Part IV Technical Reference

PREFACE

CHAPTER 1

CHAPTER 2

IV-ii

Contents

Figures and Tables

vii

ix

The Pascal Environment
System Memory Use 2
Useful Memory Addresses 6
Main Memory Pointers 7
Auxiliary Memory Pointers 7
Identification Flags 8
Screen Mode Flag 8
Flag to Check the Pascal System Version 8
Flag to Check the Interpreter Version 8
Flag to Check the Computer Type 9
The “Ignore External Terminal” Flag 10
Interpreter Addresses 10
How Pascal Loads Code Segments 11

Disk Files

Reading a Disk Directory 14
Textfile Structure 16
Codefile Structure 17
Segments 18

Segment Dictionaries 21
Segment Numbers 27

Contents

13

CHAPTER 3

Interface Text 28
Code Parts 30
Procedure Dictionaries 32
Procedures 32
Attribute Tables 33
P-Code Procedure Attribute Tables 34
Assembly-Language Procedure Attribute Tables 35
Relocation Tables 37
Linker Information 38
Linker Information Fields 40
Global Address Linker Information Types 40
Host-Communication Linker Information Types 41
Procedure and Function Linker Information Types 43
Miscellaneous Linker Information Types 43

The P-Machine
The Evaluation Stack 47
Registers 47
The Program Stack and the Heap 48
SYSCOM 49
The Segment Table 50
Activation Records 51
Markstacks 53

Contents

45

IV-iii

CHAPTER 4 The P-Machine Instruction Set
Instruction Formats 58
Operand Formats 58
Formats of Variables on the Stack 59
Boolean 59
Integer 59
Long Integer 59
Scalar (User-Defined) 59
Char 60
Real 60
Pointer 60
Set 60
Records and Arrays 61
Strings 61
Formats of Constants in P-Code 61
Conventions and Notation 62
P-Machine Instructions 62
One-Word Loads and Stores 62
Constant 62
Local 63
Global 63
Intermediate 63
Indirect 64
Extended 64
Multiple-Word Loads and Stores (Sets and Reals) 64
Byte Array Handling 65
String Handling 65
Record and Array Handling 66

IV-iv Contents

57

Dynamic Variable Allocation 67
Top-of-Stack Arithmetic 68
Integers 68
Noninteger Comparisons 69
Reals 69
Strings 70
Logical 70
Sets 71
Byte Arrays 72
Record and Word Array Comparisons 72
Jurps 72
Procedure and Function Calls 73
System Support Procedures 75
Miscellaneous 76
Numerical Listing of Opcodes 76

Contents IV-v

APPENDIX 4A

IV-vi

Memory Maps

64K System Memory 82

128K System Memory 83

128K System Auxiliary Memory 84

Code Segments in a Codefile 85

Blocks in a Code Segment 86

Correlation Between Programs and Codefiles 87
Segment Dictionary 88

Interface Text in a Codefile 89

Code Part of a Code Segment 90

Procedure Code Structure 91

P-Code Procedure Attribute Table 91

6502 Procedure Attribute Table 92

Bytes and Words 93

Program Stack 94

Segment Table 95

Activation Record 96

Variable Allocation in an Activation Record 96

Contents

81

CHAPTER 1

CHAPTER 2

CHAPTER 3

Figures and Tables

The Pascal Environment 1

Figure 1-1

The Pascal 64K System 3

Figure 1-2 The Pascal 128K System: Main Memory 4

Figure 1-3 The Pascal 128K System: Auxiliary Memory 5

Table 1-1 Version Flags Set at Location —16606 ($BF22 Hex) 9

Table 1-2 Hardware Identification Bit Settings 10

Disk Files 13

Figure 2-1 A Typical Codefile on Disk 17

Figure 2-2 A Typical Codefile 19

Figure 2-3 Correlation Between Programs and Segments in
Codefiles 20

Figure 2-4 A Segment Dictionary 24

Table 2-1 Segment Number Assignment 28

Figure 2-5 Construction of Interface Text in a Codefile 29

Figure 2-6 The Code Part of a Code Segment 31

Figure 2-7 A Typical Procedure 33

Figure 2-8 P-Code Procedure Attribute Table 34

Figure 2-9 An Assembly-Language Procedure Attribute Table 36

The P-Machine 45

Figure 3-1 Relationship of Words and Bytes 46

Figure 3-2 The Program Stack and Heap With Four Active
Procedures 49

Figure 3-3 The Segment Table 51

Figure 3-4 An Activation Record 52

Figures and Tables IV-vii

CHAPTER 4

APPENDIX 4A

IV-viii

Figure 3-5 The Order of Local Variable Allocation in an Activation
Record 53

The P-Machine Instruction Set 57

Table 4-1 P-Codes in Numerical Order 76

Memory Maps 81

Figures and Tables

64K System Memory 82

128K System Memory 83

128K System Auxiliary Memory 84

Code Segments in a Codefile 85

Blocks in a Code Segment 86

Correlation Between Programs and Codefiles 87
Segment Dictionary 88

Interface Text in a Codefile 89

Code Part of a Code Segment 90

Procedure Code Structure 91

P-Code Procedure Attribute Table 91

6502 Procedure Attribute Table 92

Bytes and Words 93

Program Stack 94

Segment Table 95

Activation Record 96

Variable Allocation in an Activation Record 96

Preface

The Technical Reference is written for more advanced users of the
Apple Il Pascal 1.3 system. It describes the structure and operation of the
P-machine and parts of the Pascal operating system. Before you use the
information it contains, you should be familiar with the other parts of the
Apple Il Pascal 1.3 Manual.

