y/
N\ b,

M RoDNAYZAKS %
%‘a —‘ : «

Acknowledgements

The manuscript of this book has gone through many phases, and has
been shown to many people, the final form benefitting from the com-
ments and suggestions of all. | am particularly indebted to the following
educators or Pascal programmers who have provided valuable criti-
cisms or opinions on the original manuscript: Michael Farr, Joseph Faletti,
Jacques Tiberghien, Michael Powell, Eric Novikoff, and Elein Mustain.
| should also like to thank Salley Oberlin and Julie Sickert for many
editorial improvements.

This second edition contains many minor corrections and clarifica-
tions suggested by readers of the first edition. | will be grateful for any
further comments and suggestions for improvements that readers care
to make.

vii

Contents

PREFACE XV
HOW TO READ THIS BOOK xvi
T BASIC CONCEPTS]

Introduction. Computer Programming. Algorithms and Data Structures.
Pascal. UCSD and Other Pascals. A Simple Pascal Program. A Second Pro-
gram Example. Summary. Exercises.

2 PROGRAMMING IN PASCAL 17

Introduction. Writing a Pascal Program. The Syntax of Pascal. Format of a
Pascal Program. Declarations. The Executable Program Body. Program
Organization Summary. Formal Organization of a Program. The Symbols
of Pascal. Reserved Symbols. Reserved Words. Standard Identifiers.
UCSD Comments. UCSD Program Headings. UCSD Listings. Summary.
Exercises.

3 SCALAR TYPES AND OPERATORS 31

Introduction. The Integer Type. The Real Type. The Character Type.
Operators and Functions for Characters. The Boolean Type. User-
Defined Types. Type Declaration. UCSD Long Integers. UCSD Standard
Arithmetic Functions. Summary. Exercises.

viii

EXPRESSIONS AND STATEMENTS 51

Introduction. Expressions. Arithmetic Expressions. Using Standard Func-
tions. Summary of Arithmetic Expressions. Boolean Expressions. Basic
Rules of Boolean Algebra. Statements. Summary. Exercises.

INPUT AND OUTPUT 63

Introduction. Communicating with a File or the Terminal. READ and
READLN. WRITE and WRITELN. UCSD Input/Output. Summary. Exer-
cises.

CONTROL STRUCTURES 75

Sequential Execution. Repetition Statements. Repeat Statement. WHILE
and REPEAT. Nested Loops. The Three Loop Statements—A Summary.
Conditional Statements. Multiple Choice: Case Statement. Unconditional
Branch: GOTO. UCSD Case Statement. Summary. Exercises.

PROCEDURES AND FUNCTIONS 103

Program Organization. Procedures. Block Structure and Scope Iden-
tifiers. Functions and Procedures as Parameters. Scope Revisited. Recur-
sion Revisited. Recursion Example. Forward References. External Pro-
cedures. Restrictions on Parameters. UCSD Procedures and Functions as
Parameters. UCSD Packed Variables as Parameters. UCSD EXIT. Sum-
mary. Exercises.

DATA TYPES 133

Types. Why Data Types? General Rules for Data Types. Scalar Types.
Summary. Exercises.

O ARRAYS

143

Data Structures. The Array. Referencing the Elements of an Array.
Operating on an Array. Multi-Dimensional Arrays. Array of Characters.
Case Study 1: Matrix Addition. Case Study 2: Quicksort. Packed Arrays.
Array Valued Functions. UCSD Arrays. UCSD String Type. UCSD Pack
and Unpack. Summary. Exercises.

TO RECORDS AND VARIANTS 183

Introduction. Record. Formal Definition. Operations on Records. The
WITH Statement. Scope of Identifiers. Case Study 1: Inventory Manage-
ment. Case Study 2: Credit Card Number Validation. Variants. UCSD
Packed Records. Summary. Exercises.

1T FiLes

209

Basic Definitions. Pascal Files. Formal Definition. Standard Files. Writing
on a File. WRITE Summary. Reading a File. Case Study 1: Filemerge. Per-
manent and Temporary Files. Text Files. Text File Processing. The Input
and Output Files. Case Study 2: Cipher Program. Case Study 3: Find Oc-
currences of a String. UCSD Files. Summary. Exercises.

12 sets

247

Sets in Pascal. Constructing a Set. Operations on Sets. Case Study: Identi-
fying Characters. Summary. Exercises.

T3 POINTERS AND LISTS e

Introduction. Dynamic Data Structures. Lists. Creating a Dynamic
Variable. Accessing an Element of a List. Adding and Removing an Ele-
ment. Other List Structures. Case Study 1: A Librarian. Case Study 2: A
Binary Tree. UCSD Dispose. Summary. Exercises.

14 uUcsb AND OTHER PASCALS

303

UCSD and Other Versions. Overview of UCSD Pascal. UCSD Units.

UCSD Segment Procedure. System-Related Routines. Summary.

15 PROGRAM DEVELOPMENT

309

The Program Development Process. The Five Steps of Program Develop-

ment. Writing a Pascal Program. Programming Style. Conclusion.

Appendices

A PASCAL OPERATORS 319
B RESERVED WORDS 321
C STANDARD FUNCTIONS AND PROCEDURES 323
D STANDARD IDENTIFIERS 325
E OPERATOR PRECEDENCE 327
F SYNTAX DIAGRAMS 329
G Ascii cODE 339
H UCSD SYNTAX DIAGRAMS 341
I USUAL UCSD LIMITATIONS 349
J UCSD INTRINSICS 351
K REFERENCES 353
L ANSWERS TO SELECTED EXERCISES 355
INDEX 416

SYBEX LIBRARY

421

Illustrations

Chapter 1
A1E A CRT Terminal 5
o2 A Variable is the name of a memory location 10
1.3: Variables with Values 11

Chapter 2
2.1: Overall Organization of a Pascal Program 18
2.2 Detailed Organization of a Pascal Program 19
2.3: Formal Organization of a Pascal Program 21

2.4 Reserved Symbols 22

2.5: Reserved Words 23

2.6: Standard Identifiers 25
2.7: UCSD Line Numbering 27

Chapter 3

3.1: Representation of Reals 35
3.2: Truth Tables 40

3.3 Additional Truth Tables 41
3.4: VAR Declaration Syntax 43

345 Following the Syntax Diagram 44

3.6: Syntax of a Constant 46
Chapter 4

4.1: Standard Functions 55

4.2 Syntax of the Assignment Statement 57
Chapter 5

B.1s The Concept of a File 63

Chapter 6
6.1: Flowchart for Integer Addition 76
6.2: Syntax of REPEAT 77
6.3: INTEGER SUM Program 77
6.4: Syntax for WHILE 79
6.5: INTEGER SUM Program-Version 2 80

6.6: WHILE vs. REPEAT 81

6.7: AVERAGE Program 82

6.8: FOR Syntax 83

6.9: AVERAGE Program-Version 2 84
6.10: MULTIPLICATION TABLE Program 85
6.11: IF Syntax 88

6.12: IF-THEN-ELSE Flowchart 88

xii

6.13: Program to COUNT NUMBERS 89
6.14: A FILTER Program 90

6.15: VOLTAGE TEST Segment 91

6.16: A Binary Decision Tree 92

6.17: CASE Syntax 93

6.18: Program for SPELLING THE MONTH 93
6.19: Symbolic Representation of a CASE 95
6.20: GOTO Jumps 97

Chapter 7.

7.1: Declaration of PRINTHEADER Procedure 104
7.2: Calling the Procedure 105
7.3 Syntax of a Procedure 107

7.4 Syntax of a Function 111

o3k Block Structures 114

7.6: Scope of Identifiers 116

7.7: Syntax of a Parameter List 118

7.8: FIBONACCI Program 123
7.9: The Two IF Clauses 125
7.10: SOLVE Program 126

Chapter 8

8.1: Order of Pascal Declarations 135
8.2: Enumerated Type Syntax 137
8.3 Subrange Syntax 139

Chapter 9

9.1: A Simple Array 143

9.2: Array Syntax 147

9.3: A Two-dimensional Array 147
9.4: A Mailing List Format 149

953 MATRIX ADDITION Program 151
9.6: Quicksort Example 155

G QUICKSORT Program 157-160
9.8: Sample Quicksort Run 161

9.9: A Bubble Sort Example 164

9.10: SORTSECTION Flowchart 167

Chapter 10

10.1: Syntax for a RECORD 185

10.2: Record Component Syntax 187

10.3: WITH Statement Syntax 190

10.4: Sample Input for Inventory Program 193

10.5: Sample Output for Inventory Program 193
10.6: INVENTORY MANAGEMENT Program 194-195
10.7: Input to Validation Program 197

Xiii

10.8: Output from Validation Program 198
10.9: VALIDATION Program 199-200
10.10: Variant Syntax 205
11.11: CIPHER Program 225
Chapter 11
11.1: Syntax of a File Declaration 210
11.2: Representation of a File 211
11.3: Magnetic Tape Moving in Front of a Read/Write Head 212
11.4: The Access Window 213
11.5: Creating a File 213
11.6: Writing into a File 214
11.7. Appending an Element to a File 214
11.8: Resetting the Window 215
11.9: Input for a Cipher Program 223
11.10: Output of Cipher Program 224
11.11: CIPHER Program 225
11.12: Input File for MATCHCOUNT 227
11.13: Run of MATCHCOUNT 227
11.14: MATCHCOUNT Program 228
Chapter 12
12.1: Formal Syntax of the Set Type 247
12.2: Set Elements 249
12.3: Union of Two Sets (S11 S2) 249
12.4: Intersection of Two Sets (S1/M S2) 250
12.5: Difference of Two Sets 250
12.6: Input to CATEGORIZECHARS 252
112875 Output Generated by CATEGORIZECHARS 252
12.8: CATEGORIZECHARS Program 253-254
Chapter 13
13.1: Three Elements in Memory 261
13.2: Creating Links 262
13.3: The Pointers 263
13.4: Formal Syntax of a Pointer Type 263
13.5: Pointer Assignments 264
13.6: Results of Pointer Assignments 264
13.7: A Similar Situation 265
13.8: Corresponding Sequence 267
13.9: Adding an Element at the Beginning of a List 269
13.10: Inserting an Element in the Middle of a List 270
13.11: Removing an Element from a List 271
13.12: A Stack and FIFO 271
13.13: A Doubly-Linked List Facilitates Two-Way Movement 272
13.14: A Circular List Facilitates Access 272
13.15: A Binary Tree 273

XV

Preface

| have written many books on computers, ranging from the introduc-
tory (Your First Computer) to the highly technical (A Microprogrammed
APL Implementation). Yet, this was one of the most difficult to write, as
this book was designed to be read and understood by everyone,
whether novice or experienced programmer, who wants to learn how
to program in Pascal.

Pascal is a powerful language, equipped with highly sophisticated
facilities. Explaining all of the features simply and progressively, without
losing the novice or boring the experienced programmer, was a signi-
ficant challenge.

The arrangement of the chapters will lead the reader from simple con-
cepts to complex data structures and all aspects of Pascal are covered
progressively.

The first five chapters present the basic definitions needed to use and
understand Pascal. After studying them, the reader will be able to write
simple programs. Specific techniques and data structures are presented
next, allowing the reader to write more complex programs.

Pascal is a powerful programming language requiring actual practice
to learn well. Many exercises are provided throughout the book to test
the reader’s skills and comprehension while learning. Answers to
selected exercises appear at the end of the book.

The original definition of Pascal by Niklaus Wirth is referred to in this
book as Standard Pascal. A more recent version of Pascal, UCSD Pascal,
has also gained widespread acceptance for use on small computers.
Each chapter describes Standard Pascal, as well as the special features of
UCSD Pascal, where applicable. The more complex aspects of UCSD
Pascal are described in a special chapter at the end of the book.

An extensive Appendix provides a listing of all symbols, keywords and
rules of syntax for programming in Pascal. This Appendix provides a
concise summary that can be used as a reference.

XVi

How to Read This Book

This book is designed to be used primarily as a tutorial on Pascal, and
also as a reference text. Designing a book as a tutorial requires a linear
presentation: each concept must be defined before it is used. Designing
a book as a reference text requires a modular organization: all informa-
tion pertaining to a topic must be included in that section.

The approach chosen for this book is a tutorial one: concepts are
carefully defined, each in turn. Even those who have never programm-
ed before will be able to understand the entire book.

Since the reader may need to refer back to specific chapters when
programming, each chapter has been structured so that it may also be
used as a reference later on. The most simple concepts are presented at
the beginning of each chapter;, more complex information is
systematically presented at the end of the chapter. Other sections in the
book are referenced.

The more complex concepts presented at the end of most chapters, as
well as the special features of UCSD Pascal, may be omitted during a
first reading. Later on, once the reader has acquired programming prac-
tice, these sections may be consulted as useful references.

The following sequence is recommended for the reader who wants to
learn as quickly as possible to program in Pascal.

First phase:

— Read Chapters 1 through 6 carefully.
— Try to solve the exercises.
— Read Chapter 15.

— Ignore the information on UCSD Pascal within the chapters.

The most important task for the reader, at this point, is to write many
real programs and execute them. The first six chapters may be used to
help accomplish this.

Second phase:

— Read Chapters 7, 8, and 9.
— If you are using UCSD Pascal, read all of the pertinent sections.
— Write as many programs as possible.

At this point, the reader will have learned most of the techniques re-
quired to write common Pascal programs.

INTRODUCTION

The basic concepts of computer programming in the Pascal language
will be introduced in this chapter. Actual programs will be presented
and explained in order to give the reader realistic programming ex-
amples. The more formal concepts and definitions of the Pascal lan-
guage will be introduced in Chapter 2.

COMPUTER PROGRAMMING

A computer program is a sequence of instructions designed to be ex-
ecuted by a computer in order to obtain a specific result. For example,
computer programs may be written and used to play games, perform
scientific calculations, or execute business-oriented tasks.

Internally, a computer can only execute a limited set of instructions,
which must be expressed in a binary code, i.e., as a sequence of zeroes
and ones. Unfortunately, programs written in binary are difficult and
time-consuming for most users to write or read. To alleviate this pro-
blem, a number of programming languages have been invented that
facilitate the writing of programs.

A programming language is a subset of the English language that
allows the programmer to give unambiguous commands to the com-
puter. Of course, the most desirable way to give instructions to the com-
puter would be in English (or any other human language). Unfortunate-
ly, studies have shown that none of the common spoken languages, in-
cluding the English language, are adequate for this purpose. The English
language is ambiguous. Statements may be interpreted in many ways,
depending upon the context. Therefore, so-called ‘‘natural languages’’
may not be used to program a computer. Only a restricted and well-
defined subset of this language, i.e., a programming language, may be
used. Hundreds and perhaps thousands of programming languages
have been proposed for computers.

Two different types of programming languages exist: assembly and
high-level languages. Assembly language is a symbolic representation of
the binary instructions the computer understands. This language is dif-
ficult to use, as the programmer must specify internal registers and
detailed internal operations. Assembly language is used whenever ex-
ecution speed is essential. However, it makes programming difficult.

High-level languages have been developed to facilitate writing com-
puter programs in specific environments such as: scientific, business or
educational.

Pascal is a high-level language. In order to be executed on a com-
puter, a high-level language requires a special program, called an inter-

BASIC CONCEPTS

preter or a compiler, which will translate the language into a sequence
of binary instructions that a computer can understand.

Now that we understand how languages are used, let us look at the
way in which a computer program is created.

ALGORITHMS AND DATA STRUCTURES

A computer program is created either to automate a process or to
solve a given problem. The sequence of steps or operations that must be
followed in order to solve a specific problem is called an algorithm.

An example will serve to clarify the concept of an algorithm. The pro-
blem to be solved is that of “‘preparing a soft boiled egg.”” A possible
algorithm for this task is:

1. Fill the pan with water.

2. Bring the water to a boil.

3. Place the egg in the pan of boiling water.
4. Remove the egg three minutes later.

This algorithm is a step-by-step specification of the process that will
solve our problem. Written for a human, it is somewhat loosely
specified. For example, extra steps could be added to indicate:

1. The amount of water to be placed in the pan.
2. The way in which the egg should be lowered into the pan (gently).
3. The act of placing the pan on the range and then later removing it.

This method of first defining the algorithm loosely, and then defining it
in detail is often called ‘‘top-down design’’ or “‘stepwise refinement.”’ It
will be discussed in Chapter 15.

Let us look at another example of an algorithm. The problem to be
solved in this case is the specification of directions necessary to locate a
specific building in Berkeley, California, assuming that the person driv-
ing is coming from San Francisco.

A possible algorithm for locating the building at 2344 Sixth Street in
Berkeley is:

GCo over the Bay Bridge.

Follow Highway 17, North.

Take the University Avenue exit in Berkeley.

Turn right onto Sixth Street at the first traffic light.

Proceed to the intersection of Sixth and Channing Way. The
building is on the northwest corner.

