

Cllvcr Part No. 2232346·0001

UCSD p-System Program Development
2232399-0001
Original Issue: 15 April 1983

Copyright © 1978 by the
Regents of the University of California (San Diego)

All rights reserved.

All new material copyright © 1979, 1980, 1981, 1983
by SofTech Microsystems, Incorporated

All rights reserved.

All new material copyright © 1983
by Texas Instruments Incorporated

All Rights Reserved.

No part of this work may be reproduced in any form or by any
means or used to make a derivative work (such as a transla-)
tion, transformation, or adaptation) without the permission in
writing of SofTech Microsystems, Inc.

UCSD, UCSD Pascal, and UCSD p-System are all trademarks
of the Regents of the University of California. Use thereof in
conjunction with any goods or services is authorized by specific
license only, and any unauthorized use is contrary to the laws
of the State of California.

Preface

This book is a reference manual for the UCSD p-System™* on
the Texas Instruments Professional Computer. It describes the
p-System facilities which enable you to develop programs. It is
designed for a processing professional who is familiar with the
p-System. The UCSD Pascal™* programming language is not
described in this manual.

The following books and manuals may also be of interest to
you. They are available from SofI'ech Microsystems.

UCSD Pascal Reference Manual
UCSD p-System 8086 Assembler Reference Manual
UCSD p-System Internal Architecture Reference Manual
UCSD p-System Optional Products Reference Manual
UCSD p-System FORTRAN-77 Reference Manual
UCSD p-System BASIC Reference Manual
UCSD p-System Assemblers Reference Manual
UCSD p-System 8086/88/87 Assembler Reference Manual
UCSD p-System Adaptable System Installation Manual

DISCLAIMER

This document and the software it describes are subject to
change without notice. No warranty expressed or implied covers
their use. Neither the manufacturer nor the seller is responsible
nor liable for any consequences of their use.

* UCSD p·System and UCSD Pascal are trademarks of the Regents of the
University of California.

iii/iv

Contents

Preface .. iii

1 Introduction 1-1
How to Use This Manual ... 1-1
Background 1-2
Design Philosophy 1-3

2 Compiling Programs and Units 2-1
Introduction 2-3
U sing the Compiler ... 2-3
Segments, Units, and Libraries 2-27
General Tactics 2-32

3 User Interface 3-1
Introduction 3-3
Run-Time Application Facilities 3-3
The Screen Control Unit ... 3-6
Error Handler Unit 3-14
The Command I/O Unit 3-17
Simple Color Interface 3-20
Turtlegraphics 3-22

4 File Management Units 4-1
Introduction 4-3
Interface Sections 4-4
Directory Information 4-10
Wild Cards (WILD) 4-49
System Information (SYS.INFO) 4-57
File Information (FILE.INFO) 4-61
Time Date Unit 4-63

v

5 Debugging and Analysis 5-1
Introduction 5-3
U sing the Debugger 5-3
Symbolic Debugging 5-12
Summary of the Commands .. . 5-17

6 Utilities 6-1
Introduction 6-3
Decode 6-3
The Library Utility 6-12
Native Code Generator 6-17
Patch 6-21
Print Spooling 6-28
REALCONV Utility 6-29
XREF - the Cross-Referencer 6-31

Appendixes

A Special Keys

B Execution Errors

C I/O Results

D Device Number Assignments

E ASCII Codes

F Keyboard Mapping

G Pascal Compiler Syntax Errors

HPascal Compiler Back-end Errors

vi

1

Introduction

HOW TO USE THIS MANUAL

This book is a reference manual for use with the UCSD p-System
on the Texas Instruments Professional Computer. It describes
the p-System facilities which enable you to develop programs.

Chapter 2, Compiling Programs and Units, covers the Pascal
compiler. The UCSD Pascal programming language is not cov
ered in this manual. You should see the UCSD Pascal reference
manual, TI Part Number 2232401-0001, if you are interested in a
thorough description of the language. This chapter also describes
units, segments, and libraries. These facilities are used when you
separately compile program modules. Using them, you can com
pile and run much larger programs than you would otherwise be
able to within a given computer's memory and disk space
limitations.

Chapter 3, User Interface, describes several p-System facilities
that can assist your programs in presenting a clean and portable
user interface. For example, the p-System can be completely hid
den underneath your application's own environment. Programs
can be chained together and called from a simple menu driver
that appears when a disk is bootstrapped. Whether or not you
use this approach, you may wish to take advantage of screen
handling and error interception facilities described in this
chapter.

Chapter 4, File Management Units, covers the file management
units. These allow your programs to manipulate disk files in a
similar fashion to the filer. For example, files can be listed and
removed, volumes can be crunched, and so forth.

1-1

Chapter 5, Debugging and Analysis, covers the debugger and the
performance monitor units. The debugger is a very powerful tool
for finding and correcting errors that might exist in programs
you write. The performance monitor allows you to accumulate
statistical information concerning various performance-related
issues. Many of the utilities described in Chapter 6 are also valu-
able as program debugging and analysis aids. '

Chapter 6, Utilities Programs, describes several utility programs
that are generally useful. Most of them are specifically used
during program development.

BACKGROUND

In June 1979, SofTech Microsystems in San Diego, began to
license, support, maintain, and develop the p-System. The result
ing effort to build the world's best small computer environment
for executing and developing applications has dramatically in-
creased the growth and use of the p-System. The first p-System ~
ran on a 16-bit microprocessor. Today, the p-System runs on
8-bit, 16-bit, and 32-bit machinespincluding the Z80·DA1

, 80801
8085, 8086, 6502, 6809, 68000, 9900, PDP-IFT2, LSI-IF"'2, and
VAXTM2.

The p-System began as the solution to a problem. The University
of California at San Diego needed interactive access to a high
level language for a computer science course. In late 1974, Ken
neth L. Bowles began directing the development of the solution
to that problem: the p-System. He played a principal role in the
early development of the software.

In the summer of 1977, a few off-campus users began running a
version of the p-System on a PDP-ll. When a version for the
8080 and the Z80 began operating in early 1978, outside interest
increased until a description of the p-System in Byte Magazine
drew over one thousand inquiries.

I Trademark of Zilog Incorporated.

2 Trademark of Digital Equipment Incorporated.

1-2

As interest grew, the demand for the p-System could not be met
within the available resources of the project. SofI'ech Microsys
terns was chosen to support and develop the p-System because of
its reputation for quality, high technology, and language design
and implementations.

Now the p-System is available on the Texas Instruments Profes
sional Computer.

DESIGN PHILOSOPHY

The development team, many of whom continued their efforts on
behalf of the system at SofI'ech Microsystems, decided to use
stand-alone, personal computers as the hardware foundation for
the p-System rather than large, time-sharing computers. They
chose Pascal for the programming language because it could
serve in two capacities: the language for the course and the sys
tem software implementation language.

The development team had three primary design concerns:

• The user interface must be oriented specifically to the nov
ice, but must be acceptable to the expert.

• The implementation must fit into personal, stand-alone
machines (64K bytes of memory, standard floppy disks, and
a display unit).

• The implementation must provide a portable software envi
ronment where code files (including the operating system)
can be moved intact to a new microcomputer. In this way,
application programs written for one microcomputer can
run on another microcomputer without recompilation.

The current design philosophy at SofI'ech Microsystems, where
the p-System continues to evolve, is basically the same as the
original philosophy.

1-3

U ser-Friendly

The p-System continuously identifies its current mode
and the options available to you in that mode. This is
accomplished by using menus, displays, and prompts.
You can select an option from a menu by pressing a
single-character activity. The system's displays then
guide your interactions with the computer. As you gain
more experience, you can ignore the continuous status
information-unless it is needed.

Portability

1-4

The p-System is more portable than any other microcom
puter system. It protects your software investments
without restricting hardware options. The p-System does
this by compiling programs into p-code-rather than
native machine language-thus, allowing these code files
to be executed on any microcomputer that runs the
UCSD p-System.

2

Compiling Programs and Units

Introduction 2-3

Using the Compiler 2-3

Syntax Errors 2-6
Compiled Listings 2-7
Compiler Options 2-11

$B - Begin Conditional Compilation 2-12
$C - Copyright Field 2-13
$D - Conditional Compilation Flag 2-13
$D - Symbolic Debugger 2-13
$E - End Conditional Compilation 2-13
$1 - I/O Check Option 2-13
$1 - Include File 2-14
$L - Compiled Listing 2-15
$N - Native Code Generation 2-16
$P - Page and Pagination 2-16
$Q - Quiet 2-17
$R - Range Checking 2-17
$R - Real Size Directive 2-17
$T - Title 2-18
$U - Use Library 2-18
$U - User Program 2-19

Conditional Compilation 2-19
Selective U ses 2-22
Segments, Units, and Libraries 2-27

Segmenting a Program 2-27
Separate Compilation - Units ... 2-28
Libraries 2-29

General Tactics 2-32

2-1/2-2

INTRODUCTION

This chapter is principally concerned with the UCSD Pascal
compiler on the Texas Instruments Professional Computer. The
UCSD Pascal programming language is not covered here. If you
are interested in a detailed description of UCSD Pascal, consult
the UCSD Pascal reference manual.

Separate compilation is also covered in this chapter. Specifically,
the UCSD Pascal unit construct, program segmentation, and
code file libraries are addressed.

USING THE COMPILER

The compiler takes a text file as input and generates a machine
portable code file as output. The generated code file contains p
code, which is executed by the p-System's p-machine emulator.
This emulator is written in 8086 assembly language and runs
directly on the Texas Instruments Professional Computer 's hard
ware.

You can start the compiler by selecting the C(ompile or R(un
activity of the command menu. If a work file exists, it is com
piled. Otherwise, you are prompted for a text file to compile, like
this:

Comp; le what text? _

Enter the name of the text file, but do not include the. TEXT suf
fix (which is assumed). Next, you are asked:

To what codef; le? _

Here, you should enter the name of the code file that you want the
compiler to produce. Do not include the . CODE suffix (which,
once again, is assumed). If you simply press the RETURN key,
the code file *SYSTEM.WRKCODE is produced. The next
prompt is:

Output f; le for comp; led l; st; ng ? «c r> for none)

2-3

This allows you to indicate where you want the compiled listing
to be sent. You can respond with a file name, with a communica
tions volume such as PRINTER: or CONSOLE :, or simply by
pressing the RETURN key. When you enter a file name, the list
ing is placed in the file . You can use the suffix. TEXT, but it is
always appended if you do not. If you specify a communications
volume, the listing is sent there (where it is printed, displayed, or
transmitted). When you simply press the RETURN key, no list
ing is produced. If you wish to exit the compiler, rather than
respond to either the code file name prompt or the listing destina
tion prompt, press the ESC key followed by the RETURN key.

The $L Pascal compiler option can also create a compiled listing,
as described later in this chapter. If you indicate a file or commu
nications volume in response to this prompt, however, the compi
ler option is overridden. (You should note that . TEXT is not
automatically appended with the $L option as it is with this
prompt.)

While the compiler is running, it displays a report of its progress
on the screen in this manner:

2-4

Pascal campi ler - release level VERSION
< 0> •••••••••••••••••••
INITIALIZE
< 19>•................
AROUTINE
< 61> ..•....................................
< 111>
MYPROG
< 119>

237 lines campi led

INITIALI •
MYPROG ••

During the first pass, the compiler displays the name of each rou
tine. In this example, INITIALI, AROUTINE, and MYPROG
are the routines. The numbers enclosed within angle brackets,
< > , are the current line numbers and each dot on the screen rep
resents one source line compiled.

During the second pass, the names displayed are segments. In
the example, MYPROG is the program segment and INITIALI
is a segment routine. Here the dots represent one routine within
the segment. MYPROG contains both itself and AROUTINE.

You can suppress this output if you want by using the $Q compi
ler option, described later.

If the compilation is successful, that is, if no compilation errors
are detected, the compiler creates a code file. This file is called
*SYSTEM. WRK.CODE if you are using work files or if you press
the RETURN key in response to the compiler's Tow hat cod e
f i L e? prompt. Otherwise, it is given the name that you specify
in response to that prompt.

When you select R(un (instead of C(ompile), the resulting code file
is automatically executed. If you have a work code file, or if you
have just compiled a program, R(un simply executes it.

2-5

Syntax Errors

2-6

If your program text does not conform to the rules of the
Pascal programming language, the compiler issues a syn
tax error. When this happens, the text where the error
occurred is displayed, along with an error number or mes
sage. Here are two examples:

MY FIRST LI NE OF TEXT <--
'PROGRAM' or 'UNIT' expected
Lin e 1
Type<sp>tocontinue, <esc>toterminate, or 'e' toedit

MY FIRST LI NE OF TEXT <---
Error #405
Line 1
Type<sp>tocontinue, <esc>toterminate, or ' e' toedit

This is the same error displayed twice (the first line of a
program is incorrect). In the first case, the error message
is displayed. In the second case, the error number is
displayed. You only receive the error message if the file
*SYSTEM.SYNTAX is available. If
*SYSTEM.SYNT AX is not present, you need to look up
the error number in the appropriate appendix to this
manual.

After each syntax error, a message like one of these is
displayed and the compiler gives you the option of press
ing the space bar to continue the compilation, the ESC
key to terminate it, or E to enter the editor.

You can press the space bar for every syntax error in the
program if you wish. In this way, you can usually dis
cover all of the errors that exist. (However, some syntax
errors can confuse the compiler and hide other syntax
errors.) A code file is never produced if syntax errors are
found but a compiled listing can be produced. You can use
such a listing to keep track of the errors so that you can
correct them all at once.

If you elect to press E after a syntax error, the compila
tion is terminated (as it is with the ESC key). However,
you can now fix the error immediately because the editor
is automatically called. If the file that you are compiling
is a work file, it is read into your work space. If it is not a
work file, you are asked to specify which file you want to
edit (in the editor's normal fashion). In either case, when
the file is read into the work space, the cursor is placed at
the exact spot where the error was detected. The error
message or number is redisplayed and you must press the
space bar to begin editing so that you can fix the problem.
When a syntax error occurs in an include file (see the $1
compiler option), you must be sure to specify that file cor
rectly as you enter the editor. You are informed of the
name of the include file after the Line # portion of the
syntax error message.

If both the $Q and $L compiler options are in effect, the
compilation continues and the syntax error is only
reported in the listing file. In this case, the screen remains
undisturbed by syntax errors.

Compiled Listings

The compiler may optionally produce a listing of the
compiled source. This listing contains your text along
with information about the compilation. Compiled list
ings are very useful for reference as well as analysis and
debugging purposes.

2-7

2-8

In order to produce a compiled listing, you can use the
compiler's menu for a listing file which is described
above. Alternatively, you can use the $L compiler option
which is described in the following section entitled compi
ler options.

Here is the entire compiled listing for a very simple
program:

Pascal Compiler VERSION 1 183 Page 1

1 0 O:d 1 {SL list.text}
2 2 1:d 1 Program Compo Listing Example:
3 2 1:0 0 Begin
4 2 1:0 0 {
5 2 1:0 0 This is an example listing of
6 2 1:0 0 an empty program.
7 2 1:0 0
8 2 :0 0 End.

End of Compilation.

Here is a sample portion of a more complex listing:

393 10 12:d 1 Procedure iocheck:
{ commented out ';' 1 {;
: commented out ':' 1 This procedure will check the i 0 operations of the
{ commented out ':' 1 index as it is in the process of rebuilding
397 10 12:d 1 }
398 10 12:0 0 Begin
399 10 12: 1 0 If ioresult < > 0 Then
400 10 12:2
401 10 12:3
402 10 12:3
403 10 12:2
404 10 12:0
405 10 12:0
406 10 13:d

6 Begin
6 pI ":= 'index 1.0 failure::

32 promptlerrorlinel:
38 End: { if ioresult < > 0 then}
38 End: { iocheck 1
50

1 Procedure dropindex(position: isamcoveragel;

In those lines that are not marked as commented out
(which is intended to warn you that a comment may have
accidentally eliminated some Pascal code), the numbers
that precede a source line are:

• The line number. For example, 397 III the listing
above.

• The Pascal segment number. This entire example is
part of segment number 10.

• The routine number followed by a colon and the lex
level. In the example, procedure iocheck is routine
number 12 and procedure dropindex is routine 13.
The lex level indicates how deeply the text is nested
within Pascal begin-end pairs.

• The number of bytes of data or code storage which
the routine requires at that point. For example, the
IF statement, line 399, requires 6 bytes of p-code.
The entire procedure iocheck requires 50 bytes of
p-code.

Lines which contain declarations (variables, constants,
and so forth) show the letter d following the routine num
ber. In the listing above, lines 393 and 397 are examples
of this.

When the module that you are compiling uses a unit, the
interface section of that unit appears in the compiled list
ing with the letter u where the d normally appears. Also,
the additional line USING < UNITNAME> appears in
the heading to make it easier for you to distinguish inter
face sections from the text that you are specifically com
piling.

2-9

2-10

Here is a portion of a compiled listing that shows syntax
errors:

596 10 1:5 228
---> Error #104

597 10 1:5 239
598 10 1:5 239
599 10 1:5 239
600 10 1:5 242
601 10 1:5 242
602 10 1:6 242

---> Error #104
previous error - line 596

607 10 1:6 271

lastpageitem : = min{lastentry,lastentry);

{ loop through the page}
PageInx: = 0:
{ function returns next greater}
Repeat {until found or IPagelnx > lastentry)}

AssertlPage Inx< lastpage item.'bad Page Inx'):

found:= Idata[[PageInxl_key > key);

This shows two instances of error 104. This particular
error indicates that an undeclared identifier was
found-lastpageitem is the problem in both cases. An
actual message indicating undeclared identifier would
have been listed if the file *SYSTEM.SYNTAX had been
available.

Error messages indicate the position of the previous syn
tax error. In this example, line 596 contains the first syn
tax error and line 602, which contains the second,
references line 596 as the previous syntax error.

Compiler Options

You may direct some of the compiler's actions by the use
of compiler options embedded in the source code. Compi
ler options are a set of commands that may appear within
pseudo-comments. A pseudo-comment is like any other
Pascal comment (it is surrounded by (* and *), or by { and
}). However, a dollar sign immediately follows the left
hand delimiter, for example:

{$I+}
(*$U MOLD.CODE*)
{SI+,S-,L+}
(*$R"*)

There are two kinds of compiler options: switch options
and string options. A switch option is a letter followed by
a +, -, or 1\ . A string option is a letter followed by a
string. (In the examples above, the second is a string
option; the others are switch options.) A pseudo-comment
can contain any number of switch options (separated by
commas), and zero or one string options. If a string option
is present In a pseudo-comment, it must be the last
option. The string is delimited by the option letter and
the end of the comment.

If the pseudo-comment uses (* and *), the string in a
string option cannot contain an asterisk (*).

Some options can appear anywhere within the source
text. Others must appear at the beginning of the file (be
fore the reserved word PROG RAM or UNIT).

Switch options are either toggles or stack options. If a
switch option is a toggle, a plus (+) turns it on, and a
minus (-) turns it off. The options I and R are stack
options, as are the conditional compilation flags.

2-11

2-12

With each stack option, the current state (either + or -)
is saved on the top of a stack (up to 15 states deep). The
stack may be popped by a caret 1\ (thus reenabling the
previous state of that option). If the stack is pushed
deeper than 15 states, the bottom state of the stack is
lost. If the stack is popped when it is empty, the value is
always negative (-).
{SI - } ... current value is '- - no 110 checking

{$I+} ... current value is '+'

{SI"} current value is ' - ' again

{SI"} current value is '+'. because this was the default
{51"} current value is '-'. because stack is now empty

The individual compiler options are described below in
alphabetical order. If you do not use any compiler
options, their default values will be in effect. Here are the
default values for the compiler options:

{$R+,I+ .L- ,U+,P+}

These remain in effect unless you override them.

The $Q option defaults to Q- if HAS SLOW
TERMINAL is false and Q+ if HAS SLOW
TERMINAL is true. (HAS SLOW TERMINAL is a
data item in SYSTEM.MISCINFO which indicates
whether or not you have a hard-copy terminal or a dis
play unit).

Conditional compilation is also controlled by compile
time options as described below.

$B - Begin Conditional Compilation

B is a string option. It starts compilations of a
section of conditionally compiled source code. See
the section on conditional compilation, below.

$C - Copyright Field

C is a string option. It places the string directly
into the copyright field of the code file's segment
dictionary. The purpose of this is to have a copy
right notice embedded in the code file.

$D - Conditional Compilation Flag

D is a string option. It is used to declare or alter
the value of a conditional compilation flag. See
the following section on conditional compilation.

$D - Symbolic Debugger

D is a toggle option. $D+ turns on the symbolic
debugging information. $D -, which is the
default, turns this off. For more information see
Chapter 5 on the Debugger.

$E - End Conditional Compilation

E is a string option. It ends a section of condition
ally compiled source code.

$1 - I/O Check Option

There are two options named by I. The first is a
stack switch option (IOCHECK).

1+, which is the default, instructs the compiler to
generate code after each I/O statement in a pro
gram. This code verifies, at run time, that the I/O
operation was successful. If the operation was not
successful, the program terminates with a run
time error.

I - instructs the compiler not to generate any I/O
checking code. In the case of an unsuccessful I/O
operation, the program continues.

2-13

2-14

When you use the I - option, your programs
should specifically test IORESULT (an intrinsic
p-System function) when there is the chance of an
I/O failure. If I - is used and you do not test
IORESULT, the effects of an I/O error are unpre
dictable.

During program development you should proba
bly use 1+. When your program is thoroughly
debugged, you may wish to use I - since less
memory space is required without the I/O check
ing code. Also, you may wish to intercept I/O
errors in your program. (For example, the end
user may enter something incorrect from the
keyboard. Rather than terminating with an I/O
error, your program may prompt the user to cor
rect the problem and try again.)

$1 - Include File

This is a string option. The string (delimited by
the letter I and the end of the comment) is inter
preted as the name of a file. If that file can be
found, it is included in the source file and com
piled.

{$I PROG2l

This includes the file PROG2.TEXT in the pro
gram's source.

If the initial attempt to open the include file fails,
the compiler concatenates. TEXT to the file name
and tries again. If this second attempt fails, or an
I/O error occurs while reading the include file, the
compiler responds with a fatal syntax error.

In order that included source can carry its own
declarations, an include file may contain CaNST,
TYPE, and V AR declarations, optionally fol
lowed by routine declarations. If this is the case,
then the {$I...} comment must precede any rou
tine declarations in the main program. Otherwise,
the include file must follow normal Pascal order
ing.

Include files can be nested to a maximum of three
files deep.

Note that if a file name begins with a plus (+) or a
minus (-), a blank must be inserted between the
letter I and the string. For example:

(*$1 + PROG2*)

$L - Compiled Listing

You may use $L either as a toggle switch option
or a string option. When used as a toggle, it turns
the listing on or off at that point in the source
text. When used as a string option, it indicates
the name of the listing file.

Here are two examples of $L with a string option:

(*$1. LlST.TEXT*)
(*$1. PRINTER:*)

The first example indicates that the compiled list
ing is to be saved on disk as the file LIST.TEXT.
The second example sends the listing to the
printer.

2-15

2-16

When used as a toggle, $L + turns the listing on
and $L- turns it off. Using these options, you
can list only parts of a compilation if you wish.
The default for the toggle is $L- if you have not
named a listing file using the compiler's prompt
or using $L with a string option. The default is
$L+ if you have named a listing file in either of
these ways. No matter which way you name the
listing file, you can switch the listing on or off
using $L+ or $L-.

If you do not specifically name a listing file and
$L+ is in effect, the compiler writes to
*SYSTEM.LST.TEXT.

You should note that listing files that are sent to
disk files can be edited as any other text file,
provided they are created with a . TEXT suffix.
Without the .TEXT suffix, the p-System treats
the listing as a data file. With the $L option,
.TEXT is never appended. However, from the
compiler's prompt for a listing file, .TEXT is
always appended (unless you enter it specifically).

$N - Native Code Generation

This is a toggle switch option. The $N + tells the
compiler to output information to start native
code generation. The $N -, which is the default,
tells the compiler to end code generation.

$P - Page and Pagination

The compiler can place page breaks in the com
piled listing. It does this so that listings sent to
the printer (or listings sent to files and later
T(ransferred to the printer) break across page
boundaries. A form-feed character ASCII FF
(American National Standard Code for Informa
tion Interchange Form Feed) is output every 66
lines if $P+ is in effect (this is the default). If you
do not want this, you should use $P- .

You can specifically cause a page break at any
point in a compiled listing by using the $P option
without a plus or minus sign.

$Q-Quiet

This is used to suppress the compiler's standard
output to the console. $Q+ causes the compiler to
suppress this output and $Q- causes it to
resume outputting status information.

$R - Range Checking

$R is a stack switch option. The default, $R+,
causes the compiler to output code after every
indexed access (for example, to Pascal arrays) to
check that it is within the correct range. This is
called range checking. $R- turns range checking
off.

Programs compiled with the $R- are slightly
smaller and faster since they require less code.
However, if an invalid index occurs or a invalid
assignment is made, the program is not termi
nated with a run-time error. Until a program has
been completely tested, it is suggested that you
compile with the R+ option left on.

$R - Real Size Directive

If $R2 is used the compiler produces a code file
with 2-word real size. If $R4 is used the com
piler produces a code file with 4-word real size.
The Texas Instruments Professional Computer
will default to 4-word real size. If you try to use
2-word real size you will receive error message
17 (Real size mismatch) during execution of the
program.

2-17

2-18

$T - Title

$T is a string option. The string becomes the new
title of pages in the listing file.

$U - Use Library

There are two options indicated by $U. One is a
string option (Use Library). The other, described
below, is a toggle switch option (User Program).

With the Use Library option, the string is inter
preted as a file name. This file should contain
the unit(s) that your program is about to use. If
the file is found, the compiler attempts to locate
the unit(s) that it needs for the subsequent USES
declarations. If a particular unit is not found
there, the compiler looks in
*SYSTEM.LIBRARY.

If a client (program or unit) contains USES decla
rations but no $U option, the compiler looks for
the used units first in the source file, and then in
*SYSTEM.LIBRARY.

Following is an example of a valid USES clause
using the $U option:

USES 1'!'.'ITl.lJ"<IT2.1 Found in *SYSTE\I.LIBRARY :
{SU A.cODE}

UNIT3. I Found in A.CODE :
{SU B.LIBRARY}

U:\ IT4.U:\,IT5; : Found in B.LIBRAHY }

$U - User Program

This option is used to specify whether the compi
lation is a user compilation or a p-System
compilation. If present, it must appear before the
heading (that is, before the reserved word
PROG RAM or UNIT).

When the default $U + is in effect, a user pro
gram is indicated. The $U - option allows system
programmers to compile units with names that
are predeclared in the p-System. These units are
actually part of the p-System, itself. $U - also
sets $R- and $1 -.

In general you should never use this option,
unless you need to compile GOTOXY.

Conditional Compilation

You can conditionally compile portions of the source text.
At the beginning of a program's text you can set a com
pile-time flag that determines whether or not the condi
tionally compiled text will be compiled.

In order to designate a section of text as conditionally
compilable, you must delimit it by the options $B (for
begin) and $E (for end). Both of these options must name
the flag which determines whether the code between
them is compiled. The flag itself is declared by a $D
option at the beginning of the source. $D options can be
used at other locations in the source to change the value
of an existing flag.

2-19

2-20

Here is an example:

{SD DEBUG I {declares DEBUG and sets it TRUE}
PIWGRAM SIMPLr;;

BEG 1;-';

{SB DEBUG} {if DEBUG is~? 'E. this section is compiled}
WRITEL;-';('There is a bug. ');
(SE DEBUG} {this ends the section}

{SB DEBUG-} {if DEBUG is FALSE. this section is compiled}
WRITELN(';-';othing has failed. ');
{$E DEBUG}

END {SIMPLE}.

Each flag in a program must appear in a $D option before
the source heading. The name of a flag follows the rules
for Pascal identifiers. If the flag 's name is followed by a
minus (-), that flag is set false. The flag can be followed
by a plus (+) which sets it true. If no sign is present, a
flag is true. The flag's name can also be followed by a
caret (A) as shown below.

The state of a flag can be changed by a $D option that
appears after the source heading, but the flag must have
first been declared before the heading.

The $B and $E options delimit a section of code to be
conditionally compiled. The $B option can follow the
flag's name with a minus (-), which causes the delimited
code to be compiled if the flag is false. In the absence of a
dash, the code is compiled if the flag is true. The flag 's
name can also be followed by a plus (+) or caret (A); these
are ignored. In a $E option, the flag's name can be fol
lowed by a plus (+), minus (-), or caret (1\); these sym
bols are ignored.

The state of each flag is saved in a stack, just as the state
of a stack switch option is saved. Thus, using a $D option
with a caret (1\) yields the previous value of the flag. Each
flag's stack can be as many as 15 values deep. If a 16th
value is pushed, the bottom of the stack is lost. If an
empty stack is popped with a caret (1\), the value
returned is always false.

If a section of code is not compiled, any pseudo-comments
it may contain are ignored as well.

{$D DEBUG-} {declares DEBUG and sets it FALSE}
PROGRAM SIMPLE;

BEGIN
{$D DEBUG+} {changes DEBUG toTRUE}

{$B DEBUG} {if DEBUG is TRUE, this section is compiled}
WRITELN('There is a bug.');
{$E DEBUG} {this ends the section}

{SD DEBU(;"} i r('SlOres previous \ulue of DEBUG:
{ ... in this case, F' ALSE}

{$B DEBUG-} {if DEBUG is FALSE, this section is compiled}
WRITELN('Nothing has failed. ');
{$E DEBUG}

END {SIMPLE}.

2-21

Selective Uses

2-22

Selective uses allows your programs to choose the items
that you wish to use from a unit's interface section. You
can often take advantage of this to reduce compile-time
space requirements. Also, compilation time can be
reduced. Both of these are especially noticeable when you
are using units with large interface sections from which
you only require a few items. This is because the rest of
the interface section does not need to be compiled.

Also, selective uses is valuable for documentation pur
poses in that you can easily see the specific items that a
client needs from the unit it uses.

The following diagram explains the syntax of selective
uses:

In this diagram, ident can be a constant, type, variable,
or routine (procedure, process, or function). Here is an
example of a selective uses statement:

USES MYUNIT IA CONST, VAR l , V AR2, MY_ ROUTINE):

If a selected declaration is not present in the interface
text, an error results during compilation.

Any constant or type used in a selected declaration must
be included in the selective uses list. For example, if
V AR1 is of type TYPE1, the list above is not acceptable
unless TYPE1 is added (even through TYPE1 may not be
directly required by the client being compiled).

You should list only the name of a routine. No explicit
listing of parameters is needed. However, any types or
constants that the parameters use must be explicitly
included.

Most identifiers must be named explicitly in the identifier
list if they are to be made available to the compiled mod
ule. Identifiers are available implicitly in these situations:

• When an enumerated constant type is explicitly
listed, all the constant identifiers of the enumeration
are implicitly available.

• When a record type is explicitly listed, all its field
names are implicitly available (for example, see the
following listing under unit A,line 12, info-..rec.)

2-23

2-24

Here is an example of selective uses. The first of these
three compiled listings shows unit A, which is selectively
used by units B and C.