Many of the concepts explained in this Technical Reference are intimately
interrelated. You should first briefly read the entire book to gain an
appreciation of how the concepts are interrelated before attempting to
understand any specific concept in detail.

Here is an overview of what this part of the Apple I Pascal 1.8 Manual
contains. It consists of four chapters:

o2 Chapter 1: The Pascal Environment. Describes how the Pascal 1.3
system uses the Apple Il memory and gives some useful memory
addresses. Describes how code segments are loaded into memory.

o Chapter 2: Diskfiles. Describes in detail the structure and format of
Pascal disk directories, textfiles, and codefiles.

o Chapter 3: The P-machine. Introduces the concept of the Pascal
P-Machine. Describes how the P-Machine resides and works within the
structure of Apple Il memory.

0 Chapter 4: The P-machine Instruction Set. Gives opcodes and
implementation information for all P-machine instructions.

Preface IV-ix

Chapter 1 The Pascal Environment

V-1

The Apple Pascal system is a version of the UCSD Pascal system, a
pseudomachine-based implementation of Pascal. This means that the
Compiler converts Pascal program text into compact pseudocode or
P-code to be executed by the pseudomachine or P-machine. The
P-machine is implemented by the Pascal Interpreter—a program written in
the native code of the Apple II's 6502 microprocessor. Every host computer
operating under a version of UCSD Pascal has such an Interpreter that
makes the host computer appear, from the viewpoint of a program being
executed, to be a P-machine. The Interpreter is contained in the file
SYSTEM.APPLE.

The Pascal operating system and various utility programs are also written
in Pascal and run on the same Interpreter. The Pascal Compiler, Assembler,
and Linker together produce completed codefiles of Pascal programs.
Pascal codefiles are stored on external storage media, such as disks. The
structure of codefiles is explained in Chapter 2.

To execute a Pascal program, Pascal loads the code of the program’s main
segment from the codefile into memory. It then begins executing the
program code, one instruction at a time. As it finds that additional segments
of the disk codefile are needed in memory for execution of the program, it
loads the necessary segments. The process by which Pascal loads
executable code into memory is explained at the end of this chapter.

System Memory Use
S
Apple Pascal comes in two versions: a 64K system and a 128K systern.
Either system will run on Apple Il computers with 128K of memory; only
the 64K system will run on 64K models. The process of loading one or the
other system is described in Part I of this manual, Getting Started.

The two systems use memory differently. 64K system memory usage is
shown in Figure 1-1. 128K system memory usage is shown in Figures 1-2
and 1-3.

V-2 Chapter 1: The Pascal Environment

Figure 1-1. The Pascal 64K System

External Language
Card (Apple Il or
Apple Il Plus) or

Main Memory
(Apple Ile or
Apple llc)

Main
Memory

System Memory Use

(

P-code
Interpreter
and
part of the
Operating
System

1/0 Device
Addresses & ROMs

SYSCOM

part of the
Operating System

Program Stack
(builds down)
P-code, 6502 code
and data

Heap
(builds up)

Text Screen

Disk & Console
Buffers

Evaluation Stack
(builds down)

Zero Page

$FFFF 64K

$D000 52K

$CFFFF
$C0000 48K

~+— KP (Top of Program Stack)

-+— NP (Top of Heap)

$0800 2K

$0400 1K

$0200 0.5K

-<+— SP (Top of Evaluation Stack)

$0100 0.25K

$0000 0K

Iv-3

Figure 1-2. The Pascal 128K System: Main Memory

Poode —) =7 S
Interpreter
and
part of the
Operating
System
1/0 Device $D000 52K
Addresses & ROMs $C000 48K
SYSCOM
Program Stack
(builds down)
data and
6502 code
————————————————— -+— KP(Top of Program Stack)
Main Free Memory
4
Memory 14 _ ~<— NP (Topof Heap)
Heap
(builds up) $0800 2K
Text Screen $0400 1K
Disk & Console |
Buffers $0200 0.5K
Evaluation Stack
(Builds down)
- - SP (Top of Evaluation Stack)
$0100 0.25K
| Zero Page $0000 0K

V4 Chapter 1: The Pascal Environment,

Figure 1-3. The Pascal 128K System: Auxiliary Memory

(T UUSFRFFRK
Reserved
for
System
Use
$D000 52]5 L
1/0 Device
Addresses & ROMs _ _$_COOOO 48K L
Part of the
Operating System
Auxiliary P-code
Memory { (builds down)
————————————————— -+-- CODEP
Free Memory
S08002K
Text Screen $0400 1K
System Use $0000 0K

The principal difference in memory usage between the 64K and 128K Apple
Pascal systems is this. In the 64K system, a single area of free memory is
used by P-code, 6502 code, and data. In the 128K system there are two areas
of free memory; one is used only by P-code, and the other is used only by
6502 code and data.