O L 09 5=

This simple algorithm specifies the sequence of steps required to
reach the building. It is clear and unambiguous.

To be solved by a computer, all problems must first have a solution
expressed as an algorithm. Then, in order for the computer to be able to
execute the algorithm, the algorithm must be translated into a program
by a programmer using a programming language.

INTRODUCTION TO PASCAL

In addition, one other task may have to be performed: often data
structures must be defined to represent the required information. The
information or data used by a program must be organized by the pro-
grammer in a logical and efficient manner. This is called designing data
structures.

In summary, programming involves designing an algorithm and using
the appropriate data structures. Specifically,

— An algorithm is a step-by-step specification of a sequence of in-
structions that will solve a given problem.

— A data structure is a logical representation of information. Ex-
amples of data structures are tables, lists and arrays. They will be
described in other chapters of this book.

The Pascal language has been designed to facilitate the conversion of
algorithms into programs, as well as the construction or representation
of data structures. The origin and nature of the Pascal language will now
be described.

PASCAL

Pascal evolved from the search for a programming language that
would be complete, yet simple to learn and easy to implement on a
computer. The properties of Pascal reflect these aspirations.

Reviewing the history of programming languages, we find that one of the
earliest languages to be defined was FORTRAN (FORmula TRANSslator).
FORTRAN is one of the most often used languages in the field of scientific
computation. Because it was an early programming language, FORTRAN
has, over time, become a complex collection of “facilities’”” that are
useful but cumbersome to learn or use on computers.

An attempt was made to define a simple language directly inspired by
FORTRAN which would be easy to learn and could also be executed in
an interactive (conversational) manner. The result was BASIC
(Beginner’s All-Purpose Symbolic Instruction Code). The BASIC
language is easy to implement on a computer and requires only a small
amount of memory. Because of these two advantages (ease of im-
plementation and ease of learning), BASIC has become the most widely-
used language on microcomputers. However, it has many limitations
due to its rules of usage (its “‘syntax’’) and is often inadequate for writing
complex programs.

Another language, ALGOL (ALGOrithmic Language) resulted from an
attempt to define a computer language other than FORTRAN that would
be consistent and well-suited for use with complex algorithms. ALGOL
gained great popularity in educational circles yet was never widely used
by industry. Although the ALGOL language provides an excellent tool
for describing algorithms, it is somewhat complex to learn, and difficult
to implement on a computer.

BASIC CONCEPTS

Pascal was inspired by ALGOL and PL/l, and represents an attempt at
defining a programming language that is simple to learn yet well-suited
for the specification of algorithms and the definition of data structures.

Pascal was created by Niklaus Wirth of the ETH Technical Institute of
Zurich in 1970-1971 (upon his return from Stanford University). Pascal
gained acceptance in educational institutions as a good tool for learning
how to program. In addition, because Pascal is relatively simple and
highly coherent, the Pascal compiler (required in order to use the
language on a computer) can be implemented in a small amount of
memory. As a result, when low-cost microcomputers equipped with
limited memories appeared in the late 1970’s, a number of Pascal im-
plementations became available, bringing Pascal within the reach of
almost anyone.

The name of the language is a tribute to the French mathematician
Blaise Pascal who in 1690 at age 18 invented the first mechanical calcu-
lating machine.

UCSD AND OTHER PASCALS

The original Pascal language defined by Niklaus Wirth will be called
“‘Standard Pascal’’ throughout this text for simplicity (reference [1] in
Appendix K). In fact, however, there is no longer a single standard for
Pascal.

As new implementations of Pascal were released, changes to the
original definition began to occur. Features were added to the language,
and operations were interpreted in different ways when ambiguities
existed.

As with any programming language, Pascal has become
implementation-dependent. In theory, learning Pascal involves not only
learning ‘‘Standard Pascal,”” but also learning the features and dif-
ferences inherent in the version being used at a specific installation.

Fortunately, in practice, all versions of Pascal to date implement
““Standard Pascal”” with some additional features, as well as a few
changes.

In order to learn Pascal, the best procedure is, therefore, first to learn
Standard Pascal, and then to learn the advanced features as well as the
differences inherent in the specific implementation being used.

Pascal was originally designed for use on a traditional “’batch-oriented”’
computer, where a progam is submitted on a deck of cards, and data
are submitted on cards or stored on tape.

As Pascal gained popularity, the language became available on time-
sharing systems and small computers, where a user has direct access to
a terminal.

As a result of the user-computer interaction possible on such systems,
additional features became desirable, and one version called UCSD
Pascal became widely used. This version was developed at the University

INTRODUCTION TO PASCAL

of California at San Diego (UCSD), and is well-adapted to the needs of
small computer users. Because of its importance, UCSD Pascal is also
described in this book.

Many other versions of Pascal exist. For a comprehensive description
of these versions, the reader is referred to reference [11].

The basic concepts of computer programming have now been
described, and a short history of the Pascal language has been
presented. Let us now examine an actual Pascal program. This example
will serve to illustrate the features of the language and will provide a
basis for the additional definitions that follow.

A SIMPLE PASCAL PROGRAM

We will assume, when referring to the program examples in this
chapter, that you are sitting at a CRT terminal equipped with a keyboard
and a screen (see Figure 1.1).

Figure 1.1: A CRT Terminal

BASIC CONCEPTS

The keyboard is called the input device. The screen (or a printer) is
the output device. If you are using a batch system, where the program is
first punched on cards and then executed on a computer, the input to
the program will be from cards. The output will generally be on a
printer.

Here is our first Pascal program:

PROGRAM GREETING (OUTPUT); (1)
(* THIS IS A SIMPLE PASCAL PROGRAM *) (* COMMENT *) (2)
BEGIN (3)

WRITELN(’HELLO") (* STATEMENT *) (4)
END. ()

When executed, this program will print ‘HELLO’. It may be surprising
that the program requires five lines for this simple action. This is because
the program has been formatted for clarity. This same program could be
written in one or two lines. This example will serve to introduce some of
the basic concepts in Pascal. Let us look at it more closely. The first line
of our program is:

PROGRAM GREETING(OUTPUT);

This line is the program definition or program heading. It tells the
computer (or more exactly, the compiler) that the lines which follow
the heading form a program called ‘GREETING’. In addition, this line
contains a file declaration: ‘OUTPUT’. Whenever a program must ac-
cess data outside the program itself, it will read or write on or from a file,
and this file must be declared in the program heading. Input refers to
the transfer of data to the program. Output refers to the transfer of data
from the program, by the program. INPUT and OUTPUT are considered
as special cases of files. In this program example, this declaration warns
the compiler that the program will be performing an output operation,
i.e., it will be printing or displaying information. Standard Pascal re-
quires that such file declarations be made at the time of the program
definition.)

Note that the word ‘PROGRAM’ appears in boldface type. This is
done to help the reader differentiate the word ‘PROGRAM’ from the
word ‘GREETING’. PROGRAM has a predefined meaning for the com-
piler, while GREETING is a word defined by the user. Predefined words
in Pascal are called either reserved words or standard identifiers. In the
actual program listing produced by a printer, both PROGRAM and
GREETING would be printed in exactly the same way. However, when
reading a book, it is helpful to have reserved words differentiated from

INTRODUCTION TO PASCAL

other words. Therefore, all reserved words within a program are shown
in boldface type in this book.

In Pascal, either lowercase or uppercase letters may be used inter-
changeably. For example, the first line of our program could be written:

program greeting(output);

However, some implementations may impose restrictions.

Finally, note that this line is separated from the rest of the program by
a semicolon. The function of the semicolon is to separate two con-
secutive statements or declarations. In this way, for example, two
statements (terminated by ‘/;’’) may be written one after the other on
the same line. However, not all statements need to be terminated with a
semicolon. In particular, the semicolon is optional before an END.

The second line of the program is:
(* THIS IS A SIMPLE PASCAL PROGRAM *) (* COMMENT *)

This line 1s called a comment. Comments are ignored by the computer,
thereby allowing the programmer to write explanations anywhere with-
in the program that will clarify what the program is doing. A comment
must be preceded by (* or { and terminated by *) or }, as in our example.
Blank lines, indentations, and extra spaces are also ignored by the
computer. Like comments, they are used to clarify programs.
Now let us look at the body of the program:

BEGIN
WRITELN("HELLO?) (* STATEMENT *)
END.

This program contains only one executable statement,
WRITELN(‘HELLO’), which is preceded by BEGIN and followed by
END. This section of three lines is called a program block. Every program
heading must be followed by a program block. The actual instructions of
the program, called statements, are listed between the reserved
words BEGIN and END. Pascal has been designed to encourage pro-
gramming in blocks. Other examples of blocks within a program will ap-
pear throughout the text. For this reason Pascal is said to encourage
structured programming.

The single executable statement in our program is:

WRITELN("HELLO")

This statement means ‘‘write ‘HELLO’ on the output device and skip to
a new line!” The output device is usually the CRT terminal or a printer.

BASIC CONCEPTS

The only action taken by this particular program is to display or print the
characters "HELLO’. WRITELN also does one more.thing: this command
terminates the line by moving the cursor (in the case of a screen) or the
printhead (in the case of a printer) to the beginning of the next line.

Let us now summarize the important aspects of our first Pascal pro-
gram. Each statement in the program is separated from the next one by
a semicolon. To improve program readability, comments and indenta-
tions are used. For example, the body of the program may be written:

BEGIN WRITELN(’HELLO") (* STATEMENT *) END.
This line was written in a ““block format’" in our example:

BEGIN

WRITELN('HELLO") (* STATEMENT *)
END.

Writing a program in “‘block format’’ is a recommended practice, but
not a mandatory one. The purpose of this practice is to identify clearly
each block bracketed by the words BEGIN and END. To achieve this,
the corresponding BEGIN and END are aligned vertically. The state-
ments within that block are indented.

Finally note that the word END, followed by a period, indicates the
end of the program.

A SECOND PROGRAM EXAMPLE

Let us look at another Pascal program:

PROGRAM SUM(INPUT,OUTPUT);
VAR A,B,TOTAL : INTEGER;
BEGIN
WRITELN(‘ENTER TWO NUMBERS TO BE ADDED...");
READ(A,B);
TOTAL := A + B;
WRITELN('THE SUM OF , A, AND ’, B ,* IS ’, TOTAL)
END.

This program is more complex than the first one and will introduce

several new concepts. When the above program is executed, it will type
or display:

ENTER TWO NUMBERS TO BE ADDED...

INTRODUCTION TO PASCAL

Two integers, called A and B in the program, must then be typed in at
the keyboard, separated by blanks. The program will automatically add
these two integers and print on the next line:

THE SUM OF (first number) AND (second number) IS (total)

Before describing this program further, let us follow the correct pro-
cedure when designing any program. For reasons of clarity, the three
steps are labeled A, B, and C:

A. The problem to be solved is the following: read two integers and
add them.
B. The corresponding algorithm is:
1. Read the first integer.
2. Read the second integer.
3. Add both integers and display the result.

A new problem is introduced by this algorithm: the two integers must
be “remembered,” i.e., stored in memory, before they can be added.

C. Asimple data structure will be used to solve this problem: the two
integers will be represented internally by two variables of type in-
teger.

The total will also be represented by an integer variable. The concepts
of variable and type will be clarified as we use them. Let us now examine
this program in detail.

The first line is the program heading:

PROGRAM SUM(INPUT,OUTPUT);

This program is called SUM. The word PROGRAM is shown in boldface
type because it is a reserved word. Recall that reserved words in Pascal
have a special meaning to the Pascal compiler; thus, the word ‘PRO-
GRAM'’ can be used only in the context of a program heading. Note that
a program may not be called “PROGRAM”, since the word ‘PRO-
GRAM’ has a special meaning in Pascal, and would immediately be flag-
ged as an error by the compiler. Reserved words may only be used as
authorized by the rules or syntax of Pascal.

In the above program, the program heading specifies ‘(INPUT,OUT-
PUT)’. This means that the program will both read from the keyboard
(an input operation) and print on the printer or display on the CRT (an
output operation).

The second line of the program is:

VAR A,B, TOTAL : INTEGER;

This statement is called a variable declaration. It performs two func-

10

BASIC CONCEPTS

tions. First, it tells the Pascal compiler that the symbols A, B, and TOTAL
are variables. Second, it states that these variables are of type INTEGER.
This allows the compiler to reserve an adequate amount of memory for
each of the three variables.

Let us first clarify the concept of a variable, and then the concept of
type. Each variable has a name, a type and a value. In this program, the
symbol A will be used as the name of a variable that stores the value of
the first integer. The variable named B will be used to store the value of
the second integer. The variable named TOTAL will be used to store the
value of the sum. A variable can contain any (reasonable) value. The
value may vary during execution of the program. When this program is
first executed, A might receive the value “2’ and B might receive the
value ““11!" When this program is executed another time, A might
receive the value /251" and B might receive the value 3" Thus, the
actual values to be stored in A and B may vary with each program run.
Accordingly, A, B and TOTAL are called program variables. The char-
acters or the sequence of characters A, B and TOTAL are names as-
signed to internal memory locations. This concept is illustrated in
Figure 1.2.

A |]

SYMBOLIC MEMORY
NAMES B r I LOCATIONS
TOTAL [J

Figure 1.2: A Variable is the name of a memory location

Initially, the contents of A, B and TOTAL in Figure 1.2 are undefined.
Later, assuming that the values ““2"" and ““11”" are typed in, the contents
of A and B will be as shown in Figure 1.3.

For clarity, the values shown as 2" and ‘“11”" in Figure 1.3 are
represented internally in the memory in a binary notation (with 0’s and
1’s). If no value has yet been assigned to TOTAL, TOTAL s still undefin-
ed at that stage.

Let us now go back to the variable declaration:

VAR A B,TOTAL : INTEGER;

This declaration declares the symbols A, B and TOTAL as variables,

INTRODUCTION TO PASCAL

11

| 2|

B HI

(Variables) (Values)

Figure 1.3: Variables with Values

thereby automatically reserving memory locations to store their values
later on. In addition, this declaration specifies that these three variables
are of type integer.

The name of a variable is called an identifier. Identifiers will be formal-
ly defined in the next chapter. We have introduced the concept of
variable. We will now explain the concept of type. A type declaration
has two advantages. First, it simplifies the design of the Pascal compiler.
Second, it assists the programmer in preventing or detecting errors. Let
us examine these two points.

Once a variable has been declared, the compiler must allocate
storage to it. Internally, different numbers of bytes (a byte is a group of 8
bits) are allocated to each type of data. For example, a character may be
allocated one byte, while an integer may require two bytes, and a
decimal number may require four bytes. It is therefore very helpful for
the compiler to know ahead of time how much storage must be reserved.

Once the type of a variable has been declared, the compiler can easily
detect a number of obvious errors. For example, integers may be
multiplied together, while characters may not. If two variables were
declared of type ‘char’ (character), an attempt to add them will be
automatically detected as an error by the computer. A character is a let-
ter like ‘F’, ‘X’, or ‘T’, or any other symbol on the keyboard, like *.", ‘?" or
‘5'. When a digit like ‘5" is declared as a character, it is not represented
in the same way as when it is declared as an integer. A character is
generally represented as a byte (8 bits) in the ASCII code, while an in-
teger is represented in two or more bytes, using a different internal code.

Returning to our program example, since A and B are declared as in-
tegers, any attempt to type illegal values, such as “TRUE"" or /D"’ at the
keyboard, will be automatically rejected.

In summary, variable declarations simplify compiler design and
enhance programming discipline. It is possible, however, to design
language compilers that do not require such declarations. The disadvan-
tages may be an increased complexity in compiler design and greater
probability of errors in the program.

Pascal requires type definitions. This requirement is often viewed by
programmers as a nuisance, especially if they have programmed in
BASIC before. However, this feature is part of Pascal’s overall

12

BASIC CONCEPTS

philosophy of disciplined programming, and enhances the probability
of successful program design. s

Having clarified the concepts of variable and type declaration, we
now enter the body of the program with the reserved word ‘BEGIN'.
The lines that follow the VAR declaration are:

BEGIN
WRITELN(‘ENTER TWO NUMBERS TO BE ADDED...");

We have already encountered this instruction in our previous example.

It will display or ““type’” the text: ‘ENTER TWO NUMBERS TO BE ADD-

ED...". Note that the actual text to be displayed is simply enclosed in

single quotes (apostrophes) in the program. This sequence of characters

is called a character string. This statement is terminated by a semicolon.
The next line in the program is:

READ(A,B);

This line means ‘‘read two numbers from the keyboard and call them A
and B.”” At this point, the program will wait for the user to type the
numbers at the keyboard. If the numbers are not typed, nothing will hap-
pen and the program will continue to wait. Once the two numbers have
been typed, this instruction will have been satisfied and the program will
proceed. A and B are names of variables. ‘A" will contain the first
number typed. ‘B" will contain the second number.