Pascal Compiler VERSION 111 /83 Page I

2 I:d unit A:
2 2 I:d interface
3 2 I:d canst
4 2 I:d maxnum=IOOO:
5 2 I :d maxchar=7:
6 2 I :d
7 2 I:d type
8 2 l:d byte=O .255:
9 2 I:d codeblock = packed array

[O .. maxnumJ of byte:
10 2 I:d alpha = packed array

[O .. maxchar] of char:
II 2 I:d ptr~nfo rec= info ree;
12 2 l:d info rec = record
13 2 I:d code:codeblock:
14 2 I:d llink ,rlink:ptr jnfo rec:
15 2 l:d end:
16 2 \:d next =char:
17 2 I:d
18 2 I:d var
19 2 I:d I first.last:byte:
20 2 I:d 3
21 2 I:d 3 function update(var info: ptr info reel

:next:
22 2 l:d
23 2 I:d implementation
24 2 I:d
25 2 I:d I function update:
26 2 2:0 0 begin
27 2 2:1 0 with infoAdo

28 2 2:2 a begin

29 2 2:3 3 llink = rlink :

30 2 2:3 12 if rlink=llink then
31 2 2:4 22 update: ='y '

32 2 2:3 22 else

33 2 2:4 27 update: = 'n ':

34 2 2:2 30 end:
35 2 1:0 0 end:
36 2 1:0 0
37 2 :0 0 end. {unit A}

End of Compilation,

Pascal Compiler VI';RSION 111 /83 Page 2

2 I:d unitB:
2 2 I:d int~rface

3 2 I:d {SU a.code}
4 2 I:d uses a({const} maxchar.

{include for type ALPHA}
5 2 I :d {types} alpha.

{include for variable WHICH}
6 2 I :d byte.

{include for FIRST and LAST}
7 2 I:d {vars } first.

I include for prol' ellA '\GEl
8 2 I :d last.

{include for proc CHA:'I:GE:

Using A
9 2 I:u

12 2 I :u maxchar=7:
15 2 I: u byte=0 .. 255:
17 2 l:u alpha=packed array

10 .. maxcharJ of char:
26 2 I: u I first.iast: byte:
30 2 l:d 3 I:
31 2 I :d
32 2 l:d procedure change(which:a1phal:
33 2 I:d
34 2 I:d implementation
35 2 I:d
36 2 I :d procedure change:
37 2 2:0 0 begin
38 2 2:1 4 ifwhich= ' ' then
39 2 2:2 14 last: = first
40 2 2:1 14 else
41 2 2:2 26 first: = last:
42 2 1:0 () end:
43 2 1:0 ()

44 2 :0 () end: {unit B}
45 2 :0 ()

46 2 :0 0
47 2 1:0 () unitC:
48 2 1:0 0 int~rface

49 2 1:0 () implementation
50 2 1:0 () {$U a.code}
51 2 1:0 () uses a({const! maxnum.

{include for type CODEBLOCK}
52 2 1:0 0 maxchar.

{include for type ALPHA}
53 2 1:0 0 byte.

{include for type CODEBLOCK}
54 2 1:0 0 {type} alpha.

{include for variable MINE]
55 2 1:0 0 info Jec.

{include for PTR I;\IFO REG}

2-25

56 2 1:0 0 ptr info ~rec.

{include for func UPDATE}
57 2 1:0 0 codeblock.

{include for INFO RECI
5R 2 1:0 0 next.

{include for func UPDATE}
Using A

59 2 1:0 0
61 2 I:u maxnum = 1000;
62 2 I:u maxchar=7;
65 2 I:u byte=0 .. 255;
66 2 I:u codeblock = packed array

(O .. maxnumJ of byte;
67 2 I:u alpha = packed array

[O .. maxcharJ of char;
68 2 l:u ptr _ jnfo._ rec- A info_rec:
69 2 l:u info_ xec - record
70 2 I:u code:codeblock;
71 2 l ou llink,rlink:ptr info -.-rec;
72 2 I:u end;
73 2 I:u next=char;
78 2 I:u function update

Ivar info:ptr info recl:next;
79 2 I:u 3
80 2 I:d 3 {func} update).

UsingB
81 2 I:d b;
82 2 I:d

83 2 I:d var
84 2 l :d info:ptr info ree;
85 2 I:d mine:alpha;
86 2 I:d 0
87 2 1:0 0 begin
88 2 1: I 0 newlinfo l:
89 2 1:1 7 newlinfo A .rlink);
90 2 1: 1 16 info A .llink: -ni l:
91 2 1: 1 22 mine: = 'newsystm';
92 2 1:1 30 if updatel in fo)='y' then
93 2 1:239 writelnl'info updated')
94 2 1:1 59 else
95 2 1:261 changelmine):
96 2 :0 0 end.

End of Compilation.

2-26

SEGMENTS, UNITS, AND LIBRARIES

Segments, units, and libraries are three major facilities that help
you manage large programs and effectively use main memory.
These facilities enable very large programs to be developed in a
microsystem environment; in fact, these facilities were used
extensively in developing the system, itself.

Segmenting a Program

An entire program need not be in main memory at run
time. Most programs can be described in terms of a work
ing set of code that is required over a given time period.
For most-if not all-of a program's execution time, the
working set is a subset of the entire program, sometimes
a very small subset. Portions of a program that are not
part of the working set can reside on disk, thus freeing
main memory for other uses.

When the p-System executes a code file, it reads code into
main memory. When the code has finished running, or the
space it occupies is needed for some action having higher
priority, the space it occupies can be overwritten with
new code or new data. Code is swapped into main memory
a segment at a time.

In its simplest form, a code segment includes a main pro
gram and all of its routines. A routine can occupy a seg
ment of its own; this is accomplished by declaring it a
segment routine. Segment routines can be swapped inde
pendently of the main program; declaring a routine a
segment is useful in managing main memory.

Routines that are not part of a program's main working
set are prime candidates for occupying their own seg
ment. Such routines include initialization and wrap-up
procedures and routines that are used only once or only
rarely while a program is executing. Reading a procedure
in from a disk before it is executed takes time. Therefore,
the way that you divide up a program is important.

2-27

UCSD Pascal, FORTRAN, and BASIC use their own
syntax for creating separate segments. Refer to each par
ticular language 's manual for more information on this.

Separate Compilation - Units

2-28

Separate compilation is a technique whereby segments of
a program are compiled separately and subsequently exe
cuted as a coordinated whole.

Many programs are too large to compile within the mem
ory confines of a particular microcomputer. Such pro
grams might comfortably run on the same machine,
especially if they are segmented properly. Compiling
small pieces of a program separately can overcome this
memory problem.

Separate compilation also allows small portions of a pro
gram to be changed without necessarily affecting the rest
of the code which saves time and is less error prone.
Libraries of correct routines can be built up and used in
developing other programs. This capability is important
if a large program is being developed and is invaluable if
the project involves several programmers.

These considerations also apply to assembly language
programs. Large assembly programs (such as p-machine
emulators) can often be more effectively maintained in
several separate pieces. When all these pieces have been
assembled, the L(inker puts them together and installs
the linkages that allow the various pieces to reference
each other and function as a unified whole.

You may also want to reference an assembly language
routine from a Pascal host program. This may be neces
sary for performance reasons (assembly language is
faster than p-code, the output of the compiler) or to pro
vide low-level, machine-dependent or device-dependent
handling.

Using the L(inker, the p-System allows assembly lan
guage routines to be linked with other assembly routines
or into higher-level clients (programs or units). For more
information about this, see the UCSD p-System Assem
bler, TI Part Number 2232402-0001.

In UCSD Pascal, separate compilation is achieved by the
unit construct-a unit being a group of routines and data
structures. The contents of a unit usually relate to some
common application, such as display unit control or data
file handling. A program or another unit may use the rou
tines and data structures of a unit by simply naming it in
a USES declaration. The term host refers to such a pro
gram, and client compilation module refers to a program
or unit that uses another unit. In addition to being a sepa
rately compiled module, a unit is also a code segment, in
that it can be swapped-as a whole-in and out of mem
ory. You should note that it is possible for a unit's source
text to be embedded in the client's source text if you do
not want to compile a unit separately.

A unit consists of two main parts: the interface section,
which can declare constants, types, variables, procedures,
processes, and functions that are public (available to any
client module); and the implementation section (in which
private declarations can be made). These private declara
tions are available only within the unit and not to client
modules.

Pascal, BASIC, and FORTRAN use their own syntax for
separate compilation. (For more information about this,
refer to each language's manual.)

Libraries

This section describes where you may place the code files
that contain units so those units are available at compile
time or run time. Run time availability is described first.

2-29

2-30

There are four places where units can reside when the
client's code is executed:

• Within your code file

• In the SYSTEM. LIBRARY on the system disk

• In a user library

• In the operating system (SYSTEM.P ASCAL)

The operating system units (described in the next chap
ter) are standard code. Do not place units that you write
there. The other three options are available for units that
you write or use.

In order to place a unit directly into a client's code file,
use the Library utility, described in the Utilities chapter.
Once the unit's code and your code are unified like this,
the unit is available at run time.

SYSTEM.LIBRARY generally contains standard units,
such as the long integer package. You can add your units
to this file with the Library utility. If you are not cur
rently using SYSTEM.LIBRARY, you can simply
rename a unit's code file SYSTEM.LIBRARY and place
it on the boot disk. Of course, you can add more files with
the Library utility. All units that reside in
SYSTEM.LIBRARY are available to clients.

A user library is any code file . The name of this code file
must be in a library text file. The standard default library
text file is called USERLIB.TEXT and must be on
the system disk. For example, if you create a
USERLIB.TEXT containing these lines:

DISK2:S0ME.UNITS
·MY,LIB
ANOTHER.CODE

These three code files are designated as user libraries.
You do not have to specify the. CODE here. For example,
the first file may be either DISK2:S0ME.UNITS.CODE
or DISK2:S0ME.UNITS, depending upon which file is
actually found. All three of these files may contain units
which are then available for clients to use.

When the p-System is searching several libraries for a
unit, it first searches all of the user libraries in the order
that they appear in the default library text file. It then
searches *SYSTEM.LIBRARY. If you wish to include
*SYSTEM.LIBRARY in the library text file, it is
searched in the order that it appears. (If no library text
file is used, only *SYSTEM.LIBRARY is searched.)

You can use a library text file other than
USERLIB.TEXT. Do this with the L execution option.
For example, if you select X(ecute from the command
menu and respond:

Execute what f i le 7 L=USERLIB2

During compile time, as opposed to run time, the code for
a unit can reside in either of two locations:

• *SYSTEM.LIBRARY

• A code file specified in the text you are compiling

With UCSD Pascal, you indicate a specific code file using
the $U (use library) compiler option which was described
earlier. If you do not indicate a particular code file, the
compiler searches *SYSTEM.LIBRARY for any units
you want to use. If you do indicate a code file, the compi
ler looks there for the units. In the second case, if the
unit is not found, the Pascal compiler searches
*SYSTEM.LIBRARY, as well.

2-31

Pascal, BASIC, and FORTRAN each have a way to indi
cate the names of units that are to be used. Each lan
guage also has a method for specifying the code files that
contain those units . If you do not indicate a particular
code file, the compilers search *SYSTEM.LIBRARY for
any units you want to use. If you do indicate a code file,
the compilers look there for the units. In this second case,
if the unit is not found, the Pascal Compiler searches
*SYSTEM.LIBRARY, as well. However, the BASIC and
FORTRAN compilers only search that particular code
file. (See the individual reference manuals for more infor
mation about this.)

GENERAL TACTICS

This section describes the use of segments and units. It presents
a scenario for designing a large program, with some useful strate
gies.

Units and segments divide large programs into independent
tasks. On microprocessor systems, the main bottlenecks in devel
oping large programs are:

• A large number of variable declarations that consume space
while a program is compiling

• Large pieces of code that use up memory space while the
program is executing

Units address the first problem by: allowing separate compila
tion; and minimizing the number of variables needed to communi
cate between separate tasks. Segments alleviate the second
problem by only requiring code that is in use to be in main mem
ory at any given time; during this time, unused code resides on
the disk.

2-32

You can write a program with run-time memory management and
separate compilations already planned, or you can write the pro
gram as a whole and then break it into segments and units. The
latter approach is feasible when you are unsure about having to
use segments or quite sure that they will be used only rarely. The
former approach is preferred and easier to accomplish.

The following steps outline a typical procedure for constructing a
relatively large application program:

1. Design the program (user and machine interfaces).

2. Determine needed additions to the library of units, both
general and applied tools.

3. Write and debug units and add to libraries.

4. Code and debug the program.

5. Tune the program for better performance.

During design, try to use existing procedures to decrease coding
time and increase reliability. You can accomplish this strategy by
using units.

To determine segmentation, consider the expected execution
sequence and try to group routines inside segments so that the
segment routines are called as infrequently as possible.

While designing the program, consider the logical (functional)
grouping of procedures into units. Besides making the compila
tion of a large program possible, this can help the program's con
ceptual design and make testing easier.

Units may contain segment routines. You should be aware that a
unit occupies a segment of its own except, possibly, for any seg
ment routines it may contain. The unit's segment, like other code
segments, remains disk-resident except when its routines are
being called.

2-33

Steps 2 and 3 of the typical construction procedure are aimed at
capturing some of the new routines in a form that allows them to
be used in future programs. At this point, you should review, and
perhaps modify, the design to identify those routines that may be
useful in the future. In addition, useful routines might be made
more general and put into libraries.

Program and test the Library routines before moving on to pro
gramming the rest of the program. This adds more generally use
ful procedures to the library.

The interface part of a unit should be completed before the imple
mentation part, especially if several programmers are working on
the same proj ect.

Tuning a program usually involves performance tuning. Since
segments offer greater memory space at reduced speed, perfor
mance is improved by: turning routines into segment routines; or
turning segment routines back into normal routines. Either route
is feasible. Pay some attention to the rules for declaring seg
ments.

For information on languages, refer to the appropriate language
manual.

2-34

3

User Interface

Introduction 3-3
Run-Time Application Facilities 3-3
The Screen Control Unit .. 3-6
SCREENOPS Interface Section ... 3-6
Routines Within SCREENOPS .. 3-8
Error Handler Unit .. 3-14

Format of Error Messages ... 3-14
V ser Control of Error Messages .. 3-15
The Command I/O Unit ... 3-17
Simple Color Interface ... 3-20
Turtlegraphics .. 3-22
The Turtle ... 3-23
The Display .. 3-27
Labels ... 3-28
Scaling .. 3-29
Figures and the Port 3-31
Pixels 3-34
Fotofiles .. 3-35
Routine Parameters ... 3-36
Sample Program ... 3-37

3-1/3-2

INTRODUCTION

This chapter describes several facilities that can assist you in
presenting a clean and portable user interface from your
programs.

The first section describes run-time facilities that enable you to
create your own applications environment. The p-System can run
invisibly under your application using these facilities.

The next section describes the screen control unit. This unit,
which is part of the operating system, can be used by your pro
grams to easily handle the basic screen-oriented functions (such
as clearing the screen, moving the cursor, and so forth).

Next, the error-handler unit is covered. It enables your programs
to intercept certain kinds of system errors and display your own
messages. You might want to do this so that the error messages
are specific to your particular application, or so they are in a dif-

~ ferent language, and so forth.

After this, the command I/O unit is described. This unit allows
you to redirect I/O and chain programs together. It is especially
useful in conjunction with the run-time facilities in the first
section.

Finally, a couple of facilities for using the color and graphics
capabilities of your Texas Instruments Professional Computer
are covered. The first is a simple interface that your programs
can use to change the screen colors, and so forth. The second is a
much more comprehensive package called Turtlegraphics.

RUN-TIME APPLICATION FACILITIES

As an applications developer, you can create programs that are
automatically executed by the p-System. This exempts the end
user from having to X(ecute these programs. The underlying
p-System can even be completely hidden from such a user. You
can present menus and prompts that apply specifically to your
particular application.

3-3

If you name an executable code file SYSTEM. STARTUP and
place it on the system disk, that program is executed when the
p-System is booted. This program begins before the p-System's
command menu or welcome message is displayed.

SYSTEM.MENU operates similarly. It is executed each time the
command menu is normally displayed.

Generally, SYSTEM.MENU is more useful for creating your own
applications environments since it is called up repeatedly.
Typically, you might place a simple menu-driven program in
SYSTEM.MENU. This program displays the outer menus or
prompts and services global issues related to your application
package. When the user selects a component of your package, use
the CHAIN procedure (within the operating system's Command
I/O unit, described later in this chapter). CHAIN allows another
program to execute (without using the X(ecute command or dis
playing the command menu in between). When that program
completes its run, SYSTEM.MENU is again called. In this scena
rio, the p-System's command menu never appears.

The following diagram illustrates what happens when the
p-System is initialized:

3-4

EXECUTE
.SYSTEM.
STARTUP
(IF POSSIBLE)

2284069

NO

YES

YES

EXECUTE
CHAINED
PROGRAM

EXECUTE
.SYSTEM.
MENU

HALT

3-5

THE SCREEN CONTROL UNIT

The screen control unit is a unit within the operating system that
your programs can use to easily perform several useful screen
oriented tasks. These include blanking out a line or the entire
screen, placing the cursor at a particular position, displaying
p-System style menus, and so forth. These tasks are performed in
a way that makes your programs transportable across different
display units.

You should realize that there is a special screen control unit for
ANSI (American National Standards Institute) terminals. (These
terminals use three character sequences. Most other terminals
use, at most, two character sequences.) However, the interface
section of this special version of the screen control unit is no dif
ferent from the standard unit. This means that your programs do
not have to be changed.

To use the screen control unit at compile time, you must have a
copy of SCREENOPS.CODE with its interface section. A Pascal
program must contain a USES declaration similar to this:

USES {SU SCREENOPS.CODE} SCREENOPS;

At run time, only the operating system needs to be available
since it contains the SCREENOPS unit (without the interface
section).

SCREENOPS Interface Section

3-6

Here is a listing of the interface section for
SCREENOPS:
unit screenops;

interface

const
sc fill.-len = 11;
sc. eol = 13;

type
sc chset = set of char;
sc rnisc-Iec =packed record

height. width; 0 .. 255;
calL break, slow, xy_ crt, Ie_crt,
can. upscroll. can downscroll; boolean;

end;

sc date ec =packed record
month: 0 .. 12;
day: 0 .. 31;
year: 0 .. 99;

end;
sc~nfo type = packed record

sc version: string;
sc date: sc _date_ rec;
spec _char : sc_ chset; {Characters not to echo}
mise _info: sc misc-I"ec:

end;
sc long string = stringl255 J;
sc_ scrfi-command = Isc. _whome, sc eras_ s, sc_ erase eol, sc. clear_ lne,

sc clear scn, sc _up cursor , sc down cursor ,
sc _ Ieft_ cursor, sc right cursor);
sc_ key_ command = Isc backspace_ key, sc dcl

sc eof key, sc etx_.key, sc escape_ key , sc del
sc up_ key. sC_._down_ key, sc. left key, sc right.
sc. not-.legal, SL insert_ key, sc. delete_ key);

sc. window
sc tx port

sc choice = Isc_..get, sc.......give);
= packed array 10 .. 0) of char;
= record

end;

row, col,
height, width,

{ screen relative}
(size of txport Izero based)}

cur_ x, cur_ y: integer;
{cursor positions relative to the txport }

{entries 4 .. syscom .subsidstart-I are valid}
sc_ err--.msg_.array = array 14 .. 4J of string; {accessed $R-}

var
sc port: sc_ tx port;
sc printable .chars: sc chset;
sc errorline: integer;
sc errormessage: sc err msg array;

key,
key,
key ,

procedure sc use Jnfoldo what:sc. choice; var t info:sc info type);
procedure sc use portldo what:sc choice: var t . port:sc. tx port);
procedure sc. erase to_ eolix,line:integcr);
procedure sc left;
procedure sc right;
procedure sc. up;
procedure sc. down;
procedure sc .getc chlvar ch:char; returfi-ofi-match:sc chset);
procedure sc dr_ screen;
procedure sc. clr _ line Iy:integer);
procedure sc home;
procedure sc. eras. eos (x,line:integer);
procedure sc~oto_.xy(x, line:integer);
procedure sc. dr cur _line;
function sc find_ --,,:integer;
function sc_ find _ y:integer;
function sc_ scrIL-haslwhat:sc_ scrfi-command):boolean;
function scJas ey(what:scJey command):boolean;

3-7

function sC--"1ap. crt command(var Lch:char):sc ..key _command;
function sc_prompt(line :sc long_ string; ,,-cursor.y cursor,x_ pos,

where:integer; retur~on match:sc. chset;
no_ char back:boolean; breaLchar:char):char;

function sc check_ char(var buf:sc window; var buL..index,bytes.-left:integer)
:boolean;

function sc_ space wait(flush:boolean):boolean;
procedure sc---.init;

Routines within SCREENOPS

3-8

This section describes the routines within the screen con
trol unit. The text ports mentioned here are rectangular
portions of the screen that may be defined as smaller than
the real screen. At present, this feature is not fully
implemented. Where text ports are mentioned in this sec
tion, the entire screen is the default,

Procedure SC_lnit;

Usually, only the operating system calls this procedure.
It initializes all the screen control tables and variables.

Erases the current line.

Procedure SC_Clr_Line (Y: integer);

Clears line number Y within the current text port.

Clears the screen.

Procedure SC_Erase_to_EOL
(X, Line: integer);

Starting at position (X, Line) within the current text port,
erases everything to the end of the line.

Procedure SC_Eras_EOS
(X, Line: integer);

Starting at position (X, Line) within the current text port,
erases everything to the end of the screen.

Procedure SC_Left;

Moves the cursor one character to the left.

Procedure SC_Right;

Moves the cursor one character to the right.

Procedure SC_Up;

Moves the cursor one line up (in the same column).

Procedure SC_Down;

Moves the cursor one line down.

Procedure SC_Home;

Moves the cursor to position 0,0 within the current text
port.

Procedure SC_GOTO~Y
(X, Line: integer);

Moves the cursor to position (X, Line).

Function SC_FinLX: integer;

Returns the column position of the cursor, relative to the
current text port.

Function SC_FinLY: integer;

Returns the row position of the cursor, relative to the cur
rent text port.

3-9

3-10

Procedure SC_GetC_CH
(V AR CH: char;

Return_oIL-Match: SC_ChSet);

SC_ChSet is a SET OF CHAR. This procedure re
peatedly reads from the keyboard into CH until CH is
equal to a member of ReturIL-on_Match. The charac
ters that you pass in this set should all be capitals (if they
are alphabetic). If a lowercase alphabetic character is
received from the keyboard, it is translated into upper
case before it is compared to the characters within
Return_oIL-Match.

Function SC_Space_ W ait
(Flush: Boolean): Boolean;

This function repeatedly reads from the keyboard until a
space or the ALTMODE character is received. Before
doing this, it does a UNITCLEAR(l) if flush is true, and
displays T y p e < 5 pac e > toe 0 n tin u e . It returns
true if a space was not read. After reading a space suc
cessfully, this function executes a carriage return on the
console.

FUNCTION SC_Prompt
(Line: SC_Long_String;

X_Cursor, Y _Cursor, X_Pos,
Where: integer;
ReturIL-oIL-Match: SC_ChSet;
No_Char_Back: Boolean;
BreaLChar: char): char;

This function displays the menu line (SC_Long_String
is a STRING [255]) in the current text port at (X_Pos,
Where). The cursor is placed at (X_Cursor, Y _Cursor)
after the prompt is printed. If X_Cursor is less than 0,
the cursor is placed at the end of the prompt. If the
prompt is too large to fit within the current text port, it is
broken up into several pieces, but only at the
BreaLChar. You can view different parts of the prompt
(cycling through them) by pressing a question mark (1). If
you only want to display the prompt, NO_Char_Back
should be true. (In this case, SC_Prompt returns a func
tion value of NUL, ASCII 0.) If you want to receive
a character from the user at the keyboard,
NO_Char_Back should be false. (In this case,
SC_Prompt returns a function value of the character
received.) The keyboard is repeatedly read until the char
acter read matches one within the Return_on-.Match
set. (All alphabetic characters in this set should be
capitals.)

FUNCTION SC_ChecLChar
(V AR Buf: SC_ Window;

V AR Buf_Index,
Bytes_Left: integer): Boolean;

While a string is being read, this function can be called to
see if a backspace or a rubout (DEL) has been read. If so,
the input buffer is altered accordingly, and true is
returned. Buf is a line on the screen, Buf_Index indicates
the cursor position within Buf, and Bytes_Left is the
number of characters to the right of the cursor.

Function SC_Map_CRT_Command
(V AR IL-CH: char):

SC_Key _Command;

3-11

3-12

SC_Key _Command is a type consisting of the following
elemen ts. (SC_B ackspace_Key, SC_DC I_Key,
SC_EOF _Key, SC_ETX_Key, SC_Escape_Key,
SC_DEL_Key, SC_Up_Key, SC_Down_Key,
SC_Left_Key, SC_Right_Key, SC_Not_Legal,
SC_Insert_Key, SC_Delete_Key). The character
passed is mapped into one of these elements.
SC_Not_Legal is where all characters are mapped that
do not fit into one of the other ten categories. Prefix char
acters are recognized by this function. If you pass a prefix
character, a non-echoed read is done to get the next char
acter (before the mapping is performed). In this case,
K_CH is returned as that character. For the ANSI ver
sion of Screenops, yet another read can be done (since
three character codes are used on ANSI terminals).

Function SC_ScrIL-Has
(What: SC_ScrIL-Command):

Boolean;

SC_Scrn_Command is a type consisting of the ~
following elements. (SC_Home, SC_Eras_S,
SC_Eras_EOL, SC_Clear_Lne, SC_Clear_Scn,
SC_Up_Cursor, SC_DowIL-Cursor,
SC_Left_Cursor, SC_Right_Cursor.) This function
returns TRUE if the keyboard has the control character
passed.

Function SC_Has_Key
(What: SC_Key _Command):

Boolean;

SC_Key _Command consists of the elements previously
listed in the description of SC_Map_CRT_Command.
This function returns true if the keyboard generates the
character passed.

Procedure SC_Use_Info
(Do_What: SC_Choice;

VAR T_Info: SC_Info_Type);

This function is used to pass information back and forth
between a program and the screen control unit.
Do_What may either be SC_Get or SC_Give and indi
cates whether the program is getting information from
the screen control unit or giving information to it.
T_Info contains various items to be either passed or
received. The following information is contained within
T_Info.

SC Version: string;
SC_ Date: PACKED RECORD

Month: 0 .. 12;
Day:O .. :l1;
Year: 0 __ 99;

END;
Spec _ Char: SET OF char; I· Characters not to echo·)
Mise Info: PACKED RECORD

Height. Width: 0 __ 255;
Can Break. Slow. XY CRT. I.C CRT.
Can _UpScroli. Can _DownScroll: Boolean;

END;

Procedure SC_Use_Port
(Do_What: SC_Choice;

VAR T_Port: SC_TX_Port);

This function works like SC_Use_Info above. The con
tents of T _Port are either passed or received from the
screen control unit. T_Port contains the following infor
mation.

Row, Col,
Height, Width,
Cur~, Cur_Y: integer;

3-13

ERROR HANDLER UNIT

Under certain circumstances, the p-System displays execution
error messages. If a code segment is needed and the disk contain
ing it is not in the appropriate drive, you are asked to replace the
disk and press the space bar to continue. If a program attempts
to divide by zero or access outside the bounds of a Pascal array, a
message indicates this and the user is asked to press the space
bar, at which point the p-System is reinitialized.

When certain errors occur, your programs can alter the message
that is displayed. This is useful for applications developers,
especially those whose customers speak languages other than
English.

Format of Error Messages

3-14

Error messages are displayed on one specified 80-column
line. For example, when a code segment is needed from a
disk that is not present in the appropriate drive, the fol
lowing prompt is displayed.

Need segment SEGNAME: Put volume VOLNAME in uni t u then
press <space>

This indicates that the segment SEGNAME was not
found on the volume in device U. Place the volume
VOLNAME in the correct drive and press the space bar.
Execution should continue normally.

The following example shows the error message that
occurs when a user presses the p-System BRK (Break)
key. BRK is a shifted version of the BRK/PAUS key.

P r og r am In t err u pte d by use r - S e g PAS CALI 0 P /I 17 0/1 31 0
<space> continues

After the space bar is pressed, the p-System is reinitial
ized.

System error messages, such as these, always appear at a
fixed position on the display unit. The default position is
the bottom line. (Any line can be specified, however.)
A BEL character (audible beep) is written to the console
device when the message is written out.

After pressing the space bar, the message line disap
pears, and when possible, the cursor returns to its pre
vious position. If a program uses UNITREADs or
UNITWRITEs to the console, the previous cursor posi
tion may be lost. This is because the p-System is not
informed of the cursor position after these kinds of low
level I/O operations.

User Control of Error Messages

Your program may change the line on which an error
message is displayed. It may also change the actual mes
sage displayed when a code segment is required from a
disk that is not present in the appropriate drive for
blocked devices. If the code file is on a subsidiary volume,
set the message for the principal volume.

The ERRORHANDLING unit provides these facilities.
The file ERRORHAND.CODE contains this unit. To use
ERRORHANDLING, a Pascal program should have a
declaration similar to the following example.

{$U ERRORHAND.CODEl ERRORHANDLING:

Also, ERRORHANDLING must be available at run
time, either in a library or placed into the using program's
code file with the Library utility.

3-15

3-16

The following procedures are available within this unit:

Procedure Set_Error_Line
(Line:integer);

Procedure Set_V ser_Message
(drive:integer;
mesg:string);

By calling SET_ERROR_LINE with the desired line
number as a parameter LINE, your program may change
the line on which p-System run-time error messages are to
be displayed. After the call to SET_ERROR_LINE,
any run-time error messages are displayed on that line
until SET_ERROR_LINE is used again to specify
another line.

You can change the standard message for code seg
ments needed on disks that are not present. Call
SET_VSER_MESSAGE with the DRIVE parameter
set to the physical device number and the MESG parame
ter set to the desired message string.

Then, if a code segment is required from a missing disk in
the unit for which the user program has designated a
special error message, that message is displayed. The
p-System then waits for the user to press the space bar,
whether or not your message actually indicates that a
space is needed. The message line is subsequently erased;
the cursor returns to its former position, if possible; and
execution continues.

CAUTION

A user message is destroyed if a MARK is
called before a SET_USER_MESSAGE.

NOTE

The physical device numbers are #4, #5, and #9
through the maximum number for physical
disks as configured in SETUP.

For other kinds of execution errors, a standard p-System
message is displayed on the message line. A fatal error
always causes the p-System to fail. For nonfatal errors,
the p-System waits for the user to press the space bar.
The message line is then erased, the cursor returns to its
former position, and execution continues (most likely the
p-System reinitializes itself).

To proceed from a nonfatal error, press the ESC key.

CAUTION

Escaping from a nonfatal error is a dangerous
practice since system data may be corrupted.

Error message values that you set remain in effect during
the program run, but are reset at program termination or
whenever p-System reinitialization occurs.

Your program may reset the error handling values to
their default values at any time if special output is
no longer desired. The missing code segment message
can be reset by passing a null string to
SET_USER_MESSAGE.

Unknown results may occur on console devices whose
display unit width is narrower than the message to be
displayed.

THE COMMAND I/O UNIT

Command I/O is a unit in the operating system. From Pascal,
your program should contain the statement:

USES {SU commandio.code} COMMAl"DIO;

3-17

Then, the following procedures are available to the program:

Procedure Chain
(Exec_Options: String);

A call to CHAIN causes the system to X(ecute
EXEC_OPTIONS after the calling program (the chaining pro
gram) has terminated. The effect is that of: manually pressing X
to call X(ecute; and entering the characters in
EXEC_OPTIONS. Neither the command menu nor the X(ecute
prompt is displayed; the system goes on to immediately perform
the actions indicated by EXEC_OPTIONS.

If a program (or sequence of programs) contains more than one
call to CHAIN, the EXEC_OPTIONS are saved in a queue and
performed on a first-in-first-out basis before returning control of
the system to you.

To clear the queue, call CHAIN with an empty string (for exam
ple, CHAIN();).

An execution error or an error in an EXEC_OPTIONS string
clears the queue, returning control to the user. A call to
EXCEPTION, described below, may also clear the queue.

CHAIN is a procedure in the operating system's COMMANDIO
unit; to use it, a program or unit must declare USES
COMMAND/O.

Function Redirect
(Exec_Options: String) : Boolean;

This should contain only option specifications and not the name
of a file to execute (to execute a program from another program,
see the CHAIN intrinsic).