Here are some additional points about memory usage to supplement the
information in Figures 1-1, 1-2, and 1-3:

o In both systems, pointer NP points to the top of the heap space. Pointer
KP points to the top of the program stack. In the 64K system the stack
contains P-code, 6502 code, and data; in the 128K system it contains only
6502 code and data. In the 128K system another pointer, CODEP, points
to the top of the area used by P-code. The locations of these pointers are
given below under “Useful Memory Addresses.”

o The beginning of the heap ($0800) is shown for 80-column mode. In
40-column mode the heap starts 1K higher, at $0C00.

System Memory Use V-6

o If a program contains the declaration USES TURTLEGRAPHICS, the
beginning of the heap is set to $4000 (16K) when the TURTLEGRAPHICS
unit is loaded. The space below that is used for the high-resolution
graphics memory.

o In the 128K system, using either Compiler swapping or operating system
swapping adds to the space available for P-code, not the space available
for data and 6502 code.

Useful Memory Addresses

V-6

There are several addresses in machine memory that contain information
you may find useful. You can read them with the PEEK function; in some
cases you can change their values with the POKE procedure. PEEK and
POKE are described in Part 111, Chapter 16. All memory addresses are given
in hexadecimal form.

$005A NP: Two-byte pointer to top of Pascal heap in main memory.

$005C KP: Two-byte pointer to top of Pascal program stack in main
memory.

$0060 CODEP: Two-byte pointer to lowest used word in auxiliary memory.
Its possible value range is $C000 to $300.

$0062 CODELOW: Two bytes containing the lower limit value for CODEP.
Memory below this point is reserved.

$BFOE Screen Mode: One-byte flag to show whether current screen
display is 80 columns or 40 columns wide.

$BF21 Pascal System: One-byte flag to show which version of Apple
Pascal is being used.

$BF22 Interpreter Version: One-byte flag to show which Pascal
Interpreter is running, and other information.

$BF31 Computer Type: One-byte flag to show which Apple computer
model is being used.

Where a two-byte address is shown, the memory location given is that of
the less-significant byte. The more-significant byte is located one memory
address higher.

Use of these memory locations is discussed in more detail in the sections
that follow.

Chapter 1: The Pascal Environment

Main Memory Pointers
L |

NP points to the top of the Pascal heap. The heap grows toward higher
memory addresses from these locations:

o $0800 if the screen output is in 80-column mode.
o $0C00 if the screen output is in 40-column mode.
o $4000 if TURTLEGRAPHICS is being used.

The heap is discussed in more detail in Chapter 3.

KP points to the top of the Pascal program stack. The stack grows toward
lower memory addresses. Its starting point is below $C000; the actual
location depends on how much of the operating system is stored between it
and $C000.

When the values of NP and KP meet, free memory is used up and an
execution error occurs.

Auxiliary Memory Pointers
L]

The Pascal 128K system uses CODEP and CODELOW to manage use of
auxiliary memory. CODEP points to the lowest used word in the auxiliary
memory space. CODELOW contains the lowest permissible value for
CODEP. CODELOW defaults to $0800.

Because CODEP points to the lowest used word in the auxiliary memory
space, it begins with the value of $C000 and works down until it hits the
value CODELOW.

Your program can examine CODEP and CODELOW if it needs to. If your
program runs under the 128K system, it cannot change CODEP, but it can
change CODELOW if it uses part of the auxiliary memory. For example, to
execute a program that uses the 560-dot high-resolution screen, you would
change CODELOW to $4000 and then change it back to its original value
after the program has run.

If you are using the 64K Pascal system on a machine with 128K of memory,
you can use CODEP as a zero-page pointer to the auxiliary memory space.
This feature is useful if you are managing this space yourself, rather than
using the Pascal 128K system to manage it.

Useful Memory Addresses V-7

Iv-8

Here are several important reminders about your use of these variables:

o You must use even numbers when giving values to these variables
because they point to words, not bytes.

O The system does not restore CODELOW or CODEP to their original values
after executing your program. Whenever you have changed one of these
variables, be sure to put the value back to what it was before your
program ends.

o If your program runs under the 128K system, it can change only
CODELOW; CODEP is changed only by the Pascal system.

Identification Flags
|

Both the 64K and the 128K system set four identification flags in main
memory. Your program can use PEEK to read these flags. They are
described below.

Screen Mode Flag

A byte at memory location — 16626 ($BFOE hex) tells whether Pascal is
operating in 40-column display mode or 80-column mode. If it is in
40-column mode, the value of the byte is 0; otherwise it is 4.

Flag to Check the Pascal System Version

When Pascal is started up, a flag is set at memory address —16607 ($BF21
hex) to identify which Pascal version is the one being used.

o If Pascal 1.3 is operating, the value of the byte at that location is 4.
o If Pascal 1.2 is operating, the value of the byte at that location is 3.
o If Pascal 1.1 is operating, the value of the byte at that location is 2.

Flag to Check the Interpreter Version

To identify which Pascal Interpreter is executing, another flag is set at
startup time, at memory address — 16606 ($BF22 hex). This flag uses
different bit settings to identify the variations being supported, as Table 1-1
shows.