As explained before, A and B are called variables because their values
may be changed later on in the program, or may be different during
another program run. In this program, A and B have been declared of
type INTEGER in the second line of the program. As a result, the com-
piler will verify that any value given to A or B is indeed an integer.
Throughout this program, A and B will be integers, and the compiler will
check this every time A or B are referred to.

This particular feature is characteristic of Pascal: the type of each
variable must be declared prior to using the variable, and must be
respected throughout the program.

The next line in the program is: .

TOTAL := A + B;

This statement means ““compute A + B and call the result TOTAL.” This
instruction is called an assignment statement. The symbol of the assign-
mentis :=". This symbol is created by typing ‘:’ followed by ‘=", and is
called the assignment operator. This operator assigns the sum of A plus B
to a new variable called TOTAL. If we had typed 2 and 3 as the values of

INTRODUCTION TO PASCAL

13

A and B to be added, the resulting sum 5 would be assigned to the
variable TOTAL.

Naturally, the sum of two integers is an integer, and it can be verified
that TOTAL was declared to be of type INTEGER in line 2 of the pro-
gram.

‘A + B’ is an addition. This sequence of variables and operators is call-
ed an arithmetic expression. The rules for creating such expressions will
be presented in the following chapters.

The next line of the program is:

WRITELN(‘THE SUM OF /, A, AND ’, B, " IS/, TOTAL)
This instruction will display the following line on the CRT:
THE SUM OF 2 AND 3 IS 5

Again, note that any text to be printed is simply enclosed in single
quotes (this is called a character string). Also, note that the value of the
variables A, B, and TOTAL is printed when their names are used. The
name of a variable always stands for the value that it contains.

The program body is terminated with the usual END followed by a
period.

This program is longer than the previous one, and should be exam-
ined carefully until you are thoroughly familiar with its meaning.

SUMMARY

The basic concepts of computer programming, including the con-
cepts of algorithm, data structure, and program, have been introduced
and illustrated with actual examples.

The Pascal language was described as a high-level language designed
for disciplined programming, ease of use, completeness, and conve-
nience of implementation.

Another advantage often claimed by Pascal is portability. The term
“‘portability’’ is used to indicate that a program written in Pascal may be
transported to another computer and executed without change.
However, this is true only if both of the computers being used execute
exactly the same version of the language. Thus, true portability has
disappeared as various versions of Pascal have been introduced. Some
changes are usually required when using a different Pascal compiler.

Two simple programs were presented in this chapter in complete
detail, and additional concepts relating to Pascal programs were in-
troduced within the context of these examples. These concepts includ-
ed program headings, program blocks, the comment, variable declara-
tion, input and output instructions, the assignment statement, arith-
metic expressions and reserved words.

14

BASIC CONCEPTS

Here are examples of these concepts taken from the second program
presented in this chapter:

program heading PROGRAM SUM(INPUT,OUTPUT);

variable declaration
VAR A,B,TOTAL : INTEGER;

and type definition

BEGIN
program block
END.
comment (* THIS PROGRAM ADDS
TWO NUMBERS *)
input and output READ(A,B); WRITELN(TOTAL);
assignment TOTAL := A + B;
arithmetic expression A+ B
reserved word PROGRAM

It is essential that these concepts be thoroughly understood. All of the
important concepts required to write and understand Pascal programs
will now be reviewed systematically in Chapter 2.

EXERCISES

1-1: Modify the program SUM so that it prints the product of A and B (the
multiplication symbol is *).

1-2: Modify the program SUM so that it reads three numbers A, B, C, and
computes their sum.

1-3: Can a variable be used without being declared?

1-4: What is a program? What is an algorithm?

1-5: Is the following a legal statement?
TOTAL (* THIS IS THE SUM *) := A (* 1ST NBR *) + B (* 2ND *);

1-6: Is an algorithm the same as a program?

17

INTRODUCTION

In Chapter 1 the concepts of algorithm, data structure, and program
were introduced and two simple Pascal programs were examined in
detail. In this chapter, we will describe the organization of a Pascal pro-
gram and introduce the concepts of syntax and modular program
organization, or ‘‘structured programming.” Our goal is to learn the
basic rules of the Pascal language so that we can start solving simple pro-
blems with Pascal programs.

Three special entities—identifiers, scalars and operators—are defined
by the syntax of Pascal and must be understood before writing a simple
Pascal program. Once these three entities are understood, expressions
may be constructed, and Pascal statements written.

Identifiers will be presented in this chapter. Scalars and operators will
be studied in Chapter 3. Expressions and statements will be studied in
Chapter 4.

WRITING A PASCAL PROGRAM

Once the solution to a problem has been specified in the form of an
algorithm, the algorithm must be transformed into a Pascal program.
After the program is written, it will be translated by the compiler and ex-
ecuted. Various other programs such as the editor and the file system
can be used on an interactive computer to facilitate this process. These
programs are described in Chapter 15.

From now on, we will concentrate on the task of translating algo-
rithms into programs and data structures. The set of rules for construc-
ting a valid Pascal program is called the syntax of Pascal. We will learn
all of the syntactic rules of Pascal, one at a time. The first use of these
formal rules will be presented in this chapter.

THE SYNTAX OF PASCAL

Pascal is a high-level language. Pascal allows the programmer to
specify instructions in a language that is similar to the English language,
but is highly restricted. In order to avoid any ambiguity, and to facilitate
the translation of the program by the compiler into binary instructions,
the syntax of the language imposes strict rules.

Programming may require ingenuity and intelligence, but it also re-
quires a strict discipline. Every instruction or statement in a Pascal pro-
gram must strictly follow the rules of the Pascal syntax. Any instruction
that violates the rules will cause the program to fail. There are no excep-
tions. It is therefore essential to understand and strictly adhere to the

18

PROGRAMMING IN PASCAL

rules of the syntax. A single misplaced dot or comma will cause the pro-
gram to fail. The single largest source of failure in-<all computer programs
is negligence. The importance of following a highly disciplined ap-
proach toward computer programming cannot be emphasized enough.

The rules of Pascal can be described in many ways. For example, they
can be described by using words, the BNF (Backus-Naur Form) nota-
tion, or syntax diagrams. Throughout this chapter, the syntax will be
described by using words. Then, in the following chapter, syntax
diagrams will be introduced to provide a concise and accurate repre-
sentation of the rules. Examples of BNF notation will be provided as
well.

FORMAT OF A PASCAL PROGRAM

Pascal has been designed to encourage modular programming. Thus,
each step or logical group of steps within the algorithm can generally
be translated into a Pascal module. Pascal modules are called blocks,
functions or procedures, depending upon the way they are used. (These
modules will be described in turn later in the book.)

In addition, the syntax of Pascal requires that all of the declarations
and definitions must appear at the beginning of a program. The resulting
overall organization of a Pascal program is shown in Figure 2.1.

PROGRAM. ..

4 Declarations

and Definitions
BEGIN. . .
Program
Block Program
Body

END.

\

Figure 2.1: Overall Organization of a Pascal Program

As shown in Figure 2.1, all declarations appear at the beginning of a
program. The declarations are followed by the main block, which is
bracketed by the words BEGIN and END.

Let us now consider the organization of each of these modules in
more detail. A detailed description of a Pascal program is shown in
Figure 2.2.

INTRODUCTION TO PASCAL

19

DECLARATIONS <

MAIN BODY ﬁ

PROGRAM HEADING

EXAMPLE: PROGRAM SUM (INPUT, OUTPUT);

LABEL DECLARATION
(COVERED IN CHAPTER 6)

CONSTANT DEFINITION
(COVERED IN CHAPTER 3)

TYPE DEFINITION
(COVERED IN CHAPTER 3)

VARIABLE DECLARATION

EXAMPLE: VAR A, B, TOTAL : INTEGER;

(COVERED IN CHAPTER 3)

PROCEDURE DECLARATION
(COVERED IN CHAPTER 7)
FUNCTION DECLARATION

(COVERED IN CHAPTER 7)

BEGIN
STATEMENTS(S);

EXAMPLE: TOTAL: = A + B;

BEGIN
STATEMENT(S);

END;

BEGIN
STATEMENT(S);

END;

STATEMENT(S);

LOGICAL
BLOCK

OTHER
BLOCK

PROGRAM HEADER

LABEL

DECLARATION(S)

DATA
DESCRIPTION(S)

SPECIAL
ALGORITHMS

MAIN PROGRAM
ALGORITHM BLOCK

Figure 2.2: Detailed Organization of a Pascal Program

20

PROGRAMMING IN PASCAL

Let us look more closely at the declarations and the main body.

DECLARATIONS

The various kinds of declarations in Pascal must appear exactly in the
order in which they are shown in Figure 2.2: first, the labels, then the
constants, etc. However, declarations are all optional. For example, in
our first program example:

PROGRAM GREETING(OUTPUT);
(* THIS IS A SIMPLE PASCAL PROGRAM *)
BEGIN

WRITELN("HELLO")

END.

there were no declarations. This program included only the program
header, followed by the main executable body. Recall that comments
do not count: they are ignored by the compiler.

Usually, any Pascal program that has more than a few lines uses
variables and must include one or more variable declarations. For ex-
ample, our second program was:

PROGRAM SUM(INPUT,OUTPUT);
VAR A,B,TOTAL : INTEGER;
BEGIN
WRITELN(’ENTER TWO NUMBERS TO BE ADDED...");
READ(A,B);
TOTAL := A + B;
WRITELN('THE SUM OF *, A ,” AND *, B, IS *, TOTAL)
END.

This program includes the program header and the variable declaration,
followed by the main executable body.

Referring back to Figure 2.2, labels are seldom used, and functions or
procedures are generally used only in long programs. The only three
declarations required for short programs are: CONSTant, TYPE, and
VARiable. They will all be described in Chapter 3. The remaining decla-
rations will be described in Chapters 6 and 7.

THE EXECUTABLE PROGRAM BODY

The program body, shown in Figure 2.2, contains the sequence of
statements that will execute the proper, algorithms. Several types of

INTRODUCTION TO PASCAL

21

statements can be used in Pascal. The three most important statements
are:

1. The assignment statement (described in Chapter 4)
2. Input and output statements (described in Chapter 5)
3. Control statements (described in Chapter 6)

Other types of statements include procedure calls, ‘GOTO’, and
‘WITH statements. These statements will be described in subsequent
chapters.

PROGRAM ORGANIZATION SUMMARY

In summary, each Pascal program must contain at least a program
heading and a statement. In addition, a program may contain several
declarations or definitions following the heading (in the proper order),
as well as any number of statements. Comments, additional blanks, and
indentations may be placed anywhere in a program to improve
readability.

FORMAL ORGANIZATION OF A PROGRAM

For those readers who can already read syntax diagrams, the formal
syntax of a Pascal program is shown in Appendix F.
The corresponding program organization is shown in Figure 2.3.

mandatory | optional
program heading L —— - »~
4 .
label declaration modescs==d v
constant definition —_—t - = === v
type definition —— = = = =] v
variable declaration beadicces=d v
program block & procedure declaration |-— — 14— —— — —- v
function declaration —— 1 - — — = v
statement - -]~
statements Leedbo =2 == A e?
\

Figure 2.3: Formal Organization of a Pascal Program

22

PROGRAMMING IN PASCAL

Note that, using the formal definition, a ’‘program block’’ refers to
everything that follows the heading, including the declarations.

THE SYMBOLS OF PASCAL

All of the symbols in the alphabet available on your computer installa-
tion may be used in a Pascal program. Most computers use the ASCII
code (shown in Appendix G), and provide 128 characters. However, it
should be noted that many of these characters, or sequences of
characters have a special meaning for Pascal, and may be used only for
specific purposes.

These special symbols will be described in this section. Then the rules
for constructing additional symbols or identifiers will be presented.

RESERVED SYMBOLS

The reserved symbols used by Pascal are shown in Figure 2.4.

() [] (Por{ for} 1

Figure 2.4: Reserved Symbols

Most of these symbols are used to denote operations such as +, —, *
(multiply), / (divide). Other symbols are used for specific syntax pur-
poses. For example, */;”’ has already been used to separate statements,
and ““(*** with ”’*)"” have been used to enclose comments. These sym-
bols and others may be used freely within a text processed by a pro-
gram, but not within a program itself. Within a program, these reserved
symbols have a well-defined (pre-defined) meaning.

RESERVED WORDS

In addition to the reserved symbols, a number of predefined words
have a special meaning within a Pascal program. Some of these words
called reserved words may not be redefined by the programmer. Others
may be redefined by the programmer and are called standard identifiers.

The reserved words of Pascal are shown in Figure 2.5. Some reserved
words are used to denote operations: AND, OR, NOT, DIV. Other
reserved words are used for declarations or definitions: PROGRAM,
CONST, VAR, TYPE. Still others are used as part of statements: [F,
WHILE, REPEAT.

INTRODUCTION TO PASCAL 23
AND END NIL SET
ARRAY FILE NOT THEN
BEGIN FOR OF TO
CASE FUNCTION OR TYPE
CONST GOTO PACKED UNTIL
DIV IF PROCEDURE VAR
DO IN PROGRAM WHILE
DOWNTO LABEL RECORD WITH
ELSE MOD REPEAT

Figure 2.5: Reserved Words

Reserved words are always shown in boldface type in the programs
contained in this book. Remember that these words may never be used
by the programmer in any other way than as reserved words. For exam-
ple, a program may not be given the name “PROGRAM.”” We will now
show the ways the reserved words are used by the compiler.

Let us review again the first program introduced in Chapter 1 il-
lustrating a simple Pascal program:

PROGRAM GREETING(OUTPUT);
BEGIN

WRITELN('HELLO’)
END.

The three words shown in boldface in the program are reserved words.

The reserved word PROGRAM must appear at the beginning of every
program. Once this word is recognized, the compiler expects the next
word to be the name of the program. Then, if any parentheses are
found, the compiler is told that the program will use files. The file used
in this case is OUTPUT. The word OUTPUT is not a reserved word, but
it has a predefined meaning. This type of word is called a standard iden-
tifier and will be described in the next section. Finally, the program
header is terminated by a *;’.

24

PROGRAMMING IN PASCAL

Next, the compiler finds the reserved word BEGIN. This tells the com-
piler that one or more executable statements follow.
The only executable statement in this program is:

WRITELN('HELLO")

where WRITELN is called a standard identifier, and ‘HELLO’ is called a
string of characters.

The program is terminated with the keyword END. Every program
must be terminated with the word END followed by a period.

We will see in Chapter 6 that blocks of statements delimited by BEGIN
and END may appear in various locations within the program.
However, the last END written in a program is the only one that is
followed by a period.

Having explained the meaning and role of reserved words, let us ex-
amine the standard identifiers, such as WRITELN and OUTPUT.

STANDARD IDENTIFIERS

Standard identifiers are words that have a predefined meaning in
Pascal, but that may be redefined by the programmer to take on a dif-
ferent meaning. These words are shown in Figure 2.6.

The novice or intermediate programmer is strongly advised not to
redefine these standard identifiers within a program. Standard iden-
tifiers are not shown in boldface type in the programs.

The facility to redefine these identifiers should only be used by the ad-
vanced programmer in highly specific cases, i.e., when the standard
identifier does not do exactly what is required by the program.

In practice, standard identifiers should be treated in the same way as
reserved words, unless there is a very good reason not to treat them this
way.

Let us look again now at the second program example introduced in
Chapter 1:

PROGRAM SUM(INPUT,OUTPUT);
VAR A B, TOTAL : INTEGER;
BEGIN
WRITELN(ENTER TWO NUMBERS TO BE ADDED...");
READ(A,B);
TOTAL := A + B;
WRITELN('THE SUM OF /, A,” AND *, B ,” IS *, TOTAL)
END.

INTRODUCTION TO PASCAL

The reserved words in this program are:
PROGRAM, VAR, BEGIN, END

The standard identifiers are:

INPUT, OUTPUT, INTEGER, WRITELN, READ

STANDARD IDENTIFIERS
FILES:
INPUT OUTPUT
CONSTANTS:
FALSE TRUE MAXINT
TYPES:
BOOLEAN CHAR INTEGER REAL TEXT
FUNCTIONS:
ABS EOLN SIN TRUNC
ARCTAN EXP SQR
CHR IN SQRT
COos OoDD SUCC
EOF
PROCEDURES:
GET PAGE READLN UNPACK
NEW PUT RESET WRITE
PACK READ REWRITE WRITELN

Figure 2.6: Standard Identifiers

Finally, one more type of identifier called a user-defined identifier is us-
ed in this program. The user-defined identifiers in this program are:

SUM, A, B, TOTAL

26

PROGRAMMING IN PASCAL

The role and meaning of these identifiers will now be explained.

Identifiers

An identifier is a name. This name may be given to a variable, pro-
gram, type, constant, function, procedure, etc. Three types of identifiers
are distinguished in Pascal:

— Reserved words
— Standard identifiers
— User-defined identifiers.