REDIRECT causes redirection by performing all the options
specified in EXEC_OPTIONS. If all goes well, it returns true. If
an error occurs, it returns false.

3-18

If an error occurs during a call to REDIRECT, the state of
redirection is indeterminate; this is a dangerous condition. If
REDIRECT returns false, the user's program should follow it
with a call to EXCEPTION in order to turnoff all redirection. If
the user does not do this, the results are unpredictable.

REDIRECT is a procedure in the operating system's
COMMANDIO unit; to use it, a program or unit must contain
the declaration USES COMMANDIO.

Procedure Exception
(Stopchaining: Boolean);

EXCEPTION turns off all redirection. If STOPCHAINING is
true, then the queue of EXEC_OPTIONS created by CHAIN is
also cleared (see the intrinsic CHAIN).

Whenever an execution error occurs, an EXCEPTION(TRUE)
call is made (leaving redirection on after an error would leave the
system in an indeterminate state).

EXCEPTION is a procedure in the operating system's
COMMANDIO unit; to use it, a program or unit must declare
USES COMMANDla.

3-19

SIMPLE COLOR INTERFACE

The p-System on the Texas Instruments Professional Computer
provides a simple interface to assist you in utilizing the special
features of the color and grey scale display unit. The following
table defines the character attribute set:

Attribute

COLOR/INTENSITY

ENABLE

REVERSE VIDEO

BLINK

ALTERNATE
CHARACTER SET

Character Attributes Set

Description

Defines the color'of subsequent output when
the color display unit is installed or the inten
sity of output when the gray scale display
unit is used (default white)

Defines whether or not subsequent output
will be displayed on the display unit (default
display enabled)

Defines whether background or foreground
is to be highlighted (default not underlined)

Defines whether characters displayed will be
underlined (default not underlined)

Defines whether character fonts
will be defined by the primary or alternate
character set (default primary)

NOTE

You should realize that more than one attribute may
be specified but that certain combinations will not
make sense. For example, if character enable is false,
then output does not appear nor do any of the other
attributes except for reverse video.

3-20

The next table lists special characters that you can send to the
display unit using the UNITWRITE intrinsic from a Pascal
program. (You should see UCSD Pascal, TI Part Number
2232401-0001, 'for information about UNITWRITE.) Each of
these codes must be preceded (or prefixed) by the ASCII ESC
character, decimal 27.

Character

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

Attribute Character Sequences

Attribute Toggled

GLOBAL Enable

BLACK Enable

BLUE Enable

RED Enable

GREEN Enable

CYAN Enable

YELLOW Enable

MAGENTA Enable

WHITE Enable

CHARACTER Enable

REVERSE VIDEO
TOGGLE

UNDERLINE TOGGLE

BLINK TOGGLE

ALTERNATE CHAR
SET

GLOBAL RESET

Description

Changes the attribute of each
displayed character to the most
recently defined attribute.

Enables BLACK (no output)

Enables BLUE output

Enables RED output

Enables GREEN output

Enables BLUE·GREEN output

Enables RED·GREEN output

Enables BLUE·RED output

Enables WHITE output

When character enable is active
(true) characters are displayed on
the display unit when output.
When false. characters will not be
displayed on the display unit

Toggles REVERSE VIDEO
background/foreground

Toggles UNDERLINING of
characters displayed

Toggles BLINKING of charac·
ters displayed

Enables/disables the ALT
character set for output

RESETs all attributes to the sys·
tern defaults

3-21

Sequences that enable functions OR an attribute with the pre
vious attribute set. Sequences that toggle functions XOR an
attribute with the previous value of the attribute and then OR
the new attribute value into the attribute set. Simply put, toggles
turn attributes on the first time they are output and off the next
time they are output. Sequences that enable attributes always
turn those attributes on. Defining a new attribute does not affect
the remainder of the attribute set (that is, changing color does not
affect whether or not the character is displayed with an under
line).

Although these sequences provide a simple interface to the color
capabilities of the high resolution color graphics monitor, the
Turtlegraphics package, described later, is available to provide
more comprehensive access to the capabilities of the system con
sole.

There are some special keys described in Appendix A which are
related to display intensity, color, cursor appearance, and so
forth.

TURTLEGRAPHICS

Turtlegraphics is a package of routines for creating and manipu
lating images on your Texas Instruments Professional Com
puter's display unit. These routines can be used to control the
background of the display unit, draw figures, alter old figures,
and display figures using viewports and scaling. Turtlegraphics
also contains routines that allow you to save figures in disk files
and retrieve them.

The simplest Turtlegraphics routines are intentionally very easy
to learn and use. Once you are familiar with these, more compli
cated features (such as scaling and pixel addressing) should pre
sent no problem.

A pixel is a single picture element or point on the display.

3-22

Turtlegraphics allows you to create a number of figures or draw
ing areas, such as the display unit. Other figures can be saved in
memory. Each figure has a turtle of its own. You can set the size
of a figure (it does not need to be the same size as the actual dis
play).

The actual display is addressed in terms of a display scale, which
can be set by you. This allows your own coordinates to be mapped
into pixels on the display. All other figures are scaled by the
global display scale.

You can also define a viewport, or window on the display. This
limits all graphic activity to within that port.

In order to use Turtlegraphics, your Pascal programs must
include a uses statement like this:

USES Turtlegraphics;

Each subsection below is divided into two parts. The first part is
an overview of the topic at hand, and the second part consists of
descriptions of the relevant Turtlegraphics routines.

The Turtle

The turtle is an imaginary creature in the display screen
that draws lines as your program moves it around the
display. The turtle can move in a straight line (Move),
move to a particular point on the display (Moveto), turn
relative to the current direction (Turn), and turn to a par
ticular direction (Turnto).

Thus, the turtle draws straight lines in some given
direction. The color of the lines it draws can be specified
(PelL-color) and so can the nature of the line drawn
(PelL-mode).

Wherever the turtle is located, its position and direction
can be ascertained by three functions: Turtle_x,
Turtle_y, and Turtle_angle.

3-23

3-24

NOTE

The turtle may be moved anywhere; it is not
limited by the size of the figure or the size of
the display. But, only movements within the
figure are visible.

To use the turtle in a figure other than the actual display,
you may call Activate_Turtle.

The following paragraphs describe the routines that con
trol the turtle.

Procedure Move (distance: real);

Moves the active turtle the specified distance along its
current direction. The turtle leaves a tracing of its path
(unless the drawing mode is nop). The distance is speci
fied in the units of the current display scale (see below).
The movement is visible unless the current turtle is in a
figure that is not currently on the display.

Procedure Moveto (x,y: real);

Moves the active turtle in a straight line from its current
position to the specified location. The turtle leaves a trac
ing of its path (unless the drawing mode is nop). The x,y
coordinates are specified in the units of the current dis
play scale.

Procedure Turn (rotation: real);

Turns the active turtle by the amount specified (in
degrees). A positive angle turns the turtle counterclock
wise, and a negative angle turns it clockwise.

Procedure Turnto (heading: real);

Sets the direction (the heading) of the active turtle to a
specified angle. The angle is given in degrees; zero (0)
degrees faces the right side of the screen, and ninety (90)
degrees faces the top of the screen.

Procedure PerL-color (shade: integer);

Selects the color with which the active turtle traces its
movements (unless the pen mode is nop). This color
remains the same until PerL-color is called again.

Here are the colors that correspond to the shade number:

o = Black
1 = Blue
2 = Red
3 = Magenta
4 = Green
5 = Cyan
6 = Yellow
7 = White

The term wild card refers to the standard background
color of your display. This depends on your display hard
ware, and might be called a hard background (you mayor
may not be able to change it from a program; this
depends on your hardware configuration). In Turtle
graphics, each individual figure may have its own soft
background color, which we refer to simply as the back
ground color (as in the discussion below).

You may also use black and white graphics, in which case
the colors might be simply:

o = Black
1 = White

3-25

3-26

Procedure Pen_mode (mode: integer);

Sets the active turtle's drawing mode. This mode does
not change until PelL-mode is called again.

These are the possible modes:

o Nop - does not alter the figure.

1 = Substitute - writes the current pen color.

2 Overwrite - writes the current pen color.

3 Underwrite - writes the current pen color. When
the pen crosses a pixel that is not of the back
ground color, that figure is not overwritten.

4 Complement - the pen complements the color of
each pixel that it crosses. (The complement of a
color is its opposite: the complement of the com
plement of a color is the original color.)

Values greater than four are treated as Nop.

These descriptions apply to movements of the turtle.
They have a more complex meaning when a figure is
copied onto a figure that is already displayed.

Function Turtle~ : real;
Returns a real value that is the x-coordinate of the active
turtle, in units of the current Display_scale.

Function Turtle_y : real;

Returns a real value that is the y-coordinate of the active
turtle, in units of the current Display_scale.

Function Turtle_angle: real;

Returns a real value that is the direction (in degrees) of
the active turtle.

Procedure Activate_Turtle
(screen: integer);

Specifies to which figure subsequent Turtlegraphics
commands are directed. Each invocation of this pro
cedure puts the previously active turtle to sleep and
awakens the turtle in the designated figure. When Turtle
graphics is initialized, the turtle in the actual display is
awake. The initial position of the turtle is (0,0) or the bot
tom left corner of the display unit, ready to move right.

The Display

We refer to the initial background of the display as the
wild card color. The wild card color (color 0) depends on
your hardware (or it may be possible for you to set it from
a program). The default is typically black. The back
ground color of a Turtlegraphics figure may be changed
by you with a call to background. This soft background
applies when the drawing mode is used, as indicated
above.

A figure can be filled with a single color (not necessarily
the background color) by calling Fillscreen.

NOTE

If you use Turtlegraphics (or customized rou
tines of your own) to alter the settings of your
display, it is a good idea to reset everything
before your program terminates. Usually it is
not possible for the display to return to its orig
inal state, and the p-System software has no
knowledge of what that original state was.

3-27

Procedure Fillscreen
(screen: integer; shade: integer);

Fills the specified figure (screen) with the specified color
(shade). If screen = 0, which indicates the actual display
unit, then only the current viewport is shaded. For user
created figures, the entire figure is shaded.

Procedure Background
(screen: integer; shade: integer);

Specifies the background color for a figure. The initial
background color of all figures is the wild card color.

Labels

3-28

It is possible to draw legends, labels, and so forth on the
display while using the Turtlegraphics unit. This is done
by calling either WChar or WString. The character or
string appears at the location of the currently active tur
tle. The text is displayed in the type font defined by the
file *SYSTEM.FONT.

Procedure WChar
(c: char; copymode, shade: integer);

Writes a single character at the position of the currently
active turtle, using the indicated pen mode and color. The
character is always displayed horizontally, regardless of
the active turtle's direction.

Procedure WString
(s: string; copymode, shade: integer);

Writes a string starting at the position of the currently
active turtle, using the indicated pen mode and color. The
string is always displayed horizontally, regardless of the
active turtle's direction.

Scaling

When you wish to display data without altering the input
data itself, it is possible to set scaling factors that trans
late data into locations on the display. This is done with
Display_scale. The display scale applies globally to all
figures.

Because of the shape of the actual display, data for partic
ular shapes (especially curved figures) might become dis
torted when using a straight display scale. In this case,
the function Aspect-Yatio can be used to preserve the
squareness of the figure.

Procedure Display_scale
(mill.-X, miIL-Y, m~, mIDL-y: real);

Defines the range of input coordinate positions that are
to be visible on the display. Turtlegraphics maps your
coordinates into pixel locations according to the scale
specified in Display_scale.

This procedure sets the viewport to encompass the whole
display. The display bounds apply to input data. For the
actual display, these bounds can be any values you
require, but for user-created figures (0,0) is the lower left
hand corner.

If your Turtlegraphics package is tailored to your hard
ware, then the default display scale is already supplied. If
you purchased Turtlegraphics as a separate, configurable
product, then you must supply the parameters for your
own display (these must be returned by the user-written
procedure Query_Environment).

The following lines are an example of a default scale. It is
simply the array of pixels on the FULL display.

milL...X = 0, mIULJ = 319
miIL-Y = 0, m~y = 199

3-29

3-30

As an example, if you wish to graph a financial chart from
the years 1970 to 1980 along the x axis, and from 500,000
to 500,000,000 along the y axis , the following call could
be used.

Display scalell970. 5.0£5,1980. 5.0E8)

After this, calls to turtle operations could be done using
meaningful numbers rather than quantities of pixels.

Function Aspect_ratio: real;

Returns a real number that is the width/height ratio of
the display unit. This can be used to compute parameters
for Display_Scale that provide square aspect ratios.

If an application is designed to show information where
the aspect ratio of the display is critical (for example, cir
cles, squares, pie-charts, and so forth) it must insure that
the following ratio is the same as the aspect ratio of the ~
physical display unit upon which the image is displayed.

(malC-X - min----x) I (m~y - mill..-Y)

When the Turtlegraphics unit is initialized, miIL-X and
mi~y are set to zero. MruL-X is initialized to the num
ber of pixels in the x direction, and mIDL-Y is initialized
to the number of pixels in the y direction. In order to
change to different units that still have the same aspect
ratio, use a call similar to the following example.

Displayscaleto. O. 100*ASPECT RATIO,100):

This utilizes Function Aspect----.ratio described above,
and makes the y axis 100 units long.

Turtlegraphics always treats the turtle as being in a fixed
pixel location. Changing the scaling of the system with a
call to this routine in the middle of a program does not
alter the pixel position of any of the turtles in the figures.
However, the values returned from X_pos and Y_pos
may change.

Figures and the Port

You can create and delete new figures, each with its own
turtle. When a new figure is created, it is assigned an inte
ger, and this integer refers to that figure in subsequent
calls to Turtlegraphics procedures. New figures can be
saved (Put_Figure) or displayed on the display unit
(Get_figure).

The actual display is always referred to as figure O.

The active portion of the display can be restricted by call
ing viewport, which creates a window on the display unit
in which all subsequent graphics activity takes place.
You can create a figure, specify the port, then display
that figure (or a portion of it) within the port. Specifying a
viewport does not restrict turtle activity, it merely
restricts what is displayed on the display unit.

User-created figures can be saved in p-System disk files.

Function Create_Figure
(~size,y _size: real): integer;

3-31

3-32

Creates a new figure that is rectangular, and has the
dimensions (x-size, y _size), where (0,0) designates the
lower left-hand corner. The dimensions are in units of the
current display scale. The figure is identified by the inte
ger returned by Create_figure.

When a figure is created, it contains its own turtle; which
is located at the initialization position or 0,0 and has a
direction of ° (it faces the right-hand side of the figure).
The turtle in a user-created figure can be used by calling
Activate_Turtle.

Procedure Delete_figure
(screen: integer);

Discards a previously created display figure area.

Though figures may be created and destroyed, indiscrimi
nate use of these constructs may rapidly exhaust the
memory available in the p-System due to heap fragmenta
tion. For example, a figure can be created using
Create_Figure (or it can be read in from disk using Func
tion LoaLFigure, described below). If possible, after
that figure is used (for example, with a Get_Figure,
Put_Figure, LoaLfigure or Store_Figure operation) it
should be deleted before other figures are created. If
many figures are created and randomly deleted, the heap
fragmentation problem may occur.

Procedure Get_Figure
(source_screen: integer;

corner--X,corner_y: real; mode: integer);

Transfers a user-created figure (the source) to the display
unit (the destination) using the drawing mode specified.
The figure is placed on the display such that its lower left
corner is at (corner--x, corner_y). The x and y positions
are specified in the units of the current display scale. If
the display scale has been modified since the figure was
created, the results of this procedure are unpredictable.

The following items define the drawing mode numbers.

o N op. Does not alter the destination.

1 Substitute. Each pixel in the source replaces the
corresponding pixel in the destination.

2 Overwrite. Each pixel in the source that is not of
the source's background color replaces the corre
sponding pixel in the destination.

3 Underwrite. Each pixel in the source that is not of
the source's background color is copied to the corre
sponding pixel in the destination only if the corre
sponding pixel is of the destination's background
color.

4 Complement. For each pixel in the source that is
not of the source's background color, the corre
sponding pixel in the destination is complemented.

Values greater than four are treated as N op.

If a portion of the source figure falls outside the display
or the window, it is set to the source's background color.

Procedure Put_Figure
(destinatioIL-screen: integer;
corner'-x,corner_y: real; mode: integer);

Transfers a portion of the display unit to a user-created
figure using the drawing mode specified (see above). The
portion transferred to the figure is the area of the display
that is covered when the figure is placed on the display
with its lower left-hand corner at (corner--'C, corner_y).
If the display scale has been modified since the figure was
created, the results of this procedure are unpredictable.

3-33

Pixels

3-34

NOTE

When a figure is moved to the display by
Get_Figure, further modifications to the dis
play do not affect the copy of the figure that is
saved in memory. If you wish to save the
results of graphics work on the display, you
must call Put_Figure.

Procedure Viewport
(miIL-X,miIL-Y, m~,m~y: integer);

Defines the boundaries of a window that confines subse
quent graphics activities. The viewport procedure applies
only to the actual display. When a window has been
defined, graphics activities outside of it are neither dis
played nor retained in any way. Therefore, lines, or por
tions thereof, that are drawn outside the window are
essentially lost and are not displayed (this is true even if
the window is subsequently expanded to encompass a
previously drawn line). The viewport boundaries are spec
ified in the units of the current display scale. If the speci
fied size of the viewport is larger than the current range
of the display, the viewport is truncated to the display
limits.

It is possible to ascertain (Read_pixel) or alter
(Set_pixel) the color of an individual pixel within a given
figure. These routines are more specific than the turtle
moving routines. They are less straightforward to use,
but give you greater control.

Function ReaLpixel
(screen: integer; x,y: real): integer;

Returns the value of the color of the pixel at the x,y loca
tion in the specified figure. The x,y location is specified in
the units of the current display scale.

Procedure Set_pixel
(screen: integer; x,y: real;

shade: integer);

Sets the pixel at the x,y location of the specified figure to
the specified color. The x,y location is specified in the
units of the current display scale.

Fotofiles

You can create disk files that contain Turtlegraphics fig
ures. New figures can be written to a file, and old figures
restored for viewing or modification.

When figures are written to a file, they are written
sequentially, and assigned an index that is their location
in the file. They may be retrieved randomly by using this
index value.

The p-System name for files of figures always contains
the suffix .FOTO. It is not necessary to use this suffix
when calling ReaLfigure_file or Write_figure_file (if
absent, it is supplied automatically).

Function ReaLfigure_file
(title: string): integer;

Specifies the title of a file from which all subsequent fig
ures are loaded. If a figure file is already open for reading
when this function is called, it is closed before the new file
is opened. Only one figure file may be open for reading at
a single time. This function returns an integer value
which is the ioresult of opening the file.

Function W rite_figure_file
(title: string): integer;

3-35

Creates an output file into which user-created figures
may be stored. If another figure file is open for writing
when this function is called, it is closed, with lock, before
the new file is created. Only one figure file may be open
for writing at a single time. This function returns an inte
ger result which is the ioresult of the file creation.

Function LoaLfigure
(index: integer): integer;

Loads the indexed figure from the current input figure
file and assigns it a new, unique, figure number. An auto
matic Create_figure is performed. If the operation fails
for any reason, a Figure~umber of zero (0) is returned.

Function Store_figure
(figure: integer): integer;

Sequentially writes the designated figure to the output
figure file. The function returns an integer that is the
figure's positional index in the current output figure file. ~
Positional indexes start at one (1). If the index returned
equals zero (0), Turtlegraphics did not successfully store
the figure.

Routine Parameters

3-36

The next example shows the interface section for the Tur
tlegraphics unit, including the parameters to all Turtle
graphics routines:

unit Turtlegraphics;

interface

procedure Display_ scalel milLJ, mi,,-y ,
mllJL....X, mBlL-Y: real);

function AspecLJ'atio : real ;
function Create_ figure! ,,--size, y _ size:

real) : integer;
procedure Delete_ figurel screen:

integer);
procedureViewportl milLJ, mi,,-y, mllJL....X,

max_ y : real);

procedure Fillscreen(screen:
integer; shade:
integer);

procedure Background (screen: integer;
shade: integer);

function ReaLpixel(screen: integer;
x, y : real) :integer ;

procedure Set_ pixel(screen:integer ;
x,y:real ; shade:color);

procedure Get_ Figure1 source_ screen:
integer,
co;:oo;:- J, corner_ y: real ;
mode: integer); -

procedure Put_ Figure(destinatiotL-screen:
integer,
CO;:OO;:----.J(, corner_ y: real;
mode: integer); -

function ReaLfigure_ file(title: string):
integer;

function Write_ figure_ file(title: string):
integer;

function LoaLfigure(index: integer):
integer;

function Store_ figure(figure: integer):
integer;

procedure Activate_ Turtle(screen:
integer);

function Turtle---.J(: real ;
function Turtle-y : real ;
function Turtle_angle: real ;
procedure Move(distance:real);
procedure Moveto(x,y: real);
procedure Turn(rotatio~a1);
procedure Turnto(heading: real);
procedure Pe"-.lllode(mode: integer);
procedure PetL-color(shade: integer);
procedure WChar(c: char; copymode, shade: integer);
procedure WString(s: string; copymode, shade: integer);

Sample Program

Here is a sample program that illustrates a number of
Turtlegraphics routines:

program Spiraldemo;

uses Turtlegraphics;

const nop = 0;
substitute = 1;

3-37

3-38

var I, J, Mode: integer;
C:char; - - -

Color: integer;
Seed: integer ;
LX, LY, UX, UY: real;

function Random (Range: integer): integer;
begin

Seed: = Seed * 233 + 113;
Random: = Seed mod Range;
Seed:= Seed mod 256;

end;

procedure Clear Bottom;
{clears bottom line of screen

for prompts}
begin

end ;
begin

Pen mode (nop);
Moveto (0, 0);
WString(' ',substitute, I);

ClearBottom; {various initializations}
WString ('ENTER RANDOM NUMBER: " substitute, I);
read (keyboard, Seed);
Clear Bottom;
Display Scale (0, 0, 200* Aspect Ratio, 200);

{Aspect ~ Ratio used so
pattern will be round}

Color:= 0;
WString ('ENTER VIEWPORT LL CORNER: ',substitute, I);
read (keyboard, LX,L YI;
Clear Bottom;
WString ('ENTER VIEWPORT UR CORNER: ',substitute, I);
read (keyboard, UX, UY);
Clear Bottom;
WString ('PENMODE = " substitute, I);
read (keyboard, MODE);
ViewPort (LX, LY, UX, UY); {create port}
PenMode (0);

{use blank pen while moving it I
Moveto (100* Aspect_ Ratio, 100);

{put turtle in center of port}
{Aspect_ Ratio ensures that it will be
correctly centered}

PenMode (Mode);
{set pen to selected color}

J: = Random(90)+90;
{angle by which turtle will move
note that turtle begins facing right
and will move counterclockwise
(J is positive)}

for 1:= 2 to 200 do
{draw spiral in 200 segments
of increasing length!
begin

{cycle through the colors}
Color: = Color + 1 ;
if Color > 3 then Color: = 1;
PenColor IColor);
Movelll;
'furn(J);

end;

1:= Create_ Figure lUX-LX, UY-LY);
{create figure the size of the port}

PutFigure (I, LX, LY, 1);

{save it; mode overwrites
old figure (if anyl}

ViewPort 10, 0, Aspect_ .Ratio*200, 200);
{respecify viewport in
the lower left corner}

GetFigure I 1,0, 0, 1);

{ display finished spiral}
readln;
--{-clear user input buffer}

end.

3-39/3-40

4

File Management Units

Introduction 4-3
Interface Sections .. 4-4
Directory Information ... 4-10
Notation and Terminology .. 4-11
File Name Arguments .. 4-12
File Type Selection 4-13
File Dates ... 4-15
Error Results ... 4-15
The DIR_INFO Routines .. 4-16

D_PINFO ... 4-26
Function Result 4-28
Wild Card File N arne Change .. 4-35

Wild Cards (WILD) ... 4-49
Special Wild Card Characters .. 4-49

Question Mark Wild Card .. 4-50
Equals Sign Wild Card 4-50
Subrange Wild Card ... 4-51

D_ WilLMatch Parameters ... 4-53
D_ WilLMatch Pattern Matching Info 4-53
System Information (SYS.INFO) 4-57
File Information (FILE.INFO) 4-61
Type F _File_Type = file; .. 4-61

Time Date Unit .. 4-63

4-1/4-2

INTRODUCTION

Your Pascal programs on the Texas Instruments Professional
Computer can use the file management units to accomplish sev
eral tasks usually performed by the filer. There are four file man
agement units:

DIR.INFO.CODE
WILD.CODE
SYS.INFO.CODE
FILE.INFO.CODE

D IR. INFO provides directory information. Your programs may
use this unit to:

• List directories.

• Parse file names into volume ID, file name, file type, and
size specification.

• Change file names.

• Change the date associated with a file or volume.

• Remove files.

• Krunch a volume.

• Mount and dismount subsidiary volumes.

• Grant exclusive access rights to a directory by task.

• Release those exclusive access rights.

4-3

WILP provides wild card string matching facilities.

FILE.INFO allows your programs to:

• Determine if files are opened.

• Find the length of a file.

• Determine what storage volume contains a given file.

• Extract the file title with its suffix, from a file.

• Find the starting block of a file.

• Determine whether or not a volume is a storage volume or a
communications volume.

• Return the date associated with a file.

SYS.INFO allows your programs to:

• Determine the device number or volume name of the system
disk (the volume referred to by an asterisk, (*)).

• Determine the file names for the work files and the volumes
on which they reside.

INTERFACE SECTIONS

In order to take advantage of the file management units, your
Pascal programs should use them in a USES declaration. (These
units are not available to FORTRAN and BASIC programs.) For
example, to have access to all four units, you would use this decla
ration:

USES {SU wild.code} WILD.

4-4

{$U dir.info.code} DIR INFO.
{$U sys.info.code} SYS_ INFO.
{$U file.info.code} FILE_ INFO;

You can then call the routines these units contain from your pro
grams. Here are the interface sections of the four file manage
ment units with embedded comments. The routines are described
in detail throughout the rest of this chapter.

Unit Interface

Unit Wild;

Interface

Type

D PatRecP = D_ PatRec;
D PatRec = Record

CompPos. { starting position of pattern in subject string}
CompLen. { length of pattern in subject string}
WildPos. { starting position of pattern in wild string}
Wild Len : Integer; { length of pattern in wildcard string}
Next: D PatRecP; { next pattern }

End; { D_ PatRec}

Function D Wild_ Match(Wild. Comp: String; Var PPtr: D_ PatRecP;
Plnfo: Boolean) : Boolean;

{ Compares two strings (one containing wildcards) and returns true if they match. Includes
information about pattern matching that occurred if re quested (by Plnfo) }

4-5

Unit Interface

Interface
uses

1*5U WILD.CODE*I wild;

Type

4-6

D DateRec = Packed Record
Month : 0 .. 12;
Day: 0 .. 31;
Year : 0 .. 100;

~;nd;

D NameType = ID Vol, D Code, D Text, D Data, D SVol, D Temp, D Freel;

D_ Choice = Set of D l':ameType;

D ListP = D List;
D_ List - Record

End;

D .Unit: Integer; { Unit # of entry}
D Volume : String[7];
D _ VPat: D PatRecP;
D :\extEntry: D ListP;
Case D IsBIkd: Boolean Of

True : ID Start,

{ volume name of unit}
{ volume pattern info}
{ :'Iiext entry in list}

{ Starting block of entry}
Length: Integer; { Length lin blocks) of entry}

NameTypeOf Case D Kind : D
D Vol, { Everything but D Free}
D Temp,
D Code,
D Text,
D Data,
D SVol: ID Title: String[15];{ File name}

D_ FPat : D PatRer P; { name pattern info}
D Date: D DateRec; { File date}
Case D :\ ameType of { N of files on vol }

D Vol: (D :'IiumFiles: Integer)));

D_ Result = ID Okay, { Mission accomplished}
D :'Iiot_ Found, {Couldn't find name and/or type}
D Exists, { Name already exists; no name change made}
D l':ame Error, {Illegal string passed}
D Off Line, { Volume not on line}
D Otherl; { Miscellaneous error}

Function 0 __ Oir ListlO Name: String; 0 _ Select: O_ Choice;
Var 0 ._ Ptr: 0 ListP; D_ PInfo: Boolean) : 0 Result;

{ Creates pointer to list of names of specified N ameTypes
(0_ Select!. matching specified I}_Xame (wildcard characters allowed). Includes

information about pattern matching that occurred if requested Iby 0 PInfo) I

Function 0 Scan_ Title(O Name: String; Var 0 .Volume.O Title : String;
Var o Type : D __ !l:ameType; Var D Segs : Integer): 0 Result;

{ Parses D Name}

Function 0 Change. >'irune(D OldXame. 0 ._ NewName : String; D RemOld : Boolean)
: 0 Result;
{ Changes file name in 0 OldName to name in D.-,'\'ewNanle. removing already existing
files of name in D ~ewNrune if D RemOld is set I

Function 0 .Change .J)atelD_ ,'\'rune : String; 0 _ NewDate : D DateRec; D Select:
D Choice): D _ Result;
{ Changes date of directory or file nrune in D. Xame to date specified by D SewDate.
D Name may contain wildcards I

Function O_ Rem Files (D_ l"ame : String; 0 Select: D . Choice) : D Result;
{ Removes file of specified name (wildcards allowed) I

Procedure D .. Lock:
Procedure D. _Release;
{ Provide means to limit use of Dirinfo routines to one task at a time in multi-tasking
environments I

Function 0 Krunch (D _ Unit.
D Block: Integer) : O_ Result;

{ Collects all unused space on a volume around D _Block. This unit must not be in use
when this operation is performed. }

Function 0 J\10unt (0 File--,"iame: String) : 0 Result;
Function D.-DisMount (D Vol. J"Iame : String) : 0 Result;
{ Provides a means of mounting and dismounting subsidiary volumes. Wild cards may be
used. }

4-7

Unit Interface

Unit Sys_Info;

Interface

Type SI Date Ree = Packed Reeord
Month : 0 .. 12;
Day: 0 .. 31;
Year: 0 .. 99;

End; {SI Date Ree}

Procedure SI Code_ Vid (Var SI Vol : String);
{ Returns name of volume containing current work file code}

Procedure SI. Code_ Tid (Var SI Title : String);
{ Returns title of current work file code}

Procedure SI Text_ Vid (Var SI Vol: String);
{ Returns name of volume containing current workfile text}

Procedure SI Text Tid (Var SI Title: String);
{ Returns title of current work file text}

Function SI Sys_ Lnit: Integer;
{ Returns number of bootload unit}

Procedure Sl Get Sys Vol (Var SI Vol: String);
{ Returns system volume name}

Procedure SI Get Pref Vol (Var SI Vol : String);
{ Returns prefix volume name}

Procedure SI Set Pref Vol (SI. Vol: String);
{ Sets prefix volume name}

Procedure SI Get Date (Var SI_ Date: SI Date Hee);
{ Returns current system date}

Procedure SI Set Date (Var SI Date: SI Date Ree);
{ Sets current system date}

4-8

Unit Interface

Unit File. Info;

Interface

Type F _ File._ Type = file;
F Date Rec = Packed Record

Month: 0 .. 12;
Day:0 .. 31;
Year: 0 .. 100;

End; {F Date. Rec}

Function F Open (var fid: F File Type):boolean;

(* returns true if the file is open and false if not open *)

Function F ~ength (Var Fid: F File Type): Integer;

{Returns the length of the file attached to the Fid identifier.
If the file is not opened result is returned as zero}

Function F Unit-Ilumber (Var Fid: F _ File_ Type): integer;

{Returns the unit containing the file attached to the Fid
identifier. I f there is no file opened to Fid. the function
result is Zero.}

Procedure F . .. Volume (Var Fid: F File_ Type;
V ar File_ Volume: String);

{Returns the name of the volume containing the file attached
to the Fid identifier. If there is no file opened to Fid.
the file. volume is set to a null string. }

Procedure F _ File_ Title (Var Fid: F .. _File. Type;
(Var File. Title: String);

{Returns the title (with suffix) of the file attached to the
Fid identifier. If there is no file opened to Fid.
the File title is set to the null string.}

Function F _ Start (Var Fid: F . File Type): integer;

{Returns the block number of the first block of the file
attached to the Fid identifier. If there is no file opened
to Fid. the function result is returned is zero.}

4-9

Function F is Blocked (Var Fid: F File Type): Boolean;

{Returns a boolean that is TRUE if the file attached to the Fid identifier is located on a
block-structured unit. If there is no file opened for the Fid or if the device is not block
structured. the function result is set to false.}

Procedure F Date (Var Fid: F File Type;
Var File Date: F D~t.. Rec);

{ Returns a record indicating the last access date for the file
attached to the Fid identifier. If there is no file opened to
Fid. the File Date is unchanged.}

DIRECTORY INFORMATION

This section describes the directory information unit, called
DIR_INFO, which enables your programs to access file system
information.