Chapter 1: The Pascal Environment

Table I-1. Version Flags Set at Location — 16606 ($BF22 Hex)

Bit Set To Indicates

0 0 The Pascal development system is executing,
0 1 The Pascal run-time system is executing.

1 1 Floating-point operations are not supported.

2 1 Operations using sets are not supported.

5 1 The 48K Pascal Interpreter is executing.

6 0

b 0 The 64K Pascal Interpreter is executing.

6 0

5 0 The 128K Pascal Interpreter is executing.

6 1

7 0 All console output is directed to the text screen
pages, an external terminal, or an 80-column
card.

7 1 All console output is directed to the

high-resolution pages.

Flag to Check the Computer Type

By identifying which machine it is running on, an application program for
the Apple Ile or Apple Ilc can take advantage of the computer’s unique
features but retain the capacity to run on the Apple I or Apple II Plus.
Memory location — 16591 ($BF31 hexadecimal) contains a flag you may use
to determine from within a program whether the computer is an Apple II,
Apple Ile, or Apple Ilc. If the computer is a [le, this same memory location
also specifies whether the computer has an 80-column text card and
whether it has the auxiliary 64K of RAM memory available on the Apple
Extended 80-Column Text Card.

The flag bit settings listed in Table 1-2 are made whenever the Pascal
system starts up. For the systems listed in the left colurn, the byte at
memory location — 16591 ($BF31 hex) has the bit settings shown on the
right. Bits not listed are set to 0.

Useful Memory Addresses V-9

Table 1-2. Hardware Identification Bit Settings

System Bit7 Bit6 Bitl Bit0
Apple llc 1 1 1 1
Apple lle 1 0 0 0
with 80-column text card 1 0 0 1
with 128K memory 1 0 1 1
Apple Il or IT Plus 0 0 0 0

For Future Use: 1t is possible for the computer-type flag to be set so that
bits 7, 6, 5, 1, and 0 are all set to 1. This value is currently unused, but is
reserved for future use.

The “Ignore External Terminal” Flag

.|

By setting a bit located on the Pascal startup disk, you can force Pascal to
operate in 40-column mode, even though the hardware configuration may
have 80-column capabilities. This bit is located in the directory area of the
startup disk at block 2, byte 25, bit 3 (counting always from 0). If it is set

to 1, Pascal ignores any 80-column firmware and operates only in 40-column
mode.

You can use the utility program SET40COLS to set the “ignore external
terminal” flag. SET40COLS is described in Part II of this manual, Chapter 9.

Interpreter Addresses
]

The Pascal Interpreter contains a 3-word table that gives entry points of
interest to the advanced programmer. You can access these entry points by
using the Assembler directive .INTERP. The following list gives their
meanings.

INTERP+0 Address of the Interpreter’s run-time execution error
posting routine. The user can load the A register with
the error number and execute the 6502 instruction
JSR @. INTERP to invoke the system error message
routine.

INTER+2 Address of the BIOS (input/output handling routine)
dispatching table

IV-10 Chapter 1: The Pascal Environment

INTERP+4 Address of the location that contains the address of
SYSCOM, the area used for communication between
the Interpreter and the Pascal operating system

How Pascal Loads Code Segments

Apple Pascal loads code segments from disk into memory two ways,
depending on whether the 64K system or the 128K system is running.

With the 64K system, Pascal simply transfers each segment from the
codefile to the program stack, moving the KP pointer down as it does so.

With the 128K system, segment loading is more complicated. Pascal follows
these steps:

1. It transfers as much of the segment as it can, in 512-byte blocks, from
the codefile to the stack /heap space. For this transfer to work, there
must be at least 512 bytes of memory available.

2. It transfers the segment from the stack /heap space to auxiliary
memory.

3. It repeats steps 1 and 2 until the segment is completely loaded.

4. If the segment contains 6502 code, Pascal copies the 6502 code to the
program stack.

5. If Pascal has copied 6502 code out of the segment, it moves the
segment’s P-code toward higher memory addresses, thereby reclaiming
the space occupied by the 6502 code.

The following are potential errors that may occur in the segment loading
process:

o With the 64K system, there may not be enough stack space to hold the
segment.

o With the 128K system, there may be less than 512 bytes of space
between the stack and heap pointers.

o With the 128K system, there may not be enough stack space to hold the
6502 code.

o With the 128K system, there may not be enough space in auxiliary
memory to hold the entire segment.

How Pascal Loads Code Segments IV-11

If one of the first three errors occurs, the execution error message
Stack overflow

or

Execution error #4

will appear on your screen.

If the fourth error occurs, the execution error message
Codespace overflow

or

Execution error #16

will appear on your screen.

