAND(S) TYPE OF RESULT

:
= assignment any except file

+ arithmetic unary plus integer, real integer, real

— arithmetic minus sign integer, real integer, real

+ arithmetic addition integer, real integer, real

+ set union set set

- arithmetic subtraction integer, real integer, real

- set difference set set

arithmetic multiplication integer, real integer, real

set intersection set set

DIV arithmetic integer division integer integer

/ arithmetic real division integer, real real

MOD arithmetic modulus integer integer

= relational equality scalar, set, string, pointer Boolean

<> relational inequality scalar, set, string, pointer Boolean

< relational less than scalar, string Boolean

< = relational less than or equal to scalar, string Boolean

< = relational set inclusion set Boolean

> relational greater than scalar, string Boolean

>= relational greater than or equal to scalar, string Boolean

>= relational set inclusion set Boolean

IN relational set membership scalar IN set Boolean

AND logical and Boolean Boolean

NOT logical negation Boolean Boolean

OR logical or Boolean Boolean

APPENDIX D
RESERVED WORDS

INTRODUCTION TO PASCAL 321

RESERVED WORDS

AND NIL

ARRAY NOT
BEGIN OF

CASE OR
CONST PACKED

DIV PROCEDURE

DO PROGRAM
DOWNTO RECORD

ELSE REPEAT

END SET

FILE THEN

FOR TO

FUNCTION TYPE

GOTO UNTIL

IF VAR
IN WHILE

LABEL WITH

MOD

UCSD RESERVED WORDS

INTERFACE

IMPLEMENTATION

SEGMENT

SEPARATE

UNIT

APPENDIX V-

STANDARD
FUNCTIONS

AND PROCEDURES

INTRODUCTION TO PASCAL 323

FILE OPERATIONS ARITHMETIC PREDICATES

GET (F) ABS (X) EOF (F)

PAGE (F) ARCTAN (X) EOLN (F)

PUT (F) COS (X) ODD (X)

READ ESCP (X)

READLN LN (X)

RESET (F) SIN (X)

REWRITE (F) SQR (X)

WRITE

WRITELN

SORT (X)

TRANSFER MEMORY MANAGEMENT ORDERING

CHR (X)

ORD (X)

ROUND (X)

TRUNC (X)

PACK (A,I,Z)

UNPACK (Z,A,I)

NEW (P)

(NEW (P,T,...Tn)

DISPOSE (P,T, T2...Tn)

PRED (X)

SUCC (X)

APPENDIX L-f

STANDARD
IDENTIFIERS

INTRODUCTION TO PASCAL 325

CONSTANT TYPE FUNCTION PROCEDURE FILE

ABS X

ARCTAN X

BOOLEAN X

CHAR X

CHR X

COS X

EOF X

EOLN X

EXP X

FALSE

GET

INPUT

INTEGER

LN

X

X

X

X

X

AAAXINT X

NEW X

ODD X

ORD X

OUTPUT X

PACK X

PAGE X

PRED X

PUT X

READ X

READLN X

REAL X

RESET X

REWRITE X

ROUND X

SIN X

SQR X

SORT X

TEXT

TRUE

TRUNC

UNPACK

X

X

X

X

WRITE X

WRITELN X

APPENDIX I-

OPERATOR
PRECEDENCE

INTRODUCTION TO PASCAL 327

Level 3 (highest) NOT

Level 2 * / DIV MOD AND

Level 1 + - OR

Level 0 ZAVIIAIIVAVII

APPENDIX I

SYNTAX DIAGRAMS

INTRODUCTION TO PASCAL 329

block

330 APPENDIX

expression

INTRODUCTION TO PASCAL 331

factor

w unsigned constant
A 7 ^

variable

expression

V o

332 APPENDIX

field list

identifier

identifier

parameter list

INTRODUCTION TO PASCAL 333

program

simple expression

334 APPENDIX

statement

unsigned integer

1*D
>ble

function

identifier

<n>

procedure identifier o
T

expression

i

\

expression T

procedure/function

identifier

VS) statement

o
IF)— expression ^fTHEN) statement

T

<D—/

y

y

y

ELSE) statement y

expression constant

/\S

statement (end)—

^

\A

INTRODUCTION TO PASCAL 335

statement (cont.

)

336 APPENDIX

term

type

unsigned constant

INTRODUCTION TO PASCAL 337

unsigned integer

variable

APPENDIX

ASCII CODE

THE ASCII SYMBOLS

NUL — Null

SOH — Start of Heading

STX — Start of Text

ETX —End of Text

EOT — End of Transmission

ENQ — Enquiry

ACK — Acknowledge
BEL —Bell
BS — Backspace

HT — Horizontal Tabulation

LF — Line Feed

VT — Vertical Tabulation

FF — Form Feed

CR — Carriage Return

50 — Shift Out

51 — Shift In

DLE — Data Link Escape

DC — Device Control

NAK— Negative Acknowledge
SYN — Synchronous Idle

ETB — End of Transmission Block

CAN— Cancel

EM — End of Medium
SUB — Substitute

ESC — Escape

FS — File Separator

GS — Group Separator

RS — Record Separator

US — Unit Separator

SP — Space (Black)

DEL — Delete

INTRODUCTION TO PASCAL 339

ASCII IN DECIMAL, OCTAL, HEXADECIMAL

OCTAL HEX CHAR # OCTAL HEX CHAR # OCTAL HEX CHAR # OCTAL HEX CHAR

0 000 00 NUL 32 040 20 SP 64 100 40 @ 96 140 60 '

1 001 01 SOH 33 041 21 ! 65 101 41 A 97 141 61 a

2 002 02 STX 34 042 22
"

66 102 42 B 98 142 62 b

3 003 03 ETX 35 043 23 n 67 103 43 C 99 143 63 c

4 004 04 EOT 36 044 24 $ 68 104 44 D 100 144 64 d

5 005 05 ENQ 37 045 25 % 69 105 45 E 101 145 65 e

6 006 06 ACK 38 046 26 & 70 106 46 F 102 146 66 f

7 007 07 BEL 39 047 27
'

71 107 47 G 103 147 67 g

8 010 08 BS 40 050 28
(

72 110 48 H 104 150 68 h

9 011 09 HT 41 051 29
)

73 111 49 1 105 151 69 i

10 012 0A LF 42 052 2A 74 112 4A J 106 152 6A
i

11 013 0B VT 43 053 2B + 75 113 4B K 107 153 6B k

12 014 OC FF 44 054 2C ,
76 114 4C L 108 154 6C 1

13 015 0D CR 45 055 2D - 77 115 4D M 109 155 6D m

14 016 OE SO 46 056 2E 78 116 4E N no 156 6E n

15 017 OF SI 47 057 2F / 79 117 4F 0 111 157 6F o

16 020 10 DLE 48 060 30 0 80 120 50 P 112 160 70 P

17 021 11 DC1 49 061 31 i 81 121 51 Q 113 161 71 q

18 022 12 DC2 50 062 32 2 82 122 52 R 114 162 72 r

19 023 13 DC3 51 063 33 3 83 123 53 S 115 163 73 s

20 024 14 DC4 52 064 34 4 84 124 54 T 116 164 74 t

21 025 15 NAK 53 065 35 5 85 125 55 U 117 165 75 u

22 026 16 SYN 54 066 36 6 86 126 56 V 118 166 76 V

23 027 17 ETB 55 067 37 7 87 127 57 W 119 167 77 w
24 030 18 CAN 56 070 38 8 88 130 58 X 120 170 78 X

25 031 19 EAA 57 071 39 9 89 131 59 Y 121 171 79 y

26 032 1A SUB 58 072 3A 90 132 5A Z 122 172 7A z

27 033 IB ESC 59 073 3B ;
91 133 5B

[123 173 7B {

28 034 1C FS 60 074 3C < 92 134 5C \ 124 174 7C
1

1

29 035 ID GS 61 075 3D = 93 135 5D
] 125 175 7D }

30 036 IE RS 62 076 3E > 94 136 5E t 126 176 7E t\>

31 037 IF US 63 077 3F ? 95 137 5F — 127 177 7F DEL

Note: bit 7 (parity bit) is set to zero in this table.

APPENDIX II

UCSD SYNTAX
DIAGRAMS

INTRODUCTION TO PASCAL 341

block

o

342 APPENDIX

compilation

expression

INTRODUCTION TO PASCAL 343

factor

344 APPENDIX

field list

parameter list

INTRODUCTION TO PASCAL 345

procedure

simple expression

simple type

346 APPENDIX

term

unsigned constant

unsigned integer

INTRODUCTION TO PASCAL 347

APPENDIX I

USUAL UCSD
LIMITATIONS

INTRODUCTION TO PASCAL 349

H characters in a STRING 255

elements in a SET 4080 (255 * 16)

bytes code in a
1

[PROCEDURE

lor FUNCTION
1200

words for local
I

[PROCEDURE
16383

variables in a 1tor FUNCTION

tt SEGMENT
1

[PROCEDURES

tor FUNCTIONS
16 (7 for the user)

n PROCEDURES in a SEGMENT 127

or FUNCTIONS

APPENDIX |

UCSD INTRINSICS

INTRODUCTION TO PASCAL 351

INTRINSIC FUNCTION PROCEDURE ARGUMENT(S) RESULT

BLOCKREAD misc integer

BLOCKWRITE yS misc integer

CLOSE y* fileid

CONCAT string string

COPY string string

DELETE string

EXIT identifier

GOTOXY yS integer

FILLCHAR yS misc

HALT yS

INSERT tS string

IORESULT y* — integer

LENGTH string integer

LOG YS number real

MARK YS pointer

MEMAVAIL V* integer

MOVELEFT yS misc

MOVERIGHT yS misc

POS string integer

PWROFTEN yS integer real

RELEASE yS pointer

RESET yS file

REWRITE yS file

SCAN YS misc integer

SEEK yS fileid, integer

SIZEOF YS variable integer

STR yS long integer string

TIME yS misc integer

UNITBUSY YS unit number Boolean

UNITCLEAR yS unit number

UNITREAD yS misc

UNITWAIT yS unit number

UNITWRITE yS misc

APPENDIX IX

REFERENCES

INTRODUCTION TO PASCAL 353

[1] Pascal User Manual and Report. Kathleen Jensen and Niklaus Wirth.

Springer-Verlag (1974-Revised Edition 1978).

[2] A Primer on Pascal. R. Conway, D. Gries, E.C. Zimmerman.
Winthrop Publishers (1976).

[3] Microcomputer Problem Solving Using Pascal. Kenneth L. Bowles.

Springer-Verlag (1977).

[4] Pascal—An Introduction to Methodical Programming. W. Findlay, D.A. Watt.

Computer Science Press (1978).

[5] An Introduction To Programming and Problem Solving with Pascal.

M. Schneider, S. Weingart, S. Perlman.

John Wiley & Sons (1978).

[6] Programming in Pascal. P. Grogono.

Addison Wesley (1978-Revised Edition 1980).

[7] A Practical Introduction to Pascal. I.R. Wilson and A.M. Addyman.

Springer-Verlag (1978).

[8] UCSD Pascal Users Manual.

Softech Microsystems (1978).

[9] Structured Programming and Problem-Solving with Pascal. Richard B. Kieburtz.

Prentice Hall (1978).

[10] Beginner's Manual for the UCSD Pascal System. Kenneth L. Bowles.

Byte Books, McGraw-Hill (1979).

[11] Pascal with Style: Programming Problems. M. Ledgard, J. Hueras, P. Nagin.

Hayden (1979).

[12] The Pascal Handbook. Jacques Tiberghien.

Sybex (1980).

[13] A Discipline of Programming. E.W. Dijkstra.

Prentice Hall (1976).

[14] Structured Programming. O.J. Dahl, E.W. Dijkstra, C.A.R. Hoare.

Academic Press (1972).

[15] Systematic Programming—An Introduction. N. Wirth.

Prentice Hall (1973).

[16] Introduction to Pascal. J. Welsh, J. Elder.

Prentice Hall (1979).

[17] Techniques of Program Structure and Design. E. Vourdon.

Prentice Hall (1975).

[18] The Art of Computer Programming, Vol. Ill (Searching and Sorting).

D. Knuth.

Addison Wesley (1973)

[19] Pascal Programs for Scientists and Engineers. A. Miller.

Sybex (1981).

[20] Fifty Pascal Programs. R. Zaks and R. Langer.

Sybex (1981).

ANSWERS TO
SELECTED EXERCISES

"Console-toi, tu ne me chercherais pas si tu ne

m'avais trouve."

"Don't worry
,
you wouldn't be looking for me if

you hadn't already found me."

Pascal, Pensees, 553 (Brunsehvieg edition).

INTRODUCTION TO PASCAL 355

CHAPTER 1 BASIC CONCEPTS

Exercise 1-1:

PROGRAM PROD(INPUT,OUTPUT);

VAR A,B, PRODUCT : INTEGER;

BEGIN

WRITELN('ENTER THE 2 NUMBERS...');

READ (A, B);

PRODUCT : = A * B;

WRITELNf'THE PRODUCT OF A, 'AND'
,
B, 'IS' .PRODUCT)

END

Exercise 1-2:

PROGRAM SUM3(INPUT,OUTPUT);

VAR A,B,C,TOTAL : INTEGER;

BEGIN

WRITELNf'ENTER 3 NUMBERS...');

READ(A,B,C);

TOTAL :=A + B+ C;

WRITELN('THE SUM OF 'A, ' AND' B/ AND' C, ' IS' TOTAL)

END

Exercise 1-3:

No.

Exercise 1-5:

Yes. Comments may be placed anywhere and are completely ignored

during execution.

356 APPENDIX

Exercise 1-6:

No. An algorithm is an unambiguous, step-by-step description of the

solution to a problem. (It must terminate in a finite number of steps). An
algorithm may be presented in any language and is not written in a pro-

gramming language. However, a well-written algorithm can be easily

translated into computer instructions.

CHAPTER 2 PROGRAMMING IN PASCAL

Exercise 2-1:

1. Yes 2. No 3. Yes 4. No 5. No

Exercise 2-2:

All three will be considered as the same identifier (PERSONNO) since

only the first eight characters are considered.

CHAPTER 3 SCALARS AND OPERATORS

Exercise 3-2:

No. It may be a constant or another type.

Exercise 3-3:

1. Yes 2. Yes 3. No (comma) 4. No (period)

Exercise 3-4:

1. 32 2. 1 3. 32

Exercise 3-5:

1. No (period missing) 2. No (comma) 3. Yes 4. Yes

Exercise 3-7:

1. FALSE 2. TRUE 3. TRUE

Exercise 3-8:

TWENTY FOUR must be declared as a constant and assigned a value or

TWENTY FOUR must be declared as a variable and assigned a value.

CONST TWENTYFOUR = 24; VAR TWENTYFOUR : INTEGER

BEGIN

A :
= TWENTYFOUR;

or BEGIN

A :
= TWENTYFOUR

INTRODUCTION TO PASCAL 357

Exercise 3-9:

None

Exercise 3-10:

1.

Boolean 2. real 3. Boolean 4. integer

Exercise 3-1 1 :

1.1 2. 2 3. 2 4. 2

Exercise 3-12:

integer : 1,-5,3

real : 2.0,3.6,5.75

Boolean : TRUE, FALSE

char : A,b,c,H,w,?

CHAPTER 4 EXPRESSIONS AND STATEMENTS

Exercise 4-1:

1.

3 2. -2.2 3. 196

Exercise 4-2:

1.9 2. 0 3. -6.0 4. 32

Exercise 4-3:

1. Yes (real) 2. No (should be B := A + 2;)

3. No (assignment to a constant) 4. No (= missing)

Exercise 4-4:

1. No (should be A := 2 * (-3))

2. No (should be (-6.73) * 2)

3. Yes (Boolean expression)

4. No (DIV is for integers)

5. No (only one := per statement)

Exercise 4-5:

1
. (3 * SQR(X)) + (2 * SQRT(X))

2. ABS(4 * A)

3. SQRT((6 * A) - (2 * SQR(X))

Note: can you remove some parentheses, using the rules of

precedence?

358 APPENDIX

Exercise 4-6:

FALSE

TRUE
TRUE
FALSE

FALSE

TRUE

CHAPTER 5 INPUT AND OUTPUT

Exercise 5-1:

PROGRAM SQUARES (OUTPUT)

;

VAR
INTI : INTEGER;

BEGIN
WRITELN (' INTEGER ’SQUARE');

INTI := 1

;

WRITELN (INT 1

:

INTI := 2;

7 , SQR (INTI)

:

7);

WRITELN (INTI:

INTI := 3;

7

,

SQR (INTI)

:

7);

WRITELN (INTI

:

INTI := 4;

7, SQR (INTI)

:

7);

WRITELN (INT 1

:

INTI := 5;

7, SQR (INTI)

:

7);

WRITELN (INT 1

:

INTI := 6;

7, SQR (INTI)

:

7);

WRITELN (INTI

:

INTI := 7;

7, SQR (INTI)

:

7);

WRITELN (INTI:

INTI := 8;

7, SQR (INTI)

:

7);

WRITELN (INTI:

INTI := 9;

7, SQR (INTI)

:

7);

WRITELN (INTI:

INTI := 10;

7, SQR (INT 1) : 7);

WRITELN (INTI: 7, SQR (INTI) : 7);

END.

INTRODUCTION TO PASCAL 359

Exercise 5-2:

PROGRAM REALREAD (INPUT , OUTPUT)

;

VAR
REAL1 , REAL2 , REAL3 , REAL4 , REAL5 , REAL6 , REAL7 , REAL8

,

REAL 9, REAL10: REAL;

BEGIN
WRITE ('ENTER 10 REALS; '),*

READLN (REAL1 , REAL2 , REAL3 , REAL4 , REAL5 , REAL6 , REAL7 , REAL8 , REAL9 , REAL10)

;

WRITELN (REAL 1 0 , REAL 9 , REAL8 , REAL 7 , REAL 6 , REAL 5 , REAL4, REAL 3 , REAL 2 , REAL1)

;

END.