Many of your applications may need to access and modify direc
tory information. This unit makes it easy to perform most of
these sorts of operations. There are other ways to do this. The ~

most common solution is to construct your own routines that
directly access the operating system's data structures. However,
the interfaces provided by this unit make directory information
access much safer and easier.

4-10

The DIR_INFO unit provides the following capabilities to your
programs:

• Directory Information Access. For anyon-line storage vol
ume, D IR_INFO returns the volume name, volume date,
number of disk files on volume, amount of unused space,
and attributes of individual disk files.

• Directory Manipulation. DIR_INFO provides routines for
changing the date or name of a disk file or volume, removing
files from a volume, and mounting and dismounting subsid
iary volumes.

• File Manipulation. DIR_INFO allows you to Krunch a vol
ume in a similar fashion to the Filer.

• Wild Cards. DIR_INFO uses the UNIT WILD, which pro
vides a wild card convention for pattern matching of string
variables. Most DIR_INFO routines recognize the wild
card convention in their file name arguments.

• Error Handling. DIR_INFO defines a standard error result
(similar to UCSD p-System I/O results) for routines
involved with file names and directory searches.

• Multi-tasking Support. DIR_INFO provides routines for
protecting file system information from contention between
concurrent tasks. These routines ensure that only one task
can modify file system information at a time.

Notation and Terminology

In this chapter, a variant of Extended Backus-Naur Form
(EBNF) is used as a notation for describing the form of
wild cards and file names. Meta-words are words that
represent a class of words; they are shown in the text by
the use of angle brackets < \ >. The following expression
is an example:

< fish> = trout I salmon I tuna

4-11

The equal sign indicates that the meta-word on the left
side can be substituted with the word on the right side.
The bar W separates possible choices for substitution. In
this example, fish can be replaced by trout, salmon, or
tuna.

An item enclosed in square brackets [\] may be substi
tuted into a textual expression. For example,
[micro]computer can represent the text strings computer
and microcomputer.

An item enclosed in braces {\ } can be substituted zero or
more times into a textual expression. The following
expression represents responses to jokes possessing
varying degrees of humor.

< joke-response> = {hal

Literal occurrences of characters or strings of characters
are delimited by quotes to avoid confusing them with
notational definitions. For example:

left-bracket = "< " / "{" / "["

The term < file-object> is used throughout this chapter;
it is a generic term encompassing communications and
storage volumes, files, and unused areas on storage
volumes.

File Name Arguments

4-12

Most DIR_INFO routines accept file name arguments.
The file name specifies the volume and/or file to be
accessed by the routine. You should see the UCSD p-Sys
tem Operating System Reference Manual, TI Part Num
ber 2232395-0001, for a complete description of UCSD p
System files and file names if you are not familiar with
them.

Volume names and file names can contain wild cards
(which are described in the next section). Device numbers
and colons separating volume IDs and file names must
appear literally; they must be independent of any wild
card.

All DIR_INFO routines except D_Sc~Title ignore
file length specification. In some cases, file name conven
tions in DIR_INFO differ slightly from UCSD p-System
file name conventions:

• DIR_INFO considers an empty volume ID/file
name argument to specify the prefix volume; that is,
< file name> is empty (implying a volume refer
ence), and < volume-ID> is empty (implying the
prefixed volume). An empty string is not a valid file
name in the p-System.

• DIR_INFO interprets wild card file names of the
form < vol-name>:= to be valid volume specifiers.
This is consistent with DIR_INFO's definition of
the (=) wild card, but inconsistent with the UCSD
p-System filer's interpretation of the (=) wild card.
The filer does not accept file names of this form as
volume specifiers.

File Type Selection

Some DIR_INFO routines accept a < file-type> parame
ter (named D_SELECT) which is used to specify the file
objects to be accessed. (File objects include volumes,
unused areas on storage volumes, temporary files, text
files, code files, and other types of files.) The file type
parameter is necessary because file names alone cannot
completely specify all types of file objects (such as
unused disk areas). The routines that generate directory
information use both the file name argument and the
D_SELECT parameter to determine the file objects on
which to return information.

4-13

4-14

DIR_INFO defines a scalar type, which is used to spec
ify file objects. D_SELECT is declared as a set of this
type; a file object is selected by including its correspond
ing scalar in D_SELECT.

File object types:

D_NameType = (D_Vol, D_Code, D_Text,
D_Data, D_SVol, D_Temp,
D_Free);

= Set Of D_NameType;

Here is a description of these scalar values:

• D_ Vol-Selects all volumes matching the file name
argument. Note that while volume names can con
tain wild cards, device numbers must be specified
literally.

• D_Free-Selects all unused areas of disk space on
the volumes matching the file name argument.

• D_Temp-Selects all temporary files matching the
file name argument. Files are considered temporary
if they have been opened-and not yet closed-by a
program.

• D_Text-Selects all text files matching the file
name argument.

• D_Code-Selects all code files matching the file
name argument.

• D_Data-Selects all data files matching the file
name argument.

• D_SVol-Selects all svol files matching the file
name argument.

File Dates

Disk files and disk volumes are assigned < file-dates> .
File dates are stored in records of type D_Date_Rec.
They are accessed and modified by the D IR_INFO
routines D_Dir_List and D_Change_Date.

D_Date_Rec is declared as follows:

D_ DateRec = Packed Record
Month: 0 .. 12;
Day: 0 .. 31;
Year: 0 .. 100;

End;{ D_DateRec}

A year value of 100 in a file date record indicates that the
object is a temporary disk file. (This is a UCSD p-System
file system convention.)

Error Results

All DIR_INFO routines that access file system informa
tion return a value reflecting the result of the file system
operation. This result indicates either that the routine fin
ished without errors or that an error occurred. Valid infor
mation is not returned when routines return a result
value indicating that an error has occurred.

The following items describe conditions that can cause
errors:

• The specified files, volumes, or unused spaces can
not be found in the disk directory.

• The specified unit is off-line.

• The file name argument has improper syntax.

• The specified file name conflicts with an existing
file.

4-15

An error never causes a function to terminate abnor
mally. Errors that the routine cannot identify explicitly
are flagged. This is done by returning a result that indi
cates an unknown error has occurred.

DIR_INFO defines the following scalar type to describe
the possible errors encountered:

Type D_ Result = (D_ Okay,
D_Not_Found,
D_Exists,
D_N arne_Error,
D_Off_Line,
D_ Other);

You should refer to the descriptions of the various
routines for details concerning the results of errors and
the status of directory information returned during error
conditions.

The DIR_INFO Routines

4-16

Function D_Krunch
(D_Vnit:integer; D_Block:integer):
D_Result;

This function Krunches the files on the volume specified
by D_Vnit. This is similar to the filer's K(runch activity.
The block indicated by D_Block is the point around
which the unused disk space is consolidated. Files located
before D_Block are moved forward (toward the direc
tory) and files after it are moved backward (toward the
last track).

CAUTION

Using D_Krunch on a volume that contains
an executing or open file (including the operat
ing system) may destroy the files. If function
D_Krunch changes the location of an open or
executing file, the system returns data to the
previous-not the present-location of the file.

Function D_Mount
(D_File_Name:String):D_Result;

The D_File_N ame parameter identifies an svol file. The
corresponding subsidiary volume is mounted unless
D_Result indicates otherwise. Wild cards may be used.

Function D_DisMount
(D_ VoLName:String):D_Result;

The subsidiary volume identified by the D_ VoLN ame
parameter is dismounted. This volume must be a subsid
iary volume.

Function D_Sclln-Title
(D_NAME:String; Var D_ VOLUME,
D_TITLE: String; Var D_TYPE:
D_NameType; Var D_SEGS:
Integer): D_Result;

D_Sclln-Title parses the UCSD p-System file name
passed in D_NAME and returns the file name's volume
ID, file name, file type, and file length specifier. The func
tion result indicates the validity of the file name argu
ment. D_Scan Title does not determine whether or not
D_Name actually exists.

D_Sclln-Title accepts the following parameters.

4-17

4-18

•

•

•

•

D_NAME-A string containing a UCSD p-System
file name.

D_ VOLUME-A string that returns the volume
ID contained in D_NAME. If D_NAME contains
no volume ID or if the volume ID is (:),
D_VOLUME is assigned the system's default vol
ume name. If the volume ID is (*) or (*:),
D_ VOLUME is assigned the system's boot volume
name. Volume names assigned to D_VOLUME
contain only uppercase characters and do not con
tain blank characters.

D_TITLE-A string that returns the file name
contained in D_NAME. If D_NAME does not
contain a file name, D_TITLE is assigned the
empty string. File titles assigned to D_TITLE con
tain only uppercase characters and do not contain
blank characters.

D_TYPE-A scalar which returns a value indicat
ing the file type of the file name contained in
D_NAME.

The following items define D_TYPE's scalar type:

• D_NameType = (D_Vol, D_Code, D_Text,
D_SVol, D_Data, D_ Temp, D_Free,);

• D_ TYPE is set to D_ V 01 if the file name in
D_NAME is empty. D_TYPE is set to D_Code if
the file name is terminated by .CODE or to D_Text
if the file name is terminated by . TEXT or .BA CK.
D_TYPE is set to D_SVOL if the file name ends
with .SVOL (a subsidiary volume). If none of the
above holds true, D_TYPE is set to D_Data.
Only the suffix of a file is used to determine
what type it is. For example, the file name
SYSTEM.COMPILER is returned as a data file
because its suffix is not .CODE.

D_SEGS-An integer that is assigned a value indicating
the presence of a file length specifier in D_NAME. The
value returned in D_SEGS is assigned as follows:

LENGTH SPECIFIER

[< number>]

[*]
< not present>

<number>

-1
o

D_Scan_Title returns a function result of type
D_Result. The only scalar values returned by
D_ScaIL-Title are D_Okay and D_Name~rror; they
have the following meanings:

• D_Okay-No Error. All information returned by
D_ScaIL-Title is valid.

• D_Name_Error-Illegal file name syntax in
D_NAME. The information returned by
D_ScaIL-Title is invalid.

Example Program

Program Scan Test;
Uses

I*$UWILD.CODE*)
wild.
(*$UDIR.INFO.CODE*)
Dirinfo;

Var
~ame.

Volume.
Title: String;
Typ: D. NameType;
Seg Flag : Integer;
Result : D Result;
Ch: Char;
Begin {Scan Test}

Writeln('- D ScanTitleTest');

4-19

4-20

Repeat
Writeln;
Write I'File name to parse: 'I:
Readln INamel;
Result:= D ScanTitlelName, Volume, Title,

Typ, Seg Flagl;
Writeln I'parsed: 'I:
case result of
d okay:begin

Writeln I' Volume name - " Volumel:
Writeln I' File name - " Titlel:
Write I' File type - 'I:
Case Typ Of

D_ Text: Writeln I'text file'l:
D_ Code: Writeln I 'code file'l:
D_ Data : Writeln I'data file'l:
D_ SVol: Writeln I'svol file'!;

End; { Cases-}--

If Seg Flag < > 0 Then
Writeln I' Segment flag - ',Seg Flagl:

end:
d_ name_ error:writeln I' Name error'l:
end; --

Writeln;
Write I'Continue? 'I:
ReadlChl:
Writeln;

Until Ch In ('n', 'N']:
End. { ScaIL-Test }

Function D_Dir_List
(D_NAME:String; D_SELECT : D_Choice;

Var D_PTR : D_ListP;
D_PINFO : Boolean) : D_Result;

D_Dir_List creates a list of records containing direc
tory information on volumes and disk files. This informa
tion includes volume names and device numbers of
storage and communications on-line volumes, numbers of
files on storage volumes, lengths and starting blocks of
disk files and unused disk spaces, file names and types,
and file dates. The function result value indicates invalid
file name arguments, off-line volumes, or not-found files.

D_Dir_List optionally provides information describing
how the wild card file name argument matched files
and/or volumes.

D_Dir_List accepts a set specifying the file types on
which to return information and a string containing a file
name. D_Dir_List returns a pointer to a linked list of
directory information records. Each record contains the
name of a file or volume which matches the file name
argument and also is one of the types specified in the file
type set.

• D_NAME-The D_NAME parameter contains a
file name which can contain wild cards.

• D_SELECT-The D_SELECT parameter is a set
specifying the directory objects for which informa
tion is to be returned by D_Dir.-List. See the file
type selection for more information on directory
object selection.

• D_PTR-The D_PTR parameter is assigned a
pointer to a linked list of records containing direc
tory information for all specified file objects. To be
listed in a directory, a file object must meet the fol
lowing criteria:

It must reside on a volume which matches the
volume ID in D_NAME.

-If the object is a disk file, it must match the file
IDinD_NAME.

4-21

4-22

- It must belong to one of the types included in
D_SELECT.

The linked list contains one record for each file object
matched. The records are defined as follows:

D ListP = D List;
D List = Record

D Unit : Integer;
D Volume: String [7[;
D VPat: D PatRecP;
D NextEntry: [) ListP;
Case D IsBlkd: Boolean Of

True: ID Start,
OI,ength: Integer;
Case [) Kind :~"iameType Of

[) Vol,
D Temp,
D . . Code,
D Text,
D Data,
D .SVol:

End;

ID Title: String [15[;
D FPat: D PatRecP;
D Date: D DateRec;
Case D N ameType of
D Vol:ID NumFiles:Integer)));

The D_List record fields return the following informa
tion for each file object in the D_Ptr list.

• D_Unit returns the device number of the device
containing the object.

• D_ Volume returns the name of the volume contain
ing the object.

• D_ VPat is a pointer to pattern matching informa
tion collected while comparing volumes to the vol
ume ID in D_NAME (see the section on the wild
unit for details on pattern matching information).
D_ VPat is set to NIL if pattern matching informa
tion is not requested.

• D_NextEntry is a pointer to the next directory
information record in the list. It is set to NIL if the
current record is the last record in the list.

• D_IsBlkd is set to true if the file object is (or
resides on) a storage volume. Records describing
serial volumes have D_IsBlked set to false; the
remaining fields are undefined.

The following fields exist only in records describing file
objects stored on storage volumes (that is, D_IsBlkd is
TRUE):

• D_Start contains the starting block number of the
file object. If the object is of type D_ Vol, this value
is interpreted as the block number of the first block
on the volume (that is, 0 for disk volume).

• D_Length contains the length (in blocks) of the file
object. If the object is of type D_ Vol, this value is
interpreted as the total number of blocks on the vol
ume (such as 320 for a typical single density, 51f4-
inch diskette.)

• D_Kind indicates the type of the file object
described by the current record.

4-23

4-24

The following fields exist only in records describing disk
file objects other than unused disk areas (such as
D_Kind in [D_Vol, D_Temp, D_Code, D_Text,
D_Data, D_SV 01]):

• D_Title contains the file name of the object. For
objects of type D_ Vol, this field contains the empty
string.

• D_FPat is a pointer to pattern matching informa
tion collected while comparing file names to the file
ID in D_NAME (see wild card UNIT for details on
pattern matching information). D_FPat is set NIL
if pattern matching information is not requested or
if the file ID in D_NAME is empty.

• D_Date contains the file date for the current
object.

• D NumFiles is valid only for objects of type
D_ Vol; it contains the number of files in the vol
ume's directory.

NOTE

An .SVol file (which contains a subsidiary vol
ume) appears as any other file on the principal
volume. This means that D_NumFiles does
not correspond to an .SVol file. However, when
accessed by its volume ID, the actual subsid
iary volume returns with a valid D_NumFiles
entry.

File information is returned (in a linked list accessed by
D_Ptr) in the following order:

1. Volume on highest numbered device that matches
D_NAME (if D_ Vol is in D_SELECT)

2. Files in directory of this volume that match
D_NAME and are of one of the types in
D_SELECT (if a file type is in D_SELECT)

Last file on volume

First file on volume

3. Unused spaces on this volume (if D_Free is in
D_SELECT)

Last free space on volume

First free space on volume

4. V olume on lowest numbered device that matches
D_NAME (if D_ Vol is in D_SELECT)

5. Files in directory of this volume that match
D_NAME and are of one of the types in
D_SELECT (if a file type is in D_SELECT)

Last file on volume

First file on volume

6. Unused spaces on this volume (if D_Free is in
D_SELECT)

Last free space on volume

First free space on volume

4-25

D_PINFO

4-26

When set to TRUE, the D_PINFO parameter indicates
that pattern matching information should be returned
in a linked list accessed by D_PTR. The
D_ WILD_MATCH function collects this information
while comparing volume and file IDs; it is useful for
determining how the wild cards were expanded in
D_NAME. Information is returned in two pointers; one
for volume names matched (named D_ VPat) and one for
file IDs matched (named D_FPat).

The following is an example of pattern record lists:

D_NAME is set to '= :TEST{I-9}='
Two volumes contain files which match D~AME:

BOOT contains TEST5.CODE

WORK contains TEST5.TEXT

For BOOT:TEST5.CODE, D_ Volume is BOOT,
D_Title is TESTS. CODE, and D_VPat returns a
pointer to the following information.

1. WildPos is I, WildLen is 1
CompPos is 1, CompLen is 4
(' =' matches 'BOOT')

D_FPat returns a pointer to the following information.

1. WildPos is 1, WildLen is 4
CompPos is I, CompLen is 4
('TEST' matches 'TEST')

2. WildPos is 5, Wild Len is 5
CompPos is 5, CompLen is 1
('{l-g}' matches '5')

3. WildPos is 10, WildLen is 1
CompPos is 6, CompPos is 5
('=' matches '.CODE')

A similar list is returned for WORK:TEST5.TEXT.

NOTE

If the volume ID in D_NAME consists of a
device number (such as #5), the volume
assigned to the device is defined to match the
volume ID in D_NAME. The Pos and Len
pointers are set as in the following example.

D_NAME is set to "#5:"

A disk volume named MYDISK resides in device 5.

1. WildPos is 1, WildLen is 2
CompPos is 1, CompPos is 4
('#5' matches 'MYDISK')

NOTE

D_FPat and D_ VPat never contain invalid
information. If information is unavailable or
has not been requested, the pointers are set to
NIL.

4-27

4-28

Function Result

D_Dir_List returns a value of type D_Result.
D_Dir_List can return all scalar values defined in
D_Result except D_Exists; the values have the follow
ing meanings:

• D_Okay-No error. All D_Ptr infurmation is
valid.

• D_Not_Found-No such file/volume found. No
match found for D_NAME. D_Dir_List sets
D_Ptr to NIL.

• D_Name_Error-Illegal syntax in D_NAME.
D_Dir_List sets D_Ptr to NIL.

• D_OffLine-Volume off-line. The volume specified
by D_N AME was not on-line. This error occurs
only when the volume ID in D_N AME does not
contain wild cards (that is, a single volume is speci
fied, and it is off-line). If the volume name in
D_NAME contains wild cards but does not match
anyon-line volumes , D_Dir_List returns
D_Not_Found. D_Ptr is set to NIL.

• D_Other-Unknown error. D_Dir encountered an
error it could not identify, but which interrupted
normal execution of the function. D_Ptr is set to
NIL.

Example Program

The following program is a general purpose directory
lister; it accepts a string containing wild cards and
creates a list of matching files and (if requested) pattern
matching information for the files. Note that the program
uses the MARK and RELEASE intrinsics to remove the
D_Dir_List information from the heap after the infor
mation has been used.

Program Listtest;
Uses

(*$UWILD.CODE*)
wild,
(*$UDIR.INFO.CODE*)
Dirnfo;

Var
Select: D_ Choice;
Want_ Patterns: Boolean;
Heap_ Ptr: Integer ;
Segs : Integer;
Typ: D-.NameType;
Volume, Title, Match: String;
Result: D_ Result; -
Ch: Char;
Ptr : D~istP;

Procedure GiveChoice(Choice : String ;
Kind: D_ Choice); --
Var

Ch: Char;
Begin

Write (' ' ,Choice.'? 'I;
Read (Ch); Writeln ;
Ch In ('y ', 'Y') Then Select:= Select + Kind;

End; { GiveChoice }

Procedure Print_ Patterns(PatPtr : D_ PatRecP;
Comp, Wild : String);
Var
Count: Integer;

Begin { Print_ Patterns}
Count:= 1;
Writeln ('type < cr> for patterns');
Readln ; Writeln ; - -- ---
Repeat

Writeln ('Pattern " Count, ' :');
with PatPtr Do
Begin

Writeln (' Comp : " Comp);
If CompLen <> 0 Then
Write ("":(CompPos + 9));
If CompLen > 1 Then Write ("":(CompLen -- 1));
Writeln;
Writeln (' Wild: " Wild);
Write ("":(WildPos + 9));
If Wild Len > 1 Then Write (,A ':(WildLen -- 1));
Writeln ; Writeln : E;a;-- ---

PatPtr := PatPtrA.Next:
Count:= Count + 1;
Until PatPtr = Nil
End; { Print_ Patterns}

4-29

4-30

Procedure Print Info(Ptr: D ListP);

Begin { Print_ Info}
Repeat

with Ptr Do
Begin

If 0 _ IsRlkd Then
Case 0 Kind Of

D Free: Write ('Free space on 'I;
D Vol; Write ('Volume ' I;
D Temp; Write ('Temporary file on 'I;
D 5ext: Write I'Text file on 'I;
D Code: Write ('Code file on 'I;
o Oata : Write ('Data file on ' I;
D SVol: Write ('SVol file on 'I;

End{ Cases [-
Else

Write ('Communications volume 'I;
Writeln (0 Volu me);

If Want Patterns And ID _ VPat < > 1\il) Then
Begin

Writeln ;
Writeln I' Volume p atterns:');

Print ~ Patterns(O VPat, D Volume, Volume);
End;

Writeln (' Unit number ',0 Unit);
If 0 IsBlkd Then

Begin
IfNot(D KindIn[D Vol , D Free[IThen

Writeln I' File name ' ,D Title);
If D Kind < > 0 Free Then

Begin
If Want Patterns And ID FPat < > Nil) Then

Begin
Writeln I' File name patterns;');
Print PatternslD FPat, 0 Title, Title);

End;
With D. Date Do

Writeln (' File date
Month, " , Day, ' I ' , Year);

End; { If D Kind [
If 0 Kind = 0 Vol Then

Writeln I' Files on volume ... " DNumFiles);
Writeln (' Starting block ',0 Start);
Writeln I' File length ', D Length);

End; { If D IsBlkd}
End: { With Ptr"}

Writeln;
Write ('Type <cr> for rest of list ');
Readln ; Writeln ;

Ptr:= Ptr".D NextEntry;
Until Ptr = Nil

End; {Print Info}

Begin {D Test}
Repeat

Mark IHeap_ Ptr);
Select: = I);

Writeln I 'Directory Lister - 'I;
Write I'Volume and or file name to match: ");
Readln IMatch) ;
Write I'Return pattern matching information? Iy n) 'I;
Read ICh); Writeln ;

Want ___ Patterns:= Ch In I'y ' , 'Y' I;
I f Want Patterns Then
Result:= D ScanTitlelMatch. Volume. Title. Typ. Segs);

Writeln I 'Types I yin) : 'I;
GiveChoicel 'Directories '.ID Vol));
GiveChoicel 'Text Files '.ID._ Text));
GiveChoicel 'Code Files ' .ID_Code));
GiveChoicel 'Data Files ' . ID Data));
GiveChoicel'Temp Files ' . ID_ Temp));
GiveChoicel'Free Space '.ID_ Free));
GiveChoicel 'SVol Files '.ID_ SVol));
Result:= D ___ DirList(Match. Select. Ptr. WanL Patterns);
Writeln;
If Ptr < > Nil Then
Print .InfolPtr)
Else

Case Result Of
D __ Name_ Error: Writeln I' Error in file name');
D_Off_ Line: Writeln I' Volume off line');
D. __ Not_ Found : Writeln I' File not found ');
D_Other : Writel;;-j'Miscellaneous error ');

End; {cases}
Writeln;
Repeat

Write I'Continue? 'I;
Read (Ch); Writeln ;

Until Ch In l'n'.'N','y' ,'Y ');
Writeln;
Release IHeap _Ptr);
Until Ch In I'n '. 'N');
End_ { listtest }

Function D_Change_Name
(D_OLD_NAME, D_NEW _NAME: String;
D_REMOLD : Boolean) : D_Result;

4-31

4-32

D_Change_Name searches for the volume or file desig
nated by the file name contained in D_OLD.-NAME
and changes its name to the file name contained in
D_NEW _NAME.

D_Change_Name only changes one file name at a time,
and thus does not accept file names containing wild
cards; however, it can be combined with other Dir_Info
and wild card routines to create user-defined file name
changing routines that accept wild cards.

D_Change_N ame accepts the following parameters.

• D_OLD_NAME-A string containing the name
of the file to be changed. If the file name is invalid,
D_Change_Name returns D_Name_Error. Note
that wild card characters are treated literally.

• D_NEW_NAME-A string containing the
replacement file name. If the file name is invalid,
D_Change_Name returns D_Name_Error. Note
that wild card characters are treated literally.

• If D_OLD_NAME contains an empty file title,
D_Change_Name changes the name of the volume
specified by D_OLD_NAME to the volume name
in D_NEW_NAME; any file title in
D_NEW _NAME is ignored. If D_OLD_NAME
contains a nonempty file title, D_Change_Name
changes the name of the disk file specified by
D_OLD_NAME to the file title in
D_NEW_NAME; any volume name in
D_NEW_NAME is ignored. If the file ID in
D_NEW_NAME is empty, D_Change_Name
returns D_Name_Error.

• D_REMOLD-If set to TRUE, D_REMOLD
indicates that an existing file or volume designated
by the file name in D_NEW_NAME can be
removed in order to change the file name. If set to
FALSE, the presence of an existing file or volume
with the same name as D_NEW_NAME aborts
the name change, and D_Change_N ame returns
D-.Exists as a function result.

• D_Change_N arne returns a value of type
D_Result. D_Change_Name can return all scalar
values defined in D_Result; the values have the fol
lowing meanings.

D_Okay-No error. D_OLD_NAME was
found and its name changed.

D_Not_Found-No such file/volume found.
No match found for D_OLD_NAME. No
change made.

D_Exists-The name change was blocked by
the presence of an existing file with the same
name as D_NEW _NAME. No change made.

D_Name_Error-Illegal file name syntax in
D_OLD_NAME or D_NEW _NAME. No
change made.

D_Off_Line-Volume off-line. The volume
specified by D_OLD_NAME was not on-line.
No change made.

D_Other-Unknown. D_Change_N arne
encountered an error it could not identify. No
change made.

Example Program

The following program demonstrates how you might use
D_Change_Name.

4-33

4-34

Program chngtest:
Uses

(*SUW[LD.CODE*I
wild.
(*SUDlH.[NFO.CODE*1
Dirlnfo:

Var
HemOld : Boolean:
Old, i':ew: String:
Ch:Char: -

Rslt-:J) Result:
Begin {chngtest}

Writeln(,D ChangeName Test- 'I:
Repeat
Writeln:
\Vrite('Name to change: ');
Readln(Oldl:
Write(,New name: 'I:
Read ln(New);
Write(llemove existing files (if anyl of that name? Iy nil :
Head(Ch); Writeln:
RemOld : = Ch [n ['y ','Y'J:

CaseO Changel\'ame(Old, New, RemOld) Of
o Okay:Writeln(' No error');
D __ Off_ .Line :Writeln(' Volume off line'):
D Name Errnr :Writelnl' Error in file name');
D Not Found :Writeln(' File not found');
D._ Other :Writeln(' Miscellaneous error'l:
End: {cases-l-

Writeln:
Write('Continue? 'I:
Head(Chl:Writeln:
Until Ch [n I'n ' , 'N' I:

End. {chngtest l

Wild Card File N arne Change

D_Change_Name does not accept wild card file name
arguments; however, it can be combined with the pattern
matching information returned by D_Dir_List to
implement a wild card file name changing routine. (Note
that this routine must use directory locks in multi
tasking environments.)

For example, assume that you have the following files:

TESTl.TEXT
TEST12.CODE
TEST.DATA

You would like to change them to the following names:

OLDIA.TEXT
OLD12A.CODE
OLDA.DATA

This can be performed by using D_Dir~ist to search
for the file name TEST=. =. The pattern matching infor
mation returned by D_Dir....-List can be used to create
new file titles; in this case, TEST is replaced with OLD,
and the first = is replaced with the catenation of the pat
tern matched by the = and the literal string A. The part
of each file title matched by the period and the second =
wild card is unchanged. D_Change_N ame is called with
the modified file title for each file matched by
D_Dir_List.

Example Program

The following program demonstrates how you can use
D_Change_Name and D_Dir_List when constructing
a specialized file name changing utility. The program
accepts a file name argument containing two = wild
cards; for each file which matches the argument, the file
title is changed by swapping the string patterns matched
by the two = wild cards.

