®ucsD p-System™
Operating System
Reference ‘
Manual

*

Texas Instruments Professional Computer

Cover Part No. 2232343-0001

UCSD p-System™ Operating System Reference Manual
TI Part No. 2232395-0001
Original Issue: 15 April 1983

Copyright © 1978 by the
Regents of the University of California (San Diego)
All rights reserved.

All new material copyright © 1979, 1980, 1981, 1983
by SofTech Microsystems, Incorporated
All rights reserved.

All new material copyright © 1983
by Texas Instruments Incorporated
All Rights Reserved.

No part of this work may be reproduced in any form or by any
means or used to make a derivitive work (such as a translation,
transformation, or adaptation) without the permission in

writing of SofTech Microsystems, Inc.

UCSD, UCSD Pascal, and UCSD p-System are all trademarks
of the Regents of the University of California. Use thereof in
conjunction with any goods or services is authorized by specific
license only, and any unauthorized use is contrary to the laws

of the State of California.

Preface

This publication is a reference manual for the UCSD
p-System™* on the Texas Instruments Professional Computer.
It covers the operating system, filer, Screen-Oriented Editor,
and several utilities. It describes the facilities of the major
p-System components and provides basic instructions for using
them. If you are slightly familiar with the p-System, the infor-
mation presented here will complement and increase your
knowledge of it. However, if you are a beginner or have never
used this system, you should first read:

Personal Computing with UCSD p-System
(Part Number 2232418-0001)

For further information about the system and its use, refer to
the following publications:

UCSD p-System Introduction
(Part Number 2232396-0001)

UCSD p-System Program Development
(Part Number 2232399-0001)

UCSD p-System Assembler
(Part Number 2232402-0001)

UCSD p-System Internal Architecture
(Part Number 2232400-0001)

UCSD Pascal™*
(Part Number 2232401-0001)

* UCSD p-System and UCSD Pascal are trademarks of the Regents of the
University of California.

iii

DISCLAIMER

This document and the software it describes are subject to
change without notice. No warranty expressed or implied
covers their use. Neither the manufacturer nor the seller is re-
sponsible or liable for any consequences of their use.

iv

Contents

PHEEROE cnsnmmimnmmsmeemmsmmsrsesimiosimiaimmismasesis s i
Introduction ..., 1-1/1-2
How to Use This Manualccoccceeiiiiiiniiceeeinnienenenneenn. 1-3
Backgroundccccccieiiieieiiienieiiere et aenes 1-4
Design Philosophyccccceeevieiiinciiiiieeeeccciveeceseeeee e 1-5
Using the p-Systemc.cccccvivvieieniiieeeeniieenrreeeeeneenene 1-6
The Operating Systemc.ccooourvnennee. 21/2:3
INtroductionccccoeeeviinriieiiieire e 2-3
Menus and Promptsccccecceeeieeiiiieceeennniieeeseneeee e 2-3
Disk SWapDING .ssusssoivssavmssmamsssssmisssssaasssassmsassseisiioag 2-7
Operating System Commandscccceevrieirveennvuersiinennns 2-7
File Managementccccooevvcrmmrieeririnennnes 3-1
Introductionccccceeeciieieiiiiieiireeer e 3-3
File Organization ...cuesssssssmarssssmammssssmmssssamsissssisie 3-4
WOTK FIleS uusmmssssussssmsseansosssssonsmvssmssssssmaamisississsssmns 3-15
Using the FIler ueumausssnssisomaioss inmasnnmaiossns snnsnnsssssnsnssan 3-16
Recovering Lost Filescccceeevciivviiiiicciiinnieccneeeccenen, 3-20
Subsidiary Volumesccccceeevvvreeeriereciiinreeeeeineeeeennens 3-25
Filer Commands uswssssmsssssemumsssswanssmsssenssaissssamsisssnsas 3-32
System Editor ..., 4-1
Introductioncccecviiiiiiiiieiiirereec e 4-3
Screen-Oriented EdIitorccccccccvieeriiiiniiiiennininnneecniineenn. 4-3
Using the EdIor .ccsssssssmsmammssvssssmsmmusssissssssmimnsiss 4-7
Screen-Oriented Editor Commandscccceevveeeeeeennne. 4-14

5

A

T Ao aw

Utility Programs ... 5-1
i1 (016 LB L 10 o RPN S T R 5-3
The Print UGIHEY: ...osviassimimsimimsnmsasismasmis st sin 5-3
The COPYDUPDIR Utility ..cccccovvcrerccreeineinierenneinninnns 5-16
The MARKDUPDIR Utlity ...ooocovvevverreereenrrereeninseenenns 5-17
The Recover ULITHEY .cuoisisssnssmssunsmsesssmnmssssissmsvessmiossmms 5-18
The RAM Configuration Utilitycccccccrevvvvieniinienns 5-21
The Remote Configuration Utilityc.cccccovvniniiiinnnn. 5-23
The Printer Configuration Utilityccccoocveirevcceerinnneen. 5-25
The Disk Formatting Utilitycccocvevveinviniiivininnnnnns 5-28
The Set Date and Time Utilityccccoccevveeriveeniecinnenn 5-29
= 2 41 U 5-30
Appendixes

Bootstrapping the UCSD p-System

Special Keys

Execution Errors

I/0 Results

Device Number Assignments

ASCII Codes

Extended Memory on the Texas

Instruments Professional Computer

Release Disk Configurations

Glossary

Index

vi

1

Introduction
How to Use This Manualcccccovvinveencerernnn, 1-3
Backproniitl s 1-4
Design Philosophyccccoooiiieeeeieeeceeee 1-5
User-Friendlyccccccceeiiviiiiciiiieiiiiiece it ecrre e seeee e e 1-5
1276 57210 | = AU 1-6
Using the p-Systemccccoooovvvivieeceeeeeecee e 1-6
Menus and Promptsccccceeeiiieeieeiiiieieeeeeeciiee e 1-6
System Files ..ocoocciiiiiiiiiiieieccceeeee e 1-9

1-1/1-2

HOW TO USE THIS MANUAL

Each part of this manual is designed to help you get the most
out of the p-System on the Texas Instruments Professional
Computer.

The preface describes the audience and the purpose for which
the manual was written. It also lists other books that may be
of interest to you.

Chapter 1, Introduction, presents background information
about the p-System, including a short history of p-System
development and a description of p-System components.

Chapter 2, The Operating System, explains the menus,
prompts, and commands used by the p-System’s operating sys-
tem. It also shows how to swap disk volumes while a program
is running.

Chapter 3, File Management, presents considerable information
about file organization and file handling, as well as descriptions
of the filer commands.

Chapter 4, System Editor, describes the Screen-Oriented
Editor.

Chapter 5, Utility Programs, describes several programs which
provide support to the Texas Instruments Professional
Computer.

The appendices present useful reference material:

Bootstrapping the UCSD p-System

Special Keys

Execution Errors

I/0O Results

Device Number Assignments

ASCII Code

Extended Memory on the Texas Instruments Professional
Computer

Release Disk Configurations

m o QEREgQwE»

1-3

BACKGROUND

In June 1979, SofTech Microsystems in San Diego began to
license, support, maintain, and develop the p-System. The re-
sulting effort to build the world’s best small computer environ-
ment for executing and developing applications has
dramatically increased the growth and use of the p-System.
The first p-System ran on a 16-bit microprocessor. Today, the
p-System runs on 8-bit, 16-bit, and 32-bit machines—including
the Z80™', 8080/8085, 8086, 6502, 6809, 68000, 9900,
PDP-11™2, LSI-11™2, and VAX™?2,

The p-System began as the solution to a problem. The Uni-
versity of California at San Diego needed interactive access to
a high-level language for a computer science course. In late
1974, Kenneth L. Bowles began directing the development of
the solution to that problem: the p-System. He played a princi-
pal role in the early development of the software.

In the summer of 1977, a few off-campus users began running
a version of the p-System on a PDP-11. When a version for the
8080 and the Z80 began operating in early 1978, outside
interest increased until a description of the p-System in Byte
magazine drew over a thousand inquiries.

As interest grew, the demand for the p-System could not be
met within the available resources of the project. SofTech
Microsystems was chosen to support and develop the p-System
because of its reputation for quality, high technology, and lan-
guage design and implementations.

Now the p-System is available on the Texas Instruments
Professional Computer.

' Z80 is a trademark of Zilog, Incorporated.

?PDP-11, LSI-11, and VAX are trademarks of Digital Equipment
Corporation.

1-4

DESIGN PHILOSOPHY

The development team members, many of whom continued
their efforts on behalf of the system at SofTech Microsystems,
decided to use stand-alone, personal computers as the hardware
foundation for the p-System rather than large, time-sharing
computers. They chose Pascal for the programming language
because it could serve in two capacities: the language for the
course and the system software implementation language.

The development team had three primary design concerns:

e The user interface must be oriented specifically to the
novice, but must be acceptable to the expert.

e The implementation must fit into personal, stand-alone
machines (64K bytes of memory, standard floppy disks,
and a CRT terminal).

o The implementation must provide a portable software en-
vironment where code files (including the operating sys-
tem) could be moved intact to a new microcomputer. In
this way, application programs written for one micro-
computer could run on another microcomputer without
recompilation.

The current design philosophy at SofTech Microsystems, where
the p-System continues to evolve, is basically the same as the
original philosophy.

User-Friendly

The p-System continuously identifies its current mode
and the options available to you in that mode. This is
accomplished by using menus, displays, and prompts.
You may select an option from a menu by pressing a
single-character command. The system’s displays then
guide your interactions with the computer. As you gain
more experience, you can ignore the continuous status
information—unless it is needed.

1-5

Portable

The p-System is more portable than any other micro-
computer system. It protects your software invest-
ments without restricting hardware options. The
p-System does this by compiling programs into p-code
—rather than native machine language—thus allowing
these code files to be executed on any microcomputer
that runs the UCSD p-System.

USING THE p-SYSTEM

The p-System includes an operating system, filer, editor, and
several other components. The filer, editor, and other compo-
nents are separate programs that perform functions tradition-
ally performed by an operating system.

Menus and Prompts

The p-System is menu-driven; that is, it displays a
menu at the top of the display unit that lists the avail-
able commands. To use any one of these commands,
you need press only one key. Often, prompts are dis-
played. They require you to enter in a response and
then press the RETURN key. You can use the
BACKSPACE key if you make a mistake while re-
sponding to a prompt.

The menus and prompts are organized in a hierarchy
(see the figure on page 1-7). The outermost (command)
menu lists several items, including E(dit. When you
press the E key to call the E(dit option, the p-System
activates the editor. To quit using the editor, press the
Q key for Q(uit; this will return you to the command
menu.

The figure on page 1-8 graphically describes the
interrelationships of the major p-System components.

L1

L

2284048

"WELCOME
TO THE UCSD [—— H(ALT
P-SYSTEM"
5
FIRST
LEVEL
E(IT R(UN C(OMPILE L(INK X(ECUTE A(SSEMBLE D(EBUG FLER
-
A@JusT D(ELETE IINSERT K(OLUMN QuIT Z(AP GET W(HAT tlisTs C(HANGE D(ATE
DIRECTORY
SECOND
LEVEL
c(oPY F(IND J(umpP R(EPLACE X(CHANGE S(AVE NEW R(EMOVE T(RANSFER QuIT
>JUMP: B(EGINNING E(ND REMOVE WHAT THIRD
M(ARKER <ESC> FILE? LEVEL

2284049

ASSEMBLY
LANGUAGE
SOURCE

ADAPTABLE
ASSEMBLER

LINKA
OBJE

PASCAL
SOURCE

PASCAL
COMPILER

KEYBOARD
INPUT

BASIC
SOURCE

BASIC
COMPILER

FORTRAN
SOURCE

FORTRAN
COMPILER

LINKER

EXECU—

TABLE
PROGRAM

OPORTABLE

APPLICAT ION

PROGRAM

OPERATING
SYSTEM

REWRITTEN FOR
NEW CPU

TAILORFD FOR NEW
DISPLAY CONTROL

LIBRARY
PROCEDURES

System Files

The system files are disk files which contain the bulk of
the UCSD p-system. Most of the system files reside on
the system disk, which is the disk you bootstrap with.

These files are listed as follows:

SYSTEM.PASCAL
SYSTEM.INTERP
SYSTEM.MISCINFO
SYSTEM.LIBRARY
SYSTEM.MENU
SYSTEM.STARTUP
SYSTEM.SYNTAX

The following system files do not necessarily need to
reside on the system disk:

SYSTEM.COMPILER
SYSTEM.ASSMBLER (no E)
SYSTEM.EDITOR
SYSTEM.FILER

SYSTEM.PASCAL is the operating system.

SYSTEM.MISCINFO is a data file that contains mis-
cellaneous information about an individual system. This
includes terminal handling, memory configurations, and
miscellaneous options.

SYSTEM.EDITOR contains the editor that you can
call by pressing E for E(ditor—as displayed on the com-
mand menu.

SYSTEM.COMPILER contains the Pascal compiler.

SYSTEM.ASSMBLER is the assembler that translates
assembly language into 8086 machine code. The
assembler needs these three files: 8086.0PCODES,
8086.ERRORS, and 8087.FOPS.

1-9

SYSTEM.SYNTAX contains the Pascal compiler’s
error messages. It must be on the boot disk if you want
to have compile-time errors displayed in English rather
than as error numbers.

SYSTEM.LIBRARY contains previously compiled or
assembled routines that can be used by other programs.
Long integer support routines are usually found here.

SYSTEM.STARTUP is an executable code file. If a file
called SYSTEM.STARTUP is present when the system
is bootstrapped or initialized, the p-System executes it
before the command menu is displayed.

SYSTEM.MENU, like SYSTEM.STARTUP, can be
any executable code file. If it is present on the boot
disk, it is executed every time the command menu is
about to be displayed. This is generally used for
turnkey applications.

If both files are present, SYSTEM.STARTUP executes
before SYSTEM.MENU. Since SYSTEM.STARTUP is
executed whenever the system is initialized or
bootstrapped, it might be used to perform periodic
initializations, such as setting the date and time, or it
could be an application program that executes without
any user interaction with the operating system. The
p-System executes SYSTEM.MENU instead of
displaying the command prompt line. It is intended to
allow for custom menus or prompts.

SYSTEM.INTERP is the assembly language program
that emulates the p-machine on the host processor. The
following are some other possible names for these emu-
lators, which are usually machine-specific:

SYSTEM.PDP-11
SYSTEM.ALTOS
SYSTEM.HEATH

1-10

2

The Operating System

INtrodUelion. .o 2-3
Menus and Promptsccccooeeveienieiinnennnneneniennes 2-3
MENUS: sussnsssuonsosomsmassss s esissassisssasmmess s s 2-3
PUOMDES smsssssmsspsssssmnsmss oo msmss s s s s o s s 2-5
Disk SWappingccccocoevveererivirneieeeeeeeessesse e, 2-7
Operating System Commandsccccoevereuerernenene. 2-7
AUSEOIIBLE soonmmavmmussemsnsssanssmmssissisitsssmmssmsssms s T 2-8
a2 T — 2-9
Lo I ———————— 2-10
BlA wouvmmsommsmmsssssims ittt i s i e s s S 2-11
| O VO, I TN 2-11
HUALE snisssmmssmanmmsmvsmmsossmisssis s s s aisssms 2-11
TNTEIAlIZE oiovnsissisnmmssssisisisionsnmnmmnenssmmmmanssnnsmannvesansammmsnsnnsnssasnnsins 2-12
{5 ———— 2-12
1174 8 11 O 2-13
| 2415 1 RO S U SR S 2-14
User RESUATE oo s smesienss st sisismsssssshssmaasashsasssssess 2-14
KUCCUBE sonnssssssssansosionsnossensssssssnsnmsmnsnessnsssusmiss snasesssnsasossssnssosmsns 2-15

Execution-Option Stringscccccccccceeviiicciiieeciccieereecnnenens 2-16

Prefixes and Librariesccccccccveeeecviveveiiviiviieecissnneecnnnns 2-18

ReAIFEEUION, somcnmmsusmmmmsonsms s sy e s smims 2-19

2-1/2-2

INTRODUCTION

This chapter describes the UCSD p-System’s operating system
on the Texas Instruments Professional Computer. The oper-
ating system is the core of the p-System. When you first boot
the p-System, the operating system’s menu appears. From
here, you can select other major p-System components or run
programs. Each time a p-System component or a program fin-
ishes execution, you are returned to the operating system’s
menu.

The operating system’s menu is called the command menu. The
items on it include the editor, filer, compiler, and more.

This chapter describes how menus and prompts are used by the
p-System. It goes on to describe the particular items on the
command menu.

MENUS AND PROMPTS

Menus

The following describes the menus used by the
p-System.

o The first word (title) of the menu identifies the
level of the menu, for example, command or edit.

e The selections available on a menu are located to
the right of the menu title. The letter denoting the
key that selects an option is capitalized and set off
from the rest of the word with a parenthesis.

2-3

o The version number of the system is listed at the
end of the line in square brackets.

e A question mark on the right of a menu indicates
that there are more items on the menu than can fit
on a single line. Entering ? causes more of the
menu to be displayed.

Some typical menus are listed as follows:

Command: E(dit, R(un, F(ile, C(omp, LCink, X(ecute,
A(ssem, D(ebug, ? [versionl

Filer: G(et, S(ave, W(hat, N(ew, L(dir, R(em, CChng,
T(rans, D(ate, ? [version]

>Edit: A(djust C(opy D(el F(ind I(nsert J(ump K(ol
M(argin P(age ? [versionl

If you press the ? key for the command menu, the fol-
lowing is displayed:

Command: H(Calt, I(nitialize, U(ser restart, M(onitor
[version]

Selecting an option at the command menu produces one
of the following results.

° The p-System allows you to execute a program.

o A p-System component is started; for example, the
filer or editor.

° The system alters its state; for example, as when
you select H(alt.

In general, you may exit from the system by pressing
the Q key to call Q(uit. After performing a function,
you may press the space bar to clear the screen and re-
display the menu.

2-4

Prompts

As just discussed, a menu displays options you can se-
lect with a single keystroke; however, a prompt re-
quests information from you. For example, if you want
to execute a program, you would select the X(ecute op-
tion from the command menu by pressing the X key.
The system will respond with the following request—
called a prompt:

Execute what file?

Your response to this would be to enter the name of the
program to be executed and then to press the
RETURN key.

If you make an error while entering your response, you
can press the BACKSPACE key to correct it. You can
then resume entering the correct response.

Another example of a prompt is shown when the filer is
used to list the directory of a volume. After you press
the F key as listed on the command menu to display
the filer menu, and then press the L key as listed on
the filer menu, the following prompt will be displayed:

Dir Listing of what vol?

Your response to this prompt would be to enter any
valid volume name and then to press the RETURN
key.

Often prompts require that you enter a file name. File
names (as described in Chapter 3) often end with spe-
cific suffixes such as .TEXT or .CODE. Usually, in re-
sponse to a prompt, you should omit these suffixes.
The system programs append them automatically. To
prevent automatic appending, place a period at the end
of the file name.

When a program—such as a compiler—requires both a
source text file and a destination code file name, the
code file name may be given as $. This indicates the
same name as the text file with .CODE appended in-
stead of .TEXT. Alternatively, you can use $., which is
the source file name exactly.

For example, press the A key to select the A(ssemble
command. The system then displays the following
prompt.

Assemble what text?

Enter YOUR.FILE and press the RETURN key. If
your .FILE.TEXT exists, the system will display the
following prompt.

To what code file?

Enter $ and press the RETURN key.

The preceding sequence assembles the file
YOUR.FILE.TEXT and places the resulting code in
YOUR.FILE.CODE.

You may also use device names when responding to cer-
tain prompts. For example, the assembler next displays
this prompt:

Output file for assembled Llisting: (<KCR>) for none)

You could enter PRINTER: and press the RETURN
key. The printer is a device (not a file). The assembled
listing is sent there.

DISK SWAPPING

Since the operating system swaps code segments into and out
of main memory while a program is running, and since you
may change disks at various times, the operating system has
various checks to aid you in handling disks, thus reducing
errors.

When a program requires a code segment from a disk, but the
disk containing the code segment is no longer in the drive, the
operating system displays the following error message on the
bottom of the display unit:

Need Segment SEGNAME: Put volume VOLNAME in unit U
then type <space>

In the preceding example, the system could not find the disk
VOLNAME and waited for you to press the space bar. (If you
press the space bar but have not replaced VOLNAME, the
system will re-display the error message.)

OPERATING SYSTEM COMMANDS

This section covers the items on the command menu in alpha-
betical order. Most of these items are described in greater de-
tail elsewhere.

In particular, the filer is described in Chapter 3 of this manual,
and the editor is covered in Chapter 4.

The assembler and linker are covered in UCSD p-System
Assembler.

The compiler and debugger are covered in UCSD p-System Pro-
gram Development.

2-7

A(ssemble

A(zsemble

On the menu: A(ssem

The A(ssemble command starts the assembler
SYSTEM.ASSMBLER (notice that there is a missing
E). If a work file is present, then the file
*SYSTEM.WRK.TEXT or the designated .TEXT file is
assembled to a code file of 8086 machine code. If there
is no work file, the system displays a request for
a source file, a code file, and a listing file; the defaults
for these are *SYSTEM.WRK.TEXT,
*SYSTEM.WRK.CODE, and no listing file.

If you simply press the RETURN key for the source
file, the assembly is aborted. Similarly, if you press the
ESC key and then press the RETURN key for the code
file or listing file, the assembler is exited.

If the assembler encounters a syntax error, it displays
the error number and the source line in question. It also
displays an error message (if the file *8086.ERRORS is
present). It gives you some options:

Error ##: error message
<sp>(continue), <esc>(terminate), E(dit

You may continue the assembly by pressing the space
bar; abort the assembly by pressing the ESC key or, by
pressing E, return directly to the editor to correct the
source file.

The assembler is described in UCSD p-System
Assembler.

2-8

C(ompile

Cl(ompile
On the menu: C(omp

The C(ompile command starts the compiler,
SYSTEM.COMPILER. If a work file is present, either
*SYSTEM.WRK.TEXT or the designated text file is
compiled to p-code. If there is no work file, the system
displays a request for a source file and a code file; the
defaults for these are *SYSTEM.WRK.TEXT and
*SYSTEM.WRK.CODE. If you press the RETURN
key for the code file, the default code file is
*SYSTEM.WRK.CODE. If you press the RETURN
key for the source file, the compilation is aborted. If
you press the ESC key followed by the RETURN key
for the code file, the compilation is aborted.

Next, the compiler asks for a listing file. This may be a
disk file or communications volume. The default is
*SYSTEM.LST.TEXT. If you press the ESC key fol-
lowed by the RETURN key, the compilation is aborted.

If the compiler encounters a syntax error, it displays
the error number, the source line in question, and the
following menu.

Error ##

Line ##

Type <sp>(continue), <esc>(terminate), or 'E' to
e(dit

You may continue compilation by pressing the space
bar, abort compilation by pressing the ESC key, or pro-
ceed directly to the editor to correct the source file by
pressing the E key. In the latter case, the editor will
position the cursor where the error was detected.

2-9

D(ebug

If the file *SYSTEM.SYNTAX is present, the Pascal
compiler displays a relevant error message instead of
the error number.

The Pascal compiler is described in UCSD p-System
Program Development and UCSD Pascal.

D(ebug

On the menu: D(ebug

This command starts the symbolic debugger. The
debugger resides within SYSTEM.PASCAL. If your
copy of SYSTEM.PASCAL does not contain the debug-
ger, you need to use the Library utility (described
in UCSD p-System Program Development) to place
DEBUGGER.CODE into SYSTEM.PASCAL.

The symbolic debugger is a tool for debugging compiled
programs. You can call it from the command menu or
while a program is executing (when a breakpoint is
encountered). Using the symbolic debugger, you may
display and alter memory, single-step p-code, and do
several other useful debugging operations.

To use the debugger effectively, you must be familiar
with the UCSD p-machine architecture and must under-
stand the p-code operators, stack usage, variable and
parameter allocation, and so on. These topics are dis-
cussed in UCSD p-System Internal Architecture.

For more information about the symbolic debugger,
refer to UCSD p-System Program Development.

2-10

Edit

E(dit

F(ile

H(alt

On the menu: E(dit

This command starts the editor, SYSTEM.EDITOR. If
a .TEXT work file is present, the system indicates its
availability for editing. If no work file is present, the
system displays a request for a file name along with the
option to escape from the editor, or to enter the editor
with no file (with the intent of creating a new one).

Use the editor to create either program files or docu-
ment text files and to alter or add to existing text files.
(Refer to Chapter 4, System Editor, in this manual, for
more information about the editor.)

On the menu: F(ile

This command starts the filer, SYSTEM.FILER. The
filer provides commands for managing files, manipulat-
ing work files, and maintaining disk directories. (Refer
to Chapter 3, File Management, for detailed coverage of
the filer.)

On the menu: H(alt

This command reboots the system if there is a valid
system disk on line.

It is not necessary to use H(alt when you are finished
using the system. Just remove any diskettes and turn
off the power.

2-11

I(nitialize

NOTE

If you are using the optional RAM disk and
want to save its files, copy those files to an-
other disk before turning off the power.

I(nitialize

L(ink

On the menu: I(nit
This command reinitializes the p-System.

*SYSTEM.STARTUP is executed, if present.
SYSTEM.STARTUP must be a code file; it is executed
automatically after a bootstrap or an I(nit command. If
SYSTEM.MENU is present, it is then executed.

All run-time errors that are not fatal cause the system
to initialize in the same manner as I(nitialize. At ini-
tialize time, much of the system’s internal data is re-
built, and SYSTEM.MISCINFO is reread.

An I(nitialize command does not clear any 1/O redirec-
tion, but a run-time error reinitialization does.

On the menu: L(ink

This command starts the linker, SYSTEM.LINKER.
The linker allows you to link assembled machine code
routines into host compilation units (compiled from a
high-level language). It also allows you to link native
code routines together. It is described in UCSD
p-System Assembler.

2-12

M(onitor
M(onitor
On the menu: M(on

This command invokes the monitor. The monitor helps
you to create script files which drive the system auto-
matically. While in the monitor mode, you may use the
p-System in a normal manner, but all your input is
saved in the script file. Later, you can redirect the
p-System’s input to that file and your actions at the
keyboard are reproduced.

Press the M key to start the M(onitor command. The
system then displays the following menu.

Monitor: B(egin, E(nd, A(bort, S(uspend, R(esume

Press the B key to select the B(egin option. The system
then requests a file name where it will store your
sequence of commands. Enter the file name and press
the RETURN key. Then R(esume and use whatever
p-System commands you wish. When you are finished,
select M(onitor again. Press the E key to call the E(nd
option.

All your input is saved in the file you named. To use
this file, redirect the system input to it with the I=
execution option string.

B(egin starts a monitor. If a monitor file has already
been opened, the system displays an error message.

E(nd terminates a monitor session and saves the moni-
tor file. (You must use S(uspend or R(esume to return
to the command menu.)

A(bort ends a monitor but does not save the monitor
file. (You must use S(uspend or R(esume to return to
the command menu.)

2-13

R(un

R(un

S(uspend turns off monitoring but does not close the
monitor file. In other words, you are returned to the
command menu where you can now enter commands
without recording them. The monitor file remains open
and in a state in which you can add to it by using
R(esume.

R(esume starts monitoring again and returns you to the
command menu. If monitoring is not suspended, no ac-
tion occurs.

The monitor file can be either a .TEXT file or a data
file. If it is a .TEXT file, you can use the editor to alter
it, but only if the monitoring has not recorded special
characters that the editor does not allow.

The M(onitor command itself can never be recorded in a
monitor file.

On the menu: R(un

This command executes the current work file. If there
is no current code file in the work file, the R(un com-
mand calls the compiler, and if the compilation is suc-
cessful, runs the resulting code. If there is no work file
at all, R(un calls the compiler, which then displays a
request for the name of a text file to compile.

U(ser Restart

On the menu: U(ser Restart

This command causes the last program executed to be
executed over again, with all file parameters equal to
previous values. U(ser restart cannot restart the
compiler or assembler. It is useful for multiple runs of
your program.

2-14

X(ecute

X(ecute
On the menu: X(ecute

This command executes a program. It displays the fol-
lowing prompt:

Execute what file?

You should respond with an execution option string. In
the simplest case, this string contains nothing but the
name of a code file (program) to be executed.

If the code file cannot be found, the message:
No file <file name>

is displayed. If the program requires assembled code
which has not been linked, the message:

Must L(ink first

is displayed. If the code file contains no program (that
is, all its segments are unit or segment routines), the
message:

No program in <file name>
is displayed.

If the execution option string contains only option spe-
cifications, they are treated as described under Execu-
tion Option Strings at the end of this section. If the
string contains both option specifications and a code
file name, the options are handled first and then the
code file is executed, unless one of the errors named in
the preceding paragraph occurs.

2-15

The X(ecute command is commonly used to call pro-
grams that have already been compiled. You may also
use it to simply take advantage of the execution
options.

The code file must have been created with a .CODE
suffix, even if its name has subsequently been changed.

Execution-Option Strings

The X(ecute command allows you to specify
some options that modify the system’s environ-
ment. These include redirecting input and out-
put, changing the default prefix, and changing
the default library text file. These options are
available from within programs as well as from
the X(ecute command at the keyboard.

All of these options are specified by means of
execution-option strings. An execution-option
string is a string that contains (optionally) one
file name followed by zero or more option speci-
fications. An option specification consists of one
or two letters followed by an equal sign =,
which is possibly followed by a file name or lit-
eral string.

The following list contains the possible execu-
tion options with a summary of their uses.

L — change the default library text file
P — change the default prefix

PI — redirect program input

PO — redirect program output

I — redirect system input

O — redirect system output

Library text files are described in UCSD
p-System Program Development. Prefixes are
covered in this manual in Chapter 3, File Man-
agement, and I/O redirection is explained below.

2-16

You may use capital or lowercase letters with
execution options. Several different execution
options may be entered at a single time. They
must be separated by one or more spaces. There
may be a single space between the equal sign
(=) and the following file name or string.

If you are executing a program, you must spec-
ify the name of the program to be executed
before specifying any execution options. (These
execution options can be specified in any order.)

The following items define the order in which
execution options are actually performed.

1. Change the prefix if the P = option is pre-
sent.

2. Change the library text file if the L= op-
tion is present.

3. Perform the I/O redirections (if any are
present, the order of redirection options is
irrelevant).

4. Execute the file if specified.

The execution options are described in the fol-
lowing paragraphs. They may be called by using
the X(ecute command. Reduction from within a
user program may be accomplished through pro-
cedures in a unit called COMMANDIO.

2-17

Prefixes and Libraries

You can change the default prefix with the P =
execution-option string. After this is done, all
file names that do not explicitly name a volume
are prefixed by the default prefix. This is equiv-
alent to using the P(refix command in the filer.

To change the default prefix, press the X

select the X(ecute command. Enter p = disk2
and press the RETURN key. The prefix is now
DISK2:.

You can change the default user library text file
in the same way. The library text file is a file
that contains the names of your libraries. When
you run a program with separately compiled
units, the system searches for them first in the
files named in the library text file and then in
*SYSTEM.LIBRARY. When the system is
booted, the default library text file is
*USERLIB. TEXT. (This is all covered in
UCSD p-System Program Development.)

To change the default library text file, press the
X key to select the X(ecute command. Enter
L =mylib to make the file MYLIB.TEXT the
new default library text file.

Enter prog l=mylib to make the file
MYLIB.TEXT the new library text file and exe-
cute the file PROG.CODE.