Reserved words and standard identifiers have already been described.
User-defined identifiers will now be explained.

Four examples of identifiers appear in the second program example in
Chapter 1. These identifiers are:

— The name of the program: SUM
— The names of the three variables: A, B, TOTAL

An identifier must start with a letter and may contain any combination
of letters and digits. An identifier may have any length, but only the first
eight characters will be recognized and used by the compiler to dif-
ferentiate between identifiers. However, an identifier may never be a
reserved word, since a reserved word already has a special meaning for
the compiler.

Here are examples of valid identifiers:

A

B

Alpha

Alphal
Numberofemployees
Numberofcustomers

Note that although the identifiers above are valid, the last two will ap-
pear identical to the compiler because, in Standard Pascal, the compiler
will only look at the first eight characters. Although long names may be
used, be careful that the first eight characters always appear differently.

Listed below are examples of invalid identifiers:

FIRST-A (includes a *-"")
2nd (starts with a digit)
program (reserved word)
BETA 2 (includes a blank)

INTRODUCTION TO PASCAL 27

UCSD COMMENTS

A comment may be bracketed by (*...*) or by {...}, interchangeably.
Whenever a comment is started with (*, it must terminate with *). When
a comment is started with {, it must terminate with }.

For example, the following comments are legal in UCSD Pascal:

(* THIS IS A {SPECIAL} PROGRAM *)
(* THIS IS A (* SPECIAL PROGRAM *)

In the second example, note that the first (* triggers the ‘‘comment
mode.”’ All subsequent characters are ignored, including the second oc-
currence of (*, up to the matching *).

However, a $ in the first position of a comment is interpreted as a
compiler command. Compiler commands are specific to the installa-
tion.

UCSD PROGRAM HEADINGS

Unlike Standard Pascal, UCSD requires no file parameters such as (IN-
PUT, OUTPUT) in the program heading. A file parameter list may be us-
ed, but it is ignored.

For example:

PROGRAM TEST;
is equivalent to:

PROGRAM TEST(INPUT,OUTPUT);

UCSD LISTINGS

When listing a program, UCSD Pascal provides the option to have line
numbers appear to the left of every line in the program. The general for-
mat of such a listing is shown in Figure 2.7.

Line No. Optional Other Information Program Text
I | = g LI
1 1 1:D 1 (*$L*)

2 1 1:D 1 Declarations
1 1:C 0 Program
statements

Figure 2.7: UCSD Line Numbering

28

PROGRAMMING IN PASCAL

A line number is automatically generated to the left of the program.
Other optional information may appear in the second field to the right
of the line number. In order to generate a listing with numbers, one
simply includes (*$L*) in the program text. This facility is specific to
UCSD Pascal and may not be available on other installations or it may
be supplied in a different form.

SUMMARY

The overall structure of a Pascal program has been described in this
chapter. Each program starts with a program heading, followed by op-
tional declarations, and one or more statements bracketed with BEGIN
and END.

Three types of identifiers are used in Pascal: reserved words, standard
identifiers, and user-defined identifiers. Each of these three types was
described in this chapter.

By this point in the text, the reader should easily follow the organiza-
tion of the first two program examples that were introduced in Chapter
1. In order to construct more complex programs in Pascal, we must first
study the rules that will allow us to perform computations. We will now
study the way that numbers are represented and the operations that
may be performed on them.

EXERCISES

2-1: Are the following identifiers legal in Pascal?
1: A 2: 2B 3: A1B3D2 4: ALPHA+1 5: SIMPLE NAME

2-2: What will be the effect of using the following three identifiers in a pro-
gram?

PERSONNOI, PERSONNQO?2, PERSONNO3
Are these identifiers legal?

2-3: Without looking at the examples provided in the text, write a simple
Pascal program that will print ‘HELLO’, followed by your name.

31

INTRODUCTION

In order to design simple Pascal programs, we must first learn the rules
relating to data, as well as the rules relating to the operations that may
be performed on data.

In Pascal, there are four fundamental data types which are called the
standard scalar types: integer, real, character and Boolean. These four
types and the rules that apply to them will be studied in this chapter.
Once these data types and the corresponding operators are understood,
we will then be able to assemble them into expressions, and write pro-
gram statements.

There are two kinds of scalar types in Pascal: the built-in types, and
the user-defined types. Both scalar types will be described. Let us first
examine the four built-in or "“standard’ scalar types: INTEGER, REAL,
CHAR, and BOOLEAN.

THE INTEGER TYPE

Integers, i.e., whole numbers, may be positive or negative. The max-
imum and the minimum size for integers that may be represented in a
given Pascal installation is limited by the precision used. In practice, it is
only possible to represent the integers between — MAXINT and + MAX-
INT, where MAXINT represents the largest number provided by the in-
stallation. MAXINT is a predefined constant that may be used to deter-
mine or print out the maximum value for integers that is available.

UCSD Pascal allows integers of up to 36 digits (long integers). The
following are examples of valid Pascal integers:

1234

0

1

—234
MAXINT
+10

Here are examples of illegal integers:

1,234 (a comma is not allowed)
1.2 (this is not an integer)

32

SCALAR TYPES AND OPERATORS

Operators for Integers

For each data type, Pascal defines valid operators. Operators operate
on one or two operands (values) and perform a specific operation.
Operators are generally represented by mathematical symbols, such as
+ and —, or by reserved words, such as DIV for integer division.

Let us first define the operators and then look at examples of their use.
The standard built-in Pascal operators for integers include arithmetic
operators and relational operators. The five arithmetic operators are:

+ addition (plus sign)

- subtraction (minus sign)

& multiplication

DIV division (yields a truncated integer result—
truncation is the dropping of any digits to the
right of the decimal point).

MOD modulus (A MOD B yields the remainder of
the division of A by B). Thus:
AMODB =A - (ADIVB)*B

The six relational operators are:

greater than

greater than or equal to

less than

= less than or equal to
equal to

> not equal to

A ANAVYV

These six relational operators may be used on any standard scalar data
type. They produce a Boolean value that is TRUE or FALSE. Boolean
values will be defined later on in this chapter.

Note that the division operator for integers that will give an integer
result is DIV. The symbol /" is used to obtain a real number result. The

operator DIV always results in an integer result. This convention helps to
avoid errors.

Examples of arithmetic operators are:
4-3=1
54+ 6 =11
2*12 =24

INTRODUCTION TO PASCAL

33

20DIV 6is 3 (note that when using decimal (real)
numbers, the / would be used, and the
result of 20/6 would be 3.333)

(-20) DIV6is -3 (if a negative operand is allowed by the
implementation)

9MOD 4 is 1 (the result of 9/4 is 2, with a remainder
of 1).

If A is exactly divisible by B, then A MOD B is 0.

Standard Functions for Integers

Since only a few symbols are available as part of the character set on
most computers, traditional mathematical symbols used to denote a
square root, a power or an integral, are not available. Standard iden-
tifiers are used instead.

A Pascal identifier that performs an operation on one or more
operands and yields a result is called a function. User-defined functions
will be discussed in Chapter 7. In this chapter, we will simply describe
those standard functions that may be used with the four scalar types.

The standard functions are essentially similar to operators, but
generally perform more complex operations. Traditionally, in program-
ming languages, the most-often used operations are represented by the
special symbols called operators, while the less-often used ones are
called functions. In Pascal, functions are always represented by a stan-
dard identifier followed by parentheses. The argument(s) on which they
operate must be enclosed within the parentheses.

Four standard functions are provided in Pascal that yield an integer
result:

ABS(l) absolute value of the integer I. For ex-
ample:
ABS(-4) is 4
ABS(3) is 3

SQR(I) square of the integer I. For example:

SQR(2) is 4 (2%2)
SQR(-3)is 9 (=3%-3)

TRUNC(R) integer portion of R where R is a real
(decimal) number. For example:
TRUNC(1.2) is 1
TRUNC(=2.3) is —2

34

SCALAR TYPES AND OPERATORS

ROUND(R) integer closest to R. It is analogous to
TRUNC, except that R is rounded to the
nearest integer, either up and down.
Whenever the fractional part of R is ex-
actly 0.5, itis rounded up if R is positive,
or down if R is negative. For example:
ROUND(1.2) is 1
ROUND(1.8) is 2
ROUND(-2.4) is — 2.

In the following example using Pascal functions, the mathematical ex-
pression:
AX?2 + BX + C (where all numbers are integers)
may be expressed as:
A*SQRX) + B*X + C
and the expression:
|11)
becomes:

ABS(l) * J

THE REAL TYPE

In Pascal, real numbers correspond to the usual decimal (floating
point) numbers. The minimum and maximum magnitudes of real
numbers depend upon the implementation. In Pascal, a real number
must have a decimal point, at least one digit to the left of the decimal
point, and at least one digit to the right. The following are examples of
legal real values in Pascal:

+12.0
-12.1
+ 0.1
3.14159
The following are examples of invalid real values:
123 (digit missing to the left of the decimal point)
12 (decimal point missing. This is an integer.

However, most implementations will con-
vert an integer into a real, i.e., 12 into 12.0)

1% (digit missing to the right of the decimal
point).

INTRODUCTION TO PASCAL

35

The representation of reals with a decimal point is the most common
representation. However, another representation of reals, often used in
physics, is also allowed in Pascal: it is called the exponential notation or
scientific notation. An example of this notation is:

1.0E+ 2 which represents 1 x 102 = 100

In this example, 1.0 is called the mantissa or characteristic, and the
number following the E is called the exponent. The exponent specifies
the power of ten used. It indicates that the decimal point should be
moved to the right (or to the left if the exponent is negative) by that
many positions. Another example is 1.2E—3, which represents 0.0012
or 1.2 x 1073,

This representation is a shorthand notation which is convenient for
very small or very large numbers, i.e., whenever there are several
zeroes in a number. The plus sign in front of the number following the E
may be omitted.

As indicated previously, the range of real numbers that may be
represented depends upon the installation. Usually, six digits are allo-
cated to the mantissa and two digits are allocated to the exponent. Let us
call MINREAL the smallest positive real that may be represented, and
MAXREAL the largest one. As a result of the limited precision, it is only
possible to represent positive reals between the installation-dependent
MINREAL and MAXREAL, and negative reals between — MINREAL and
— MAXREAL. There is a range of numbers between —MINREAL and
+ MINREAL which cannot be represented, although zero itself can be
represented. In short, very small values as well as very large values can-
not be represented.This is illustrated in Figure 3.1.

L J,] L

-%’1'

@ A 77
—MAXREAL —MINREAL MINREAL MAXREAL
—T T~ ——)
cannot be

represented
(except 0)

Figure 3.1: Representation of Reals

As a result of the limitation on the precision with which a real may be
represented, arithmetic operations performed on real numbers will

36

SCALAR TYPES AND OPERATORS

usually not result in an exact value. Using an example in the decimal
system, V3 may be represented by 0.333333 if only seven decimal digits
are available to represent the result. This is an approximation of the ex-
act value of ¥, since the exact representation of ¥s requires an infinite
number of 3’s after the decimal point. This is why it is advisable not to
test the value of any real number for equality. For example, s
multiplied by 3 will probably not be equal to 1. If many operations are
carried out, the error due to the truncation or to the rounding off of the
result will increase with the number of operations, and can become
quite large in some cases.

In most simple calculations, the approximation due to the limited
precision of the internal representation will be almost invisible.
However, in numerical computations which are complex and must be
accurate, special care must be exercised and the rules of numerical
analysis must be followed in order to obtain results that are as accurate
as possible. In particular, the following recommendations apply:

— Do not test a real value for equality. Instead, test that the dif-
ference between two real values is less than a specified amount.

— Avoid subtracting two nearly equal real numbers.

— Minimize the number of calculations involved.

Operators for Reals

In addition to the six relational operators, which were introduced in
the preceding section and apply to all reals, there are four arithmetic
operators available for the real data type. They are:

+ addition

— subtraction

* multiplication

| division (unlike the case with integers, DIV may not be used for
real numbers).

Here are examples of operations:

1.2 +1.3 is 2.5
1.2 - 13 is -0.1
2.0* 3.1 is 6.2
22/20 is 1.1

Functions for Reals

The following standard functions will yield a real value:

INTRODUCTION TO PASCAL

37

ABS (R) absolute value of R. (These two func-

SQR(R) square of R, or R x R tions may operate
on a real or an in-
teger argument,
yielding a result of
the same type)

SIN(R) sine of R (These six func-
COS(R) cosine of R tions may operate
ARCTAN(R) arc tangent of R (in radians) on a real or
LN(R) natural logarithm of R an integer

EXP(R) exponent of R argument yielding
SQRT(R) square root of R a real result)

Here are examples of the standard functions:

ABS(=5.21) is 5.21
ABS(6.789) is 6.789
SQR(4.0) is 16.0
SQRT(4.0) is 2.0.

Two standard functions will convert a real into an integer: TRUNC(R)
and ROUND(R). These functions were described in the section on
integers.

THE CHARACTER TYPE

Characters are any of the symbols available on the installation. For ex-
ample:

ABZ + [*2

Characters are always represented in single quotes or apostrophes in
Pascal:

/A/ tB/ IZI /+/ I/I 1k I?I ‘L7 (a blank)

The single quote must be written twice, in quotes:

ity

Characters will be used when processing, reading or printing text. Inter-
nally, each character is represented by a numeric code of binary digits
{or bits) such as: “10110001’. Generally, 8 bits (one byte) are used for
each character.

Therefore, when two characters are compared, it is actually their cor-
responding codes that are compared. A will be less than B provided that
the binary code used to represent A is less than the binary code used to
represent B. This rule applies to all characters, including digits and
punctuation marks.

38

SCALAR TYPES AND OPERATORS

Characters, like any other scalar type, are ordered, i.e., they follow
each other in a given sequence. However, a practical constraint is in-
troduced on their ordering by the implementation: characters are
represented by different codes, depending upon the computer
manufacturer. For example, on IBM computers, the EBCDIC code is
used. On small computers, the ASCII code is universally used (see Ap-
pendix G). The internal ordering of the alphanumeric symbols (the
characters) depends upon their internal code, since it is the value of the
codes that is compared.

In practice, any code guarantees that the letters of the alphabet are
“in the right order.”” However, a code will not guarantee that they are
adjacent. The digits from 0 to 9 are always in the correct order and are
contiguous:

‘ALKB<LK<C<LK..<Zand 0'<1T<2<..<Y

Also, the number of characters is code-dependent, and may vary from
64 to 256. The most common number with the ASCII code is 128.
Note: ‘AB’ is not a character, but a string of characters, a different type
which will be introduced in a later chapter.

Also, when referring to the ASCIl code table in Appendix G,
remember that a digit declared as a character is represented as an ASCII
code (8 bits). In contrast, a digit declared as an integer is represented in
a different code that may use 16 or 32 bits. The two internal representa-
tions of that digit are different.

OPERATORS AND FUNCTIONS FOR CHARACTERS

There are no arithmetic operators available to perform computations
on characters. However, the six standard relational operators are
available, as well as four standard functions. These functions are
described here for a more complete text, but they will not be used in
our simple programs.

ORD(C) Ordinal function: yields the ordinal value of that
character, i.e., the internal integer code that
represents it.

CHR() Character function: yields the character C cor-
responding to the integer | in the internal rep-
resentation of the character set.

PRED(C) Predecessor function: vyields the previous
character in the representation used.
SUCC(C) Successor function: yields the next character in

the representation used.

INTRODUCTION TO PASCAL

39

Here are examples:

PRED(‘B’) is ‘A’
SUCC('E’) is ‘F

The following relationships hold:

PRED(C) = CHR(ORD(C) - 1)
SUCC(C) = CHR(ORD(C) - 1)
CHR(ORD(Q)) = C
ORD(CHR())= 1

They also hold with the ASCII code:

ORD(‘G’) = ORD(‘'H’) -1
ORD('Y") = ORD('Z") - 1
ORD(‘Z') = ORD('Y’) + 1

Note: the PRED and the SUCC functions have been introduced for
characters, as this is the way in which they are ordinarily used.
However, these functions also apply to integers and Booleans. They do
not, however, apply to real numbers.

Remember when using the relational operators on characters that the
ordering of the characters is implementation-dependent. In general, the
ordering of the upper-case letters and the digits will be the ““normal’’ (or
common) one. However, do not compare other characters unless you
know the internal ordering used in your particular system. If the ASCII
code is used, for example, refer to Appendix G to establish the internal
ordering of the characters. It is important to know the ordering of
characters when processing text.

THE BOOLEAN TYPE

The word ‘“Boolean’” is derived from the algebra theory developed by
Boole. The type BOOLEAN may take two values: TRUE or FALSE. It is
called a logical type. Combinations of Boolean values are called
Boolean expressions, and are used to make logical decisions. A Boolean
data type may only take one of the logical values TRUE or FALSE. Such
Boolean values are usually obtained as the result of a comparison.