Iv-12 Chapter 1: The Pascal Environment

Chapter 2 Disk Files

Iv-13

This chapter describes how Apple Pascal stores text and code in disk files.
It covers three major areas:

o How to access a Pascal disk directory

o The structure of textfiles created by the Apple Pascal Editor

o The structure of codefiles created by the Apple Pascal Compiler and
Linker

Reading a Disk Directory

[V-14

L.]
A disk directory is simply an array of records, each of which contains
information about one file stored on the disk. By declaring a variable of
congruent type, you can use UNITREAD to transfer the contents of a disk
directory to memory. Your program can then access it. Here are the
necessary declarations:

Chapter 2: Disk Files

{First, some general declarations relating to disk directories:}

CONST maxdir = 77; {Maximum number of entries in directory}
vidleng = 7; {Number of characters in volume ID}
tidleng = 15; {Number of characters in title ID}
fblksize = 512; {Standard disk block length}
dirblk = 2; {Directory starts at this disk-block address}
TYPE daterec = PACKED RECORD {Volume/file data mark}
month: #..12; {# = meaningless date}

day: 8..31; {Day of month}

year: @..108 {189 = dated volume is temporary}
END {daterec};

vid = STRING (vidlengl; {Volume ID}
dirrange = @..maxdir; {Possible number of files on disk}
tid = STRING [tidlengl; {Title ID}

filekind = [untypedfile, xdskfile, codefile, textfile, infofile,
datafile, graffile, fotofile, securedirl;

{Now, the actual layout of the directory entry for each file stored on
the disk, plus the type declaration for the directory as a whole. Each

entry is a packed record with a variant part, and the whole directory
is an array of such records.}

direntry =
PACKED RECORD
dfirstblk: integer; {1st physical disk address}

dlastblk: integer; {Points to block after last used block}
CASE dfkind: filekind OF

securedir, untypedfile: {Volume info—only in dirl@1}

[fillert: #..2048; {Waste 13 bits for compatibility}
dvid: vid; {Name of disk volume}

deovblk: integer; {Last block in volume}

dnumfiles: dirrange; {Number of files in directory}
dloadtime: integer; {Time of last access}

dlastboot: daterecl]; {Most recent date setting}
xdskfile, codefile, textfile, infofile, datafile,

graffile, fotofile: {Regular file info}
[filler2: 0..1024; {Waste 12 bits for compatibility}
status: boolean; {For filer wildcards}
dtid: tid; {Name of file}
dlastbyte: 1..fblksize; {Num bytes in last file block}
daccess: daterecl {Date of last modification}

END
directory = ARRAY [dirrangel] OF direntry;

Reading a Disk Directory

IV-15

VAR

DIRINFO

DEVNUM :

: DIRECTORY;

INTEGER;

Having made the foregoing constant and type declarations, your program
may now declare an array variable DIRINFO of type DIRECTORY and an
integer variable DEVNUM to supply the volume number of a disk drive.

- UNITREAD will transfer the contents of the disk directory to DIRINFO:

{Array variable to hold directory info}
{Volume number of disk drive}

UNITREAD (DEVNUM, DIRINFO, SIZEOFIDIRINFO], DIRBLK);

IV-16

Textfile Structure
O
The special format of a textfile is as follows:

a There are two blocks (1024 bytes) of header information at the

beginning of the file. This information is used by the Pascal Editor, The
Pascal system creates the header page when a user program opens a
textfile. The header page is transferred only during disk-to-disk transfers;
transfers to character devices, such as the console or printer, always
omit the header page.

o The rest of the file consists of two-block pages. Each page contains lines

of text, separated from each other by RETURN characters (ASCII 13). No
line ever crosses a page boundary; thus a page contains only whole lines.
After the last line on a page, the remainder of the page is filled with NUL
characters (ASCII 00). READ and READLN skip the NUL characters, and
WRITE and WRITELN provide them automatically. Thus this page
formatting is normally invisible to a Pascal program.

O A sequence of leading spaces in a line may be compressed to a DLE-blank

code. This code consists of a DLE control character (ASCII 16) followed
by one byte containing the number of spaces to indent plus 32 (decimal).
Using this code saves a considerable amount of space in files where
indentation occurs frequently. The Editor is the main creator of
DLE-blank codes; it usually outputs a DLE-blank code where a sequence
of spaces occurs at the beginning of a line. However, the DLE-blank code
is optional; some lines may have it and others may have space characters
instead. Also, a line with no indentation may or may not be preceded by a
DLE character and an indent code value of 32 (meaning 0 indentation).

Chapter 2: Disk Files

GET, READ, and READLN convert DLE-blank coding to actual spaces on
input from a textfile to a file variable of type TEXT or INTERACTIVE; thus
the compression of spaces is also normally invisible to a Pascal program.

Various parts of the system that deal with files of characters (such as the
Editor and the Compiler) are designed to take advantage of the special
textfile format. For most purposes, it is recommended that you use the
textfile type for any character files created by your programs. The name of
every textfile must end in . TEXT.

Codefile Structure

L]
The remainder of this chapter is about Apple Pascal codefiles. A codefile
may be any of the following:

o Linked files composed of segments ready for execution.

o Library files with units that may be used by programs in other
codefiles.

o Unlinked files created by the Apple Pascal Compiler or Assembler.

A typical disk codefile resulting from the compilation of a program is
diagrammed in Figure 2-1.