Exercise 5-4:

PROGRAM SQRSANDS QRTS (OUT PUT)

;

VAR
INTI: INTEGER;

BEGIN
WRITELN ('

1

) ;

WRITELN (
'

1 INTEGER 1 SQUARE 1
SQRROOT 1

');

WRITELN (

'

');

INTI := 1;

WRITELN (

’

|

'

,

WRITELN (

'

INTI

:

7, ’
1

'

, SQR(INTI): 7,
'

1

' , SQRT (INT 1)

,

');

’
1

’);

INT 1 : = 2 ;

WRITELN (
' |

,

WRITELN (

'

INTI: 7, *
1

'

, SQR(INTI): 7,
'

1

1

, SQRT (INTI) ,

’)?

1
');

INTI := 3;

WRITELN (
'

|

'

,

WRITELN (

'

INTI

:

7, '
1

'

, SQR(INTI): 7,
1

1

' , SQRT (INTI)

,

');

'1');

INTI ;= 4;

WRITELN (
'

1

'

,

WRITELN (

'

INTI : 7, '
I

'

, SQR(INTl): 7,
'

1

' , SQRT (INTI)

,

’

)

1

1

1

) ;

INTI := 5;

WRITELN (
'

|
'

,

WRITELN (

'

INTI: 7 , 1 , SQR(INTl): 7,
1

1

' , SQRT (INTI)

,

');

’
1

’);

INTI := 6;

WRITELN (

' | ,

WRITELN (

'

INTI : 7, '
1

1

, SQR(INTl)

:

7,
1

1

' , SQRT (INTI)

,

'

) 7

1

1
•);

360 APPENDIX

INTI := 7;

WRITELN (
'

|
'

,

WRITELN (

'

INTI: 7,
'

1
'

, SQR(INTl) : 7,
'

1

' , SQRT (INTI)

,

');

'
1
');

INT 1 : = 8

;

WRITELN Cl',
WRITELN (

'

INT 1:7, '

1

'

, SQR(INTl) : 7,
'

1

' , SQRT (INTI)

,

'

) r

' 1')?

INTI := 9;

WRITELN (

' |
'

,

WRITELN (

'

INTI: 7,
'

1
'

, SQR(INTI) : 7,
'

1

' , SQRT (INTI)

,

1

)?

1

1
');

INTI := 10;

WRITELN (

' |
'

,

WRITELN (

'

INTI: 7,
'

1

' , SQR (INTI)

:

7,
'

1

' , SQRT (INTI)

,

');

’
1
');

END.

Exercise 5-7:

1.1 6.49 17.260 27 2

2.3 8.60 5.154 1 2

3.2 7.50 4.108 8 -10

CHAPTER 6 CONTROL STRUCTURES

Exercise 6-1:

PROGRAM SUM(INPUT, OUTPUT);

VAR
I, J, N : INTEGER;

BEGIN
WRITE ('ENTER AN INTEGER: ');

READLN(N)

;

J := 0;

FOR I := 1 TO N DO

J := J + I;

WRITELN

;

WRITELN('THE SUM OF THE FIRST N : 0 ,
' INTEGERS IS: J:0,

{NOTICE HOW USING A FIELD WIDTH OF

0 FORCES N TO BE PRINTED WITHOUT

ANY BLANK SPACES IN FRONT OF IT.

THIS MAKES IT POSSIBLE TO PUT ITS

VALUE IN THE MIDDLE OF A SENTENCE,

AND NOT HAVE STRANGE GAPS .

}

WRITELN; WRITELN; WRITELN

END.

INTRODUCTION TO PASCAL 361

Exercise 6-5:

PROGRAM AVERAGE (OUTPUT)

;

VAR
SUM, NUMBER: INTEGER;
AVERAGE : REAL

;

BEGIN
SUM := 0;

NUMBER := 0;

REPEAT

SUM := SUM + NUMBER;
NUMBER := NUMBER + 1;

UNTIL NUMBER > 25;

AVERAGE := SUM/25;

WRITELN

;

WRITELN ('THE AVERAGE OF THE FIRST 25 INTEGERS IS:

WRITELN; WRITELN; WRITELN

END.

Exercise 6-7:

PROGRAM AVERAGE (INPUT, OUTPUT)

;

VAR
SUM, NUMBER, MAX: INTEGER;

AVERAGE: REAL;

BEGIN
SUM := 0;

NUMBER := 0;

write Center an integer: ');

READLN (MAX)

;

REPEAT
SUM := SUM + NUMBER;

NUMBER := NUMBER + 1;

UNTIL NUMBER > MAX;

AVERAGE := SUM/NUMBER;

WRITELN

;

WRITELNCTHE AVERAGE OF THE FIRST '
, MAX : 0 ,

' INTEGERS IS

WRITELN; WRITELN; WRITELN

AVERAGE: 0: 1 ,
'

.

')

;

'

,

AVERAGE: 0:1, '
.

');

END

362 APPENDIX

Exercise 6-8:

PROGRAM AVERAGEINPUT(INPUT, OUTPUT);
VAR

SUM, NUMBER, INTI, N : INTEGER;
AVERAGE: REAL;

BEGIN
SUM : = 0

;

NUMBER := 0;

WRITE ('ENTER THE NUMBER OF INTEGERS YOU WISH TO ENTER: ');

READLN(N)

;

WRITELN ; WRITELN

;

WRITELN('ENTER THE INTEGERS. MORE THAN ONE LINE OF INPUT OK:');

WHILE NUMBER < N DO
BEGIN

IF NOT EOLN THEN
BEGIN
READ (INTI) ;

SUM := SUM + INTI;

NUMBER := NUMBER + 1;

END;

IF EOLN THEN READLN

END;

AVERAGE := SUM/N;

WRITELN;
WRITELN ('THE AVERAGE OF THE ENTERED NUMBERS IS ', AVERAGE: 0:1, '.');

WRITELN; WRITELN; WRITELN

END.

INTRODUCTION TO PASCAL 363

Exercise 6-10:

PROGRAM FILTER (INPUT, OUTPUT);

VAR
NUMBER, COUNTA, COUNTR, LOW, HIGH: INTEGER;

BEGIN

WRITELN ; WRITELN;

WRITELN(' ENTER THE MAX VALUE FIRST THEN THE MIN VALUE FOR THE FILTER.’);

WRITE ('ENTER TWO INTEGERS SEPARATED BY A SPACE: ');

READLN (HIGH , LOW);

COUNTR := 0;

COUNTA := 0;

WRITELN ;WRITELN;

WRITELN ('ENTER A SERIES OF NUMBERS. ONE TO A LINE. HALT BY INPUTTING A 0.');

REPEAT
READLN (NUMBER)

;

IF (NUMBER < LOW) OR (NUMBER > HIGH) {LOW AND HIGH ARE USED AS

FILTER PARAMETERS.}

THEN BEGIN
COUNTR := COUNTR + 1;

WRITELN (
' ILLEGAL ENTRY. ’

)

END
ELSE COUNTA := COUNTA + 1;

UNTIL NUMBER = 0;

WRITELN; WRITELN;

WRITELN ('NUMBER OF ILLEGAL ENTRIES IS ', COUNTR: 0, ’.');

WRITELN;
WRITELN ('NUMBER OF LEGAL ENTRIES IS ', COUNTA: 0, '.');

END.

364 APPENDIX

Exercise 6-11:

PROGRAM CONVERTDATE(INPUT, OUTPUT);

VAR
MONTH, DAY, YEAR: INTEGER;

BEGIN

WRITELN (’ENTER A DATE IN THE FORM MM DD YYYY: ');

READLN(MONTH, DAY, YEAR);

IF (MONTH > 12) OR (MONTH < 1)

THEN WRITE ('ERROR. NO SUCH MONTH. ’)

ELSE
CASE MONTH OF

1 : WRITEC JANUARY ’);

2 : WRITE ('FEBRUARY ');

3 : WRITE('MARCH ');

4 : WRITE('APRIL ');

5 : WRITE (
' MAY ');

6 : WRITE ('JUNE ');

7 : WRITE('JULY ');

8 : WRITE ('AUGUST ’);

9 : WRITEC SEPTEMBER ');

10 : WRITE ('OCTOBER ');

11 : WRITE('NOVEMBER ');

12 : WRITE ('DECEMBER ');

END;

IF (DAY > 31) OR (DAY < 1)

THEN WRITEC ERROR, NO SUCH DAY.')

ELSE WRITE (DAY : 0 ,
', ');

WRITE (ABS (YEAR) : 0) ;

IF (YEAR < 0) THEN WRITEC B. C.');

WRITELN;
WRITELN

;

END.

INTRODUCTION TO PASCAL 365

Exercise 6-12:

PROGRAM WRITEMONTH(INPUT, OUTPUT);

VAR
MONTH, SECONDCHAR, THIRDCHAR : CHAR;

MONTHLETTERS : SET OF CHAR;

BEGIN

MONTHLETTERS := ['J ' , 'F', 'M', 'A', 'S', 'O’, 'N', 'D'];

WRITELNC ENTER THE FIRST THREE CHARS OF A MONTH: ');

READ(MONTH, SECONDCHAR, THIRDCHAR);

IF NOT (MONTH IN MONTHLETTERS)
THEN WRITECERROR. NO SUCH MONTH. ’)

ELSE
CASE MONTH OF

'J' : IF SECONDCHAR = 'A' THEN W RITE

(

1 UARY ')

ELSE IF THIRDCHAR = 'N* THEN WRITE('E ')

ELSE WRITECY ');

' F ’

: writeCruary ');

'M' : IF THIRDCHAR = 'R' THEN WRITE(’CH ');

'A* : IF SECONDCHAR = ' P ' THEN WRITE('IL ')

ELSE WRITE ('UST ');

'S' : WRITE ('TEMBER ')?

'O' : WRITECOBER ');

' N ' : WRITECEMBER ');

'D' : WRITECEMBER ');

END;

WRITELN

;

END.

366 APPENDIX

Exercise 6-13:

PROGRAM TEMPERATURE (INPUT, OUTPUT);

VAR
TEMPI, TEMP2, I: INTEGER;

COLUME1, COLUME2: REAL;

SCALE: CHAR;

BEGIN

WRITELN

;

WRITELN (’ENTER TWO NUMBERS AND A LETTER. THE TWO NUMBERS ARE THE');

WRITELN ('TEMPERATURE RANGE YOU DESIRE. THE LETTER MUST BE EITHER C OR F,');

WRITELNCTHE SCALE, EITHER CELSIUS OR FAHRENHEIT WHICH THE TEMPERATURES’);

WRITE (’WERE GIVEN. ENTER NOW: ');

READLN (TEMPI, TEMP2, SCALE);

WRITELN; WRITELN; WRITELN; WRITELN;

IF SCALE = 'C THEN
WRITELN ('CELSIUS ' :9,

1 FARENHE IT 1

: 1 3)

ELSE WRITELN (
' FARENHE IT '

: 9, 'CELSIUS ': 13)

;

WRITELN;

FOR I := TEMPI TO TEMP2 DO
BEGIN

COLUME1 := I;

IF SCALE = 'C
THEN COLUME2 := (I * 9/5) + 32

ELSE COLUME2 := (I - 32) * 5/9;

W RITELN (COLUME1 : 9 : 2 , COLUME2:9:2)

END;

WRITELN; WRITELN

END.

INTRODUCTION TO PASCAL 367

Exercise 6-14:

PROGRAM GRAPHS INE (OUTPUT);

CONST
ASTERISK = ;

BLANK = ' '?

DASH =

LINE = '
|

'
?

PI = 3.14159265;

VAR
II, 12, SINEVALUE: INTEGER;

PRINTVAR: CHAR;

BEGIN {DO UPPER (Y>0) HALF OF CURVE}

FOR II := 30 DOWNTO 1 DO BEGIN
FOR 12 := 0 TO 120 DO

BEGIN
SINEVALUE : = ROUND(SIN(3 * 12 * Pi/180) * 30);

{WE HAVE:

(3 * 12) SINCE THERE 12 GOES FROM 1 TO
120 AND WE ARE FINDING VALUES FOR EVERY
THREE DEGREE.

(... * PI/180) TO CONVERT TO
RADIANS TO DEGREES.

(... * 30) BECAUSE WE
ARE STRETCHING THE SCALE

FROM BETWEEN 0 AND 1 TO 0

AND 30.}

IF SINEVALUE =11 THEN PRINTVAR:= ASTERISK
ELSE PRINTVAR: = BLANK;

IF (12 = 0) THEN PRINTVAR := LINE;
IF (12 = 0) AND (II = 30) THEN PRINTVAR := ' 1 ’

;

WRITE (PRINTVAR)

END;

WRITELN
END;

FOR 12 := 0 TO 120 DO {CENTER (Y=0) LINE}
BEGIN

IF (12 MOD 10 = 0) THEN PRINTVAR := LINE;

IF ROUND (SIN (3 * 12 * Pi/180) * 30) = 0

THEN PRINTVAR := ASTERISK

ELSE PRINTVAR := DASH;

368 APPENDIX

IF 12 = 0 THEN PRINTVAR := 'O'?

WRITE (PRINTVAR)
END?

WRITELN ?

FOR II := 1 TO 30 DO BEGIN {LOWER HALF (Y<0) OF CURVE}
FOR 12 := 0 TO 120 DO

BEGIN
SINEVALUE : = ROUND(SIN(3 * 12 * Pi/180) * 30)?

IF SINEVALUE = (-11) THEN PRINTVAR: = ASTERISK
ELSE PRINTVAR: = BLANK?

IF 12 = 0 THEN PRINTVAR := LINE?
IF (12 = 0) AND (II = 30) THEN PRINTVAR := ' 1 ’

?

WRITE (PRINTVAR)
END?

WRITELN

END
END.

(Alternate Solution):

PROGRAM GRAPHSINE (OUTPUT)?

CONST ASTERISK = '*'?

BLANK = ' '?

DASH = '-’?

LINE = ’
I

'
?

PI = 3.14159265?

LINELEN = 80?

VAR X,Y, I,J: INTEGER?

BEGIN
FOR X := -45 TO 45 DO

BEGIN
Y := ROUND (SIN (4 *X*PI / 1 80)

* (LINELEN DIV 2-1)) + (LINELEN DIV 2)?

IF X = 0 THEN

FOR I := 1 TO LINELEN DO

IF I = Y THEN WRITE (ASTERISK)

INTRODUCTION TO PASCAL 369

ELSE WRITE (DASH)

ELSE
BEGIN

IF (LINELEN DIV 2) > Y THEN J := (LINELEN DIV 2)

ELSE J := Y;

FOR I := 1 TO J DO
IF I = Y THEN WRITE (ASTERISK)
ELSE IF I = (LINELEN DIV 2) THEN WRITE (LINE)

ELSE WRITE (BLANK)

END;

WRITELN
END

END.

Exercise 6-15:

PROGRAM SECRETCODE(INPUT, OUTPUT);

VAR
INDEX: INTEGER;

CH: CHAR;

BEGIN

WRITELN ('ENTER MESSAGE: ');

WHILE NOT (EOLN AND EOF) AND (CH <> ’S') DO

IF EOLN THEN
BEGIN READLN

;

INDEX := 0

END

ELSE BEGIN
READ (CH)

;

INDEX := INDEX + 1

END;

WHILE NOT (EOLN AND EOF) AND (CH <> 'T '

)

DO

IF EOLN THEN
BEGIN READLN;

INDEX := 0

END

ELSE BEGIN
READ (CH)

;

INDEX := INDEX + 1

END;

WHILE NOT (EOLN AND EOF) AND (CH <> ’O') DO

IF EOLN THEN
BEGIN READLN;

INDEX := 0

END

370 APPENDIX

ELSE BEGIN
READ (CH)

;

INDEX := INDEX + 1

END;

WHILE NOT (EOLN AND EOF) AND (CH <> 'P') DO
IF EOLN THEN

BEGIN READLN

;

INDEX := 0

END

ELSE BEGIN
READ (CH)

;

INDEX := INDEX + 1

END;

WRITELN

;

WRITELNC (INDEX - 1),
'

" MESSAGE COMPLETED');

WRITELN (
'

(INDEX - 1), ' AT ARROW.')
END.

Exercise 6-16:

The after THEN means that nothing will ever happen as a result of the

IF clause. (This is called the empty statement). The following compound
statement, delimited by BEGIN and END, will always be executed.

CHAPTER 7 DATA TYPES

Exercise 7-1:

PROGRAM PRINTCHARS (INPUT, OUTPUT);

PROCEDURE READANDPRINT;

VAR
INDEX, NUMBER: INTEGER;

CH: CHAR;

BEGIN
WRITELN; WRITELN;
WRITECENTER A LETTER AND A NUMBER: ');

READ(CH, NUMBER);
WRITE('OUTPUT IS: ');

IF (NUMBER <= 80) AND (NUMBER > 0)

THEN FOR INDEX := 1 TO NUMBER DO

WRITE (CH)

ELSE WRITELNC ILLEGAL NUMBER.');

WRITELN;
WRITELN

INTRODUCTION TO PASCAL 371

END;

BEGIN
READANDPRINT

END.