For example: | = 4 will be FALSE if | has the value 5. Here are other
examples:
2=3 is FALSE
10 = 10 is TRUE
11>9 is TRUE

1.2<= 2.1 is TRUE

40 SCALAR TYPES AND OPERATORS

The use of Boolean expressions to control the executlon of a program
will be discussed in Chapter 6.

Operators for Booleans

In addition to the six usual relational operators, three special Boolean
operators are also available:

AND logical AND
OR logical OR
NOT logical negation

These three Boolean operators are traditionally defined by truth tables,
as shown in Figure 3.2.

A B A ANDB
F F F
F T F
T F F
T T i
A B AORB
F F F
F T T
T F T
T T T
A | NOTA
F T
T F

Figure 3.2: Truth Tables

INTRODUCTION TO PASCAL

41

In Figure 3.2:

(A AND B) is TRUE only if both A and B are TRUE. Itis FALSE in all
other cases.

(A OR B) is TRUE if either A or B or both are TRUE. It is FALSE only
if A and B are both FALSE.

(NOT A) is the opposite of A: if A is TRUE, NOT A is FALSE.

Additional logical operators can be defined using the relational
operators:

A=8B (denotes equivalence)
A<>B (denotes an exclusive OR)
A<= B (denotes an implication)

The truth table for these three types is shown in Figure 3.3.

A B A=8 AL>B A<L=8
F F T F T
F T B T T
T F F T F
T T T F T
Figure 3.3: Additional Truth Tables
In Figure 3.3:

(A = B) is TRUE if A and B are both TRUE or FALSE, i.e., have the
same Boolean value.
(A <> B) is TRUE if A and B have different Boolean values.

(A <= B) is TRUE if AKB or A = B. (FKT by definition.)

Functions for Booleans

A few Boolean functions are available in Pascal that will yield a
Boolean value of TRUE or FALSE. They are called predicates. For clarity,
only one example of this type of function, ODD(l), will be presented
here.

ODD(l) is TRUE if integer | is odd, and FALSE if | is even.

The other two Boolean functions available in Pascal that will yield a
Boolean value are EOF and EOLN. They will be described in Chapter 11.

42

SCALAR TYPES AND OPERATORS

USER-DEFINED TYPES

Additional types may be defined by the programmer with the TYPE
declaration. This declaration will be introduced later on in this chapter,
after the VAR declaration has been presented.

TYPE DEFINITIONS

The type of each variable must always be described before the
variable is used. Three mechanisms are provided to define the type of
an identifier: the built-in variable declaration (VAR), the implicit TYPE
declaration of constants, and the explicit TYPE definition. They will be
examined in turn.

The VAR Declaration

We have already used the VAR declaration. Here is an example:
VAR XY : REAL;
This statement declares X and Y as REAL variables. Similarly:
VAR |[,J,K : INTEGER;

defines I,) and K as INTEGER variables.
Here are other examples of variable declarations:

VAR A : REAL;
B : REAL;
M,N : CHAR;
TEST : BOOLEAN;

or:

VAR A,B: REAL;
K,L : INTEGER;

Note that A,B may be declared together or separately, and that VAR
may be used only once at the beginning of the list of variables to be
declared.

Here is another example where several variables are declared at the
same time:

VAR DAY ,MONTH,WEEK : INTEGER;

INTRODUCTION TO PASCAL

43

These examples show the syntax of a VAR declaration very clearly.
However, the symbolic syntax diagrams are often used to provide a for-
mal definition. We will introduce this concept here. Use it if you feel
comfortable with it. Do not use it if you do not readily understand it.
Other diagrams will be presented throughout the book. However, they
are more useful as concise references than as learning tools. The formal
syntax diagram for a VAR definition is shown in Figure 3.4.

identifier

optional path

L optional path

Figure 3.4: VAR Declaration Syntax

In such diagrams, a box with rounded edges is used to represent
predefined words, i.e., reserved words and standard identifiers, such as
‘VAR’. A circle is used to represent reserved symbols such as *,’, *’, or
/. A rectangle is used for syntax elements that are defined elsewhere in
their own diagram. In the example in Figure 3.4, there are two such rec-
tangles: ‘identifier’ and ‘type’. Finally, the lines and the arrows are used
to indicate authorized paths. For example, let us use the diagram of

Figure 3.4 to verify the syntax of:
VAR A,B,C: INTEGER;

The corresponding path is shown in Figure 3.5.

This diagram shows how the VAR declaration is constructed step-by-
step by following the rules of the syntax. We can thus verify that the
VAR declaration is indeed legal.

Once you become familiar with such diagrams, they provide a con-
cise and convenient way to verify the syntax in a specific case. The com-
plete syntax diagrams are shown in Appendix F.

The VAR declaration serves two syntactic purposes:

1. It tells the compiler that the identifiers in the VAR declaration are
VARiables, and not another kind of identifier, such as function or
procedure names.

2. It defines the type of each of these variables as REAL, INTEGER,
BOOLEAN, or CHAR.

44 SCALAR TYPES AND OPERATORS

The use of VAR has three resulting advantages:

—_

It simplifies the compiler design.

2. It enforces greater programming discipline by requiring the pro-
grammer to declare all of the variables explicitly before they are
used.

3. It allows the compiler to check the validity of operations per-

formed on specific data types.

VAR
()
VAR A
T
>0 4]

VARA,

~ == 7. — — 1
'__'\V“R/—-"L__”‘___J

VARA, B
7~ TN
o—— PVAR,~ -
VARA, B,
. B ___ f__—B___'I
{
Np® A
VARA, B, C
VPN

STTRVAR T T

VARA, B, C: INTEGER ;

o— — —P\VAR\— -7 > C = ° INTEGER o
\

Figure 3.5: Following the Syntax Diagram

INTRODUCTION TO PASCAL

45

Implicit Type Declaration (Constants)

A constant is an actual value of a given data type. In the case of in-
tegers, the following are constants: 22, 3, 15. In the case of characters,
examples of constants are: ‘S’ or ‘T’. Symbolic constants are used
whenever it is convenient to represent a value by a name. For example,
the following symbolic constants could be useful:

Pl = 3.14159
SALESTAX = 6.5

The CONST declaration is used to define a symbolic constant. It
defines the type of the constant identifier implicitly; i.e., the symbolic
constant is given the type of the value assigned to it. For example:

CONST | = 2;
defines I as an integer constant (and assigns | the value 2).
CONST NAME = ‘ABC257;

defines NAME as a character string constant (a sequence of characters).
Here is another example:

CONST TWO = 2;
VAR A : INTEGER;
BEGIN

A := TWO;

The first line in this program defines the constant named TWO as an IN-
TEGER, and assigns it the value 2. The symbol TWO may now be used in
the program as a constant with the value 2.

As a typical example, it may be desirable to define Pl = 3.14159 as a
constant. In general, if a number or a string of characters is used more
than once in a program, or if this number or string might be changed
throughout the program in a later version, it is advantageous to declare
this number or string of characters as a constant at the beginning of the
program. In this way, if the value of the constant has to be changed
throughout the program, then only one statement has to be changed.
This technique leads to what is called a ““cleaner program,”” i.e., a pro-
gram less prone to errors in the event of future changes.

In summary, constant values may be used freely within the statements
as long as the constants are expressed as literals, i.e., as values or

46

SCALAR TYPES AND OPERATORS

characters. However, if a name is used for a constant, this name must be
explicitly declared in a CONST declaration. |

As another example of a syntax diagram, the formal syntax of a con-
stant is shown in Figure 3.6.

/>®-\ /_>‘ constant identifier
\,@_/_LA unsigned number

constant

character

Figure 3.6: Syntax of a Constant

User-Defined TYPE

Pascal provides standard type identifiers such as INTEGER, REAL,
BOOLEAN, and CHAR. However, it is often convenient to use different
names for these standard types, or even to create names for new types
that the programmer may construct.

The TYPE definition allows the programmer to define an identifier as
being the name of a new type. For example:

TYPE SCORE = INTEGER;

This definition defines the new type SCORE (an INTEGER type). SCORE
may at first appear to be of little value if it is used only to relabel the ex-
isting type designator INTEGER, however, its value will become appar-
ent after we have described the mechanisms used for constructing new
data types in Pascal in Chapter 8.

Here is an additional example that demonstrates the convenience of
renaming a type: '

TYPE DAYOFWEEK, MONTH = INTEGER;

The following variable declaration then becomes legal:

VAR PAYDAY : DAYOFWEEK;
BIRTHMONTH : MONTH;

INTRODUCTION TO PASCAL

47

This is not just a mnemonic convenience, but a syntactic one. We will
later see that DAYOFWEEK can be restricted to the values 1 through 7.
Then, whenever a variable of type PAYDAY is used, the compiler will
automatically check that the value of the variable is an integer between
1and 7.

The TYPE definition is, therefore, a powerful facility for defining new
types, especially when the new type is associated with a set of values.
Many examples will be provided in the following chapters.

UCSD LONG INTEGERS

In UCSD Pascal, the length of an integer may be optionally specified.
When this option is used, the resulting type is called a LONG INTEGER.

This is an important facility for computations requiring a high degree
of accuracy. Long integers may be used in conjunction with +, —, DIV,
*, unary + and —, and conversion to strings or standard integers is pro-
vided. Long integers may be used in all structured types where integers
are legal.

A long integer is formally declared as:

INTEGER[length]

where length is a positive integer with a value of up to 36 that indicates
the number of digits. For example:

VAR NUMBER : INTEGER[10];

Constants are automatically converted to long integers whenever re-
quired. For example:

CONST LARGE = 123456789;

When operating with long integers, it is recommended that the pro-
grammer refrain from mixing types and generating results too large for
the number of digits used.

Conversion of Long Integers

Two functions are provided that accept long integers. They perform
conversions:

TRUNC(L) converts the long integer or real L to an integer
(must be less than MAXINT)
STR(L,S) converts the long integer or real L into the string S.

48

SCALAR TYPES AND OPERATORS

UCSD STANDARD ARITHMETIC FUNCTIONS

Three additional standard numerical functions, PWROFTEN, LOG
and TIME, are provided in UCSD Pascal:

PWROFTEN (exponent) This function computes 10%Pee
where exponent is an integer in the
range 0..37. The result is real.

LOG (number) This function computes log'®
(number). The result is of type real.

TIME (high, low) This procedure is hardware-
dependent and is not always
available. It returns (in high, low)
the value of the system clock,
generally in 1/60ths of a second.
High and low are two integer
variables that will contain respec-
tively the most significant and the
least significant part of the result.

SUMMARY

The four fundamental data types in Pascal are called the scalar types:
integer, real, character and Boolean. Specific operators and functions
are defined for each data type.

In Pascal, the type of a variable must always be defined before it is
used. The basic declaration is the VAR declaration, which assigns a type
to a variable.

The way in which additional type names may be created with TYPE
and how constants are declared with CONST was also shown.

Knowledge of the four scalar types is fundamental to using Pascal. All
four types will be used extensively in the chapters that follow. If you do
not feel sufficiently familiar with the definitions, read this chapter once
again. Once you feel that you understand the material presented, move
on to the next chapter, where we will construct expressions and
statements, and begin writing actual programs.

INTRODUCTION TO PASCAL

49

EXERCISES

3-1: Define the term variable.
3-2: Is an identifier always a variable?
3-3: Are the following legal integers?
1: 24 2: =32 3: - 200,000 4:1.24

3-4: What is the result of:
1: TRUNC(32.12) 2: ROUND(0.5) 3: ROUND(32.12)

3-5: Are the following legal reals?
1: 1234 2:24,232.00 3:1.234 4:.12

3-6: Assuming that characters are internally represented in ASCII code (as per
Appendix G) compute:

1: ORD(’f) 2: CHR(8) 3: PRED(’z’) 4: SUCC(‘a’)
3-7: Assume that A is TRUE and B is FALSE. What is the value of:
1: AAND B 22A0ORB 3:NOTB
3-8: When is it legal to write:
A = TWENTYFOUR

3-9: What operations can be done on characters (excluding the relational
operators and the reserved functions)?

3-10: What is the type of the result of the following expressions:

1:A<B 2: 3.0/1.5
31 +6)=(06+1 4:5*6 DIV 3

3-11: Compute the result of:

1: TRUNC(1.75) 2: ROUND(1.75)
3: TRUNC(2.3) 4: ROUND(2.3)

3-12: Give examples for each of the four scalar types.

51

INTRODUCTION

The four types of scalar variables available in Pascal, as well as the
operators and standard functions that may be used with each type, have
been presented. In this chapter, we will show how combinations of
variables and operators may be used to build expressions to perform
calculations. Expressions will be used in the programs presented
throughout the text and should be studied carefully. Next, we will in-
troduce our first statement: the assignment statement. We will then be
able to write simple programs.

EXPRESSIONS

Loosely defined, an expression consists of a sequence of terms
separated by operators. The following are examples of expressions:

10 + 6
6 * 21
A+ 16
A-B+6

Note that when writing expressions, all the operators used in an expres-
sion must be valid for the type of data that they operate upon. The for-
mal syntax for an expression is shown in Appendix F. Because the for-
mal definition is complex, we will not present the complete definition
here, but rather a simplified one. In this chapter, we will define typical
expressions that will be used in subsequent chapters. Then, as we
become more knowledgeable about Pascal, we will complete this
definition by indicating other possibilities that can be used to specify
valid expressions.

So far, the informal definition given for an expression is a sequence of
constants or variables separated by valid operators. Let us now refine
this definition by listing the four basic rules that must be used when con-
structing expressions.

1. A single constant or variable is a valid expression. It may be
preceded by a plus or a minus sign. Examples are: 22, ALPHA,
-2.5.

2. A sequence of terms (variables, constants, functions) separated
by operators is a valid expression. Examples are: 1.1 + 2.25 — 3.2
orA + B *6.

52

EXPRESSIONS AND STATEMENTS

3. Two operators adjacent to each other are not valid. Parentheses
must be used. For example, to multiply, 2 by -3, we may not
write: 2 * — 3, as this would be confusing. Instead, we must write
2% (=3

4. Finally, any variable or constant may be replaced by a function
call. in the case of Boolean (logical) expressions we will see that
any expression may also be preceded by “NOT’’ and be valid.

We will now examine in detail the two most important types of ex-
pressions: arithmetic expressions and Boolean expressions.

ARITHMETIC EXPRESSIONS

Recall that the basic rule in an arithmetic expression is that all types
must be consistent. In an integer expression, all variables, constants and
results of functions must be integers. In a real expression, all variables,
constants and results of functions must be real.

However, there is an exception: integers may be used in a real expres-
sion. Integer values will be converted automatically into a real type. For
example, if N is a real, writing N + 1 will result in 1 being internally con-
verted to 1.0. However, when learning how to program, this practice is
not encouraged as it may lead to errors.

Let us present examples of simple expressions using a binary operator
and two operands. A binary operator, also called a dyadic operator, is an
operator that requires two operands. Multiply and divide are binary
operators. A unary, or monadic operator requires only a single operand.
For example, the monadic plus and minus signs are unary operators. If
we assume that | and J are of type integer, the following are valid integer
expressions:

) +1
I+)
|
|

O *+ +

J
V2
And the following are invalid integer expressions:

Il +1.0 (1.0 is not an integer)
.01 *J (.01 is not an integer)

Let us now examine examples of valid real expressions. A and B are
assumed to be of type real.

A+ 10 (the integer 10 is automatically converted to real)
A*B
B/1.5

INTRODUCTION TO PASCAL

53

Here are examples of invalid real expressions:

A**B (two multiplication symbols in sequence)
A DIV 2 (DIV is integer division)

Operator Precedence

An ambiguity may arise when specifying a sequence of operations.
For example:

A:=2+ 3*2
The above instruction probably means A:= 2 + 3*2) =2 + 6 = 8.
However, it might mean (using the rules of many pocket calculators):
A:=(2+3)*2=5*2=10

““2 + 3 * 2”is an arithmetic expression. In any programming language, it
is important to specify the order in which expressions are evaluated. In
Pascal, a precedence technique is used. In the case of our example, * is
said to have a higher precedence than +. As a result, the multiplication
will be performed first:

3%2(=6)
Then the addition will be performed:
2+ 6

Each Pascal operator has a precedence level. When two operators are
adjacent, the one with the higher precedence is executed first.
Whenever an ambiguity remains, the expression is evaluated from left
to right. The following list shows the various operators and their priority
level:

— The relational operators (=, <, >, <=, >=, < >) have the
lowest precedence.