2-18

Redirection

The following execution-option strings control
redirection:

PI = <file name >
PI = <string >

PO = <file name >
I = <file name >
I= <string>

O = <file name >

PI = <file name> or <string>

Redirects program input. PI= <file name>
causes the input to a program to come from the
file named. PI = <string> causes the input to a
program to come from the program’s scratch
input buffer and appends the string given to the
scratch input buffer (scratch input buffers are
discussed in the following paragraphs).

PI = overrides any previous input redirection.
Likewise, PO = overrides any previous output
redirection. Using PI= (PO =) without a file
name makes program input (output) the same
as System input (output).

PO = <file name>
Redirects program output. PO = <file name >

causes program output to be sent to the file
named.

2-19

I = <«file name> or <string >

Redirects system input. I = <file name> causes
system input to come from the file named.
I = <string> causes system input to come from
the system’s scratch input buffer, and appends
the string to the scratch input buffer. Scratch
buffers are described in the following para-

graphs.
O = «file name >

Redirects system output. O= <file name>
causes system output to be sent to the file
named.

Like PI =, I = overrides any previous I =; and
like PO =, O = overrides any previous O =. Us-
ing I = without a file name resets system input
to CONSOLE:. Using O = without a file name
resets system output to CONSOLE..

For PI= <file name> and I= <file name>,
the <file name> may specify either a disk file
or an input device that sends characters. If the
file is a disk file, redirection ends at the end of
the file, and the system performs the equivalent
of an input redirection with no file name, thus
resetting input. If the file is a device, redirec-
tion continues until you explicitly change it.
This allows you to control the system from a
remote port (such as REMIN:).

For PO = <file name> and O = <file name>,
the <file name> may specify either a disk file
or an output device that receives characters. If
the file is a disk file, it is named literally as
shown; that is, to make it a text file, you must
explicitly type .TEXT. Whenever output re-
direction is changed, the file is closed and
locked.

2-20

For PI= <string> and I= <string>, the
<string> may be any sequence of characters
enclosed in double quotes ("’). A comma within
the string indicates a carriage return. Any
double quote embedded in the string must be
entered twice.

When input is redirected to a string, that string
is placed in a first-in-first-out queue called the
scratch input buffer. Anything that already
exists in the scratch input buffer is read before
the quoted string. The p-System has an area of
memory devoted to its scratch input buffer. A
program has a separate scratch input buffer of
its own. If there is nothing already in the
scratch buffer, it is as if input is taken immedi-
ately from the string itself.

If you redirect input to come from both a file
and a scratch input buffer, the scratch buffer is
used first.

Program redirection ends when the program ter-
minates. If there are still characters in the pro-
gram’s scratch input buffer, they are not used.

System redirection ends when the system termi-
nates with a halt or a run-time error. An I(ni-
tialize command does not alter system
redirection. The system’s scratch input buffer is
lost when system redirection terminates.

2-21

NOTE

The redirection applies only to high-
level 1/O operations, such as
WRITELN and READLN in Pascal.
Lower-level I/0 operations, such as
UNITREAD and UNITWRITE, are
NOT intercepted, thus, cannot be re-
directed. Also, BLOCKREAD and
BLOCKWRITE are not redirected.
This means that if you redirect a pro-
gram which uses- any of these oper-
ations, they will not be redirected.

Redirection also cannot affect calls in the fol-
lowing form because these calls do not involve
the standard input and output files:

REWRITEMY__FILE,"CONSOLE:");
WRITEMY__FILE, LOTS _OF__TEXT)

Here is a simple example of redirecting the sys-
tem input to a string:

Execute what file? I="FL*Q"

This causes the p-System to enter the filer (F),
list the directory on the boot disk (L*,), remem-
ber that comma means <return>, and Q(uit
the filer (Q).

To redirect program input to the file IN-(which
might have been created using M(onitor), and
program output to the file OUT, for a program
called PROG.CODE; press the X key to call the
X(ecute command and respond:

Execute what file? PROG PI=IN PO=0OUT

2-22

To stop system input redirection, enter I =.

If you enter:

PO = storeme.text PI= I="fgRUNME,qr” P=WORK2

The p-System performs these actions:

Makes the default prefix WORK2:

Redirects program output to the file
WORK2:STOREME.TEXT

Turns off program input redirection

Follows the script “fgRUNME,qr’’:

f: enter the filer;

gRUNME,: G(et the work file
WORK2:RUNME.TEXT and
WORK2:RUNME.CODE
(The comma acts as a carriage return.)

q: Q(uit the filer;

r: R{un the program WORK2:
RUNME.CODE.
(Note that its output has been
redirected.)

The following entry does the same thing:

PO = storeme.text PI= I="fpWORK2:;,gRUNME,qr”

2-23/2-24

3

File Management

Introduction ... 3-3
File Organizationccccoovvevennieeeccninnsnsesienenenns 3-4
File and Volume Nameccccccevvivieiiirvririiiieeieeiereereeeeeeereeeeeeenes 3-4
File Name SuffiXesccccccceeivivireirieeiieiiieiiiee e e 3-9
Devices and VOIUMESceeeveiveevvriienenieereceneeeresssessessssssssmees 3-11
WK FIIBBcommnscsmsismmsmenssmsansasmmmmmsssissmsninssssssasns 3-15
Using the Filer ..o 3-16
Filer MENUS .cccoooiiiiiiiiiiiiiieiccccccccieeeceeeeeetiries e eesereseseseenaeeeeens 3-16
Wild Card Characterscccevvvvvireereeereeeeieeieeeeerercinsnsereeses 3-17
Recovering Lost Filescccoevvivivnciceiircenn, 3-20
Duplicate Directoriesccccvcveeerieeeeirireeeiieeenireessinesesvnesnnnes 3-23
Subsidiary Volumesccccocoeereeveereriiiinneenreenne, 3-25
Creating and Accessing SVOLScccccceeiiiiiiiiiieniiinceceeeen, 3-26
Mounting and Dismounting SVOLScccccoviievviineeeecnnnn. 3-28
Installation Informationcccccceeiiiiiiiiiiiirieniiriereeeeeeennns 3-31
Filer Commandsc.cccccooerereinierireceeieeeesseenienens 3-32
Bad BLOCKS cisssscssssusssnssmsssesssssnsismssssss s ssssens seons s ssassiomssnasssnsiss 3-32
CURANEE: visvssusmmmammmmsssnnsssssses consssmionssmss s smmssss s s 3-33
THAEE cvsnmmmmsnsnasamnimsin st s s s e S e T 3-36
E(xtended LIStcooovvviiiiiiiiiiiiiiiiiiiiiiiiiieeieeseeeeeeeereeeereesrenens 3-37
F(lip SWap/LoCKccoiiiiieiciiiiiiesiieeienesseiereeeesiseesscanesssneessreeens 3-38
Glel manss T T T T T T T T S A s 3-40
KIUNCR. cussssunssmssssssnssssassssssssssonsssssssssssspisssssnnssssasesassssssssossssssase 3-41
Liist DIrECEory oswssmssmssamumsmmssmiimisamaismmanssiisssss s 3-43
MUBIKE. .cioscsnimsosmissausssnsmssisnsimssssssmmossmsmammesnnnsisamorimgnesenssisiomianion 3-46
IN W ettt e e et e e e ettt s e e e e s e e saaaesesssssssnsnseeseenen 3-47
L@ TFa /o) i V1 o LT USROS 3-48
L= b L —————————— 3-50
LT 3-51
RIBIMOVIE! wsssonsmssmimiosssssnmsnasaisms s msmmmmossmsmisms i aiss i 3-51
SUAVE ettt ettt s e s e s ebbe s ebaeesane s 3-53

3-1

THEARSEEE ussmsnmssommmm s RS RS 3-54

VAIOIOIAGS cssmonmanmsmmmmmusnanmsnimasisimmmmpanassssssmoissmmnsssmosseinnes oS 3-60
L e —— 3-62
B 25002 T T— 3-62
Y1) o SN 3-64

3-2

INTRODUCTION

This chapter covers topics which are relevant to managing the
files on your disks with the UCSD p-System on the Texas
Instruments Professional Computer.

First, files and volumes are described in general. File and
volume naming conventions are covered. Also, the different
types of files and volumes are presented.

Second, the work file is introduced. This is a special scratch
pad file that you may want to use if you plan to develop
programs.

The filer is then introduced. The filer is the p-System’s major
file-handling facility. It allows you to view the files on a disk
volume, move them around, remove them, and so forth. Its
menu is introduced. Also, a more advanced feature called wild
card characters is covered. These may be used, in conjunction
with the filer’s prompts, to work with several files at one time.

The next section describes how you can attempt to recover any
files that you accidentally lose. If you inadvertently remove a
valuable file, for example, the procedures outlined here should
assist you in retrieving it.

Subsidiary volumes are covered next. Subsidiary volumes allow
you to have two levels of file directory information. More files
can be stored on a disk if you use subsidiary volumes.

User-defined serial volumes are then introduced. If your
p-System is set up to use these, you can take advantage of ex-

tra serial I/O peripherals (such as extra terminals or printers).

Finally, the filer commands are described in detail.

3-3

FILE ORGANIZATION

A file is a collection of information that is stored on a disk and
referenced by a file name. Each disk contains a directory that
has the name and location of every file that resides on it. A
disk directory may hold as many as 77 files. If you need more
on a single disk (which can easily be the case if you are using
large capacity hard disks), you can use subsidiary volumes.
(Subsidiary volumes are described later in this chapter.)

A file may contain any sort of data and be organized in many
ways. Depending on the type of file, which is usually indicated
by the file name suffix, the system treats it in specific ways.
For example, your files may contain text such as letters and
memos, or they may contain executable code. The p-System
recognizes these differences.

Disks (sometimes known as storage volumes) are also volume
names. Sometimes disks are referenced by device number (de-
scribed later). The term volume ID refers to a volume name or
device number of a given storage volume.

The filer is a program that you start from the command menu.
It provides a variety of commands that allow you to create,
name and rename files, remove them, transfer them, print
them, and so forth.

File and Volume Names

Many filer prompts require you to respond with a file
or volume name. In fact, many p-System prompts, in
general, require this. The following two figures show
the technical syntax for file names and volume names.

MIDILNI
AAILISOd

osov8ee

ONIYLS

{

LN

ONIYLS VOIm at u.z:l_o>v0'

<SNOILVOldID3ds 34>

3-5

2284051

DEVICE
NUMBER
VOLUME
NAME

The legal characters that you may use for file and
volume names are:

° The alphabetic characters (A through Z)
° The numeric characters (0 through 9)

° Hyphen (-)

° Slash (/)

° Backslash (\)

° Underline (_)

° Period (.)

File names can be, at most, 15 characters long. Here
are some valid examples of file names:

A FILE__NAME
MEMO.TEXT
PROGRAM/3.CODE

Here are some INCORRECT examples:

A.BAD,NAME
MORE_THAN__15__CHARS
#5*&-{

Volume names may be, at most, seven characters in
length and are followed by a colon. Here are some cor-
rect examples:

VOLNAME:
VOL,. .2:
1234567:

Here are some INCORRECT volume names:

NOTCORRECT:
VOL$2:
SAY:HI:

Volumes may also be referenced by device number. A
device number consists of a number sign (#) followed
by a number, which is usually followed by a colon. Here
are some examples:

#1
#1:
#4
#4:
#5
#9:

The colon is optional unless the device number is fol-
lowed by a file name, as described below. (The colon is
required after a volume name, however, to distinguish
it from a file name.)

Disk drives usually have the device numbers #4 and
#5, and sometimes also #9, #10, #11, #12, and even
greater numbers. (Subsidiary volumes and user-defined
serial devices may also use device numbers #9 and
higher.) When you refer to a volume by device number,
you are indicating the disk which happens to be in that
drive at that time.

3-7

The asterisk (*) is shorthand for the volume ID of the
system disk. The colon (:) is shorthand for the volume
ID of the default disk (as described below). The system
disk and default disk are equivalent unless the default
prefix is changed. You can change it with the P(refix
command. Sometimes the system disk is also called the
boot disk.

Lowercase letters are translated to uppercase.

You may indicate the volume on which a file resides by
using the volume name or device number (with colon)
followed by the file name. Here are some examples:

MY.DISK:MY.FILE
DISK2:MY.FILE
#4:ANOTHER.TEXT
#5:PROGRAM.CODE
*BOOT.DISK.FILE

In the first two cases, the file MY.FILE is indicated,
but on two separate volumes. The next two cases spec-
ify files on the disks in drives #4 and #5. The final
example indicates a file on the system disk.

If you do not indicate a volume ID to go with your file
name, that file is assumed to reside on the default disk.
If, for example, the default disk is called MYDISK: and
you answer a file name prompt with A.FILE, the
p-System assumes (by default) that you are referring to
MYDISK:A.FILE.

When a file is being created, its name may be followed
by a size specification having the form [n], where n is
an integer specifying the number of blocks that the file
must occupy. For example, A.FILE.CODE[12] is made
to occupy 12 blocks.

The following items describe some special cases:

e [0] This is equivalent to omitting the size specifica-
tion. The file is created in the largest unused area.

° [¥] The file is created in the second largest area or
half the largest area, whichever is larger.

File Name Suffixes

User files are generally one of three types: program or
document text, compiled or assembled program code, or
data in a user-defined format. The suffix of a file name
usually indicates its file type.

The following list summarizes the file suffixes:

. TEXT — Human-readable text, formatted for the
editors.

BACK — Same as a text file. Used for backup
purposes.

.CODE — Executable code, either p-code or machine

code.
FOTO — A file containing one graphic screen image.
.BAD — An unmovable file covering a physically

damaged area of a disk.
.SVOL — A file containing a subsidiary volume.

Data files, which contain data in a user-specified for-
mat, do not have any special suffix.

3-9

Here are some example file names which use these
suffixes:

A.POEM.TEXT
DOCUMENT.BACK
A__PROG.CODE
FIGURE1.FOTO
BAD.00042.BAD
MYVOL.SVOL
A_DATA_FILE

.TEXT files contain human-readable information such
as letters, poems, documents and so forth. .BACK files
are backup files for text files. . TEXT and .BACK files
contain a header page followed by the user-written text,
interspersed with a few special codes. The header page
contains internal information for the editors. The filer
transfers the header page from disk to disk, but never
from disk to an output device such as the PRINTER:
or CONSOLE..

All files created with a suffix of . TEXT have the header
attached to the front. They are treated as text files
throughout their lives.

The header page is two blocks long (1,024 bytes), with
the remainder of the file also organized into two-block
pages. A page contains a series of text lines, and is
padded at the end with at least one NUL character.

Each line of text is terminated with an ASCII CR. A
line may begin with a blank-compression pair consisting
of an ASCII DLE followed by a byte whose value is
32 +n, where n is the number of characters to indent.
Text lines are typically 0 through 80 characters long to
fit on standard terminals.

3-10

.CODE files contain either compiled or assembled code.
They begin with a single block called the segment dic-
tionary, which contains internal information for the
operating system and linker. Code files may also
contain embedded information. Refer to the USCD
p-System Internal Architecture Manual for detailed cov-
erage of code files.

.FOTO files hold a graphics screen image and are used
in conjunction with Turtlegraphics.

.SVOL files contain subsidiary volumes which are dis-
cussed later in this chapter.

.BAD files are stationary files used to cover physically
damaged portions of a disk.

All of the filer commands (except Glet and S(ave) that
reference specific files require the file name suffixes.
Gl(et and S(ave supply these suffixes automatically to
aid you in using the work file.

Devices and Volumes

A volume is any I/O device, such as the printer, the
keyboard, or a disk. A storage device (sometimes
known as a block-structured device) is one that can
have a directory and files, usually a disk of some sort.
A communication device (also known as a nonblock-
structured device) does not have internal structure; it
simply produces or consumes a stream of data. For
example, the printer and console are communication
devices.

The following table illustrates the reserved volume
names and device numbers used to refer to the stan-
dard communication and storage devices.

3-11

Device

Number Device Name Description

1 CONSOLE: Screen and keyboard with
echo

2 SYSTERM: Screen and keyboard without
echo

4 <disk name>: The system disk

5 <disk name>: The alternate disk

6 PRINTER: A line printer

7 REMIN: A serial input line

8 REMOUT: A serial output line

9 <vol name>: Additional disk drives,

subsidiary volumes, and
user-defined serial devices

The system distinguishes between storage and com-
munication devices. Storage devices are usually disk
drives. They contain removable volumes that have a
directory and files. Internally, a volume is organized
into randomly accessible, fixed-size areas of storage
called blocks, each containing 512 bytes. Files may
vary in size, but are always allocated an integral
number of blocks.

Communication devices include printers, keyboards,
and remote lines. They have no internal structure and
deal with serial character streams. Communication
devices may perform input functions, output functions,
or both.

A device or a file may be either a source of data or a
destination for data. Many of the filer’s data transfer
operations apply to devices as well as to files.

3-12

The name of a device that contains removable volumes,
such as a diskette drive, is the name of the volume it
contains at any given time. The number of that device
never changes.

The name of a disk file includes, as a prefix, the disk on
which it resides. The system always has one default
prefix—when the system is first booted it is an asterisk
(*), denoting the system disk—so that you need not
type out the prefix every time a file is required.

For example, SYSTEM:SAVEME.TEXT and
TABLES:SAVEME.TEXT name two different files on
two different disks (both files are called SAVEME).
These might also be specified as #4:SAVEME.TEXT
and #5:SAVEME.TEXT. If you had changed the de-
fault prefix to TABLES:, then entering
SAVEME.TEXT would be understood to mean
TABLES:SAVEME.TEXT.

The following figure shows a typical hardware configu-
ration with device names and a sketch of the operating
system I/O interface.

3-13

vIi-¢

UCSD P-SYSTEM [O HIERARCHY

PORTABLE

APPLICATION OR SYSTEM PROGRAM

P—-MACHINE

NATIVE

CODE
’_
z
Wil v— N
o
z
w
o
w
P
w
z
x
2 HOST PROCESSOR WITH PERIPHERALS
=
2284052

A SAMPLE SYSTEM

PRINTER

ON/OFF
BOOTSTRAP

CONSOLE ;

MYDISK1: OR#4:
MYDISK2: OR# 5

WORK FILES

The work file is a scratchpad for creating and testing files. The
work file is often stored temporarily in SYSTEM.WRK.TEXT
and SYSTEM.WRK.CODE. These may be either newly created
files or copies of existing disk files that have been designated
as the work file.

Many system programs assume that you are working on the
work file unless you specify otherwise. You may create the
work file by designating existing files or by creating a new file
with the editor.

Modifying the work file can cause temporary copies to be gen-
erated, which—until they are saved—are placed in the directory
under the following names.

SYSTEM.WRK.TEXT
SYSTEM.WRK.CODE
SYSTEM.LST.TEXT

You can create SYSTEM.WRK.TEXT by leaving the editor if
you use Q(uit U(pdate. Then a successful compile or run creates
SYSTEM.WRK.CODE. If the compilation is successful, the
R(un command goes on to immediately execute the code. The
compiler may optionally create SYSTEM.LST.TEXT which is a
compiled listing.

Whenever the editor alters a program contained in the file
SYSTEM.WRK.TEXT, the R(un command recompiles it in
order to update SYSTEM.WRK.CODE.

The filer can S(ave these files under permanent names. You can
also use it to designate a new work file with the G(et command
or to remove an old one with the N(ew command. The filer can
also tell you W(hat your work file’s name is.

3-15

USING THE FILER

Filer Menus

With the command menu displayed, press the F key to
enter the filer. The system displays the following menu.

Filer: G(et, S(ave, W(hat, N(ew, L(dir, RC(em, C(hng,
T(rans, D(ate, ? [versionl

Enter ?. The system then displays more filer
commands:

Filers: QCuit, BCad-blks, E(xt-dir, K{rnech, M(ake,
P(refix, V(ols, ? [versionl
Filer: X(amine, Z(ero, O(n/off-line, F(lip-swap/lock

The individual filer commands are selected by entering
the letter found to the left of the parenthesis. For
example, S would call the S(ave command.

In the filer, answering a Yes/No question with any
character other than Y or y constitutes a no answer.
Pressing the ESC key returns you to the main filer
menu.

Many commands display a prompt asking for a file or
volume name. We have already discussed what file and
volume names are. You can, of course, use a volume ID
as part of a file name when responding to these
prompts. In some cases, either a file or a volume may
be indicated.

If you specify a file on a volume (or just a volume) that
the filer cannot find, the system displays the following

message:

No such vol on Lline

3-16

If two or more on-line volumes have the same name,
the filer continuously displays a warning.

CAUTION

Although sometimes it may be necessary to
have two volumes with the same name on-
line at the same time, try to avoid this. You
can confuse the p-System and accidentally
destroy valuable information on one of the
volumes.

Whenever a filer command requests a file specification,
you may specify as many files as desired by separating
the file specifications with commas and terminating the
file list with the RETURN key. Commands operating
on single file names read file names from the file list
and operate on them until none are left.

Commands operating on two file names (such as
C(hange and T(rans) take file specifications in pairs and
operate on each pair until only one or none remains. If
one file name remains, the filer displays a menu re-
questing the second member of the pair. If an error is
detected in the list, the remainder of the list is flushed.

Wild Card Characters

Wild card characters allow the filer to perform its task
on several files at a time. There are three wild card
symbols: equal sign (=), question mark (?), and dollar
sign ($).

The equal sign and question mark are used to specify
subsets of the directory. The filer performs the re-
quested action on all files meeting the specification.

The equal sign matches any string. For example:

=.TEXT

3-17

matches all of the following:

FILE1.TEXT
FILE2.TEXT
ANOTHER.TEXT

If a question mark is used in place of an equal sign, the
filer requests verification before performing the func-
tion on each file watching the wild card specification.
For example, if you want to R(emove some, but not all
text files on a disk, you could use ?.TEXT and you are
prompted for each file if you want it removed.

A wild card character specification must be of the form:

9
$= <string >

? < string >

<string> =
<string>?

<string> = <string>
<string >? <string >

These last two cases, where there is no string to match,
is understood to specify every file on the volume. So
entering = or ? alone causes the filer to perform the
appropriate action on every file in the directory. Only
one valid wild card character can occur in a specifica-
tion.

The following paragraphs describe the use of the filer
with wild card characters.

The following listing is the directory for volume

DISK1.

TEMP1 6 1-Jan-83
OLD.TEXT 4 1=-Jan—83
EXAMPLE1.CODE 10 1=Jan-83
EXAMPLE2.CODE 4 1-Jdan=83
NEW.TEXT 12 1-Jan-83
TEMP2 5 1-Jan-83
TEMP.CODE 2 1-Jan-83

3-18

With the command menu displayed, press the F' key to
call the filer. Then press the R key to use the R{emove
option. The system will display the following prompt:

Remove what file?

Enter TEMP = and press the RETURN key.
The system then displays the following listing:

DISK1:TEMP2 removed
DISK1:TEMP.CODE removed
Update directory?

To verify and complete this operation, press the Y key.
To stop the operation, press the N key. If you press the
N key, the files will not be removed.

Using the same directory to list a specified set of files,
press the F' key (shown on the command menu) and
then press the L. key to use the L(ist option. The sys-
tem will display the following prompt:

Dir listing of what vol ?

Enter = TEXT and press the RETURN key. The sys-
tem will display the following listing:

OLD.TEXT 4 1-Jan-83
NEW.TEXT 12 1-Jan-83

The subset-specifying strings may not overlap. For
example, EXAMPLE.C = CODE would not specify the
file EXAMPLE.CODE, whereas EXA =CODE would

be a valid specification.

In any file name pair, you may use the character $ to
signify the same file name as the first name, perhaps
with a different volume ID or size specification.

3-19

Press the F key (command menu) and then press the T
key to select the T(ransfer option. The system will dis-
play the following prompt:

Transfer what file?

Enter #5:RE.USE.TEXT,*$ and press the RETURN
key. The system now transfers the file RE.USE. TEXT
on device #5 (a disk drive) to the system disk (*), which
is also device #4. The name will not be changed. The
system will display the following message:

WORKSET:RE.USE.TEXT->SYSTEM:RE.USE.TEXT

RECOVERING LOST FILES

When a file is removed, it is actually removed from the direc-
tory, not the disk. The information that it contained remains
on the disk until another file is written over it (which could
happen at any time, since the filer considers it usable space).

If a file is accidentally removed, be careful not to perform any
actions (whether from the system or from your program) that
write to the disk, since they might write over the lost file. The
K(runch command is virtually certain to do this, so avoid it.

With the command menu displayed, press the F key to call the
filer and then press the E key to use the E(xtended list com-
mand. The E(xtended list command then displays the names of
files in the directory and any unused blocks that have once con-
tained files. Sometimes, by looking at the size of unused areas
and their location in the directory, you can tell where the lost
file was located.

With the filer menu displayed, press the M key to use the
M(ake command. You should then enter a file name and the —
size in blocks (enclosed in brackets) of the lost file.

3-20

To recover a lost file with the M(ake command, the size specifi-
cation should match the size of the file that was lost. If you
remember the size, or if the lost file took up all the space be-
tween two files that are still listed in the directory, recovery is
easy.

The M(ake command creates a file (of the size that you specify)
at the beginning of the first available location on the disk
which is at least that large. To fill up any unused (and un-
wanted) space that precedes the location of the lost file, use the
M(ake command to create dummy files. (Later, you may re-
move these filler files.)

The following is an example of a listing made using the
E(xtend list command:

WORK :

SYSTEM.MISCINFO 1 1-Jan-83 6 512 Datafile
<UNUSED> 1 4

SYSTEM.SYNTAX 14 1-Jan-83 8 512 Datafile
REM.WRK.CODE 4 1-Jan-83 22 512 Codefile
<UNUSED> 75 26

MYFILE.TEXT 20 1-Jan-83 101 512 Textfile

<UNUSED> 373 121
4/4 files<listed/in-dir>, 45 blocks used, 449 unused,
373 in largest

MYFILE.CODE was four blocks long and was located just
after MYFILE. TEXT. To create it, press the M key (filer
menu) to use the M(ake command and enter FILLER[75]. This
procedure fills up the 75 blocks of unused space on the disk.
Next, using the M(ake command, create a file with the fol-
lowing specifications: MYFILE.CODE[4]. MYFILE.CODE is
created (once again) immediately following MYFILE.TEXT.
Finally, use the R(emove command to delete FILLER from the
directory.

3-21

The following extended listing results from this procedure.

WORK :

SYSTEM.MISCINFO 1 1-dan-83 6 512 Datafile
<UNUSED> 1 7

SYSTEM.SYNTAX 14 1-Jan_83 8 512 Datafile
REM.WRK.CODE 4 1-Jan-83 22 512 Codefile
<UNUSED> 75 26

MY FILE.TEXT 20 1-Jan-83 101 512 Textfile
MYFTLE.CODE 4 T1-Jan-83 121 512 Codefile
<UNUSED> 369 125

5/5 files<listed/in-dir>, 49 blocks used, 445 unused,
369 in largest

NOTE

To X(ecute a code file, you must have created it with
a .CODE suffix. (Later, you may change the code file
name.) If you lose a code file that does not have a
.CODE suffix (for example, SYSTEM.FILER) you
must recreate the file with a .CODE suffix (for
example, FILER.CODE) and then again change the
name back to SYSTEM.FILER. If you do not do
this, the recreated file will not be executable.

The RECOVER utility, described in Chapter 5, can help you
find files when you cannot remember or determine where they
were located on the disk. RECOVER scans the directory for
entries that look valid. If that search does not yield the desired
file, RECOVER attempts to read the entire disk looking for
areas that resemble files and asks you if you want them re-
created.

Another alternative is to use the PATCH utility to manually
search through the disk. Once the file has been found, use
M(ake to create the proper directory.

If a directory entry seems erroneous or confusing, you may use
the PATCH utility to examine the exact contents of the direc-
tory. (Refer to UCSD p-System Program Development.)

3-22

Duplicate Directories

It is often easiest to recover a disk when the disk con-
tains a duplicate directory. The main directory spans
blocks 2 to 5 on a disk. If a duplicate directory is pre-
sent, it spans blocks 6 to 9. Every time the directory is
altered, the duplicate directory is updated as well, thus
providing a convenient backup.

However, if a file is accidentally removed from a direc-
tory, it will also be removed from a duplicate directory
and will not be recoverable.

If a directory is corrupted on a disk that has a dupli-
cate directory, you may use the COPYDUPDIR utility
to simply move the duplicate directory to the location
of the standard disk directory. Sometimes this is all
that is required to recover a disk.

There are two ways to place duplicate directories on a
disk. The first is to instruct the Z(ero command to do
this when you are initializing a disk’s directory. When
the prompt Duplicate dir? appears, press the Y
key for yes. This prompt also appears in the M(ake
command when you are creating subsidiary volumes. In
this case, you can create a duplicate directory for the
subsidiary volume if you wish.

If you are already using a disk that contains only one
directory, you can use the MARKDUPDIR utility to
create a duplicate directory (without having to zero the
volume). However, be careful when using this utility.
Blocks six to nine of the disk—the location of the dupli-
cate directory—must be unused; if not, file information
will be lost.

3-23

If a directory is lost, and no duplicate directory
was present, use the RECOVER utility as previously
described.

CAUTION —_

You will destroy the directory if you use the
filer E(xtended list or L(ist commands and
specify an optional output file as a disk
volume without a file name. (The listing is
written on top of the directory.)

EXAMPLE:

The L(ist directory prompts:

Dir lLlisting of what vol ?

Response:

MYDISK:, MYDISK: RETURN

Response:

MYDISK:,: RETURN

Either of these responses cause the first few blocks (ap-
proximately six) of MYDISK: to be overwritten with a
listing of the directory of MYDISK: if the prefix is
MYDISK.

Response:

MYDISK:, DISK2: RETURN

This causes the directory of DISK2: to be overwritten.

3-24

In the latter case, you must use the disk recovery
methods already described. In the first two cases,
recovery is not so difficult, even if there was not a du-
plicate directory, since the MYDISK: directory has
been overwritten with what is essentially a copy of
itself.

First, get a copy of the directory listing of MYDISK:.
(If MYDISK: was the system disk, you must boot an-
other system.) Use the filer to T(ransfer MYDISK:
to an output device: PRINTER:, REMOUT:, or
CONSOLE.:.

Generate hard copy of the directory and then use the
filer to Z(ero MYDISK:. The Z(ero command will not
alter the contents of MYDISK:, only the directory it-
self. Now use the M(ake command to remake all of the
files on the disk (as described in the preceding para-

graphs).

SUBSIDIARY VOLUMES

The purpose of subsidiary volumes is to provide two levels of
directory hierarchy and to expand the p-System’s ability to use
large storage devices such as Winchester disk drives. Cur-
rently, p-System disk volumes contain a 4-block directory lo-
cated in blocks 2 through 5. The rest of the disk contains the
actual files described in the directory. The size of the directory
allows for a maximum of 77 files to reside on the corresponding
disk image.

Subsidiary volumes are virtual disk images that actually reside
within a standard p-System file. The disk that contains one of
these files is called the principal volume. Each subsidiary
volume may contain up to 77 files.

3-25

A subsidiary volume appears in the directory of the principal
volume as a file. Subsidiary volume file names can have a maxi-
mum of seven characters and must be followed by the suffix
.SVOL. The following listing is an example.

MAIL.SVOL
TESTS.1.SVOL
DOC__B.SVOL

The subsidiary volume disk image resides within the actual
.SVOL file. The directory format and file formats are the same
as for any other p-System disk volume. The volume name of
the subsidiary volume is that portion of the corresponding file
name that precedes the .SVOL. For example, the three preced-
ing files would contain the following subsidiary volumes.