Figure 2-1. A Typical Codefile on Disk

high disk addresses

first segment

sixteenth segment

fifteenth segment

third segment

second segment

segment dictionary

low disk addresses

Codefile Structure IV-17

All codefiles (linked and unlinked) consist of a segment dictionary in
block 0 of the codefile, followed by a sequence of one to 16 code segments.
The host program is compiled into one code segment, and each SEGMENT
procedure, SEGMENT function, or Program Unit is translated into
another code segment. The ordering of code segments in the codefile (from
low disk address to high disk address) is determined by the order in which
the Compiler encounters the executable code of each SEGMENT procedure,
SEGMENT function, or Program Unit when compiling a program. This order
may be changed by using the LIBRARY program described in Part II,
Chapter 8.

Each segment begins on a boundary between disk blocks (a block is 512
contiguous 8-bit bytes). Any segment may occupy up to 64 blocks.

Segments

IV-18

b ________________________
A segment is either a code segment or a data segment. Program code is
stored in code segments. Every program consists of at least one code
segment, and some programs consist of many code segments. A code
segment may contain either P-code, 6502 code, or a combination of both.
Code segments may have three parts: interface text, actual P-code and/or
6502 code, and Linker information (Figure 2-2). These parts appear in
this order on the disk, although not all types of code segments have all three
parts. For example, interface text is present only in the code segments of
Program Units. Code segments may be either linked or unlinked.

Data segments are areas of memory that are set aside at execution time as
storage space for the local data of Intrinsic Units. In a disk codefile, data
segments have only an entry in the segment dictionary: they do not occupy
any blocks on the disk because they have no code part, interface text, or
Linker information associated with them.

Chapter 2: Disk Files

Figure 2-2. A Typical Codefile

high disk addresses
Second Code Segment Block 6 Interface text
Block 5 Linker information
Block 4 code part
Block 3
Block 2 interface text
(unit segments only)
First Code Segment Block 1
byte 511
Block 0 segment dictionary
byte 0

low disk addresses

By the Way: Figure 2-2 is not meant to imply that all code segments are
five blocks long; the code part of a segment can contain up to 64 blocks.

Whenever a complete program codefile is produced by the Compiler (and
Assembler and Linker, if necessary), the following events occur:

o The user program or Program Unit results in one code segment in the
codefile. This includes the user program’s non-SEGMENT procedures
and functions (MULT2 and STOR in Figure 2-3), and the user program
body itself (MAIN in Figure 2-3).

o Each Pascal SEGMENT procedure or function results in another code
segment in the codefile (BYFOUR and DIVID below).

o Each Regular Unit that the program USES is linked with the codefile and
results in a code segment in the codefile (REGUNIT below). Each
Intrinsic Unit that the program USES does not produce additional code
segments in the program’s codefile. Intrinsic Units are held as segments
In program libraries, shared libraries, and the SYSTEM.LIBRARY file,
and accessed by the program at execution time (MAINLIBIU below).

Segments Iv-19

Figure 2-3. Correlation Between Programs and Segments in Codefiles

Source text files Segments in codefile
after linking

PROGRAM MAIN;
USES MAINLIBIU,REGUNIT;

SEGMENT FUNCTION DIVID; REGUNIT code segment
BEGIN
END‘ “w "
SEGMENT PROCEDURE BYFOUR; MAIN “outer” code segment
BEGIN .

MULT?2 function
END; STOR procedure

FUNCTIDN MULT2;
BEGIN

BYFOUR code segment

END;

PROCEDURE STOR;
BEGIN
DIVID code segment

END;

BEGIN

END

UNIT REGUNIT;
BEGIN

END. Segment in library

UNIT MAINLIBIU;INTRINSIC
CODE 48 DATA41;

BEGIN
MAINLIBIU code segment

END

1V-20 Chapter 2: Disk Files

Segments are not nested in codefiles as they are in programs. Instead, every
segment is a separate contiguous area of code and does not contain any
other segments. For example, if a SEGMENT procedure contains another
SEGMENT procedure, the compiled result comprises two distinct code
segments, even though they are nested lexically in the source program.

Segmenting a program does not change the computation it performs. When
a SEGMENT procedure, SEGMENT function, or Intrinsic Unit is called
during the execution of a program, the Pascal Interpreter checks to see if
that segment is already in memory due to a previous (and still active)
invocation of the segment. If it is, control is transferred and execution
proceeds; if not, the appropriate code segment is loaded into memory from
the disk codefile before the transfer of control takes place. When no more
active invocations of a segment exist, its code is removed from memory.

The following sections describe the portions of a code segment in greater
detail. First the segment dictionary is described. Then the parts of a code
segment are presented in the order in which they may occur in a codefile:
the interface text, the code part, and finally the Linker information. The
code part description is divided into sections describing the similarities and
differences between the code parts of P-code and assembly-language
procedures.

Segment Dictionaries

“
Every codefile (including library files) has a segment dictionary in

block 0 that contains information needed by the Pascal system to load and
execute the segments in that codefile. A segment dictionary has 16 slots,
each of which either contains information about one segment, or is empty.
Each non-empty slot includes the segment’s name, kind, size (in bytes), and
location in the codefile. The location of a code segment is given as the block
number of the first block in the code part. Blocks in a cedefile are numbered
sequentially from 0, with block 0 as the segment dictionary. The location of
a data segment is given as 0.

The information that describes each segment is contained in five different
arrays within the segment dictionary. All information describing a segrent
is retrieved by selecting corresponding elements from each of these arrays.