— Next come: +, —, OR

— Then: *, /, DIV, MOD, AND

— At a higher priority is: NOT

— At the highest precedence level is: ()

For example:

The expression: Means: The result is:
2*3 4+ 2 (2*3) + 2 8
2*3+2*4 2*3) + (2*4 14
6*2DIV3 (6 *2) DIV 3 4
3+44-(5*2-1) B+4-(5*2-1 -2
4.0/3.0 * 2.0 (4.0/3.0) * 2.0 2.6666

54

EXPRESSIONS AND STATEMENTS

In summary, remember that parentheses have the highest precedence,
followed by multiplication and division, and then addition and subtrac-
tion.

USING STANDARD FUNCTIONS

We have indicated that an expression consists of variables, constants,
or functions separated by operators. Thus far, in our examples, we have
used only variables or constants. However, we have seen in the
previous chapter that a number of standard functions are predefined in
Pascal. These functions may also be used in expressions. A function is
called (used) by writing the name of the function followed by an argu-
ment enclosed in parentheses. For example, the mathematical expres-
sion for a quadratic equation is:

AX? + BX + C
where A and X are assumed to be real variables, may be expressed as:
A*SQR(XX)+ B*X + C

where SQR() is the square function. The computer looks at the argu-
ment within the parentheses, obtains its value, then computes the value
of the function.

Similarly, the root of a quadratic equation will depend upon the deter-
minant. The value of this determinant is:

Bz — 4AC
and the square root of the determinant will be expressed as:
SQRT(SQR(B) — 4.0 * A * O

where SQRT() denotes the square root function. The standard functions
provided by Pascal are listed in Figure 4.1.

A function may be placed in an expression anywhere we might place
a variable or a constant of the same type.

When using a standard function, do not forget to watch for the data
type of the arguments of the function as well as the data type of the
result. The argument type must be valid for the function. The result type
must be valid for the type of expression considered. These two types
(argument and result) are not necessarily the same. For example, the
ROUND function requires a real argument and will yield an integer
result. The rules relating to data types must always be strictly respected.
A summary of the legal data types for each Pascal function is shown in
Figure 4.1.

INTRODUCTION TO PASCAL

55

FUNCTION OPERAND(S) RESULT

ABS integer, real same as operand
ARCTAN integer, real real

CHR integer character

COos integer, real real

EOF text file Boolean

EOLN text file Boolean

EXP integer, real real

LN integer, real real

OoDD integer Boolean

ORD scalar except real integer

PRED scalar except real same as operand
ROUND real integer

SIN integer, real real

SQR integer, real same as operand
SQRT integer, real real

succ scalar except real same as operand
TRUNC real integer

Figure 4.1: Standard Functions

SUMMARY OF ARITHMETIC EXPRESSIONS

An arithmetic expression may be loosely defined as a succession of
operators and operands. Standard Pascal functions may be used instead
of variables. User-defined functions may also be used. They will be ex-
amined in Chapter 7.

Finally, in order to eliminate any ambiguity when evaluating an ex-
pression, each operator has a precedence level.

BOOLEAN EXPRESSIONS

We learned in the previous chapter that the three logical operators
AND, OR, and NOT operate only on Boolean values (TRUE or FALSE).
They may be used to create a Boolean expression. In addition, the rela-
tional operators may be used to compare any two real variables and will
result in a Boolean value TRUE or FALSE as well. They may also be used
within a Boolean expression.

EXPRESSIONS AND STATEMENTS

In the case of Boolean expressions, Pascal imposes an additional
requirement. All subexpressions must be enclosed in parentheses unless
they start with a NOT.

Let us assume that K, L, M have been defined as Boolean variables.
The following are examples of Boolean expressions:

K AND L (a Boolean operator is used)
NOT K
M =N (a relational operator is used)

More complex examples of Boolean expressions are:

K ANDM = NOT N (three operators are used)

1 *) =2 (an arithmetic expression is compared to 2)
K AND M OR NOT N

(A = B)OR (C = D) AND (A — C = 0) (subexpressions are parenthesized)

The rules of precedence also apply. For example:
B > C + 5 will be evaluated as B > (C + 5).

In this last example, the expression on the right of the relational
operator is an arithmetic expression and therefore does not have to be
enclosed in parentheses. The + operation has a higher precedence than
the relational operator and will be evaluated first. However, when in
doubt, do not hesitate to use parentheses. They will improve the
readability of the program and avoid errors.

THE BASIC RULES OF BOOLEAN ALGEBRA

When using Boolean variables, it is useful to know some of the basic
rules of Boolean algebra that may be used to simplify Boolean expres-
sions. For example:

NOT(NOT K) is equivalent to K

NOT(J OR K) is equivalent to (NOT J) AND (NOT K)

NOT(AND K) is equivalent to (NOT J) OR (NOT K).
Similarly,

NOT(J < K) is equivalent to } >= K

NOT(<> K) is equivalent to] = K, and vice versa.

When testing the equality of numbers, do not test a real number for
strict equality if this number was the result of a computation. This is
because the computer uses a fixed number of bits internally to represent
any number, which means that the computer will represent any real
number with a limited precision. It may happen that a real number

NTRODUCTION TO PASCAL

57

should be equal, for example, to 1.0. However, internally, this number
might be stored as 0.999999. Equality is defined only within the limits of
the precision of the representation being used. If you must test for
equality, the correct way of doing it is to verify that the difference be-
tween the two numbers is less than 107" where n specifies the precision
of the comparison. For example, using n = 3 insures that the two
numbers are within 1073 = 1/1000 of each other. In other words, the dif-
ference between two computed numbers will almost never be exactly
zero.

STATEMENTS

We have indicated that each Pascal program must include at least one
statement and usually includes many statements. The formal syntax for a
statement in Pascal is shown in Appendix F. It is rather complex. We
will, therefore, introduce the various types of statements in turn as we
go along. We have already encountered two types of statements in our
first two program examples. In our first example, we encountered the
statement:

WRITELN(’HELLO");

This is an output statement. Input and output statements will be described
in the next chapter.
The next example we encountered was:

TOTAL := A + B;

This is an assignment statement. The assignment statement is probably
the most important type of statement. The formal syntax of an assign-
ment statement is shown in Figure 4.2.

° variable e expression

Figure 4.2: Syntax of the Assignment Statement

The statement consists of a variable identifier followed by the symbol
="', followed by a valid expression. The symbol =’ is called the
assignment operator. The assignment means that the expression on the
right will be evaluated and that the resulting value will be assigned
(given) to the variable on the left. In other words, the computed value of
the expression will become the value of the variable from now on. In
order for this statement to be meaningful, the expression must naturally

58

EXPRESSIONS AND STATEMENTS

evaluate to a correct value. This implies in particular that any variables
contained within the expression already have a value assigned to them.
For example, the following are valid assignments:

A:= 2.0;
B:= A + 4.0; (* A has been defined above *)
C:=20*3.0 + 4.0;

The assignment may be performed on any data type. For example, if the
variable LETTER has been declared as type CHAR, the following is a
valid assignment:

LETTER : = “A’";
Similarly, if | and J are integers, the following are valid assignments:

| := 2;
J:=2 4+ 2;

It is legal, but not recommended, to assign an integer value to a real
variable. In that case, the integer value will be automatically converted
to a real number.

As another example, assuming that | and] are of type integer and that
Z is of type Boolean, the following is a valid assignment:

Z:=1<J;
The assignment operator “:=’ must be distinguished from the rela-
tional operator ‘=’ (‘=’ tests for equality). This is important to

remember if you have programmed in BASIC or FORTRAN, where both
operators are represented by the same symbol (=).

The Empty Statement

The empty statement is only explained here in order to cover the sub-
ject completely, and will not be used in this book. A non-existent state-
ment may generally be used wherever a statement is legal. It is called
the empty statement and includes no symbols and has no effect.

For example:

A:=2;;

INTRODUCTION TO PASCAL

59

includes two statements:

A:=2;
The empty statement (terminated by ;)

One of the effects of the empty statement is to allow the use of spurious
‘" where they are not required, without causing a syntax error. For ex-
ample:

A:=2;
END.

is legal, even though the semi-colon is not necessary. The semi-colon is
interpreted as an empty statement.

The Compound Statement

Generally, a group of statements may be used wherever a single state-
ment is legal. Such a group of statements is called a compound state-
ment. A compound statement must be bracketed by BEGIN and END.
Here is an example:

BEGIN
|:=3;
J:= 4;
WRITELN(I,J)
END;

Such compound statements will be used in Chapter 6 as we use control
structures. A semi-colon is not necessary after BEGIN or before END.
The semi-colon is used only to separate statements, not to terminate
them.

SUMMARY

We have now learned how to combine variables, constants, operators
and functions into valid expressions. We have seen that types may not
be mixed freely and that consistency of types must be used in any ex-
pression. We have learned to resolve possible ambiguities in complex
expressions by using the precedence of operators or parentheses. And
finally, we have learned to use one of the most important types of
statements, the assignment. In order to receive and display data, we will
need to study another important type of statement: the Input and Out-
put statements, which will allow us to communicate with the user of the
program. This will be the topic of the next chapter.

63

INTRODUCTION

Input and output statements are used in nearly every program in Pascal
so that values may be entered and displayed or printed. In the first pro-
gram example in Chapter 1, a WRITELN statement was used to display a
message (‘‘HELLO"’). This is an output statement. Similarly, a READ(A,B)
statement was later used to read the values of two variables A and B
typed at the keyboard.

From a hardware standpoint, input statements and output statements
allow the program to communicate with a computer peripheral such as
a terminal, a printer or a disk. An input statement is used to read
characters from the terminal. An output statement is used to print or
display characters on the terminal.

From a logical standpoint, all of the terminals are considered as files
by the program. The various types of input/output statements provided
by Pascal will be described in this chapter.

COMMUNICATING WITH A FILE OR THE TERMINAL

Input and output statements operate on files. For our purposes, a file
is defined here as a sequential collection of information that may be
referred to by name. Since they fulfill these requirements, the keyboard,
the screen and the printer are considered as files. Since we have not yet
learned about generalized files, the examples given in this chapter will
only communicate with the terminal. The terminal is viewed by the pro-
gram as two files, named INPUT and OUTPUT. This is the purpose of
the (INPUT,OUTPUT) file declaration in the program header. We will
use the computer keyboard as our input medium. Our output medium
will be the terminal screen or the printer (if a printing terminal is
available).

The concept of a file is illustrated by the diagram in Figure 5.1.

r
| T|H| S 1| s T|E| X|T EOF
| E,
READ T
END
X

Figure 5.1: The Concept of a File

64

INPUT AND OUTPUT

The diagram in Figure 5.1 shows how a READ operation might copy the
value of one element of the file, (here the letter “'T"), into a program
variable and how a WRITE operation can transfer a value from the pro-
gram into the file. The file is terminated by a special marker, called EOF
(End Of File). Let us now look at some input statements.

READ AND READLN

READ and READLN statements are called input statements. These two
statements serve to read values from an input file, the keyboard in our
case. An example of a READ statement is:

PROGRAM SUM(INPUT,OUTPUT);
VAR A,B,TOTAL;
BEGIN

READ(A,B);

In this example the input medium is the keyboard: the values of A and
B are read from the keyboard. This choice is communicated to the com-
puter by including the word 'INPUT’ in the program definition:

PROGRAM SUM(INPUT,OUTPUT);

The READ and READLN statements must be written in a specific man-
ner. As shown in the example above, the READ or READLN is normally
followed by a left parenthesis, one or more variables separated by com-
mas, and terminated by a right parenthesis. The result of a READ or
READLN is to read values from the INPUT and assign them to variables.
Here are additional examples of READ and READLN statements:

READ(A,B,C);
READLN(TAXRATE,GROSSINCOME);

Data typed in at the keyboard may be any type valid for the type of
variable that is used. In all cases, except when characters are used as in-
put, data may be typed in and separated by one or more spaces, or a
new line. i

The difference between a READ statement and a READLN statement is
that the READ statement allows the next READ to continue to read
values on the same line, while the READLN statement will move to a
new line after it is executed. The difference between the two types of
read instructions evolves from the time when most computer input was
accomplished through punched cards and each punched card stored
one line of text. These punched cards were usually divided into fields

NTRODUCTION TO PASCAL 65

containing values. In many cases, it was desirable for the program to
read only (for example) four fields out of the ten fields present on a data
card. In such a case, the READLN statement would be used to force the
card reader to eject to the next card (the next line). However, READ can
also be used in an interactive environment to read characters and re-
spond on the same line. Examples will illustrate the use of READ and
READLN.
An example of a READ statement is:

READ(A,B,C,D);
The data will appear on the terminal exactly as we type it in, for example
it might appear in the following form:
2.0 3.5 —6.1 2.3

The line is terminated with blanks, or with a ““return’’ (a special key on
the keyboard).
The same data read with the following statements:

READ(A,B);
READLN(C);
READ(D);

would appear at the terminal like this:

2.0 8ES —6.1
2.3

Note how the READLN statement causes the display to ‘‘move up’’ after
input, so that ““2.3"" will automatically appear on the next line.

When reading numerical data, spaces and new lines added between
numbers are ignored. When reading a real number, the two usual nota-
tions may be used: decimal and scientific.

For example, the real 12.0 may be read as:

12.0
or equivalently, as:

+1.2E4+01

or even as:

12

An integer may be read as a real.

66 INPUT AND OUTPUT

When reading character-type data, each character is significant. Once
all of the characters on a line have been read, an attempt to read the
next character, past the last character on the line will yield a space. That
is, reading a ‘‘carriage return’’ yields a space.

As stated, all of the characters on a line do not have to be read. For ex-
ample, the program may read only the first ten characters of a line with
a READ, and proceed on to the next line by specifying a READLN. The
remaining characters (past the first ten characters) will then be ignored.

Here is an example program with various types being read:

PROGRAM INEXAMPLE(INPUT,OUTPUT);
VAR |, J : INTEGER;
A,B : REAL;
M,N : CHAR;
BEGIN
READ(I,J);
READ(M,N);
READLN(A,B)
END.

Here is a possible input at the keyboard:
4 925Y
1.23 —5.6

Here is another example:

PROGRAM INEX2(INPUT);
VAR |,J : INTEGER;
A,B : REAL;
M,N : CHAR;
BEGIN
READ(A,M,N, 1)
END.

Here are four possible inputs and the resulting values of the variables:

INPUT A M N I
1.25Y2344 1.25 Y’ ‘2 344
+1.2E+05Y2344 1.2E+05 Y’ 2 344
1.2E05Y2344 1.2E+05 Y’ ‘2 344
1.25Y 2344 1.25 Y’ 4 o 2344

INTRODUCTION TO PASCAL

67

Terminating the Input

Two standard functions are provided to facilitate input: EOLN and
EOF. Their role will be briefly described here. However, they will be
described in detail in the next chapter, as they are almost always used
with control structures.

It may be necessary to read a sequence of numbers or characters on a
line for which we do not know the precise length. The EOLN function is
provided for this purpose. The EOLN (End Of Line) function is a stan-
dard Boolean function which is TRUE when the end of line is detected;
otherwise it is FALSE. Thus, we can keep reading until the end of line
function becomes TRUE. When it becomes TRUE, the complete line has
been read.

Another standard function, called EOF (End-Of-File), will detect the
end-of-file. This function corresponds, for example, to the case where
the last card has been read by the card-reader. The function EOF(IN-
PUT) may be used to ensure that all data has in fact been read. EOF by
itself means EOF(INPUT). EOF becomes TRUE once all data has been
read.

The following is an example using EOF and EOLN. This example is on-
ly shown here for completeness and you will better understand this ex-
ample after you have studied Chapter 6. This program will successively
read each character in a file line-by-line, and then process each
character. In the example, ‘‘process’’ stands for any valid Pascal
statements that may be used to process the character C.

PROGRAM ALLTHEFILE(INPUT,OQUTPUT);

VAR C : CHAR;
BEGIN
WHILE NOT EOF DO
BEGIN
WHILE NOT EOLN DO
BEGIN
READ(C);
process(C)
END; (* WHILE *)
READLN

END (* WHILE *)
END. (* ALLTHEFILE *)

68

INPUT AND OUTPUT

WRITE AND WRITELN

We have already encountered several examples of the WRITELN in-
struction in previous chapters:

PROGRAM GREETING(OUTPUT); (* PROGRAM HEADING *)
(* A SIMPLE PASCAL PROGRAM *)
BEGIN

WRITELN("HELLO") (* STATEMENT *)
END.

and:

PROGRAM SUM(INPUT,OUTPUT);
VAR A,B,TOTAL : INTEGER;
BEGIN
WRITELN("ENTER TWO NUMBERS TO BE ADDED...");
READ(A,B);
TOTAL := A + B;
WRITELN('THE SUM OF /,A,” AND ’,B,’ IS /,TOTAL)
END.

Like the READ and READLN statements, the WRITE and WRITELN
statements are normally followed by a left parenthesis and a list of
strings or values to be printed, separated by commas, and terminated by
a right parenthesis. As we can see in the first example above a character
string enclosed in single quotes will be printed as it is stated, including
any blanks that it may contain. In the second example, we can see that
variables will be evaluated and that their values will be printed. When
printing a character string, remember that in order to print out a quote,
the quote itself must be enclosed in quotes.