MAIL:
TESTS.1:
DOC_B:

Creating and Accessing SVOLs

To create a subsidiary volume, use the filer M(ake com-
mand and the file name suffix, .SVOL. As with any
other file the M(ake command creates, the subsidiary
volume occupies:

1. All of the largest contiguous disk area if created
as follows:

Make what file? DOCS.SVOL

2. Half of the largest area or all of the second largest
area, whichever is larger, if created as follows:
Make what file? DOCS.SVOL[#]

3. A specified number of blocks, in the first area

large enough to hold that many blocks, if created
as in the following examples:

Make what file? DOCS.SVOL[200]
Make what file? DOCS.SVOL[1500]

3-26

After you enter the .SVOL file name, the system some-
times displays this prompt:

Zero subsidiary volume directory?

If you respond by pressing the Y key, the directory of
the new subsidiary volume is zeroed. If you press the N
key, the directory is not zeroed, and any files that may
have existed on a previous subsidiary volume in the
same location reappear within the directory. In both
cases, the number of blocks indicated within the direc-
tory always correspond to the size of the actual .SVOL
file. If this prompt is not displayed, then there was not
a previous subsidiary volume directory where you are
creating the current .SVOL file. In this case, the new
subsidiary volume is automatically zeroed.

The next prompt which is almost always displayed is:
Duplicate dir?

You should respond by pressing the Y key if you want
a duplicate directory to be maintained on the subsidiary
volume, and pressing the N key otherwise. Duplicate
directories were covered earlier under Recovering Lost
Files.

Subsidiary volumes may not be nested. That is, an
.SVOL file may not be created within another .SVOL
file.

When you create a subsidiary volume, it is automati-
cally placed on-line. You may then access and use it like
any other p-System volume. The filer command,
V(olumes, then displays a listing which indicates that
the new volume is on-line and shows its corresponding
device number; for example, #13:.

3-27

You may use either volume name or the device number
when referencing the subsidiary volume. You may now
place files on the new subsidiary volume, and all of the
applicable file commands may reference it.

Mounting and Dismounting SVOLs

A mounted subsidiary volume is subtly different from
an on-line subsidiary volume.

To identify a subsidiary volume as mounted means that
the p-System knows the volume exists and sets aside a
device number for it; for example, #13:. You must
mount a subsidiary volume before you can use it. While
it is mounted, only that specific subsidiary volume cor-
responds to that device number.

A subsidiary volume stays mounted until you dismount
it. Once mounted, it is on-line any time its principal
volume is in the disk drive. It is off-line when the prin-
cipal volume has been removed from the disk drive.

CAUTION

There is a danger of confusing the system if
two principal volumes each contain a subsid-
iary volume in the same location with the
same name. This might easily be the case
where backup disks are used. If these prin-
cipal volumes are swapped in and out of the
same drive, and the similar subsidiary
volumes are accessed, the filer may become
confused in the same way that it can when
any two on-line volumes have the same name.

3-28

CAUTION

If you write programs, be careful when using
low-level I/0 routines (like UNITWRITE)
with subsidiary volumes. If you remove a
principal volume from a disk drive and insert
another disk, these low-level routines have no
way of knowing that the subsidiary volumes
that were mounted on the original disk are no
longer present. Under these circumstances,
doing a UNITWRITE to absent subsidiary
volumes overwrites data on the disk pres-
ently occupying the disk drive.

When you boot the p-System, all of the on-line disks are
searched for .SVOL files. The corresponding subsidiary
volumes are then mounted. The same process occurs
whenever the p-System is initialized (by the I(nitialize
command or after an execution error).

The booting or initializing process mounts as many
subsidiary volumes as it finds as long as there is room
in the p-System unit table. If the unit table becomes
full, no more subsidiary volumes are mounted, and no
warning is given. (The maximum number of subsidiary
volumes is discussed a little later.)

After booting or initializing, if you place a new physical
disk on-line, you must manually mount any subsidiary
volumes contained on it if you want to access them.

To mount or dismount subsidiary volumes, use the
O(n/off-line command. From the main filer menu press
the O key. The system will display the following menu:
Subsidiary Volume: M(ount, D(ismount, C(lear

Press the M key. The system displays this prompt:

Mount what vol ?

3-29

To dismount a subsidiary volume, press the D key. The
system displays this prompt:

Dismount what vol ?

To dismount all the subsidiary volumes that are cur-
rently on-line, press the C key.

Suppose that a principal volume, P__VOL:, contains the
following files:

B:_NEDIL &
FILEY.TEXT
FILEY.CODE
voL1.svOoL
FILEZ . TEXT
FILEZ2.CODE
DOC1.SvOL
FUN.SVOL

To mount subsidiary volumes on P__VOL:, you can re-
spond to the mount prompt with the file name, as in
the following examples:

Mount what vol? VOL1.SVOL RETURN
Mount what vol ? VOL1.SVOL, FUN.SVOL RETURN
Mount what vol ? P_VOL:= RETURN

Mount what vol ? #5:=RETURN

The first example mounts VOL1:; the second mounts
VOL1: and FUN:; the third mounts all three subsidiary
volumes on P__VOL:; and the fourth example mounts
all subsidiary volumes on the disk in drive #5:.

To dismount any of these volumes, you can respond to
the dismount prompt with the VOLUME ID as in the
following examples:

Dismount what vol ? #14:
Dismount what vol ? VOL1: RETURN

Dismount what vol ? VOLI1:, DOC1:, FUN: RETURN

3-30

The first example dismounts the subsidiary volume as-
sociated with device number #14. The second example
dismounts VOLI1:, and the third example dismounts
three subsidiary volumes.

There is a maximum number of subsidiary volumes
that you may mount at one time. You can set this
number, which is subject to memory constraints and
tradeoffs. The maximum number of subsidiary volumes
is a field in SYSTEM.MISCINFO and is configured us-
ing the SETUP utility (which is covered in Chapter 5).

NOTE

If you C(hange either the name of a subsid-
iary volume or the name of the corresponding
.SVOL file, you must change them both to
the same name. For example, if you want to
change either of these:

MYVOL.SVOL
MYVOL:

You should C(hange both of them in the same
way:

NEWNAME.SVOL
NEWNAME:

Installation Information

It is very simple to install the subsidiary volume fa-
cility if you use the SETUP utility to set MAX
NUMBER OF SUBSIDIARY VOLS to the smallest
convenient value. This will be the maximum number of
subsidiary volumes that are allowed to be mounted at
one time. (Each additional subsidiary volume requires a
few extra bytes within the p-System’s unit table. This
is why you should keep this number as small as
possible.) When you have set this field, the subsidiary
volume facility is available.

3-31

B(ad Blocks

FILER COMMANDS

This section describes filer commands and gives examples of
their use. Activities are listed in alphabetical order with each
new command beginning on a new page.

B(ad Blocks

On the menu: B(ad-blks

This command scans a volume’s data blocks and de-
tects areas that are apparently bad for some physical
reason (magnetic damage, fingerprints, warping, dirt,
and so on).

This command requires you to enter a volume ID. The
specified volume must be on-line.

Prompt:

Bad block scan of what vol?

Response:

<volume ID >

Prompt:

Scan for 640 blocks ? <y/n>

Press the Y key for yes to scan for the entire length of
the disk. To check a smaller portion of the disk, press
the N key. The system will then display a prompt re-
questing the number of blocks which the filer should
scan.

The system checks each block on the indicated volume

for errors and lists the number of each bad block. Bad
blocks can sometimes be fixed or marked (see X(amine).

3-32

C(hange

C(hange

On the Menu: C(hng
This command changes file or volume name.

C(hange requires two file names. The first name speci-
fies the file or volume name to be changed, the second
entry specifies the name it is to be changed to. The
first entry is separated from the second entry by either
pressing the RETURN key or the comma key (,). Any
volume name information in the second file specifica-
tion is ignored since only the name in the volume direc-
tory is changed. Size specification information is also
ignored.

The following example shows how to change file or
volume names. The example file F5.TEXT resides on
the volume occupying device #5:

Prompt:

Change what file?

Response:

#5:F5. TEXT,NEWNAME

The preceding procedure changes the name in the direc-
tory from F5.TEXT to NEWNAME. File types are
originally determined by the file name; however, the
C(hange command does not affect the file type. In the
above case, NEWNAME is still a text file.

On the other hand, a response of

#5:F5 = NEWNAME =

preserves the . TEXT suffix.

3-33

Wild card character specifications are legal in the
C(hange command. If you use a wild card character in
the first file specification, then you must use a wild
card character in the second file specification. The sub-
set-specifying strings in the first file specification are
replaced by the analogous strings (called replacement
strings) given in the second file specification.

The filer will not change the file name if the change
would make the new file name too long, that is, more
than 15 characters.

EXAMPLE:

Given a directory of example disk DISK1: containing
the following files:

EXAMPLE.TEXT
MAIL.TEXT
MAIL.CODE
MAKE.TEXT

Prompt:

Change what file?

Response:

DISK1: MA = TEXT RETURN
Prompt:

Change to what?

Response:

XX = WHAT

This causes the filer to report:

DISK1:MAIL.TEXT --> XXIL.WHAT
DISK1:MAKE.TEXT --> XXKE.WHAT

3-34

The subset-specifying strings may be empty, as may
the replacement strings. The filer considers the file spe-
cification equal sign (=) (where both subset-specifying
strings are empty) to specify every file on the disk. Re-
sponding to the C(hange prompt with =,Z =7 causes
every file name on the disk to have a Z added at the
front and back. Responding to the prompt with
7 =7,= replaces each terminal and initial Z with
nothing.

EXAMPLE:

Given the file names:

THIS.TEXT
THAT.TEXT
Prompt:

Change what file?
Response:
T=T. =

The result would be to change THIS.TEXT to
HIS.TEX, and THAT.TEXT to HAT.TEX.

You may also change the volume name by specifying a
volume ID to be changed and a new volume ID.

EXAMPLE:
Prompt:

Change what file?
Response:

DISK1:DISK2:

3-35

D(ate

D(ate

Causes the filer to report:

DISKT 2 ==> DISKZ¢

On the menu: D(ate

This command lists the current p-System date and
enables you to change it if you want.

Prompts Date Set:i<1..31>-<JAN:.DEC>-<00..99>
Today is 31-Dec-82
New date?

You may enter the correct date in the format given.
After pressing the RETURN key, the new date is dis-
played. Pressing only a return does not affect the cur-
rent date. The hyphens are delimiters for the day,
month, and year fields, allowing you to affect only one
or two of these fields.

For example, you can change only the year by entering
--83, only the month by entering - Jan, and so on. You
can spell out the name of the month entirely, but the
filer will truncate it.

The most common input is a single number, which is
interpreted as a new day. For example, if the date
shown is the 1st of January, and today is the 2nd, you
enter 2 and press the RETURN key; this procedure
changes the date to the 2nd of January. The day-
month-year order is required.

The p-System’s date is associated with any files which
are created or modified during the current session.
Thus, the individual files may have different dates.
These dates are displayed when the directory is listed.

3-36

E(xtended List

The p-System’s date is saved in the directory of the
system disk. The date remains the same until you
change it by using the D(ate command.

E(xtended List

On the menu: E(xt-dir

This command lists the directory in more detail than
the L(dir command. See L(dir for more information.

All files are listed with their block length, last modifi-
cation date, the starting block address, the number of
bytes in the last block of the file, and the file type. The
unused areas are also displayed. All wild card character
options and prompts are used in the same way as the
L{dir command.

Since this command shows the complete layout of files
and unused space on the disk, it is useful in conjunction
with the M(ake command. (You can see where files may
be created.)

Often, an E(xtended list is too long to fit on one screen.
In this case, the filer displays one full screen and then
prompts:

Type <space> to continue

You should press the space bar to list the rest of the
directory. Press the ESC key to abort the listing.

3-37

F(lip Swap/Lock

EXAMPLE:

Here is a sample extended listing:

MYDISK:

FILERDOC2.TEXT 28 1=Jdan-83 6 512 Textfile
MEMO.CODE 18 1-Jan-83 34 512 Codefile
<UNUSED> 10 52

SCHEDULE 4 1-Jan-83 62 512 Datafile
HYTYPER : GODE 12 1-Jan-83 66 5192 Codefile
STASI1S.TEXT 8 1-dan-83 78 512 Textfile
LETTERT - TEXT 18 1-Jan-83 86 512 Textfile
ASSEMDOC.TEXT 20 1-Jan—83 104 512 Textfile
FILERDOC1.TEXT 24 1-Jan-83 124 512 Textfile
<UNUSED> 200 148

STASIS.CODE 6 1-Jan-83 348 512 Codefile
<UNUSED> 154 354

10/10 files <listed/in-dir>, 138 blocks used,
364 unused, 200 in Llargest

F(lip Swap/Lock

On the menu: F(lip swap/lock

This command can facilitate the use of the filer on sys-
tems that have enough memory.

The Pascal code that makes up the filer is divided into
several segments. Not all of the segments are needed in
main memory at the same time. By removing unneces-
sary segments from memory, more memory space is
available for the filer to perform its tasks. For example,
a transfer is much more efficient when there is a large
buffer area available in memory. Furthermore, on some
machines, there just is not enough memory space to
contain the entire filer.

3-38

However, allowing the filer to have nonresident
segments requires that the disk containing
SYSTEM.FILER be accessed whenever a nonresident
segment is needed. This can be inconvenient on one-
drive systems. It would be more convenient to do the
following: Enter the filer, remove the system disk, if
desired, and perform any combination of L(isting, disk-
to-disk T(ransferring, K(runching, and so on, without
having to replace the system disk at frequent intervals.

In the first mode, the filer segments are memswapped
in and out of memory; in the second mode, they are
memlocked into memory. The F(lip swap/lock command
allows you to choose the mode the filer will use. Upon
entering the filer, the initial state is always the mem-
swapped state. Pressing the I key acts as a toggle be-
tween the memswapped and memlocked states.

For example, if you enter the filer and press the I key
twice, the system displays two messages similar to
these:

Filer segments memlocked [9845 words]
Filer segments swappable [13918 words]

The number of available 16-bit words is given so that
you will have an idea of how much space is left for the
filer to perform its functions. There is usually less
space available in the memlocked mode. If the machine
does not have enough space to memlock the filer seg-
ments, you receive a message so. (If there are not at
least 1,500 extra words available, the filer will not allow
the memlock option.)

3-39

Glet

Glet

On the menu: Glet

This command designates a text and/or code file as the
work file.

The entire file specification is not necessary. If the
volume ID is not given, the default disk is assumed.
Wild cards characters are not allowed, and the size
specification option is ignored.

EXAMPLE:
Given the directory:

MEMO.TEXT
PRINT.CODE
PROG.TEXT
PROG.CODE

Prompt:
Get what file?
Response:

PROG

The filer responds with the following message because
both text and code files exist.

Text & Code file loaded

If you enter PROG.TEXT or PROG.CODE, the result
is the same. Both text and code versions are loaded. If
only one of the versions exists, as in the case of
MEMO, then that version is loaded, regardless of
whether you requested text or code. For example,
entering MEMO.CODE in response to the prompt gen-
erates the message: Text file loaded.

3-40

K(runch

Using the compiler, editor, assembler on a work file
may cause the files SYSTEM.WRK.TEXT and/or
SYSTEM.WRK.CODE to be created as part of the
work file. The SYSTEM.WRK files disappear when you
use the S(ave command. If you reboot the p-System be-
fore using the S(ave command, the p-System forgets
the name of the work file. In this case, the p-System
does not know what files the SYSTEM.WRK files were
derived from.

K(runch
On the menu: K(rnch

This command moves the files on a volume together so
that the unused space is consolidated into one large
area.

K(runch first displays a prompt asking for the name of
a volume. It then asks if it should move the files from
the end of the volume toward the beginning. If you
answer yes to this question, K(runch leaves all files at
the front of the volume, and one large unused area at
the end. If you answer no to this prompt, K(runch asks
at which block the file movement should start. Doing a
K(runch from a block in the middle of the volume
leaves a large unused area in the middle of the volume,
with files clustered toward either end (as space per-
mits). Doing a K(runch from the beginning of a volume
leaves the files at the end and the unused space at the
beginning.

As each file is moved, its name is displayed on the
console.

If the volume contains a bad block that has not been
marked (see B(ad and X(amine), K(runch may move a
valuable file on top of it. That file is then beyond
recovery. You should scan for bad blocks with the B(ad
command before using the K(runch command unless all
files are also backed up on a different volume.

3-41

If the K(runch command must move
SYSTEM.PASCAL or SYSTEM.FILER on the system
disk, it then displays a prompt which asks you to re-
boot the system.

EXAMPLE:
Prompt:

Crunch what vol?
Response:
MYDISK:

If MYDISK: is on-line, K(runch displays a prompt simi-
lar to this:

From end of disk, block 640 ? (y/n)

The 640 indicates the last block on your volume and
may be different for your disks. To start the crunch,
from this location, press the Y key. To start the crunch
at another location, press the N key and this is dis-
played:

Starting at block # ?

Enter the block number at which the crunch should
begin.

The contents of subsidiary volumes can be crunched
just like any other volume.

3-42

L(ist Directory
L(ist Directory
On the menu: L(dir

This command lists the files in a disk directory or some
subset of them. Usually the listing is displayed on the
console, but you can direct it to a file or to a communi-
cations volume, such as PRINTER.:.

Each file name is followed by the file length, in blocks
(a block is 512 bytes), and the date of its last modifi-
cation.

When you select L(ist directory, this prompt is dis-
played:

Dir listing of what vol?

You can respond to this with a storage volume name.
The directory of this volume is then listed. If you want,
you can follow the volume name with a file name or
wild card character expression for multiple file names.
In this case, the single file or the subset of the direc-
tory indicated by the wild card character expression is
listed.

You can, if you want, send the listing to a communi-
cations volume (such as PRINTER:) or a file (such as
LIST.TEXT). To do this, use a comma after you indi-
cate the volume to be listed. Following the comma, type
in the destination for the listing.

If the directory listed is too long to fit on one screen,
the filer lists as much of it as it can and then displays
the following prompt:

Type <space> to continue
Pressing the space bar causes the rest of the directory

to be listed; pressing the ESC key halts any further
listing.

3-43

EXAMPLE:

To list MYDISK:, select L(ist directory and respond
like this: g

Prompt:

Dir Llisting of what vol?
Response:

MYDISK:

Here is the listing of MYDISK:

MYDISK:

FILERT.TEXT 38 1-Jdan—-83

PRINT.CODE 5 1-Jan-83

EILE2.TEXT 22 1-Jan-83

MEMO.TEXT 30 1-Jan-83

FILES .TEXT 25 1-Jan-83

5/5 files <listed/in-dir>, 120 blocks used, —

100 unused, 100 in largest
The bottom line of the display informs you that: 5 files
out of 5 files on the disk have been listed, 120 blocks
have been used, 100 blocks remain unused, and the
largest area available is 100 blocks.

The following example is a list directory transaction in-
volving wild card characters:

Prompt:
Dir Llisting of what vol ?
Response:

MYDISK:FIL = TEXT N

3-44

The system displays the following listing:

MYDISK:

FILET.TEXT 38 1-Jan-83
FILE2.TEXT 22 1-Jan-83
FTLES. TEXT 25 1-Jan-83

2/5 files <listed/in-dir>, 85 blocks used,
100 unused, 100 in largest

The following example is a list directory transaction

that involves writing the directory subset to a device
other than CONSOLE.

pir listing of what wvol 2
Response:
MYDISK:FIL = TEXT,PRINTER:

The system prints the following listing:

MYDISK:

FILEYT.TEXY 38 1-Jan-83
FILEZ.TEXT 22 1-Jan-83
FILES.TEXT 25 1-Jan-83

2/5 files <listed/in-dir>, 85 blocks used,
100 unused, 100 in largest

EXAMPLE:

The following example is a list directory transaction
that involves writing the directory subset to a file:

Prompt:
Dir Llisting of what vol ?
Response:

MYDISK:FIL = TEXT,#5:LIST.TEXT

3-45

M(ake

M(ake

The system creates the file LIST.TEXT on the disk in
drive #5. LIST.TEXT contains this listing:

MYDISK:

FILEY . TEXT 38 1-Jan-83
FILE2.TERXRT 22 1=-Jan—-83
FILEE . TEXT 25 1=Jan-83

2/5 files <listed/in-dir>, 85 blocks used,
100 unused, 100 in largest

On the menu: M(ake

This command creates a directory entry with the speci-
fied file name.

M(ake requires you to enter a file name. Wild card char-
acters are not allowed. The file size specification option
is extremely helpful because it allows you to determine
the size of the file you are creating. If you omit the size
specification, the filer creates the file by consuming the
largest unused area of the disk. The file size is deter-
mined by following the file name with the desired
number of blocks, enclosed in square brackets ([]). The
file size specification was described earlier under File
and Volume Names.

Text files must be an even number of blocks with the
smallest possible text file four blocks long (two for the
header, and two for text). M(ake enforces these restric-
tions; if you try to M(ake a text file with an odd
number of blocks, M(ake rounds the number down.

M(ake can be used to create a file (with no data) for fu-
ture use, to extend the size of a file (using the size
specification), or to recover a lost file.

3-46

=

i N(ew

N(ew

EXAMPLE:

Prompt:

Make what file?

Response:

MYDISK:FILE.TEXT[28]

The preceding procedure creates the file FILE.TEXT
on the volume MYDISK:. It is made to be 28 blocks
long to occupy the first unused 28-block area on the
volume.

M(ake is used to create .SVOL files which contain

subsidiary volumes. For more information about this,
see the paragraph ‘“Subsidiary Volumes”'.

On the menu: N(ew
This command clears the work file.

If you have a work file, the system displays this
prompt:

Throw away current work file?

Pressing the Y key clears the work file, while pressing
the N key returns you to the outer level of the filer.

If <work file name>.BACK exists, then the system
displays the following prompt:

Remove <work file name>.BACK ?

Entering Y removes the file in question, while N leaves
the .BACK file alone, but does create a new work file.

3-47

O(n/off-Line —

When N(ew is successful, the system displays this
message:

Workfile cleared

O(n/off-line

On the menu: O(n/off-line

This command mounts or dismounts subsidiary
volumes. With the filer menu displayed, press the O
key. The system displays the following menu:

Subsidiary Volume: M(ount, D(ismount, C(lear

Press the M key. The system displays the following
prompt:

Mount what vol ?

To dismount a subsidiary volume, press the D key. The
system displays the following prompt:

Dismount what vol ?

To dismount all the subsidiary volumes, press the C
key. The system immediately dismounts all the subsid-
iary volumes that are currently mounted.

Suppose that a principal volume, P__VOL:, contains the
following files and that the prefix is set to P_VOL.

P_VOLs:
FILE1.TEXT
FILE1.CODE
VOL1.SVOL
FILE2.TEXT
FILE2.CODE
DOC1.SVOL
FUN.SVOL

3-48

To mount subsidiary volumes on P__VOL:, you can re-
spond to the mount prompt with the file name of the
.SVOL file as in the following examples.

Mount what vol ? VOL1.SVOL RETURN
Mount what vol ? VOL1.SVOLJFUN.SVOL RETURN
Mount what vol ? P_VOL:=RETURN
Mount what vol ? #5:=RETURN
The first example mounts VOLI1:; the second mounts
VOLI1: and FUN:; the third mounts all three subsidiary

volumes on P__VOL:; and the fourth example mounts
all subsidiary volumes on the disk in drive #5:.

To dismount any of these volumes, you can respond to
the dismount prompt with the Volume ID as in the fol-
lowing examples.

Dismount what vol ? #14:
Dismount what vol ? VOL1: RETURN

Dismount what vol ? VOLI:; DOCI1:, FUN: RETURN

The first example dismounts the subsidiary volume as-
sociated with the device number #14. The second
example dismounts VOL1:, and the third example dis-
mounts three subsidiary volumes.

NOTE

When mounting a subsidiary volume, repre-
sent it as a file name (VOL1.SVOL). When
dismounting a subsidiary volume, represent
it as a volume name (VOL1:). For more infor-
mation see ‘‘Subsidiary Volumes”, Chapter 3.

3-49

P(refix

P(refix

On the menu: P(refix

This command changes the current default volume to
the volume that you specify.

This command requires you to enter a volume name or
device number. The specified volume need not be on-
line.

If you specify a device number (such as #5), then the
new default prefix is the name of the volume in that
device. If no volume is in the device when P(refix is
used, the default prefix remains the device number
(such as #5); thereafter, any volume in the default de-
vice is the default volume.

Since P(refix tells you the volume name of the new de-
fault volume, you may respond to its prompt with a
colon (:) to determine the current default volume’s
name. To return the prefix to the booted or root
volume, you may respond with an asterisk (¥).

To use this command, select P(refix and the following
prompt is displayed:

Prefix titles by what vol?

You should enter the desired volume name or device
number.

CAUTION

When using only a device number for the pre-
fix, remember that any disk in the device is
the default disk. In this situation, it is very
easy to assume that the system is prefixed to
a particular disk, exchange the disks, and
write over a valuable file or destroy infor-
mation.

3-50

Qluit

Q(uit
On the menu: Q(uit

This command terminates the filer and returns you to
the command menu.

R(emove
On the menu: R(em
This command removes file entries from the directory.
R(emove requires one file specification for each file you
wish to remove. Wild cards are legal. Size specification
information is ignored.

EXAMPLE:

Given the example files (assuming that they are on the
default volume):

EXAMPLE.TEXT
COPYIT.CODE
MEMO.TEXT
RUNIT.CODE

Prompt:

Remove what file?
Response:
RUNIT.CODE

Removes the file RUNIT.CODE from the volume
directory.

3-51

NOTE

To remove SYSTEM.WRK.TEXT and/or
SYSTEM.WRK.CODE, use the N(ew com-
mand, not R(emove. Using R(emove may con-
fuse the system.

Before completing any R(emove commands, the filer
displays the following prompt:

Prompt:
Update directory?

Pressing the Y key causes all specified files to be re-
moved. Pressing the N key returns you to the outer
level of the filer without removing any files.

As noted before, wild card characters in R(emove com-
mands are legal.

EXAMPLE:
Prompt:

Remove what file?
Response:

=CODE

This causes the filer to remove RUNIT.CODE and
COPYIT.CODE.

Pressing the wild card question mark (?) causes the
R(emove command to display a prompt questioning the
removal of each file on a volume. This is useful for
cleaning out a directory and for removing a file that
has (inadvertently) been created with a nonprinting or
otherwise invalid character in its name.

3-52

S(ave

S(ave

CAUTION

Remember that the filer considers an equal
sign (=) by itself to specify every file on the
volume. Pressing an equal sign alone causes
the filer to remove every file on the directory.
(To escape from this situation, press N in re-
sponse to the Update directory? prompt.)

On the menu: S(ave

This command saves the work file under the file name
you specify.

The entire file specification is not necessary. If the
volume ID is not given, the default disk is assumed.
Wild card characters are not allowed, and the size speci-
fication option is ignored.

EXAMPLE:
Prompt:
Save as what file?

Enter a file name of ten characters or less. This causes
the filer to automatically remove any old file having the
given name and to save the work file under that name.
For example, pressing X in response to the prompt
causes the work file to be saved on the default disk as
X. TEXT. If a code file has been compiled since the last
update of the work file, that code file is saved as
X.CODE.

If a file already exists with the name given, the S(ave
command responds with:

Destroy old <file name>?

3-53

T(ransfer

Pressing the Y key causes the old file to be replaced;
any other reply exits the S(ave command.

The filer automatically appends the suffixes .TEXT and
.CODE to files of the appropriate type. If you enter
AFILE.TEXT in response to the prompt, the filer
saves the file as AFILE.TEXT.TEXT. The filer ignores
any illegal characters in the file name except colon (:). If
the file specification includes a volume ID, the filer as-
sumes that you wish to save the work file on another
volume.

For example, if in response to the filer prompt
Save as what file? you enter VOLI.FILEI,
the system then displays the following message.

MYDISK:SYSTEM.WRK.TEXT-->VOL1:FILE1.TEXT

T(ransfer

On the Menu: T(rans

This command copies the specified file or volume to the
given destination.

T(ransfer requires you to enter two specifications: one
for the source file or volume and another for the destin-
ation file or volume, separated by either a comma or
RETURN. Wild card characters are permitted in file
name specifications only, and size specification infor-
mation is recognized for the destination file.

EXAMPLE:

Assume that you wish to transfer the file DOCU.TEXT
from the disk MYDISK to the disk BACKUP.

Prompt:

Transfer what file ?

3-54

Response:

MYDISK:DOCU.TEXT

Prompt:

To where?

Response:

BACKUP:NAME.TEXT

NOTE

On a one-drive machine, do not remove the
source disk until the system displays that
prompt asking you to insert the destination
disk.

Prompt:

Put in BACKUP: press <space> to continue

You should remove the source disk, insert the destina-
tion disk, and press the space bar.

In any case, when the T(ransfer is complete, the filer
displays this message:

MYDISK:DOCU.TEXT-->BACKUP:NAME.TEXT

You may want to transfer a file without changing its
name. The filer enables you to do this easily by allow-
ing the character dollar sign (8) to replace the file name
in the destination file specification. In the above
example, had you wished to save the file DOCU.TEXT
on BACKUP under the name DOCU.TEXT, you could
have done so like this:

MYDISK:DOCU.TEXT,BACKUP:$

3-566

CAUTION

Avoid entering the second file specification
with the file name completely omitted.

For example, if in response to the T(ransfer command
prompt, Transfer what file, you respond by
entering MYDISK:DOCU.TEXT,BACKUP:, the sys-

tem will display the following prompt.
Destroy BACKUP: ?

Pressing Y causes the directory of BACKUP: to be de-
stroyed.

NOTE

If the file to be transferred is two blocks long

or less, the system will not display the warn-

ing prompt.
You may transfer files to volumes that are not storage
volumes, such as CONSOLE: and PRINTER:, by speci-
fying the appropriate volume ID in the destination file
specification. Do not specify a file name for a communi-

cation device. The system will ignore it. Make sure the
device is on-line before the transfer.

EXAMPLE:
Prompt:
Transfer what file?

Response:

DOCU.TEXT

3-56

Prompt:
To where?
Response:
PRINTER:

The preceding procedure causes DOCU.TEXT to be
written to the printer.

You may also transfer from storage devices, provided
they are input devices. The source file must end with
an EOF (which is a soft character configurable using
the SETUP utility); otherwise, the filer will not know
when to stop transferring. File names accompanying a
communication device are ignored.

Wild card characters are recognized in the T{ransfer
command. If the source file specification contains a
wild card character, and the destination file specifica-
tion involves a storage device, then the destination file
specification must also contain a wild card character.

The subset-specifying strings in the source file specifi-
cation are replaced by the analogous strings in the des-
tination file specification (replacement strings). Any of
the subset-specifying or replacement strings may be
empty. The filer considers the file specification denoted
by an equal sign (=) to specify every file on the
volume.

EXAMPLE:
The volume MYDISK contains the files:

PODA-1, PODB-1, PODC-1

The destination disk is SUCCESS.

3-57

Prompt:

Transfer what file?

Response:

P=1,SUCCESS:M =2

The system then displays the following listing:

MYDISK:PODA-1 —=> SUCCESS:MODA~2
MYDISK:PODB-1 --> SUCCESS:MODB-2
MYDISK:PODC-1 -=> SUCCESS:MODC-2

The filer will try to transfer every file on the disk if you
specify the equal sign (=) as the source file name.

Using the equal sign (=) as the destination file name
specification replaces the subset-specifying strings in
the source specification with nothing. You may use the
question mark (?) in place of the equal sign. Using the
question mark, you will be asked to verify each oper-
ation before it is performed.