Exercise 7-2:

PROGRAM READINCHARS (INPUT, OUTPUT);

CONST
BLANK = ' ';

VAR

CHARI, CHAR2, CHAR3, CHAR4, CHAR5 , CHAR6, CHAR7 , CHAR8,

CHAR9, CHARI 0: CHAR;

PROCEDURE READCHARS;

FUNCTION READIN: CHAR;

VAR
ONECHAR: CHAR;

BEGIN {READIN}

REPEAT
READ (ONECHAR)
UNTIL ONECHAR <> BLANK;

{READS BLANK SPACES BETWEEN CHARACTERS

UNTIL A NON-BLANK ONE IS REACHED THEN

THAT CHARACTER IS RETURNED.}

READIN: = ONECHAR
END; {READIN}

BEGIN {READCHARS}
WRITE ('ENTER TEN CHARACTERS: ');

CHARI := READIN;

CHAR2 : = READIN;

CHAR3 : = READIN;

372 APPENDIX

CHAR4: = READIN;

CHAR5 : = READIN;

CHAR6 : = READIN;

CHAR 7 : = READIN;

CHAR8: = READIN;

CHAR9 : = READIN;

CHARI 0 : = READIN

END; {READCHARS}

PROCEDURE PRINTRESULT;

VAR NUMBEROFBLANKS: INTEGER;

PROCEDURE PRINTCHARS (THISCHAR: CHAR; NUMBER: INTEGER);

VAR : INTEGER;

BEGIN {PRINTCHARS}

FOR II := 1 TO NUMBER DO WRITE (BLANK;

FOR II := 1 TO 10 DO WRITE (THISCHAR)

;

WRITELN

END; {PRINTCHARS}

BEGIN {PRINTRESULT}

WRITELN;

NUMBEROFBLANKS := 0

PRINTCHARS (CHARI, NUMBEROFBLANKS);

NUMBEROFBLANKS := 1;

PRINTCHARS (CHAR2, NUMBEROFBLANKS);

NUMBEROFBLANKS := 2;

PRINTCHARS (CHAR 3, NUMBEROFBLANKS);

NUMBEROFBLANKS := 3;

INTRODUCTION TO PASCAL 373

PRINTCHARS (CHAR4,

NUMBEROFBLANKS ;=

NUMBEROFBLANKS);

4;

PRI NTCHARS (CHAR 5

,

NUMBEROFBLANKS :=

NUMBEROFBLANKS);

5;

PRINTCHARS (CHAR6,
NUMBEROFBLANKS :=

NUMBEROFBLANKS);

6;

PR INTCHARS (CHAR 7

,

NUMBEROFBLANKS :=

NUMBEROFBLANKS) ;

7;

PRINTCHARS (CHAR8,

NUMBEROFBLANKS :=

NUMBEROFBLANKS);

8;

PRINTCHARS (CHAR9,

NUMBEROFBLANKS :=

NUMBEROFBLANKS);

9;

PRINTCHARS(CHARI 0, NUMBEROFBLANKS)

END; {PRINTRESULT}

BEGIN {MAIN}

READCHARS

;

PRINTRESULT

END. {MAIN}

374 APPENDIX

Exercise 7-3:

PROGRAM GIVEANINCH(INPUT, OUTPUT);

VAR
INCHES: INTEGER;

PROCEDURE CONVERT (VAR INCHES: INTEGER);

VAR
MILES, YARDS, FEET : INTEGER;

BEGIN
MILES := INCHES DIV (12 * 5280);

INCHES := INCHES MOD (12 * 5280);

WRITE ('MILES: ', MILES:0);

YARDS := INCHES DIV (12 * 3);

INCHES := INCHES MOD (12 * 3);

WRITE (', YARDS:', YARDS : 0)

;

FEET := INCHES DIV 12;

INCHES := INCHES MOD 12;

WRITE(', FEET: ', FEET : 0)

;

WRITEC, INCHES: '

, INCHES:0);

WRITELN

;

WRITELN

END; {CONVERT}

BEGIN {MAIN}

WRITE (’ENTER A NUMBER OF INCHES: ');

READLN (INCHES)

;

WRITELN; WRITELN;
CONVERT (INCHES

)

END

INTRODUCTION TO PASCAL 375

Exercise 7-5:

G1 and G2 are global variables. Only G2 can be used in both VARVAL
and SHOWSCOPE. G1 can only be used in VARVAL.

The program output is:

1

5

3

0

1

0

Exercise 7-8:

This program reverses text:

TYPE A WORD IN RESPONSE TO THE PROMPT
TO STOP TYPE A BLANK.
> REDRO
ORDER

CHAPTER 9 ARRAYS

Exercise 9-2:

PROGRAM WORDTODIGIT(INPUT, OUTPUT);

CONST
BLANK = '

MAXWORDLEN = 10;

NUMCOMPAREWORD =11;

TYPE

WORDINDEX = 1..MAXWORDLEN;
WORDTYPE = ARRAY [WORDINDEX] OF CHAR;

COMPARETYPE = ARRAY[1 . .NUMCOM PAREWORD] OF WORDTYPE;

VAR
COM PAREWORD: COMPARETYPE;
WORD: WORDTYPE;
FINISHED: BOOLEAN;

PROCEDURE GETWORD(VAR WORD: WORDTYPE; VAR FINISHED: BOOLEAN);

VAR

CHARINDEX, BLANKINDEX: WORDINDEX;
CH: CHAR;

376 APPENDIX

BEGIN {GETWORD}

CHARINDEX := 1;

{NOW BEGIN TO READ IN A WORD. }

WHILE NOT EOLN DO

{IF EOLN THEN WE'VE FINISHED THE
WORD .

}

BEGIN
READ(CH)

;

IF CH = 'X' THEN
FINISHED := TRUE

{CHECKING FOR
END OF INPUT.}

ELSE IF (CHARINDEX < MAXWORDLEN) THEN
BEGIN

WORD[CHARINDEX] := CH;

CHARINDEX := CHARINDEX + 1

END

END;

IF CHARINDEX < MAXWORDLEN THEN
FOR BLANKINDEX := CHARINDEX TO MAXWORDLEN DO

WORD[BLANKINDEX] := BLANK

END;

PROCEDURE CHECKWORD (COM PAREWORD : COMPARETYPE; WORD : WORDTYPE)

;

VAR
COM PAREWORDFOUND: BOOLEAN;
COMPAREWDINDEX: INTEGER;

{CHECK FOR COM PAREWORD NOW.}

BEGIN
READLN

;

COM PAREWORDFOUND := FALSE;

COMPAREWDINDEX := 1;

REPEAT
IF WORD = COMPAREWORD[COMPAREWDINDEX]

THEN COM PAREWORDFOUND := TRUE;

{COMPARING OF TWO ARRAYS.}

COMPAREWDINDEX := COMPAREWDINDEX + 1;

UNTIL COM PAREWORDFOUND OR (COMPAREWDINDEX > NUMCOM PAREWORD)

;

IF COM PAREWORDFOUND THEN WRITELN(COMPAREWDINDEX - 1)

ELSE WRITELNC ERROR IN INPUT.')

END; {END OF CHECKWORD.}

INTRODUCTION TO PASCAL 377

PROCEDURE ENTERCOMPAREWORDS (VAR COMPAREWORD: COM PARETYPE)

;

VAR
CHARINDEX : INTEGER;

BEGIN
COM PAREWORD [1] [1] : =

COM PAREWORD [1 3 [2] : =

COM PAREWORD [1] [3] : =

FOR CHARINDEX := 4 TO

'O';

'N';

'E '

;

MAXWORDLEN DO COM PAREWORD[1] [CHARINDEX] := BLANK;

COM PAREWORD [2] [1] :
=

COM PAREW ORD [2] [2] :
=

COM PAREWORD [2] [3] :
=

FOR CHARINDEX := 4 TO

'T';

'W';

’O';

MAXWORDLEN DO COM PAREWORD[2] [CHARINDEX] := BLANK;

COM PAREWORD [3] [1] : =

COM PAREWORD [3] [2] :
=

COM PAREW ORD [3] [3] :
=

COM PAREWORD [3] [4] :
=

COM PAREWORD [3] [5] :
=

FOR CHARINDEX := 6 TO

'T';

'H';

'R';

'E';

'E';

MAXWORDLEN DO COM PAREWORD[3] [CHARINDEX] := BLANK;

COMPAREWORD [4][1] := 'F'

COM PAREWORD [4] [2] := 'O'

COM PAREWORD [4] [3] := 'U'

COMPAREWORD [4] [4] := 'R'

FOR CHARINDEX := 5 TO MAXWORDLEN DO COM PAREWORD[4] [CHARINDEX] := BLANK;

COM PAREWORD [5] [1] :
=

COM PAREWORD [5] [2] :
=

COM PAREWORD [5] [3] : =

COM PAREWORD [5] [4] : =

FOR CHARINDEX := 5 TO

'F';

'I';

’V';

'E';

MAXWORDLEN DO COM PAREWORD[5] [CHARINDEX] := BLANK;

COM PAREWORD [6] [1] :
=

COM PAREW ORD [6] [2] : =

COM PAREWORD [6] [3] :
=

FOR CHARINDEX := 4 TO

'S';

'I';

'X';

MAXWORDLEN DO COMPAREWORD[6] [CHARINDEX] := BLANK;

COM PAREW ORD [7] [1] :
=

COM PAREWORD [7] [2] : =

COM PAREWORD [7] [3] :
=

COM PAREWORD [7] [4] :
=

COM PAREWORD [7] [5] :
=

FOR CHARINDEX : = 6 TO

'S';

'E';

’V';

'E';

'N';

MAXWORDLEN DO COM PAREWORD [7] [CHARINDEX] := BLANK;

COMPAREWORD [8][1] := 'E'

COM PAREWORD [8] [2] := 'I'

COM PAREWORD [8] [3] := 'G'

COM PAREW ORD [8] [4] := 'H'

378 APPENDIX

COM PAREWORD [8] [5] := 'T'y

FOR CHARINDEX := 6 TO MAXWORDLEN DO COM PAREWORD[8] [CHARINDEX] := BLANK;

COM PAREWORD [9][1] := 'N';

COM PAREWORD [9] [2] := 'I';

COM PAREWORD [9] [3] := 'N';

COM PAREWORD [9] [4] := 'E';

FOR CHARINDEX : = 5 TO MAXWORDLEN DO COMPAREWORD[9] [CHARINDEX] := BLANK;

COM PAREWORD [10] [1] := 'T';

COM PAREWORD [1 0] [2] := 'E';

COM PAREWORD [10] [3] := 'N';

FOR CHARINDEX := 4 TO MAXWORDLEN DO COMPAREWORD[1 0] [CHARINDEX] := BLANK

END; {ENTERCOM PAREW ORDS}

BEGIN {MAIN PROGRAM}

ENTERCOMPAREWORDS (COMPAREWORD)

;

FINISHED := FALSE;

writeln Center a written number, ex. -"one", from 1 -10 . to halt

ENTER X BY ITSELF: ');

WHILE NOT FINISHED DO

BEGIN
GETWORD(WORD, FINISHED);

CHECKWORD(COM PAREWORD, WORD)
END

END.

INTRODUCTION TO PASCAL 379

Exercise 9-5:

PROGRAM ALPHANAMES(INPUT, OUTPUT);

CONST
ONENAMELENGTH = 10;
BLANK = '

'

;

MAXNAMES = 10;
TOTALNAMELENGTH = 23;
COMMA = '

,

'

;

TYPE
NUMNAMES = 1.. MAXNAMES;
WORDLENGTH = 1 . . TOTALNAMELENGTH

;

NAME = ARRAY[WORDLENGTH] OF CHAR;
NAMEARRAY = ARRAY [NUMNAMES] OF NAME;

VAR
NAMESTORAGE : NAMEARRAY;

PROCEDURE READNAMES (VAR THENAMES : NAMEARRAY);

VAR
COUNTER, NAMECOUNTER: INTEGER;
ANAME: NAME;

PROCEDURE ENTERANAME (VAR ANAME: NAME);

VAR
COUNTER: INTEGER;

BEGIN
IF NOT EOLN AND NOT EOF THEN

FOR COUNTER : = 1 TO TOTALNAMELENGTH DO
IF NOT EOLN AND NOT EOF THEN READ (ANAME [COUNTER]

)

ELSE ANAME [COUNTER] := BLANK;
READLN

END;

BEGIN {READNAMES}
FOR NAMECOUNTER : = 1 TO MAXNAMES EX)

BEGIN
WRITELN;
WRITE ('ENTER LAST NAME OF PERSON #', NAMECOUNTER : 0 ,'

: ');

ENTERANAME (ANAME)

;

THENAMES [NAMECOUNTER] := ANAME;
THENAMES [NAMECOUNTER] [ONENAMELENGTH +1] := COMMA;

WRITE (' ENTER FIRST NAME: ');

ENTERANAME (ANAME)

;

FOR COUNTER := (ONENAMELENGTH + 2) TO (TOTALNAMELENGTH - 2) DO
THENAMES [NAMECOUNTER] [COUNTER] := ANAME [COUNTER - (ONENAMELENGTH+ 1

THENAMES [NAMECOUNTER] [TOTALNAMELENGTH - 1] := COMMA;
WRITE (' ENTER MIDDLE INITIAL: ');

READ (THENAMES [NAMECOUNTER] [TOTALNAMELENGTH])

;

READLN

END {FOR NAMECOUNTER}

END; {READNAMES}

PROCEDURE ALPHABETIZE (VAR NAMES: NAMEARRAY);

{USES A SIMPLE BUBBLE SORT.}

380 APPENDIX

VAR
NAMEINDEX, CHARINDEX: INTEGER;
FINISHED: BOOLEAN;
DUMMYARRAY: NAME;

BEGIN
REPEAT

FINISHED := TRUE;

FOR NAMEINDEX : = 1 TO
DO BEGIN

CHARINDEX := 1;

WHILE (NAMES [NAMEINDEX] [CHARINDEX] =

NAMES [NAMEINDEX + 1] [CHARINDEX]) AND
(CHARINDEX < TOTALNAMLENGTH

)

DO CHARINDEX := CHARINDEX + 1;

IF (NAMES [NAMEINDEX] [CHARINDEX] > NAMES [NAMEINDEX + 1] [CHARINDEX]) THEN
BEGIN

DUMMYARRAY := NAMES [NAMEINDEX]

;

NAMES [NAMEINDEX] := NAMES [NAMEINDEX +1];
NAMES [NAMEINDEX +1] := DUMMYARRAY;
FINISHED := FALSE

END
END; {FOR}

UNTIL FINISHED
END; {ALPHABETIZE}

{IF ANY TWO NOMES ARE SWITCHED THEN
FINISHED IS SET TO FALSE AND WE KEEP
REPEATING UNTIL THE ARRAY IS IN ORDER-
NO NAMES ARE SWITCHED.}

(MAXNAMES - 1

)

{ONLY N-l COMPARISONS ALONG A LINE
COMPOSED OF N ELEMENTS IN A BUBBLE
SORT. 1ST WITH 2ND, 2ND WITH 3RD...}

PROCEDURE PRINTNAMES (NAMES: NAMEARRAY)

;

VAR
CHARINDEX, NAMEINDEX: INTEGER;

BEGIN {PRINTNAMES}
WRITELN ;WRITELN ;WRITELN

;

WRITELN (

1 THE ALPHABETIZED LIST IS: ');

FOR NAMEINDEX : = 1 TO MAXNAMES DO BEGIN
FOR CHARINDEX := 1 TO TOTALNAMELENGTH DO

BEGIN
IF (NAMES [NAMEINDEX] [CHARINDEX] <> BLANK) THEN

WRITE (NAMES [NAMEINDEX] [CHARINDEX]

)

END;
WRITELN;

END {FOR NAMINDEX}
END; {PRINTNAMES}

BEGIN
WRITELN (' THIS PROGRAM ALPHBETISES A LIST OF 10 NAMES.')?
WRITELN (’THE PROGRAM WILL PROMPT FOR NAMES.');
READNAMES (NAMESTORAGE)

;

ALPHABETIZE (NAMESTORAGE)

;

PRINTNAMES (NAMESTORAGE

)

END.

INTRODUCTION TO PASCAL 381

Exercise 9-6:

PROGRAM SENTENCEALPH (INPUT , OUTPUT)

;

CONST
WORDLENGTH = 20?
SENTLENGTH = 30;
BLANK = 1

'

;

COMMA = '
,

'

;

PERIOD = '
.

'

?