Because a segment dictionary has 16 slots, numbered 0 through 15, one
codefile can contain at most 16 segments. Intrinsic Units used by a program
do not require entries in the segment dictionary of the program’s codefile,
because Intrinsic Unit code segments are in a library file, and appear in the

Segment Dictionaries IV-21

1V-22

library file's segment dictionary. Therefore, a program can have a
maximum of 16 segments, not counting segments from Intrinsic Units.
Counting Intrinsic Units, the maximum number of segments is limited by
the total number of segment numbers in the system—=64 for the 128K
system, 32 for the 64K system. However, the system reserves 12 segment
numbers (0, 2 through 6, and 58 through 63) for its own use. The remaining
segments may appear in a program codefile, a program library file,
SYSTEM.LIBRARY, or library files specified in a Library Name File. Each
of these codefiles can contain a maximum of 16 segments.

The following Pascal record declaration represents a segment dictionary.

Chapter 2: Disk Files

RECORD

DISKINFO: ARRAYIL®..15]1 OF
RECORD
CODEADDR: INTEGER; {location of code part}
CODELENG: INTEGER {length of code part}

END;

SEGNAME: ARRAY[@..15] DF PACKED ARRAY[D..7]1 OF CHAR; {segment name}

SEGKIND: ARRAY [@..151 OF {type of segment}
C(LINKED, {fully executable segment}
HOSTSEG, {user program code segment}
SEGPROC, {unused}
UNITSEG, {compiled Regular Unit}
SEPRTSEG, {separate procedures and functions}
UNLINKED-INTRINS, <{unlinked Intrinsic Unit}
LINKED-INTRINS, {linked Intrinsic Unit}
DATASEG) {data segment}

TEXTADDR: ARRAY[@..15] OF INTEGER; {address of the first
block of interface text, if any}

SEGINFO: PACKED ARRAY[®..15] OF PACKED RECORD
SEGNUM: @..255; {segment number}

MTYPE: 8..15; {machine type}

UNUSED: p..1; {unused}

VERSION: 0..7 {version number}
END;

INTRINS-SEGS: SET OF @..ss; {intrinsic segment numbers needed for
execution. ss5=63 for 128K system;
s5=31 for 64K system}

FILLER: ARRAY [8..ff]1 OF INTEGER; {unused bytes filled with
zeros. ff=67 for 128K
system, ff=69 for 64K}

COMMENT: PACKED ARRAY [8..791 OF CHAR <{comment}

END;

Figure 2-4 shows the structure of a segment dictionary.

Segment Dictionaries v-23

Figure 2-4. A Segment Dictionary

DISK INFO

SEGNAME

SEGKIND

TEXTADDR

SEGINFO

INTRINS-SEGS

FILLER

COMMENT

bi

=

bit

low disk addresses
high byte low byte
CODEADDR(block number)
(segment 0)
CODELENG(in bytes)
: (segments 1-15) .
1st character Oth character
3rd character 2nd character
(seg0)
5th character 4th character
Tth character 6th character
: (segments 1-15) :
SEGKIND (segment 0)
: (segments 1-15) .
TEXTADDR (segment 0)
. (segments 1-15) .

[VERSION MTYPE SEGNUM

51413121110 9 8 76 56 43 2 10
. (segments 1-15)

151413121110 9 8 76 5 43 2 10
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

lIt character Oth character J
79th character 78th character
high disk addresses

1V-24 Chapter 2: Disk Files

word

0

32
33
34
35

96

112

128

144
145
146
147
148

216

255

By the Way: Figure 2-4 shows lower addresses at the top (in contrast to
others in this manual) to match the structure of the Pascal segment
dictionary declaration.

Each segment dictionary is composed of

o Five 16-element arrays—one element for each segment slot in the
segment dictionary of a codefile;

o Information about the intrinsic segments used by the codefile;
o An optional comment.

Each element in the DISKINFO array consists of two words that describe
the length and location of the segment within the codefile. For code
segments, the CODEADDR field contains the block number of the start of
the code part, and the CODELENG field contains the number of bytes in the
code part of the segment. For data segments, the CODEADDR field is 0, and
the CODELENG field contains the number of bytes to be allocated for data
at execution time (the length of the data segment). Unused slots have their
CODEADDR and CODELENG fields set to 0 (CODELENG=0 defines an
empty slot).

Each element of the SEGNAME array is an eight-character array that
contains the first eight characters of the user program, unit, SEGMENT
procedure, SEGMENT function, or assembly-language procedure name that
was translated into the corresponding segment. If the name is shorter than
eight characters, it is padded on the right by spaces; if the name is longer
than eight characters, it is truncated to the first eight characters. Unused
segment slots have SEGNAME fields filled with eight ASCII space
characters.

The SEGKIND array describes the type of segment. The possible values are
as follows:

0: LINKED. A fully-executable segment. Either all references to Regular
or Intrinsic Units have been resolved by the Linker, or none were

present.

1. HOSTSEG. The main segment of a user program with unresolved
external references.

2. SEGPROC. A SEGMENT procedure or function. This type is currently
not used.

3 UNITSEG. A compiled Regular (as opposed to Intrinsic) Unit.

Segment Dictionaries V25

4: SEPRTSEG. Separately assembled procedures or functions, including
EXTERNAL functions and procedures, and mixed segments of linked
Pascal and assembly-language code. Assembly-language codefiles are
always of this type.