You may transfer a file from a volume to the same
volume by specifying the same volume ID for both
source and destination file specifications. This is fre-
quently useful when you wish to relocate a file on the
disk. Specifying the number of blocks desired causes
the filer to copy the file in the first available area of at
least that size. If you do not specify a size, the file is
written in the largest unused area.

If you specify the same file name for both source and
destination on a same-disk transfer, then the filer re-
writes the file to the size-specified area and removes the
older copy.

3-58

——

EXAMPLE:

Prompt:

Transfer what file?

Response:
#4:QUIZZES.TEXT,#4:QUIZZES.TEXT[20]

The preceding procedure causes the filer to rewrite
QUIZZES.TEXT in the first 20-block area encountered
(counting from block 0) and to remove the previous ver-
sion of QUIZZES. TEXT.

You can also transfer an entire volume from one disk to
another. The file specifications for both source and des-
tination should consist of only volume ID; for example,
Diskl:, Disk2:. Transferring a storage volume to an-
other storage volume wipes out the destination volume
so that it becomes an exact copy, including directory,
of the source volume.

NOTE
System disks contain an invisible bootstrap
which is placed on them by the Disk Format
Utility. This bootstrap is not copied when
you do a disk-to-disk transfer.

EXAMPLE:

Assume that you want an extra copy of the disk
MYDISK: and transfer to a disk called EXTRA:

Prompt:

Transfer what file?

3-59

V(olumes —

Response:
MYDISK: EXTRA:
Prompt:

Destroy EXTRA: ?

CAUTION

If you enter Y, the directory of EXTRA: will
be destroyed, with EXTRA becoming an
exact copy of MYDISK. An N response re-
turns you to the outer level of the filer with
no transfer taking place.

This volume-to-volume transfer process is a good
backup procedure. Use the C(hange command to change
the name of the backup disk. The two disks should not
have the same name because this may confuse the
system.

Although you can transfer a volume (disk) to another,
using a single disk drive, it is tedious. This is because
the transfer in main memory reads the information in
rather small chunks, and a great deal of disk juggling is
necessary to complete the transfer.

V(olumes

On the menu: V(ols

This command lists volumes currently on-line with their
associated volume (device) numbers.

3-60

—

The following listing is a typical display.

Vols on-line:

1 CONSOLE:

2 SYSTERM:

4 # WNCHSTR: [10404]

5 # FLOPPY1: [6401

6 PRINTER:

9 # FLOPPY2: [6401
Root vol is - WNCHSTR:
Prefix 1s = FLOPPY2:

Root vol is the system disk or boot disk. Prefix is indi-
cates the default disk. Storage volumes are indicated
by #.

After each disk volume, the number of 512-byte blocks
that it contains is given in square brackets. This can be
useful if the system uses disks of varying storage ca-
pacities. In the preceding example, the Winchester disk
on-line in drive #4: contains 10,404 blocks of storage
capacity, and the flexible disks on-line in drives #5: and
#9: each contain 640 blocks.

The V(olumes command also displays the mounted
subsidiary volumes. The name of the principal volume
and the name of the starting block are given for each
subsidiary volume listed.

The following listing is an example.

Vols on-Lline:
1 CONSOLE:

2 SYSTERM:

4 # WNCHSTR: [104041]

S # FLOPPYT1: [3201

6 PRINTER:

9 # FLOPPYZ2: [6401

13 # DOCS: [3000] on volume WNCHSTR:

starting at block 400

14 # PROGRMS: [30001 on volume WNCHSTR:
starting at block 3700

15 # FUN: [30001 on volume WNCHSTR:
starting at block 7040

Root vol is - WNCHSTR:

Prefix is = ELOPPYZ:

3-61

Wiat

Wi(hat

In this example, three subsidiary volumes on
WNCHSTR: are mounted. They use device numbers
#13:, #14:, and #15:. Each of these volumes contains
3,000 blocks.

On the menu: W(hat

'This command identifies the name and state (saved or

not) of the work file.
EXAMPLE:

Work file is DOC1:STUFF (not saved)

X(amine

On the menu: X(amine

This command attempts to physically recover sus-
pected bad blocks.

You must specify the name of a volume that is on-line.
EXAMPLE:

Prompt:

Examine blocks on what vol?

Response:

<volume ID >

Next Prompt:

Block-range ?

3-62

You should have just performed a bad block scan and
should enter the block number(s) returned by that scan.
If any files are endangered, the following prompt
should appear:

Prompt:

file(s) endangered:
<file name>
Fix them?

Pressing the Y key causes the filer to examine the
blocks and return either of the messages:

Block <block-number> may be ok
Block <block=-number> is bad

In which case the bad block has probably been fixed, or
block <block-number> is bad. If block <block-
number > is bad, the filer offers you the option of iden-
tifying the block(s) as BAD. Blocks marked BAD are
not moved during a K(runch and are rendered unavail-
able and effectively harmless (though they do reduce
the amount of room on the disk).

An N response to the Fix them? prompt returns
you to the outer level of the filer.

CAUTION

A block that is fixed may contain garbage.
The message May be ok should be translated
to mean probably physically ok. Fixing a
block means that the block is read, is written
back out to the block, and is read again. If
the two reads are the same, the message is
May be ok. If the reads are different, the
block is declared bad and may be marked as
such if so desired.

3-63

Z(ero

Z(ero

On the menu: Z(ero

This command initializes the directory on the specified
volume, rendering the previous directory irretrievable.

EXAMPLE:

Prompt:

Zero dir of what vol ?

Response:

<volume ID >

Prompt:

Destroy <volume name> ?

Pressing the Y key brings this prompt:

Duplicate dir ?

If you press the Y key, a duplicate directory is main-
tained. This is advisable because if the disk directory is
destroyed, a utility program called COPYDUPDIR can

use the duplicate directory to restore the disk.

The next prompt appears only if there was a directory
on the disk before the Z(ero command was used:

Prompt:

Are there 640 blks on the disk ? (y/n)

3-64

Press the Y key to accept that number of blocks and
skip the next prompt. Press the N key to receive this
prompt:

of blocks on the disk ?

Enter the number of blocks desired. This number varies
depending upon your particular disks.

The next prompt is:

New vol name ?

Enter any valid volume name.

Prompt:

<new volume name> correct ?

Press the Y key to accept the name. Press the N key to
return to the prompt which requests a new volume
name. If the filer succeeds in writing the new directory

on the disk, this message is displayed:

<new volume name> zeroed

3-65/3-66

4

System Editor

Introduction ... 4-3
Screen-Oriented Editorccoooovvviieiiiiieeeee. 4-3
The Window into the Fileccccccoioiiiiiiiiiiiiiiiiiiieeeeccc e, 4-3
The CUISOT ...ceiieieiieiiieiiiiriee e ecceececsieee e e e e e e ee e essesssseeeaseeenns 4-4
The MENU ...cooiiieiiieeeieiiiirree e e e e e e ve e eeeseseseeseeeenaeaens 4-4
Notation ConventionScccccerevrrmmmmmeresssmmrmmrreeeeeeeeeeensssnnnns 4-4
Editing Environment Optionscccccecveeveeeereiniiieeensiinnenennann 4-5
Command Hierarchycccccceevieieiieiiinieirienieeicnreesssnieeeesenenns 4-5
Repeat FACOOLE .ovovimormmmmmmimimmssanmmssis svsswronvnnsnessasnssmsnssasnosiosors 4-6
Direction INAIiCAtorcooeviiveviiiieiieeiieeeeerereerececreeeeeeeeees 4-6
Using the Editor ... 4-7
MovIng the CUISOLccisimesesssssisiminissesmsssssisssssmmsimssssamssasssssg 4-7
F(ind and R(eplaceccccoveveeueeiieiiencniiccienneececieeseeeeee 4-10
WOTK FIlES weveieiiiiiiiieeeiittree e ee e 4-11
UsSIng INSEIt ..cooevveviiiiiiiiiieeieeeneitien e essrere s e 4-12
Using D(Elefe . ssssmssssmsmimssnsmansmssivivsssvsmsmssasssmsmsmisssamsamos 4-13
Leaving the EdIitorccoeieiiiiiieeeiinciereieeeeenseneeseceeeeeeens 4-13
Screen-Oriented Editor Commands 4-14
AUATUEE: ccnonomunsmvnssorsvmssonssosss s s oS S SRS 4-14
[©1'6) ¢, VRN 4-15
DUELEEE ettt ettt e e et tbae e e saaseeeeeraranaseesannnnnes 4-17
Bl osmemmommmnmsammss s vsommsmimins v i ssssis 4-18
| 50 T=1<5 o AR 4-20
8 1150y o e 4-23
05 (51 DY 0 v R SO 4-24
MIABEIR oooissvrrssmsmmssommmmmrniinsissmsmsssssssurissesasmiminsnntasasnsassnasoss s mne 4-24
PlAPE: upmmumsssmmnmusrismsssssssssssomsesnsassaminsssnsnipynyspbssssssivoasns 4-26
QUUIL weeeereeeeeieeeieeeeceireeeesteeteereeseeeeseeeesnneeeeensaeeeessaeensnesennneens 4-26
TIDAALE .oversssomsnnsssssnnnsmsasesssosssmessssusnsssasssnsumnpasssssssnusmorssusanmrsvesns 4-26

TB(RIE: wosvssnososmsmsmvnsnossossuossssmsssssssssssssvassveesmsssnmssssssssvessiassssmasees 4-27

RICTUTIL .coccnsmmmsvmsassmrnansuanssnsnsssossmmmannsnaniissnosmmnnnnsnnsenss shiiasssnisns 4-27

WHEIEE oeeeieieeieeee e cccecrceee e ee e e e et e e e ee s e e e erasa e eeseesannnnnnenes 4-27
RIEPIACE coosomsmmsmivsssossussussssnrsssmsssmmasupssersopsarmus sovessannnsesasanmronanss 4-28

4-1

BIEY s csissmrmmrss st s e s i R A A A A 4-30

Slet MUBEREE o smmmenmsnmmsssismmitms s s sass b s 4-30
S(et E(MVIrONIMENTcooveiiiiiiiiiiie e eeeerea s eeeaaeeeees 4-31
VACEIEY snivssionvsmmsssnssinmmmmnsiosnsssioysssssssss s ssnmsnss sy sh v ashe s ass 4-34
B0 720 0o 4-34
R — 4-35

4-2

INTRODUCTION

The UCSD p-System on the Texas Instruments Professional
Computer uses the Screen-Oriented Editor. This editor allows
you to create, alter, and read text files. Text files contain
human-readable material such as memos or manuscripts.

SCREEN-ORIENTED EDITOR

In order to use the editor, SYSTEM.EDITOR must reside on a
disk which is on-line. Also, the file SYSTEM.MISCINFO must
be configured for your terminal. If this has not already been
done for you, configure it with the SETUP utility described in
Chapter 5.

The Window into the File

The Screen-Oriented Editor is specifically for use with
video display terminals (or cathode ray tubes, CRTs),
most of which have 24-line screens. The editor usually
uses the first line of the display unit to display its
menu. Therefore, most of the time it displays 23 lines of
text within the file. Using the editor, you may view any
part of the file in 23-line segments.

You actually look into the file through a window that
the editor provides. Although you can access the whole
file by using editor commands, you can view only a por-
tion of it through the window in the display unit. When
an editor command takes you to a position in the file
that is not presently displayed, the window moves to
show you that new portion of the file.

4-3

The Cursor

The cursor is a small rectangular box that is logically
located between the character to its left and the charac-
ter space on which it rests. You position the cursor to
indicate to the editor how its commands are to affect
the text. For example, the editor will insert text to the
left of the character space on which the cursor rests.

You can move the cursor to any specific location in a
file; at that point, it then represents your exact position
in the file. The window shows the portion of the file
that surrounds the cursor; to see another portion of the
file, move the cursor. The cursor follows the commands
of the editor. For example, if you delete portions of the
file, you move the cursor to indicate the beginning and
extent of the deletion.

In this chapter, all text examples are shown in upper-
case, with the cursor denoted by an underline or a
lowercase character.

The Menu

The editor displays a menu at the top of the display
unit to remind you of the current command and the op-
tions available for that command. The most commonly
used options appear in the menu. The following is an
example of the editor’s first-level menu, called the edit
menu.

>Edit: A(djust CCopy D(Cel F(ind I(nsert J(ump
K(ol MCargin PCage ? [versionl

Notation Conventions

The notation used in this chapter corresponds to the
notation the editor uses to prompt you. The system
uses angle brackets (< >) to indicate a single key like
the RETURN key (<return>) or the space bar
(< space>).

4-4

—

Enter FILE NAME <return> means to enter the
name of the file and then press the RETURN key. You
may use either lowercase or uppercase when entering
editor commands.

Editing Environment Options

The editor has two chief modes of operation: one for
entering and modifying programs and another for
entering and modifying English (or any other language)
text. The first mode includes automatic indentation; the
second includes automatic text filling. For more infor-
mation on these two options, see the description of the
E(nvironment option of the S(et command.

Command Hierarchy

The command menu is the first or highest level of the
command hierarchy. To enter the system editor, press
the E key from the command menu. The system will
display the edit menu:

>Edit: A(djust C(opy D(el F(ind I(nsert J(ump
K(ol MCargin P(age ? [versionl

The edit menu is the second level of the command hier-
archy, as is the filer menu and all the other menus that
you can display from the command menu.

For example, call the I(nsert option, press the I key.
The system now displays the third level of the com-
mand hierarchy:

>Insert: Text {<bs> a char, a line}
[<ext> accepts, <esc> escapes]

4-5

Repeat Factors

The F(ind and R(eplace commands, as well as most of
the cursor-movement keys, allow repeat factors. A re-
peat factor allows you to specify the number of times a
command should be performed by the editor. For
example, press the 2 key and then press the R key to
select the R(eplace command. The editor will display
this third-level menu:

>Replacel2]: L(it V(fy <targ><sub> =>

The number 2 that you entered appears inside the
square brackets to indicate that the system will per-
form the specified function two times.

If you do not specify a repeat factor, the default (as-
sumed) factor is 1. Use a slash (/) to specify that a
function should be performed as many times as
possible.

Direction Indicator

The direction indicator determines whether the cursor
will be moved in the forward direction or in the reverse
direction. For example, if the direction indicator is for-
ward, the cursor moves to the right (toward the end of
the file) when you press the space bar. If the direction
indicator is reversed, then the cursor moves left (toward
the beginning of the file)} when you press the space bar.

The first character in the menu indicates the global
direction. A right angle bracket (>) indicates move-
ment to the right, and a left angle bracket (<) indicates
movement to the left. To change the global direction,
press the left or right angle brackets on the keyboard.
When you enter the editor, the global direction is right.

4-6

—

—

USING THE EDITOR

Moving the Cursor

The special keys described in this section enable you to
move the cursor in a number of ways. Global direction
affects the space bar, RETURN key, and the TAB
key. It does not affect the arrow keys and the
BACKSPACE key.

Pressing the equal sign (=) moves the cursor to the
beginning of the last text that was most recently in-
serted, found, or replaced. The equal sign works from
anywhere in the file and is not affected by the global
direction. An I(nsert, F(ind, or R(eplace saves the posi-
tion (within the work file) of the beginning of the inser-
tion, find, or replacement.

Pressing the = moves the cursor to that position and
saves the cursor location. If you perform a Clopy or a
Df(elete between the beginning of the file and that abso-
lute position, the cursor will not jump to the start of
the insertion, because that absolute position has then
been lost.

The J(ump command moves the cursor to the beginning
or end of a file, or to a previously defined marker any-
where within the file (see the S(et M(arker command).
The P(age command moves the display unit window for-
ward (or backward) by one screen and positions the cur-
sor to the beginning of the line. These commands are
described in ‘‘Screen-Oriented Editor” in this chapter.

The following list summarizes the keys which move the
cursor.

Not affected by current global direction:
| (down-arrow) Moves the cursor down
I (up-arrow) Moves the cursor up
— (right-arrow) = Moves the cursor right
— (left-arrow) Moves the cursor left
BACKSPACE Moves the cursor left
Motion determined by global direction:

space bar Moves the cursor one space in
the global direction

TAB Moves the cursor to the next
tab stop
RETURN Moves the cursor to the

beginning of the next line
These keys change the global direction to backward:
< Left angle bracket
3 Comma

- Minus sign

These keys change the global direction to forward:

> Right angle bracket
5 Period
+ Plus sign

You can use repeat factors with any of the cursor
movement keys listed above.

4-8

You cannot move the cursor outside the text of the pro-
gram. For example, after the N in BEGIN in the fol-
lowing example, press the — key; this moves the cursor
to the W in WRITE. Similarly, at the W in WRITE-
(‘TOO WISE ’);, use the — key to back up after the N
in BEGIN.

BEGIN.
WRITE(C'TOO WISE ');

BEGIN
WRITE(C'TOO0 WISE ');

In the following example, if you must change the
WRITE(‘TOO WISE ’); found in the third line to a
WRITE(‘TOO SMART ’);, you must first move the cur-
sor to the correct position.

For example, if the cursor is at the P in PROGRAM
STRING1;, go down two lines by pressing the | key
twice. To mark the positions the cursor occupies, labels
a, b, and ¢ are used in the following example. The a
marks the initial position of the cursor; the b marks the
cursor position after the first | key; and the ¢ marks
the cursor after the second | key.

aROGRAM STRING1
bEGIN
cWRITEL*TOO WISE ')}

Now, using the — key, move the cursor until it sits on
the W of WISE. Note that with the use of the | key,
the cursor appears to be outside the text (c). In this
case, the editor considers the cursor to be at the W in
WRITE; when you press the first — key, the cursor
jumps to the R in WRITE. However, when the cursor
is displayed outside the text, it is actually on the clos-
est character to the right or left.

4-9

F(ind and R(eplace

Both F(ind and Ri(eplace operate on delimited strings.
The editor has two string storage variables. One, called
<targ> by the menus, is the target string and is used
by both commands; while the other, called <sub> by
the R(eplace menu, is the substitute string and is used
only by R{eplace.

Enter these strings when wusing F(ind or
R(eplace. Once entered, they are saved by the
editor and may be reused.

When you enter a string, you must use a special charac-
ter to delimit (mark) the beginning and end of the
string. For example, /fun/, $work$, and ‘‘gismet’’ repre-
sent the strings fun, work, and gismet, respectively.
The editor allows any character that is not a letter or a
number to be used as a delimiter.

F(ind and R(eplace operate in either of two search
modes: literal and token. These modes are stored by the
S(et E(nvironment command and can be changed by it,
or they may be temporarily overridden using the F(ind
or R(eplace commands.

In the literal mode, the editor looks for any occurrences
of the target string. In the token mode, the editor looks
for isolated occurrences of the target string. The editor
considers a string isolated if it is surrounded by spaces
or other punctuation. For example, in the sentence Put
the book in the bookcase., using the target string book,
the literal mode finds two occurrences of book, while
the token mode finds only one: the word book isolated
by spaces.

In addition, the token mode ignores spaces within
strings, so that <space> comma <space> (,) and
comma (,) are considered the same string.

4-10

When using either F(ind or R(eplace, you may use the
strings previously entered by pressing the S key. For
example, entering RS/<any-string>/ causes the Rf(e-
place command to search for an occurrence of the pre-
vious target string and replace it with <any-string>.
R/ <any-string >/S causes the next occurrence of <any-
string> to be replaced with the previous substitute
string.

To find out the current contents of the <targ> and
<sub> strings are in, use the S(et E(nvironment
command.

Work Files

When you enter the editor, the system reads and dis-
plays the work file. If you have not already created a
work file, the editor will display the following prompt:

>Edit: No work file is present.
File? € <ret> for no file)

There are three ways to respond to this prompt:

1. With a name, for example STRING1 <ret>. The
file named STRING1.TEXT is now retrieved. The
file STRING1 could contain a program, also called
STRING1, as in the following example. After
typing the name, a copy of the text of the first
part of the file appears on the display unit.

PROGRAM STRING1;
BEGIN
WRITE('TOO WISE');
WRITE('YOU ARE');
WRITELNC',');
WRITELNC'TOO WISE');
WRITELNC'YOU BE')
END.

4-11

2. With a RETURN key. This response indicates
that you wish to start a new file. The only thing
visible on the display unit after this response is
the Edit menu. Press the I key to begin inserting
a program or text.

3. With the ESC key. This response stops the editor,
causing the system to display the command menu.

Using I(nsert

To use the I(nsert option, press the I key from the Edit
menu. Place the cursor on top of the letter before which
you want to make an insertion. The cursor must be in
the correct position before pressing the I key. From the
point of insertion, the rest of the line is moved toward
the right side of the display unit. If the insertion is
long, that part of the line is moved down to allow room
on the display unit.

After pressing the I key, the system displays the fol-
lowing prompt:

>Insert: text {<bs> a char, a line} [<etx>
accepts, <esc> escapes]

NOTE

ETX is a generic p-System key that is acti-
vated by pressing and holding the CTRL key
and then pressing the C key (CTRL-C).

Suppose the cursor is at the W in WISE (see the
example in “Work Files”). Enter SMART. The word
appears on the display unit as it is entered in the fol-
lowing example.

BEGIN WRITE('TOO SMART_ WISE ');

BEGIN WRITE('TOO SMARTWISE ');

4-12

While in I(nsert, you can insert a carriage return by
pressing the RETURN key. The editor then starts a
new line. Notice that a carriage return starts a new line
with the same indentation as the previous one. This is
often convenient when entering program text.

Using D(elete

Di(elete works like I(nsert. Move the cursor to the W in
WISE (see the preceding example) and press the D key
to select the D(elete command. The system then dis-
plays the following prompt:

>Delete: < > <Moving commands> {<etx> to delete,
<esc> to abort}

Press the space bar four times. Each time you press it,
a letter disappears from the display unit. Pressing the
BACKSPACE key causes a character to reappear. By
pressing the CTRL-C keys the proposed deletion is
carried out; or pressing the ESC key causes the pro-
posed deletion to reappear and remain part of the text.

To delete a carriage return at the end of a line, call
Dlelete and then press the space bar until the cursor
moves to the beginning of the next line.

Leaving the Editor

When all text changes and additions have been made,
press the Q key to leave the editor. The system then
displays the following menu.

>Quit:

U(pdate the workfile and Lleave

E(xit without updating

R(eturn to the editor without updating
W(rite to a file name and return

4-13

A(djust

Using the U(pdate option saves a copy of the file on
disk as SYSTEM.WRK.TEXT. This file is your work
file.

The W(rite option saves the file under whatever name
you wish. The file is not necessarily your work file.

R(eturn simply returns you to the editor without saving
anything on disk.

E(xit leaves the editor without saving anything. Any
changes or additions to the file are lost permanently.

SCREEN-ORIENTED EDITOR COMMANDS

The screen-oriented editor commands are covered in alpha-
betical order in this section.

A(djust

On the menu: A(djust

Repeat factors are allowed in conjunction with the
arrow keys within A(djust.

Press the A key from the edit menu. This displays the
following menu:

>Adjust: L(just R(just C(enter <arrow keys>
{<etx> to leavel

The A(djust option moves a line to the left or to the
right. The — and — keys move the line on which the
cursor is located. Each time you press a — key, the
whole line moves one space to the right. The — key
moves the line one space to the left.

To adjust more than one line, use the t or | keys; the
line above or below the previously adjusted line is auto-
matically adjusted by the same amount.

4-14

Clopy

Pressing the L. key justifies the line to the left margin,
pressing the R key justifies it to the right margin, and
pressing the C key centers the line between the mar-
gins. Press the | and the | keys to duplicate the adjust-
ment on preceding (succeeding) lines.

Use the S(et E(nvironment command to alter the
margins.

The system repositions the cursor to the beginning of
the last line adjusted. Press the CTRL-C keys to exit
the A(djust command; the ESC key will not work here.

Clopy
On the menu: Cl(opy
Repeat factors are not allowed.

Press the C key from the edit menu. The following
menu is displayed.

>C(opy: B(uffer F(rom file <esc>

To copy text into the copy buffer, press the D key to
use the D(elete command. Perform the delete, but press
the ESC key so that the text is not deleted but only
copied into the buffer. The C(opy command allows text
to be copied into the current text from one of two
sources: a temporary buffer called the copy buffer, and
a text file on disk. To copy from the copy buffer, press
the B key. The editor immediately copies the contents
of the buffer into the file, starting at the location of the
cursor when you pressed C. The buffer may be recopied
until you change the contents of the buffer.

When the C(opy function ends, the cursor goes to the
end of the copied text.

4-15

The following commands affect the copy buffer.

1. Dielete: When you press the CTRL-C keys, the
buffer is loaded with the deletion. When you press
the ESC key, the buffer is loaded with what would
have been deleted.

2. I(nsert: When you press the CTRL-C keys, the
buffer is loaded with the insertion. When you
press the ESC key, the copy buffer is emptied.

3. Z(ap: If you use the Z(ap command, the buffer is
loaded with the deletion.

4. Mlargin: This command causes the copy buffer to
be left empty.

To copy text from another file, press the F key. The
system then displays the following menu.

>C(opy: From what filelmarker,markerl?

Any file may be specified; .TEXT is assumed. The
markers are optional and are used for copying part of a
file.

To copy part of a file, you must have previously S(et
markers at the beginning and end of the text you wish
to copy. You may use two markers, or the file’s
beginning or end as a marker. For example, if you spec-
ify [,marker] or [marker,], the file is copied from the
start of the file to the marker or from the marker to the
end of the file.

4-16

D(elete

D(elete
On the menu: D(el
Repeat factors are not allowed.

To select the Dielete option, press the D key from the
edit menu. The following prompt is displayed:

>Delete: < > <Moving commands> {<etx> to delete,
<esc> to abort}

First, place the cursor where you want to delete text.
The Df(elete option uses an anchor at this initial posi-
tion. As you move the cursor away from the anchor,
characters disappear. Moving back toward the anchor
restores those characters to the text file. To accept the
deletion, press the CTRL-C keys; to escape, press the
ESC key.

Within the D(elete option, all cursor-moving actions are
valid, including repeat factors and global direction.

The following procedure shows how to use the D(elete
option with reference to this example.

PROGRAM STRINGZ2;
BEGIN
WRITE('TOO WISE ');
WRITELN(‘TO BE.’)
END.

1. Move the cursor to the E in END.
2. Press < (this changes the direction to backward).

3. Press the D key.

4-17

F(ind

F(ind

4. Press the RETURN key twice. After pressing the
RETURN key once, the cursor moves to the
position in front of the W in WRITELN, and
WRITELN('TO BE.’); disappears. After the
second return, the cursor appears before the W in
WRITE with that line gone.

5. Now press the CTRL-C keys. After deletion, the
program appears as shown in the following
example.

PROGRAM STRING2:
BEGIN
END.

The two deleted lines have been stored in the copy
buffer, and the cursor has returned to the anchor posi-
tion. If you wish, you may now use C(opy to copy the
two deleted lines to any other place in the file.

Whenever a deletion is larger than the available copy
buffer space, the editor will display the following

warning.

There is no room to copy the deletion. Do you wish
to delete anyway? (y/n)

Pressing the Y or y key indicates a yes answer; any
other character escapes the D(elete option.

On the menu: F(ind

Repeat factors are allowed.

4-18

To use the F(ind option, press F from the edit menu.
The system will display one of the following prompts
(depending upon how T(oken definition is set in S(et
E(nvironment):

>FindInl: L(it <target> =>
>Find[nl]: T(ok <target> =>

(Where n is the repeat factor given before pressing the
F' key; this number is one if you gave no repeat factor.)

The F(ind option locates the nth occurrence of the
<target> string, starting from the cursor position and
moving in the global direction (shown by the arrow at
the beginning of the menu). The cursor stops at the po-
sition immediately after this occurrence.

To search in the token or the literal mode, press the
appropriate character (either 1. or T, respectively), be-
fore entering the target string.

If the string does not occur within the text file between
the cursor and the end or beginning of the file (depend-
ing on global direction), the system displays the fol-
lowing message:

ERROR: Pattern not in the file
Please press <spacebar> to continue.

The following paragraphs show how to use the F(ind
option.

PROGRAM STRINGT;

BEGIN
WRITEC'TOO WISE ');
WRITEC'YOU ARE');
WRITELNC',");
WRITELNC'TOO WISE ');
WRITELNC'YOU BE.')
END.

4-19

I(nsert

In the STRINGI1 program (the preceding example),
with the cursor at the first P in PROGRAM STRING],
press the F key. When the prompt appears, enter
WRITE. Single quote marks must be entered. The
prompt with the user response is shown in the fol-
lowing listing.

>Find[1]: L(it <target> =>'WRITE'

The cursor jumps immediately to the character fol-
lowing the E in the first WRITE.

In the STRING1 program with the cursor on the E in
END,, enter <3F. This entry finds the third occurrence
of the pattern in the reverse direction. When the menu
appears, enter /WRITELN/. The menu with the user re-
sponse is shown in the following listing.

<Find[3]: L(it <target> =>/WRITELN/

The cursor will move to a position immediately after
the N in WRITELN.

On the first find, enter F/WRITE/. This locates the
first WRITE. Now enter FS. The cursor appears after
the second WRITE.

I(nsert

On the menu: I(nsert
Repeat factors are not allowed.

To call the I(nsert option, press the I key from the edit
menu. The system then displays the following menu:

>Insert: Text {<bs> a char, a line} [<etx>
accepts, <esc> escapes]

4-20

Characters are entered into the text file as they are
pressed, starting from the position of the cursor. This
includes the carriage return character. Nonprinting
characters are echoed with the nonprinting character
symbol (usually a question mark (?); this can be
changed by using SETUP). To make corrections while
still in I(nsert, use the BACKSPACE key to remove
one character at a time or press and hold the SHIFT
key and press the DEL key to remove an entire line.
Backspacing past the beginning of the insertion causes
the system to display an error message.

Create the text file with the I(nsert command, using the
modes selected with the S(et E(nvironment commands.
Use S(et E(nvironment for selecting the A(uto-indent
and the F(illing options.

If A(uto-indent is selected, pressing the RETURN key
causes the cursor to start the next line with an indenta-
tion equal to the indentation of the line above it. If
A(uto-indent is false, pressing the RETURN key re-
turns the cursor to the first position of the next line.

If F(illing is selected, the editor forces all insertions to
be between the right and left margins. It does this by
automatically inserting returns between words when-
ever the right margin would have been exceeded and by
indenting to the left margin whenever a new line is
started. The editor considers anything to be a word
that is between two spaces or between a space and a
hyphen.

Pressing the RETURN key twice in succession creates
a new paragraph. In other words, a paragraph is either
a block of text delimited by blank lines or command
lines (see S(et), or the beginning or end of a text file.
The first line of a paragraph may be indented differ-
ently than the remaining text (see S(et E(nvironment).

4-21

If both A(uto-indent and F(illing are selected, A(uto-in-
dent controls the left-margin, while F(illing controls the
right-margin. You may change the level of indentation
by pressing the space bar and BACKSPACE key imme-
diately after pressing the RETURN key.

EXAMPLE 1:

With A(uto-indent true, the following sequence creates
the indentation shown in the following example.

ONE <RETURN >

< space> < space>TWO <RETURN >
THREE <RETURN >
<BACKSPACE >FOUR

ONE original indentation
TWO indentation changed by < space> < space>
THREE <RETURN> causes auto-indentation to level of line above
FOUR <BACKSPACE > changes indentation from level of line above

EXAMPLE 2:

With F(illing selected (and A(uto-indent not selected)
the following sequence creates the indentation shown in
the following example.