TYPE
WORDS PAN = 1. .WORDLENGTH;
SENTENCES PAN = 1 .. SENTLENGTH

;

WORD = ARRAY[WORDS PAN] OF CHAR;
WORDARRAY = ARRAY [SENTENCES PAN] OF WORD;

VAR
WORDS: WORDARRAY;
WORDINDEX : INTEGER;

PROCEDURE ENTERSENTENCE (VAR THEWORDS : WORDARRAY);

VAR
AWORD: WORD;

PROCEDURE ENTERAWORD (VAR AWORD: WORD);

VAR
COUNTER: INTEGER;
CH: CHAR;

BEGIN {ENTERAWORD}
IF NOT (EOLN OR EOF) THEN
REPEAT

READ (CH)

;

UNTIL NOT ((((CH = BLANK) OR (CH = PERIOD)) OR (CH = COMMA)) AND NOT (EOF OR EOLN));
COUNTER := 1;

IF NOT EOLN AND NOT EOF THEN
REPEAT

AWORD[COUNTER] := CH;
COUNTER := COUNTER + 1;
READ (CH)

;

UNTIL ((((CH = BLANK) OR (CH = PERIOD)) OR (CH = COMMA)) OR (EOF OR EOLN));

AWORD [COUNTER] := CH;
COUNTER := COUNTER + 1?
FOR COUNTER := COUNTER TO WORDLENGTH DO AWORD[COUNTER] := BLANK;
IF EOLN THEN READLN

END; {ENTERAWORD}

BEGIN {ENTERSENTENCE}
WORDINDEX := 1;
WHILE NOT EOF AND (WORDINDEX <= SENTLENGTH) DO

BEGIN

IF NOT EOF THEN ENTERAWORD (AWORD)

;

THEWORDS [WORDINDEX] := AWORD;
WORDINDEX := WORDINDEX + 1;

END {FOR WORDINDEX}
END; {ENTERSENTENCE}

382 APPENDIX

PROCEDURE ALPHABETIZE (VAR WORDS: WORDARRAY)

;

{USES A SIMPLE BUBBLE SORT.}

VAR
LOCALWORDINDEX, CHARINDEX: INTEGER;
FINISHED: BOOLEAN;
DUMMYARRAY: WORD;

BEGIN
REPEAT

FINISHED := TRUE;
FOR LOCALWORDINDEX : = 1 TO (WORDINDEX - 1)

DO BEGIN

CHARINDEX := 1;
WHILE (WORDS [LOCALWORDINDEX] [CHARINDEX] =

WORDS [LOCALWORDINDEX + 1] [CHARINDEX]) AND
(CHARINDEX < WORDLENGTH) DO CHARINDEX := CHARINDEX + 1;

IF CHARINDEX = WORDLENGTH THEN FOR CHARINDEX : = 1 TO WORDLENGTH
DO WORDS [LOCALWORDINDEX] [CHARINDEX] := BLANK
ELSE IF (WORDS [LOCALWORDINDEX] [CHARINDEX] >

WORDS [LOCALWORDINDEX + 1] [CHARINDEX]) THEN
BEGIN

DUMMYARRAY := WORDS [LOCALWORDINDEX]

;

WORDS [LOCALWORDINDEX] := WORDS [LOCALWORDINDEX +1];
WORDS [LOCALWORDINDEX +1] := DUMMYARRAY;
FINISHED := FALSE

END
END; {FOR}

UNTIL FINISHED
END; {ALPHABETIZE}

PROCEDURE PRINT (WORDS: WORDARRAY);

VAR
CHARINDEX, LOCALWORDINDEX: INTEGER;

BEGIN {PRINT}
WRITELN ;WRITELN ;WRITELN

;

WRITELN (

1 THE ALPHABETIZED LIST IS: ');

FOR LOCALWORDINDEX : = 1 TO WORDINDEX DO
BEGIN

IF WORDS [LOCALWORDINDEX] [1] <> BLANK THEN
FOR CHARINDEX : = 1 TO WORDLENGTH DO

WRITE (WORDS [LOCALWORDINDEX] [CHARINDEX])

;

WRITELN
END {FOR LOCALWORDINDEX}

END; {PRINT}

BEGIN {MAIN}
WRITELN

(

1 TYPE IN A SENTENCE ON SOME LINES. STOP BY TYPING EOF CHAR ON);.

WRITELN (
' A NEWLINE. THIRTY WORDS MAX. ENTER UPPERCASE OR LOWERCASE ONLY:);

ENTERSENTENCE (WORDS)

;

ALPHABETIZE (WORDS)

;

PRINT (WORDS

)

END. {MAIN}

INTRODUCTION TO PASCAL 383

Exercise 9-7:

PROGRAM COUNTLETTER(INPUT, OUTPUT);

TYPE
LETTERS =

'

A '

'

Z
1

;

LETTERARRAY = ARRAY [LETTERS] OF INTEGER;

VAR
LETFREQ: LETTERARRAY;

CH : CHAR;

PROCEDURE READINLETTERS (VAR LETFREQR: LETTERARRAY);

VAR

CH: CHAR;

FUNCTION UPPERCASE (CH: CHAR): CHAR;

BEGIN

IF (ORD(CH) >= ORD('A')) AND (ORD(CH) <= ORD('Z')) THEN
UPPERCASE: = CHR(ORD(CH) + ORD('A') - ORD('A'));

ELSE UPPERCASE := CH

END; {UPPERCASE}

BEGIN {READINLETTERS}

WHILE NOT EOF AND (CH <> '*') DO
BEGIN

WHILE NOT EOLN AND NOT (CH = '*') DO
BEGIN

READ (CH)

;

IF (ORD(CH) >= ORD('A')) AND ((ORD(CH) <= ORD('Z')) AND (CH

<> '.'))

THEN BEGIN
CH := UPPERCASE (CH)

;

LETFREQR[CH] := LETFREQR[CH] + 1

END
END;

IF EOLN THEN READLN
END

END;

PROCEDURE PRINTRESULT (LETFREQP: LETTERARRAY);

VAR
CH: CHAR;

384 APPENDIX

BEGIN

WRITELN('THE LETTER COUNT IS AS FOLLOWS:');

WRITELN

;

FOR CH := 'A' TO 'M' DO WRITE(CH:6);
WRITELN;

FOR CH

WRITELN
WRITELN

'A' TO 'M' DO WRITE (LETF REQP [CH] : 6)

;

FOR CH := 'N' TO ' Z ' DO WRITE(CH:6);
WRITELN;

FOR CH := 'N
1 TO ’ Z ' DO WRITE (LETFREQP [CH] : 6) ;

WRITELN;
WRITELN

END; {PRINTRESULT}

BEGIN

FOR CH := 'A' TO 'Z' DO LETFREQ[CH] := 0;

WRITELN ('ENTER TEXT: HALT INPUT WITH CTRL-D OR ');

READINLETTERS (LETFREQ)

;

PRINTRESULT (LETFREQ

)

INTRODUCTION TO PASCAL 385

Exercise 9-8:

PROGRAM INTEGERFILTER(INPUT, OUTPUT)

;

CONST
NUM = 1;
FREQ = 2;

VAR
LARGEST, SMALLEST: ARRAY[1..2] OF INTEGER;
NUMBER: INTEGER;

BEGIN
LARGEST [NUM] := MININT ; LARGEST[FREQ] := 0;

SMALLEST [NUM] := MAX INT ; SMALLEST [FREQ] := 0;
WRITELN (' ENTER SOME INTEGERS < ' , MAXINT ,

' AND > ', MININT,' END WITH EOF CHAR'
WHILE NOT EOF DO
BEGIN

WHILE NOT EOF AND NOT EOLN DO
BEGIN

READ (NUMBER)

;

IF NUMBER > LARGEST [NUM] THEN
BEGIN

LARGEST [NUM] := NUMBER;
LARGEST [FREQ] := 1;

END
ELSE IF NUMBER = LARGEST [NUM] THEN

LARGEST [FREQ] := LARGEST [FREQ] + 1;
IF NUMBER < SMALLEST [NUM] THEN

BEGIN
SMALLEST [NUM] := NUMBER;
SMALLEST [FREQ] := 1;

END
ELSE IF NUMBER = SMALLEST [NUM] THEN

SMALLEST [FREQ] := SMALLEST [FREQ] + 1

END;

);

IF EOLN AND NOT EOF THEN READLN
END; {WHILE NOT EOF}

WRITELN;
WRITELN;
WRITELN (LARGEST [NUM]: 0,

' THE LARGEST NUMBER, WAS ENTERED '

, LARGEST [FREQ] : 0 ,
' TIMES.');

WRITELN;
WRITELN (SMALLEST [NUM]: 0,

’ THE SMALLEST NUMBER, WAS ENTERED '

, SMALLEST [FREQ] : 0 ,
' TIMES.');

END.

WRITELN;
WRITELN

386 APPENDIX

Exercise 9-9:

PROGRAM DICTIONARY (INPUT, OUTPUT)

;

CONST
BLANK = '

'

;

NUMWORDS = 5;

MAXWORDLENGTH = 10;
STOPCHAR = ' 1 '

;

TYPE
WORDLENGTH = 1 .. MAXWORDLENGTH

;

DICTSPAN = 1.. NUMWORDS;
WORD = ARRAY[WORDLENGTH] OF CHAR;
DICTIONARY = ARRAY [DICTSPAN] OF WORD;

VAR
FRENCHWORDS , ENGLISHWORDS : DICTIONARY;

PROCEDURE ENTERWORD (VAR AWORD : WORD);

VAR
COUNTER: INTEGER;
CH : CHAR

;

BEGIN
IF NOT (EOLN OR EOF) THEN
WHILE ((CH = BLANK) AND NOT (EOF OR EOLN)) DO READ (CH)

;

{GETS RID OF LEADING GARBAGE LIKE BLANKS, LEAVES CH AT FIRST CHAR}
FOR COUNTER : = 1 TO MAXWORDLENGTH DO

IF NOT EOLN THEN READ (AWORD [COUNTER]

)

ELSE AWORD [COUNTER] := BLANK;
READLN

END; {ENTERWORD}

PROCEDURE BUILDDICT (VAR FRENCH, ENGLISH: DICTIONARY);

VAR
WORDINDEX: INTEGER;

BEGIN
FOR WORDINDEX : = 1 TO NUMWORDS DO

BEGIN
WRITE ('ENTER FRENCH WORD # ', WORDINDEX : 0 ,'

: ');

ENTERWORD (FRENCH[WORDINDEX])

;

WRITE (
’ ENTER ENGLISH EQUIVALENT : ');

ENTERWORD (ENGLISH[WORDINDEX])

;

WRITELN

;

END
END; {BUILDDICT}

PROCEDURE READANDCOMPARE (FWORDS , EWORDS : DICTIONARY)

;

VAR
TRANSWORD: WORD;
WINDEX: INTEGER;

PROCEDURE PRINTTRANS (OUTWORD: WORD);
VAR

CHARIND: INTEGER;

BEGIN
WRITE (' FRENCH WORD IS: ’);

FOR CHARIND : = 1 TO MAXWORDLENGTH DO WRITE (OUTWORD[CHARIND])

;

INTRODUCTION TO PASCAL 387

WRITELN
END; {PRINTTRANS}

BEGIN
WHILE TRANSWORD [1] <> STOPCHAR DO

BEGIN
WRITE (’ENTER ENGLISH WORD: ');

ENTERWORD (TRANSWORD)

;

IF TRANSWORDCl] <> STOPCHAR THEN {DOUBLE CHECK}
BEGIN

WINDEX := 0;
REPEAT

WINDEX := WINDEX + 1;

UNTIL (EWORDS[WINDEX] = TRANSWORD) OR (WINDEX = NUMWORDS)

?

IF ((WINDEX = NUMWORDS) AND (EWORDS [WINDEX] <> TRANSWORD))
THEN WRITE ('WORD NOT FOUND.')
ELSE PRINTTRANS (FWORDS [WINDEX])

?

END ; { IF TRANSWORD

}

WRITELN
END {WHILE}

END ; { READANDCOMPARE

}

BEGIN {MAIN}
WRITELN ('ENTERING DICTIONARY MODE. ’)

;

BUILDDICT (FRENCHWORDS , ENGLISHWORDS)

?

WRITELN ('ENTERING TRANSLATION MODE. STOP WITH A 1 ENTERED AS FIRST CHAR.');
READANDCOMPARE (FRENCHWORDS , ENGLISHWORDS

)

END. {MAIN}

388 APPENDIX

Exercise 9-10:

PROGRAM TRANSSENT (INPUT, OUTPUT)

;

{THIS PROGRAM EXPANDS UPON EXERCISE 9-9 USING SIMILAR PROCEDURES
TO ILLUSTRATE THE USES OF MODULAR PROGRAM DESIGN AND EXPANSION.
NOTE THAT THE DICTIONARY CAN BE LENGTHENED BY CHANGING THE CONSTANT
'NUMWORDS', BELOW.}

{DATA STRUCTURES:
EACH WORD IS STORED IN AN ARRAY OF CHAR. THE DICTIONARY IS
AN ARRAY IN WHICH EACH ELEMENT IS A WORD (WHICH IS AN ARRAY OF
CHAR.) EACH SENTENCE IS AN ARRAY OF WORD SIMILAR TO TYPE DICTIONARY
BUT OF DIFFERENT LENGTH.}

CONST
BLANK = '

'
;

NUMWORDS = 5;
MAXWORDLENGTH = 10;
STOPCHAR = 1 N '

;

SENTLENGTH =* 10;

TYPE
WORDLENGTH = 1 .. MAXWORDLENGTH

;

DICTSPAN = 1.. NUMWORDS;
SENTRANGE = 1 .. SENTLENGTH

;

WORD = ARRAY[WORDLENGTH] OF CHAR;
DICTIONARY = ARRAY[DICTSPAN] OF WORD;
SENTENCE = ARRAY [SENTRANGE] OF WORD;

{NOTICE THAT EACH ELEMENT OF SENTENCE AND DICTIONARY ARE OF
SAME TYPE: WORD, SO THAT THEY MAY BE COMPARED "WORD" BY "WORD."}

VAR
EPHRASE: SENTENCE;
EWORDS , FWORDS : DICTIONARY;
WORDINDEX: INTEGER;
CONTINUE: CHAR;

PROCEDURE PRINTWORD (OUTWORD: WORD);
VAR

CHARIND: INTEGER;

BEGIN
FOR CHARIND : = 1 TO MAXWORDLENGTH DO

IF OUTWORD [CHARIND] <> BLANK THEN WRITE (OUTWORD [CHARIND]

)

END;

PROCEDURE ENTERWORD (VAR AWORD: WORD);
{ENTERWORD HAS BEEN CHANGED SO THAT IS NO LONGER DOES A READLN, AFTER
EVERY WORD, AS WE MUST NOW READ IN SENTENCES, AND THE STANDARD PASCAL
PROCEDURE INPUT" HAS BEEN USED FOR ERRORCHECKING. INPUT " (SEE CHAP. 11)
IS THE NEXT CHARACTER TO BE READ IN FROM THE INPUT FILE, IN THIS CASE
STANDARD INPUT. THUS WE CAN LOOK AT THE NEXT CHARACTER WITHOUT HAVING
TO READ IT IN YET. GET (INPUT) ADVANCES INPUT" ALONG THE INPUT LINE

WHEN WE DON'T WANT TO READ IN THAT CHARACTER: IN THIS CASE, A BLANK.
NOTE THAT IT IS DIFFICULT TO PERFORM A WRITE IMMEDIATLY AFTER
CHECKING INPUT" BECAUSE PASCAL IS EXPECTING THE PROGRAM TO EXECUTE A
GET, READ, OR READLN.}

VAR
COUNTER: INTEGER;

INTRODUCTION TO PASCAL 389

BEGIN
IF NOT (EOLN OR EOF) THEN
WHILE (INPUT ~ = BLANK) AND NOT (EOF OR EOLN) DO GET (INPUT);
{GETS RID OF LEADING GARBAGE LIKE BLANKS, LEAVES CH AT FIRST CHAR}
FOR COUNTER : = 1 TO MAXWORDLENGTH DO

IF NOT ((EOLN) OR (INPUT ~ = BLANK))
THEN READ (AWORDCCOUNTER]

)

ELSE AWORD[COUNTER] := BLANK
END ; { ENTERWORD

}

PROCEDURE BUILDDICT (VAR ENGLISH, FRENCH: DICTIONARY);

VAR
WORDINDEX: INTEGER;

BEGIN
FOR WORDINDEX : = 1 TO NUMWORDS DO

BEGIN
WRITE ('ENTER FRENCH WORD # ', WORDINDEX : 0

:

');

ENTERWORD (FRENCH[WORDINDEX])

;

READLN

;

WRITE ('ENTER ENGLISH EQUIVALENT: ');

ENTERWORD (ENGLISH[WORDINDEX])

;

READLN

;

END
END; {BUILDDICT}

PROCEDURE ENTERSENTENCE (VAR ENGPHRASE : SENTENCE ; VAR WORDINDEX: INTEGER);
BEGIN

WRITELN(' ENTER ENGLISH SENTENCE, NO PUNTUATION: ');

WORDINDEX := 0;

WHILE NOT EOLN AND NOT EOF DO
BEGIN

WORDINDEX := WORDINDEX + 1;

ENTERWORD (ENGPHRASE[WORDINDEX])

;

END;
IF EOLN THEN READLN

END;

PROCEDURE BUILDFRENCHPHRASE (VAR EPHRASE : SENTENCE; WORDS INPUT: INTEGER;

EWORDS , FWORDS : DICTIONARY);

{PROCEDURE BUILDFRENCHPHRASE CHECKS A WORD IN THE EPHRASE ARRAY AGAINST

EACH WORD IN THE EWORDS DICTIONARY ARRAY UNTIL THE TWO WORDS MATCH OR
UNTIL THE EWORDS IS EXHAUSTED. IF AN INPUT WORD IS FOUND THE FRENCH
EQUIVALENT IN FWORDS WITH THE SAME WDINDEX VALUE IS PRINTED. OTHERWISE
'UNKNOWN' IS PRINTED. THIS CONTINUES UNTIL ALL THE ENTERED WORDS HAVE
BEEN ATTEMPTED.}

VAR
LOOKUPINDEX, WDINDEX: INTEGER;

BEGIN {BUILDFRENCHPHRASE}

390 APPENDIX

FOR LOOKUPINDEX : = 1 TO WORDS INPUT DO
BEGIN

WDINDEX := 0;
REPEAT

WDINDEX := WDINDEX + 1;
UNTIL (EPHRASE [LOOKUPINDEX] = EWORDS [WDINDEX]) OR (WDINDEX = NUMWORDS)

;

IF ((WDINDEX = NUMWORDS) AND (EWORDS [WDINDEX] <> EPHRASE [LOOKUPINDEX])

)

THEN WRITE (’UNKNOWN 1

)

ELSE PRINTWORD(FWORDS[WDINDEX])

;

WRITE (BLANK)
END; {FOR LOOKUPINDEX}
WRITELN

END; {PROCEDURE BUILDFRENCHPHRASE

}

BEGIN {MAIN PROGRAM}
BUILDDICT(EWORDS, FWORDS);
WRITELN;
WRITELN (

1 ENTERING TRANSLATION MODE . '

)

;

REPEAT
WRITELN;
ENTERSENTENCE(EPHRASE, WORDINDEX)

;

WRITELN; WRITE (' TRANSLATION IS: ’);

BUILDFRENCHPHRASE (EPHRASE, WORDINDEX, EWORDS, FWORDS);
WRITE (’DO YOU WISH TO CONTINUE? TYPE Y OR N: ');