A Boolean value will be printed as either TRUE or FALSE. A real value
will be printed in exponential notation. All items to be printed in the list
within the parentheses will be printed on the same line. If several WRITE
instructions are used in succession, then all of these items will be
printed on the same line. Using WRITELN will force the printer to move
to the beginning of the following line after printing. For example:

WRITE('THIS IS AN *);
WRITE("EXAMPLE’);
will result in:

THIS IS AN EXAMPLE

INTRODUCTION TO PASCAL

69

and:

WRITELN('THIS IS AN’)
WRITE('EXAMPLE’);

will result in:

THIS IS AN
EXAMPLE

Here are some examples of output with various types of data:

VAR |,J,K : INTEGER;

A,B : REAL;

C.D : CHAR;

U,V : BOOLEAN;
Go progrom statements...)
.= (* the value of | will printas 1 *)
J: < U8 (* Jwill printas 2 *)
K:=5; (* Kwill print as 5 *)
A:=1.1+35*2.0; (* Awill printas 8.1 *)
B:=A/2; (* B will print as 4.05 *)
C:="7; (* Cwill printas ? *)
D:='="; (* Dwill printas = *)
U:=1=J; (* U will print as FALSE *)
V:=A>B; (* V will print as TRUE *)

WRITELN('INTEGERS ARE’, 1, J,K);
WRITELN('REALS ARE’,A,B);
WRITELN(’OTHERS ARE’,C," *,D,” *,U,V);

The output will be the following three lines:

INTEGERS ARE 1 2 S
REALS ARE 8.1000000000E +00 4.0500000000E + 00
OTHERS ARE? = FALSE TRUE

Note that spaces have been automatically added to the left of integers,
reals, and Booleans. This is called an automatic output formatting
feature of the Pascal compiler.

70

INPUT AND OUTPUT

Formatting the Output

When printing a given data type such as INTEGER, REAL, OR
BOOLEAN, each Pascal implementation uses a standard number of col-
umns. Unfortunately, the conventions vary with each installation. For
example, an implementation might use twelve columns for integers, ten
columns for a Boolean, and twenty-four columns for a real number.

It is often desirable to produce neatly tabulated data. In this case, it
becomes necessary to override the standard number of columns provid-
ed by the particular implementation. Therefore each item to be printed
may be followed by a colon and an integer (value or expression). This
positive integer specifies the minimum field width for that item. If the
item to be printed requires fewer characters, it will be preceded by
leading blanks. If the item should require more space, then as many
characters as necessary will be used. For example:

WRITE('THE TEXT IS RIGHT': 18);
WRITELN(‘ALIGNED’: 8);

will produce:
THE TEXT IS RIGHT ALIGNED.

The first field specification allocates eighteen spaces to ‘“THE TEXT IS
RIGHT'. This will be printed as:

bTHE TEXT IS RIGHT
where b denotes a blank.

The second field specification allocates eight spaces to ‘ALIGNED’ so
that is will be printed on the same line as: ‘bALIGNED’, where b denotes
a blank.

Note: in some installations, the first character of a line is not printed, as
it is interpreted as a command to the printer. In such a case, be careful
never to use this first character to represent data.

In the case of REAL items only, a dual field specification may be used
with a colon followed by an INTEGER, followed by another colon,
followed by an INTEGER. The first integer still specifies the minimum
field width. If the second field specification is used, the number will be
printed in fixed-point notation rather than exponential notation and the
integer value specifies the number of digits to be printed after the

INTRODUCTION TO PASCAL

71

decimal point. Here is an example:

VAR | : INTEGER;

A : REAL;
C : CHAR;
BEGIN
1:=12;
A:=21;
C:="7,
WRITE('INDENT: 10, 1: 3, A:4:1,C:2)
END.
This will print:
I |) I'INlDlEINIT‘ J‘lzl 12|'|'| L

Blanks are inserted to the left where needed. This format may be used to
obtain neatly aligned printouts, such as tables.

Other control facilities may be provided depending upon the installa-
tion. Most printers will not print more than 132 characters per line. Also,
in many cases, the first character in each line is not printed and has a
special meaning:

— A space means a line feed (single spacing).
— A + means overprinting (no line feed).

— A 0 means double spacing.

— A 1 means ‘“‘go to the top of the next page.”

However, these conventions depend upon the installation. Generally
a PAGE command is available to move to the next page.

In order to skip a line, a standard programming ‘“‘trick”” may be used.
For example:

WRITELN("ONE’);
WRITELN;
WRITELN (‘THREE’);

produces the following output:

ONE

THREE
with a blank line in the middle.

72

INPUT AND OUTPU

Finally, an expression may be used in an output statement instead of a
value. For example:

WRITELN('ONE + TWO = *, 1 + 2);

produces the output:
ONE + TWO = 3

This also applies, to the field specifications. For example:
WRITE(A : | + 1 :J + K);

might produce

—12.41

UCSD INPUT/OUTPUT

UCSD input/output facilities are described in Chapter 11. The opera-
tion of READ and WRITE for communication with the terminal is essen-
tially as described in this chapter. Slight differences occur with respect
to EOF and EOLN.

SUMMARY

The input and output instructions are quite easy to use. The format-
ting of the actual output becomes a little more complex. Practice is
strongly recommended to understand the actual formatting of any output.

All of the basic concepts required to write simple programs have now
been introduced. The power of the computer does not simply lie in its
capability to carry out arithmetic or other operations, but also in its
capability to make decisions and execute different actions based upon
the results of tests. One of the most important characteristics of a com-
puter program is the ability to change the way in which a program is ex-
ecuted depending upon values which have been read or computed. In
the next chapter, we will study the ways to alter the flow of control
within a program.

INTRODUCTION TO PASCAL

73

EXERCISES

5-1:
5-2;
5-3:

5-4:

5-6;
5-7:

Write a program to print out the squares of the first ten integers.
Read ten real numbers, and print them out in reverse order.

Read the first ten characters in two consecutive lines of text, then write
them out.

Print a neatly formatted table of squares and square-roots. Label it. Use
dashes and exclamation points to draw horizontal and vertical lines.

Compute the sales table that applies to your state. Prices may range from
$0.01 to $100.00. Once a price is typed in, the program should print the
price, the sales tax, and the total.

Print a multiplication table.

Using the following lines of input, what is the output of the program
READWRITE?

1.063 27 06.488 2 17.26 58.0 11
2.31 76.523 7 .641 -5 18.3 45.7 -7
8.6 2 5.154 6 729 628
3.16 8 708 -10 4.108 14 6.74

PROGRAM READWRITE (INPUT, OUTPUT);
VAR A, C, E: REAL;
B, D: INTEGER;
BEGIN (* READWRITE *)
WRITELN; WRITELN;
READLN (A, B, C, D, E);
WRITELN (A:5:1, C:6:2, E:7:3, B:4, D:4);
WRITELN;
READLN (A, B);
READLN (C, D, E);
WRITELN (A:5:1, C:6:2, E:7:3, B:4, D:4);
WRITELN;
READLN (E, D, A, B, C);
WRITELN (E:5:1, A:6:2, C:7:3, D:4, B:4);
WRITELN
END. (* READWRITE *)

7/5)

SEQUENTIAL EXECUTION

In the previous chapters we learned the rules for writing simple Pascal
programs. We also examined several examples of simple programs,
which consisted of a small number of statements to be executed in se-
quence. Executing each statement in turn, in the order that it appears in
the program listing, is known as sequential execution.

A computer can do more than just execute statements sequentially. If
the computer were only capable of sequential execution, it would in a
sense be nothing more than a good pocket calculator. A computer can
make decisions based on specific tests. In other words, depending upon
the value of a specific variable or variables when the program is ex-
ecuted, decisions can be made that will result in one part of the pro-
gram or another being executed. Instructions that allow such condi-
tional tests modify the flow of control within the program.

A related concept is the capability that computers have to
automatically execute a group of instructions over and over again, in a
repetitive manner. This is called a program loop facility.

In this chapter we will study the facilities provided in Pascal for alter-
ing the flow of control within the program, i.e., those instructions that
will result in the non-sequential execution of a group of instructions.
Three categories of instructions will be distinguished: the repetition
statements, the conditional branch statements, and the unconditional
branch statements.

REPETITION STATEMENTS

Repetition statements allow the convenient execution of a loop. Let
us first clarify the concept of a loop through an example. We will com-
pute the sum of the first twenty-five integers. This can be accomplished
by using a formula. Here, however, we will use the following algorithm:

SUM =0

NUMBER = 1

NEWSUM =SUM + NUMBER
NEWNUMBER = NUMBER + 1

If NEWNUMBER is greater than 25, then stop.
Otherwise, go back to step 3.

L I S O N

This algorithm can be represented symbolically by a flowchart as
shown in Figure 6.1.

76

CONTROL STRUCTURE!

SUM =0 1
NUMBER =1 o)
Y
SUM = SUM + NUMBER 3
\
NUMBER = NUMBER + 1 4
NO YES!
DONE 5

Figure 6.1: Flowchart for Integer Addition

In a flowchart, rectangles are used for simple statements and
diamonds or rounded rectangles are used for test decisions. Each step in
the algorithm, labeled 1 through 5, is represented by a box in the
flowchart in Figure 6.1. Note that the arrow pointing from the bottom
diamond-shaped box in the flowchart goes back into the third statement
(box). The three statements numbered 3, 4, and 5 in the flowchart will
therefore be executed repeatedly until the value of the variable
NUMBER becomes greater than 25. This is an example of a loop.

In the conventional language of flowcharts, statements such as state-
ment 3 are usually written:

SUM = SUM + NUMBER

This statement means that the new value of SUM is equal to the old
value of SUM plus NUMBER. However, the equal sign should not be in-
terpreted in the traditional mathematical sense. Rather, it is meant as an
assignment statement. In order to avoid possible confusion, Pascal uses
a specific symbol for the assignment ’:=’, and this is the symbol we will
use from now on. The Pascal form of that statement is:

SUM := SUM + NUMBER

INTRODUCTION TO PASCAL

77

Pascal provides three facilities for automatic looping: REPEAT,
WHILE, and FOR. Any of these three statements could be used for our
integer addition problem. However, each of these statements provides
specific convenience features which we will now describe.

REPEAT STATEMENT

The REPEAT statement can be used to repeat a group of statements in
a program. The informal syntax of this statement is:

REPEAT statement(s) UNTIL (condition is true)
The formal syntax for this statement is shown in Figure 6.2.

Boolean ’
°
REPEAT ﬂ expression

Figure 6.2: Syntax for REPEAT

One or more statements may appear between the reserved words
REPEAT and UNTIL. The condition is specified with a Boolean expres-
sion. For example, the Boolean expression may use the six relational
operators:

S - o= O

or any of the legal Boolean operators. Here is a program that will com-
pute the sum of the first 25 integers:

PROGRAM SUM25 (INPUT,OUTPUT);
(* SUM OF FIRST 25 INTEGERS *)
VAR SUM,NUMBER : INTEGER;
BEGIN
SUM := 0;
NUMBER : = 1;
REPEAT
SUM := SUM + NUMBER;
NUMBER : = NUMBER + 1
UNTIL NUMBER > 25;
WRITELN ('THE SUM OF THE FIRST 25 INTEGERS IS’,SUM)
END.

Figure 6.3: INTEGER SUM Program

78

CONTROL STRUCTURES

The program in Figure 6.3 represents one example of translating the
algorithm previously described into a Pascal program. Several points are
worth noting. For example, the variables SUM and NUMBER are
declared as integer.

VAR SUM,NUMBER : INTEGER;

The next two statements in the program are called the initialization
phase. They assign initial values to the two variables SUM and NUMBER
before the loop is entered:

SUM := 0;
NUMBER := 1;

Variables that will be used to accumulate a result within a loop must
generally be initialized. Usually, each loop is preceded by an initializa-
tion phase like the one previously described.

The loop follows:

REPEAT
SUM := SUM + NUMBER;
NUMBER : = NUMBER + 1
UNTIL NUMBER > 25;

This loop will cause the two statements contained within it to be
executed until NUMBER becomes greater than 25. Each time that the
loop is executed, NUMBER is incremented by one. As a result, the loop
will be executed exactly 25 times.

After a program has been written, it should always be checked by
hand, before executing it on the computer. We will now check this par-
ticular program and verify the correct operation of the loop.

When the program is started, SUM becomes 0, and NUMBER
becomes 1. The first time the loop is entered, SUM becomes:

SUM : = SUM + NUMBER;
or SUM:=0 + 1 (=1)
and:

NUMBER := NUMBER + 1;
or NUMBER := 1 + 1 (=2)

Remember that the expression to the right of the assignment symbol

INTRODUCTION TO PASCAL

79

(:=) is evaluated first. This reads as:
new-value-of-NUMBER is old-value-of-NUMBER + 1

Then UNTIL is reached. NUMBER is 2.
‘NUMBER > 25’

evaluates as ‘2 > 25’ which is FALSE. The loop is then repeated. The
second time around, NUMBER takes the value 3, and the loop is repeated,
etc.

Once NUMBER takes the value 26, the Boolean expression (NUMBER
> 25) evaluates as TRUE, and the loop terminates. By examining the
program you should be able to verify that SUM is indeed the sum of

I 9F 2 2= @S85 6 aa Sia25

Note: It is always important to check the initial and the end value of the
loop control variable. Here, the end value of NUMBER is 26.

Even though they are legal, we have not used BEGIN...END within the
loop, because they are not necessary. The program finally terminates by
printing a message, and the value of the SUM:

WRITELN('THE SUM OF THE FIRST 25 INTEGERS IS, SUM)

Remember, that when using the REPEAT UNTIL statement, the
statements placed between REPEAT and UNTIL will be executed at least
once. The condition that is being tested will be examined only at the
end of the loop. We will see that the WHILE statement allows us to do
the reverse, i.e., to test for a condition at the beginning of the loop.

WHILE STATEMENT

The informal syntax of the WHILE statement is:
WHILE (Boolean expression is true) DO statement

The formal syntax for this statement is shown in Figure 6.4.

Boolean
o—>(WHILE) : (o0) Sfatement
5 expression

Figure 6.4: Syntax for WHILE

When examining the syntax, by convention, ‘‘statement’” in a rec-
tangle stands for either an isolated statement or a compound statement

80

CONTROL STRUCTURES

delimited by BEGIN and END. As long as the specified expression holds
true, the statement or group of statements following the DO will be ex-
ecuted repeatedly. Unlike REPEAT, a group of statements must be made
into compound statements by bracketing them with BEGIN and END.
For example, let us now rewrite our previous program and compute the
sum of the first 25 integers using the WHILE statement. The correspon-
ding program is:

PROGRAM SUM25B(INPUT,OUTPUT);
(* SUM OF FIRST 25 INTEGERS *)
VAR SUM,NUMBER : INTEGER;
BEGIN
SUM := 0;
NUMBER := 1;
WHILE NUMBER < 26 DO
BEGIN
SUM := SUM + NUMBER;
NUMBER := NUMBER + 1
END;
WRITELN ('THE SUM OF THE FIRST 25 INTEGERS IS’,SUM)
END.

Figure 6.5: INTEGER SUM Program—Version 2

This program contains the same number of statements as the program in
Figure 6.3. The difference between the two programs is that with the
program in Figure 6.5, the test is performed before the group of
statements is executed. As a result, in some cases the group of
statements may not be executed at all, whereas in the case of REPEAT,
the group of statements will always be executed at least once.

Notice that the test is reversed when compared to the REPEAT: the
test is performed for NUMBER < 26 instead of NUMBER > 25 (i.e.,
NUMBER >= 26). This is because the WHILE statement is executed as
long as the condition remains TRUE. It stops being executed when the
condition is no longer TRUE. By contrast, the REPEAT statement is ex-
ecuted as long as the condition is FALSE. It stops whenever the condi-
tion becomes TRUE.

INTRODUCTION TO PASCAL

81

WHILE condition

DO statement(s)

REPEAT statement(s)
UNTIL condition

FALSE

[
>

Y

statement(s)

statement(s)

TRUE

Figure 6.6: WHILE vs. REPEAT

Using the symbolic representation of a flowchart (see Figure 6.6), the
difference between the two types of repetition statements is illustrated
in this figure.

Another Example

Figure 6.7 shows another example of the use of the WHILE statement.
We will compute the average of the first n integers, where the value of n
will be supplied at the keyboard. In this program, NUMBER will suc-
cessively take the values O, 1, 2, up to a maximum value MAX, which is
entered at the keyboard.