ONCE UPON A TIME
THERE- WERE

ONCE UPON A Auto-returned when next word would exceed margin
TIME THERE- Auto-returned at hyphen
WERE-

You can force the cursor to the left margin of the dis-
play unit by pressing the CTRL-Q keys (ASCII DC1)
twice.

4-22

J(ump

F(illing also causes the editor to adjust the margins on
the portion of the paragraph following the insertion.
This adjustment does not affect any line beginning with
the command character (see S(et), and such a line termi-
nates a paragraph.

You may readjust a filled paragraph by using the M(ar-
gin command, but only if F(illing is TRUE and A(uto-
indent is FALSE. This may be very useful if you wish
to change the margins of a document (which may be
done with S(et E(nvironment).

The global direction does not affect I(nsert, but is indi-
cated by the direction of the arrow on the menu.

If an insertion is made and accepted, that insertion is
available for use in Clopy. However, if the ESC key is
pressed, there is no string available for C(opy.

J(ump
On the menu: J(ump
Repeat factors are not allowed.
Upon entering J(ump, the following menu appears:
>JUMP: B(eginning E(nd M(arker <esc>
Pressing the B (or E) key moves the cursor to the
beginning (or the end) of the file. Pressing the M key
displays the following prompt:
Jump to what marker?
Markers are user-defined names for positions in the

text file. See the M(arkers option of the S(et command
for more information.

4-23

K(olumn

K(olumn

On the menu: K(ol

Repeat factors are not allowed.

K(olumn displays the following menu:

>Kolumn: <vector keys> {<etx>, <esc> CURRENT Llinel}

You may move all of a line which lies to the right of the
cursor to the left by using the — or to the right by us-
ing the —. Using the ! or | applies the same column
adjustment to the line above or below. Press CTRL-C
to leave K(olumn. You can use ESC, but it only rejects
the changes made most recently to the current line.

NOTE

When using K(olumn, each time you press
the — key one character is deleted at the cur-
sor. Characters deleted are not saved in the
copy buffer as in Dfelete. It is easy to do
this, so be careful when using K(olumn.

M(argin

On the menu: M(argin
Repeat factors are not allowed.

M(argin realigns the paragraph (where the cursor is lo-
cated) to fit within the current margins. All of the lines
within the paragraph are justified to the left margin,
except the first line, which is justified to the paragraph
margin. You can set all these global margins with the
S(et E(nvironment command.

The cursor may be located anywhere within the para-
graph when you press the M key.

4-24

The following examples show margin settings and
examples of paragraphs that use those settings.

Left-margin, 0
Right-margin, 40
Paragraph-margin, 8

This quarter, the equipment is
different, the course materials are
substantially different, and the course
organization is different from previous
quarters. You will be misled if you
depend upon a friend who took the course
previously to orient you to the course.

Left-margin, 8
Right-margin, 40
Paragraph-margin, 0

This quarter, the equipment is
different, the course materials
are substantially different, and
the course organization is
different from previous quarters.
You will be misled if you depend
upon a friend who took the course
previously to orient you to the
course.

A paragraph is any block of text delimited by blank
lines, lines beginning with a command character, or the
beginning or end of the text file. If the text file or the
paragraph is especially long, the system may remain
blank for several seconds while M(argin completes its
work. When M(argin finishes, the system redisplays the
paragraph. M(argin never splits a word; it breaks lines
at spaces or at hyphens.

M(argin will not affect a line if the line starts with a
command character. The command character must be
the first nonblank character in the line. M(argin treats
lines beginning with the command character as blank
lines. The command character itself is any character so
designated using the S(et E(nvironment command.

4-25

P(age

P(age

Q(uit

On the menu: Plage
Repeat factors are allowed.

Moves the cursor one screen height in the global direc-
tion. If a repeat factor is used, several screen heights
are traversed. The cursor remains on the same line on
the display unit, but is moved to the start of the line.

On the menu: Q(uit
Repeat factors are not allowed.
Q(uit displays the following menu:

>Quit:

U(pdate the workfile and leave

E(xit without updating

R(eturn to the editor without updating
W(rite to a file name and return

Select one of the four options by pressing U, E, R, or
W All other characters are ignored.

Ul(pdate:

Stores the file just modified as
SYSTEM.WRK.TEXT; then leaves the editor.
SYSTEM.WRK.TEXT is the text portion of the
work file.

4-26

E(xit:

This leaves the editor immediately. Any modifi-
cations made since entering the editor are not
recorded on disk. All editing during the session
is irrecoverably lost, unless you have already
used the W(rite option of Q(uit to save the
work.

R(eturn:

Wirite:

Returns to the editor without updating. The
cursor is returned to the exact place in the file
it occupied when @ was pressed. This command
is frequently used after unintentionally pressing
Q. It is also useful when you wish to make a
backup to your file in the middle of a session
with the editor.

This option calls up a further menu:

>Quit:
Name of output file (<cr> to return)-->

The file may now be given any proper name. If
it is written to the name of an existing file, the
new copy replaces the old file. Use $ to write to
the same name that the file had when you en-
tered the editor. Alternatively, you can abort,
Q(uit, at this point by pressing the RETURN
key instead of entering a file name; you will re-
turn to the editor. If the file is written to disk,
the editor displays the following:

>Quit

Weitingees es

Your file is 1978 bytes long.

Do you want to E(xit from or R(eturn to the
editor?

4-27

R(eplace

R(eplace

On the menu: R(ple
Repeat factors are allowed.

Upon entering R(eplace, one of the two menus in the
following example appears, depending on the global
mode. In this example, a repeat factor of four is
assumed.

>Replacel4]:L(it V(fy <targ><sub> =>

>Replacel4]:T(ok V(fy <targ><sub> =>

R(eplace finds the target string (<targ>) exactly as
F(ind would, and replaces it with the substitution
string (<sub>).

The verify option (V(fy) allows you to examine each
<targ> string found in the text so that you can decide
if it is to be replaced. To use this option, press the V
key before pressing the target string.

The following menu appears whenever R(eplace has
found the <targ> pattern in the file and verification
has been requested:

>Replace: <esc> aborts, 'R' replaces, ' ' doesn't

Pressing the R key at this point causes the replacement
to take place, and the next target to be sought. Press-
ing the space bar causes the next occurrence of the tar-
get to be sought. At any point, pressing the ESC key
aborts the R(eplace.

With Vi(erify, this process continues until the repeat
factor is exhausted or until the target string can no
longer be found.

4-28

With R(eplace, if the target string cannot be found, the
following menu appears.

ERROR: Pattern not in the file. Please press
<spacebar> to continue.

Rieplace places the cursor after the last string that was
replaced.

EXAMPLE 1:

Enter RL/Low//High/ like this:

>Replacel1]: L(it V(fy <targ> <sub> =>L/Low//High/
This command will change: Lowly to Highly.

Literal is necessary because the string Low is not a
token, but part of the token Lowly.

EXAMPLE 2:

In the Token mode, Rieplace ignores spaces between
tokens when finding patterns to replace. This example
concerns the following two lines.

WRITEC" ;")
WRITEC *,°!

)
Press the 2 key and then the R key from the Edit
menu. The system then displays the following menu:

>Replacel2]: L(it V(fy <targ> <sub>

Enter /(‘,’)/.LN. Immediately after entering the last pe-
riod, the following two lines replace the previously
listed lines:

WRITELN;
WRITELN;

4-29

S(et

S(et

On the menu: S(et
Repeat factors are not allowed.
Upon entering S(et, the following menu appears:

>Set: E(nvironment M(arker <esc>
S(et M(arker

When editing, it is particularly convenient to be
able to jump directly to certain places in a long
file by using markers set in the desired places.
Once a marker is set, you can jump to it by us-
ing the M(arker option in J(ump.

Move the cursor to the desired marker position,
enter S(et, and press M for M(arker. The fol-
lowing prompt appears:

Set what marker?

You may give markers names of up to eight
characters and then press the RETURN key.
Marker names are case-sensitive, that is, the
lowercase and uppercase of the same letter are
considered to be different characters. The
marker is entered at the position of the cursor
in the text. If you use the name of a marker
that already exists, it will be repositioned.

4-30

Twenty markers are allowed in a file at any one
time. You will receive the following display if
you try to set more than 20 markers:

Marker ovflw. Which one to replace?

(Type in the letter or <sp>)
a) name1 b) name2 c) name3 d) nameé4
e) name5 f) nameéb g) name7 h) name8
i) name9 j)> namel10 k) name11 L) namel12

m) namel13 n) namelé o) namel15 p) namelé
g) namel1?7 r) namel8 s) namel9 t) name20

Choose a letter in the range of a through t; that
space will now be available for use in setting
the desired marker.

S(et E(mvironment

You can set the editing environment to a mode
that is very convenient for word processing or
more structured kinds of editing (such as pro-
gramming text or special tables). When in S(et,
press the E key (for E(nvironment). The fol-
lowing display will then appear:

Environment: {options} <spacebar> to leave
A(uto indent True
FEI LI Tng False

L(eft margin 1
R(ight margin 80
P(ara margin 6
C(ommand ch &
S(et tabstops
T(oken def True

3152 bytes used, 29612 available.

Editing: SCHEDULE TEXT

Created March 10, 1982; last updated
March 24, 1982 (revision 10)

Editor Version [IV 1 fé&41].

4-31

The line that begins Editing: identifies the file
currently being edited. If the file has just been
created but not named, the line reads:

Editing: wunnamed

By pressing the appropriate letter, you may
change any or all of the options.

A(uto Indent: — A(uto-indent affects only inser-
tions. Refer to the section on I(nsert. A(uto-
indent is set to true (turned on) by pressing the
A and T keys and to false (turned off) by press-
ing the A and F keys.

F(illing: — F(illing affects I(nsert and M(argin.
(Refer to those sections.) F(illing is set to true
(turned on) by pressing the F and T keys and to
false by pressing the F key twice.

When F(illing is true, the margins set in E(nvi-
ronment are the margins that affect I(nsert and
M(argin. They also affect the C(enter and justi-
fying commands in A(djust. To set a margin,
press the L, R, or P keys, followed by a positive
integer and a space. The positive integer en-
tered replaces the previous value. Margin values
must be four digits or less.

Clommand Ch: — The command character
(Clommand ch:) affects the M(argin command
and the Filling option in I(nsert. (Refer to those
sections.) Change the command character by
pressing C, followed by any character. For
example, entering C* changes the command
character to *. This change is reflected in the
menu. The command character was principally
designed as a convenience for using text for-
matting programs whose commands are indi-
cated by a special character at the beginning of
a line.

4-32

S(et Tabstops: — The editor allows you to set
tab stops. From the E(dit command menu,
press S(et E(nvironment and then press S(et
tabstops. The system will display the following
interface menu:

Set tabs: <right, left vectors> C(ol#
T(oggle tab <etx>

To—m=To===Tomo=To===Tom=oT=oo=Too == To===T====T

Column #1

The cursor will start at position one in the line
of Ts and dashes (-). The line Column#1 indi-
cates the position of the cursor. To set or re-
move a tab, move the cursor to the desired
location, using the right or left vector keys, or
press the C key and enter the desired column
number. Press the T key to insert a tab or de-
lete a tab.

Pressing the T key changes the indicator from a
dash to T, pressing the T key again in the same
column changes the T back to a dash. The sys-
tem displays the current column number of the
current cursor position and updates it each time
you press a right/left vector key or C(olumn
command.

T(oken Def: — This option affects F(ind and R(e-
place. Set Token to be true by entering TT and
to false by entering TF. If Token is true, Token
is the default; if Token is false, Literal is the de-
fault.

4-33

V(erify

On the menu; V(erify
Repeat factors are allowed.
The current window is redisplayed, and the cur-

sor is repositioned at the center of the text on
the screen.

X(change

On the menu: X(ch
Repeat factors are not allowed.

Upon entering X(change, the following menu
appears:

eXchange: TEXT <vector keys> {<etx>, <esc>
CURRENT Llinel

Starting from the position, X(change replaces
characters in the file with characters you enter.

For example, in the file in the first example
below, with the cursor at the W in WISE,
entering XSM replaces the W with the S and
then the I with the M. This leaves the line, as
shown in the second example below, with the
cursor before the second S.

WRITE('TOO WISE ');
WRITE('TOO SMSE ');
Press the CTRL-C keys to accept the actions of
X(change. Press the ESC key to leave the com-

mand with no changes recorded only in the last
line altered.

4-34

—

Z(ap

The X(change command ignores the global
direction; exchanges are always forward.

You may use the arrow keys, BACKSPACE,
RETURN, and TAB keys to move the cursor.
X(changes move forward from wherever the cur-
sor is moved to.

While in X(change, the terminal’s KEY TO IN-
SERT CHARACTER inserts one space at the
cursor’s location, and the KEY TO DELETE
CHARACTER deletes a single character at the
cursor’s location. These keys may be specified
with SETUP (see Chapter 5). Initially, they are
INS and DEL, respectively.

On the menu: Z(ap
Repeat factors are allowed.

Z(ap deletes all text between the start of what
was previously found, replaced, or inserted and
the current position of the cursor. Use this com-
mand immediately after a F(ind, R(eplace, or I(n-
sert. If more than 80 characters are being
zapped, the editor asks for verification.

The position of the cursor after the previous
F(ind, R(eplace, or I(nsert is called the equal
mark. Pressing = places the cursor there.

Whatever you deleted by using the Z(ap com-
mand is available for use with C(opy, unless
there is not enough room in the copy buffer. If
this is the case, the editor then asks if you want
to Z(ap anyway.

Z(ap is not allowed after certain commands that
might scramble the buffer. These commands
are: A(djust, D(elete, K(olumn, and M(argin.

4-35/4-36

5

Utility Commands

Introduction ... 5-3
The PRINT Utilityccccoooooiieiieeceeeeeeeeae 5-3
Simple Uses of PRINTcccoveiiiiieeicerntiee e e e 5-4
Interacting with PRINTccccooiviiimiiiiiiiiiiiicciiieessiniee e 5-6
Controlling the Layout of Pagesccccoovveieieciiiiirciiieeennenn, 5-7
The Contents of Pagesccccceveeiieiieiecciiiieeeeeeeeveee e, 5-8
Output Methodscccoeeeiiiieiieeeeeccccccccce e e 5-12
PRINT Execution ShOrtcutsccccccceeeveeeeeereiiinneeesinneeenen. 5-13
Summiary of Menil IEeMs caeesusssssmmmssnsisssssssssmsss s 5-14
Summary of Command Linesccccceevvvrveeeeereiiineersinnnenennn. 5-16
Summary of Escape Sequencescccccceerrerevvreecrieneeenanna. 5-16
The COPYDUPDIR Utilitycccocovvveeeieeeeiins 5-16
The MARKDUPDIR Utilityccccooeeieiiiiinnes 5-17
The Recovery Utilityccccoooiiivioneiiieccereee 5-18
The RAM Configuration Utilitycccoovvrennnee. 5-21
The REM Configuration Utilityc.oeee. 5-23
The Printer Configuration Utilityc.ccocoeveeee. 5-25
The Disk Formatting Utilitycccccooovviverennnene. 5-28
The Set Date and Time Utilitycccccoooevrvrennncne. 5-29
SETUP ...ttt 5-30
Running BETUPR'cimcenmsesisisiisnssmsammsemssmmsssissizises s 5-30
SYSTEM.MISCINFO — Data Itemsccccceecvvieeeiivieenennns 5-32

BACKSPACGE ioinissseassssssssesssossasssssasssssssossssersssrsessansssssngs 5-33

CODE POOL BASE wusmsnrassssmmmssmssmsssssmasmasmmmsssss 5-33

(B8] b1 1065 87 6] Tl 1) /A 1 I ———————————— 5-34

EDITOR ACCEPT KEY ..oooovivtiiriieecieecie e esveesieens 5-34

EDITOR ESCAPE KEY ..oooiiiiviiiieeeeeee e e 5-34

EDITOR EXCHANGE-DELETE KEYcccccceevvevveennee. 5-34

EDITOR EXCHANGE-INSERT KEY ...ccccccvveeireireennne. 5-34

BERASE LINE wsminssssssvsimsssmimsmmmsmasssisssimssmns 5-35

BERASE SCREEN ...iicmommsnsasibsosssiasasssmsnnnrsssnssitiaissisnarasen 5-35

ERASE TO END OF LINEcccorviiiiiiiiiiiieneenieneenns 5-35

ERASE TO END OF SCREENccccovviiiiiiniiinierecieenns 5-35
FIRST SUBSIDIARY VOL NUMBERcccccoevvereneneen. 5-35
HAS G L0A. wwmmssmmmusamssmsommmssgamssissansmesgsmsisEssmmes 5-36
HAS BYTE FLIPPED MACHINEcccocovvevivereriennnne 5-36
HAS CLOCK ...ctiiririrrcieneererinneesnenceessssnessnsssnsasssaessssssns 5-37
HAS EXTENDED MEMORY ...cocccviviiiiniiinnienerineninnanns 5-37
HAS LOWER CASEccocnonsspmmsnssnsnsssmmpassssnssisssnsasssin 5-37
HAS RANDOM CURSOR ADDRESSINGcccceevuenne 5-37
HAS SLOW TERMINAL ...ococoiiiiiiiniiececectenerenneeene 5-38
HAS SPOOLING: suwmmanmmmurammsossssmamisispsms 5-38
HAS WORD ORIENTED MACHINEcccccevcivennnne 5-38
KEYBOARD INPUT MASK ...ccooviiierienieeneeceeeieeeeene 5-38
KEY FOR BREAK .ooomsmsncmmmn s mmsssmmimmacs s 5-38
KEY POR FLUSH s msonmsiassssssssas 5-39
KEY FOR STOPoiiiiiiiiiieieeeeceeeeieeesiee e eviees e 5-39
KEY TO ALPHA LOCK wssussssassssassmasissssssrsssss 5-39
KEY TO DELETE CHARACTER ...cccooovvvvverirerieenneenns 5-39
EEY TO DELETE LINE . osammmmsmsmmsammsrmansssms 5-39
KEY TO END FILE .cnmummmmmeammmsssasissnimsess 5-40
KEYS TO MOVE CURSOR UPccovvvimiiiniiirieieriennne 5-40
LEAD IN FROM KEYBOARDccooeeeevireiiieienerereenenns 5-40
LEAD IN TO SCREENcmmsasmemmor somnssnsasenssnssassssmsmeno 5-40
MAX NUMBER OF SUBSIDIARY VOLSccceceeee. 5-41
MAX NUMBER OF USER SERIAL VOLS 5-41
MOVE CURSOR HOMEccccoiiiiiiniinicineenniceneeneeene 5-41
MOVE CURSOR RIGHT ..ccuuusumssmsmmmssesmssssisesmyoss 5-41
I\ (8474 DR G100 54o 18 1 20 U] <N mm—————————————— . 5-42
NONPRINTING CHARACTER ...cccccevvvnreirrrercrcnneenns 5-42
PREFIXED [<item name>]c.ccccceeerivvreieiniereeeernnnieisennens 5-42
PRINTABLE CHARACTERScccommmemmmsmrmosmpmmssssssssse 5-42
SOREEN HEIGHT ..o 5-43
SCREEN WIDTH. ..mnsmmsussamsmemgmssoppmsmsssmmis 5-43
SEGMENT ALIGNMENT .. ommmsomsmmsvosssssonmssumssnss 5-43
<31 LD 810 R ——— 5-43
VERTICAL MOVE DELAY s 5-44
Summary of Data Itemscccocciiiiioiinniiieeiniieeeniieeenee 5-44
Sample Terminal SEtUP ..ccccccveeiirirrreririenicierereeeeivecine 5-46

5-2

INTRODUCTION

This chapter covers several utility programs that will help you
use the p-System on the Texas Instruments Professional Com-
puter. The utility programs are code files that you X(ecute to
provide such services as:

° Printing text files
e Recovering lost files

o Configuring the p-System for your particular keyboard
and terminal

o Helping to analyze and debug programs that you write
o Showing you the internal details of files

The first utility described here, called PRINT, falls into the
first category. The next three utilities fit in the second cate-
gory. They are called COPYDUPDIR, MARKDUPDIR, and
RECOVER. The utility called SETUP belongs to the third
category. The remaining p-System utilities described here help
you to configure the p-System on the Texas Instruments
Professional Computer and to format disks.

THE PRINT UTILITY

The PRINT utility provides a simple way for p-System users
to print text files. The Screen-Oriented Editor in the p-System
makes it easy to create and manipulate text (including docu-
ments, memos and programs). The PRINT utility makes it just
as easy to produce printed versions of such text. PRINT can
break a document into pages and put headings on each,
including the page number. In addition, there are a variety of
options for controlling the line spacing and vertical margins of
the printed version.

5-3

PRINT complements the other two principal mechanisms
within the p-System for printing text files (the T(ransfer oper-
ation in the Filer and the Print Spooler). The big advantage of
using the Print Spooler is that printing can go on in parallel
with other operations, such as text editing. This can be a big
time saver. PRINT can be used with the Spooler because
PRINT’s output can be sent to a disk file. The Spooler can
then be used to print that formatted file.

PRINT has been designed to work with a wide variety of
printers. It makes minimal assumptions about special printer
control features, and it can be used with either continuous
forms or manual single sheet loading.

The following describes the simplest uses of PRINT. You may
never need to know more. If you do, read the rest of this de-
scription, which provides a systematic description of all of
PRINT’s facilities.

Simple Uses of PRINT

To invoke PRINT, simply X(ecute it from the command
menu of the p-System. PRINT immediately shows a
menu of the available commands. Some of these cause
immediate action by the program (such as printing a
document); others allow you to set up configuration
parameters that will guide a subsequent printing oper-
ation (such as what disk file to print).

Most of these configuration parameters are initially set
up by PRINT for the most common printing situations.
In particular, we assume:

e That you are using continuous paper in your
printer (rather than single sheets)

e That each page can hold at least 66 lines of
printing (or 11-inch paper with 6 lines per inch)

e That your printer advances the paper to a new
page when the p-System sends an ASCII form
feed control character to it

If these built-in choices meet your needs, using PRINT

is very simple and consists of four steps (once you have
PRINT running):

e Enter the name of the file to be printed, using the
I(nput option on the menu.

e Use G(o to start the printing. After a file is
printed, use I(nput to select another file and G(o
again to print it.

e If you need to cause a page advance on the printer
to tear off the printout(s) you have made, A(d-
vance should do the trick.

o Finally, when you are done with a printing ses-
sion, use Q(uit to leave PRINT.

If the printouts produced by this process are not what
you would like, or if some of the assumptions above do
not apply in your situation, read the rest of this de-
scription to discover how PRINT can be configured to
serve your needs better. For instance, you can use
PRINT with a printer that requires each sheet to be
individually loaded.

5-5

Interacting with PRINT

Just as in the rest of the p-System, you interact with
PRINT by making choices from a menu of options.
There are four kinds of commands. They may:

° Cause immediate actions. A(dvance, for instance,
moves the paper in the printer to the next page.

o Prompt you to enter a sequence of characters and
then press the RETURN key. In the case of I(n-
put, these characters are a file name.

e Request that you enter an integer number. This
number must be positive and have four digits or
fewer. This style of interaction is used when you
choose the initial page number for your heading
lines.

o Give you a Yes or No choice. Respond by pressing
Y or N. This style of response is used with the
D(ouble space option, for instance.

When the PRINT menu is displayed, you can enter ?
to see a description of the PRINT functions and
commands.

Other than the principal menu of commands, which oc-
cupies most of your display unit, PRINT does most of
its communication with you through the top line of the
screen. Once you have selected a command, prompts
appear on this line to direct you. Error messages are
also shown on this line and are usually left there until
you press the space bar to indicate that you have no-
ticed the message.

Controlling the Layout of Pages

PRINT allows you to specify the P(age length you are
using and the sizes of the T(op and B(ottom margins
that you desire. All these are specified in units of print
lines. At the top of a page, after T(op margin lines of
empty space, a heading line is printed (which may have
the date and page number, for instance). A blank line
follows the heading. Here is a diagram of a page, with
these parameters shown:

Top of page

T(op margin
blank lines

Header line
Blank line
First text line

Text

Last text line

B(ottom margin
blank lines

Bottom of page

PRINT does not attempt to control the horizontal
placement of the text it processes. Lines are transferred
to the printer exactly as they appear in the file being
printed.

5-7

The standard header line contains a page number, the
name of the file being printed, and the current date (as
maintained by the p-System). The format of this line
can be changed, as described in the next section. Here
is an example header line in the standard format:

Page 3. File is "MYVOL:MYFILE". Printed on
January 3, 1983.

The initial page number for a file is ordinarily 1. If you
want your page numbers to start differently, use P(age
number before printing your file.

The D(ouble space and N(umbered lines options can
be used to control those aspects of your printout’s
appearance.

The Content of Pages

As mentioned above, the normal operation of PRINT is
to transfer lines without change from the file being
printed to the printer.

There are two exceptions to this general principle.
First, if a line has a special flag character as its first
item, it may be a COMMAND line that gives directions
to PRINT, but is not intended to be printed itself. The
two characters after the flag are examined to see if they
correspond to a valid PRINT command. If they do, the
command is accepted by PRINT, and the line is not
transferred to the printer. Otherwise, the line is printed
as usual.

The second exception is that a line may contain the
ESCAPE SEQUENCE flag. This character can be any-
where in the line. As with the commands, it is the char-
acters after the escape sequence flag which determine
what happens. In general, however, the escape sequence
is replaced by other text (for instance, the current page
number).

5-8

L

These two flag characters can be changed either from
the PRINT menu (using the E(scape and C(ommand op-
tions) or by command lines embedded in a file being
printed.

Only the first two characters after the command flag
are significant. Additional characters are ignored.
(Therefore, .INCLUDE and .INCLEMENT are both
treated as include commands.) Commands may be in
either upper or lowercase.

Commands may have parameters. The first parameter
must be separated from the command name by one or
more blank characters. All parameters must be enclosed
in quotes. Either single quotes (') or double quotes (")
may be used, but both ends of the parameter must be
marked by the same character (that is, ‘“‘myfile”’ or ‘my-
file’).

The commands available in PRINT are as follows:
INCLUDE

This command has one parameter, which is a file name.
Printing of the current file is temporarily suspended
and the included file is processed. When the end of the
included file is reached, processing resumes on the prin-
cipal file. The included file cannot itself contain any
INCLUDE commands. Page numbering is continuous
across included files.

INCLUDE allows a large document to be spread among
several p-System files, but still be printed with a single
PRINT operation. For example:

INCLUDE ‘MYVOL:MYFILE’

PAGE

This command has no parameters. Its effect is to cause
an immediate page advance on the printer.

This command is useful when the page breaks that are
automatically inserted by PRINT are not the page
breaks that you want. For example:

PAGE
HEADER

This command has one parameter, which becomes the
new specification of the header line which is printed at
the top of each page. The header line can also be
changed from the PRINT menu.

You can use this command in a document file to estab-
lish a page heading for the printed version that is spe-
cific to the document. For example:

.HEADER “My document-Page \page"
COMMAND

This command has one parameter, a single character
(which still needs to be enclosed in quotes). The char-
acter becomes the new command line flag character.

This infrequently used command allows you to choose
the character that introduces command lines. For
example:

.COMMAND ‘A’
ESCAPE
This command is similar to COMMAND, except that

the one-character parameter becomes the new escape
sequence flag.

5-10

Just as with the command flag, you may want to
change the escape sequence flag if the standard one
conflicts with something in your text file. For example:

.ESCAPE ‘!’

All characters are significant in escape sequences.
There are three standard ones, which are translated as
follows when found in a line about to be printed:

e PAGE: the escape sequence is replaced by the cur-
rent page number.

° FILE: the input file name (either the main file, or
the include file, whichever is active).

e DATE: the escape sequence is replaced by the
current p-System date in the form ‘“January 1,
1983.”

A principal application of these escape sequences is in
the header line printed at the top of each page. You can
change the format of that line either in the PRINT
menu or with the HEADER command line in the file
being printed. For example, the header

Memorandum of Understanding(\date)-Page \page
would produce printed heading lines like the following:

Memorandum of Understanding (January 13, 1983)-
Page 43

Memorandum of Understanding (May 18, 1983)-Page 7

The provision for changing the header line within the
file means that you can have different headers on dif-
ferent pages. It would be easy, for instance, to have a
blank header on the first page and some specific header
on subsequent pages.

Output Methods

PRINT directs its output by default to the device
PRINTER:. You can easily change this definition, how-
ever, from the PRINT menu. You could, for instance,
set the output file to be a disk file or a serial communi-
cations port. The disk file possibility can be quite use-
ful, since it allows you to store the paginated output of
PRINT for later transfer to a printer. If the Print
Spooler is used for that transfer, you can take advan-
tage of the Spooler’s ability to overlap printing with
other p-System operations, particularly text editing.

PRINT is intended to work with printers which use
continuous forms, but also with printers that must be
loaded with each individual sheet of paper. The S(top
before each page option in the PRINT menu controls
which kind of printer is assumed. If the single-sheet
variety is selected, you are prompted to load the printer
before each page is printed.

On many single-sheet-oriented printers, the paper must
be inserted about an inch past the printing mechanism
so that pinch rollers can guide it. If you are using such
a printer, you may want to reduce the P(age size and
possibly change the T(op margin, as well. For instance,
if your printer prints six lines per inch and you are
using standard 11-inch paper, you might reduce the
P(age size from 66 lines to 60 lines.

Most printers can interpret the ASCII form-feed char-
acter and advance the paper to the next page. If your
printer cannot, turn off the U(se form feed option, and
the form feed character will be replaced by the printing
of a series of empty lines. The effect will be the same as
a form feed, as long as PRINT’s page size and margin
options are properly set.

5-12

PRINT Execution Shortcuts

If the standard settings of the PRINT options suit
your needs most of the time, the use of PRINT is
simple and convenient. If, however, you generally need
to change one or more of the options to do your
printing, PRINT could be more awkward to use. The
M(ake script command has been included to address
this potential need.

This command produces a script file that will change
the options from their defaults on entry to PRINT to
the values that exist at the time that M(ake script is
invoked. You can also include in this script a command
that invokes itself, thus reducing your keystrokes even
further.

When you select M(ake script, you are first asked to
name the script file you want produced. If you want
this to be a .TEXT file, you must include the suffix in
the title you supply. The advantage of a .TEXT file is
that it can be easily read or modified by a p-System
editor. A disadvantage is that it is at least four blocks
long, whereas a typical nontext file script is only one
block long.

The next prompt asks you to enter the name by which
PRINT should be invoked. Your response is basically
used as the response to an X(ecute prompt, so whatever
you would use there is appropriate. If you provide an
empty response to this prompt (that is, an immediate
press of the RETURN, the program invocation step is
left out of the generated script altogether.

After this second prompt, PRINT produces the script.

5-13

Here is an example of M(ake script, along with a subse-
quent invocation of PRINT.

Enter name of script file: MYPRINT
Enter name for invoking print: *PRINT

Execute what file? i=MYPRINT

In the first line above, the script file is dubbed
MYPRINT (with no suffix). The second line indicates
that the PRINT program is to be found on the system
disk, with the indicated file name. The third line is the
invocation of PRINT via the newly created script. The
script will execute the program and set all the options
as they existed at the time the script was made.

If the second response above had been empty, then an
equivalent X(ecute string would have been *PRINT
i=MYPRINT.

Summary of Menu Items

By selecting any of the options below, you can:
I(nput Choose the file to be printed.

O(utput Choose the destination of the
print operation.

G(o Print the input file on the out-
put, according to the current op-
tion settings.

A(dvance Skip to the next page on the
output.
M(ake script Build a script file which will in-

voke PRINT with the current
option settings.