READLN (CONTINUE)

;

UNTIL CONTINUE = STOPCHAR
END. {MAIN}

INTRODUCTION TO PASCAL 391

Exercise 9-12:

PROGRAM MULMATX (INPUT, OUTPUT);

CONST SQUARESIZE = 5; (* IN THIS PROGRAM THE MATRICES CAN *)

(* ONLY BE SQUARE. THIS MULTIPLIES *)

(* FIVE BY FIVE MATRICES. *)

TYPE MATRIX = ARRAY [1 . .SQUARESIZE, 1 . .SQUARESIZE] OF INTEGER;

VAR RESULTANT,

LFT

,

RGT:

MATRIX;

SUM IN,

ROW IN,

COLIN:

INTEGER;

(* RESULTANT MATRIX *)

(* MATRICES TO BE MULTIPLIED *)

(* SUMATION INDEX *)

(* ROW INDEX *)

(* COLUMN INDEX *)

PROCEDURE INMATX(VAR MATX: MATRIX);

BEGIN (* INPUT MATRIX *)

FOR ROW IN := 1 TO SQUARESIZE DO

FOR COLIN := 1 TO SQUARESIZE DO

READ (MATX [ROWIN, COLIN]

)

END; (* INPUT MATRIX *)

BEGIN (* MULMATX *)

INMATX (LFT)

;

INMATX (RGT)

;

(* FOR EACH ELEMENT IN THE RESULTANT MATRIX, INITIALIZE TO ZERO *)

(* AND SUM (ROW ELEMENT * COLUMN ELEMENT) *)

FOR ROWIN := 1 TO SQUARESIZE DO

FOR COLIN := 1 TO SQUARESIZE DO

BEGIN (* INITIALIZE AND SUM ELEMENT *)

RESULTANT [ROW IN, COLIN] := 0;

FOR SUM IN := 1 TO SQUARESIZE DO

RESULTANT [ROW IN, COLIN] := RESULTANT [ROW I N, COLIN] +

LFT [ROW IN, SUM IN] * RGT[SUMIN, COLIN]

END; (* INITIALIZE AND SUM ELEMENT *)

(* PRINT RESULTS *)

WRITELN ; WRITELN;
FOR ROWIN := 1 TO SQUARESIZE DO

392 APPENDIX

BEGIN (* PRINT A ROW *)

FOR COLIN := 1 TO SQUARESIZE DO

WRITE (RESULTANT[ROWIN, COLIN] :3)

;

WRITELN

END; (* PRINT A ROW *)

WRITELN; WRITELN

END. (* MULMATX *)

Sample run: Input

1

0 0 0 0

0 10 0 0

0 0 10 0

0 0 0 1 0

0 0 0 0 1

1 2 3 4 5

2 3 4 5 6

3 4 5 6 7

4 5 6 7 8

5 6 7 8 9

Sample run: Output
1 2 3 4 5

2 3 4 5 6

3 4 5 6 7

4 5 6 7 8

5 6 7 8 9

INTRODUCTION TO PASCAL 393

Exercise 9-13:

PROGRAM SPELL (INPUT, OUTPUT);

CONST
BLANK = '

MAXWORDLEN = 10;

NUMCOMPAREWORD =11;

TYPE
WORDINDEX = 1..MAXWORDLEN;
WORDTYPE = ARRAY [WORDINDEX] OF CHAR;

COMPARETYPE = ARRAY[1 . .NUMCOM PAREWORD] OF WORDTYPE;

VAR
COM PAREWORD : COM PARETYPE ;

WORD: WORDTYPE;
FINISHED: BOOLEAN;

PROCEDURE GETWORD(VAR WORD: WORDTYPE; VAR FINISHED: BOOLEAN);

VAR
CHARINDEX, BLANKINDEX: WORDINDEX;
CH: CHAR;

BEGIN {GETWORD}

CHARINDEX := 1;

{NOW BEGIN TO READ IN A WORD. }

WHILE NOT EOLN DO

{IF EOLN THEN WE'VE FINISHED THE

WORD.

}

BEGIN
READ (CH) ;

IF CH = 'X' THEN
FINISHED := TRUE

{CHECKING FOR
END OF INPUT.}

ELSE IF (CHARINDEX < MAXWORDLEN) THEN

BEGIN
WORD[CHARINDEX] := CH;

CHARINDEX := CHARINDEX + 1

END

END;

394 APPENDIX

IF CHARINDEX < MAXWORDLEN THEN
FOR BLANKINDEX := CHARINDEX TO MAXWORDLEN DO

WORD[BLANKINDEX] := BLANK
{PAD WORD WITH BLANKS}

END;

PROCEDURE CHECKWORD (COM PAREW ORD : COMPARETYPE; WORD : WORDTYPE)

;

VAR
COM PAREWORDFOUND: BOOLEAN;

COMPAREWDINDEX: INTEGER;

{CHECK FOR COM PAREWORD NOW.}

BEGIN

READLN

;

COM PAREWORDFOUND := FALSE;
COMPAREWDINDEX := 1;

REPEAT

IF WORD = COM PAREWORD [COMPAREWDINDEX]
THEN COM PAREWORDFOUND := TRUE;

{COMPARING OF TWO ARRAYS.}

COMPAREWDINDEX := COMPAREWDINDEX + 1;

UNTIL COM PAREWORDFOUND OR (COMPAREWDINDEX > NUMCOM PAREWORD)

;

IF COM PAREWORDFOUND THEN WRITELN (OM PAREWDINDEX - 1)

ELSE WRITELNC ERROR IN INPUT.')

END; {END OF CHECKW ORD.}

PROCEDURE ENTERCOMPAREWORDS (VAR COM PAREWORD: COMPARETYPE);

VAR
COMPAREWDINDEX : INTEGER;

FINISHED : BOOLEAN;
WORD: WORDTYPE;

BEGIN {COM PAREWORDREAD }

BEGIN
COMPAREWDINDEX := 1;

FINISHED := FALSE;

WRITELN ('ENTER THE BASE WORDS NOW, ONE TO A LINE. TO STOP ENTER

ALONE ON A LINE.');

WHILE NOT FINISHED DO

BEGIN

INTRODUCTION TO PASCAL 395

GETWORD (WORD , FINISHED);

IF NOT FINISHED THEN

COM PAREWORD[COM PAREW DINDEX] := WORD;

COMPAREWDINDEX := COM PAREW DINDEX + 1;

READLN
END; {FOR NOT COMPAREWDINDEX}

END {WHILE}

END; {ENTERCOMPAREWORDS}

BEGIN {MAIN PROGRAM}

ENTERCOMPAREWORDS (COMPAREWORD)

;

FINISHED := FALSE;

WRITELNC ENTER THE COMPARISON WORDS NOW. TO HALT ENTER X BY ITSELF:
'

)

;

WHILE NOT FINISHED DO

BEGIN
GETWORD (WORD, FINISHED);

CHECKWORD(COM PAREWORD, WORD)

END

END.

396 APPENDIX

Exercise 9-15:

PROGRAM NAMESS (INPUT , OUTPUT)

;

CONST NAMELN =20; (* LENGTH OF NAMES *)

SSLN =9; (* LENGTH OF SOCIAL SECURITY NUMBER *)

NUMNAMES = 10; (* NUMBER OF NAMES TO BE READ IN *)

VAR NAMES: (* HOLDS NAMES *)

ARRAY [1..NUMNAMES, 1..NAMELN] OF CHAR;

SSNO: (* HOLDS SOC SEC NUMBER *)

ARRAY [1 ..NUMNAMES, 1.. SSLN] OF CHAR;

COLIN, (* ROW AND COLUMN INDICES *)

ROW IN

:

INTEGER;

BEGIN (* NAMESS *)

(* READ NAMES *)

FOR ROWIN := 1 TO NUMNAMES DO

BEGIN (* READ ONE NAME *)

FOR COLIN := 1 TO NAMELN DO

READ (NAMES [ROWIN, COLIN])

;

READLN

END; (* READ ONE NAME *)

(* READ SOCIAL SECURITY NUMBERS *)

FOR ROWIN : = 1 TO NUMNAMES DO

BEGIN (* READ ONE NUMBER *)

FOR COLIN := 1 TO SSLN DO
READ (SSNO [ROWIN, COLIN])

;

READLN

END; (* READ ONE NUMBER *)

(* OUTPUT NAMES AND NUMBERS *)

WRITELN ; WRITELN;
FOR ROWIN := 1 TO NUMNAMES DO

BEGIN (* PRINT NAME AND NUMBER *)

FOR COLIN := 1 TO NAMELN DO

WRITE (NAMES[ROWIN, COLIN])

;

WRITELN;
FOR COLIN := 1 TO SSLN DO

BEGIN (* PRINT SS NUMBER *)

IF (COLIN = 4) OR (COLIN = 6) THEN WRITE (’-');

I NTRODUCTION TO PASCAL 397

WRITE (SSNO[ROWIN, COLIN])

;

END; (* PRINT SS NUMBER *)

WRITELN ; WRITELN ; WRITELN

END (* PRINT NAME AND NUMBER *)

END. (* NAMESS *)

Sample run: Input

Anthony B. Cory
Robert Timothy Adder

Alexander R. Cong

Corrine M. Hunt
Walter W. Hudson
Susan P. Morgan
B. Taylor Queens
David W. Allen
Tiffany E. Walsh
Duncan T. Worth
234125246

559562364
788679002
555473297
990756237
885967134

456785655
566779053

223568904
284946839

Sample run : Output
Anthony B. Cory
234-12-5246

David W. Allen
566-77-9053

Robert Timothy Adder
559-56-2364

Tiffany F. Walsh
223-56-8904

Alexander R. Cong
788-67-9002

Corrine M. Hunt
555-47-3297

Walter W. Hudson
990-75-6237

Susan P. Morgan
885-96-7134

Duncan T. Worth
284-94-6839

B. Taylor Queens
456-78-5655

398 APPENDIX

CHAPTER 10 RECORDS AND VARIANTS:

Exercise 10-2:

PROGRAM NAMEANDBIRTH(INPUT, OUTPUT);

CONST
BLANK = '

'
;

DASH = ' - '

;

SLASH = '
/

'

;

MAXNAMELENGTH = 30;
MAXNAMES = 20;
THISYEAR = 80;
ASC I IOFFSET = 48;

{THE DIFFERENCE BETWEEN A DIGIT AND ITS ASCII CODE: 0 IS 48 ASCII.)

TYPE
{NAMETYPE IS THE ARRAY INTO WHICH THE PERSON'S NAME IS READ.)

NAMETYPE = ARRAY[1 .. MAXNAMELENGTH] OF CHAR;

{PERSON IS THE RECORD TYPE WHICH CONTAINS THE INFORMATION OF
BIRTHDATE, MONTH, DAY, AND YEAR AND THE NAME FOR EVERY PERSON.)

PERSON = RECORD
NAME : NAMETYPE;
MONTH, DAY, YEAR: INTEGER

END;

{PERSONARRAY IS THE MASTER DATA STRUCTURE, AN ARRAY IN WHICH EACH\
ELEMENT IS OF TYPE PERSON.)

PERSONARRAY = ARRAY[1 .. MAXNAMES] OF PERSON;

VAR
PEOPLE: PERSONARRAY;
ONEPERSO : PERSON;
FIRSTTIME, ERROR: BOOLEAN;
NAMEINDEX: INTEGER;

PROCEDURE READITEM (VAR ONENAME: PERSON; VAR ERROR: BOOLEAN);

{READITEM PROMPTS AND READS IN A PERSON AND BIRTHDATE. IT ERROR
CHECKS TO MAKE SURE THAT THE BIRTHDATE IS A POSSIBLE ONE. IF
AN ERROR HAS BEEN DETECTED, IT RETURNS AN ERROR MESSAGE AND
WAITS FOR THE USER TO TRY AGAIN.)

PROCEDURE ENTERNAME (VAR ANAME: NAMETYPE);

{ENTERNAME READS THE PERSONS NAME, AND PADS THE REMAINDER OF THE)
ANAME ARRAY WITH BLANKS.)

VAR
CHARINDEX: INTEGER;

BEGIN
IF NOT (EOLN OR EOF) THEN
BEGIN

CHARINDEX := 0;
WHILE (INPUT" = BLANK) AND NOT (EOF OR EOLN) DO GET (INPUT);

FOR CHARINDEX := 1 TO MAXNAMELENGTH DO
IF NOT ((EOLN) OR (INPUT" = DASH))

THEN
READ (ANAME [CHARINDEX]

)

ELSE
ANAME [CHARINDEX] := BLANK;

INTRODUCTION TO PASCAL 399

WHILE (INPUT" = DASH) OR (INPUT" = BLANK) DO GET (INPUT)

;

END
END; {ENTERNAME}

PROCEDURE ENTERNUMBER (VAR MDORYEAR : INTEGER; KEY: INTEGER; VAR ERROR: BOOLEAN);
{ENTERNUMBER IS CALLED TO READ IN THE NUMERICAL DATA BETWEEN THE /../
ON THE INPUT LINE. IT IS CALLED BY READITEM THREE TIMES, ONCE EACH
FOR THE MONTH, DAY, AND YEAR. IT READS IN THE NUMBER AS A CHARACTER AND
THEN CONVERTS IT TO AN INTEGER WHICH MAKES THE INPUTTING MORE ERROR PROOF.}

VAR
NUMBER: INTEGER;
CH: CHAR;

BEGIN
IF NOT EOLN THEN READ (CH)

;

NUMBER := (ORD(CH) - ASCI IOFFSET)

;

{READS IN AS CHARACTER THEN CONVERTS TO INTEGER. MAY BE
IMPLEMENTATION DEPENDENT DUE TO DIFFERENT CHARSETS. 0 IS ASSUMED
ASCII 48. AFTER THE NUMBER IS CONVERTED IT IS CHECKED BELOW TO
SEE THAT IT WAS INDEED A NUMBER AND NOT A TYPO.}

IF NUMBER <= 9 THEN MDORYEAR := NUMBER
ELSE BEGIN

ERROR := TRUE
END;

IF NOT ERROR AND NOT EOLN THEN {READ SECOND DIGIT IN INPUT FIELD
IF THERE IS ONE. E . G . THE MONTH
AND YEAR FIELDS: 3/12/49.}

BEGIN
{IF THERE IS A SECOND DIGIT, THEN READ IT IN, AND ADD IT TO
THE ONES PLACE OF NUMBER. (MULTIPLY NUMBER BY 10 FIRST.)
AS USUAL CHECK FOR BLANKS AND THE PRESENCE OF A SLASH.}

READ (CH)

;

IF (CH <> SLASH) AND (CH <> BLANK) THEN
BEGIN
NUMBER := ORD(CH) - ASCIIOFFSET;
MDORYEAR: = MDORYEAR* 10 + NUMBER
END;

IF MDORYEAR > KEY THEN
BEGIN

ERROR := TRUE
END;

{NOW ADVANCE TO NEXT FIELD IN INPUT LINE.}
WHILE NOT EOLN AND ((INPUT" = BLANK) OR (INPUT" = SLASH)) DO GET (INPUT

)

END {IF NOT EOLN}
END; {ENTERNUMBER}

BEGIN {READITEM}
ENTERNAME (ONENAME . NAME)

;

ENTERNUMBER (ONENAME. MONTH, 12, ERROR);
ENTERNUMBER (ONENAME. DAY, 31, ERROR);
ENTERNUMBER (ONENAME. YEAR, THISYEAR, ERROR);

{NOW WE CHECK FOR IMPOSSIBLE BIRTHDATES. FEBRUARY 30, FOR
EXAMPLE, OR FEB29 WHEN IT WASN'T A LEAP YEAR.}

IF NOT ERROR THEN
WITH ONENAME DO

CASE MONTH OF
2: IF NOT ((DAY > 0) AND (DAY <= 29)) THEN

BEGIN
ERROR := TRUE

END

400 APPENDIX

ELSE IF (YEAR MOD 4 <> 0) AND (DAY >= 29) THEN
BEGIN

WRITELN('ERROR IN INPUT-PROBABLY DAY');
ERROR := TRUE

END;

4, 9, 6, 11: IF NOT ((DAY > 0) AND (DAY<= 30))THEN
BEGIN

WRITELN('ERROR IN INPUT -PROBABLY DAY');
ERROR := TRUE

END;
1, 3, 5, 7, 8, 10, 12: IF NOT ((DAY > 0) AND (DAY<= 31)) THEN

BEGIN
WRITELN('ERROR IN INPUT-PROBABLY DAY');
ERROR := TRUE

END
END {CASE}

END; {PROCEDURE READITEM}

PROCEDURE SORTBYBIRTH (VAR PEOPLE: PERSONARRAY; NAMESREADIN: INTEGER);

{USES A SIMPLE BUBBLE SORT TO SORT THE PEOPLE INTO OLDEST
FIRST ORDER. THIS PROCEDURE USES THE FACT THAT FOR ANY BIRTHDAY,
(YEAR * 10000) + (MONTH * 100) + (DAY) WILL BE GREATER THAN
(YEAR * 10000) + (MONTH * 100) + (DAY) OF ANY OTHER BIRTHDAY
WHICH IS LATER THAN IT.}

VAR
LOCALINDEX: INTEGER;
DUMMYPERSON : PERSON;
FINISHED: BOOLEAN;

BEGIN
REPEAT

FINISHED: = TRUE; {IF NO NAMES ARE SWITCHED THEN FINISHED
WILL REMAIN TRUE AND WE WILL EXIT THIS
ROUTINE.