4-35

4-36

Program WildChng:

Uses
(*$UWILD.CODE*)
wild,
(*SUDIR.I:-;FO.CODE*)
DirInfo;

Var
Heap Ptr : " Integer:
Typ : 0 :-;ameTyp:
Segs : Integer:
Select: U Choice:
Volume, Name, Match :String:
Result : 0 Result : --
Ch :Char;
Ptr :-u:-ListP;

Procedure GiveChoice{Choice :String; Kind: D Choice):
Var ---

Ch :Char:
Begin

Write{ ' ',Choice, ' ? ' I;
Read{Ch);Writeln;
If Ch In I'y ', 'Y'I Then Select := Select + Kind;

End; [GiveChoice l

Procedure Print Patterns\PatPtr : D PatRecP:
Comp, Wild :String)

Var
Count: Integer:

Begin {Print Patterns l
Count := I ;

Writeln('type < cr> for patterns ');
Readln:Writeln: -------

Repeat
Writeln{ 'Pattern " Count , ' :'):
With PatPtr" Do

Begin
Writeln{ Comp : " Comp);
If CompLen <>0 Then
Write{ ' '' ':{CompPos +9));

If CompLen 1 Then Write{ " ':(CompLen - I)) ;

Writeln:
Writeln(' Wild: , Wild) ;
Write{ ' '' ':{WildPos + 9)) ;

If Wild Len > 1 ThenWrite{ ' '' ':{WildLen - I));

Writeln ;Writeln;
End: -

PatPtr := PatPtr" .Next :
Count := Count + I:
Until PatPtr =,\;il
End: {Print Patterns}

Procedure Print InfolPtr : D ListP; Want Patterns :Boolean;
Volume, Name :String;
Begin {Print Info}

Repeat
Writelnl'MATCHED FILE -'I;
With Ptr Do

Begin
Write{D Volume, ':'1;

If D ~lkd Then
If LengthlD Titlel> 0 Then

Write(l) Titlel;
Writeln;

If Want Patterns And ID VPat < > I Then
BegIn

Writeln;
Writelnl' Volume patterns:'I;

Print Patterns(D VPat, D Volume, Volumel;
End;

If D I sBlkd Then
If WanL Patterns And ID_ ~FPat < > NilJ Then
Begin

Writelnl' File name patterns: 'I;
Print PatternslD FPat. D Title, Namel;

End;
End { With Ptr"}
Writeln;
Write('Type <cr> for rest of list 'l;
Readln; Writeln;

Pt~tr".D .. NextEntry;
Until Ptr = Nil

End; {Print Info}

Procedure Change(/'tr: D ~ ListP;]\;ame :Stringl;
Var

I. Pos 1. Len I, Pos2, Len2, Last Pos,
Mid_ Pos. Last Equal : Integer;
Patl. Pat2. Title, \;ew: String;

Procedure Find . EqualiD~ Title. ,,"arne: String;
Var PatPtr: D _ PatReeP; ---
Var Pat; String;
Var Pos, Len; Integer;

Begin {Find Equal I
While (Name!PatPtr" .WildPos] <> ='1 And

iPatPtr" ~Next <> Nill Do
PatPtr:= PatPtr".Next:

With PatPtr"Do
Begin
If CompL('n - () Then Pat

Els(' Pat ; =~iD_ Title. CompPos, CompLenl:
Pos:= CompPos;
Len: CompLen;

End;
End; { Find_ Equal I

4-37

4-38

Begin { Change }
With Ptr"Do
Begin

Find EqualiD Title, Xame, D FPat, Patl. Posl. Lenl) ;
If DFPat <> \'il Then

Begin
D FPat:= D FPat" .Xext;
Find. Equal(D Title, Xame, D. FPat, Pat2, Pos2, Len2);

New:= D Title:
LasL Pos : 1'052 + Len2:
:'. lid _.Pos:= Posl + Len2:
Last Equal:= Last Pos - LenI:
For 1:= Posl To1\lid POS - I Do: 1st ' = ' :

Ncwlll:= l'at211 Posl + I I:
For I := Mid I'os To Last. Equal I Do

:\'ewlll:= D Titlell - Len2 - Len I I:
For I := Last Equal To Last.. .1'05 - 1 Do : 2nd ' = ' }

Newlll:= Patlll - Last . Equal-I I:
Xew:=ConcatlD __ Volume, ':', Newl:

Title:= ConcatiD Volume, ':', DTitlel :
Result :- D_ ChangeNamclTitle, New,Truel:
WriteITitle, ' >', Newl:
Case Result Of --

D . Name .Error :Writel' Error in file name'l:
D Off Line :Writel' Volu me off line'l:
D . Not Found :Writel ' File not found 'l:
D. Other :Writel' Miscellaneous error '):

End: : cases}
Writeln :

End; { if D FPat:
End: : with:

End: : Change}

Function DisplaylS, Match , Volume, Name :String:
Select : D . Choice) : D. ListP:

Var
Ch :Char:
Ptr : D ListP:
Want Patterns: Boolean:
Resu lt: D Resul-t:---

Begin { Display l
Writeln:WritelnIS):
Writel ' Display pattern matching information? 'I:
ReadICh):Writeln:

Want Patterns := Ch In I'y' , 'Y'I:
Result: = D_ DirListll\latch. Select. Ptr.True):

If Ptr < > Nil Then
PrinL . InfoiPtr. Want_ Patterns. Volume. Name)

Else
Case Result Of

D Name Error :Writelnl ' Error in file name'):
D_ Off _ Line :Writelnl ' Volume off line'):
D Not_ Found :Writelnl ' File not found '):
o Other :Writeln(' Miscellaneous error '):

End: {cases}
Display: = Ptr:

End: { Display}

Begin { WildChange }
Writeln:
Repeat
Mark(Heap _Ptr):
Select : = II:
Write('File title to match (must contain two "= "): '):
HeadlnIMatch):
Result:= D . .8canTitleIMatch. Volume. Name. Typ. Segs):
Writcln('Types I yn J: '):
GiveChoice('Directories'.ID_ Vol)):
GiveChoice('Text Files '.ID_ Text)):
GiveChoice('Code Files ' .ID_ Code)):
GiveChoicel'Data Files '.ID Data)):
GiveChoice('SVol Files ' .ID_ SVol)):
Ptr:= Displayl 'Old Files :'. Match. Volume. 1\:ame. Select):
If Ptr < > l'\il Then

Begin
Repeat
Changel Ptr.N arne):
Ptr := Ptr".D_ NextEntry;
Until Ptr = Nil:

Write('Redisplay files? '):
HeadICh):Writeln:

IfCh In I'y ' . 'Y'I Then
Ptr: = Display('New Files :'. Match.

Volume. Name. Select):
End:
Writeln:
Repeat

Writel'Continue? '):
Read(Ch):Writeln:
Until Ch In l'n'.'N'.'y '.'Y'J:
Writeln:
ReleaseIHeap_ Ptr):

Until Ch In I'n ' . 'N'I:
End. { WildChng }

4-39

4-40

Function D_Change_Date
(D_NAME : String;
D_NEWDATE : D_DateRec;
D_SELECT : D_Choice) : D_Result;

D_Change_Date changes the file date of volumes and
files whose names match the file name argument con
tained in D_NAME. D_Change_Date accepts wild
cards in its file name argument. If a volume date is
changed, only the disk is updated. The disk must be
rebooted if the new date is to be used. To change the inter
nal date, which will appear when D(ate is used in the filer,
use the date access procedures within the SYS.INFO
unit.

D_Change_Date accepts the following parameters.

• D_NAME-A string which contains a valid file
name. The file name may contain wild cards.

• D_NEWDATE-A record of type D_DateRec
which contains the new date. A year value of 100 is
not accepted by D_Change_Date in a new date.

• D_SELECT-A set of file and/or volume. All scalar
types except D_Free and D_Temp apply to
D_Change_Date. Disk free spaces identified by
the D_Free scalar do not contain file dates. Tempo
rary status for files is specified by a special value in
the file date field. Thus, D_Free and D_Temp are
ignored if they are included in D_SELECT.

D_Change_Date returns a value of type D_Result.
D_Change_Date can return all scalar values defined in
D_Result except D_Exists; the values are described in
the following items.

• D_Okay-No error. D_NAME was found, and
D_NEWDATE was written to the directory for the
specified file or disk volume.

• D_Not_Found-No such file/volume found. No
match found for D_NAME. No change made.

• D_Name_Error-Illegal syntax in D_NAME. No
change made.

• D_Off~ine-Volume off-line. The volume speci
fied by D_NAME was not on-line. No change
made. This error occurs only if the volume ID in
D_NAME specifies a single volume which is off
line. If the volume name in D_NAME contains wild
cards and does not match anyon-line volumes,
D_Change_Date returns D_Not_Found.

• D_Other-Unknown error. No change made.
D_Change_Date encountered an unidentified
error which prevented successful completion of the
operation.

Example Program

The following program demonstrates the use of
D_Change_Date.

4-41

4-42

Program Date~ Test;
Uses
I"SUWILD~CODE")

wild,
I"SUDI R~I:'IIFO~CODE")
DirInfo;

Var
l{esuIt : D I{esult;
Ch :Char;
:\1, D, Y : Integer;
"IewDate : D ~ DuteHec;
Select : D Choice;
FileName :String;

Procedure Gi\'eChoirelChoice :String; Kind : D~ ~ _Choice);

Var
Ch :Char;

Begin
Write(' ' ,Choice, '? 'I;
HeadICh);Writeln;

IfCh In ['y', 'Y'] Then Select:= Select + Kind;
End: : GiveChoice :

Begin { Date_ Test}
Select: = [];
Writeln('D ChungeDate Test- 'I:
Repeat

Writeln;
Writel'File to change: ');l{eadlnIFileName);
Writelnl 'Types [y n] : ');--
GiveChoicel'Directories', [D_ Vol]);
Gi\'eChoicel'Text Files ', [D 5ext]);
GivcChoicel'Code Files " [D_ Code]);
GiveChoicel'Data Files ', [D Data]);
GiveChoicel'SVol Files', [D SVol]);
GiveChoicel'SVol Files', [D SVol]);
Writelnl 'New date: 'I ;
Writel'Month [1 - 12] : 'I; ReadlnIM);
Writel'Day [1 - 31] : ');ReadlnID)
Writel'Year [0 - ');RcadlnIY);
With NewDate Do---

Begin
Month:= M;
Day:= D;
Year:= Y;

End; { With New Date }
Writeln

Hesult:= D_ChangeDate(FileName, l'\cwDate, Select);
Case Result Of

D. _Okay :Writelnl'date changed');
D_._Name_Error :Writelnl 'error in file name ');
D _Off_ Line :Writelnl'volume off line');
d Found: Writelnl'file not found ');
D. Other: Writelnl 'miscellaneous error');

End; { cases 1-
Writeln;
Writel'Continue? 'I;
HeadICh) ; Writeln;

Until Ch In l'n '.'N'];
End. : Date Test}

Function D_ReIlL-Files
(D_NAME : String; D_SELECT :

D_Choice) : D_Result;

The D_ReIIL-Files function removes file objects whose
names match the file name argument contained in
D_NAME and types match the elements included in
D_SELECT. The file name argument can contain wild
cards. Disk files are permanently deleted from their direc
tories. Volumes are taken off-line, but not altered in any
way; off-line disk volumes can be brought back on-line
merely by referencing them, while off-line serial volumes
remain inaccessible until the system is reinitialized.

4-43

4-44

D_ReIIL-Files accepts the following parameters.

• D_NAME-A string containing the name of the
file(s) or volume(s) to be removed.

• D_SELECT-A set of file objects to be removed.
The definition of the set is as follows:

D_NameType = (D_Vol, D_Code, D_Text,
D_Data, D_SVol,
D_Temp, D_Free);

All scalar types except D_Free apply to
D_ReIIL-Files. Disk free space cannot be removed
from the directory; thus, D_Free is ignored if it is
included in D_SELECT.

D_ReIIL-Files returns a value of type D_Result.
D_ReIIL-Files can return all scalar values defined
in D_Result except D_Exists; the values have the
following meanings.

• D_Okay-No error. D_NAME was found. If
D_Vol is included in D_SELECT, and a volume
matches the file name argument in D_NAME, the
volume is taken off-line. If D_Text, D_Code,
D_Data, D_SVol, or D_Temp are included in
D_SELECT, disk files of those types which match
D_N AME are deleted from their directories.

• D_Not_Found-No such file/volume found. No
match found for D_NAME. No change made.

• D_Name_Error-Illegal file name syntax in
D_NAME. No change made.

• D_Off_Line-Volume off-line. The volume speci
fied by D_NAME was not on-line. No change
made. This error occurs only if the volume ID in
D_N AME specifies a single volume which is off
line. If the volume ID in D_NAME contains wild
cards, but does not match anyon-line volume,
D_RellL-Files returns D_Not_Found.

• D_Other-Unknown error. No change made.
D-----.rellL-Files encountered an unidentified error
which prevented successful completion of the opera
tion.

Example Program

Program ReflL-Test;
Uses

(*$UWILD.CODE*)
wild.
(*$UDIR.INFO.CODE*)
Dirinfo;

Var
Result: D_ Result;
Select: D_ Choice;
Ch:Char;
Remfile :String;

Procedure GiveChoice(Choice :Str ing; Kind : D_ Choice);
Var

Ch :Char;
Begin-

Write(' '.Choice:? 'I ;
Read(Ch);Writeln;
IfCh In ['y'. 'Y'] Then Select:= Select + Kind
End; { GiveChoice }

4-45

4-46

Begin {Rem Test}
Select:= [I;

Writelnl'D Rem Files Test - ');
Repeat

Write('File(s) to remove: ' I;
Readln(Remfile);
Writelnl'Types [yin 1 : ' I;
GiveChoice('Oirectories', [0 Vol]);
GiveChoice('Temp Files ' , [0 Temp]);
GiveChoicel 'Text Files ',[0 Text]);
GiveChoicel'Code Files ',[D Code]);
GiveChoicel'Oata Files ',[D_ Data]);
GiveChoice('SVol Files', [D SVol]);
Result := 0 RemFiles(Remfile, Select);
Case Result Of

D_ Okay : Writeln('files removed');
o Name Error :Writelnl'error in file name');
DOff_ Line :Writeln('volume off line');
o Not Found :Writelnl 'file not found ';
O_ Other: Writelnl'miscellaneous error');

End; { cases -} -
Writeln;
Writel'Continue? 'I;
ReadICh);Writeln;

Until Ch In ['n','N'I;
End. { ReIIL-Test}

Procedure D_Lock

D_Lock grants exclusive directory access rights to the
task that executes it; however, a task may have to wait
until another task releases the directory lock before it can
continue execution past its call to D_Lock.

NOTE

D_Lock calls should always be matched with
D_Release calls to prevent system deadlocks,

The Dir_Info routines D_Lock and D_Release are
provided for use in multi-tasking environments. When
used properly, they ensure mutually exclusive access to
directory information.

Procedure D_Release

D_Release releases exclusive access rights to the direc
tory. Tasks already waiting for directory access are auto
matically awakened when the directory becomes
available by a call to D_Release.

Example Program

The following program demonstrates the use of D_Lock
and D_Release.

Program Locktest;
Uses

I*SUWILD.CODE*)
wild .
I*SUDIR.INFO.CODE*)
Dirinfo;

Const
Stack Size = 2000;

Var
Pid : Processid;
Old.
il.'ew:String;
Date : D_ DateRec;
M. D. Y :Integer;
Ch :Char;--

Process Change And __ CheckIOld.New:String; Date :
o DateRec)Var
Result: 0 Result;

Begin {Change And Check}
o Lock; { beginning of critical section}
Result:= 0 ChangeDate(Old, Date, [0_ VoLD SVol]);
I f Result = D. Okay Then
Result:= D __ ChangeNameIOld,New.True);
D .. Release; {end of critical sectIOn -} -

End; {Change And Check}

4-47

4-48

Begin { LockTest 1
Repeat

Write('Old file name: ' I:
iteadln(Oldl:
Write('\iew fill' name: 'I:
Headln(i\ewl: -----
Writeln('N ew date: 'I:
Write(' :\\onth: 'I:
Headln(\\I:
Writei' Day: 'I:
Readln(DI:
Wrire(' Year: 'I:
Headln(YI:
With Datl' Do

Begin
:\\onth:= :\1:
Day := D:
Year:= Y:

End:
Start(Change And Check(Old,:\ew, Datej, Pid,
--Stack Sizel:

Write('Start another" ' I:
Head(Chl:Writeln:

Until Ch In ['n ', ' ,," 'I:
End. : Locktest :

WILD CARDS (WILD)

The unit WILD provides a wild card convention for pattern
matching of string variables. Wild cards are special character
sequences in a character string; they are named wild cards
because of their ability to match whole classes of character
sequences rather than a single character sequence. For instance,
the string a= matches all character strings starting with the let
ter a because (=) is defined as a wild card that matches any char
acter sequence.

Wild cards are useful in pattern matching situations where many
character strings are to be matched with a single request. The p
System filer uses a set of wild card facilities in its directory opera
tions. Examples are given in the p-System manual that describes
the filer operation. Because of the extra functions provided by
this UNIT, there is not a direct correspondence between the filer
and this UNIT. Where there are differences in the use of charac
ters, these are described.

Special Wild Card Characters

The following characters are defined as special charac
ters:

question mark ?
equals sign =
braces {and}
comma
hyphen
tilde rv
percent sign %

Special characters may only be used as parts of wild
cards. However, a literal occurrence of a special character
can be represented by a two character sequence consist
ing of a percent sign followed by the special character. A
percent sign indicates that the following character is to
appear literally in the character string; for instance,
xx%=yy is treated as the literal character string xx=yy
rather than a wild card string.

4-49

4-50

Examples of percent sign in wild cards:

a b%?def
ab{a-z, %=}de%%f
ab%-def

Question Mark Wild Card

matches
matches
matches

ab?def
ab=de%f
ab-def

A question mark matches any single character. In
the filer, the (?) is treated as an interactive query
of an (=) wild card. This is one of the major dif
ferences in use of characters between this UNIT
and the filer.

Examples of (?) wild card:

Pattern:

Matches:

Nonmatch:

Equals Sign Wild Card

ab?def

abbdef
abrdef

abdef
abjkdef
abef

An equals sign matches any sequence of charac
ters, including the empty sequence. This is the
same as the .filer except that more than one (=)
can appear in a wild card string. Examples of (=)
wildcard:

Pattern:

Matches:

N onmatches:

ab=def=

abcdefg
abdef
abcccdef

abcef

Subrange Wild Card

The subrange wild card matches a single charac
ter from the character set specified in the sub
range. The special characters, comma, hyphen,
tilde, and braces, are used to construct subrange
wild cards.

A subrange wild card consists of a character set
delimited by braces. A character set consists of a
list of character items separated by commas.

A character item is either a character or a charac
ter range (two characters separated by a hyphen).
A character range implicitly specifies all charac
ters lying between the two characters. (Consult
an ASCII table to determine the ordering of
characters.)

Character items preceded by tildes are called ne
gated items and are specifically excluded from
the character set. A character range preceded by
a tilde is entirely excluded from the character set.
The list of character items is evaluated left to
right. Characters specified by nonnegated items
are included into the set; characters specified by
negated items are excluded from the set. Thus, a
character matches the subrange wild card if it
matches one of the nonnegated items, but does
not match any of the negated choices. For ex
ample, the subrange {a-z'Vr} represents the set
of characters from a to z , excluding r.

NOTE

Blank characters within subrange wild
cards are ignored. Wild card characters
can be specified in character sets with
the percent sign notation described in
the preceding paragraphs.

4-51

4-52

Examples of subrange wild cards:

{a,b,c}
{a-d,j,w-z}
{a - z, 'Vj, 'Vx-y}

Syntax for subrange wild card:

wild-card
item-list
item
char-item
range
char

=
=

=

{ item-list}
item < ,item>
['V] char-item
char / range
char - char
an ASCII character

Examples of subrange wild card:

Pattern:

Matches:

N onmatches:

Function D_ WilLMatch
(WILD, COMP: String;

ab{a-r, 'Vj, 'Vk}def

abbdef
abrdef

abjdef
abkdef
abzdef

Var PPTR : D_PatRecP;
PINFO : Boolean) : Boolean;

D_ WilLMatch serves as a general purpose
pattern matcher for string variables using the
wild card conventions described above. The two
main parameters are a wild card string, WILD,
and a literal string, COMPo D_ Wild_Match
determines whether the literal string matches the
wild card string. If the strings match,
D_ Wild_Match returns true; otherwise, it
returns false. If PINFO is set to true ,
D_ WilLMatch returns information (accessed
through PPTR) that describes how the strings
were matched.

D_Wild_Match Parameters

D_ WilLMatch accepts the following parameters:

• WILD-A string which can contain wild cards.

• COMP-A literal text string.

• PINFO-A Boolean. If set to TRUE, PINFO
requests that pattern matching information be
returned.

• PPTR-Pointer of type D_PatRecP. Depending on
the value passed in PINFO, D_ WilLMatch either
sets PPTR to NIL or points it at a linked list of
records containing pattern matching information.

D_Wild_Match Pattern Matching Info

If PINFO is set to TRUE, D_ WilLMatch returns pat
tern matching information in PPTR. PPTR is a pointer
(of type D_PatRecP) to a linked list of records which
contain the starting positions and lengths of correspond
ing character patterns in WILD and COMPo

4-53

4-54

D_PatRecP
D_PatRec

=
=

J\D_PatRec;
Record

CompPos,
CompLen,
WildPos,
WildLen:Integer;
N ext:D_PatRecP;

End; { D_PatRec }

CompPos and WildPos are the starting positions of corre
sponding character patterns in COMP and WILD,
respectively. CompLen and WildLen are the pattern
lengths. Next points to the next pattern record in the list;
it is set to NIL in the last pattern record. The patterns
occur in the list in the order in which they were matched
in the strings.

If the strings do not match, or the list was not requested
(that is, PINFO is set to false), PPTR is set to NIL.

Example of pattern record list:

WILD contains:'=ab{a-m}=f?'
COMP contains:'abcdefg'

If PINFO is set to true, pattern record list returned is:

1. WildPos = l:WildLen = 1
CompPos = 1, CompLen = 0
('=' matches the empty string)

2. WildPos = 2, WildLen = 2
CompPos = 1, CompLen = 2
('ab' matches 'ab')

3. WildPos = 4, WildLen = 5
CompPos = 3, CompLen = 1
(' {a -m}' matches 'c')

4. WildPos = 9, WildLen = 1
CompPos = 4, CompLen = 2
('=' matches 'de')

5. WildPos = 10, WildLen = 1
CompPos = 6, CompLen = 1
('f' matches 'f')

6. WildPos = 11, Wild Len = 1
CompPos = 7, CompLen = 1
('?' matches 'g')

NOTE

When the (=) wild card in WILD matches an
empty string in COMP, CompLen is set to °
and CompPos is set to the position of the next
pattern in COMP (that is, the position where a
nonempty pattern would have occurred). Be
sure to check the validity of CompPos indices
before using them to reference characters in
COMP; otherwise, range errors may occur.

Example Program

The following program is an example of a string compari
son routine that uses D_ WilLMatch. The program
reads two strings and prints the result of the comparison;
if requested, it also prints information describing how the
patterns matched.

4-55

4-56

Program W ild __ T('st :

Uses 1*~IW ILD,C()DE*1

wild ,
\'ar

\V. C : "t ri nl-(:
Ch: Chur,
PatPtr, n l'at!{l'cP:
Want Patt!'rn s Boolean:

Procedure Pri It _J'att('rnsIPatl'lr : D __ Pat!{ecl':
C, W : S tring I:

Var ---

Count: I nt l, ' l! r :
Begin (Print ,Yattl'rns:

\\ ritPln I tvp!' ," cr '> for pattl'rns 'l:
Headln . Wrill'ln:
Count, I:
Rl'ppat

Writdn l' Pattern ', Count,' :'1:
\"itl! Pat Ptr Do

Ill'gin
\\ ritpln I' Comp: ', CI:
If CompLen < > 0 Then Writl' I' ':(CompPos + 911:
If COIllpLen > 1 Thl'n Write', I' ':ICompLen -. 1 II;
\\riteln ; ---

Writehll ' Wild: " WI;
Write (' ': (WildPos + 911;
If Wild Lpn > 1 Then Write I' ':IWildLen - 1 II ;
\Vriteln ; Writeln ;
End: ---

PatPtr ; - PatI'tr" ,i\ext ;
Count := Count + I;
Until Pat Plr :\ il ;

End: { Print __ Pattf..'rns 1

Begin: Wild_ 'I\,s(:

Hep"at
Writeln I' WildCard Check 'I;
Write I'Wild Card String : 'I;
Headln IW I;
Writl' I'Comparison String : 'I;
Headln (('I ,

Write (Do ~'ou want pattern matching information'? Iy.'nl "I:
Read IChl:
Want Patterns: eh I n I '~ ,')"1;

Writdn ; Writeln ,
If 0 . Wild !\latchlW, C, PatPtr, \\' dnt _ Patternsl Thl'n

Writeln I'A \latch 'l
Else Wntl'ln 1':\0 \latch ' l;
If Want Pattern, And iPalPtr ? :\ill Then

Print j'att('rnsIPaII'lr, C. \\ I:
Write I 'Continue? Iy nl 'I;
Read (Chi:
Wrileln ; Writeln :

Until Ch In I'n' , 'N!:
End, { Wild_ Test J

SYSTEM INFORMATION (SYS.INFO)

Unit SYS.INFO is an easy way to access some of the system
global information. SYS.INFO uses KERNEL.CODE in its
implementation section. Although it is possible to access
KERNEL.CODE directly, there are many variables that are
normally not needed. If a user requires a different set, then
another unit similar to this one can be easily constructed for the
particular situation.

In order to distinguish the variables defined by this unit, they
have been prefixed with SI. Here are the SYS.INFO routines:

Work Code File Name:

Procedure SI_Code_ Vid
(Var SI_Vol: String);

Procedure SI_Code_Tid
(Var SI_Title: String);

The preceding procedures return the volume name (SI_ Vol) and
the file name (SI_ Title) of the system work code file.

Work Text File Name:

Procedure SI_Text_ Vid
(Var SI_ Vol: String);

Procedure SI_ Text_Tid
(Var SI_ Title: String);

The preceding procedures return the volume name (SI_ Vol) and
the file name (SI_ Title) of the system work text file.

System Volume:

Function SI_Sys_Unit: Integer;

4-57

The SI_Sys_Unit function returns an integer function result.
The device number of the drive containing the system volume is
returned.

Procedure SI_Get_Sys_ Vol
(Var SI_ Vol: String);

The preceding procedure returns the volume narne (SI_ Vol) of
the current system volume.

Prefixed Volume N arne:

Procedure SI_Get_Pref_ Vol
(Var SI_ Vol: String);

Procedure SI_Set_Pref_ Vol
(SI_ Vol: String);

The preceding procedures allow the current prefix volume to be
read and set.

System Date:

Procedure SI_Get_Date
(Var SI_Date : SI_Date_Rec);

Procedure SI_Set_Date
(Var SI_Date : SI_Date_Rec);

The SI_Get_Date and S~_Set_Date procedures access and
modify the system date. The date is passed as a record of type
SI_Date_Rec. Changing the date will not change the date on
the system disk. I t will only change the date internally in the
operating system. To change the date on the disk, use function
D_Change_Date within the DIR.INFO unit.

SI_Date_Rec = Packed Record
Month: 0 .. 12;
Day: 0 .. 31;
Year: 0 .. 99;

End;

4-58

This record is used in the operating system to store dates. I t is a
packed record and only requires 16 bits. All date variables use
this format.

Program Sys Test;
Uses {SUSys.lnfo.Code} Sys Info;
Var

Ch: Char;
Date: S I Date Rec;
Vol,
Title: String ;

Begin --

S L Code Vid (Vol);
SI Code Tid (Title);
I f Length (Title) < > 0 Then

Writeln ('The Work Code file is ', Vol, ':' , Title)
El~

Writeln ('There is no Work Codefile.') ;
S I Text Vid (Vol);
Sl _Text Tid (Title);
If Length (Title) < > 0 Then

Writeln ('The Work Textfile is ' , Vol, ':' Title)
El~

Writeln ('There is no Work Textfile.');
Writeln;
SI Get SYL~Vol (Vol);

Writeln ('The System was booted on volume ', Vol,
--- ': on device ', SI ~_Sys Unit);
SI Get Pref Vol (Vol);
Writeln;
Writeln (,The Prefix volume is ', Vol, ' :');
Write ('New Prefix: 'I;
Readln (Vol);
Delete (Vol, Post':', Vol), 1);
If Length (VOi)in 11..71 Then

Begin
SI Set Pref Vol (Vol);
SI Get Pref Vol (Vol);
Writeln ('The Prefix volume is ' , Vol, ':');
End {of If}

Else
Writeln ('No change made');

4-59

Writeln:
SI-----c;;;t Date (Date):
Writeln ('The current date is 'I.

Date. \Ionth . - Date.j)a~. - Dat£'. Y{'arJ:

Repeat
Write ('Set for tomorrow 's dat£'" 'I:
Read (Ch):

Until Ch In 1\', 'Y', 'n'. ':\ '):
Writeln:
If Ch In I'y '. 'Y ') Then

Begin
Date.Day:= Date.Day + I :
!f IDat£'.:\lonth In I 1.3.5.7. I:i. I D. I~]I And IDat".Day = 3~) Or

(Date.!,>ionth In 14. 6. 9. 11]1 And IDate.Day :J I) Or
IDate.\lonth = 2) And (I)atp.Day = 29) Th('n

Begin
Date.Day:+ I:
!f Date.:\lonth = I ~ Thpn

Begin
Date. Year: Date. Year + 1:

Dat('.!'>lont h : I:

End{oflf=12:
Else
Date. \Ionth := Date.!'>lonth + 1:
End: of If Date.!,>lonth::

SL_Set Date (Date):
SI .(iet Date (Date):

Writeln ('The new date is '.
---Date.Month. -Date. Day. -Date. Year):
End lof !feh:

Else
Writeln (';"0 change made'):

End I of Sys Test{ .

4-60

FILE INFORMATION (FILE. INFO)

This unit provides an easy way to access information in the file
information block (fib). It uses the system globals from
KERNEL.CODE. Although it is possible for you to access this
global data, it is easier to use this unit. In order to distinguish the
names in this unit, they have all been prefixed with an F.

Type F_File_Type = file;

Because of a Pascal language restriction, it is necessary
to declare files of type (f_file_type) that are passed on
as parameters to these procedures.

Function F _Open
(var fid: F _File_Type):boolean;

This function should be called before any of the following
are used. This enables a check to be made on the status of
a file. The function returns true if the file is open and false
if it is not open. The following functions will not give the
correct values if the file is not open.

Function F _Length
(Var Fid : F _File_Type) : Integer;

Returns the length (in blocks) of the file attached to the
Fid identifier. If the file is not opened, the result is
returned as zero. This only has meaning for files on stor
age volumes as the value returned is the number of blocks
allocated to the file.

Function F _Unit_Number
(Var Fid : F _File_Type) : integer;

Returns the device number of the storage volume con
taining the file attached to the Fid identifier. If there is no .
file opened to the Fid, the function result is zero.

4-61

4-62

Procedure F _Volume
(Var Fid : F _File_Type;

V ar File_Volume: String);

Returns the name of the volume containing the file
attached to the Fid identifier. If the external file lacks a
defined volume name, F _ Volume returns a volume ID
constructed from a device number (such as #4:). If there is
no file opened to the Fid, the file_volume is set to a null
string.

Procedure F _File_Title
(Var Fid : F _File_Type;

Var File_Title: String);

Returns the title (with suffix) of the file attached to the
Fid identifier. If there is no file opened to Fid, or if the
external file is a volume, then the File_title is set to a
null string.

Function F _Start
(Var Fid : F _File_Type) : integer;

Returns the block number of the first block of the file
attached to the Fid identifier. This only has meaning for
files on storage volumes. If there is no file opened to Fid,
the function result is zero.

Function F ~s_Blocked
(Var Fid: F _File_Type) : Boolean;

Returns a boolean that is true if the file attached to the
Fid identifier is located on a storage volume (or block
structured device). If there is no file opened for the Fid or
if the device is not a storage volume, the function result is
set to false.

Procedure F _Date
(Var Fid : F _File_Type;

Var File_Date: F _Date_Rec);

Returns a record indicating the last access date for the
file attached to the Fid identifier. If there is no file opened
to Fid, the File_Date is unchanged. The definition of
F _Date_Rec type is:

F _Date_ Rec = Packed Record
Month: 0 .. 12;
Day: 0 .. 31;
Year: 0 .. 100;

End;

TIME DATE UNIT

This unit allows a program to read or set the hardware internal
date and time. (This is an extension to the p-System for the TI
PC.) This unit is located in the system library and is referenced by
the UCSD Pascal USES declaration. The unit requires six pa
rameters which are as follows:

Parameters

HOURS
MINUTES
SECONDS
HUNDREDTHSQFSECONDS
DATE
FLAG

Range

0-23
0-59
0-59
0-99
0-9999
0-3

The time is kept in 24-hour format and date is simply a count
of days since the clock was started. This date is not the same
as the p-System date. When the system is booted, the time is
set to 00:00:00:00 and the date is set to o.

4-63

There is no range checking of values passed to the unit. There
fore, each parameter value must meet the range criteria listed
above or results are unpredictable. The date is kept and updated
by the Settime utility as the Julian date (1 .. 366). The system
increments the date field by one every 24 hours.

The procedure TIMEDATE(HOURS, MINUTES, SECONDS,
HUNDSECS, DATE, FLAG), is used to read and set the time
and date. This is accomplished by setting the FLAG parameter
to one of the following values:

GETTIME = 0
SETTIME = 1
GET DATE 2
SETDATE = 3

The following example demonstrates calling the Time/Date unit.