5-14

Q(uit

D(ouble space

N(umber

S(top

U(se ASCII FF

F(irst page

T(op margin

B(ottom margin

P(age size

E(scape

C(ommand

H(eader

Leave PRINT.

Select single- or double-spaced
output.

Cause the lines on each page to
be numbered.

Specify whether single sheet
loading or continuous forms are
assumed by PRINT.

Specify whether the form feed
character or a sequence of empty
lines is used to separate output
pages.

Specify the page number on the
first page of a document.

Specify the number of blank
lines between the top of the page
and the header line.

Specify the number of blank
lines between the last line of
text and the bottom of the page.

Specify the number of lines per
page.

Choose the character which
starts an escape sequence.

Choose the character which
starts a command line.

Specify the contents of the
heading line at the top of each
printed page.

5-15

Summary of Command Lines

By using one of the following commands, you can:

INCLUDE

PAGE

HEADER

COMMAND

ESCAPE

Effectively insert an additional
file into the document being
printed in place of the I(nclude
command.

Cause an immediate page break.

Specify the contents of the head-
ing for subsequent pages.

Change the command line flag
character.

Change the escape sequence flag
character.

Summary of Escape Sequences

When any of the following escape sequences occur, the
indicated text is substituted:

PAGE

FILE

DATE

The current page number.
The current input file name.

The current calendar date as
maintained by the p-System.

THE COPYDUPDIR UTILITY

COPYDUPDIR copies the duplicate directory of a disk into the
primary directory location. In certain situations, a duplicate
directory may help rescue directory information that is garbled

or lost.

5-16

The Z(ero command of the filer can create a duplicate directory,
as can the MARKDUPDIR utility. Once a duplicate directory
has been created, the filer maintains it along with the primary
directory.

To use this utility, X(ecute COPYDUPDIR. The system then
displays a prompt asking for the drive in which the copy is to
take place. If the disk does not currently contain a duplicate
directory, COPYDUPDIR displays a prompt stating so. If the
duplicate directory is found, then COPYDUPDIR displays a
prompt asking if you want to destroy the directory in blocks 2
through 5. Press the Y key to execute the copy; any other char-
acter aborts the program.

THE MARKDUPDIR UTILITY

MARKDUPDIR creates a duplicate directory on a disk that
does not currently contain one.

Be sure that blocks 6 through 9 are free for use. If they are
not, use T(ransfer or a backward K(runch to free them. To de-
termine if these blocks are available, do an extended listing in
the filer and check to see where the first file starts. If the first
file or unused area starts at block 6, then the disk does not
have a duplicate directory. However, if the first file or unused
area starts at block 10, then the disk already has a duplicate
directory.

EXAMPLE:

SYSTEM.PASCAL 106 1-Jan-83 10 Codefile
OR

<unused> 4 6

SYSTEM.PASCAL 106 1-Jan-83 10 Codefile

Both of the preceding cases indicate disks that have no dupli-
cated directory. The following listing is a directory of a prop-
erly marked disk:

SYSTEM.PASCAL 106 1-Jan-83 10 Codefile

To mark a directory, execute MARKDUPDIR. The system will
display a prompt asking which drive contains the disk to be
marked (#4 or #5). MARKDUPDIR checks to see if blocks 6
through 9 are free. If they are not, the system displays a
prompt asking if you are sure they are free. Press the Y key to
continue; any other character will abort the program. Be sure
that the space is free before marking it as a duplicate directory;
otherwise, you will lose file information.

THE RECOVER UTILITY

The RECOVER utility attempts to recreate the directory of a
disk whose directory has accidentally been destroyed.

The RECOVER utility displays several yes/no prompts. These
must be answered with uppercase letters; lowercase letters are
ignored.

The following paragraphs comprise a list of RECOVER’s
prompts followed by a description of appropriate responses to
those prompts.

Prompts:

Recover [IV.1 HI]
USER'S DISK IN DRIVE#(0 exits):

Enter the number of the drive that contains the disk to be
RECOVERed (for example: 4). Press the RETURN key.

5-18

—

Prompt:
USER'S VOLUME 1ID:

Enter a volume name, which is recorded on the disk. The name
should be in uppercase letters.

Prompt:
HOW MANY BLOCKS ON DISK?

The system displays this prompt if the number of blocks re-
corded in the (damaged) directory is not a valid number. The
response depends on the types of disks you have.

RECOVER reads each entry in the disk’s directory and checks
it for validity. Entries with errors are removed. Valid entries
are saved, and RECOVER displays ENTRY.NAME found
(or something similar).

When all the directory entries have been checked, saved, or dis-
carded, RECOVER displays the following prompt:

Are there still IMPORTANT files missing? (Y/N)

If you press the N key, RECOVER displays the following
prompt:

GO AHEAD AND UPDATE DIRECTORY? (Y/N)

If you press the N key, RECOVER finishes executing without
doing anything.

If you press the Y key, RECOVER saves the reconstructed
directory and displays the following prompt:

. WRITE 0K

Then RECOVER terminates.

5-19

If you press the Y key in response to the Are there still
IMPORTANT files missing? prompt, RECOVER
searches those areas of the disk still not accounted for by the
(partially) reconstructed directory. Text files and code files are
detected, and appropriate directory entries are created for
them. If RECOVER cannot determine the original name of a
text file it has found, it creates a directory entry for
DUMMY # #. TEXT or DUMMY # #.CODE (where the # # are
two unique digits). If a code file has a PROGRAM name, it is
given that name. If this would create a duplicate entry in the
directory, digits are used; for example, RECOVER first re-
stores SEARCH.CODE and then SEARCH00.CODE.

RECOVER cannot detect data files, since their format is not
system-defined. To recover data files, you must use the
PATCH utility, described in the UCSD p-System Program
Development Reference Manual.

If RECOVER restores a text file with an odd number of

blocks, this probably means that the end of the text file was
lost. Use the editor to make sure this is the case.

You should recover code files if linking was necessary.

When RECOVER has finished its pass over the entire disk, it
displays the following prompt:

GO AHEAD AND UPDATE DIRECTORY? (Y/N)

5-20

o—

THE RAM CONFIGURATION UTILITY

The Texas Instruments Professional Computer allows you to
have from 64K to 256K bytes of main memory. (One K is 1024
bytes.) The p-System always uses the first 64K (for its internal
stack and heap). If you only have 64K, then executable code
also has to reside there. (Executable code includes the major
p-System components as well as programs that you run.) How-
ever, if you have more than 64K, you may decide to have exe-
cutable code reside in the extra memory. This gives your
programs and the p-System components more room to run. It
also gives the internal workings of the p-System more room,
since the entire 64K is available just for that.

This concept is called the external code pool. Main memory in
excess of 64K can either be used for the external code pool, or
for RAM disk, or for some combination of these two.

A RAM disk is like a physical disk except that it resides in
main memory. It may contain files. These files must be read
into the lower 64K of main memory or the external code pool in

order to be used. (This is just like reading files in from a physi-
cal disk.)

For this reason, you may decide to make the external code pool
as large as possible. However, it can only grow to 64K. A
RAM disk can be as large as you wish (within the physical re-
straints of your memory).

The RAM configuration (CONFIG.RAM.CODE) utility allows
you to define the system parameters for RAM disk and for ex-
tended memory.

The extended memory option allows either 0, 32K, 48K, or 64K
bytes of additional memory to be allocated to the external code
pool. The parameters defining the extended code pool are
stored in the file SYSTEM.MISCINFO. These parameters be-
come effective once the system is booted from a disk contain-
ing the new SYSTEM.MISCINFO. Memory not allocated to
the extended code pool is utilized by the RAM disk automati-
cally once this utility is run.

5-21

To run this utility, X(ecute PSYS:CONFIG.RAM. This prompt
is displayed:

Enter the unit number of the system disk (4,5,9,10,11)? _—
unit 0 exits

Press the number of a drive that contains a system disk that
you want to configure (or press the 0 key to quit the utility).
The system disk must contain the file SYSTEM.INTERP. If it
does not, an error is displayed and you can enter another unit
number or press the 0 key to quit.

If a valid system disk is located in the specified unit, the RAM
configuration utility presents the following information:

RAM Configurator: I(nstructions, C(onfigure, QCuit? _—

For instructions, press the I key; if you want to modify the ex-
tended code pool size, press the C key. Otherwise, press the Q
key and the utility returns to the system menu.

If you select the configure option, the utility prompts for the
new extended code pool size:

Ram configuration on volume VOLNAME:

Extended code pool size:

The extended code pool size must be either 0, 32, 48, or 64.
This is the number of kilobytes (1 kilobyte = 1024 bytes) to be
allocated to the extended code pool. If there is enough memory,
the RAM disk base follows the extended code pool immedi-
ately. The new parameters take effect the next time the system
is booted from that disk.

5-22

The following table describes the possible RAM disk and ex-
tended memory configurations:

— Total Extended Code
Size of RAM Pool Size RAM Disk Size
(K Bytes) (K Bytes) in Blocks
64 0 0
0 128
128 32 64
48 32
64 0
0 256
32 192
192 48 160
64 128
0 384
32 320
. 256 48 288
64 256

THE REMOTE CONFIGURATION UTILITY

This utility provides a mechanism for initializing the communi-
cations parameters of the Texas Instruments Professional
Computer’s remote ports to values other than the defaults. The
new port parameters only become effective once the system has
been rebooted from the disk where the parameters are stored.

To execute the remote configurator, use the X(ecute command
of the system menu to execute the CONFIG.REM code file.
The remote configurator presents the following prompt:

~—~. Enter the unit number of the system disk (4,5,9,10,11)7? _—
unit 0 exits

5-23

Enter the unit number which contains the system disk with the
file SYSTEM.INTERP. Press the 0 key to quit the utility. The
remote configurator displays the current information for the
remote port and prompts for modifications as follows:

Remote Configurator: U(nit, A(ctive port, B(usy sensing,
P(arity, S(top bits, C(haracter lLength, R(ate, T(imeout,
DCefault, QCuit, ESC(exit

Ulnit Remote
A(ctive port: Serial port 1
B(usy sensing: None
R(ate: 300
PCarity: None
s$(top bits: 1
C(haracter length: 7
T(imeout: 0

Enter the first letter of the parameter name to change the pa-
rameter value. For example, press the T key to change the
T(imeout value. The optional values are then displayed for the
parameter selected.

The following table defines the default values and optional set-
tings for each of the remote port control parameters.

Parameter Default Value Optional Values

Unit Remote Printer

Active port Serial port 1 Serial port 2

Busy None Xmit On/Off, Reverse channel ON,
Reverse channel OFF

Baud rate 300 75, 110, 134, 150, 200,

300, 600, 1200, 1800,
2000, 2400, 3600, 4800,

9600
Parity Odd Even, None
Stop bits 1 2
Character 7 8
length
Timeout 0 0-32767 (0.1 second intervals)

5-24

U(nit allows you to select whether the parameters apply to the
remote port or a serial printer port. Use Q(uit to write the pa-
rameters to the system disk selected. The parameters take ef-
fect next time the system is booted from that disk. Use
D(efault to select the default values (shown in the preceding
table) for the B(usy, baud Rlate, P(arity, S(top bits, C(haracter
length, and T(imeout parameters. Press the ESC key to exit
the utility without making any changes.

The Alctive Port parameter defines which serial port is being
configured. The B(usy parameter controls busy sensing: choose
Transmit On/Off (also called DC1 ready and DC3 busy), Re-
verse channel ON, Reverse channel OFF, or NO busy sensing.
For the baud R(ate parameter, enter the letter displayed beside
the desired baud rate. For the P(arity parameter choose Odd,
Even, or None parity checking. The S(top bits value can be 1 or
2. The C(haracter length can be 7 or 8 (bits). Timeout values
are in 0.1 second intervals (60 = 6 seconds).

NOTE

Remember that the parameters for a serial printer
port must match those on the printer itself. (You do
not need to configure a port for a parallel printer.)
Also, if the remote and printer units both refer to the
same port, the printer parameters will be used for
both units.

THE PRINTER CONFIGURATION UTILITY

This utility allows you to enable or disable the compressed
print feature on your printer (if your printer is so equipped).
You can also define which port (parallel or serial) is to be used
for the printer if you have the optional serial port(s). The
source for this utility is provided so that support for additional
printers can be added.

5-25

To run the Printer Configuration utility, execute
CONFIG.PTR. The utility first prompts for the unit number of
the system disk as follows:

Enter the unit number of the system disk (4,5,9,10,11)? —
unit 0 exits

Enter the number of a unit that contains a system disk with
the files SYSTEM.INTERP and SYSTEM.MISCINFO (or
press the 0 key to quit the utility). When a valid system disk is
located in the specified unit, the following prompt is displayed:

C(ompressed print, S(pooler, P(ort, QCuit —
Press the C key to enable or disable compressed printing.
NOTE

The printer must be connected and online to set this
parameter.

The prompts are as follows:

Compressed print? (Y/N) —

Press the Y key (for Yes) to select compressed print. (On the TI
850 and TI 810 printers this is 16.7 characters per inch.) Press
the N key (for No) to select standard print (10 characters per
inch). The next prompt is for the model of your printer:

Printer model:
A - T1 850
8 =TI 810

Press either the A or B keys to select the appropriate model.
The source for this utility is provided so that other printers can
be added to this list.

5-26

—

When the utility’s prompt is displayed, press the S key to en-
able or disable print spooling. The following prompt will be
displayed:

Spooler on? (Y/N) _

Press the Y key (for Yes) to enable print spooling, or press the
N key (for No) to disable print spooling.

When the utility’s prompt is displayed, enter P to select which
printer port to use. The prompt is as follows:

Use P(arallel or S(erial port? _

Press the P key to select the parallel port, or the S key to se-
lect the serial port. The CONFIG.REM utility sets which serial
port is used by the printer if more than one is installed.

When you have set your printer configuration and the prompt
is displayed, press the Q key to quit the utility.

Changes to the S(pooler or P(ort parameters take effect only af-
ter you reboot the system using the disk that was configured.
Since the bootstrap procedure always reads SYSTEM.INTERP
from a disk (even if there is already a copy in RAM), it is
usually necessary to configure a disk (other than the RAM
disk) to change the S(pooler or P(ort parameters. It is not nec-
essary to reboot to change the C(ompressed print parameter,
but the printer must be connected and online when you make
that change. If your system is configured to be loaded into the
RAM disk, you must do one of the following before a new
S(pooler parameter takes effect:

e Reboot by turning the power off, then on.

o Copy a new SYSTEM.MISCINFO file from a disk to the
RAM disk and reboot using the Halt command.

5-27

THE DISK FORMATTING UTILITY

This utility provides a mechanism for formatting and zeroing
new disks for use with the Texas Instruments Professional
Computer. If the disk to be formatted is to be used as a system
disk, be sure that BOOT.CODE is on the current system disk.
(If BOOT.CODE is not found, you are asked if you want to
continue.) X(ecute FORMAT on the PSYS disk. The following
prompts are displayed:

Enter unit of disk to be formatted (4, 5, 9, 10):
unit 0 exits
Place disk in unit xx, and press return...

(The xx in the second prompt reflects the drive number that
you select in response to the first prompt.)

If you are formatting a previously initialized and zeroed
volume, the utility asks you to verify that you wish to proceed
as follows:

Destroy VOLNAME (Y/N)? __

Press the Y key to continue with the disk format or the N key
to return to the system menu. If you press the Y key, the fol-
lowing prompts are displayed:

New vol name? __
NEWNAME: correct? __

If the name displayed is not correct, press the N key and enter
the new volume name again. Otherwise, press the Y key. Once
the formatting is complete, the number of blocks formatted is
displayed. This utility writes the p-System boot loader onto the
boot blocks of the disk (if BOOT.CODE is present) and ini-
tializes the volume directory.

5-28

CAUTION

Be sure to run the filer’'s X(amine command after for-
matting a disk. X(amine marks any bad blocks on
the disk so those blocks will not be used for data
storage.

THE SET DATE AND TIME UTILITY

This utility provides a mechanism for initializing the correct
date and time. You should X(ecute SETTIME on the PSYS
disk. The following prompts are displayed:

Enter the unit number of the system disk
4, 5, 9, 19, or 11)?
unit 0 exits

Enter the unit number on which you want to write the current
date or time.

Set Date and Time: D(ate, T(ime, Q(uit
Current date is MM-DD-YY
Current time is HH:MM:SS

Select the option desired and enter the new date or time in the
format shown. (Enter hours as 0 through 23). The date estab-
lished using the D(ate option of the Fliler is replaced by the
date set by this utility.

5-29

SETUP

SETUP is provided as a system utility that sets up the
p-System to properly interface with your hardware. It resides
in a file called SETUP.CODE and changes a data file. This
data file contains detailed information about your terminal and
a few miscellaneous details about the system. You can run
SETUP and change the data as many times as you want. After
running SETUP, you must reboot so that the system starts us-
ing the new information. (In some cases, you can just I(nitial-
ize.) You should also backup the old data file—at least until
you are sure that the new one works.

SETUP takes its initial information from a file called
SYSTEM.MISCINFO and can create a new version of that file
called NEW.MISCINFO. The old version must be removed or
renamed and the new version renamed SYSTEM.MISCINFO
before some of the changed values it may contain can become
effective.

SYSTEM.MISCINFO contains three types of information:
o Miscellaneous data about the system
o General information about the terminal
U Specific information about the terminal control keys
Running SETUP
Run SETUP like any other program that uses X(ecute.
It will display the word INITIALIZING followed by a
string of dots, and then the menu:
SETUP: C(HANGE T(EACH H(ELP QCUIT [version]

To select any command, just type its initial letter.

When H(ELP appears on a menu, it can describe all the
options on that menu.

5-30

—

T(EACH gives a detailed description of how to use
SETUP. Most of it concerns input formats, which are
mainly self-explanatory. However, if this is your first
time running SETUP, you should look through all of
T(EACH.

C(HANGE gives you the option of going through a
prompted menu of all the items or of changing one data
item at a time. In either case, the current values are
displayed, and you have the option of changing them.
If this is your first time running SETUP, the values
given are the system defaults. You will find that
your particular terminal probably requires different
specifications.

Q(UIT has the following options:
e H(ELP)

o M(EMORY) UPDATE, which places the new val-
ues in main memory

° D(ISK) UPDATE, which <creates
NEW.MISCINFO on your disk for future use

o R(ETURN), which lets you go back into SETUP
and make more changes

e E(XIT) which ends the program and returns you
to the command menu

Please note that if you have a NEW.MISCINFO al-
ready on your disk, D(ISK) UPDATE will write over it.

When you use SETUP to change your character set, do
not underestimate the importance of using keys you
can easily remember and of making dangerous keys,
like BREAK and ESC, hard to hit.

5-31

Once you have run SETUP, always backup
SYSTEM.MISCINFO wunder another name.
(OLD.MISCINFO is one suggestion.) Then, change the
name of NEW MISCINFO to SYSTEM.MISCINFO
and reboot. You can also update to memory, alone, and
continue using the system without rebooting. However,
the results of your doing this may not always be what
you wanted—and you will not have a backup. In gen-
eral, M(emory update is a Q(uit option you will use only
when experimenting. If you do run into trouble, re-
member that you can save the current in-memory
SYSTEM.MISCINFO by running SETUP and
performing a D(isk update before you change any data
items.

When you reboot or I(nitialize, the new
SYSTEM.MISCINFO will be read into main memory
and the system will use its data, provided it has been
stored under that name on the system disk (the disk
from which you boot).

SYSTEM.MISCINFO — Data Items

The information in this paragraph is very specific; you
may skip it on first reading. However, if you have a
question about a certain data item, look in this para-
graph. The items are ordered according to SETUP’s
menu.

Please note that SETUP frequently distinguishes be-
tween a character that is a key on the keyboard and a
character that is sent to the display unit from the
system.

5-32

There are a few characters you cannot change with
SETUP. These are RETURN (<return>), LINE FEED
(<1f>), ASCII DLE (CTRL-P), and TAB (CTRL-I). It
is assumed that <return>, <1lf>, and TAB are consis-
tent on all terminals. ASCII DLE (data link escape) is
used as a blank compression character. When sent to
an output text file, it is always followed by a byte con-
taining the number of blanks which the output device
must insert. If you try to use CTRL-P for any other
function, you will run into trouble.

BACKSPACE

When sent to the display unit, the backspace
character should move the cursor one space to
the left. Default: ASCII BS.

CODE POOL BASE

The CODE POOL BASE[FIRST WORD] and
the CODE POOL BASE[SECOND WORD] are
used to determine where the code pool resides
on machines that use extended memory.

On the Texas Instruments Professional Com-
puter, these two words, taken together, make
up the 32-bit address for the base of the exter-
nal code pool. The FIRST WORD is the most-
significant 16 bits, and the SECOND WORD is
the least-significant 16 bits. The default is:

FIRST WORD

=0
SECOND WORD =

0

5-33

CODE POOL SIZE

If the code pool is external, this entry indicates
the number of WORDS, minus one, available
for it to fill. This value may be as great as
32,767 (a 64K area). It may also be smaller, if
desired, but it should be at least 12,287 (a 24K
area). The base address of this area is given by
the two code pool base words. This value is ig-
nored if you are not using extended memory.

EDITOR ACCEPT KEY

This key is used by the Screen-Oriented Editor.
When pressed, it ends the action of a command
and accepts whatever actions were taken.

EDITOR ESCAPE KEY

This key is used by the Screen-Oriented Editor.
It is the opposite of the EDITOR ACCEPT
KEY—when pressed, it ends the action of a
command and ignores whatever actions were
taken.

EDITOR EXCHANGE-DELETE KEY

This key is also used by the Screen-Oriented
Editor. It operates only while doing an
X(change and deletes a single character.

EDITOR EXCHANGE-INSERT KEY

Like the EDITOR EXCHANGE-DELETE
KEY, this only operates while doing an
X(change in the Screen-Oriented Editor: it in-
serts a single space.

5-34

ERASE LINE

When sent to the display unit, this character
erases all the characters on the line that the
cursor is on.

ERASE SCREEN

When sent to the display unit, this character
erases the entire display.

ERASE TO END OF LINE

When sent to the display unit, this character
erases all characters, starting at the current
cursor position to the end of the same line.

ERASE TO END OF SCREEN

When sent to the display unit, this character
erases all characters, starting at the current
cursor position to the end of the display.

FIRST SUBSIDIARY VOL NUMBER
This entry is the first unit number to be used as

a subsidiary volume. For example, if you set it
to 14, the first subsidiary volume is device #14:

5-35

NOTE

In previous versions of the UCSD
p-System, only 6 storage volumes
were allowed: 4, 5, and 9 through 12.
Now the number of storage volumes
is configurable. The devices from 9
through the unit number designated
by the phrase FIRST SUBSIDIARY
VOL NUMBER are now principal
volumes. Subsidiary volumes start
with the device number indicated by
the phrase FIRST SUBSIDIARY
VOL NUMBER. The number of
subsidiary volumes is designated by
MAX NUMBER OF SUBSIDIARY
VOLS. The highest device number al-
lowed for subsidiary volumes, stan-
dard block devices, or user-defined
serial volumes (described below) is
127

CAUTION

The FIRST SUBSIDIARY VOL
NUMBER must be greater than 8 to
allow space for all of the standard
system units.

HAS 8510A
Should always be false.
HAS BYTE FLIPPED MACHINE

This should be TRUE.

5-36

HAS CLOCK

This character may be TRUE or FALSE. If
your hardware has a line frequency (60 Hz)
clock module, such as the DEC KW11, setting
this bit TRUE allows the system to optimize
disk directory updates. It also allows you to use
the TIME intrinsic. If your hardware does not
have a clock, this must be FALSE.

HAS EXTENDED MEMORY

When extended memory is not used, the code
pool resides between the stack and the heap. If
the code pool is removed from that memory
space and placed in a different area altogether,
then set HAS EXTENDED MEMORY to
TRUE; otherwise, set it to FALSE. (An
example of extended memory is a 128K-byte
machine where the stack and heap reside within
one 64K area, and the code pool resides within
the other 64K area.)

HAS LOWER CASE
This may be TRUE or FALSE. It should be
TRUE if you do have lowercase and want to use
it. If you seem stuck in uppercase, even if this
bit is TRUE, remember there is a soft alpha-
lock: see KEY TO ALPHA LOCK.

HAS RANDOM CURSOR ADDRESSING

This character may be TRUE or FALSE.

5-37

HAS SLOW TERMINAL

This character may be TRUE or FALSE. When
this bit is TRUE, the system’s menus and
prompts are abbreviated. You should leave this
set to FALSE, unless your terminal runs at 600
baud or slower.

HAS SPOOLING

Set this to TRUE if the PRINT SPOOLER is
to be wused. If this field is true in
SYSTEM.MISCINFO and SPOOLOPS has not
been LIBRARYed into SYSTEM.PASCAL, the
p-System will not boot.

HAS WORD ORIENTED MACHINE

May be TRUE or FALSE. If your processor
uses byte addresses for memory references, this
should be FALSE.

KEYBOARD INPUT MASK

Characters that are recieved from the keyboard
will be logically ANDed with this value. For the
typical ASCII keyboard, set this value to 7F
hex (which throws away the eighth bit). For
some keybords, which generate eight bit char-
acters, use FF hex.

KEY FOR BREAK

When this key is pressed while a program is
running, the program terminates immediately
with a run-time error. Recommendation: use a
key that is difficult to hit accidentally.

5-38

KEY FOR FLUSH

This key may be pressed while the system is
sending output to the console. The first time it
is pressed, output is no longer displayed and
will be ignored (flushed) until FLUSH is pressed
again. This can be done any number of times;
FLUSH functions as a toggle. Note that
processing continues while the output is ig-
nored, so using FLUSH causes output to be
lost.

KEY FOR STOP

This key may be pressed while the system is
writing to CONSOLE. Like FLUSH, it is a
toggle. Pressing it once causes output and
processing to stop; pressing it again causes out-
put and processing to resume; and so on. No

- output is lost; STOP is useful for slowing down
a program so the output can be read while it is
being sent to the terminal.

KEY TO ALPHA LOCK

When sent to the display unit, this character
locks the keyboard in uppercase (alpha mode). It
is usually a key on the keyboard as well.

KEY TO DELETE CHARACTER

This deletes the character where the cursor is
and moves the cursor one character to the left.

KEY TO DELETE LINE

— This key deletes the line that the cursor is cur-
rently on.

5-39

KEY TO END FILE

This key sets the intrinsic Boolean function
EOF to TRUE when pressed while reading from
the system input files (either KEYBOARD or
INPUT, which come from device CONSOLE:).

KEYS TO MOVE CURSOR

The keys to move the cursor down, left, right,
and up are recognized by the Screen-Oriented
Editor, and are used when editing a document
to move the cursor about the display unit. If
your keyboard has a vector pad, you should use
those keys for these functions. If you have no
vector pad, you might select four keys in the
same pattern (for example, ., K, ;, and O, in that
order) and use them as your vector keys, prefix-
ing them or using the corresponding ASCII con-
trol codes.

LEAD IN FROM KEYBOARD

Pressing certain keys generates a two-character
sequence. The first character in these cases
must always be a prefix and must be the same
for all such sequences. This data item specifies
that prefix. Note that this character is only ac-
cepted as a lead-in for characters where you
have set PREFIXED[<item name>] to TRUE.
(See MOVE CURSOR HOME for an example of
this.)

LEAD IN TO SCREEN

Some terminals require a two-character se-
quence to activate certain functions. If the first
character in all these sequences is the same,
this data item can specify this prefix. This item
is similar to the one above.

5-40

MAX NUMBER OF SUBSIDIARY VOLS

This field indicates the maximum number of
subsidiary volumes that may be online at once.
Because the p-System Unit Table expands a few
bytes with each additional subsidiary volume
entry, set this number to the smallest conve-
nient value. (Also see FIRST SUBSIDIARY
VOL NUMBER.)

The highest subsidiary volume will be FIRST
SUBSIDIARY VOL NUMBER + MAX
NUMBER OF SUBSIDIARY VOLS. This ex-
pression must be less than or equal to 127,
which is the highest device number allowed for
system units.

MAX NUMBER OF USER SERIAL VOLS

User-defined subsidiary volumes are not avail-
able on the Texas Instruments Professional
Computer. This field should always be 0.

MOVE CURSOR HOME

When sent to the terminal, this key moves the
cursor to the upper left of the display unit (posi-
tion (0,0)). If your terminal does not have a
character that does this, this data item must be
set to CARRIAGE RETURN; then, you will
not be able to use the Screen-Oriented Editor.

MOVE CURSOR RIGHT, LEFT, UP, and DOWN

When sent to the terminal, these move the cur-
sor nondestructively one row or column. If your
terminal does not have these functions, you will
not be able to use the Screen-Oriented Editor.

5-41

NONPRINTING CHARACTER

This character is displayed on the display unit
when a nonprinting character is typed or sent
to the terminal while using the Screen-Oriented
Editor.

PREFIXED [<item name>]

If you set this to TRUE, the system recognizes
that a two-character sequence must be gener-
ated by a key or sent to the display unit for
<item name>. See the explanations for LEAD
IN FROM KEYBOARD and LEAD IN TO
SCREEN. Note that one of these items is
PREFIX[DELETE CHARACTER]. This refers
to backspace; you can think of it as
PREFIX[BACKSPACE].

PRINTABLE CHARACTERS

This entry is used to determine which character
codes will be echoed to the console. Any code,
from 0 to 255, may be echoed.

SETUP requires input in the form of a list of
decimal values separated by commas or double
periods. The values separated by commas corre-
spond to the ASCII characters that will be
echoed to the console. The double periods indi-
cate that all values between the two indicated
numbers are included; for example, 32 through
126 includes the values 32, 126, and all values
between them. The typical values will be 13 and
32 through 126 (Carriage return is 13, and 32
through 126 are the standard printable char-
acters). The value 13 must always be present.

5-42

L

SCREEN HEIGHT

Starting from 1, this is the number of lines in
your display unit.

SCREEN WIDTH

Starting from 1, this is the number of char-
acters in one line on your display.

SEGMENT ALIGNMENT

For ease of implementation, some systems re-
quire a code segment to be aligned to a certain
address. For example, on 8086 based systems
each code segment’s starting address must be
an integral multiple of 16 (for example, 0, 16,
32, and so on). Therefore, the segment align-
ment is 16. Most systems require no segment
alignment and a value of 0 or 1 indicates this.

STUDENT

On all systems, this should be FALSE.

5-43

VERTICAL MOVE DELAY

This may be a decimal integer from 0 to 10.
Many terminals require a delay after vertical
cursor movements. This delay allows the move-
ment to be completed before another character
is sent. This data item specifies the number of
nulls the system sends to the terminal after
every CARRIAGE RETURN, ERASE TO
END OF LINE, ERASE TO END OF
SCREEN, CLEAR SCREEN, and MOVE
CURSOR UP.