}

FOR LOCALINDEX : = 1 TO (NAMESREADIN - 1) DO
BEGIN

IF PEOPLE [LOCALINDEX] .YEAR * 10000 +

PEOPLE [LOCALINDEX] .MONTH * 100 +

PEOPLE [LOCALINDEX]. DAY >

PEOPLE [LOCALINDEX + 1] . YEAR * 10000 +

PEOPLE [LOCALINDEX + 1]. MONTH * 100 +

PEOPLE [LOCALINDEX + 1] . DAY THEN

BEGIN
DUMMYPERSON : = POPLE [LOCALINDEX]

;

PEOPLE [LOCALINDEX] : = PEOPLE [LOCALINDEX + 1]

;

PEOPLE [LOCALINDEX +1] := DUMMYPERSON;
FINISHED := FALSE

END {IF ...}
END; {FOR NAMEINDEX}

UNTIL FINISHED
END; {PROCEDURE SORTBYBIRTH}

PROCEDURE PRINTOUT (WEEBLES: PERSONARRAY; NAMESREADIN: INTEGER);
VAR

CHINDEX: 1 . . MAXNAMELENGTH

;

NAMEINDEX : 1 . . MAXNAMES

;

INTRODUCTION TO PASCAL 401

BEGIN
WRITELN; WRITELN ; WRITELN; {SEPARATES OUTPUT FROM INPUT PROMPTING}

FOR NAMEINDEX : = 1 TO NAMESREADIN DO {FOR EACH ELEMENT IN PEOPLEARRAY
IN WHICH AN ELEMENT WAS ENTERED,
DO THE FOLLOWING. }

BEGIN
WRITELN

;

WRITE (' PERSON # NAMEINDEX: 0, ' IS: ');

{NOW WRITE OUT THE NAMEARRAY FIELD CHAR BY CHAR.}
FOR CHINDEX : = 1 TO MAXNAMELENGTH DO

WRITE (WEEBLES [NAMEINDEX] . NAME [CHINDEX])

;

WRITE (

1 - '
, WEEBLES [NAMEINDEX] .MONTH: 2, ' / '

) ;

{WRITE OUT THE NUMBER FIELDS MONTH, DAY AND YEAR WITH /'S IN
BETWEEN .

}

WRITE (WEEBLES [NAMEINDEX]. DAY: 2, ' /');

WRITE (WEEBLES [NAMEINDEX] .YEAR: 2)

;

WRITELN
END; {FOR NAMEINDEX}
WRITELN; WRITELN; WRITELN {SPACE AT END OF OUTPUT.}

END; {PROCEDURE PRINTOUT}
BEGIN {MAIN}

NAMEINDEX := 0;
FIRSTTIME := TRUE;
WRITELN (' ENTER INFO IN FORM: FARR, MICHAEL-1 /0 3 /6 1 ');

REPEAT
BEGIN

IF NOT FIRSTTIME THEN READLN

;

{FINISHES READING FROM LINE BEFORE. IF NO LINE BEFORE,
FIRST TIME WILL EQUAL TRUE AND THE READLN WON'T BE
EXECUTED. NECESSARY TO DO THE READLN AFTER THE EOF CHECK
BELOW AT END OF LOOP. OTHERWISE THE EOF TEST WILL WAIT
UNTIL THE USER HAS TYPED IN THE NEXT INPUT LINE.

UNFORTUNATLY THE PROMPT IS NOT WRITTEN IN THAT CASE UNTIL
AFTER THE INFORMATION IS ENTERED. NOTE THIS IS A COMMON
ERROR IN PASCAL PROGRAMS .

}

FIRSTTME := FALSE;
WRITE ('ENTER A NAME AND BIRTHDATE OR EOF TO STOP: ’);

IF NOT EOF THEN {CALL READITEM TO READ NAME AND BIRTHDATE.}
BEGIN
READITEM (ONEPERSON , ERROR)

;

NAMEINDEX := NAMEINDEX + 1

END;
IF NOT ERROR THEN PEOPLE [NAMEINDEX] := ONEPERSON

{IF THERE IS AN ERROR IN INPUT, THEN WE MUST REINITIALIZE
ALL OUR VARIABLES AND TRY AGAIN. NAMEINDEX IS DECREMENTED
BECAUSE WE WANT TO SUBSTITUTE THE CORRECTED ENTRY FOR THE
PRESENTLY INCORRECT ONE .

}

ELSE BEGIN
NAMEINDEX := NAMEINDEX - 1;
WRITELN ('TRY AGAIN, ERROR IN INPUT.');
ONE PERSON. MONTH := 0;
ONEPERSON. DAY := 0;
ONEPERSON. YEAR: = 0 ;{ REINITIALIZE ONEPERSON}
ERROR: = FALSE
END;

UNTIL EOF;

SORTBYBIRTH (PEOPLE , NAMEINDEX);
PRINTOUT (PEOPLE, NAMEINDEX)

END.

402 APPENDIX

CHAPTER 11 FILES

Exercise 11-3:

PROGRAM PRINTLINES (INPUT, OUTPUT, INFILE);

CONST
MAXONPAGE = 60;
MAXNAMELEN = 20;
BLANK = ’

'

;

TYPE
PAGEINDEX = 1 . . MAXONPAGE

;

NAMEINDEX = 1 .. MAXNAMELEN

;

NAMETYPE = PACKED ARRAY [NAMEINDEX] OF CHAR;

VAR
INFILE: FILE OF CHAR;
FILENAME: NAMETYPE;
SPACEINDEX, SPACING: 1..3;
PAGE POSIT ION, CURRENTLINE: INTEGER;
CH : CHAR;
INDEX: NAMEINDEX;
PAGENUM : PAGEINDEX;

BEGIN
WRITE (’FROM WHAT FILE DO YOU WANT THE TEXT TAKEN? ')

FOR INDEX := 1 TO MAXNAMELEN DO
BEGIN

FILENAME[INDEX] := ’
'

;

IF NOT EOLN THEN
READ (FILENAME [INDEX]

)

END;
READLN

;

RESET (INFILE, FILENAME);

PAGENUM := 1;
CURRENTLINE: = 1;
PAGE POSIT ION := 11; {ROOM FOR PAGE HEADING.}

WRITE (
1 HOW SHALL THE OUTPUT BE SPACED? 1-3: ');

READLN (SPACING)

;

PAGE (OUTPUT)

;

WRITELN ;WRITELN ;WRITELN ;WRITELN ;WRITELN

;

WRITELN (

1 THE FOLLOWING IS A LISTING OF FILE: ’, FILENAME,
WRITELN ; WRITELN ;WRITELN ;WRITELN

;

WHILE NOT EOF (INFILE) DO
BEGIN

WRITE (CURRENTLINE : 3)

;

WRITE (BLANK : 2)

;

CURRENTLINE := CURRENTLINE + 1;
PAGE POSIT ION := PAGE POSIT ION + SPACING;
WHILE NOT EOF (INFILE) AND NOT EOLN (INFILE) DO
BEGIN

READ (INFILE, CH) ;

WRITE (CH)

END;
IF EOLN (INFILE) THEN

' PAGE 1
') ;

INTRODUCTION TO PASCAL 403

BEGIN
READLN (INFILE)

;

FOR SPACEINDEX := 1 TO SPACING DO WRITELN

;

IF (PAGE POSITION > MAXONPAGE) AND NOT EOF (INFILE) THEN
BEGIN

PAGENUM := PAGENUM + 1 ;

PAGE (OUTPUT)

;

WRITELN 7WRITELN 7WRITELN 7WRITELN

7

WRITELN (BLANK: 35 , ' PAE PAGENUM

:

3)

7

WRITELN 7WRITELN 7WRITELN 7WRITELN

7

PAGE POSITION := 10
END {IF CURRENTLINE}

END {IF EOLN}
END {WHILE NOT EOF}

END

404 APPENDIX

Exercise 11-5:

WHILE (LINE <> '

') AND NOT EOLN (LINE) DO GET (LINE)

;

Exercise 11-7:

PROGRAM DIVIDEFILE (INPUT, OUTPUT, INFILE, CREDITFILE, DEBITFILE);

TYPE CUSTREC =

RECORD

NAME:

NO:

AMT:

KEY:

ADDRESS:

CITY:
ST:

ZIP:

ARRAY [1..20] OF CHAR;

INTEGER;

REAL;

INTEGER;

ARRAY[1..15] OF CHAR;

ARRAY [1..15] OF CHAR;

ARRAY [1 . . 2] OF CHAR;

INTEGER

END; (* RECORD *)

VAR CUSTOMER: CUSTREC;

INFILE,

CREDITFILE,
DEBITFILE: TEXT;

PROCEDURE READREC;

VAR INDX: INTEGER;

BEGIN (* READREC *)

WITH CUSTOMER DO

BEGIN (* READ *)

FOR INDX := 1 TO 20 DO
READ (INFILE, NAME [INDX]);

READ (INFILE, NO);

READ (INFILE, AMT);

READLN(INFILE, KEY);

FOR INDX := 1 TO 15 DO

READ (INFILE, ADDRESS [INDX])

;

FOR INDX := 1 TO 15 DO
READ (INFILE, CITY[INDX]);

FOR INDX := 1 TO 2 DO
READ (INFILE, ST[lNDX]);

READLN(INFILE, ZIP)

END (* READ *)

END; (* READREC *)

INTRODUCTION TO PASCAL 405

PROCEDURE WRITEREC(VAR OUTFILE: TEXT);

VAR INDX: INTEGER;

BEGIN (* WRITEREC *)

WITH CUSTOMER DO

BEGIN (* WRITE *)

FOR INDX := 1 TO 20 DO

WRITE (OUTFILE, NAME [INDX])

;

WRITELN (OUTFILE)

;

FOR INDX := 1 TO 15 DO

WRITE (OUTFILE, ADDRESS [INDX])

;

WRITELN (OUTFILE)

;

FOR INDX := 1 TO 15 DO

WRITE (OUTFILE, CITY[INDX]);

W RITE (OUTF ILE ,

' ');

FOR INDX := 1 TO 2 DO

WRITE (OUTF ILE, ST[INDX]);

WRITE (OUTFILE, ' ’);

WRITELN (OUTF ILE, ZIP: 5)

END (* WRITE *)

END; (* WRITEREC *)

BEGIN (* DIVIDE FILES *)

RESET (INFILE)

;

REWRITE (CREDITF ILE)

;

REWRITE (DEBITFILE)

;

READREC

;

WHILE NOT EOF (INF ILE) DO
BEGIN (* PROCESS RECORD *)

IF CUSTOMER. KEY = 1 THEN
WRITEREC(CREDITFILE

)

ELSE

WRITEREC (DEBITFILE)

;

WITH CUSTOMER DO READREC

END (* PROCESS RECORD *)

END. (* DIVIDE FILES *)

406 APPENDIX

CHAPTER 12 SETS :

Exercise 12-3:

PROGRAM LIKENESS (INPUT, OUTPUT);

CONST
BLANK = '

'
;

STOPCHAR = '
/

' ;

MAXNAMELENGTH = 20;
MAXNAMES = 20;
FEMALE =

'

F
'

;

MALE =
'

M
'

;

BLONDE =
’

L
'

;

{SECOND LETTER IN WORD.}
BRUNETTE =

'

R
'

;

REDHEAD =
'

E
'

;

TYPE
NAMETYPE = ARRAY[1 .. MAXNAMELENGTH] OF CHAR;
PERSON = RECORD

NAME : NAMETYPE;
AGE: INTEGER;
SEX, HAIRCOLOR: CHAR

END;
PERSONARRAY = ARRAY[1 .. MAXNAMES] OF PERSON;

VAR
LETTERS, DIGITS, SEXES, HAIRCLRS : SET OF CHAR;

{USED FOR ERRORCHECKING. WITHOUT SETS, ERRORCHECKING IS
TREMENDOUSLY VERBOSE.}

PEOPLE: PERSONARRAY;
FIRSTTIME, ERROR: BOOLEAN;
LOWERBOUND, UPPERBOUND, PERSONINDEX: INTEGER;

{USED IN PROCEDURE COMPAREINFO, LOWERBOUND AND UPPERBOUND
ARE THE VARIABLES HOLDING THE VALUES FOR THE AGE BOUNDARIES.
PERSONINDEX IS USED TO INDEX TO PERSONARRAY.}

ENTERSEX: CHAR; {ENTERSEX AND ENTERCOLOR ARE KEYS WE WILL
USE TO SEARCH THE PERSONARRAY. THEY CORRESPOND
TO FIELDS IN THE RECORD PERSON OF PERSONARRAY.}

ENTERCOLOR: CHAR;
{VARIABLES CONTAINING THE DESIRED SEX AND HAIR CHARACTERISTICS.}

PROCEDURE ENTERNAME (VAR ANAME: NAMETYPE);

{ENTERS NAME CHAR BY CHAR AND USES INPUT ~ TO CHECK NEXT CHARACTER
TO BE READ OFF THE INPUT LINE. }

VAR
CHARINDEX: INTEGER;

BEGIN
IF NOT (EOLN OR EOF) THEN
BEGIN

CHARINDEX := 0;
WHILE (INPUT ~ = BLANK) AND NOT (EOF OR EOLN) DO GET (INPUT)

;

FOR CHARINDEX : = 1 TO MAXNAMELENGTH DO
IF (NOT EOLN)

THEN
READ (ANAME [CHARINDEX]

)

ELSE
ANAME [CHARINDEX] := BLANK

END;

INTRODUCTION TO PASCAL 407

READLN
END; {PROCEDURE ENTERNAME}

PROCEDURE BUILDITEM (VAR ONEPERSON: PERSON; VAR ERROR: BOOLEAN);

{ENTERS THE INFORMATION INTO THE PERSON PRECORD OF THE RESENT
ELEMENT OF THE PERSONARRAY PEOPLE. FLUSH (FILENAME) IS A NONSTANDARD
PREDEFINED PROCEDURE WHICH EMPTIES THE BUFFER OF THE SPECIFIED FILE.
IN THIS CASE, IT ALLOWS THE PREVIOUS WRITE STATEMENT TO COMPLETE
BEFORE ANY 'GET'S TAKE PLACE. NORMALLY ANY READ STATEMENT PERFORMS A
FLUSH (OUTPUT) IMPLICITLY. THESE DETAILS ARE IMPLEMENTATION DEPENDENT.}

BEGIN

ENTERNAME (ONEPERSON . NAME)

;

WRITE ('ENTER AGE OF PERSON: ');

FLUSH (OUTPUT)

;

WHILE NOT (INPUT " IN DIGITS) AND (NOT EOLN) DO GET (INPUT);
IF NOT EOLN THEN READLN (ONEPERSON .AGE

)

ELSE ERROR := TRUE;

IF NOT ERROR THEN
BEGIN

WRITE (
' ENTER SEX; MALE/ FEMALE : '

)

;

FLUSH (OUTPUT)

;

WHILE NOT (INPUT" IN SEXES) AND NOT EOLN DO GET (INPUT);

IF (NOT EOLN) AND (INPUT" IN SEXES)
THEN

READLN (ONEPERSON . SEX

)

ELSE
ERROR := TRUE;

WRITE('ENTER HAIR COLOR; BLONDE, BRUNETTE, REDHEAD: ');

{THOUGH WE ASK THE USER TO TYPE IN AN ENTIRE WORD, WE ONLY READ
THE FIRST TWO CHARACTERS OF IT.}

FLUSH (OUTPUT)

;

WHILE NOT (INPUT" IN LETTERS) DO GET (INPUT);

IF NOT EOLN THEN GET (INPUT)

;

IF (NOT EOLN) AND (INPUT" IN HAIRCLRS

)

THEN READ (ONEPERSON. HA I RCOLOR)
ELSE ERROR := TRUE

END {IF NOT ERROR}
END; {PROCEDURE BUILDITEM}

PROCEDURE COMPAREINFO (VAR UPPERBOUND, LOWERBOUND: INTEGER; VAR SEX, HAIRCOLOR:

CHAR; VAR ERROR: BOOLE

{GETS COMPARISON LIMITS FOR SELECTING STORED RECORDS.}

BEGIN

WHILE NOT (INPUT" IN DIGITS) AND (NOT EOLN) DO GET (INPUT);

IF NOT EOLN THEN READ (LOWERBOUND

)

ELSE ERROR := TRUE;

WHILE NOT (INPUT" IN DIGITS) AND NOT EOLN DO GET (INPUT);

{GETS RID OF ALL POSSIBLE GARBAGE BEFORE THE FIRST
INTEGER AND ALSO MAKES SURE THAT WE DON'T TRY TO READ
IN A CHARACTER AS A NUMBER. IF THE INFORMATION WE

408 APPENDIX

WANT ISN'T ON THE LINE THEN WE WILL GET TO EOLN
BEFORE WE READIN THE UPPER AND LOWER BOUND. WE ALSO
DO A CHECK TO SEE THAT UPPERBOUND AND LOWERBOUND ARE
BETWEEN 0 AND 100.}

IF NOT EOLN THEN READLN (UPPERBOUND

)

ELSE ERROR := TRUE

;

IF NOT ((LOWERBOUND > 0) AND (UPPERBOUND <= 100))
THEN ERROR := TRUE;

IF NOT ERROR THEN
BEGIN

WRITE (
' ENTER SEX : MALE/ FEMALE : ');

FLUSH (OUTPUT)

;

WHILE NOT (INPUT" IN SEXES) AND NOT EOLN DO GET (INPUT);

IF (NOT EOLN) AND (INPUT" IN SEXES)
THEN

READLN (SEX)
ELSE

ERROR := TRUE;
WRITE (

' ENTER HAIR COLOR; BLONDE, BRUNETTE, REDHEAD: ');

FLUSH (OUTPUT)

;

{THOUGH WE ASK THE USER TO TYPE IN AN ENTIRE WORD, WE ONLY READ
T E FIRST TWO CHARACTERS OF IT.}

WHILE NOT (INPUT" IN LETTERS) DO GET (INPUT)

;

IF NOT EOLN THEN GET (INPUT)

;

IF (NOT EOLN) AND (INPUT" IN HAIRCLRS

)

THEN READ (HA I RCOLOR

)

ELSE ERROR := TRUE
END {IF NOT ERROR}

END; {PROCEDURE COMPAREINFO}

PROCEDURE PRINTITEM (ONEPERSON : PERSON);
VAR

CHINDEX: INTEGER;
BEGIN

CHINDEX := 1;
{NOW WRITE OUT THE NAMES CHAR BY CHAR.}
FOR CHINDEX : = 1 TO MAXNAMELENGTH DO

WRITE (ONEPERSON. NAME [CHINDEX])

;

WRITE (' AGE: ', ONEPERSON .AGE : 0)

;

WRITELN
END; {PROCEDURE PRINTITEM}

PROCEDURE FINDLUCKYONES (PEOPLE: PERSONARRAY; NAMESREADIN: INTEGER);
{SEARCES THROUGH THE PERSONARRAY COMPARING FIELDS OF THE PERSONARRAY
RECORD CONTAINING THE AGE, HAIR, AND SEX FIELDS.}

VAR
NAMEINDEX: INTEGER;
FOUND : BOOLEAN

;

BEGIN
FOUND := FALSE;
WRITELN; WRITELN; {SEPARATES LISTINGS}

{DO FOR EACH ELEMENT IN PEOPLEARRAY IN WHICH AN ELEMENT WAS

ENTERED.