PROGRAM EXAMPLE;
USES SYSTIMDT;
{ example of how to use system timeJdate unit

Var Hr, Min. Sec,
Hsec, Date, FIg: Integer;

Begin example}

Hr 9;
Min 30;
Sec 0;
Hsec .= 0;
Date 0;
FIg 1;

{ set flag to set time }

{ call TimeD ate to set time }
TIMEDATE(Hr, Min. Sec, Hsec, Date, Flgl;

4-64

{ call TimeDate to get time }
FIg : = 0; { set flag to get time
TIMEDATEIHr. Min. Sec. Hsec, Date. Flgl:
Writelnl'Time: ',Hr,':'. Min. ':' . Sec, '.'.Hsecl:

{ call TimeDate to set date }
Date : = 30 { set to day of month }
FIg : = 3: { set flag to set date
TIMEDATEIHr. Min. Sec, Hsec. Date. Flgl:

{ call TimeDate to get date
Date : = 0: { clear date parameter }
FIg : = 2: { set flag to get date
T IMEDATEIHr. Min, Sec. Hsec, Date. Flgl:
Writelnl'Date: ' .Datel:

End . {example}

4-65/4-66

5

Debugging and Analysis

Introduction 5-3
Using the Debugger 5-3
Entering and Exiting 5-4
Using Breakpoints 5-5
Viewing and Altering Variables 5-6
Viewing Text Files .. 5-8
Displaying Useful Information 5-9
Disassembling p-Code 5-10
Example of Debugger Usage .. 5-11
Symbolic Debugging .. 5-12

Symbolic Debugging Example 5-14

Summary of the Commands 5-17

5-1/5-2

INTRODUCTION

The symbolic debugger is a tool for locating and correcting
errors that might exist in your compiled programs on the
Texas Instruments Professional Computer. You can call it from
the command menu. It can also be invoked while a program is
running (when a breakpoint is encountered). Using the symbolic
debugger, you can display and alter memory, single-step
p-code, and display and traverse markstack chains.

To use the debugger effectively, you must be familiar with the
UCSD p-machine architecture and understand the p-code oper
ators, stack usage, variable and parameter allocation, and so
on. These topics are discussed in the UCSD p-System Internal
Architecture, TI Part Number 2232400-0001.

USING THE DEBUGGER

There are no menus explaining the debugger commands because
they would detract from any information displayed by the pro
gram being debugged. However, when a command is entered, the
system displays several short prompts that may ask for informa
tion.

Many of the debugger commands require two characters (such as
LP for L(ist P(code, or LR for L(ist R(egister). To exit the pro
gram after entering the first character, press the space bar to
recall the main mode of the debugger.

A current compiled listing of the program is a helpful debugging
tool. It helps you determine p-code offsets and similar informa
tion.

The debugger is a low-level tool, and as such, you must use it with
caution. If you use the debugger incorrectly, the p-System can
fail.

5-3

Entering and Exiting

5-4

Press D to call the debugger from the command menu. If
you enter the debugger in a fresh state, the system dis
plays the following prompts.

DEBUG [version III
(

A fresh state means that the debugger was not pre
viously active, and no breakpoints are currently enabled.
If you enter the debugger in a nonfresh state, only the left
parenthesis (appears.

Exit the debugger by pressing Q to call Q(uit, R to call
R(esume, or S to call S(tep. The Q(uit option disables the
debugger. If the debugger is called again, it returns in a
fresh state. The R(esume option will not disable the
debugger and execution continues from where it left off.
The debugger is still active; and if it is called again, it is in
a nonfresh state. The S(tep option executes a single p
code and automatically again calls the debugger in a non
fresh state.

If a program is running under the debugger's R(esume
command, it may force a return to the debugger by call
ing the HALT intrinsic. In fact, any run-time error causes
a return to the debugger if the debugger is active while
the program is running.

You may memlock or·memswap the debugger (see the
descriptions of those intrinsics) by using the M(emory
command at the outer level. ML memlocks and MS mem
swaps the debugger.

Using Breakpoints

To enter the debugger while a program is running, but
not alter the program's code, use the debugger to set
breakpoints. Press B to call the B(reakpoint option and
then use either the S(et, R(emove, or L(ist command. To
set a breakpoint, press S (et after pressing B(reakpoint.
There are, at most, five breakpoints numbered zero
through four. The system displays four prompts asking
for information. The first prompt is:

Set Break #?

Enter a digit in the range 0 through 4 and press the space
bar. The next prompt is:

Segname?

Enter the name of the desired segment and press the
space bar. The next prompt is:

Procname or #?

Enter the number of the desired procedure and press the
space bar. The final prompt is:

Offset #?

Enter the desired offset within the procedure and press
the space bar. The system sets a breakpoint; and if that
segment, procedure, and offset are encountered while
resuming execution, the debugger is automatically called
again.

Use a compiled listing of the program to determine the
location of the breakpoint. If no compiled listing is avail
able, use the text file viewing facility.

To set a breakpoint that differs only slightly from the one
most recently set, press the space bar for the break num
ber or segment. The system uses the previous break
point's information. For example, to break in the same
segment and procedure, but with a different offset, enter
a space for everything except the offset.

5-5

To remove a breakpoint, press B(reakpoint; then press
R(emove. The system displays the following prompt:

Remove break #?

To remove a breakpoint, enter its number; then press the
space bar.

To list the current breakpoints, press B(reakpoint and
then press L(ist.

Viewing and Altering Variables

5-6

The V(ar command allows the system to display data
segment memory. It is another two-character command
that must be followed by G(lobal, L(ocal, I (ntermediate,
E(xtended, or P(rocedure. If G(lobal or L(ocal is selected,
the system displays the following prompt.

Offset #?

Enter the desired offset into the data segment.

If I(ntermediate is selected, the system displays the fol
lowing prompt.

DeLta Lex LeveL?

Enter the appropriate delta lex level for the desired inter
mediate variable.

If E(xtended is selected, the system displays the follow
ingprompt.

Seg #? Of fset #?

Enter the appropriate segment number and offset num
ber for the desired extended variable.

If P(rocedure is selected, the system may display an off
set within a specified procedure. The following prompts
are displayed in sequence.

Segment name? Procname or II? Varname or Offsetll?

When any of these options are used, the system displays
a prompt similar to the following line.

(1) S=INIT PII1 VOll1 2C1 A: OB 05 53 43 41 4C 43 61 ----SCALCa

This example is a portion of the local activation record for
segment INIT, procedure I, variable offset I, at absolute
hexadecimal location 2CIA. Following this, eight bytes
are displayed, first in HEX CODE and then in ASCII (a
dash (-) indicates that the character is not a printable
ASCII character).

To view surrounding portions of memory, press V(ar.
After a line has been displayed by the V(ar command, a
plus (+) or minus (-) may be entered. This displays the
succeeding or preceding eight bytes of memory.

The eight bytes that are currently displayed can be
altered. If a I is pressed, then the line can be altered in
hexadecimal mode. If a \ #92 is pressed, then the line can
be altered in ASCII mode. When altering in hexadecimal
mode, any characters that are to be left unchanged can be
skipped by pressing the space bar. In the ASCII mode,
any characters to be left unchanged can be skipped by
pressing the RETURN key.

5-7

It is possible to change the frame of reference from which
the global, local. and intermediate variables are viewed.
This can be done by using the C(hain command. Press C.
The D(p, D(own and L(ist options are available. If L is
pressed, all of the currently existing mark stack control
words are displayed, beginning with the most recently
created one. An entry in the list resembles the following
line.

(ms) S=HEAPOPS P#3 0#23 msstat=347C msdyn=FOAO msipc=01DA
msenv=FEE8

This corresponds to a mark stack control word with the
indicated static link (msstat), dynamic link (msdyn),
interpreter program counter (msipc), and erec pointer
(msenv). The indicated segment (HEAPOPS), procedure
(#3), and offset (#23) are the return point for the proce
dure call which created the MSCW.

If the D(p or D(own options are used, the frame of refer
ence moves up or down one link and the frame of reference
for variable listings (using the V command) changes
accordingly.

Viewing Text Files

5-8

To view a text file from the debugger, press F to call the
F(ile command. The system displays the following
prompt:

Fi lename? Fi rst line #? Last line #?

Enter the name of the text file to be viewed followed by
pressing the space bar. The .TEXT portion of the file
name is optional. Then enter the first and last line num
bers that delimit the portion of text that you wish to
view. This command lists as many lines as possible in the
window from first line to last line of the indicated file.

The F(ile command is useful for debugging (especially
using symbolic debugging) when a hard copy of the rele
vant compiled listing is not available. This command
enables you to view source files on disk and disk files con
taining compiled listings without leaving the debugger.

Displaying Useful Information

Whenever control is returned to the debugger (that is,
after a single step operation, or when a breakpoint is
encountered), it displays various information if it is
desired. This information includes p-machine registers,
the current p-code operator, the information in the cur
rent marks tack, or any specified memory location. In
order to select which information is displayed, use the
E(nable mode. After pressing E , the following options are
available at the command level, R(egister, P(code,
M(arkstack, A(ddress, and E(very (all of the preceding).
Any or all of these options may be enabled at the same
time.

If R(egister is enabled, a line is displayed after each single
step. The following line is an example of that display.

(rg) mp=F082 sp=F09C erec=FEE8 seg=9782 ipc=01C3 tib=0493
rdyq=2EBC

If P(code is enabled, a line such as the following is dis
played after each step:

(cd) S=HEAPOPS PII3 01123 LLA 1

If M(arkstack is enabled, a line like the following is dis
played after each step:

(ms) S=HEAPOPS PII3 01123 msstat=347C msdyn=FOAO msipc=01DA
msenv=FEE8

If A(ddress is enabled, the system generates a display
like the following line.

(a) S=HEAPOPS PII3 01123 2C1A: OB 05 53 43 41 4C 43 61 ----SCALCa

5-9

To initialize this address to a given value, use A(ddress
mode at the outer level. Press A(ddress and the system
displays the following prompt.

Address?

Enter the absolute address in hexadecimal. The system
displays eight bytes starting at that address. Also, that
address is now displayed if the E(nable A(ddress option is
on.

Enabling E(very causes all of the above options to be
enabled.

The D(isable mode disables any of the options just
described. The L(ist mode lists any of the above options.

Disassembling P-Code

5-10

At the debugger's outer level, there is a p-code option
that displays the p-code mnemonics for selected portions -------,
of code. This option asks for:

Segname?
Procname or II?
Start Offset #? and End Offset #?

The indicated portion of code is then disassembled. This
may be useful during single-step mode if you wish to look
ahead in the p-code stream. This mode can be exited
before it reaches the ending offset by pressing the BRKI
PAUSE key (BRK is the upper case version of this key);
control returns to the debugger.

Example of Debugger Usage

Suppose the following program is to be debugged:

Pascal Compiler IV.O

10 O:d I {SL LIST.TEXT}
22 I:d I PROGRAM NOT DEBUGGED;
3 21 :d 1 VAR I.J.K:INTEGER;
42 l:d 4 Bl.B2:BOOLEAN;
521:00BEGIN
621:10 1:= 1;
721:13 J:=I;
82 1:1 6 IF K < > 1 THEN WRITELN ('Whats wrong?');
92 :OO E ND.

End of Compilation.

First we enter the debugger and set a breakpoint at the
beginning of the IF statement:

(BS) Set break #? 0 Segname? NO T DEB UG Procname o r #? 1 Offset #? 6
(EP)
(R)

After setting the breakpoint we enable p-code (EP) and
resume (R). Now we execute the program above, and
when it reaches offset 6, the debugger is entered. We
single-step twice:

Hi t break #0 at S=NOTDEBUG P#1 0 =6
(cd) S=NOTDEBUG P#1 0#6 SLD01
(cd) S=NOTDEBUG P#1 0#7 SLDC1
(cd) S=NOTDEBUG P#1 0#8 NEQUI

We see that our first single-step did a short load global 1.

NOTE

This put K on the stack. K is not global 3; I is
global 3, J is global 2, and K is global 1. Every
string of variables (such as 1, J, and K in a dec
laration) is allocated in reverse order. Boolean
B1, which follows, is at offset 5, and B2 is at
offset 4. Parameters, on the other hand, are
allocated in the order in which they appear.

5-11

The second single-step did a short load constant 1 onto
the stack. Now do an integer comparison (< >). This is
where the error appears; so look at what is on the stack
before doing this comparison:

(LR)

(r9) mp=EB62 sp=EB82 erec= ••.
(A) Address? EB82
(a) EB82:0100C514 ...

You list the registers and then look at the memory
address to which register sp points. You discover a 1 on
top of the stack (01 00: this is a least-significant-byte-first
machine) followed by a word of what appears to be non
sense. This leads you to suspect that K was not initial
ized. Looking over the listing, you quickly realize that
this is the case.

SYMBOLIC DEBUGGING

The symbolic debugging feature allows specification of variables
by name, rather than p-code offset. Also, breakpoints and por
tions of code to be disassembled can be indicated by procedure
name and line number, rather than procedure number and p-code
offset.

A current compiled listing of the code in question is still essential
for serious debugging efforts.

To use symbolic debugging, it i~ necessary that the code being
debugged is compiled with the $D+ option. The $D+ option,
which defaults to $D -, instructs the compiler to output symbolic
debugger information for those portions of a program that are
compiled with $D+ turned on. Once a program is debugged, it
should be recompiled without symbolic debugger information,
because this information increases the size of the code file.

5-12

U sing symbolic debugging, breakpoints can be specified by pro
cedure name and line number for all statements covered by the
$D+ option. The B(reakpoint command requests:

Procname or #7

Enter the first eight characters of the procedure name. The next
line displayed is:

F i rst# Last# Line#7

The underlines actually are values that define the range of line
numbers available to you within the specified procedure. (These
line numbers appear on compiled listings.) Enter the desired line
number for the breakpoint.

Variables within a given routine can be specified by name (rather
than data segment offset number) if at least one statement within
that routine is compiled with $D+. The V(ar command allows
specification of G(lobal, L(ocal, I(ntermediate, or P(rocedure vari
ables in this manner. E(xtended variables are not allowed to be
specified symbolically. The V(ar command prompts:

Varname or Offset #7

You can enter the first eight characters of the declared identifier.
A line similar to the following appears:

(1) S=INIT P=FI LLTABL V=TABLE1 2C1A: OB 05 53 43 41 4C 43 61 ---
SCALCa

The segment is INIT; the procedure is FILL_TABLES; and the
variable is TABLE 1.

Similarly, the code to be disassembled by the p-code command
can be specified symbolically for all portions of code covered by
the $D+ option.
This command requests:

Procname or #7

5-13

Enter the first eight characters of the procedure name. The sys
tem displays the following prompt:

Fir s t II La s t II Start Li nell? End Li nell?

The underlines are actually the boundaries that are available to
you. You should enter the desired starting and ending line num
bers. The specified code is then disassembled.

Symbolic Debugging Example

5-14

To use symbolic debugging, some part of a Pascal compi
lation unit must be compiled with the {$D+} compile
time directive. After this code has been generated, it is
possible to reference variables and procedures by name
rather than offset. The following example is a small
Pascal program that has been compiled with the D
option.

Pascal Compiler IV. 1 c5s-4 3/ 4/82 Page 1

1 0 O:d 1 {$D+}
2 2 l :d 1 program example;
3 2 l:d 1 var a .b .c:integer;
4 2 l:d 4
5 2 l:d 4 procedure set_ c_ if_ d;
6 2 2:d 1 var d:boolean;
7 2 2:0 0 begin
8 2 2:1 0 d:=a> b;
9 2 2:1 5 if d then

10 2 2:2 8 c:=a*b;
11 2 1:0 0 end;
12 2 1:0 0
13 2 1:0 0 begin
14 2 1:1 0 a:= O;
15 2 1: 1 3 b:=5;
16 2 1:1 6 set_c~f d ;
17 2 :0 0 end.

End of Compilation.

The following listing is an example of a debug session.

Debug [x15)
(BS) Segname=EXAMPLE Procname or N = SETCIFD

symbolic seg not in mem LineN? 8
(R)

Hit break NO at S=EXAMPLE P=SETCIFD U8
(BS) Segname=EXAMPLE Procname or N = SETCIFD

FirstN8 LastNIO LineN? 9
(R)

Hit breakNI at S=EXAMPLE P=SETCIFD LN9
(VL) Varnameor offsetN? 0
(I) S=EXAMPLE P=SETC IFD V=D E?B2 : 0000 9448 BEE? \ 90C-H
(Q)

The first time the debugger is entered, the program exam
ple is not in memory and, hence, the symbolic segment is
not in memory. However, a breakpoint can still be set
symbolically providing you know on which line number to
stop. For the second breakpoint, the symbolic segment is
in memory; because of this, its first and last line numbers
are given.

NOTE

The variable D was accessed symbolically, and
its contents are displayed.

If you try to access symbolically when the actual code
segment is in memory and its symbolic segment counter
part is not present, the system displays the error message
symbolic seg not in memo Use the Z command in the
symbolic debugger to find out if symbolic information is
available for a particular segment.

5-15

5-16

The Z command lists all of the principal segments with
their environment list. For example, the following
example is a partial list of the principal segments
(EDITOR and EXAMPLE) and their environments.
The lowercase name example is the symbolic segment
for EXAMPLE. The existence of example indicates
that symbolic debugging information is available for at
least one procedure in EXAMPLE.

(Z) the si b is EDITOR
1 KERNE L
2EDITOR
3 INITIAL!
4 PASCAL!O
5 EXTRAIO
6 GOTOXY
7 STRINGOP
8 EXTRA HEAP
9FILEOPS
10 OUT
11 COPYFILE
12 ENVIRONM
13 PURSYNTA
14 EDITCOR

SUMMARY OF THE COMMANDS

A(ddress

B(reakpoint

S(et

R(emove

L(ist

C(hain

U(p

D(own

L(ist

F(ile

E(nable

D(isable

L(ist

R(egister

P(code

M(arkstack

A(ddress

E(very

I(nteractive

Displays a given address.

Segment, procedure and offset must be
specified.

Allows a breakpoint (0 through 4) to be set.

Allows a breakpoint to be removed.

Lists current breakpoints.

Changes frame of reference for V(ariable
command.

Chains up mark stack links.

Chains down mark stack links.

Lists current mark stacks.

Allows viewing of text files.

Enables the following to be displayed.

Disables the following from being displayed.

Lists the following.

The registers: mp, sp, erec, seg, ipc, tib,
rdyq.

Current p-code mnemonic.

Mark stack display.

A given address.

All of the above.

Interacts with the performance monitor.

5-17

M(emory

L(ock

S(wap

P(code

Q(uit

R(esume

S(tep

V(ariable

G(lobal

L(ocal

I(nter

P(roc

E(xtended

Z(seg list

5-18

Memlocks the debugger.

Memswaps the debugger.

Disassembles a given procedure.

Quits the debugger, fresh state if re-entered.

Exits debugger, debugger remains active,
nonfresh.

Single steps p-code and returns to debugger.

Displays global memory.

Displays local memory.

Displays intermediate memory.

Displays data segment of given procedure.

Displays variables in another segment.

Displays segment lists.

6

Utilities

Introduction 6-3

Decode 6-3

DECODE Programming Example 6-5
D(ictionary Display 6-8
Disassembled Listing 6-9

The Library Utility ... 6-12
Using Library 6-13
Library Example .. 6-14
Native Code Generator ... 6-17
Native Code Directives and Pascal 6-18
Running the Native Code Generator 6-18
Limits of Native Code Generation 6-20
Patch 6-21
EDIT Mode 6-22
TYPE Mode 6-23
DUMP Mode 6-25
Prompts 6-27
Print Spooling ... 6-28
REALCONV Utility ... 6-29
XREF - the Cross-Referencer 6-31

Introduction 6-31
Referencer's Output 6-32

Lexical Structure Table 6-32
The Call Structure Table 6-33
The Procedure Call Table 6-34
Variable Reference Table 6-34
Variable Call Table 6-34
Warnings File 6-35
Using Referencer 6-36
Limitations 6-38

6-1/6-2

INTRODUCTION

The UCSD p-System's utilities are various precompiled programs
that can assist you in various ways. Most of the utility programs
included here are useful during program development. The utili
ties covered in this chapter are:

• The Decode utility which displays the content of code files
in a meaningful fashion.

• The Library utility which is used to place separately com
piled units into the client's code file or into library files.

• The Native Code Generator which converts portions of a
p-code file into machine code.

• The Patch utility which enables you to view the internal
content of any sort of file.

• The Print Spooler utility which allows you to print files as
you are using the p-System normally.

• The Real Convert utility which can improve the perfor
mance of large programs which use several real constants.

• The XREF utility which is useful for analyzing Pascal
programs.

DECODE

The decoder utility, called DECODE.CODE, provides access, in
symbolic form, to all useful items contained in code files. The fol
lowing information is available.

• N ames, types, global data size, and other general informa
tion about all code segments in the file.

• Interface section text, if present, for all units in the file.

6-3

• Symbolic listing of any (or all) p-code procedures in any (or
all) segments of the file.

• Segment references and linker directives associated with
code segments.

The decoder should be used whenever you want detailed knowl
edge of the internal contents of a code file; for instance, an imple
mentor of a p-machine emulator decodes test programs so that
the object code can be executed and understood step-by-step. You
should refer to UCSD p-System Internal Architecture, if detailed
use of the decoder is planned.

If a program uses a UNIT, the UNIT is decoded only if it is
within the host file; DECODE will not search the disk for UNITs
to decode. Assembly routines linked into a higher-level host will
not be disassembled when the host is decoded.

When the system executes DECODE, the first prompt asks for
the input code file (if necessary, the suffix .CODE is automati
cally appended). The next prompt asks for the name of a listing
file to which DECODEs output may be written. This may be
CONSOLE: (indicated by pressing the RETURN key),
REMOUT:, PRINTER:, or a disk file. The system then displays
the following menu:

SegmentGuide:A(11),#(dctindex),O(ictionary),Q(uit)

The following items explain the DECODE options.

D(ictionary

A(ll

#(dct index)

Q(uit

6·4

Displays the code file's segment dictionary.

Disassembles all segments in the code file.

A number of a dictionary index followed by
pressing the RETURN key disassembles a
given segment, if present.

Exits the decoder.

DECODE Programming Example

Given the following Pascal program:

1 O:d 1 {$L LISTI.TEXT}
2 l:d I PROGRAM DEMO;
3 l:d I VAR I:INTEGER;
4 I:d 2
5 I:d 2 SEGMENT PROCEDURE ADD!;
6 3 1:0 OBEGI:-:
7 3 1:1 0 1:-1+1;
8 3 1:0 5END;
9 3 1:0 7

10 2 1:0 OBEGI:-:
11 2 1:1 0 1:=50;
12 2 1:1 4 REPEAT
13 2 1:2 4 ADD!;
14 2 1:1 7 UNTIL 1=400;
15 :0 14END.

DECODE displays a prompt asking for input and listing
file names. Then, if you press D to call the D(ictionary
option, the system displays the following listing.

6-5

m
6l

INX NAME START SIZE VERSION M_ TYPE

0: DEMO 2 20 IV_ O M_PSEUDO
1: ADD! 14 IV_ O M_ PSEUDO
2:
3:
4:
5:
6:
7:
8:
9:
10: :
11 ::
12::
13::
14::
15::

(C!:

Sex: LEAST significant byte first
Next Page: 0

Segment Guide: A(il. N(dct indexl. D(ictionary. Q(uit

SGN SEG_ TYPE

2 PROG_ SEG
3 PROC_ SE G

NO_ SEG
NO_ SEG
NO_ SEG
NO_SEG
NO_ SEG
NO_SEG
NO_ SEG
NO_ SEG
NO_ SEG
NO_ SEG
NO_SEG
NO_ SEG
NO_ SEG
NO_ SEG

RL FMY_ NAME or

R
R

DSIZE

1
DEMO

SGRF HSG TS

5 3 o

The A(ll options produces the following disassembly.

Constant pool for segment DEMO
Block: 2 Block offset: 0 Seg offset: 0

0: 1700 0000 4445 4D4F 2020 2020 0100 1400 0400 0000 ----DEMO --------
10: 0000

Block: 2 Block offset: 40 Seg offset: 40

0: 0100 0000 OCOO

Segment:DEMO Procedure: 1
Block: 1 Block offset: 26 Seg offset: 26
Data size: 0 Exit I C: 38

Offset
0(000): LDCB 50
2(002):
4(004):
6(006):

SRO 1
SCXGADDI
SLDO

7(007): LDCI
10(00A): EFJ

exit code:
12(00C): RPU

400
4

o

Constant pool for segment ADDI
Block: 1 Block offset: 0 Seg offset: 0

Hex code
8032
A501
7201
30
819001
D2F8

9600

0: 130000004144444920202020010010000400 0000 ----ADDI--------
10: aooo

Block: 1 Block offset: 32 Seg offset: 32

0: 0100 0000 acoo
Segment: ADDI Procedure:
Block: 1 Block offset: 26 Seg offset: 26
Data size: 0 Exit IC: 30

Offset
0(000):
1(001):
2(002):

exit code:

SLDO
INCI
SRO

4(004): RPU o

Hex code
30
ED
A501

9600

6-7

D(ictionary Display

6-8

DECODE's D(ictionary option displays the code file
segment dictionary. The following items describe the
information that is displayed.

Inx (Index)

Name

Start

Size

Version

DECODEs name for each segment;
individual segments may be disassem
bled by entering their number and
pressing the RETURN key; for exam
ple, pressing 0 and then pressing the
RETURN key for this sample causes
only DEMO to be disassembled.

Contains the names of each segment.

Contains each segment's starting
block (relative within the code file).

The length in words of each segment.

The UCSD p-System version number
of the segment.

M_ TYPE is the machine type. Usually this is
M_PSEUDO, indicating a p-code segment, but assem
bled segments indicate a given machine. Other possible
values for M_TYPE are M_6809, M_PDP, M_8080,
M_Z_80, M_GA_440, M_6502, M_6800, M_9900,
M_8086, and M_68000.

SEG_TYPE can be NO_SEG, PROG_SEG,
UNIT_SEG, PROC_SEG, or SEPRT_SEG.
NO_SEG is an empty segment slot, PROG_SEG is a
program segment, UNIT_SEG is a UNIT segment,
PROC_SEG is a SEPARATE routine segment, and
SEPRT_SEG is an assembled segment.

The RL columns indicate whether or not the segment is
relocatable and whether it needs to be linked. An R indi
cates a relocatable segment. An L indicates a segment
that must be linked.

If the segment is declared within a program or unit, then
the FMY_NAME column contains its family name, that
is, the name of the program or unit. Otherwise, the
DSIZE SGRF HSG columns are displayed and contain,
respectively, the compilation module's data size, segment
references, and the maximum number of segments.

At the bottom of the screen, (C): is followed by whatever
copyright notice the code file may have. The next line
indicates the byte sex of the code file. The menu is the
last line on the display unit.

On the same line, the block number of next portion of the
dictionary is displayed after Next Page:. (In this example,
the segment dictionary is entirely contained in block zero
so the next page is zero. The last portion of the segment
dictionary always points back to block zero.)

Disassembled Listing

The first portion of a disassembled listing shows the
housekeeping information at the beginning of a code
segment. The block number of this information is given.
(Code files start at block zero.) The block offset and seg
ment offset are always zero. The information occupies the
first 11 words (0 through 10) of the segment. This house
keeping information (which is described in the UCSD
p-System Internal Architecture reference manual) in
cludes such things as the segment name, byte sex indi
cator word, part number, and so forth. To the right, the
same information is displayed as ASCII characters
when printable, and as dashes when nonprintable. (The
segment name is usually the most obvious part of this
display.)

6-9

6-10

The next few lines have the same format and display the
constant pool. The block offset and segment offset are
always nonzero for the constant pool. They represent the
offset, in bytes, of the constant pool from the beginning
of the block and the beginning of the segment, respec
tively. String constants and character type constants are
usually easy to pick out in the ASCII display to the right.

The disassembled code itself is displayed by procedures.
The block number, block offset, segment offset, data size,
and Exit IC are displayed. (Data size and Exit IC are
described in the UCSD p-System Internal Architecture
reference manual.) The OFFSET column shows the off
set in bytes from the front of the procedure (the count is
in both decimal and hexadecimal). Then the p-code mne
monic is displayed; followed by the operands, if any; and
finally, the HEX CODE for that particular instruction.

The OFFSET column corresponds to the fourth column
in a compiled listing.

Jump operands are displayed as offsets relative to the
start of the procedure, rather than IPC-relative (lPC is
the instruction program counter). This is to make the
disassembly more readable. Thus, the operand shown is
the offset of some line; in the example, the equal false
jump (EFJ) on line 10 shows 4, which means line 4-the
SCXG instruction. The HEX CODE indicates that the
offset is actually F8 (or -8), which is IPC-relative.

If a single segment were to be disassembled (rather than
using the A(ll) command), a line similar to the following
would be displayed.

There are 1 procedures in segment DEMO.
Procedure Gui de: A (11). # (of procedure). L (i nker info).

C(onstant pool). S(egment references).
I (nterface text). Q(uit)

Selecting A(ll) disassembles all of the procedures in the
segment (in the example there is only one). Entering the
number of a procedure, followed by pressing the
RETURN key, disassembles that procedure. If present,
L(inker information, S(egment references, and I(nterface
text may also be displayed.

For example, if the segment is a unit with interface text
and you press I, the following listing may be displayed.

Interface text for segment SOMEUNIT:

PROCEDURE A_ PROC;
PROCEDURE ANOTHER PROC (I: INTEGER);
FUNCTION A_ FUNCTION: BOOLEAN;
IMPLEMENTATION

If the segment had references to other segments and you
press S, the following listing may be displayed.

Segment references list for segment KERNEL:

14: ***
13: CONCURRE
12: PASCALIO
11: HEAPOPS
10: STRINGOP

5: SYSCMND
4: DEBUGGER
3: FILEOPS
2: SCREENOP
0:

6-11

If the segment had linker information and you press L ,
the following listing may be displayed.

Linker information for segment SOMESEG:

SOMEPROC EXTPROC srcproc=4 nparams=O koolbi t=fa lse

THE LIBRARY UTILITY

LIBRARY.CODE is a utility program that allows you to group
separate compilations (units or programs) and separately assem
bled routines into a single file. A library is a concatenation of
such compilations and routines. Libraries are a useful means of
grouping the separate pieces needed by a program or group of
programs. Manipulating a single library file takes less time than
if the various pieces it contains were each within an individual
file . Libraries generally contain routines relating to a certain area
of application; they can be used for functional groupings much as
units can. Thus, you might want to maintain a math library, a
data file-management library, and so forth-each of these
libraries could contain routines general enough to be used by
many programs over a long period of time.

Individual programs might also take advantage of the library
construct. If a program uses several units suitable for compiling
separately, but the units themselves are too small to warrant
putting each into its own file, you would want to construct a
single library containing all of those units.

Even if a file contains only a single unit or routine, it is treated as
a library when the unit or routine is used by some external host.

Library is useful for putting units into SYSTEM.LIBRARY or
other libraries and grouping assembly routines together.

6-12

This section uses the term compilation unit. A program or unit
and all the segments declared inside it are called a compilation
unit. The segment for the program or unit is called the host seg
ment of the compilation unit. Segment routines declared inside
the host are called subsidiary segments. Units used by the host
are not segments belonging to that compilation unit. Units used
by the compilation unit generate information in the host segment
called segment references. The segment references contain the
names of all segments referenced by a compilation unit, and the
operating system uses this information to set up a run-time
environment.

Some routines called from hosts exist in units in the operating
system, and therefore appear in segment references, even though
there is no explicit USES declaration. For example, WRITELN
resides in the operating system UNIT PASCALIO, so the name
PASCALIO appears in the segment references of any host that
calls WRITELN.

U sing Library

When Library is executed, it displays a prompt asking for
an output file name. The file name must end in .CODE.
Library removes an old file with the same name as the
new library.

Library then displays a prompt asking for the input file
name .. CODE is automatically appended.

6-13

Library Example

6-14

You specify SCREENOPS.CODE as an input file.
Library displays the following listing.

Library: N(e." 0-9(slot-to-slot, E(very, S(elect,

C(omp-unit, F(ill,?