A loop is used to compute the sum of the first MAX integers (as in the
previous example). After the loop is executed, the SUM is divided by the
number of integers, i.e., MAX. This is the AVERAGE:

AVERAGE : = SUM / MAX;

Note that SUM and MAX are of type INTEGER, and that AVERAGE is a
REAL. This is a legal statement.

CONTROL STRUCTURES

Finally, the value of AVERAGE is printed:

WRITELN (“THE AVERAGE OF THE FIRST’, MAX, ‘"NUMBERS IS’, AVERAGE)
END.

PROGRAM AVERAGE (INPUT,OUTPUT);
VAR AVERAGE : REAL;
SUM,NUMBER,MAX : INTEGER;
BEGIN
READLN(MAX);
SUM := 0;
NUMBER : = O;
WHILE NUMBER < MAX DO
BEGIN
NUMBER := NUMBER + 1;
SUM := SUM + NUMBER
END;
AVERAGE : = SUM / MAX;
WRITELN ('THE AVERAGE OF THE FIRST’, MAX, ‘NUMBERS IS’, AVERAGE)
END.

Figure 6.7: AVERAGE Program
WHILE and REPEAT

Remember that, in the case of a WHILE statement, a group of
statements found in a compound statement must be bracketed by
BEGIN and END. In the case of REPEAT, this format is optional.

As a practical recommendation, on installations where execution time
is restricted, the Boolean expression tested by WHILE or REPEAT should
be as simple as possible in order to reduce execution time, since it is
evaluated every time the loop is executed. This consideration also holds
true for the statement(s) within the loop.

For the two repetitive statements we have studied thus far, i.e., the
WHILE statement and the REPEAT statement, we have repeatedly ex-
ecuted a statement or group of statements until some condition held
true or false. This condition may result from the value of a variable read
from the keyboard or an input file, or from a counter variable (a frequent
occurrence) that is regularly incremented each time that the loop is ex-
ecuted. In the program examples we have presented thus far, the value
of NUMBER was incremented by one every time that the loop was ex-
ecuted. NUMBER is called a counter variable.

INTRODUCTION TO PASCAL

A special mechanism is provided in Pascal (as well as in nearly all
high-level languages) for the automatic execution of the loop coupled
with the automatic incrementation of such a counter variable. This
mechanism is called the DO or FOR loop in various languages; it is
known as the FOR statement in Pascal.

FOR STATEMENT

A simple example of a FOR statement is:

SUM := 0;
FORI|:= 1 TO N DO SUM := SUM + |;

The effect of this statement is to execute the statement following the
DO N times. The first time this statement is executed, | has the value 1.
The second time it is executed, | has the value 2, etc. Thus, SUM is given
the value of the sum of the integers from 1 through 10.

The informal syntax of the FOR statement is:

FOR counter variable : = initial value TO final value DO statement

Optionally, DOWNTO may be used instead of TO.

When using this type of repetition statement, the number of times the
loop will be executed becomes fixed at the time that the FOR statement
is entered. First, the counter variable (I in our example) is assigned the
‘initial value’. Then, before each execution of the statement or com-
pound statement in the loop, the counter variable is tested to see if it is
greater than (or less than, with DOWNTO) the final value. If this condi-
tion is true, execution of the loop is terminated. After each execution of
the loop, the counter variable is incremented by 1, or decremented by 1
if DOWNTO is used.

The syntax diagram for the FOR statement is presented in Figure 6.8.

expression statement

Figure 6.8: FOR Syntax

84

CONTROL STRUCTURES

Here is an example of the FOR statement used in an AVERAGE pro-
gram:)

PROGRAM AVERAGE2(INPUT,OUTPUT);
VAR SUM,AVERAGE : REAL;
I,MAX,SUM : INTEGER;
BEGIN {For typographical reasons, no indentation is used after BEGIN}
READLN(MAX);
SUM := 0;
FOR | := 1 TO MAX DO
BEGIN
SUM := SUM + | {This BEGIN-END pair is optional}
END;
AVERAGE : = SUM / MAX;
WRITELN(‘'THE AVERAGE OF THE FIRST’, MAX, ‘"NUMBERS |S’, AVERAGE)
END. (* AVERAGE2 *)

Figure 6.9: AVERAGE Program—Version 2

A comparison of this program to the one in Figure 6.7 shows that this
program has been significantly shortened. In the program in Figure 6.9,
the FOR statement performs the initialization and automatic incremen-
ting of | (called NUMBER in the program in Figure 6.7), and specifies the
end of the loop test (when | reaches the values MAX).

Many program loops are implemented with this type of counter or
control variable (I in the example above). This facility is important and
should be thoroughly understood. However, the following restrictions
apply to this statement:

1. The control variable (I, in our example) may be used for com-
putations within the loop (as we have done). However, its value
may not be modified within the loop. For example, it would be il-
legal to write | := 4 within the loop itself.

2. Neither the starting value nor the ending value for the control
variable may be changed within the loop. Further, the control
variable, the start value and the end value must all be of the same
type. They are usually integers and may be any scalar type but
real.

3. The FOR statement will not have any effect if the start value is
greater than the end value (less than in the case of a DOWNTO)
because the test for completion is made prior to each execution
of the loop.

3

INTRODUCTION TO PASCAL

85

The value of the control variable (1 in our example) is undefined after a
normal exit from the loop. For example, one should not write:

J:=1+1;
after the loop, since the value of | is undefined.

NESTED LOOPS

It is entirely legal to have a loop appearing as part of a statement
within another loop. A loop embedded within another loop is called a
nested loop. Any number of loops may be embedded within a loop. For
example, Figure 6.10 displays a program that will print the multiplica-
tion table for the first N integers to be multiplied by integers from 1 to M:

PROGRAM MULTABLE(INPUT,OUTPUT);
VAR I,J,K,M,N, : INTEGER;
NUMBER : REAL;
BEGIN
READLN(M,N);
FOR|:= 1 TO M DO

BEGIN

WRITELN;

FOR J:= 1 TO N DO
BEGIN
K:=J*I;
WRITELN(J,” X*,1,"=",K)
END

END (* FOR *)
END. (* MULTABLE *)

Figure 6.10: MULTIPLICATION TABLE Program

Looking at this program in more detail, M and N are read at the
keyboard:

READLN(M,N);
The FOR loop is then executed M times:

FORI|:= 1 TO M DO

INTRODUCTION TO PASCAL

87

However, each of the three loop statements has restrictions previously
described which may make it unsuitable in specific cases. Here are sum-
maries of the three loop statements.

The REPEAT statement always executes the associated statement(s) at
least once. This statement should not be used if this action could cause a
problem (for example, if a division by zero, or some other meaningless
case could occur).

The REPEAT statement tests at the end of the loop, therefore it may be
used to test for conditions that have just occurred, such as the value of a
variable read or computed within the loop.

The WHILE statement tests for the specified condition before ex-
ecuting the loop. The statement(s) within the loop may not be executed
at all. The WHILE statement may also test for conditions that may have
just occurred within the loop. However, these conditions will have oc-
curred within the prior loop iteration.

The FOR statement executes for a set number of times. The number of
times it executes may not be altered within the loop. The FOR statement
is efficient, as it results in fewer instructions and it automatically in-
crements or decrements the counter variable. However, the FOR state-
ment does not test for a condition.

CONDITIONAL STATEMENTS

We have now learned how to conveniently execute loops. However,
we require more facilities than those already described. In particular,
we need the capability to execute one statement if a condition is true,
and another statement if the condition is not (in the case of a binary
choice). Another useful facility involves a case in which a variable may
have more than two values (such as the set of values 123 45 6) and we
need to execute only one out of six statements, depending upon the
value of the variable. Both of these conditional statements are provided
in Pascal. They are called the IF statement and the CASE statement. IF is
used for a binary choice. CASE is used for an n-ary choice, when n is
greater than 2.

Binary Choice: The IF Statement
A simple example of the IF statement is:
IF NUMBER > 10 THEN WRITELN("NUMBER > 10")

The formal syntax for the IF statement is shown in Figure 6.11.

CONTROL STRUCTURES

statement 2

Figure 6.11: IF Syntax

The IF clause is used in the case of a binary (two-possibilities) choice.
The expression tested must be Boolean, i.e., evaluate to either TRUE or
FALSE. The IF statement may take two forms:

IF Boolean expression THEN statement
ELSE statement

or
IF Boolean expression THEN statement

The ELSE clause is optional. The IF-THEN-ELSE statement is illustrated in
Figure 6.12 by means of a flowchart representation.

Boolean

condition

THEN § y ELSE

statement 1 statement 2

Figure 6.12: IF-THEN-ELSE Flowchart

Figure 6.12 shows that if the specified Boolean expression after the IF
is true, then statement 1 will be executed. If the condition is not true,
then statement 2 will be executed. However, the ELSE clause is op-
tional.

To help us better understand the IF statement let us consider another
example. We will type numbers at the keyboard and count those

INTRODUCTION TO PASCAL 89

numbers greater than 10. This program will stop when we type 0 at the
keyboard. Here is the program:

PROGRAM COUNT(INPUT,OUTPUT);
VAR COUNT,NUMBER : INTEGER;
BEGIN
COUNT := 0;
REPEAT
READLN(NUMBER);
IF NUMBER > 10 THEN COUNT := COUNT + 1
UNTIL NUMBER = 0;
WRITELN("NUMBERS > 10 :*, COUNT)
END.

Figure 6.13: Program To COUNT NUMBERS

In this simple example, we have omitted the ELSE clause which was not
required.
This program reads a NUMBER at the keyboard:

READLN(NUMBER);

If this NUMBER is greater than 10, COUNT is incremented by 1. Other-
wise nothing happens.

IF NUMBER > 10 THEN COUNT = COUNT + 1
This action is REPEATed until a 0 is typed in:
UNTIL NUMBER = 0;
Then the program prints the value of COUNT and stops:
WRITELN(’NUMBERS > 10 :/,COUNT)

In contrast with the preceding loop statements, the IF statement does
not cause execution of a loop. The IF statement simply tests for a condi-
tion. If this condition is true, the IF statement causes the execution of
the statement that follows THEN; this statement is executed once.

If the condition is false, the statement that follows the ELSE is ex-
ecuted. If there is no ELSE, nothing happens, and the next statement in
the program is executed.

90

CONTROL STRUCTURES

In order to specify the test conditions, a complex Boolean expression
may be used. For example, let us write a program that will generate a
diagnostic whenever we type an integer number smaller than 50 and
greater than 60. This is called a filter program. This filter accepts only
those integer numbers whose values are between 50 and 60 inclusive.

PROGRAM FILTER(INPUT,OUTPUT);
VAR NUMBER : INTEGER;
BEGIN
REPEAT
READLN(NUMBER);
IF (NUMBER < 50) OR (NUMBER > 60) THEN
WRITELN('ILLEGAL NUMBER’)
UNTIL NUMBER = 0
END.

Figure 6.14: A FILTER Program

This program terminates whenever a 0 is typed at the keyboard.
If we review this program in more detail, we see that the condition
specified after the IF is:

(NUMBER < 50) OR (NUMBER > 60)
If NUMBER is equal to 53, then

NUMBER < 50 is FALSE
and NUMBER > 60 is FALSE

The resulting Boolean expression
(NUMBER < 50) OR (NUMBER > 60)

is FALSE and the IF statement has no effect.
Whenever NUMBER is less than 50 or greater than 60, the IF is ex-
ecuted and a message is printed: 'ILLEGAL NUMBER'.

INTRODUCTION TO PASCAL

91

Nested Tests

Any type of statement may be used after a THEN or after an ELSE. In a
case in which a sequence of binary choices is required, an IF statement
may be used within another IF statement.

For example:

IF VOLTAGE > 2 THEN
IF VOLTAGE > 20 THEN
IF VOLTAGE > 100 THEN
WRITELN(‘VOLTAGE OUT OF RANGE’)
ELSE SCALE : = HIGH
ELSE SCALE : = NORMAL
ELSE WRITELN("VOLTAGE BELOW 2V’);

Figure 6.15: VOLTAGE TEST Segment

The program segment above will set the proper SCALE for the
VOLTAGE value:

— A voltage greater than 100V will be out of range.

— A voltage between 20V and 100V will set the SCALE to HIGH (a
constant).

— A voltage between 2V and 20V will set the SCALE to NORMAL (a
constant).

— A voltage less than 2V will also be out of range.

In this example, there are three IF statements that are nested. The use
of nested IF statements corresponds to a binary decision tree. Such a
tree is illustrated in Figure 6.16.

Look at each box in the tree, and see how it corresponds to an
IF..THEN..ELSE clause in the program. Whenever more than two alter-
natives exist, another statement may be considered; this is the CASE
statement.

MULTIPLE CHOICE: CASE STATEMENT

The CASE statement is provided in Pascal for situations in which the
number of alternatives available is greater than two. Depending upon
the value of an expression which may take n different values, one of the
n statements will be executed.

92

CONTROL STRUCTURES

VOLTAGE BELOW 2V
(VOLTAGE € 2)

YES

SCALE : = NORMAL
(2 < VOLTAGE < 20)

NO YES

VOLTAGE > 100?

SCALE : = HIGH VOLTAGE OUT OF RANGE
(20 < VOLTAGE < 100) (100 < VOLTAGE)

Figure 6.16: A Binary Decision Tree
Here is an example of a CASE statement:

CASE MONTH OF
1: WRITELN("JANUARY");
2: WRITELN('FEBRUARY");
3: WRITELN(’MARCH");

12: WRITELN(’'DECEMBER’)
END;

The formal syntax of the CASE instruction is shown in Figure 6.17.

The expression following the CASE must evaluate to a non-real scalar
type. For example, we could not directly test for (VOLTAGE > 2) with
this expression, as we did in the previous examples, because we would
be testing for a range of numbers.

As long as the expression following the CASE evaluates to a constant
listed in the statement (called a CASE label), the corresponding state-
ment will be executed.

INTRODUCTION TO PASCAL

93

@~ e

Figure 6.17: CASE Syntax

If n (constant : statement) pairs are listed, this statement provides an
n-ary choice.

Figure 6.18 shows a program example using the CASE statement. It
will read a number representing a month, then spell it out.

A number is typed at the keyboard. If this number is greater than 12 or
less than 1, it is rejected and a message is printed: (ERROR - NO SUCH
MONTH?), since there is no month less than 1 or greater than 12. Other-
wise, if the month number typed was 1, then 'JANUARY’ will' be
printed; if the number typed was 2, then 'FEBRUARY’ will be printed,
etc.

PROGRAM SPELLMONTH(INPUT,OUTPUT);
VAR MONTH : INTEGER;
BEGIN
WRITELN('TYPE MONTH NUMBER');
READLN(MONTH);
IF (MONTH > 12) OR (MONTH < 1) THEN WRITELN('ERROR - NO SUCH MONTH)
ELSE
CASE MONTH OF
1: WRITELN("JANUARY");
2: WRITELN(’FEBRUARY");
3: WRITELN("MARCH’);

12: WRITELN('DECEMBER’)
END (* CASE *)
END. (* SPELLMONTH *)

Figure 6.18: Program For SPELLING THE MONTH

94

CONTROL STRUCTURES

This example shows that, depending upon the value of the number
MONTH, one of 13 events will occur:

— One of the twelve months of the year will be printed;
— A message will be printed if the value of MONTH is incorrect.

This example can be called a 13-way branch. Formally, the CASE
statement is a multi-way branch. It allows the selective execution of a
statement or group of statements, depending upon the value of the ex-
pression following the CASE. If the expression following the CASE ever
evaluates to a value not specified in the constants following the CASE, it
is an error, and the program fails. Remember that the CASE statement
must be terminated by an END. There is no matching BEGIN.

The CASE labels may be any non-real scalar type. More than one label
may be associated with a statement. For example, here is a CASE state-
ment where the labels are characters and are grouped:

CASE SYMBOL OF

"A’: WRITELN("FOUND A’);

‘B’, ‘C’, ‘D’: WRITELN("FOUND B,C,D’);
‘E’, 'F’, ‘G’: WRITELN(’FOUND E,F,G’);
"*’: WRITELN("FOUND *")

END;

CASE Summary

The CASE statement is an n-way branch. This branch is symbolically il-
lustrated in Figure 6.19.

The CASE statement is generally used when a variable or an expres-
sion may evaluate to one of n values. This value may be any legal non-
real scalar, such as character, integer, Boolean.

If computer time is restricted, and one particular value has a much
higher probability of coming up than the others, it is usually more effi-
cient to use an IF statement first, so that this value is tested for, before
other alternatives are considered.

UNCONDITIONAL BRANCH: GOTO

We now know about the IF and CASE statements, and how to use
them to perform conditional branching, i.e., to execute selected
statements depending upon the value of an expression. This branching
does not alter the sequential execution of the program as a whole.
There are times in a program, however, when it may be desirable to skip
over a portion of the program, jump out of a loop, or go back to a
specific point. This action is called an unconditional branch, and is ac-
complished by using a GOTO sta<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>