}

FOR NAMEINDEX : = 1 TO NAMESREADIN DO
{IF WE'VE FOUND THE KIND OF PERSON WERE LOOKING FOR THEN
PRINT OUT THE RECORD.}

INTRODUCTION TO PASCAL 409

IF (PEOPLE [NAMEINDEX] .SEX = ENTERSEX) AND

(PEOPLE [NAMEINDEX] . HAIRCOLOR=ENTERCOLOR

)

THEN
IF (PEOPLE [NAMEINDEX] .AGE <= UPPERBOUND) AND

(PEOPLE [NAME INDEX] .AGE >= LOWERBOUND) THEN
BEGIN

PRINTITEM (PEOPLE [NAMEINDEX])

?

FOUND: = TRUE
END;

IF NOT FOUND THEN WRITELN (
' NONE WITH THAT DESCRIPTION WERE FOUND.')

END; {PROCEDURE FINDLUCKYONE}

PROCEDURE CHARACTERISTICS (UPPERBOUND, LOWERBOUND: INTEGER; SEX, HAIRCOLOR: CHAR);
{PRINTS THE HEADING ON OUTPUT.}
BEGIN

WRITELN (' ***)•

WRITELN (

1 THOSE PEOPLE WITH THE FOLLOWING CHARACTERISTICS:');
WRITELN

;

WRITEC AGE FROM ', LOWERBOUND: 0, ’ TO '

, UPPERBOUND: 0, ', SEX: ');

IF SEX = FEMALE THEN WRITE (
' FEMALE , AND ')

ELSE WRITE (
' MALE , AND '

)

;

WRITE (
' HAIRCOLOR: '

)

;

CASE HAIRCOLOR OF
BRUNETTE: WRITELN (

’ BRUNETTE ARE: '
)

;

BLONDE: WRITELN (' BLONDE ARE : ’);

REDHEAD: WRITELN (' REDHEAD ARE : ')

END {CASE}
END; {PROCEDURE CHARACTERISTIC}

BEGIN {MAIN}
SEXES : = [MALE , FEMALE]

;

HA I RC LRS : = [REDHEAD, BLONDE, BRUNETTE];
DIGITS: = [

'

0

'

. .
'

9

']

;

LETTERS := ['A'..'Z','A'..'Z'];
PERSONINDEX : = 0;
FIRSTTIME := TRUE;
ERROR := FALSE;
WRITELN (’ ENTER PERSON AND THEIR CHARACTERISTICS, ENTER ',STOPCHAR, ' TO STOP. ');

REPEAT
WRITE ('ENTER PERSON '' S NAME: ');

FLUSH (OUTPUT)

;

IF NOT FIRSTTIME THEN READLN

;

{FINISHES READING FROM LINE BEFORE.
NECESSARY TO DO THE READLN AFTER THE EOF CHECK BELOW .

}

FIRSTTIME := FALSE;
IF NOT (INPUT" = STOPCHAR) THEN

{CALL BUILDITEM TO READ NAME AND BIRTHDATE.}
BEGIN

PERSONINDEX: = PERSONINDEX + 1;
BUILDITEM(PEOPLE [PERSONINDEX] , ERROR);
PRINTITEM (PEOPLE [PERSONINDEX]

)

END;
IF (ERROR) AND NOT (INPUT" = STOPCHAR) THEN

BEGIN
PERSONINDEX := PERSONINDEX - 1;
WRITELN ('TRY AGAIN, ERROR IN INPUT.');
ERROR := FALSE

END;
UNTIL (INPUT" = STOPCHAR) OR (PERSONINDEX = MAXNAMES)

;

WRITELN (
' ENTERING COMPARISON’);

WRITELN

;

410 APPENDIX

REPEAT
WRITE ('ENTER AGE SPAN, E.G. 18 TO 24: ');

READLN

;

IF NOT ERROR AND NOT EOF THEN
COM PAREINFO (UPPERBOUND, LOWERBOUND, ENTERSEX, ENTERCOLOR, ERROR);
IF ERROR THEN
BEGIN

ERROR := FALSE;
WRITELN(' ERROR IN CHARACTERISTICS. TRY AGAIN.')

END
ELSE IF NOT EOF THEN
BEGIN

CHARACTERISTICS (UPPERBOUND, LOWERBOUND, ENTERSEX, ENTERCOLOR)

;

FINDLUCKYONES (PEOPLE, PERSONINDEX

)

END {ELSE}
UNTIL EOF;
WRITELN ;WRITELN

END

INTRODUCTION TO PASCAL 411

CHAPTER 13 POINTERS AND LISTS:

Exercise 13-2:

PROGRAM APPOINTMENTBOOK (INPUT, OUTPUT);

CONST
MAXREM INDERMSGLENGTH = 80;
PROMPT = 1 ENTER COMMAND > '

;

BLANK = '
'

;

TYPE
REM INDERENTRYPTR = " REMINDERENTRY;
REMINDERENTRY = RECORD

DATE : INTEGER;
TIME : INTEGER;
REMINDERSTRING : ARRAY [1 . .MAXREM INDERMSGLENGTH] OF CHAR;
REMINDERSTRINGLEN : INTEGER;
NEXTREMINDER : REM INDERENTRYPTR

END;

VAR
FIRSTTIMEINENTER,
QUIT : BOOLEAN;
REMINDERHEAD : REMINDERENTRYPTR

PROCEDURE DELETEREMINDER;
{REMOVE A REMINDER FROM LINKED LIST.}
VAR

I,

NUMOFENTRYTODELETE : INTEGER;
DEAD, REM : REMINDERENTRYPTR

;

BEGIN
WRITE ('ENTER NUMBER OF APPOINTMENT TO DELETE ');

READLN (NUMOFENTRYTODELETE);

IF { NUMOFENTRYTODELETE < 1) OR (REMINDERHEAD = NIL)

THEN WRITELN ('BAD APPOINMENT NUMBER OR LIST IS EMPTY')

ELSE BEGIN
IF NUMOFENTRYTODELETE = 1

THEN BEGIN
DEAD := REMINDERHEAD;
REMINDERHEAD := REMINDERHEAD" .NEXTREMINDER

;

DISPOSE (DEAD)

END
ELSE BEGIN

REM := REMINDERHEAD;
I := 1;

WHILE { REM <> NIL) AND (I < NUMOFENTRYTODELETE - 1) DO BEGIN
REM := REM" .NEXTREMINDER;
I := I + 1

END;
IF REM = NIL

THEN WRITELN ('NO SUCH ENTRY')

ELSE BEGIN
DEAD := REM" .NEXTREMINDER;
REM" . NEXTREMINDER := DEAD" . NEXTREMINDER

;

DISPOSE (DEAD)

END
END

END;
END

412 APPENDIX

PROCEDURE INSERTREM INDER (REMINDER : REMINDERENTRYPTR);

{DO THE 'DIRTY WORK’ OF INSERION SORTING NEW REMINDER RECORDS
INTO POINTER LISTSTRUCTURE .

}

VAR
REM, PREV : REMINDERENTRYPTR;
INSERTED : BOOLEAN;

PROCEDURE INSERT (AFTER, NEWENTRY : REMINDERENTRYPTR);

{RELINK POINTERS TO INSERT NEW ENTRY IN LIST AFTER GIVEN ENTRY.}
BEGIN

IF AFTER = NIL
THEN BEGIN {LIST EMPTY - NEW ITEM IS FIRST ITEM.}

NEWENTRY" .NEXTREM INDER := REMINDERHEAD;
REMINDERHEAD := NEWENTRY

END ELSE BEGIN
NEWENTRY" .NEXTREM INDER := AFTER" .NEXTREMINDER

;

AFTER" .NEXTREM INDER := NEWENTRY
END

END;

FUNCTION GREATERTHAN (REM INDERREC 1 , REM INDERREC 2 : REMINDERENTRYPTR) :

{COMPARE PACKED DATES AND TIMES TO DETERMINE EARLIEST REMINDER RECORD.

BEGIN
IF REMINDERREC1" .DATE = REM INDERREC2 ". DATE THEN

GREATERTHAN: = REMINDERREC1 " . TIME > REMINDERREC2 " .TIME
ELSE

GREATERTHAN : = REM INDERREC
1
". DATE > REM INDERREC

2
". DATE

END;

BEGIN {INSERTREMINDER}
IF REMINDERHEAD = NIL

THEN
INSERT (NIL, REMINDER) {EMPTY LIST.}

ELSE BEGIN
REM := REMINDERHEAD;
PREV := NIL;
REPEAT

IF GREATERTHAN (REMINDER, REM)

THEN BEGIN
INSERTED := FALSE; {TOO LARGE, KEEP LOOKING}
PREV := REM; {REMEMBER LAST RECORD EXAMINED}
REM := REM" .NEXTREM INDER; {UPDATE CURRENT RECORD}

END ELSE BEGIN
INSERTED := TRUE;
INSERT (PREV, REMINDER)

END;

UNTIL (REM = NIL) OR INSERTED;
IF NOT INSERTED THEN INSERT (PREV, REMINDER)

END
END; {INSERTREMINDER}

PROCEDURE ENTERREM INDER;
VAR

REMINDER : REMINDERENTRYPTR;
HOUR, MINUTE, R, MONTH, DAY, YEAR : INTEGER;
PARAMETERERROR : BOOLEAN;

BOOLEAN;

INTRODUCTION TO PASCAL 413

FUNCTION PACKDATE (MONTH, DAY, YEAR : INTEGER) : INTEGER;
{FUNCTION PACKDATE TAKES THE THREE INTEGERS MONTH, DAY, YEAR, AND CREATES
ONE INTEGER OUT OF THEM. FOR EXAMPLE, TO SEE WHAT YEAR IT IS (AFTER WE
HAVE CALLED PACKDATE) WE NEED ONLY SEE WHAT THE VALUE IN THE TEN THOUSANDS
PLACE IS. THE REASON FOR THIS IS THAT WE DON'T HAVE TO CARRY AROUND INTEGERS
FOR MONTH, DAY, YEAR, HOUR, MINUTE, BUT ONLY TWO INTEGERS, PACKDATE AND
PACKTIME.

}

BEGIN
IF (MONTH < 1) OR (MONTH > 12) OR (DAY < 1) OR

(DAY > 31) OR (YEAR < 1) OR (YEAR > 99)

THEN BEGIN
PARAMETERERROR := TRUE;
WRITELN ('MONTH OR DAY OR YEAR OUT OF RANGE');

END ELSE
PACKDATE := YEAR * 10000 + MONTH * 1 00 + DAY

END;

FUNCTION PACKTIME (HOUR, MINUTE : INTEGER) : INTEGER;
BEGIN

IF (HOUR < 1) OR (HOUR > 24) OR (MINUTE < 0) OR (MINUTE > 59)

THEN BEGIN
PARAMETERERROR := TRUE;
WRITELN ('HOUR OR MINUTE OUT OF RANGE')

END ELSE
PACKTIME := HOUR * 1 00 + MINUTE

END; {FUNCTION PACK TIME}

BEGIN {ENTERREMINDER}
{BUILD A REMINDER RECORD, AND CALL INSERTION ROUTINE}
PARAMETERERROR := FALSE;
NEW (REMINDER);

WRITE ('ENTER DATE; ');

IF FIRSTTIMEINENTER THEN WRITE (', (E.G. 4 10 80); ');

{GIVE USER EXAMPLE IF IT IS HIS FIRST TIME.}
READLN (MONTH, DAY, YEAR);

REMINDER" . DATE := PACKDATE (MONTH, DAY, YEAR);

IF NOT PARAMETERERROR THEN
BEGIN

WRITE ('ENTER TIME; ');
IF FIRSTTIMEINENTER THEN WRITE (', (E.G. 17 50 FOR 5:50 ; ');

READLN (HOUR, MINUTE);
REMINDER" .TIME := PACKTIME (HOUR, MINUTE);

IF NOT PARAMETERERROR THEN
BEGIN

WRITELN ('ENTER 1 SENTENCE REMINDER; '

)

;

IF NOT EOF THEN
BEGIN

WHILE EOLN DO READLN;
R := 0;
REPEAT {GET REMINDERSTRING, KEEPING TRACK OF LENGTH.}

R := R + 1;
READ (REMNDER" .REMINDERSTRINGC R]);

UNTIL EOLN;
IF EOLN THEN READLN;
REMINDER" . REMINDERSTRINGLEN := R;

INSERTREMINDER (REMINDER);

FIRSTTIMEINENTER := FALSE;

414 APPENDIX

END {END IF NOT EOF}
END {IF NOT PARAMETERERROR (SECOND LOOP)}

END {IF NOT PARAMETERERROR (FIRST LOOP)'}
END; {PROCEDURE ENTERREMINDER}

PROCEDURE PR INTDATE (THEDATE : INTEGER);

{THIS PROCEDURE UNPACKS THE THEDATE AND PRINTS IT.}
VAR

THEDAY, THEMONTH, THEYEAR : INTEGER;
BEGIN

THEYEAR := THEDATE DIV 10000;
THEMONTH := (THEDATE - THEYEAR * 10000) DIV 100;
THEDAY := THEDATE MOD 100;
WRITE (THEMONTH : 2, ' /', THEDAY : 2, ' /', THEYEAR : 2)

END; {END PROCEDUE PRINTDATE}

PROCEDURE PRINTTIME (THETIME ; INTEGER);

{THIS PROCEDURE UNPACKS THETIME AND PRINTS IT.}
BEGIN

WRITE (THETIME DIV 100:2, (THETIME MOD 100) DIV 10: 1, THETIME MOD 10
END; {PRINTTIME}

PROCEDURE LISTREMINDERS;
VAR

REMINDER : REMINDERENTRYPTR

;

R, SEQUENCENUM : INTEGER;
{SEQUENCENUM IS THE NUMBER OF THE ITEM IN THE LIST THAT WE ARE
PRESENTLY PROCESSING.}

BEGIN
IF REMINDERHEAD = NIL

THEN WRITELN ('APPOINTMENT BOOK EMPTY.')

ELSE BEGIN
REMINDER := REMINDERHEAD; {START AT FIRST ENTRY}
SEQUENCENUM := 0;

WHILE REMINDER <> NIL DO
BEGIN

SEQUENCENUM := SEQUENCENUM + 1;

WRITE (SEQUENCENUM : 5, BLANK: 3);

{THE BLANK: 3 WILL PRINT THE CONST BLANK 3 TIMES.}
PRINTDATE (REMINDER" .DATE);

WRITE (BLANK: 2);

PRINTTIME (REMINDER" .TIME);

WRITE (BLANK: 4);

FOR R := 1 TO REMINDER" . REM INDERSTRINGLEN DO
WRITE (REMINDER" . REMINDERSTRING [R]);

WRITELN;
REMINDER := REMINDER" .NEXTREMINDER ; {GET NEXT REMINDER}

END {WHILE REMINDER <> NIL}
END {IF REMINDERHEAD IS NOT NIL

END; {PROCEDURE LISTREMINDERS}

PROCEDURE PRINTHELP;
BEGIN

WRITELN (
' E

WRITELN (
' D

WRITELN (
' L

WRITELN (
' Q

WRITELN (
’ ?

ENTER A REMINDER, A SENTENCE OF < '

,

DELETE A REMINDER;’);

LIST REMINDERS IN APPOINTMENT BOOK;

'

QUIT PROGRAM;');

PRINT THIS MESSAGE.')

MAXREM INDERMSGLENGTH : 0

,

)

;

END; {PROCEDURE PRINTHELP

'CHARS

INTRODUCTION TO PASCAL 415

PROCEDURE APPOINTMENTCOMMAND?
{THIS PROCEDURE READS A SINGLE CHAR FROM THE USER AND CALLS THE APPROPRIATE
PROCEDURE TO EXECUTE THE COMMAND DESIGNATED BY THE INPUT CHAR.}
VAR

COMMANDCH : CHAR?
BEGIN

IF NOT EOLN THEN
BEGIN

READLN (COMMANDCH)?

WRITELN ?

IF COMMANDCH IN [
'
?

' ,
' E '

,
' E '

,
' D '

,
' D '

,
’ L '

, 'L', ' Q '

,

CASE COMMANDCH OF
' ?’ : PRINTHELP;
'E' ,

1 E ' : ENTERREMINDER;
'D', ’D’ : DELETEREMINDER;
'L' , 'L

1

: LISTREMINDERS;
’Q', ’

Q

1

: QUIT := TRUE? {SETS FLAG FOR EXIT}
END {CASE}

ELSE
WRITELN ('UNKNOWN APPOINTMENT COMMAND * *

' , COMMANDCH,
END {IF NOT EOLN}

ELSE READLN
END? {PROCEDURE APPOINTMENTCOMMAND}

’Q] THEN

)

BEGIN { MAIN }

REMINDERHEAD := NIL?
WRITELN ('APPOINTMENT BOOK.')?