Summary of Data Items

All the fields which SETUP modifies are:

BACKSPACE

CODE POOL BASE[FIRST WORD]
CODE POOL BASE[SECOND WORD]
CODE POOL SIZE

EDITOR ACCEPT KEY

EDITOR ESCAPE KEY

EDITOR EXCHANGE-DELETE KEY
EDITOR EXCHANGE-INSERT KEY
ERASE LINE

ERASE SCREEN

ERASE TO END OF LINE

ERASE TO END OF SCREEN
FIRST SUBSIDIARY VOL NUMBER
HAS 8510A

HAS BYTE FLIPPED MACHINE
HAS CLOCK

HAS EXTENDED MEMORY

HAS LOWER CASE

HAS RANDOM CURSOR ADDRESSING
HAS SLOW TERMINAL

HAS SPOOLING

HAS WORD ORIENTED MACHINE
KEYBOARD INPUT MASK

5-44

KEY FOR BREAK

KEY FOR FLUSH

KEY FOR STOP

KEY TO ALPHA LOCK

KEY TO DELETE CHARACTER

KEY TO DELETE LINE

KEY TO END FILE

KEY TO MOVE CURSOR DOWN

KEY TO MOVE CURSOR LEFT

KEY TO MOVE CURSOR RIGHT

KEY TO MOVE CURSOR UP

LEAD IN FROM KEYBOARD

LEAD IN TO SCREEN

MAX NUMBER OF SUBSIDIARY VOLS
MAX NUMBER OF USER SERIAL VOLS
MOVE CURSOR HOME

MOVE CURSOR RIGHT

MOVE CURSOR UP

NONPRINTING CHARACTER
PREFIXED[DELETE CHARACTER]
PREFIXED[EDITOR ACCEPT KEY]
PREFIXEDI[EDITOR ESCAPE KEY]
PREFIXED[EDITOR EXCHANGE-DELETE KEY]
PREFIXED[EDITOR EXCHANGE-INSERT KEY]
PREFIXED[ERASE LINE]
PREFIXED[ERASE SCREEN]
PREFIXED[ERASE TO END OF LINE]
PREFIXED[ERASE TO END OF SCREEN]
PREFIXED[KEY TO DELETE CHARACTER]
PREFIXED[KEY TO DELETE LINE]
PREFIXEDIKEY TO MOVE CURSOR DOWN]
PREFIXEDIKEY TO MOVE CURSOR LEFT]
PREFIXEDI[KEY TO MOVE CURSOR RIGHT]
PREFIXEDIKEY TO MOVE CURSOR UP]
PREFIXED[MOVE CURSOR HOME]
PREFIXED[MOVE CURSOR RIGHT]
PREFIXED[MOVE CURSOR UP]
PREFIXED[NON PRINTING CHARACTER]
PRINTABLE CHARACTERS

SCREEN HEIGHT

5-45

SCREEN WIDTH
SEGMENT ALIGNMENT
STUDENT

VERTICAL MOVE DELAY

Sample Terminal Setup

Here is a list of SYSTEM.MISCINFO data items fol-
lowed by the default settings for the Texas Instru-
ments Professional Computer.

Setup Field Value Comment
BACKSPACE BS May be modified by user
CODE POOL BASE[FIRST WORD] 00 See discussion of extended
CODE POOL BASE[SECOND WORD] 00 memory
CODE POOL SIZE 00 il
EDITOR ACCEPT KEY ETX May be modified by user
EDITOR ESCAPE KEY ESC May be modified by user
EDITOR EXCHANGE-DELETE KEY 112 DEL, may be modified
EDITOR EXCHANGE-INSERT KEY i INS, may be modified
ERASE LINE 76 Required
ERASE SCREEN 69 Required
ERASE TO END OF LINE 75 Required
ERASE TO END OF SCREEN 74 Required
FIRST SUBSIDIARY VOL NUMBER 12 Must be 12 or greater
HAS 8510A FALSE Required
HAS CLOCK TRUE May be modified by user
HAS BYTE FLIPPED MACHINE FALSE Required
HAS EXTENDED MEMORY FALSE May be modified by user
HAS LOWER CASE TRUE May be modified by user
HAS RANDOM CURSOR ADDRESSING TRUE Required
HAS SLOW TERMINAL FALSE Required
HAS SPOOLING FALSE May be modified by user
HAS WORD ORIENTED MACHINE FALSE Required
KEYBOARD INPUT MASK 255 Required
KEY FOR BREAK 255 Shift Break/Pause

May be modified by user
KEY FOR FLUSH 06 CTRL F, required

May be modified by user
KEY FOR STOP 19 CTRL S, may be modified
KEY TO ALPHA LOCK NUL May be modified by user
KEY TO DELETE CHARACTER BS May be modified by user
KEY TO DELETE LINE DEL Control Backspace
KEY TO END FILE ETX May be modified by user
KEY TO MOVE CURSOR DOWN 66 May be modified
KEY TO MOVE CURSOR LEFT 68 May be modified
KEY TO MOVE CURSOR RIGHT 67 May be modified
KEY TO MOVE CURSOR UP 65 May be modified

5-46

Setup Field Value Comment

LEAD IN FROM KEYBOARD 17 Required
LEAD IN TO SCREEN ESC Required
MAX NUMBER OF SUBSIDIARY VOLS 00 May be modified by user
MAX NUMBER OF USER SERIAL VOLS 10 Required
MOVE CURSOR HOME 72 Required
MOVE CURSOR RIGHT 67 Required
MOVE CURSOR UP 65 Required
NONPRINTING CHARACTER 63 May be modified by user
PREF[DELETE CHARACTER] FALSE May be modified by user
PREF[EDITOR ACCEPT KEY] FALSE May be modified by user
PREF[EDITOR ESCAPE KEY] FALSE May be modified by user

PREF[EDITOR EXCHANGE-DELETE KEY] TRUE May be modified by user
PREF[EDITOR EXCHANGE-INSERT KEY] TRUE May be modified by user

PREF[ERASE LINE] TRUE Required
PREF[ERASE SCREEN] TRUE Required
PREF[ERASE TO END OF LINE] TRUE Required
PREF(ERASE TO END OF SCREEN] TRUE Required
PREF[KEY TO DELETE CHARACTER] FALSE May be modified by user
PREF[KEY TO DELETE LINE] FALSE May be modified by user
PREF[KEY TO MOVE CURSOR DOWN] TRUE May be modified by user
PREF[KEY TO MOVE CURSOR LEFT] TRUE May be modified by user
PREF[KEY TO MOVE CURSOR RIGHT] TRUE May be modified by user
PREF[KEY TO MOVE CURSOR UP] TRUE May be modified by user
PREF[MOVE CURSOR HOME] TRUE Required
PREF[MOVE CURSOR RIGHT] TRUE Required
PREF[MOVE CURSOR UP] TRUE Required
PREF[NONPRINTING CHAR] FALSE Required
PRINTABLE CHARACTERS 13, 32 Required
...126
SEGMENT ALIGNMENT 16 Required
SCREEN HEIGHT 25 Required
SCREEN WIDTH 80 May be modified by user
STUDENT FALSE Required
VERTICAL MOVE DELAY 00 Required

5-47

PRINT SPOOLING

The print spooler is a program that allows you to queue and
print files concurrently with the normal execution of the
p-System (while the console is waiting for input from the
keyboard). The queue it creates is a file -called
*SYSTEM.SPOOLER, and the files you wish to print must re-
side on volumes that are online or an error will occur.

When SPOOLER is X(ecuted, the following menu appears:

Spool: P(rint, D(elete, L(ist, SCuspend, R(esume, A(bort,
C(lear, QCuit

The following paragraphs explain the items on this menu:

P(rint Prompts for the name of a file to be
printed. This name is then added to the
queue. If SYSTEM.SPOOLER does not al-
ready exist, it is created. In the simplest
case P(rint can be used to send a single file
to the printer. Up to 21 files can be placed
in the print queue.

Df(elete Prompts for a file name to be taken out of
the print queue. All occurrences of that file
name are taken out of the queue.

Liist Displays the files currently in the queue.

S(uspend Temporarily halts printing of the current
file.

R{esume Continues printing the current file after a

S(uspend. R(esume also starts printing the
next file in the queue after an error or an
A(bort.

5-48

L

A(bort Permanently stops the printing process of
the current file and takes it out of the

queue.
C(lear Deletes all file names from the queue.
Q(uit Exits the spooler utility and starts trans-

ferring files to the printer.

If an error occurs (for example, a nonexistent file is specified in
the queue), the error message appears only when the p-System
is at the command menu. If necessary, the spooler waits until
you return to the outer level.

Program output to the printer can run concurrently with
spooler output. The spooler finishes the current file and then
turns the printer over to your program. (Your program is sus-
pended while it waits for the printer.) Your program should
only do Pascal (or other high-level) writes to the printer. If
your program does printer output using unitwrite, the output
is sent immediately and appears randomly interspersed with
the spooler output.

The utility SPOOLER.CODE uses the operating system unit
SPOOLOPS. Within this unit is a process called spooltask.
Spooltask is started at boot time and runs concurrently with
the rest of the UCSD p-System. The print spooler automati-
cally restarts at boot time if *SYSTEM.SPOOLER is not
empty. When the file *SYSTEM.SPOOLER exists, spooltask
prints the files that it names. Spooltask runs as a background
to the main operations of the p-System.

*SPOOLER.CODE interfaces with SPOOLOPS and uses
routines within it to generate and alter the print queue within
*SYSTEM.SPOOLER.

To restart the print spooling process if SPOOLER.CODE is
executing when the system goes down, reboot the system,
press X(ecute from the command prompt line, enter
*SPOOLER.CODE, and press the RETURN key. Then press
R (esume.

5-49/5-50

A

Bootstrapping
the UCSD p-System

In order to start the p-System running (or bootstrap it) on the
Texas Instruments Professional Computer, you should turn on
the system’s power and insert the PSYS: disk into drive #4:
(the left drive). You can manually restart the p-System at any
time by striking the ALT, DEL, and CTRL keys simulta-
neously.

The rest of the information in this appendix concerns the de-
tails of the bootstrap process and the various errors that might
occur during it.

The p-System boot process includes four steps: the ROM boot,
the interpreter boot, the system boot, and system initialization.

When you bootstrap or restart (reboot) the p-System, the com-
puter performs initialization and self-tests. The computer then
loads the boot sectors, track 0 sectors 0 and 1, into memory.
This code then further initializes the system as required to exe-
cute the p-System and loads the hardware dependent routines,
SYSTEM.INTERP, into memory.

If extended memory is present (more than 64K) and has not al-
ready been initialized, a RAM disk directory is built. The
number of blocks specified when the RAM Configuration
Utility was run are copied from the boot disk onto the RAM
disk. The RAM disk is searched for the file SYSTEM.PASCAL
and SYSTEM.MISCINFO. If found, the system boots from the
RAM disk, unit #11. Otherwise, the boot procedure continues
 from the disk in drive #4.

A-1

SYSTEM.INTERP begins execution by loading the operating
system, SYSTEM.PASCAL, into memory. (SYSTEM.PASCAL
consists of p-code which is interpreted by SYSTEM.INTERP
to provide the system functions.)

At this point, the system boot process is complete and control
is handed to the operating system. However, the system initial-
ization is not yet complete. SYSTEM.PASCAL causes the file
SYSTEM.MISCINFO which contains information specific to
the Texas Instruments Professional Computer, to be read.
Based on the contents of this file, the operating system defines
environmental parameters required for efficient system oper-
ation on the Texas Instruments Professional Computer.

As indicated by the boot procedure, the following files are re-
quired on each bootable system disk:

SYSTEM.INTERP
SYSTEM.PASCAL
SYSTEM.MISCINFO

In addition, the system disk must contain a correct Texas
Instruments p-System boot loader installed on track 0 sectors
0 and 1. (Refer to the description of the Disk Formatting
Utility in Chapter 5.) If the system is tailored to boot from the
RAM disk, the file SYSTEM.INTERP and the boot sectors are
still loaded from the disk in drive #4: and are not required on
the RAM disk volume. All other system files required for boot-
ing must be present on the RAM disk for the boot procedure to
complete correctly.

A-2

During this boot procedure, several errors may occur. The fol-
lowing table summarizes the possible errors and user steps to
correct the error.

Error Message Probable Cause/Solution
** System Error ** Disk error encountered while read-
- 00xx on Drive n ing the system disk. Refer to the

following table for a description of
the error code xx.

Unable to locate The required file was not located on
SYSTEM.INTERP the boot drive. Copy the indicated
file onto the disk and try again.
Unable to locate The required file was not located on
SYSTEM.PASCAL the boot drive. Copy the indicated
file onto the disk and try again.
Error reading A disk error caused the boot process
SYSTEM.INTERP to terminate prematurely. This indi-

cates either a bad disk or drive. Try
again with a backup disk. If the
error persists, service the drive.

Error reading A disk error caused the boot process

SYSTEM.PASCAL to terminate prematurely. This indi-
cates either a bad disk or drive. Try
again with a backup disk. If the
error persists, service the drive.

If an error is encountered, the error message is displayed and
the following prompt is provided to allow you to acknowledge
the error.

* Please insert system disk, and
* Strike any key when ready...

Once a key has been struck, the boot process restarts. If a disk
error was encountered, the boot begins by searching the re-
maining drives, if any, for a system disk. Otherwise, the boot
tries again with the disk which encountered the error.

If the message ** System Error ** - 00xx on Drive n is dis-
played, some error was encountered while reading the system
disk. In this message, n is either A or B indicating the drive
from which the error was received, and xx is one of the fol-
lowing error codes:

Code

XX

30

31

32
33
34

36

37

38

39

Probable
Description

No drives installed

Disks not ready

Disk error

Not a TI
system disk

Disk format error

Bad boot
sector CRC

Controller failure

Cause/Solution

System disk system failure. En-
sure that system hardware is prop-
erly installed. If error persists,
system may require servicing.

No system disk in any drive. Place
bootable system disk in drive.

Error reading disk.
Retry with backup.

If error persists, system may re-
quire servicing.

The system disk does not contain
a valid TI system disk. Retry with
a valid TI system disk.

The disk has not been properly
formatted. Retry with a valid TI
system disk.

The boot sector read operation
received data errors. Retry with a
backup. If failure persists, system
may require servicing.

The disk system controller has
failed. @ The system requires
servicing.

A-4

—

B

Special Keys

p-System

BACKSPACE
TAB

UP ARROW
DOWN ARROW
LEFT ARROW
RIGHT ARROW
RETURN

ETX

ESC

BREAK

STOP

FLUSH
DELETE LINE

EXCHANGE-INSERT
EXCHANGE-DELETE

ALPHA-LOCK

Texas Instruments
Professional Computer

BACKSPACE

TAB

Marked accordingly

Marked accordingly

Marked accordingly

Marked accordingly

RETURN

CTRL-C

ESC

Shifted BREAK/PAUSE

Unshifted BREAK/PAUSE
or CTRL-S

CTRL-F

CTRL-BACKSPACE

INS

DEL

CAPS LOCK

B-1/B-2

C

. Execution Errors
0 Fatal system error
1 Invalid index, value out of range
2 No segment, bad code file
3 Procedure not present at exit time
4 Stack overflow
5 Integer overflow
6 Divide by zero
7 Invalid memory reference <bus timed out >
8 User break

9 Fatal system I/O error
10 User 1/O error
11 Unimplemented instruction
12 Floating point math error
13 String too long
14 Halt, breakpoint
15 Bad block
16 Breakpoint
17 Incomplete real number size
18 Set too large
19 Segment too large

All run-time errors cause the system to I(nitialize itself;
fatal errors cause the system to re-bootstrap. Some fatal errors
leave the system in an irreparable state, in which case the user
must re-bootstrap.

r—

C-1/C-2

D

I/O Results

O OOIM Ttk WN H—-=O

No error

Bad block, parity error (CRC)

Bad device number

Illegal 1/0O request

Data-com timeout

Volume is no longer on-line

File is no longer in directory

Bad file name

No room, insufficient space on volume
No such volume on-line

No such file on volume

Duplicate directory entry

Not closed: attempt to open an open file
Not open: attempt to access a closed file
Bad format: error in reading real or integer
Ring buffer overflow

Volume is write-protected

Illegal block number

Illegal buffer

D-1/D-2

E

Device Number Assignments

The p-System on the Texas Instruments Professional Com-
puter supports up to 4 disk drives, a RAM disk, a parallel
printer, the serial communications option card, and up to 10
subsidiary volumes. The following table describes the shipped
unit number assignments as defined by SYSTEM.MISCINFO.

Device Volume
Number Name Comment
1 CONSOLE
2 SYSTERM
4 DS01 Volume name assigned by user
5 DSo02 Volume name assigned by user
* 6 PRINTER Optional printer required
Gl REMIN Optional communications required
* 8 REMOUT Optional communications required
* 9 DS03 Optional disk drive required
*10 DSo04 Optional disk drive required
*11 RAM Optional memory required volume
name may be assigned by user
*12 First user subsidiary vol.
*21 Last user subsidiary vol.

Support for optional devices is included in standard device sup-
port. However, the device is not required for system operation.

E-1/E-2

F

ASCII Codes

Decimal Octal Hexadecimal Character
0 000 00 NUL
1 001 01 SOH
2 002 02 STX
3 003 03 ETX
4 004 04 EOT
5 005 05 ENQ
6 006 06 ACK
7 007 07 BEL
8 010 08 BS
9 011 09 HT

10 012 0A LF
11 013 0B VT
12 014 0C FF
13 015 0D CR
14 016 OE SO
15 017 OF SI
16 020 10 DLE
17 021 11 DC1
18 022 12 DC2
19 023 13 DC3
20 024 14 DC4
21 025 15 NAK
22 026 16 SYN
23 027 17 ETB
24 030 18 CAN
25 031 19 EM
26 032 1A SUB
27 033 1B ESC
28 034 1C FS
29 035 1D GS
30 036 1E RS
31 037 1F US
33 041 21 !

34 042 22 w

35 043 23 #

Decimal

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

Octal

044
045
046
047
050
051
052
053
054
055
056
057
060
061
062
063
064
065
066
067
070
071
072
073
074
075
076
077
100
101
102
103
104
105
106
107
110
111
112
113
114

Hexadecimal

24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F
40
41
42
43
44
45
46
47
48
49
4A
4B
4C

Character

%

+ * T

© OO IDU AR WNH-=O ™"

CRE"maoaHaEgQ@EED 2y | A"

F-2

Decimal

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

Octal

115
116
117
120
121
122
123
124
125
126
127
130
131
132
133
134
135
136
137
140
141
142
143
144
145
146
147
150
151
152
153
154
155
156
157
160
161
162
163
164
165

Hexadecimal

4D
4E
4F
50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
5F
60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75

Character

NKMHS<CcHNDIOTOZE

—_— e —
©
oo

>

C"U’*“..Q’UOCSB"‘W‘“‘“'U‘UQ*@QOO‘N/|

F-3

Decimal

118
119
120
121
122
123
124
125
126
127

Octal

166
167
170
171
172
173
174
175
176
177

Hexadecimal

76
77
78
9
TA
B
7C
D
7E
7F

Character

e — N K og <

DEL

F-4

G

Extended Memory
on the Texas Instruments
Professional Computer

There are two features supported by the p-System on the
Texas Instruments Professional Computer that allow you to
utilize up to 256K bytes of installable memory. The Extended
Memory option allows you to allocate up to 64K of additional
memory to the execution of programs. This allows for larger
program segments and potentially less disk access overhead.
The RAM Disk option allows you to designate up to 192K
bytes of memory to an in-memory or RAM disk. This allows
placing often-accessed files in memory, eliminating much disk
access and providing greater throughput.

The Extended Memory option must be enabled by the RAM
Configuration Utility provided on the PSYS disk. You may
specify that as much as 64K or as little as 32K be allocated to
execution of user and system programs.

The RAM disk is always enabled, provided that sufficient sys-
tem memory exists. It is present in any system configuration if
your Texas Instruments Professional Computer has more than
64K bytes of RAM installed and all of the additional memory
is not allocated to the extended memory codepool. The number
of blocks available in the RAM disk may be determined using
the V(olume option of the F(iler command. The following dis-
play depicts the V(olume listing of a typical system configu-
ration with 192K bytes of memory. The RAM disk is always
unit #11, and the default volume name is always RAM.

G-1

Vols on-line:
1 CONSOLE:

2 SYSTERM:

4 # PSYS: [6401

6 PRINTER:

4 REMIN:

8 REMOUT:

11 # RAM: [1281
Reot wol 18 = PSYS:
Prefix is = PEYEs

The RAM disk is treated like any other storage volume, and
the system utilities and user programs may access it as they
would a flexible diskette, by either device number or volume
name.

The Z(ero command of the filer may be used to reinitialize the
RAM disk and to assign it a new volume name. When using
the Z(ero command, you should never exceed the default
provided for the number of blocks, since this value is the maxi-
mum number which may be contained in the extended memory
available in the system configuration.

When the system boots, it inspects the memory location set
aside for the RAM disk to determine if a valid directory is pre-
sent. If there is a directory, the RAM disk is not altered. (This
means that you can reboot and still have the same RAM disk
available, as long as you do not turn the power off.) If there is
not a current RAM disk directory, one is created and the RAM
disk is zeroed. In this case, the system copies each file from the
system disk to the RAM disk until the file named RAM.INIT
is encountered. (This is a one block file that you should create
with the filer’'s M(ake activity.) No files are moved from the
system disk unless all of the files located before the
RAM.INIT fit in the available RAM disk space. If RAM.INIT
is not found on the system disk, no files are moved to the
RAM disk.

G-2

e

—

For example, if your system disk has these files:

PSYS:

SYSTEM.PASCAL 106 1-Jan-83
SYSTEM.MISCINFO 1 1-Jan-83
SYSTEM.FILER 38 1=Jan=83
SYSTEM.STARTUP 8 1-Jan=83
RAM.INIT 1 1-Jan-83
SYSTEM.EDITOR 47 1-Jan-83
SYSTEM.LIBRARY 18 1-Jan-83

and your RAM disk contains 256 blocks, the files
SYSTEM.PASCAL, SYSTEM.MISCINFO, SYSTEM.FILER,
and SYSTEM.STARTUP are copied to the newly initialized
RAM disk.

If, after this process, the RAM disk contains the files
SYSTEM.PASCAL and SYSTEM.MISCINFO, the system
continues the boot procedure from the RAM disk. Once the
RAM disk is initialized, it remains useable until power is re-
moved from the system. If it becomes necessary to reboot, re-
boot by pressing the CTRL, ALT and DEL keys
simultaneously (rather than turning the power off and on). This
preserves any data located on the RAM disk.

The p-System, utilizes any memory above 64K bytes as RAM
disk. The first 64K bytes are used for executable code and the
internal workings of the p-System. See “RAM Configuration
Utility”’ (Chapter 5) for more information about of this.

G-3/G-4

H

Release Disk Configurations

File Name

SYSTEM.PASCAL
SYSTEM.INTERP
SYSTEM.MISCINFO
SYSTEM.FILER
SYSTEM.EDITOR
SPOOLER.CODE
SYSTEM.LIBRARY
SYSTEM.SYNTAX
SYSTEM.FONT
COMPRESS.CODE
SETUP.CODE
PATCH.CODE
LIBRARY.CODE
COPYDUPDIR.CODE
MARKDUPDIR.CODE
RECOVER.CODE
FORMAT.CODE
DECODE.CODE
SETTIME.CODE
CONFIG.RAM.CODE
CONFIG.REM.CODE
CONFIG.PTR.CODE
CONFIG.PTR.TEXT
REALCONV.CODE
ABSWRITE.CODE
BOOT.CODE
DISKSIZE.CODE
PRINT.CODE
SYSTEM.LINKER
SYSTEM.ASSEMBLER
SYSTEM.COMPILER
8086.0PCODES
8086.ERRORS
8087.FOPS

PSYS

lelelolaRaRelolola ool oo Rako koo e ko R o ko R o R o R ol o

PDEV

P4 K4 M

File Name PSYS

XREF.CODE
BINDER.CODE
COMMANDIO.CODE
SCREENOPS.CODE
KERNEL.CODE
SPOOLOPS.CODE
WILD.CODE
DIR.INFO.CODE
FILE.INFO.CODE
SYS.INFO.CODE
ERRORHANDL.CODE

PDEV

A D DX

H-2

Glossary

adaptable system — a version of the p-System that is struc-
tured so that you only need to write a new SBIOS (rather
than an entire BIOS) to bring the system up. The
p-machine emulator must already be written for the pro-
cessor that the computer uses.

assembler — the p-System component which translates
human-readable assembly language into machine code.
The p-System has assemblers for these processors: 8080,
780, 6502, LSI-11, PDP-11, 9900, 6809, 8086/8088, 68000,
6800 and Z8.

back file — a backup file for text files that is identified by the
suffix .BACK, which is appended to the file name; for
example, FILENAME.BACK.

bad file — an immobile file used to prevent the use of damaged
portions of a disk. A bad file is identified by the suffix
.BAD, which is appended to the file name; for example,
BAD.00120.BAD.

BASIC — a popular high level programming language which is
accepted by one of the p-System’s compilers.

BIOS — basic input output subsystem; that portion of a
p-machine emulator that is specific to a particular configu-
ration of devices on a computer.

block-structured device — see storage volume.

bootstrap — the action of starting (or that piece of code which
starts) the p-System running. You must bootstrap the

p-System before you can do anything with it.

boot volume — see system disk.

Glossary-1

chaining — see program chaining.
client — a program or unit which uses another unit.

code file — a file that contains compiled or assembled code that
is identified by the suffix .CODE; for example,
FILENAME.CODE.

code segment — a portion of code which may be swapped in
and out of memory during execution. A program or unit
may be divided into several segments.

command menu — the main p-System menu. It is displayed by
the operating system.

communications volume — any I/O device which does not store
information permanently (such as the console or printer).

compiled listing — a collection of detailed information produced
by the compiler about a program.

compilation unit — the resultant code file or code segments
from a single compilation. It may include one or more
units and/or a program segment.

compiler — a translator which accepts a high level language
program as input and outputs an executable p-code object
codefile.

control keys — see special keys.

data file — a file that contains user data. It can be in any for-
mat. It has no special file name suffix.

decode — a utility which allows you to see the inner details of a
code file.

default disk — the volume where the p-System assumes files
reside unless you specifically indicate otherwise.

Glossary-2

N

device — any peripheral equipment that is a recipient or pro-
ducer of data. A device needs a driver program to
communicate with the operating system. Devices are clas-
sified into storage devices (disks) and communication
devices (console, printer, remote).

device number — a number used to refer to a particular storage
or communications volume. It is always preceded by a
number sign (#) and usually followed by a colon (:). For
example, #5:.

directory — an area on a storage volume which contains infor-
mation about the files which reside there (such as their
names and locations).

directory listing — a display, usually on the console, of the files
on a given storage volume.

editor — one of the three p-System text manipulation utilities.
These are the Screen-Oriented Editor, EDVANCE, and
YALOE. With an editor, you can create, examine, and
alter text files.

execution error — an error which can occur when a running
program does something incorrect. The program then ter-
minates and the p-System is reinitialized.

extended memory — a feature on several processors that allows
the user to access more than 64K of main memory.

file — a collection of information that resides on a disk and can
be brought into main memory when needed by the
p-System or a program. It may contain code, text, a
subsidiary volume, a graphic image, or data.

FORTRAN-77 — a popular high-level programming language
accepted by one of the p-System’s compilers.

foto file — a file that contains one graphic image for use by the
Turtlegraphics routines. It ends with the suffix .FOTO.
For example: PICTURE.FOTO.

Glossary-3

interleaving — the process of mapping the physical sectors to
the logical sector number assignments within one track of
a disk. It is part of the disk formatting process.
Interleaving optimizes disk performance for consecutive
read or write accesses.

1I/0 — input and output.

I/O error — a problem that can occur, under several circum-
stances, when something goes wrong with an I/O oper-
ation. For example, a disk write will fail if the disk has
been inappropriately removed from its drive.

I/O redirection — a feature that allows the p-System’s input (or
a program’s input) to come from some place other than
the keyboard. Also, output for the p-System and pro-
grams can be sent to some place other than the screen.

interpreter — see p-machine emulator.

libraries — code files that contain one or more units which can
be used by programs and other units.

library utility — a program that allows you to place code seg-
ments from different code files into one code file. Units
can be placed in a library using this utility.

linker — a p-System component that combines assembled code
files together. It can also combine a compiled code file
with assembled code files.

long integer — a special facility that allows programs to
use integer arithmetic with up to 36 decimal digits of
precision.

marker — an invisible flag that marks a particular location
within a text file.

Glossary-4

menu — a list of available commands or options that are dis-
played on the screen by the operating system and major
p-System components. A command or option can be se-
lected from a menu with a single keystroke.

monitor — a command menu option which can cause the sys-
tem to keep track of all the keystrokes that you enter at
the keyboard. The result is stored in a disk file which can
later be the source of 1/O redirection.

mount — to cause a subsidiary volume to be accessible to the

p-System.

multitasking — the execution of two or more tasks concur-
rently. A task is a piece of code called a process in UCSD
Pascal.

native code — machine level code that is produced by the

native code generator or is written by a programmer in
assembly language.

n-code — see native code.

native code generator — a program that translates portions of
an executable p-code file into n-code. The resulting code
file always contains a combination of p-code and n-code.

nonblock-structured device — see communications volumes.

on-line — the status of a volume when the p-System can access
it. For a storage volume to be on-line, the disk must be in
the appropriate drive. For a communications volume to be
on-line, the I/O device must be properly connected and
turned on.

Pascal — see UCSD Pascal.

p-code — psuedo code: p-machine code generated by the
p-System compilers and emulated by the p-machine
emulators.

Glossary-5

p-machine — an idealized pseudo computer optimized for high
level language execution on small host machines which
execute p-code.

p-machine emulator — the part of the p-System that allows
microcomputer hardware to imitate the operation of the
p-machine. It is written in assembly language.

PME — see p-machine emulator.
p-System — see UCSD p-System.

portability — the capability of moving executable code written
on one microcomputer to another without recompilation.
This is possible because programs are compiled into
p-code which can be executed on any computer which
hosts the UCSD p-System.

prefix, file — a volume name appended to the beginning of a
file name. It indicates the volume on which the file re-
sides. A colon separates the prefix from the file name; for
example, VOLNAME:FILENAME.TEXT. If no prefix is
specified, the default disk is used.

program chaining — the process of calling for the execution of
one program from another program without relinquishing
control back to the user. The p-System allows an arbitrary
number of programs to be chained together.

print spooler — a program that allows you to queue and print
as many as 20 text files concurrently with normal execu-
tion of the p-System.

prompt — a question, displayed on the screen, asking you for
information. You respond to a prompt by entering the
information and pressing the RETURN key.

reboot — to start up the p-System again. To rebootstrap.

root volume — see system disk.

Glossary-6

SBIOS — simplified basic input output subsystem. A portion
of the BIOS on adaptable systems. The SBIOS of an
adaptable system must be rewritten for each different
computer on which the adaptable system is run.

Screen-Oriented Editor — a text editing program designed for
operation with an interactive console.

segment — see code segment.

special keys — the keys that have a particular meaning to the
p-System (other than indicating an ordinary character).
For example, the RETURN key indicates a carriage re-
turn in the editor.

storage volume — a disk or subsidiary volume. Any I/O device
which stores information permanently.

subsidiary volumes — a file organization facility that provides
two levels of directory hierarchy. The subsidiary volume is
located within a .SVOL file on the principal volume.

suffix, file — one of several special sequences of characters ap-
pended to the end of a file name after a period. The file
suffix usually indicates the file type. The standard file suf-
fixes are .TEXT, .CODE, .SVOL, .BACK, .BAD, and
.FOTO.

.SVOL file — a file identified by the suffix .SVOL that con-
tains a subsidiary volume; for example, NAME.SVOL.

system disk — the disk which was bootstrapped. It contains
the operating system software. It can be represented to
the p-System by the asterisk (*).

system files — the disk files which contain the main compo-
nents of the UCSD p-System.

syntax error — an error that occurs when a compiler detects
something incorrect in the program text.

Glossary-7

text file — a file that contains user-readable character infor-
mation (as opposed to machine code), identified by the
suffix .TEXT; for example, FILENAME.TEXT.

Turtlegraphics — a package of routines that create and manip-
ulate images on a graphic display.