Input fi le? SCREENOPS<ret>
o u SCREENOP 582
1 s SEGSCINI 508
2 s SEGSCPRO 229
3 s SEGSCCHE 126

Output fi le? NEW.CODE<ret>

The preceding display shows that the file SCREENOPS
consists of a unit. There are four possible types of code
that can occupy the 16 slots in a library: units, programs,
segment routines, and assembled routines. Library dis
plays the type, along with the name and length (in words)
of each module.

Library's menu shows the various commands available.

• The N(ew command displays a prompt asking for a
new input file.

• The A(bort command stops Library without saving
the output file.

• The Q(uit command stops Library and saves the
output file. Then Library displays the prompt,
Not; c e ? , at the top of the display unit. Enter
copyright notice and press the RETURN key. It is
placed in the output file's segment dictionary.
Pressing the RETURN key without entering a copy
right notice exits Library without writing a copy
right notice.

• The T(og command toggles a switch that determines
whether or not INTERFACE parts of units are
copied to the output file.

• The R(efs command lists the names of each entry in
the segment reference lists of all segments currently
in the output file. The list of names also includes the
names of all compilation units currently in the out
put file, even though their names may not occur in
any of the segment references.

The remaining five commands allow code segments to be
transferred from the input file to the output file.

• A given slot can be transferred to the output file by
typing a digit (zero through nine). Library then dis
plays a prompt: Copy from s Lot#? along with
the digit just entered. If that is the name of the slot,
press the space bar . If that is the first digit of a two
digit slot number, enter the second digit and press
the space bar . Library confirms the entry before
actually copying code. Press the BACKSPACE key
to correct errors. If you press the RETURN key
without entering a number, the copy does not hap
pen and Library redisplays its menu.

If the destination slot in the output file is already
filled, the system displays a warning and no copy
takes place. If an identical code segment is already
present anywhere in the output file, the new code
segment is copied anyway.

• The E(very command copies all of the codes in the
input file to the output file. If, for any code segment,
the corresponding slot in the output file is already
filled, then Library searches for the next available
slot and places the code there. If, for any code seg
ment, an identical code segment already exists in
the output file, that segment is not copied over.

6-15

6-16

• The S(elect command causes Library to display a
prompt asking which code segments to transfer. For
each code segment not already in the output file,
Library displays the prompt: Cop y fro m s Lot
#_? Pressing Y or N causes the segment to be
copied or passed by; pressing E causes the remain
der of the code segments to be transferred (as in
E(very); pressing the space bar or the RETURN
key aborts the S(elect. If the corresponding slot in
the output file is filled, Library searches for the
next available slot and places the code there.

• Clomp-unit causes Library to display the prompt:
Cop y w hat com p i L a t ion un it? . The compi
lation unit named is transferred along with any
segment procedures that it references. Procedures
already present in the output file are not copied.

• F(ill does the equivalent of a Clomp-unit command
for all the compilation units referenced by the seg
ment references in the output file.

• I(nput allows you to view the next group of seg
ments in an input file. The Library Utility circularly
displays 27 segments at a time. If you have over 27
segments in your input file this allows you to view
them.

• O(utput allows you to view the next group of seg
ments, past the initial 27 segments shown, in your
output file. The I(nput and O(utput commands allow
you to toggle back and forth between groups of
segments in your files.

NATIVE CODE GENERATOR

Native code generator (NCG) is a utility program that translates
selected portions of an executable p-code file into 8086 native
code (n-code) on the Texas Instruments Professional Computer.
Using native code directives inserted into the source code, you
indicate which portions of the file are to be translated. The result
of this procedure is an equivalent p-System code file that contains
p-code and n-code. The NCG translates only valid executable code
files produced by a UCSD p-System compiler.

Because n-code generally executes faster than p-code, the NCG
can be used to speed up the execution of selected portions of p
code, for example, portions of code where most of the run-time is
spent. However, p-code was designed for compactness and conse
quently takes up less space in memory than n-code. To use the
NCG effectively, translate only those portions of p-code for which
execution time is critical. Misuse of the NCG can greatly increase
the size of the code file.

You indicate that portions of code are to be translated by insert
ing native code directives into the Pascal source file before compi
lation. The following compiler options are the native code
directives.

$N+ and$N-

You insert the first switch {$N +} where the translation should
begin and the last switch {$N -} where the translation should
end. When the compiler encounters the first switch, it begins
generating the additional p-code necessary for n-code generation
and stops generating when it encounters the last switch. The
default setting for this compiler option is {$N - }.

6-17

Native Code Directives and Pascal

Because the NCG translates a Pascal code file on a proce
dure by procedure basis, only a complete routine (proce
dure, function or process) can be translated. One set of
native code directives may designate more than one pro
cedure; but the native code generation cannot begin
within the body of a procedure. The following example
shows the use of the native code directives in Pascal.

function MAX (a.b: integer): integer;
{$N+}
begin

if a > b then MAX: = a else MAX: = b;
end;
{$N-}

The object code file, produced by the compiler from
source code containing native code directives, is an
executable p-code file that maintains its machine porta
bility. The only difference is that the native code direc
tives slightly increase the size of the object code file.

Running the Native Code Generator

6-18

The NCG is run by executing 8086.NCG.CODE. The
NCG generates a prompt asking you for an input code file
and an output code file. The output file must contain the
suffix .CODE. Only executable code files can be trans
lated by the NCG (they must be already linked).

The NCG can produce a formatted listing of the code gen
erated for each procedure it translates. The NeG gener
ates a prompt asking you for the name of a listing file. To
produce a listing. enter a listing file name; for example,
Console:, Printer:, #5:List, List.Text. To eliminate the
listing, press the RETURN key in response to the
prompt.

The following listing is an example of function MAX
translated on the 8086 NCG.

Final 8086 VERSION NUMBER Code for
segment M procedure 2 segment offset 32
Source Object .RADIX 10
P-Code N-Code MP .EQU BP
(Dec. Offsets) BASE .EQU DX

0 .WORD 27,0
0 ,

4: 0 , A8 ;p-code NATIVE
1 8B4604 MOV AX,4[MP]
4 3B4602 CMP AX,2[MP]
7 7E08 JLE L1

9: 9 8B4604 MOV AX,4[MP]
12 894606 MOV 6[MP],AX

11: 15 EB06 JMP L2
13: 17 8B4602 Ll: MOV AX,2[MP]

20 894606 MOV 6[MP],AX
15: 23 FFIE0400 L2: CALL DS:4
15: 27 ;exit code

27 9602 ;p-code RPU 2

The preceding listings show the hybrid mixture of p-code
and n-code produced by the NCG. Cooperation between
the n-code code and the p-machine interpreter is achieved
using the following conventions:

• NATIVE is the p-code that instructs the interpreter
to start executing n-code. Execution starts on the
byte following the NATIVE instruction.

• The header lists the register conventions: p-machine
registers on the left and processor registers on the
right.

• Line L3 contains the instruction that returns the
processor from n-code to p-code.

• On the 8086, global and external variables are refer
enced through register DX, which contains Base.

6-19

On the whole, the listing looks very much like a listing
created by the assembler. The following notes may help
interpret the differences.

• P-code is preceded by the notation, ;p-code (all other
instructions are n-code.)

• The exit code point of the procedure is marked by
the notation, ;exit code.

• The left-most column of numbers contains decimal
byte offsets of equivalent p-code in the original code
file. These offsets should help identify the source
code by the offset in the compiler listing.

• The second column contains decimal byte offsets
into the final procedure code generated by the NeG.

Limits of Native Code Generation

6-20

The NeG produces an object code file whose execution
behavior is identical to the p-code file , except for differ
ences in execution speed.

In those instances in which the compiler emits calls to a
run-time support routine, the NeG leaves the p-code
intact. Therefore, p-code is used in those places where
translation would generate excessive code.

Sequences of straight n-code (code between a NATIVE
instruction and its matching return instruction, see indi
vidual processor listings) are treated by the p-machine as
a single p-code. This fact causes two problems. First,
although the BRK key may be recognized by the inter
preter at any point, no further action is taken until the
next p-code boundary (that is, until the current p-code is
completed and the next p-code is encountered). Since
there are no p-code boundaries in n-code, long sequences
of n-code cannot be terminated by pressing the BRK key.
Second, p·machine events (interrupts), like the BRK key,
are only acted upon at p-code boundaries.

I t is possible to work around these problems. You can
force a p-code procedure call by calling an empty
procedure. Since the p-code procedure calls fall into the
class of p-code that are never translated into n-code by
the NCG, long sequences of n-code can be broken into
smaller sequences by a procedure call. Since it is the pro
cedure call itself that breaks up the sequence, the called
procedure could be an empty shell.

Some unusual Pascal constructs create code that the
NCG will not translate. For example, using the Pascal
primitive, p- machine, to generate an RPU instruction
results in the error message: Undefined label.

PATCH

The Patch utility enables you to view files and alter them inter
actively on the byte level.

Patch is meant to be used interactively with a display unit. It
uses the screen control module (see UCSD p-System Internal
Architecture reference manual) to accomplish this; therefore, it
is terminal-independent (within limitations).

There are two main facilities in Patch: a mode for editing files on
the byte level and a mode for dumping files in various formats.

The byte-editing capability allows you to edit text files, make
quick fixes to code files, and create specialized test data.

The dump capability provides formatted dumps in various
radices. It also allows dumps from main memory.

6·21

EDIT Mode

When the system executes Patch. you are in the EDIT
mode. DUMP is reached by entering D . No information is
lost in chaining back and forth between the two modes.

EDIT allows you to open a file or device. read selected
blocks (specified by relative block number) into an edit
buffer. either view that buffer or modify it (with TYPE).
and write the modified block back to the file. The system
displays buffers on the screen in the desired format; these
can be edited in a manner similar to using the screen
oriented editor.

The following paragraphs describe the individual com
mands of the EDIT mode. When it is impossible to per
form a command. Patch responds with self-explanatory
error messages. The following lines are the EDIT
mode menu.

Edit: D(ump, G(et, R(ead, S(ave, H(ix, T(ype, I(nfo, Feor, B(ack,?

EDIT: V(iew, W(ipe, Q(uit,?

The following items explain each menu option.

D(ump

G(et

R(ead

S(ave

M(ixed

6-22

Calls DUMP.

Opens the file or device and reads
block zero into the buffer.

Reads a specified block from the
current file.

Writes the contents of the buffer out
to the current block.

Changes the display format for the
current block. Pressing M toggles to
change from one format to another:
hexadecimal or mixed.

Mixed

Hex

I (nformation

F(orward

B(ackward

V(iew

W(ipedisplay

Q(uit

T(ype

TYPE Mode

Displays printable ASCII charac
ters and the hexadecimal equivalent
of nonprintable characters.

Displays the block in hexadecimal
digits.

Displays information about the cur
rent file including the file name, the
file length, the number of the cur
rent block, whether the file is open,
whether UNITREADs are allowed,
the device number (-1 if UNITIO is
false), and the byte sex of the cur
rent machine.

Gets the next block in the file.

Gets the preceding block in the file.

Displays the current block (see
M(ixed).

Clears the display of the block off
the display unit.

Quits the Patch program.

Goes into the typing mode, which
allows the buffer to be edited (de
scribed in following section).

The TYPE mode, like the display unit-oriented editor,
allows the information on the screen to be modified by
moving the cursor and entering over previously existing
information. To correct errors made while using the
TYPE mode, leave the ED IT mode without saving the
file, read the block over, and try again.

6-23

The following line is an example of the TYPE mode menu.

TYPE: CChar, HCex, Hill, UCp, DColo/n, LCeft, RCight, <vector
arrolo/s>, QCuit

6-24

C(haracter

H(ex

F(ill

Exchanges bytes in the buffer for
ASCII characters as they are
pressed, starting from the cursor
and continuing until you press the
CONTROL and C keys simultane
ously (the CONTROL-C key combi
nation may be referred to as the
ETX key). Only printable characters
are accepted.

Exchanges bytes in the buffer for
hexadecimal digits as they are
pressed, starting from the cursor
and continuing until a Q is pressed;
(hexadecimal digits can be either
uppercase or lowercase).

Fills a portion of the current block
with the same byte pattern. Accepts
either ASCII characters or hexadeci
mal digits for the pattern; upon
completion, the cursor rests after
the last byte is filled.

The following commands move the cursor around within
the block of displayed data. The cursor is always at a par
ticular byte. Rather than moving off the screen, the cur
sor wraps around from side to side and from top to
bottom.

U(p Moves the cursor up one row.

D(own Moves the cursor down one row.

L(eft Moves the cursor left one column.

R(ight

< vector arrows>

Q(uit

DUMP Mode

Moves the cursor right one column.

Moves the cursor in the direction of
the arrow.

Exits the TYPE mode and returns
to the EDIT mode.

You can generate DUMP mode in the following formats:

• Decimal, hexadecimal, and octal words.

• ASCII characters, if printable.

• Decimal (BCD) and octal bytes.

DUMP can flip the bytes in a word before displaying it or
simultaneously display a line of words in both flipped and
nonflipped form.

Input to the DUMP mode can be a disk file you specify or
can come directly from main memory. (The DUMP mode
is used primarily to examine the interpreter and/or the
Basic Input/Output Subsystem [BIOS].)

The width of the output can be controlled; a line can con
tain any number of machine words: 15 words fill a 132-
character line, and 9 words fill an 80-character line.

When you enter the DUMP mode, the screen displays
two options: D(o and Q(uit. Also a lengthy set of format
specifications are displayed. These can be modified by
pressing the letter of the item and then entering the speci
fication. To activate the specification, press D for D(o ..

6-25

6-26

The following list shows the DUMP mode specifications:

A - The input: A disk file or device.

B - The number of the block from which dumping starts;
if (A) is a device, this number is not range-checked.

C - The number of blocks to print out; if this is too large,
DUMP merely stops when there are no more blocks to
output.

D - Pressing D starts the dump.

E - A toggle: If true, it reads from main memory; if false,
it reads from the file in (A).

F - An offset: The dump may start with a byte that is
past byte zero; 0 < = (F) < = MAXI NT.

G - The number of bytes to print; < = (G) < =
MAXINT.

H - The output file, opened as a text file.

I - The width of the output line, in machine words; 1 < =
(I) < = 15.

The following six items have three associated Booleans
that must be specified: USE, FLIP, and BOTH.

USE tells DUMP whether or not to use the format asso
ciated with that item.

FLIP tells DUMP whether or not to flip the bytes before
displaying words in that format.

BOTH tells DUMP to simultaneously display both
flipped and non flipped versions of the line. If BOTH is
true, the value of FLIP does not matter.

J - Display each word as a decimal integer.

K - Display each word as hexadecimal digits in byte
order.

L - Display each word as ASCII characters in byte
order; nonprintable characters are displayed as hexadeci
mal digits.

M - Display each word as an octal integer; this is the
octal equivalent of (J).

N - Display each word as decimal bytes (BCD) in byte
order.

o - Display each word as octal digits in byte order.

S - Put a blank line after the nonflipped version of a line.

T - Put blank lines between different formats of a line.

U - Pressing Q returns the to EDIT mode; DUMP
remembers the current specifications.

Both the EDIT and DUMP modes remember all their
pertinent information when the other mode is operating.

Prompts

All user-supplied numbers used by PATCH are read as
strings and then converted to integers. Only the first five
characters of the string are considered. If there are any
nonnumeric characters in the string, the integer defaults
to zero. If integer overflow occurs, the integer defaults to
maxint. (Since integer overflow can only be detected by
the presence of a negative number, integers in the range
65536 to 98303 come out modulo 32768.)

6-27

PRINT SPOOLING

The print spooler is a program that allows you to queue and print
files concurrently with the normal execution of the p-System
(while the console is waiting for input from the keyboard). The
queue it creates is a file called *SYSTEM.SPOOLER, and the
files you wish to print must reside on volumes that are on-line or
an error will occur.

When SPOOLER is X(ecuted, the following menu appears:

Spool: P(rint, O(elete, L(ist, S(uspend, R(esume, A(bort,
C<Lear, Q(uit

The following paragraphs explain the items on this menu:

P(rint

D(elete

L(ist

S(uspend

R(esume

A(bort

C(lear

Q(uit

6-28

Prompts for the name of a file to be printed. This
name is then added to the queue. If
*SYSTEM.SPOOLER does not already exist, it is
created. In the simplest case P(rint can be used to
send a single file to the printer. Up to 21 files may
be placed in the print queue.

Prompts for a file name to be taken out of the print
queue. All occurrences of that file name are taken
out of the queue.

Displays the files currently in the queue.

Temporarily halts printing of the current file.

Continues printing the current file after a S(uspend.
R(esume also starts printing the next file in the
queue after an error or an A(bort.

Permanently stops the printing process of the cur
rent file and takes it out of the queue.

Deletes all file names from the queue.

Exits the spooler utility and starts transferring files
to the printer.

If an error occurs (for example, a nonexistent file is specified in
the queue), the error message appears only when the p-System is
at the command menu. If necessary, the spooler waits until you
return to the outer level.

Program output to the printer can run concurrently with spooled
output. The spooler finishes the current file and then turns the
printer over to your program. (Your program is suspended while
it waits for the printer.) Your program should only do Pascal (or
other high-level) writes to the printer. If your program does
printer output using unitwrite, the output is sent immediately
and appears randomly interspersed with the spooler output.

The utility SPOOLERCODE uses the operating system unit
SPOOLOPS. Within this unit is a process called spool task. Spool
task is started at boot time and runs concurrently with the rest of
the UCSD p-System. The print spooler automatically restarts at
boot time if *SYSTEM.SPOOLER is not empty. When the file
*SYSTEM.SPOOLER exists, spooltask prints the files that it
names. Spooltask runs as a background to the main operations of
the p-System.

*SPOOLERCODE interfaces with SPOOLOPS and uses rou
tines within it to generate and alter the print queue within
*SYSTEM.SPOOLER

To restart the print spooling process if SPOOLERCODE is exe
cuting when the system goes down, reboot the system, press
X(ecute from the command menu, enter *SPOOLERCODE, and
press the RETURN key. Then press R(esume.

REALCONV UTILITY

The REALCONV utility converts real constants in a code file
from canonical (compiled) form to native machine format. It elim
inates the need to convert real constants at segment load time,
thus increasing the initial loading speed of the program seg
ments, as well as the overall run-time speed of the program.
This is especially important for programs that require frequent
loading of segments containing real constants.

6-29

The real constant conversion utility is a filter that works on code
files, replacing canonical reals with run-time reals in-place.
Hence, when the source file is not available, you should make a
backup copy of the code file to be processed before executing the
utility program. This avoids destroying the code file while execut
ing REALCONV with an unsuccessful write. Although slight,
you should consider this possibility.

Because the conversion algorithm uses real arithmetic of the host
processor, the utility must be executed on the processor on which
the output file will run. In most cases, a code file produced by the
utility will not run on another processor, which reduces the porta
bility of otherwise completely transportable code.

To use the utility, X(ecute REALCONV from the command
menu. It responds with the following prompt:

Enterf il ename. <ret>toqu i t :

Respond by entering the name of the code file to be processed, fol
lowed by pressing the RETURN key. You do not have to append
the suffix .CODE.

If REALCONV cannot find the file, it prints the message File not
found and asks you to enter the file name again. Once a correct
file is entered, REALCONV begins translating.

If REALCONV cannot complete the conversion successfully, it
prints a message and stops. The messages can be:

not enough memory

error in reading ...
The dots stand for:

segment dictionaries
first block
constant pool
segment
(as the case may be).

error in writing segment

too many dictionaries

6-30

Not enough memory means that the segment to be processed is
larger than the available memory space.

If the message is error in reading ... , X(ecute REALCONV again.

If the message is error in writing segment, then, before X(ecuting
REALCONV again, you have to restore the code file. Restoring
the code file depends on the availability of the source file. If the
source file is available, compile it again and save the code file. If
only the code file was originally available, make a copy of the
backup code file. (Remember to backup the original code file.)

Too many dictionaries means that you have more than 80 seg
ments in the file.

The probability of getting any of the three messages is extremely
slight, but it can happen.

If REALCONV executes successfully, a dot is written on the
console for each segment converted; and, once the conversion is
completed, the message Enter file name: is displayed so you can
process another file. When there are no more files to process,
answer the prompt by pressing the RETURN key. This exits
REALCONV and returns you to the command menu.

XREF - THE CROSS·REFERENCER

Introduction

The procedural cross-referencer (XREF) is a software tool
that helps you interpret large Pascal program listings.
The referencer provides a compact summary of the proce
dure nesting in a program; a list of the procedures; and,
for each, the procedures that call them. A table of calls
each procedure made along with all nonlocal variable ref
erences is also provided. It thus provides information
about the interprocedural dependencies of a program.

6-31

Referencer's Output

6-32

The referencer produces five tables and an optional warn
ings file:

• Lexical structure table: summarizes static proce
dure nesting.

• Call structure table: lists procedures and the proce
dures that they call.

• Procedure call table: presents procedures and the
procedures that call them.

• Variable reference table: shows each procedure and
the variables it references.

• Variable call table: lists each variable and the proce
dures which reference or modify it.

• Warnings file if desired: indicates possible problems
in the source program.

Lexical Structure Table

The first table displays the lexical structure and
the procedure headings. (The term procedure
means procedure, function, process or program in
this document unless otherwise stated.) As the
system reads the input program, it prints out
each heading with the line numbers of the lines in
which it occurs. The text is indented to display
the lexical nesting. (This indentation must some
times be compressed to fit on an output line.)

Referencer considers a procedure heading to be
any text between the words: procedure, function,
process, or program - and the semicolon which
follows. This is not the Pascal definition, but it is
more useful in debugging programs. If these
reserved words are embedded within comments,
they are ignored.

The Call Structure Table

The system produces the second table after it
scans the program completely. The call structure
table is the result of examining the internal data.
For each procedure listed in alphabetical order,
the table holds:

• The line-number of the line on which its
heading starts.

• Unless it was external or formal (and had no
corresponding block), the line number of the
BEG IN that starts its statement part.

• The characters ext if the procedure has an
external body (declared with a directive
other than FORWARD); the characters fml
if it is a formal procedural or functional par
ameter; or eh? if it is declared forward with
no associated forward block or BEGIN. If a
number appears, the procedure has been
declared FORWARD and this is the line
number of the line where the block of the
procedure begins (that is, the second part of
the two-part declaration).

• A list of all user-declared procedures
directly called by this procedure. (In other
words, their call is contained in the state
ment part.) The list is in order of occurrence
in the text; a procedure is not listed more
than once.

• A list of variables referenced by this proce
dure; and, if nonlocal, the procedure in which
they were declared. If a variable is modified
by an assignment, then it is printed with an
asterisk (*) in front of it.

6-33

6-34

The Procedure Call Table

This table is an alphabetical list of procedures;
and for each procedure the procedures that call it.

Variable Reference Table

This table is an alphabetical list of procedures;
and, for each procedure, the variables that the
procedure examines or modifies in any way. If the
variable is not local to the procedure in question,
then the procedure in which the variable was
declared is listed.

Variable references are shown in three forms:

• < variable name> :: = a local variable

• < procedure name> < variable name> ::= a
variable defined in < procedure> that is
used but not modified

• < procedure name> *< variable name> ::= a
variable defined in < procedure> which is
modified

Variable Call Table

The form of the variable call table is demon
strated in the following line.

• < procedure name> < variable name> :
< procedure name> [< procedure name>]

The first procedure name is the procedure that
owns the variable name, and the following proce
dure(s) either examine or modify that variable.

Warnings File

This file contains warning messages. There are
three types of warning messages in the warning
file:

• Symbol may be undeclared lineN xxxx.

• Symbol may not be initialized lineN xxxx.

• Not standard, nested comments lineN xxxx.

Symbol is an identifier, and xxxx is the number of
the line on which it occurs.

Referencer only catches initializations done by
replacement statements (:=), so variables that
are initialized by procedure calls (including
READ, and so on) are flagged as possibly
uninitialized. Depending on the program, there
may be a surplus of such warning messages.

The Not standard, nested comments warning
refers to the nesting of comments having differ
ent bracket types: (*like this {verstehen Sie?} *),
which is accepted by the UCSD Pascal compiler,
but not the current International Standards
Organization (ISO) draft standard.

The warnings file may only be generated if the
variable reference table is also generated.

6-35

6-36

Using Referencer

The referencer has options that are user-defined
at run-time. When the user executes XREF, refer
encer displays prompts asking for answers to the
following questions.

• How wide is your output device? [40 .. 132]:

This is the length of the output line for the
available terminal/printer. Suggested out
put width is 80 characters.

• Please enter the file you wish cross-refer
enced:

The name of the text file that contains the
Pascal program to be referenced. If the spec
ified file cannot be successfully opened, the
prompt is repeated until you enter a valid
input file name or press the RETURN key.
Entering an empty file name, (pressing the
RETURN key) exits referencer.

• Is this a compiled listing? [yin] :

The program reads either . TEXT files con
taining Pascal source programs or listing
files generated by the compiler. Using a
compiled listing as input assures the user
that the line numbers referenced are syn
chronized with the line numbers the compi
ler generates.

• Do you want intrinsics listed? [yIn]:

This allows identifiers such as WRITELN,
PRED, and GET to be accepted as valid
symbols. These are then cross-referenced as
procedures listed outside the lexical nesting
and, therefore, are not expected to have a
BEGIN associated with them.

• Do you want initial procedure nestings?
[yIn]:

This generates the lexical structure table.
This table shows the procedure headings
and, for each procedure, the list of proce
dures that it calls.

• Do you want procedure called by trees?
[yIn]:

This option is offered only if the lexical
structure table is desired. A y generates
both the call structure table and the proce
dure call table. The procedure call table lists
each procedure and all of the procedures
that call it. (A warning is displayed if less
than 10,000 words of memory are available
to generate these trees; no provision is made
for possible stack overflow.)

• Do you want variables referenced? [yIn]:

A y generates the variable reference table.

• Do you want variable called by trees? [yIn]:

A y generates the variable call table.

• Do you wish warnings? [yIn]:

Y generates the warnings file. This option is
offered only if the preceding selection was
made.

• Please enter the name of the warning file:

If the user selects warnings, then that per
son has the option of directing the warnings
to any file. If the file is a disk file, the name
should have .TEXT appended to it.

6-37

6-38

• Output File:

The name of the file to which the user would
like the output directed. If the file is a disk
file, the name should have. TEXT appended
to it.

The referencer expects to read a complete and
syntactically correct Pascal program. Although
results with syntactically incorrect programs are
not assured, the referencer is not sensitive to
most flaws. It cares about procedure, function,
program headings, and about properly matching
BEG IN s and CASEs with ENDs in the state
mentparts.

Referencer does not try to format procedure and
function headings; it leaves them as they were
entered in the program, except for aligning inden
tations.

The tables are all as wide as the output line
length, as specified by you. Eighty characters is
usually sufficient. For large programs, the first
table (the lexical structure table) is clearer with a
larger print line.

Limitations

When presented with incorrect Pascal programs,
the behavior of referencer is not assured.
However, it has been designed to be reliable, and
there are few flaws that can cause it to fail. The
most critical features are: the general structure of
procedure headings; and correctly matching an
END with each BEG IN or CASE in each state
ment part (since this information is used to detect
the end of a procedure).

If an error is explicitly detected (referencer has
very few explicit error checks and minimal error
recovery), the system displays the following mes
sage.

FATALERROR-Noidentifierafterprog/proc/func-AtLineNo.1I1III

The line number displayed (###) is the line where
the program found an error; like all diagnoses this
does not assure that the correct reason is ascribed
to the error. Processing continues for a while
despite the fatal error, but only the lexical struc
ture table is produced.

Referencer accepts standard Pascal programs,
UCSD Pascal Programs, and UCSD Units; it pro
cesses each correctly.

6-39/6-40

BACKSPACE
TAB
UPARROW
DOWN ARROW
LEFT ARROW
RIGHT ARROW
RETURN
ETX
ESC
BREAK
STOP

FLUSH
DELETE LINE
EXCHANG E-INSERT
EXCHANGE-DELETE
ALPHA-LOCK

A

Special Keys

Backspace
TAB

Marked Accordingly
Return
CTRLC
ESC
Shifted BRK/PAUSE
Unshifted BRK/PAUSE

orCTRL S
CTRLF
CTRL Backspace
INS
DEL
Uppercase

The following table describes special keyboard functions and the
affected keys:

Keys Pressed

ALTI
ALT2
ALT3
ALT4
ALT5

Function

Toggle display intensity (color)
Toggle cursor size
Toggle cursor state
Clear graphics screens
Disable function keys

A-I

The special function keys provides the following features:

ALTI

ALT2

ALT3

ALT4

ALT5

A-2

The display intensity toggle allows you to set the
intensity of characters displayed on the gray
scale monitor. On the high resolution graphics
monitor, this sets the color of the displayed char
acters.

The cursor size toggle allows you to define the
cursor ranging from no cursor to a full block cur
sor.

The cursor state toggle allows you to turn the
cursor off, cause the cursor to blink rapidly, cause
the cursor to blink slowly, or cause the cursor to
be non blinking.

The clear graphics display unit function clears the
installed graphics planes without affecting the
text display unit.

The disable function keys toggle allows you to
enable or disable · function keys on the keyboard.
The affected keys are those that return two char
acter sequences. These keys are not always appro
priate and may be confusing when struck in
certain circumstances since the application pro
gram will receive two characters which are mean
ingful only when used as a pair. For example,
with function keys enabled, the Fl key causes the
assembler to execute when the system is display
ing the Command menu. The Fl key returns the
characters 27 and 97. The system discards the 27
as invalid and treats the 97 (lowercase a) as a
command to begin the assembler. This toggle
allows you to disable these two key sequences.
The same keys are used to re-enable the function
keys when desired.

B

Execution Errors

o Fatal system error
1 Invalid index, value out of range
2 No segment, bad code file
3 Procedure not present at exit time
4 Stack overflow
5 Integer overflow
6 Divide by zero
7 Invalid memory reference < bus timed out>
8 User break
9 Fatal system I/O error

IOU ser I/O error
11 Unimplemented instruction
12 Floating point math error
13 String too long
14 Halt, Breakpoint
15 Bad Block

All run-time errors cause the system to I(nitialize itself; F A TAL
errors cause the system to rebootstrap. Some F A TAL errors
leave the system in an irreparable state, in which case the user
must rebootstrap.

B-lIB-2

c

liD Results

o No error
1 Bad Block, Parity error (CRC)
2 Bad Device Number
3 Illegal I/O request
4 Data-com timeout
5 Volume is no longer on-line
6 File is no longer in directory
7 B ad file name
8 No room, insufficient space on volume
9 No such volume on-line

ION 0 such file on volume
11 Duplicate directory entry
12 Not closed: attempt to open an open file
13 Not open: attempt to access a closed file
14 Bad format: error in reading real or integer
15 Ring buffer overflow
16 V olume is write-protected
17 Illegal block number
18 Illegal buffer

C-l/C-2

D

Device Number Assignments

The p-System on the Texas Instruments Professional Computer
supports up to 4 disk drives, a random access memory (RAM)
disk, a parallel printer, the serial communications option card,
and up to 10 subsidiary volumes. The following table describes
the shipped unit number assignments as defined by
SYSTEM.MISCINFO.

Device
Number

1
2
4
5
6*
7*
8*
9*

10*
11*
12

21

Volume
Name

CONSOLE
SYSTERM
DS01
DS02
PRINTER
REMIN
REMOUT
DS03
DS04
RAM disk

Comment

Volume name assigned by user
Volume name assigned by user
Optional printer required
Optional communications required
Optional communications required
Optional disk drive required
Optional disk drive required
Optional memory required
First user subsidiary vol

Last user subsidiary vol

* Support for optional devices is included in standard device support.
However, device not required for system operation.