WRITELN (’ TYPE ? FOR HELP .

')

?

WRITELN

?

QUIT := FALSE?
FIRSTTIMEINENTER := TRUE

?

REPEAT
WRITE (PROMPT)?

IF EOF
THEN QUIT := TRUE
ELSE
APPOINTMENTCOMMAND ?

UNTIL QUIT
END.

416

Index
ABS, 33, 37

Access window, 213
Actual parameters, 109
Algorithm, 2, 3, 9, 17

Alphanumeric, 38

AND, 40
ARCTAN, 37

Arithmetic expressions, 13, 52
Arithmetic operators, 32

Array valued functions, 171

Arrays, 142

arrays of, 1 72

multi-dimensional, 146

n-dimensional, 147
of characters, 1 49
Packed (UCSD), 172

packed, 169

Assembly language, 1

Assignment, 12

operator, 12, 57
statement, 12, 21, 57

Base type, 1 44
Batch mode, 303
Batch-oriented, 4

BEGIN, 7, 24

BINARY TREE program, 288
Binary, 1

operator, 52

Block, 7, 22, 103

format, 8

program, 7, 22

structure, 7, 1 13

BLOCKREAD, 241

BLOCKWRITE, 241

BOOLEAN, 136

Boolean,

algebra, 56

expression 55

type, 39

value, 32

Brackets, square, 248
Breakpoint, 306, 314
Buffer variable, 212
Calling a variable, 1 10

Cardinality, 136, 248
CASE statement, 91

(UCSD), 98

Categorizing characters, 252
CHAR, 136

Character type, 37

Characteristic, 35

Characters, array of, 149

CHR, 38

CIPHER Program, 223

CLOSE, 239

CODE, 234
Coding, 143

Colon, 70

Columns, 70

Comment, 7

(UCSD), 27

Compiler, 6, 312

Complement, 250
Compound statements, 59, 80

CONCAT, 176

Conditional statements, 21, 87

CONSOLE, 234
CONST, 45

Constant, 45

Control,

flow of, 75

transfer of, 106

variable, 84

COPY, 176

Copying files, 222

COS, 37

Counter variable, 82, 84

CRUNCH, 240

Data

structures, 3, 9

dynamic structures, 259

types, 132

Debugger, 306

Debugging, 314

Decision tree, 122

Decisions, 75

Declarations, 7, 18, 20

file, 6, 210

VAR, 42

variable, 9, 10

Definitions, 18

DELETE, 176, 177

Device, input, 6

output, 6

I/O (UCSD), 230

Diagnostics, 312

Difference, 250

Direct access, 209

Discipline, 17, 316

DISPOSE, 268

DIV, 32

DO loop, 83

Dyadic operator, 52

Dynamic data structures, 259

Dynamic variable, 265

Editor, 310
ELSE, 88

Empty element, 259

INTRODUCTION TO PASCAL 417

Empty statement, 58

END, 17, 24
Enumeration type, 136

EOF, 67, 209, 215, 236

EOLN, 67, 221, 237

Executable statement, 7

Execution, module, 312

phase, 313

EXIT (UCSD), 128

EXP, 37

Exponent, 35

Exponential notation, 35, 68

Expressions, 51

arithmetic, 13, 52

Boolean, 55

integer, 52

real, 52

Extensions, 304

External file, 220
EXTERNAL, 127

FALSE, 32

Fibonacci numbers, 122

Field, 187

specification, 70

width, 70

FIFO list, 270

File types:

.BACK, 235

.BAD, 235

.CODE, 235

.DATA, 235

.FOTO, 235

.GRAF, 235

.INFO, 235

.TEXT, 235

File, 6, 23, 63, 209

copying, 222

declaration, 6, 210

external, 220
interactive, 235

KEYBOARD, 235

local, 220
names(UCSD), 234, 235

permanent, 220

reading a, 215

searching a, 227

sequential, 209

standard, 21

1

system, 31

1

temporary, 220
TEXT, 220

types(UCSD), 235

(UCSD), 234

writing on a , 21

1

FILEMERGE, 217
Filer, 303

Files, untyped, 304
FILLCHAR, 176

Fixed-point notation, 70

Floating point, 34

Flow of control, 75

FOR loop, 83

Formal parameters, 108

Formal syntax, 21

Format, block, 8

Formatting, 70

Forward references, 125, 265

FORWARD, 125

Free union, 205

Function, identifier, 112

parameters, 110

Functions, 33, 111

array valued, 1 71

for Booleans, 41

for characters, 38

for reals, 36

library, 1 1

3

standard, 33, 54, 55, 103

GET, 216, 238

Global, 1 14

GOTO (UCSD), 98

GOTO statement, 95

GOTOXY, 307

HALT, 307
Heap, 305
Heappointer, 305-306

High-level languages, 1

I/O devices (UCSD), 230
Identifier, 11, 1 7, 26

function, 1 12

scope of, 113, 116, 192

standard, 6, 22, 24, 25

user-defined, 25, 26

IF statement, 87

IMPLEMENTATION, 304

Implicit type, 45

Inclusion, 251

Index, 143, 144

Initialization, 78

INPUT, 6, 9, 63, 303

Input, 6

device, 6

statement, 21, 63

INPUT/OUTPUT, (UCSD), 72

INSERT, 176, 177

Instructions, 1

Integer expression, 52

INTEGER, 10, 12, 136

Integers, 31

INTERACTIVE type, 303

Interactive, 303

files, 235

INTERFACE, 304

Internal ordering, 38

Intersection, 250

Intrinsics, 172, 304

Inventory management, 192

IORESULT, 240

ISO Standard, 303

KEYBOARD, 303

files, 235

Keyboard, 6

Label, 95

Languages,

assembly, 1

high-level, 1

natural, 1

programming, 1

Leading blanks, 70

LENGTH, 176, 177

Lexicographic ordering, 149

LIBRARIAN program, 272

Library functions, 113

Line number, 28

Linker, 303

List, 259
circular, 272

doubly-linked, 272

FIFO, 270

free-, 267

LN, 37

Local, 1 1

3

Location pointer, 213

LOCK, 240

LOG, 48

Logical, 39

LONG INTEGERS, (UCSD), 47

Loop, 83

DO, 83

FOR, 83

nested, 85

program, 75

REPEAT, 217

statements, 86

Mailing list, 149

Mantissa, 35

MARK(heappointer), 306

Matrix, 146, 150

MAXI NT, 31

MAXREAL, 35

MEMAVAIL, 307
Membership, 251

MINREAL, 35

MOD, 32

Monadic operator, 52

MOVELEFT, 175

MOVERIGHT, 175

Multi-dimensional arrays, 146

N-dimensional array, 147

Natural languages, 1

Nested loops, 85

Nested tests, 91

NOT, 40

Notation, exponential, 35, 68

fixed-point, 70

scientific, 35

Object code, 312

ODD, 41

Operating system, 209
Operations, Set, 249
Operator,

assignment, 12, 57
binary, 52

monadic, 52

precedence, 53

unary, 52

Operators, 51

arithmetic, 32

for Booleans, 40
for integers, 32

for reals, 36

relational, 32, 41

OR, 40

ORD, 38, 136

OUTPUT, 6, 9, 63, 211, 303

Output, 6

device, 6

statements, 21, 57, 63

Overlay technique, 304

P-Code, 312

PACK (UCSD), 176

Packed arrays, 169

(UCSD), 172

Packed records, (UCSD), 206
Parameter list, 117

Parameters, 107

actual, 109

formal, 108

function, 110

procedure, 110

Parent, 260
Pascal, 3

Standard, 4

UCSD, 4, 303-307

Passed, 109

Period, 8, 24

Pointer, 212, 259

running, 268

POS, 176, 178

Precedence, 53

Precision, 35

PRED, 38, 136

PRINTER, 234

Printout, 311

Procedure,

-block, 106

-body, 106

call, 106

parameters, 1 1

0

Procedures, 103

standard, 1 1

1

UCSD Segment, 305

PROGRAM, 9, 23

Program, 1

INTRODUCTION TO PASCAL 419

block, 7, 22

body, 20

compilation, 31

1

definition, 6

design, 309

development, 308-317
entering the, 310

execution, 312

heading, 6, 7, 20

headings (UCSD), 27

listing the, 310

loop, 75

organization, 19, 21

running the, 31

1

Programming, 1, 3

language, 1

structured, 7, 17, 316

style, 316
PURGE, 240
PUT, 238
PWROFTEN, 48

Random access, 209, 242

READ, 64, 216, 238

Reading a file, 215
READLN, 64, 221, 238
Real expression, 52

Real type, 34

REAL, 136

Reals, representation of, 35

Record, 183

variable, 188

Recursion, 111, 121

Reference, 109

forward, 125, 265

Relational operators, 32, 41

RELEASE(heappointer), 306

REPEAT loops, 217
REPEAT, 77

Repetition statements, 75

Reserved symbols, 22

Reserved words, 6, 9, 22, 23

RESET, 215, 237
REWRITE, 213
REWRITE (UCSD), 239
ROUND, 34

Scalar types, 135

SCAN, 174

Scientific notation, 35

Scope of identifiers, 113, 116, 192

Scope, 1 1

9

Screen, 6

Searching files, 227
SEEK, 242

Semicolon, 7, 8, 58
Sequential, access, 209
execution, 75

files, 209

Set operations, 249
Sets, 246
(UCSD), 257
Membership, 251

Siblings, 260
Side-effects, 116
SIN, 37
SIZEOF(name), 306

Sorting, 153

Spaces, 69

SQR, 33, 37
SQRT, 37

Stack, 260
Standard,

files, 21

1

functions, 33, 54, 55, 103

identifiers, 6, 22, 24, 25
Pascal, 4

procedures, 1 1

1

scalar types, 31, 136

Statements, 7, 57
assignment, 12, 21, 57
CASE, 91

compound, 59, 80
conditional, 21, 87
empty, 58

executable, 7

input, 21, 63

loop, 86
output, 21, 57, 63

repetition, 75

Step-wise refinement, 316
STR, 47, 176, 178

String, (UCSD), 173

String, 12, 38, 149
Structured programming, 7, 17, 316
Structures,

block, 7, 113

data, 3, 9

Subprogram, 103

Subrange, 138

Subroutine, 103

SUCC, 38, 136

Symbols, 22

reserved, 22

Syntax diagram, 44
Syntax, formal, 21

Temporary files, 220
Terminal, 63

Tests, 75

nested, 91

TEXT, 210, 234
files, 220

Text-processing, 222
TIME, 48

Top-down approach, 316
Transfer of control, 106

420 INDEX

Traversing, 272

TRUE, 32

TRUNC, 33, 47

Truth tables, 40, 41

TYPE, 47

Type, 9, 144

Boolean, 39

character, 37

declarations of, 11, 42

implicit, 45

index, 144

INPUT, 303

interactive, 303

KEYBOARD, 303

real, 34

Types,

data, 132

scalar, 135

standard scalar, 31, 136

user-defined, 42, 46

user-defined scalar, 136

UCSD Pascal, 4, 303-307

arrays, 172

CASE statement, 98

comments, 27

files, 234
file types, 303

INPUT/OUTPUT, 72

LONG INTEGERS, 47

PACKED ARRAYS, 172

PACKED RECORDS, 206

program headings, 27

routines, 305

sets, 257
segments, 305

strings, 173

UNITS, 304
volumes, 234

Unary operator, 52

Unconditional branch: GOTO, 94

Union, 249
UNITBUSY, 240
UNITCLEAR, 241

UNITREAD, 241

UNITWAIT, 241

UNITWRITE, 241

UNTIL, 89

Untyped files, 241

User-defined,

identifier, 25, 26

scalar types, 1 36

TYPE, 46
types, 42

Value, Boolean, 32

VAR declaration, 42

Variable declaration, 9, 10

Variable, 9, 10

buffer, 212

calling a, 110

control, 84

counter, 82, 84

dynamic, 265

record, 188

Variants, 203

Volumes, (UCSD), 234

WHILE, 79, 81

WITH, 188

WRITE, 68, 238

WRITELN, 7, 8, 68, 221, 238

Writing on a file, 21

1

421

The SYBEX Library

INSIDE BASIC GAMES
by Richard Mateosian 300 pp. ; 240 lllustr., Ref. B245
Teaches interactive BASIC programming through games. Games are written in

Microsoft BASIC and can run on the TRS-80, APPLE II and PET/CBM.

FIFTY BASIC EXERCISES
by J.P. Lamoitier 250 pp., 195 lllustr., Ref. B250
Teaches BASIC by actual practice using graduated exercises drawn from every-

day applications. All programs written in Microsoft BASIC.

YOUR FIRST COMPUTER
by Rodnay Zaks 280 pp., 150 lllustr., Ref. C200A
Tne most popular introduction to small computers and their peripherals: what
they do and now to buy one.

MICROPROCESSORS: FROM CHIPS TO SYSTEMS
by Rodnay Zaks 420 pp., 257 lllustr., Ref. C201

A simple and comprehensive introduction to microprocessors from both a hard-

ware and software standpoint: what they are, how they operate, how to assem-
ble them into a complete system.

MICROPROCESSOR INTERFACING TECHNIQUES
by Rodnay Zaks and Austin Lesea 464 pp., 400 lllustr., Ref. C207
Complete hardware and software interconnect techniques including D to A con-
version, peripherals, standard buses and troubleshooting.

PROGRAMMING THE 6502
by Rodnay Zaks 392 pp., 160 lllustr., Ref. C202
Assembly language programming for the 6502, from basic concepts to advanced
data structures.

6502 APPLICATIONS BOOK
by Rodnay Zaks 288 pp., 207 lllustr., Ref. D302
Real life application techniques: the input/output book for the 6502.

6502 GAMES
by Rodnay Zaks 304 pp., 140 lllustr., Ref. G402
Third in the 6502 series. Teaches more advanced programming techniques, using

games as a framework for learning.

PROGRAMMING THE Z80
by Rodnay Zaks 620 pp., 200 lllustr., Ref. C280
A complete course in programming the Z80 microprocessor and a thorough
introduction to assembly language.

PROGRAMMING THE Z8000
by Richard Mateosian 312 pp., 124 lllustr., Ref. C281
How to program the Z8000 16-bit microprocessor. Includes a description of the

architecture and function of the Z8000 and its family of support chips.

THE CP/M HANDBOOK (with MP/M)
by Rodnay Zaks 336 pp., 100 lllustr., Ref. C300
An indispensable reference and guide to CP/M — the most widely used operating

system for small computers.

422

DON'T (or How to Care for Your Computer)
by Rodnay Zaks 200 pp., 100 lllustr., Ref. C400
Tne correct way to handle and care for all elements of a computer system in-

cluding what to do when something doesn't work.

INTRODUCTION TO PASCAL (Including UCSD PASCAL)
by Rodnay Zaks 440 pp., 130 lllustr., Ref. P310
A step-by-step introduction for anyone wanting to learn the Pascal language.
Describes UCSD and Standard Pascals. No technical background is assumed.

THE PASCAL HANDBOOK
by Jacques Tiberghien 450 pp., 350 lllustr., Ref. P320
A dictionary of the Pascal language, defining every reserved word, operator, pro-

cedure and function found in all major versions of Pascal.

PASCAL PROGRAMS FOR SCIENTISTS AND ENGINEERS
by Alan Miller 250 pp., 80 lllustr., Ref. P340
A comprehensive collection of frequently used algorithms for scientific and
technical applications, programmed in Pascal. Includes such programs as curve-
fitting, integrals and statistical techniques.

FIFTY PASCAL PROGRAMS
by Rodnay Zaks and Rudolph Langer 275 pp., 90 lllustr., Ref. P350

A collection of 50 Pascal programs ranging from mathematics to business and
games programs. Explains programming techniques and provides actual practice.

MICROPROCESSOR LEXICON (Acronyms and Definitions)
1 12 pp., Ref. XI

Small enough to fit in purse or pocket, this handy reference book contains all the

definitions and acronyms of the microprocessor jargon.

MICROPROGRAMMED APL IMPLEMENTATION
by Rodnay Zaks 356 pp., Ref. Z10
An expert-level text presenting the complete conceptual analysis and design of

an APL interpreter, and actual listings of the microcode.

FOR A COMPLETE CATALOG
OF OUR PUBLICATIONS

U.S.A.

2344 Sixth Street

Berkeley, California 94710

Tel: (41 5) 848-8233

Telex: 336311

@x
EUROPE

18 rue Planchat

75020 Paris, France

Tel: (1) 370-3275

Telex: 21 1801

introductiontopaOOzaks

introductiontopaOOzaks

introductiontopaOOzaks

At last Pascal is accessible to everyone, those
who have never programmed a computer as

well as experienced programmers.

In this simple, yet comprehensive guide to

standard and UCSD Pascals you will find step-

by-step instructions for learning Pascal as well as

exercises designed to develop your skill and
comprehension.

Beginners, even those who have never before programmed
a computer, will be able to understand the en-
tire book and quickly learn to program in

PASCAL through actual practice.

presented at the end of each chapter and will

also appreciate the organization of the book and
the extensive appendices making it an important
reference tool.

Science from the University of California at

Berkeley and has taught courses on pro-
gramming and microprocessors worldwide. He
worked in Silicon Valley where he pioneered
the use of microprocessors in ind^tdal applica-
tions. Since 1976 he has authored several best

INTRODUCTION TO

Experienced programmers wili be challenged by the complex concepts

ABOUT THE AUTHOR Dr. Rodnay Zaks received his PhD in Computer

selling books on microprocess;

ISBN G-fl d-Ofc.tr-0