UCSD — University of California at San Diego.

UCSD Pascal — a programming language which is a slightly
extended version of standard Pascal.

UCSD p-System — portable microcomputer software environ-
ment for execution and development of applications pro-
grams (sometimes called the Universal Operating
SystemT™%),

unit — a collection of routines and associated data structures
which is compiled as a whole. Routines within a unit may
be used by programs or other units.

Universal Medium™* — a 5-1/4 inch diskette format that is
used by several computers. It facilitates the physical
transport of data between them.

utilities — programs that assist you in various areas of
p-System use by doing such tasks as developing pro-
grams, maintaining files, printing files, and so forth.

volume — either a storage volume (disk or subsidiary volume)
or a communications volume (such as the console or
printer).

volume ID — the name or device number for a volume (either
storage or communications volume).

* Universal Operating System and Universal Medium are trademarks of
SofTech Microsystems, Incorporated.

Glossary-8

volume name — seven or fewer characters, followed by a colon
(:) which refer to a particular storage or communications
volume.

work file — scratch-pad text and/or code files that you can use
when developing programs. A work file may be created by
designating existing files, or by creating a new file with

the Editor.

wild card characters — three special symbols (3, =, and ?)
which allow the filer to operate on several files at one
time.

Glossary-9/Glossary-10

Index

Title Page
{7 S N AP S —————— 3-7, 3-20, 3-61, A-1
T T — 3-7, 3-20, 3-33, 3-50
0 s S TSI 2-6, 3-17, 3-19, 3-55, 4-27, F-2
B s s s 3-8, 3-13, 3-50, F-2
B e A R SR 3-7, 3-8, 3-50, F-2
— T 2-16, 2-17, 3-17, 3-18, 3-35, 3-53, 3-57, 3-58, 4-7, F-2
T 2-4, 3-16-3-18, 3-58, 4-21, F-2
A

T 1= 01 [LR U — 3-8, 3-13, 3-50
B

BACK aaeeeeisisscsisesiesessssssssssssssssssesssesassnsonans 3-9, 3-10, 3-47
BACKSPACE keycccceeueee. 1-6, 2-5, 4-7, 4-8, 4-21, 4-35, 5-33
15 0.4l [N e 1 SN O 3-9, 3-11
Block-structuredoooveveeiiiiiiiiiiiiiiie e 3-11
Booting error messagescccccecieeeiveeeiiineeeeineennneens A-3, A4
BootStPAPDING ssreusmsssassensmssssssmsssnssevmvssnesssonessnmssiees Appendix A
C

JCODE iivivmpmrssssassnsssssessssessissvevassisiosissssssmsysarassay 3-9, 3-11
L7 To (=35 31 =3 USROS 3-11
CODE POOL BASE[FIRST WORD]ccceeeevnrvvreennns 5-33, 5-44
CODE POOL BASE[SECOND WORD]cccocvvrereenn. 5-33, 5-44
CODE POOL SIZEccccorerveeressssinsessonvsssssssssossassusisassss 5-34, 5-44
COLON memswsmmwissmmsssinesmss i S A e e s 3-7, 3-8
Command MENU ...coeveeemeeeeeeeeeeeiteenereeeeerenreeesennneeseenens 2-3, 2-4, 4-5
Communication devViCecccceeevvvurrerrrerveireeererreeeeeeeeeeeeesninnns 3-12
(07673 1=Te) =TT 3-10, 3-25, 3-56
COPYDUPDIR utilityccccocevveennennn. 3-23, 3-64, 5-3, 5-16, 5-17
CUESOTE . commmmenmmmmssmmpussressipmassabssphassresssiions s 4-4, 4-6, 4-7-4-9, 4-24

Index-1

Title Page

D
DaAta fIleS ..uoieiiiieiiciiiiicceec e rbae e e eanes 39 ™
DEDUBEEF soumsmmansssmemsenssmmvsssmunresssssssssssssnssssnnsnsssesssbyisssanseisss 2-10
Digfaiilt Q188 womsmmmmsmsssmmmssmemims s 3-8, 3-40, 3-53
Device numbercccoeeiiiiiiiiiiiiieeeeeeeeeee, 3-4, 3-7, 3-50, E-1
DEVICER ssumrasiaissiessinss s et i s 3-11-3-14
Disk:
DIECEEORY <ouremeemencnsmpoosmesamssssqmnmmisnrssssssssssisesssussaansisesesassasssns 3-4
Formatting utilityccccoeieeiivviineinneviniininennnn. 3-59, 5-28, 5-29
SWAPPING .evviiiriiiiieiriiieereiereeesieeesrreeesesrseeesseaeeessneseessssnnes 2-7
Duplicate disk directoryc..ccccceveeveeveeeseeneerennnenas 3-23-3-25
E
BIOIE sommomumarsmmsmmm e S R S 1-6
BAItOr sussssmimmmessmnaasisssssisssisasss s issmassmasis 1-6, 4-5
EDITOR:
ACOEPT KEY ...coosmmsisnussosmnsssonsovnssmmssessosmssosssmonsses 5-34, 5-44
ESCAPE KEYccoccrsmnumsmnansinvassnsss 2-8, 2-9, 3-16, 3-37, 3-43,
4-12, 4-13, 4-15, 4-17, 428,
4-34, 4-35, 5-25, 5-31, 5-34, 5-44
EXCHANGE-DELETE KEY ...ccccveviireieeeeeenneen. 5-34, 5-44
EXCHANGE-INSERT KEY .ooooivviiirrrreeeececnnneeeeen. 5-34, 5-44
ERASE.:
035 1) o O I S S P 5-35, 5-44
SCREENcomcomnimesonsurmmiassusmssnsomsmssmsssmssssamssassniossssss 5-35, 5-44
TO END OF LINE ...viiiiiiieecireeeecrere e 5-35, 5-44
TO END IOF SCREEN ussvssssnmsesmsmmsisosssssms 5-35, 5-44
Execution option stringscccccceeevvererevveererenvinninennnnns 2-16, 2-19
F
1 34
15 202 01 0o /2 TR SRS S 3-3
NETBE! sesnanmsmmimsss sl I e s T 3-6-3-8, 3-43
Name SUfiXeS ...cccceevieiieiiiiiereecc v 3-9, 8-11
FIEE ommmomsmmassmmassums i s s m e s 1-6, 3-3, 3-4, 3-16 —
GUBE: scusvmsmmmsmssaunmsnssnnmssssmisismsnsaarmimswisains s e sassas s s 3-15
NIEW siisommsisimmeims s S R AR e B RS 3-15
SUETE) cossomsmssinisst R m T RS 3-11, 3-15, 3-16, 3-41, 3-53

Index-2

B 7 1 U 3-15
F(iler:
B(ad BlOCKS oottt 3-32, 3-41
C(hangecccceeeeeeevveeeieeeeeeeereeenes 3-17, 3-33, 3-34, 3-60, 5-31
DAALE oceeeeeiieiii et s 3-36, 3-37
E(xtended Listccccoovvrerevieverrrervvnnnnnnen. 3-20, 3-21, 3-24, 3-37
F(lip SWaD/LOER wuscmmsssssssiasmsmmsnnscrsossianm ssssssassssmmins 3-38
(G {11 S P 3-11, 3-15, 3-39
K(runch ...cooovvvvenennnnn. 3-20, 3-39, 3-40, 3-41, 3-42, 3-63, 5-17
L(ist Directorycccceveeveeeeevvnnnnns 3-19, 3-24, 3-37, 3-43, 3-44
M(ake ...eevivnnnnne. 3-20-3-23, 3-25, 3-26, 3-37, 3-46, 3-47, G-1
NEWR crtdmrros T eSS s A 3-15, 3-47, 3-48
O(N/OFFLINE .evviieiiiieiicicteieccte e are e s esaabeeeas 3-48
201 =) o <A S 3-8, 3-50
[0) OO STV 3-51, 5-31
R(emovecoevvvveevrvvivvnnnnnn. 2-13, 3-18, 3-19, 3-21, 3-51, 3-52
SUAVE st s 3-11, 3-15, 3-16, 3-41, 3-53
T(ransfercccccovvvvveevivcnnnnnns 3-20, 3-39, 3-54, 3-55, 3-56, 5-17
V{OIUMES et eaee 3-17, 3-27, 3-60, 3-61
Wihat, sesmemrennmrn s R m s e s 3-15, 3-62
XAAINITIE weveeieeieeeeieeeeeeeeeeaeereeeeeneeeeeeemaeaeees 3-41, 3-62, 5-29
ZUOLO! issisisinmmmmisimismsnnsissssioiis 3-23, 3-25, 3-64, 3-65, 5-17, G-1
FiIler MENUS .oeevevreeeieeineeeeeeeeeeeeeeeeeeeeesenens 2-4, 3-16, 3-20
FIlE SIZE .eeeevieieieireeeeeiee st eeree et te s sate s srnesonae e e sraeens 3-25
First subsidiary volume numberccccccevveveeennnen. 5-35, 5-36
FOTO sosmsimesnanssnniviasaimm s fismesnmms s ssiis 3-9, 3-11
H
HAS:
BE10A e e s s e e e sesaneas 5-36, 5-44
BYTE FLIPPED MACHINEccccccoovvviveeeecnnen, 5-36, 5-44
CLOCK., .vsmessesmimisinismaismsmssmsissmssmanmmassssiimsssas 5-37, 5-44
EXTENDED MEMORY ...cocooovvirieeeeeieeeeeeeeeenee 5-37, 5-44
LOWER CASE ..ot eeeneiee s 5-37, 5-44
RANDOM CURSOR ADDRESSINGccccceeuunne. 5-37, 5-44
SLOW TERMINAL ..coviiiieeeeereeeeccccserreeee e 5-38, 5-44
SPOOLING im0 mmssicsnsasiisiinionsssme sinnssos sonssssssmess 5-38, 5-44
WORD ORIENTED MACHINEccovvvvennnnee. 5-38, 5-44

Index-3

Title Page

K

KEYBOARD INPUT MASKcovvirireeeecevcrnneereeeeenns 5-38, 5-44

KEY:
FOR BREAK .o 5-38, 5-45
POR BPLUSH ...comussasmmsonsnsmmmmsosspiasmnsminsionsietisis 5-39, 5-45
FOR STOFP rsmmsmssmmsimmomsmmsmusmsrssivspnsisiois 5-39, 5-45
MOVE CURSOR DOWN ..o 5-41, 5-45
MOVE CURSOR HOMEcoevvvmvvrrvrrereneneereeeeeseeenes 5-41, 5-45
MOVE CURSOR LEFTcoovvvvermminenerevererereeenrerenenns 5-41, 5-45
MOVE CURSOR RIGHTccccocmimemrrvrerererereneereenens 5-41, 5-45
MOVE CURSOR UPcoooviiiiiiieiiiiieeeeeeeeeeenne 5-40, 5-42, 5-45
TO ALPHA LOCK s 5-39, 5-45
TO DELETE CHARACTERcceveveeeeeennn. 4-35, 5-39, 5-45
TO DELETE LINE ..ottt eeennnneeeeees 5-39, 5-45
TO END FILEovvviiiiiiiiniirieeeeecceiivreeeeseesesennvnseses 5-40, 5-45
TO MOVE CURSOR iosismmimnamssisspssmsimsams s 5-40

L

LEAD:
IN FROM KEYBOARDcccoovnirieieeiecinierereecesnnns 5-40, 5-45
IN TO SCREEN ...oooiiiiiiieeeeeeieeeeeereeeeeeeeeeeeeeeeeeee e 5-40, 5-45

LADTAYY ssosusssmsnmsmonsiommnssssssssssmsnsnessms s sasysvssisssissosssmssssnpavess 2-18

7T ol a1 = ———— 3-20, 3-21, 3-27

M

M(ake ..ocoovvrreeeiirreeeiieeens 3-20-3-23, 3-25, 3-26, 3-37, 3-46, 3-47

MARKDUPDIR utilitycccccceeiiieiccnnnieeeen. 3-23, 5-3, 5-17, 5-18

MAX NUMBER OF SUBSIDARY VOLS 3-31, 5-41, 5-45

MeNS s 1-5, 1-6, 2-3, 2-4, 4-4, 5-14, 5-15

MOVE CURSOR:
HOME .cmsasesimissssisamamnmnsssiississmsmessmis s smssasies 5-41, 5-45
RIGHT' .oosassssumssssssmsssssmmsmnmsnnsnsssssishnsmnnnsbs i a5 mm s 5-41, 5-45
L 5-42, 5-45

N

Nonblock-structured devicecccccoevreiieieeiiiriieriieieeceieerennee 3-11

NONPRINTING CHARACTERccovvvvvvvvierviivieeeenens 5-42, 5-45

Index-4

Title Page

(0)
T OM/OFE-INE vt 3-29, 3-48
Operating system commandsccoccveeeriveeeeniieerenieennieennnees 2-7
BN E=TST=) 191 o) U 2-6, 2-8
C{OMPILE- sevmsmssnsniammmmmms s T RS RS s a4 2-9
DY o cssmssiomsesunmoss st tasTwhsb s suassseanaasssamanssssss sy 2-10
BlAIE ssnsrssemsmismsvensomsmsinsmanss sopoossssnesnpsnesss ssasapsumpseseessssy 2-11
Hle sommmmmmmmamnimmsamism s e s s e 2-11
Hlalls o e s s s sanss 2-11
HOIEIAlIZE ..conenvimessmronnassisesnsnasusssmmsnasninssnsisasssansss 2-12, 2-21, 3-29
BN :osmmmmpnomsmsrm o st S s ey & GRS 2-12
MUODIEOE .oussrmessssssomsnsssassesississssssessnssssasmsesssssamivssenasois 2-13, 2-14
RO s smsisnmtsosssssssmsshs s s s o s s s e nsns 2-14, 3-15
Ulser Resbart .cisssmssemiminss s s i 2-14
K(EXECULEoovvversvecssrsossivamssssassansssasn 2-5, 2-15-2-18, 2-22, 3-22,
5-3, 5-4, 5-21, 5-23, 5-29
. P
7+ A G OSSR S O ———— 3-22
20571 7', o SR, 2-16, 2-18, 3-13
PREFIXED [item name]cccccccvvemveeeecirireereeeenevnennenes 5-42, 5-45
PRINT cosmmrammpmomsams:aeimmmishmsei s Chapter 5
PRINTABLE CHARACTERS ..ueeeeevevvvreeeeeveeeeeeeeen. 5-42, 5-45
PRINTER: i 3-10, 3-12, 3-25, 3-43, 3-56
Printer configuration utilitycccccccceevriceeiinineerannnene 5-25-5-27
Program:
IR s s s 2-19-2-22
{15171 10 | IR ——————— 2-22, 5-12
Prompls .ccicssssnsoisivmssssmsasannsussssassnsssaasens 1-6, 2-5, 2-6, Glossary-6
Q
(2115 5 A S S 1-6, 2-4
R
—~ RAM.:
Configuration utilitycccccccovvveeereennennnn. 5-21-5-23, A-1, G-1
D 2-12, 5-21, 5-22, 5-23,

A-1, A-2, E-1, G-1, G-3

Index-5

Title Page

Recovering lost filesccoccverviierniierenicenieniinnennn. 3-20, 3-21, 3-27
RECOVER Utiltysssssmmmsassmmssinsssis 3-22, 3-24, 5-18-5-20
BEDIRBICTcooommossnvuosnsnsssstsasamnsssamssssansasss s 2-16, 2-19-2-23
RedireCtionooocevvuveiiiiiiiiiierere e eesrrerereeeeenivaneeeees 2-19-2-23
REM configuration utilityccccccevniinineiniininnnninns 5-23-5-25
REMIING ...oonomeennnsssssssssssissosssminssmssssisasss s ssmimmiasmisssasassss s 3-12
12410007 (@ 1 S SO ———————— 3-12, 3-25
S
Screen-Oriented Editor 4-3, 4-7, 4-14-4-35, 5-3, 5-34, 5-41
Command characterccccccceeeiviirveeeeeeeeieciivereeseseseensnnns 4-32
AGTUSE e eee e es e e s s s s e ssesrenesnenesenae 4-14, 4-35
AULo-INAENT covveeiiiiiiiii s 4-21, 4-22
Control KEYS ..uocieciiiiicciiee ettt eecine e 4-7-4-9, 5-30
ClOPY vveeerrererreeiieerirreeessesssressseesreessnesssvesassessns 4-7, 4-15, 4-18
(0101¢:10) ST 4-4, 4-6, 4-7, 4-9, 4-24
Dlelete ..ccvirivieioierninininiersssinnerssnsonines 4-7, 4-13, 4-15, 4-16, 4-17
Direction INAIiCAtOrcccceevviiiieiviineieieeeeeiiieeeeeeeeeienrareeeeees 4-6
BUIHTEE \v.omrmmmopmnessmmmssrpsossanmmsssspasssssmsonnssisassssmom 4-21-4-23, 4-32
F(indccceevveveennnnn. 4-6, 4-7, 4-10, 4-11, 4-18, 4-19, 4-28, 4-35
Global directioncocceceeveeeviiriireieeeeeeennnnnn. 4-6, 4-8, 4-19, 4-23
Iinsert s 4-5, 4-7, 4-12, 4-16, 4-20, 4-32, 4-35
JOUID oo eeeean 4-7, 4-23, 4-30
12417 128 101 0 RS APPSO 4-24, 4-35
MUABGIHL. cviasvsssmmmomsssomssmanssmnsbssissas 4-16, 4-24, 4-25, 4-32, 4-35
MBPREEY conpususomsmvmmmessssmmsssnnsamssssessssial s ssssssssgss 4-23, 4-30
Moving the Cursorccccccvivvveeereiecivnieieeeeneninns 4-7-4-9, 4-24
PUATE: uvmmmsmmsismme e s s s s A ras 4-7, 4-26
QUL s s ssrisssm s e SRR ST 4-26
Repeat factors 4-6, 4-8, 4-15, 4-17, 4-18, 4-20, 4-23,
4-24, 4-26, 4-28, 4-30, 4-34, 4-35
Rleplacecccooomnvnivirnnnnnnn. 4-6, 4-7, 4-10, 4-11, 4-28, 4-29, 4-35
= . 4-5, 4-21, 4-30
S(et E(nvironmentccccovevvvueeeivvenneeennnn. 4-21, 4-23-4-25, 4-31
Siot: MUATRET srmimsammmss sy s iasess s 4-7, 4-30
Speecial Keys awasssmsemsssonmssmmamisesammasins 4-8, 4-14, 4-15, B-1
VIErIY ussnmssismnsmmsnssssmmesasimssmsmmmss s s moness 4-28, 4-34
Wtk Hle wssssmmmssemaamsiissssms s 3-15, 3-17, 3-53, 4-11

Index-6

XICHANGZE vosuurvmsssnsmcnimansanonsssssumasinnusmsnsssasmmrmnsmi s shnsnssss e snsiess 4-34
=] L — 4-16, 4-35
SCREEN HEIGHT oot 5-43, 5-45
SCREEN WIDTH .cmssmisssessmmsinssmmmisisais 5-43, 5-46
SEGMENT ALIGNMENT ...cccoovviiiieiieeeireieeeeen, 5-43, 5-46
Segmentscccceeeiiiieiieiniieennineeen, 2-7, 2-15, 3-38, 3-39, 4-3, G-1
Set time ULIHEY .ocoveeeiiiiiiiieiieecireeie et eeeteeeenee s 5-29
LS 1] o ——————— 3-31, 4-3, 5-3, 5-30, 5-32
Special KeYS ..oocevueeieiiiiiieeccieeceeee e 4-8, 4-14, 4-15, B-1
Storage deviCeccceevvviieereiuiieceiiieeeeiiiee e eee e e e enns 3-11, 3-12
STUDENT ...ttt e eennne e s e e eeaanree s 5-43, 5-46
Subsidiary volumescccccceevruveveennns 3-4, 3-25-3-36, 3-47-3-49
SVOL csvosimsvsmnasssnmmmsessisnimmsimsissismmsmssmmsnsss 3-9, 3-11, 3-26, 3-27
System diskcccoevrveeiieiiiieinnnnn, 1-9, 3-8, 3-37, 3-39, 3-61, 5-32
SYSTEM.EDITORovtioiiiiiieeeieciieeecie et ene e e 4-3
System filesccccceevviiiiieiiiiieiiite e 1-9, 1-10
SYSTENM.ASSEMBLER, .cciususessasssssssrsssssssmnsmassssusisnssssnss 1-9
. SYSTEM.COMPILER ...oocooiiiiieeieeeereeeeeeeeeeeee 1-9, 2-9
SYSTEM.EDITORocoooiiitiieeeeeeee e 1-9, 2-11
SYSTEM.FILERcccoccovvvirereernnns 1-9, 2-11, 3-22, 3-39, G-3
SYSTEM.INTERPccoceveeeeeeireeeennen. 1-9, 1-10, 5-22, 5-23,
5-26, 5-27, A-1, A-2

SYSTEM.LIBRARY ...ccocoiiiiiiieeeereeeereeeens 1-9, 1-10, 2-18
SYSTEM.LINKER ...ccovvviiiiiiiiccciiieiccccccnciineeeeevneecsnnens 2-12
SYSTEM.LST.TEXT ..ooioiiiiiiitriieeiieciiieeeeeeeeesvineecnns 2-9, 3-15
SYSTEM.MENU ...coovvivirieiierieeeecireeeeeceeecvennnee 1-9, 1-10, 2-12
SYSTEM.MISCINFO 1-9, 2-12, 4-3, 5-21, 5-26, 5-27,
5-30, 5-32, 5-46, A-1, A-2, E-1, G-3

SYSTEM.PASCALccoovvvviveeerrenenns 1-9, 2-10, A-1, A-2, G-3
SYSTEM.STARTUP ...ccceovvviviieerieeeneen. 1-9, 1-10, 2-12, G-3
SYSTEM.SYNTAX ..usmsosnsussuss s cosssasasonsss 1-9, 1-10, 2-10
SYSTEM.WRK.CODEccoveveureeenrnnn. 2-8, 2-9, 3-15, 3-52
SYSTEM.WRK.TEXTccceueeuu... 2-8, 2-9, 3-15, 3-52, 4-14
System INPULceeeviiiieiiiiiieiiiiiecenre e 2-19, 2-22
oy STSLEM. OULPUL. simesmmsmmmssononssssnsmessssasssrspsmmassmossessms v 5-12
S B L L T —— 3-12

Index-7

Title Page

T
TEXT scamamrmsasevssnssonsnnosersassssns 2-14, 2-20, 3-9, 3-10, 4-16
TeXt fI1ES oiiiieieieee ettt e e e e vt e e e e eenes 3-46, 4-3
U
User-defined serial deviCescccccvieeeevveerreeeieeeiiinenrreeeeeeesnnnnns 3-7
USERLIB.TEXTccicciiiieiireeerereersisissvessseeesesssssassssesesosssnns 2-18
UtIIIES covvvevevriiiieieieeieevicie e, 5-3, 5-16-5-18, 5-21-5-30
A"
VERTICAL MOVE DELAY ..cooovvviiiieeeeeviriiieeeeeeenn 5-44, 5-46
Volume:
L 3-4, 3-16, 3-30, 3-32, 3-35
WaINE: oo sssessmoppssassros s symeaRes 3-6, 3-7, 3-35
VOIUMES coiviiiiiiiieiieeeeeeecereeeeeeececeeeeeeee e e 3-11-3-13
\%%
Wild card charactersocoeeeeeeeeeeevvveiceceerenns 3-17-3-20, 3-34, 3-37,
3,44, 3,46, 3-52, 3-57
WINAOW ettt ettt et e e e et e s eeaasesetanaeseaannnes 4-3, 4-4
Work file ...oooovvivriiiiiiiiiiniii s 3-15, 3-47, 3-53, 4-11

Index-8

THREE-MONTH

LIMITED WARRANTY
TEXAS INSTRUMENTS
PROFESSIONAL COMPUTER
SOFTWARE MEDIA

TEXAS INSTRUMENTS INCORPORATED EXTENDS
THIS CONSUMER WARRANTY ONLY TO THE ORIGI-
NAL CONSUMER PURCHASER.

WARRANTY DURATION

The media is warranted for a period of three (3) months from
the date of original purchase by the consumer.

Some states do not allow the exclusion or limitation of inciden-
tal or consequential damages or limitations on how long an im-
plied warranty lasts, so the above limitations or exclusions
may not apply to you.

WARRANTY COVERAGE

This limited warranty covers the cassette or diskette (‘“media”)
on which the computer program is furnished. It does not ex-
tend to the program contained on the media or the accompany-
ing book materials (collectively the ‘‘Program’). The media is
warranted against defects in material or workmanship. THIS
WARRANTY IS VOID IF THE MEDIA HAS BEEN DAM-
AGED BY ACCIDENT, UNREASONABLE USE, NEG-
LECT, IMPROPER SERVICE OR OTHER CAUSES NOT
ARISING OUT OF DEFECTS IN MATERIALS OR WORK-
MANSHIP.

PERFORMANCE BY TI UNDER WARRANTY

During the above three-month warranty period, defective media
will be replaced when it is returned postage prepaid to a Texas
Instruments Service Facility listed below or an authorized
Texas Instruments Professional Computer Dealer with a copy
of the purchase receipt. The replacement media will be war-
ranted for three months from date of replacement. Other than
the postage requirement (where allowed by state law), no
charge will be made for the replacement. TI strongly recom-
mends that you insure the media for value prior to mailing.

WARRANTY AND CONSEQUENTIAL
DAMAGES DISCLAIMERS

ANY IMPLIED WARRANTIES ARISING OUT OF THIS
SALE INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE, ARE LIM-
ITED IN DURATION TO THE ABOVE THREE MONTH
PERIOD. TEXAS INSTRUMENTS SHALL NOT BE LIA-
BLE FOR SPECIAL, COLLATERAL, INCIDENTAL OR
CONSEQUENTIAL COSTS, EXPENSES, OR DAMAGES
INCURRED BY THE CONSUMER OR ANY OTHER USER
ARISING OUT OF THE PURCHASE OR USE OF THE
MEDIA. THESE EXCLUDED DAMAGES INCLUDE, BUT
ARE NOT LIMITED BY, COST OF REMOVAL OR REIN-
STALLATION, OUTSIDE COMPUTER TIME, LABOR
COSTS, LOSS OF GOODWILL, LOSS OF PROFITS, LOSS
OF SAVINGS, OR LOSS OF USE OR INTERRUPTION OF
BUSINESS.

LEGAL REMEDIES

This warranty gives you specific legal rights, and you may also
have other rights which vary from state to state.

—

TEXAS INSTRUMENTS
CONSUMER SERVICE FACILITIES

U.S. Residents: Canadian Residents:
Texas Instruments Service Geophysical Service Inc.
Facility 41 Shelley Road

P.O. Box 1444, MS 7758 Richmond Hill, Ontario
Houston, Texas 77001 Canada 1L4C 5G4

Consumers in California and Oregon may contact the following
Texas Instruments offices for additional assistance or infor-
mation.

Texas Instruments Texas Instruments
Consumer Service Consumer Service

831 South Douglas St. 6700 S.W. 105th

Suite 119 Kristin Square, Suite 110
El Segundo, California 90245 Beaverton, Oregon 97005
(213) 973-2591 (503) 643-6758

IMPORTANT NOTICE OF DISCLAIMER
REGARDING THE PROGRAM

The following should be read and understood before using the
software media and Program.

TI does not warrant that the Program will be free from error or
will meet the specific requirements of the purchaser/user. The
purchaser/user assumes complete responsibility for any deci-
sion made or actions taken based on information obtained us-
ing the Program. Any statements made concerning the utility
of the Program are not to be construed as expressed or implied
warranties.

TEXAS INSTRUMENTS MAKES NO WARRANTY,
EITHER EXPRESSED OR IMPLIED, INCLUDING BUT
NOT LIMITED TO ANY IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE, REGARDING THE PROGRAM AND
MAKES ALL PROGRAMS AVAILABLE SOLELY ON AN
“AS IS” BASIS.

IN NO EVENT SHALL TEXAS INSTRUMENTS BE LIA-
BLE FOR SPECIAL, COLLATERAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES IN CONNECTION WITH
OR ARISING OUT OF THE PURCHASE OR USE OF THE
PROGRAM. THESE EXCLUDED DAMAGES INCLUDE,
BUT ARE NOT LIMITED BY, COST OF REMOVAL OR
REINSTALLATION, OUTSIDE COMPUTER TIME, LA-
BOR COSTS, LOSS OF GOODWILL, LOSS OF PROFITS,
LOSS OF SAVINGS, OR LOSS OF USE OR INTERRUP-
TION OF BUSINESS. THE SOLE AND EXCLUSIVE LIA-
BILITY OF TEXAS INSTRUMENTS, REGARDLESS OF
THE FORM OF ACTION, SHALL NOT EXCEED THE
PURCHASE PRICE OF THE PROGRAM. TEXAS INSTRU-
MENTS SHALL NOT BE LIABLE FOR ANY CLAIM OF
ANY KIND WHATSOEVER BY ANY OTHER PARTY
AGAINST THE PURCHASER/USER OF THE PROGRAM.

COPYRIGHT

All Programs are copyrighted. The purchaser/user may not
make unauthorized copies of the Programs for any reason. The
right to make copies is subject to applicable copyright law or a
Program License Agreement contained in the software pack-
age. All authorized copies must include reproduction of the
copyright notice and of any proprietary rights notice.

TEXAS INSTRUMENTS PROFESSIONAL COMPUTER
UCSD p-System™ Operating System Reference Manual
Tl Part No. 2232395-0001

Original Issue: 15 April 1983

Your Name:

Company:

Telephone:

Department:

Address:

City/State/Zip Code:

Your comments and suggestions assist us in improving our prod-
ucts. If your comments concern problems with this manual, please
list the page number.

Comments:

This form is not intended for use as an order blank.

FOLD

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 6189 HOUSTON, TX

POSTAGE WILL BE PAID BY ADDRESSEE

Texas Instruments Incorporated
Attn: Marketing M/S 7896

P.O. Box 1444

Houston, TX 77001

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

FOLD

TEXAS INSTRUMENTS PROFESSIONAL COMPUTER
UCSD p-System™ Operating System Reference Manual
Tl Part No. 2232395-0001

Qriginal Issue: 15 April 1983

Your Name:

Company:

Telephone:

Department:

Address:

City/State/Zip Code:

Your comments and suggestions assist us in improving our prod-
ucts. If your comments concern problems with this manual, please
list the page number.

Comments:

This form is not intended for use as an order blank.

FOLD

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 618 HOUSTON, TX

POSTAGE WILL BE PAID BY ADDRESSEE

Texas Instruments Incorporated
Attn: Marketing M/S 7896

P.O. Box 1444

Houston, TX 77001

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

FOLD

TEXAS INSTRUMENTS PROFESSIONAL COMPUTER
UCSD p-System™ Operating System Reference Manual
Tl Part No. 2232395-0001

Original Issue: 15 April 1983

Your Name:

Company:

Telephone:

Department:

Address:

City/State/Zip Code:

Your comments and suggestions assist us in improving our prod-
ucts. If your comments concern problems with this manual, please
list the page number.

Comments:

This form is not intended for use as an order blank.

FOLD

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 6189 HOUSTON, TX

POSTAGE WILL BE PAID BY ADDRESSEE

Texas Instruments Incorporated
Attn: Marketing M/S 7896

P.O. Box 1444

Houston, TX 77001

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

FOLD

Texas Instruments reserves the right to change
its product and service offerings at any time
without notice.

TEXAS
INSTRUMENTS

2232395-0001 Printed in U.S.A.

——