D-l/D-2

E

ASCII Codes

Decimal Octal Hexadecimal Character

0 000 00 NUL
1 001 01 SOH
2 002 02 STX
3 003 03 ETX
4 004 04 EOT
5 005 05 ENQ
6 006 06 ACK
7 007 07 BEL
8 010 08 BS
9 011 09 HT

10 012 OA LF
11 013 OB VT
12 014 OC FF
13 015 OD CR
14 016 OE SO
15 017 OF SI
16 020 10 DLE
17 021 11 DC1
18 022 12 DC2
19 023 13 DC3
20 024 14 DC4
21 025 15 NAK
22 026 16 SYN
23 027 17 ETB
24 030 18 CAN
25 031 19 EM
26 032 1A SUB
27 033 1B ESC
28 034 1C FS
29 035 lD GS
30 036 IE RS
31 037 IF US
32 040 20 SP
33 041 21

E-l

Decimal Octal Hexadecimal Character

34 042 22
35 043 23 #
36 044 24 $

37 045 25 %
38 046 26 &
39 047 27
40 050 28
41 051 29
42 052 2A *
43 053 2B +
44 054 2C
45 055 2D
46 056 2E
47 057 2F
48 060 30 0
49 061 31 1
50 062 32 2
51 063 33 3
52 064 34 4
53 065 35 5
54 066 36 6
55 067 37 7
56 070 38 8
57 071 39 9
58 072 3A
59 073 3B
60 074 3C <
61 075 3D
62 076 3E >
63 077 3F ?
64 100 40 @

65 101 41 A
66 102 42 B
67 103 43 C
68 104 44 D
69 105 45 E
70 106 46 F
71 107 47 G
72 110 48 H
73 III 49 I
74 112 4A J

E-2

Decimal Octal Hexadecimal Character

75 113 4B K
76 114 4C L
77 115 4D M
78 116 4E N
79 117 4F 0
80 120 50 P
81 121 51 Q
82 122 52 R
83 123 53 S
84 124 54 T
85 125 55 U
86 126 56 V
87 127 57 W
88 130 58 X
89 131 59 Y
90 132 5A Z
91 133 5B [
92 134 5C /
93 135 5D 1
94 136 5E 1\

95 137 5F
96 140 60
97 141 61 a
98 142 62 b
99 143 63 c

100 144 64 d
101 145 65 e
102 146 66 f
103 147 67 g
104 150 68 h
105 151 69
106 152 6A j
107 153 6B k
108 154 6C I
109 155 6D m
110 156 6E n
111 157 6F 0

112 160 70 P
113 161 71 q
114 162 72 r
115 163 73 s

E-3

Decimal Octal Hexadecimal Character

116 164 74 t
117 165 75 u
118 166 76 v

119 167 77 w
120 170 78 x
121 171 79 y
122 172 7A z
123 173 78
124 174 7C
125 175 7D
126 176 7E
127 177 7F DEL

E-4

F

Keyboard Mapping

The following figures describe the Texas Instruments Profes
sional Computer keyboard and key code sequences.

The first figure illustrates the keyboard and shows the characters
that appear on the key caps.

The second figure is laid out in the same fashion and indicates the
key numbers for each of the keys in the first figure.

The table at the end lists the keys by key number and indicates
what codes they produce when entered normally or in conjunction
with CTL. ALT. and SHIFT.

F-l

'"Ij
t!:>

~ ~

)

~

T' .. '.'.· ·.· ... ·.·.·········· "0'" ~ '

,

"rj
~

~ ~ mmD]JIij

81

~
I

23 24 25 26

39 40 33 34

31 32 41 42

I 27 35 143

II 29 I
30

I 4~ f-

Key Norma l Shi ft Control Alt

01 F5 101 * 88 * 98 * 108 * 02 F6 102 * 89 * 99 * 109 * 03 F7 103 * 90 * 100 * 110 * 04 F8 104 * 91 * 101 * 111 * 05 F9 105 * 92 * 102 * 112 * 06 FlO 106 * 93 * 103 * 113 * 07 Fll 108 * 08 * 10 * 12 * 08 Fl2 110 * 09 * 11 * 13 *
09 1 49 ! 33 -- --
10 2 50 @ 69 03 * --
11 3 51 # 35 -- --
12 4 52 $ 36 -- --
13 5 53 % 37 -- --
14 6 54 94 RS 30 125
15 7 55 & 38 -- 126 * 16 8 56 * 42 -- 127 *
17 9 57 (40 -- 128 * 18 0 48) 41 -- 129 * 19 - 45 - 95 US 31 -- * 20 = 61 + 43 -- -- * 21 BS 08 BS 08 DE L 127 -- *
22 96 - 126 -- -- * 23 = 61 = 61 = 61 140 * 24 + 43 + 43 + 43 141 *
25 SP 32 SP 32 SP 32 142 *
26 HT 09 Bktab 15 * HT 09 143 * 27 1 49 1 49 1 49 --
28 -- -- -- --
29 0 48 0 48 0 48 --
30 CR 13 CR 13 CR 13 --
31 4 52 4 52 4 52 --
32 5 53 5 53 5 53 --
33 9 57 9 57 9 57 --
34 - 45 - 45 - 45 --
35 2 50 2 50 2 50 --

F-4

Key Normal Shift Control Alt

36 -- -- -- --
37 -- -- -- --
38 -- -- -- --
39 7 55 7 55 7 55 --
40 8 56 8 56 8 56 --
41 6 54 6 54 6 54 --
42 , 44 44 , 44 --
43 3 51 3 51 3 51 --
44 46 46 46 --
45 -- -- -- --
46 C-rt 67 * 138 * 116 * 78 *
47 Ins III * 40 * 41 * 42 *
48 Del 112 * 56 * 57 * 58 *
49 HT 09 BKTAB 15 HT 09 --
50 q 113 Q 81 DC1 17 16 *
51 w 119 W 87 ETB 23 17 *
52 e 101 E 69 ENQ 05 18 *
53 r 114 R 82 DC2 18 19 *
54 t 116 T 84 DC4 20 20 *
55 y 121 Y 89 EM 25 21 *
56 u 117 U 89 NAK 21 22 *
57 i 105 I 73 HT 09 23 *
58 0 III 0 79 SI 15 24 ~

59 P 112 P 80 OLE 16 25 *
60 I 91 I 123 ESC 27 -- *
61 I 93 I 125 GS 29 -- *
62 LF 10 LF 10 117 * 79 *
63 -- -- -- --
64 C-up 65 * 136 * 132 * 73 *
65 ESC 27 ESC 27 ESC 27 --
66 a 97 A 65 SOH 01 30 *
67 s 115 * S 83 DC3 19 31 *
68 d 100 * 0 68 EOT 04 32 *
69 f 102 F 70 ACK 06 33 *
70 9 103 G 71 BEL 07 34 *

F-5

Key Normal Shift Contro 1 Alt

71 h 104 H 72 BS 08 35 * 72 j 106 J 74 LF 10 36 *
73 k 107 K 75 VT 11 37 * 74 1 108 L 76 FF 12 38 * 75 , 59 : 58 -- --
76 39 " 34 -- --
77 CR 13 C~ 13 CR 13 --
78 \ 92 I 124 FS 28 --
79 c-lf 08 * 139 * 115 * 76 * 80 Home 107 * 134 * 119 * 133 * 81 SP 32 SP 32 SP 32 SP 32 * 82 z 122 Z 90 SUB 26 44 * 83 x 120 X 88 CAN 24 45 * 84 c 99 C 67 ETX 03 46 * 85 v 118 V 86 SYN 22 47 *
86 b 98 B 66 STX 02 48 * 87 n 110 N 78 SO 14 49 * 88 m 109 M 77 CR 13 50 * 89 , 44 < 60 -- --

90 Print 114 * -- -- --
91 46 > 62 -- --
92 / 47 ? 63 -- --

93 -- -- -- --

94 -- -- -- --

95 -- -- -- --

96 C-dn 66 * 137 * 118 * 81 * 97 -- -- -- --

98 -- -- -- --
99 -- -- -- --

100 Ppau ** Pbrk 128 -- --
101 Fl 59 * 84 * 94 * 104 *
102 F2 60 * 85 * 95 * 105 *
103 F3 61 * 86 * 96 * 106 *
104 F4 62 * 87 * 97 * 107 *

- Preceded by keyboard lead-in

- Key not used, no key code returned to user program

F-6

G

Pascal Compiler Syntax Errors

1: Error in simple type
2: Identifier expected
3: unimplemented error
4:) expected
5: : expected
6: Illegal symbol (terminator expected)
7: Error in parameter list
8: OF expected
9: (expected
10: Error in type
11: [expected
12:] expected
13: END expected
14: ; expected
15: Integer expected
16: = expected
17: BEG IN expected
18: Error in declaration part
19: error in < field-list>
20: . expected
21: * expected
22: INTERF ACE expected
23: IMPLEMENT ATION expected
24: UNIT expected

50: Error in constant
51: : = expected
52: THEN expected
53: UNTIL expected
54: DO expected
55: TO or DOWNTO expected in FOR statement
56: IF expected
57: FILE expected
58: Error in < factor> (bad expression)
59: Error in variable

G-l

60: Must be of type SEMAPHORE
61: Must be of type PROCESSID
62: Process not allowed at this nesting level
63: Only main task may start processes

101: Identifier declared twice
102: Low bound exceeds high bound
103: Identifier is not of the appropriate class
104: Undeclared identifier
105: Sign not allowed
106: Number expected
107: Incompatible subrange types
108: File not allowed here
109: Type must not be real
110: < tagfield> type must be scalar or subrange
Ill: Incompatible with < tagfield> part
112: Index type must not be real
113: Index type must be a scalar or a subrange
114: Base type must not be real
115: Base type must be a scalar or a subrange
116: Error in type of standard procedure parameter
117: Unsatisfied forward reference
118: Forward reference type identifier in

variable declaration
119: Respecified params not OK for a forward

declared procedure
120: Function result type must be scalar, subrange

or pointer
121: File value parameter not allowed
122: A forward declared function 's result type cannot

be respecified
123: Missing result type in function declaration
124: F-format for reals only
125: Error in type of standard procedure parameter
126: Number of parameters does not agree with

declaration
127: Illegal parameter substitution
128: Result type does not agree with declaration
129: Type conflict of operands
130: Expression is not of set type

G-2

131: Tests on equality allowed only
132: Strict inclusion not allowed
133: File comparison not allowed
134: Illegal type of operand(s)
135: Type of operand must be Boolean
136: Set element type must be scalar or subrange
137: Set element types must be compatible
138: Type of variable is not array
139: Index type is not compatible with the

declaration
140: Type of variable is not record
141: Type of variable must be file or pointer
142: Illegal parameter solution
143: Illegal type of loop control variable
144: Illegal type of expression
145: Type conflict
146: Assignment of files not allowed
147: Label type incompatible with selecting

expression
148: Subrange bounds must be scalar
149: Index type must be integer
150: Assignment to standard function is not allowed
151: Assignment to formal function is not allowed
152: No such field in this record
153: Type error in READ
154: Actual parameter must be a variable
155: Control variable cannot be formal or nonlocal
156: Multidefined case label
157: Too many cases in CASE statement
158: No such variant in this record
159: Real or string tagfields not allowed
160: Previous declaration was not forward
161: Again forward declared
162: Parameter size must be constant
163: Missing variant in declaration
164: Substitution of standard proc/func not allowed
165: Multidefined label
166: Multideclared label
167: Undeclared label
168: Undefined label
169: Error in base set

G-3

170: Value parameter expected
171: Standard file was redeclared
172: Undeclared external file
173: FORTRAN procedure or function expected
174: Pascal function or procedure expected
175: Semaphore value parameter not allowed
176: Undefined forward procedure or function
182: Nested UNITs not allowed
183: External declaration not allowed at this

nesting level
184: External declaration not allowed in

INTERF ACE section
185: Segment declaration not allowed in

INTERF ACE section
186: Labels not allowed in INTERFACE section
187: Attempt to open library unsuccessful
188: UNIT not declared in previous uses declaration
189: USES not allowed at this nesting level
190: UNIT not in library
191: Forward declaration was not segment
192: Forward declaration was segment
193: Not enough room for this operation
194: Flag must be declared at top of program
195: Unit not importable

201: Error in real number - digit expected
202: String constant must not exceed source line
203: Integer constant exceeds range
204: 8 or 9 in octal number
250: Too many scopes of nested identifiers
251: Too many nested procedures or functions
252: Too many forward references of procedure entries
253: Procedure too long
254: Too many long constants in this procedure
256: Too many external references
257: Too many externals
258: Too many local files
259: Expression too complicated

G-4

300: Division by zero
301 : No case provided for this value
302: Index expression out of bounds
303: Value to be assigned is out of bounds
304: Element expression out of range
398: Implementation restriction
399: Implementation restriction

400: Illegal character in text
401 : Unexpected end of input
402: Error in writing code file, not enough room
403: Error in reading include file
404: Error in writing list file, not enough room
405: PROGRAM or UNIT expected
406: Include file not legal
407: Include file nesting limit exceeded
408: INTERF ACE section not contained in one file
409: Unit name reserved for system
410: Disk error

500: Assembler error

G-5/G-6

H

Pascal Compiler Back-End Errors

The compiler back-end errors can result from a variety of prob
lems. Basically, they occur when the back-end finds itself or the
intermediate code file in an unexpected state. (The intermediate
code file is a file used by the compiler to communicate between
the front-end and back-end of the compiler. It consists of compiler
directives intermixed with actual p-code.) Back-end errors can be
caused by a corrupt intermediate code file, external forces (such
as bad blocks on the disk), or source file information that is
skipped by the front-end but used by the back-end.

The following table lists each of the back-end errors and gives a
possible explanation for their occurrence:

Error
Number

-1

1

4

5

Comments

While trying to generate the constant pool infor
mation for a particular code segment, the back
end tries to read one block from the intermediate
code file and the read fails.

If the lexical procedure nesting is greater than 31,
this error will occur. Since the front-end only
allows nesting of 7 procedures, this error should
theoretically never occur.

The intermediate code file directives are bytes
with values greater than 252. If the back-end
reads a directive with a value that is less than
253, error number 4 will result.

The current procedure number is greater than the
maximum number of procedures for that seg
ment.

H-l

Error
Number Comments

6 The operator (variable, constant, jump location)
that the back-end is trying to remap is not in the
scope of the compilation unit.

7 The back-end cannot find the target site to jump
to while resolving jumps.

8 There are more than 400 jumps in the jump table
while trying to enter a site jump error. Try divid-
ing each procedure with many jumps into more
than one procedure.

9 There are more than 400 jumps in the jump table
while trying to enter a target jump. Try dividing
each procedure with many jumps into more than
one procedure.

11 The code pointer is less than zero or greater than
the length of the intermediate code file while
building a jump table.

12 A jump site cannot be found in the jump table.

22 Unexpected end of input while generating the
LeO p-code instruction.

23 Unexpected end of input while generating the
LDC p-code instruction.

24 The exit for a certain procedure cannot be found
in the jump table.

25 The code pointer is less than zero or greater than
the length of the intermediate code file while gen- ------.
erating p-code.

27 The code pointer is less than zero before trying to
read in more code from the intermediate code file
to the code buffer.

H-2

Error
Number

28

29

Comments

The code pointer is less than zero after trying to
read in more code from the intermediate code file
to the code buffer.

The current final output block number is greater
than the block number of the intermediate code
file being processed.

30 The final code file size exceeds the intermediate
code file size before trying to write more final
code.

31 The final code file size exceeds the intermediate
code file size after writing more final code.

41 The line length of a compiled listing exceeds 120
characters. (Note: This error can occur on a pre
IV.1 compiler if there is an illegal character after
a DLE character.)

86 Could not find a particular segment in the inter
mediate code file.

99 The number of procedures does not match the
number specified in the procedure dictionary.

When you encounter a back-end error:

• If a syntax error has occurred in the front-end and a back
end error occurs, fix the syntax error and try recompiling.

• If there are Bad Blocks on any of the disks being used for
the compilation replace the bad disks with good ones and
try recompiling.

H-3/H-4

Index

Title Page

A
A(bort 6-14
Altering memory 5-7
ANSI 3-6
Assembly language 2-28

B
Breakpoints 5-5

C
Call structure table 6-33
CHAIN 3-4
Chaining programs 3-4
Code segment 2-27
Command I/O unit 3-17
Clomp-unit 6-16
C(ompile 2-3
Compiled listing 2-7
Compiler 2-3
Compiler options 2-11

$B Begin Conditional Comp 2-12, 2-19, 2-23
$B Conditional Comp Flag 2-20
$B End Conditional Comp 2-23
$C Copyright Field 2-13
$D Conditional Comp Flag 2-13, 2-19
$E End Conditional Comp 2-13, 2-19
$1 Include File 2-14
$1 I/O Check 2-13
$L Compiled Listing 2-15
$N Native Code Generation 2-16
$P Page 2-16
$Q Quiet 2-17

Index-l

Title Page

$R Range Checking 2-17
$R Real Size Directive 2-17
$T Title 2-18
$U Use Library .. 2-18
$U User Program 2-19

Conditional compilation 2-19

D
Date_Test 4-42
D_Change_Name 4-35
D_Choice 4-14
D_Code 4-14
D_Data .. 4-14
D(ebug

Breakpoints 5-5
Variables 5-6

Debugger 5-3
Decode 6-3
D_Free 4-14
Directories 4-3, 4-10
Directory information 4-10

File type selection .. 4-13
Notation and terminology ... 4-11

Directory information access .. 4-10
Directory lister program 4-28
Directory manipulation 4-11
DIR.INFO .. 4-10
DIR_INFO 4-10

File type selection 4-13
Notation and terminology 4-11

Disassembling 5-10
Displaying memory 5-7
D_NAME .. 4-17
D_NameType .. 4-14
D_Sc~Title 4-13,4-17
D_SELECT 4-13
D_SVol .. 4-14
D_Temp 4-14
D_Text 4-14

Index-2

Title Page

D_TITLE .. 4-17
D_TYPE ... 4-18
D_Vol .. 4-14
D_VOLUME .. 4-18

E
Error handler unit ... 3-14
Error handling 4-11
Error results ... 4-15
E(very ... 6-15
Extended Backus-Naur Form (EBNF) 4-11

F
File dates 4-15
FILE. INFO ... 4-4, 4-64
FILE_INFO 4-4, 4-9
File information 4-64
File management units .. 4-3

DIR.INFO .. 4-3
FILE.INFO .. 4-4
SYS.INFO .. 4-4
WILD .. 4-4

File Manipulation .. 4-11
F(ill .. 6-16
Function

Aspect----.ratlo 3-30
Command 110: Redirect ... 3-18
Create_Figure ... 3-31
D_Change_Date .. 4-40
D_Change_Name .. 4-32
DIR_INFO: D_DIRJist ... 4-20
DIR_INFO: D_Dismount .. 4-17
DIR_INFO: D_Krunch .. 4-16
DIR_INFO: D_Mount .. 4-17
DIR_INFO: D_Scan_Title ... 4-17
DIR_INFO: Result ... 4-28
D_Re~Files ... 4-43
D_ WilLMatch .. 4-53
F ~s_Blocked ... 4-65

Index-3

Title Page

F _Length ... 4-64
F _Open 4-64
F _Start 4-65
F_Unit_Number .. 4-64
Load_figure 3-36
Read_figure_file 3-35
Read_pixel ... 3-34
SC_Check_Char 3-11
SC_FinLX .. 3-9
SC_Find_ Y 3-9
SC_Has_Key ... 3-12
SC_Map_CRT_Command ... 3-11
SC_Prompt .. 3-10
SC_Scrn_Has .. 3-12
SC_Space_Wait ... 3-10
SI_Sys_Unit .. 4-57
Store_figure .. 3-36
Turtle_angle .. 3-26
Turtle----.X ... 3-26
Turtle_y ... 3-26
Write_figure_file ... 3-35

I
Implementation section ... 2-29
Interface section 2-29

L
$L .. 2-4
Lexical structure table 6-32
Libraries 2-29
Library text file ... 2-30
Library utility.... 6-12
Library's menu ... 6-14
L(inker .. 2-28
Linking ... 2-27
Listing .. 2-7
Locktest .. 4-46

Index-4

Title Page

M
Mark stack chain 5-9
Memory .. 5-7
Meta-words ... 4-11
Multi-tasking support ... 4-11

N
N(ew .. 6-14

o
Operating system user manual ... 4-12

P
Pascal .. 1-3
Patch ... 6-21

DUMP \ .. 6-22, 6-25, 6-33
EDIT .> ... 6-22
Prompts .. 6-27
TYPE .. 6-23

p-code ... 5-9, 5-10
Procedure

Activate_turtle 3-24
Background 3-28
Command I/O: Chain ... 3-18
Command I/O: Exception .. 3-19
Delete_figure 3-32
Display_scale .. 3-29
D~ock .. 4-46
D _Release .. 4-47
F _Date 4-66
F _File_Title ... 4-65
Fillscreen ... 3-28
F _Volume 4-65
Get_Figure 3-32
Move .. 3-24
Moveto 3-24
Pen_color 3-25
Pen_Mode .. 3-26
Put_Figure 3-33

Illdex-5

Title Page

SC_Clr_Cur_Line 3-8
SC_Clr_Line 3-8
SC_Clr_Screen 3-8
SC_Down 3-8
SC~ras_EOS 3-8
SC~rase_to_EOL 3-8
SC_GetC_CH 3-10
SC_Goto_XY 3-9
SC_Home 3-9
SC_1nit 3-8
SC_Left 3-9
SC_Right 3-9
SC_Up ... 3-9
SC_Use_1nfo 3-12
SC_Use_Port 3-13
Set~rror_Line 3-16
Set_pixel 3-35
Set_User_Message 3-16
S1_Code_Tid 4-57
S1_Code_Vid 4-57
S1_Get_Date 4-58
S1_Get_Pref_ Vol 4-58
S1_Get_Sys_ Vol................. 4-58
S1_Set_Date 4-58
S1_Set_Pref_ Vol... 4-58
S1_Text_Tid 4-57
S1_Text_ Vid 4-57
Turn 3-24
Turnto 3-25
Viewport 3-34
WChar 3-28
WString 3-28

Procedure call table 6-34
Program

Date_Test 4-42
D_Change_N ame .. 4-33
Directory lister program 4-28
Locktest .. 4-47

1ndex-6

Re~ Test 4-45
Sc~Test .. 4-19
Sys_Test .. 4-59
WildChng•.................................. 4-36
Wild_Test .. 4-56

Q
Q(uit .. 6-14

R
REALCONV 6-29
Referencer's output

Call structure table 6-33
Lexical structure table ... 6-32, 6-43
Procedure call table 6-34
Variahle call table .. 6-34
Variahle reference table 6-34
Warnings file .. 6-35

R(efs .. 6-15
R(egister 5-9
Re~ Test .. 4-45
R(un .. 2-3

S
Scan_Test 4-19
Screen control unit 3-6
SCREENOPS.CODE ... 3-6
Segmenting a program .. 2-27
Segments ... 2-27, 2-32
S(elect ... 6-16
Selective uses ... 2-22
Separate compilation 2-28

External compilation ... 2-28
Separate compilations 6-12
Single step 5-9
Special Keys .. A-I
Symbolic debugging .. 5-12
Syntax errors ... 2-6

Index-7

Title Page

SYS.INFO ... 4-4, 4-57
SYS_INFO 4-8
System Information .. 4-57
SYSTEM.LIBRARY ... 2-30
SYSTEM.MENU ... 3-4
SYSTEM.ST ARTUP .. 3-4
Sys_ Test 4-59

T
Text files ... 5-8
T(og ... 6-15

U
UCSD Pascal 2-3
Unit interface

DIR_INFO .. 4-6
FILE_INFO 4-9
SYS_INFO 4-8
WILD .. 4-5

UNIT PASCALIO ... 6-13
Units .. 2-27,2-28, 2-29, 2-32, 6-4

Implementation section ... 2-29
Interface section ... 2-29

Use .. 2-31
User interface 3-3
USERLIB.TEXT ... 2-30
Using Library ... 6-13
Using Referencer ... 6-36

v
Variable call table 6-34
Variable reference table 6-34
Variables ... 5-6
Vector arrows ... 6-25

w
Warnings file 6-35
WILD ... 4-49

Index-8

Title Page

Wild Cards 4-49
WildChng 4-36
Wild_Test ... 4-56
WRITELN ... 6-13

X
XREF ... 6-31

Index-9/Index-1O

THREE-MONTH
LIMITED WARRANTY

TEXAS INSTRUMENTS
PROFESSIONAL COMPUTER

SOFTWARE MEDIA

TEXAS INSTRUMENTS INCORPORATED EXTENDS
THIS CONSUMER WARRANTY ONLY TO THE
ORIG IN AL CONSUMER/PURCHASER.

WARRANTY DURATION

The media is warranted for a period of three (3) months from
the date of original purchase by the consumer.

Some states do not allow the exclusion or limitation of inciden
tal or consequential damages or limitations on how long an im
plied warranty lasts, so the above limitations or exclusions
may not apply to you.

WARRANTY COVERAGE

This limited warranty covers the cassette or diskette (media)
on which the computer program is furnished. It does not ex
tend to the program contained on the media or the accompany
ing book materials (collectively the Program). The media is
warranted against defects in material or workmanship. THIS
WARRANTY IS VOID IF THE MEDIA HAS BEEN DAM
AGED BY ACCIDENT, UNREASONABLE USE, NE
GLECT, IMPROPER SERVICE, OR OTHER CAUSES
NOT ARISING OUT OF DEFECTS IN MATERIALS OR
WORKMANSHIP.

PERFORMANCE BY TI UNDER WARRANTY

During the above three-month warranty period, defective media
will be replaced when it is returned postage prepaid to a Texas
Instruments Service Facility listed below or an authorized
Texas Instruments Professional Computer Dealer with a copy
of the purchase receipt. The replacement media will be war
ranted for 'three months from date of replacement. Other than
the postage requirement (where allowed by state law), no
charge will be made for the replacement. TI strongly recom
mends that you insure the media for value prior to mailing.

WARRANTY AND CONSEQUENTIAL
DAMAG.ES DISCLAIMERS

ANY IMPLIED WARRANTIES ARISING OUT OF THIS
SALE INCLUDING, BUT NOT LIMITED TO, THE IM
PLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE, ARE LIM
ITED IN DURATION TO THE ABOVE THREE-MONTH
PERIOD. TEXAS INSTRUMENTS SHALL NOT BE LI
ABLE FOR SPECIAL, COLLATERAL, INCIDENTAL, OR
CONSEQUENTIAL COSTS, EXPENSES, OR DAMAGES
INCURRED BY THE CONSUMER OR ANY OTHER USER
ARISING OUT OF THE PURCHASE OR USE OF THE
MEDIA. THESE EXCLUDED DAMAGES INCLUDE, BUT
ARE NOT LIMITED BY, COST OF REMOVAL OR REIN
STALLATION, OUTSIDE COMPUTER TIME, LABOR
COSTS, LOSS OF GOODWILL, LOSS OF PROFITS, LOSS
OF SAVINGS, OR LOSS OF USE OR INTERRUPTION OF
BUSINESS.

LEGAL REMEDIES

This warranty gives you specific legal rights, and you may also
have other rights which vary from state to state.

TEXAS INSTRUMENTS
CONSUMER SERVICE FACILITIES

U.S. Residents:

Texas Instruments
Service Facility

P.O. Box 1444, MS 7758
Houston, Texas 77001

Canadian Residents:

Geophysical Service Inc.
41 Shelley Road
Richmond Hill, Ontario
Canada L4C 5G4

Consumers in California and Oregon may contact the following
Texas Instruments offices for additional assistance or
information.

Texas Instruments
Consumer Service

831 South Douglas St.
Suite 119
El Segundo, California 90245
(213) 973-2591

Texas Instruments
Consumer Service

6700 S.W. 105th
Kristin Square, Suite 110
Beaverton, Oregon 97005
(503) 643-6758

IMPORTANT NOTICE OF DISCLAIMER
REGARDING THE PROGRAM

The following should be read and understood before using the
software media and Program.

TI does not warrant that the Program will be free from error or
will meet the specific requirements of the purchaser/user. The
purchaser/user assumes complete responsibility for any deci
sion made or actions taken based on information obtained
using the Program. Any statements made concerning the util
ity of the Program are not to be construed as expressed or im
plied warranties.

TEXAS INSTRUMENTS MAKES NO WARRANTY,
EITHER EXPRESSED OR IMPLIED, INCLUDING BUT
NOT LIMITED TO ANY IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICU
LAR PURPOSE, REGARDING THE PROGRAM AND
MAKES ALL PROGRAMS AVAILABLE SOLELY ON AN
"AS IS" BASIS.

IN NO EVENT SHALL TEXAS INSTRUMENTS BE LI
ABLE FOR SPECIAL, COLLATERAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES IN CONNECTION WITH
OR ARISING OUT OF THE PURCHASE OR USE OF THE
PROGRAM. THESE EXCLUDED DAMAGES INCLUDE,
BUT ARE NOT LIMITED BY, COST OF REMOVAL OR
REINSTALLATION, OUTSIDE COMPUTER TIME,
LABOR COSTS, LOSS OF GOODWILL, LOSS OF PROFITS,
LOSS OF SAVINGS, OR LOSS OF USE OR INTERRUP
TION OF BUSINESS. THE SOLE AND EXCLUSIVE LIA
BILITY OF TEXAS INSTRUMENTS, REGARDLESS OF
THE FORM OF ACTION, SHALL NOT EXCEED THE
PURCHASE PRICE OF THE PROGRAM. TEXAS INSTRU
MENTS SHALL NOT BE LIABLE FOR ANY CLAIM OF
ANY KIND WHATSOEVER BY ANY OTHER PARTY
AGAINST THE PURCHASERIUSER OF THE PROGRAM.

COPYRIGHT

All Programs are copyrighted. The purchaser/user may not
make unauthorized copies of the Programs for any reason. The
right to make copies is subject to applicable copyright law or a
Program License Agreement contained in the software pack
age. All authorized copies must include reproduction of the
copyright notice and of any proprietary rights notice.

TEXAS INSTRUMENTS PROFESSIONAL COMPUTER
UCSD p-System Program Development
2232399-0001

Original Issue: 15 April 1983

Your Name: __ __

Company: __ _

Telephone:

Department:

Address: __ ___

City/State/Zip Code:

Your comments and suggestions assist us in improving our prod
ucts. If your comments concern problems with this manual, please
list the page number.

Comments:

This form is not intended for use as an order blank.

FOLD

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO . 6189 HOUSTON, TX

POSTAGE WILL BE PAID BY ADDRESSEE

Texas Instruments Incorporated
Attn: Marketing MIS 7896
P.O. Box 1444
Houston, TX 77001

FOLD

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

TEXAS INSTRUMENTS PROFESSIONAL COMPUTER
UCSD p-System Program Development
2232399-0001

Original Issue: 15 April 1983

Your Name:

Company:

Telephone: __ __

Department: __ _

Address:

City/State/Zip Code: _________________ _

Your comments and suggestions assist us In Improving our prod
ucts. If your comments concern problems with this manual, please
list the page number.

Comments:

This form is not intended for use as an order blank.

FOLD

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO . 6189 HOUSTON, TX

POSTAGE WILL BE PAID BY ADDRESSEE

Texas Instruments Incorporated
Attn: Marketing MIS 7896
P.O. Box 1444
Houston, TX 77001

FOLD

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

TEXAS INSTRUMENTS PROFESSIONAL COMPUTER
UCSD p-System Program Development
2232399-0001

Original Issue: 15 April 1983

Your Name:

Company:

Telephone: __ __

Department: __ _

Address:

City / State/Zip Code: ________________________________ _

Your comments and suggestions assist us in improving our prod
ucts. If your comments concern problems with this manual, please
list the page number.

Comments:

This form is not intended for use as an order blank.

FOLD

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 6189 HOUSTON, TX

POSTAGE WILL BE PAID BY ADDRESSEE

Texas Instruments Incorporated
Attn: Marketing MIS 7896
P.O. Box 1444
Houston, TX nOO1

FOLD

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

Texas Instruments reserves the right to change
its product and service offerings at any time

without notice.

2232399-0001

TEXAS
INSTRUMENTS

Printed in U.S.A.