5. UNLINKED-INTRINS. An Intrinsic Unit containing unresolved calls to
assembly-language procedures or functions.

6: LINKED-INTRINS. An Intrinsic Unit properly linked with its called
procedures and functions.

7. DATASEG. A data segment of an Intrinsic Unit. The segment
dictionary entry specifies the amount of data space (in bytes) to
allocate.

The TEXTADDR array of integers contains pointers to the block number of
the start of the interface text of each Regular or Intrinsic Unit. The last
block number of the interface text can be calculated by subtracting 1 from
the value in the corresponding CODEADDR field. Interface text is described
in detail below. Only unit segments have interface text; the TEXTADDR
field is O for all other types of segments.

The SEGINFO array contains one word of additional information about each
segment. Each word is composed of four fields:

o Bits 0 through 7 (the low-order byte) of each word specify the segment
number (SEGNUM). This is the position the code segment will occupy in
the segment table at execution time. In the 128K system the segment
table is 64 entries long, hence valid numbers for the SEGNUM field are
0..63. In the 64K system the segment table is 32 entries long, hence valid
nurbers for the SEGNUM field are 0..31. Segment tables are described in
Chapter 3.

o Bits 8 through 11 of the second byte in the SEGINFO word specify the
machine type (MTYPE) of the code in the segment. The machine types
are:

0: Unidentified code, perhaps from another Compiler.
1: P-code, most significant byte first.

2: P-code, least significant byte first (a stream of packed ASCII
characters fills the low byte of a word first, then the high byte).
This kind of P-code is used by the Apple II family.

3through 9: Assembled native code, produced from
assembly-language text. Machine type 7 identifies
native code for the 6502 microprocessor.

1V-26 Chapter 2: Disk Files

o Bit 12 of the SEGINFO word is unused.

o Bits 13 through 15 of the SEGINFO word contain the version number of
the system. The current version number is 6, indicating Appie II
Pascal 1.3.

The SEGINFO array is the last of the five arrays that contain 16 elements,
one element for each slot. The remainder of the segment dictionary
contains information pertinent to the execution of the entire codefile.

In the 128K system, the INTRINS-SEGS field consists of four words (64
bits); in the 64K system it consists of 2 words (32 bits). These words specify
which Intrinsic Units are needed to execute the codefile. Each Intrinsic Unit
in a program library file, SYSTEM.LIBRARY, or a library file specified in a
Library Name File is identified by a segment number (or two segment
numbers if the Intrinsic Unit has both a code and data segment). Each one
of the 64 bits in these words corresponds to one of the 64 possible intrinsic
segment numbers. If the nth bit is set, the codefile needs the Intrinsic Unit
whose segment number is n in order to execute. Bits corresponding to the
segment numbers of unused Intrinsic Units are zeroed.

The FILLER array contains 68 unused words in the 128K system, 70 in the
64K system.

The COMMENT array contains text provided by a $C Compiler option or
when the LIBRARY program is used. The $C Compiler option is described in
Part 11, Chapter 5.

Segment Numbers

“
At execution time, every segment has a segment number from 0 to 63 in the
128K system, or 0 to 31 in the 64K system. No two segments in the program
can have the same number. Segment numbers are assigned as follows:

a The user program itself is segment 1.

o The segments used by the Pascal operating system are 0, and 2 through
6. b8 through 63 are reserved.

Segment Numbers v-27

The segment number of an Intrinsic Unit segment is determined by the
unit's heading when the unit is compiled. These numbers can be found
by using the LIBMAP utility program to examine the segment dictionary
of the library to which the unit belongs.

The segment numbers of Regular Unit segments and of SEGMENT
procedures and functions within the program are automatically assigned
by the system as the program is compiled and linked. They begin at 7
and ascend. Note that after a Regular Unit is linked with a program, it
may not have the same segment number that was shown for it in the
library’s segment dictionary (when examined with the LIBMAP utility),
because the Linker may reassign segment numbers of Regular Units.

Pascal’s assignment of segment numbers is summarized Table 2-1.

Table 2-1. Segment Number Assignment

Segment

Number Assignment

0 Pascal operating system

1 User program

2..6 Pascal operating system

7..29 Units, SEGMENT procedures and functions
30 PASCALIO unit

31 LONGINTIO unit

32..57 Units, SEGMENT procedures and functions
58...63 Reserved

Normally, only when writing an Intrinsic Unit do you need to specify
segment numbers. The factors that go into your choice of Intrinsic Unit
segment numbers are set forth in Chapters 12 and 15 of Part IIL.

Interface Text

Iv-28

Code segments of Program Units may have interface text before their code
part; host program segments, SEGMENT functions and procedures, and
EXTERNAL procedures and functions never have interface text. The
interface text contains the ASCII text of the INTERFACE section in the
source text of a Program Unit. The construction of an interface text of a
segment from its source text (by the Compiler) is shown in Figure 2-5.

Chapter 2: Disk Files

Figure 2-5. Construction of Interface Text in a Codefile

page n
block n

block n+1

pagen+1
block n+2

block n+3

page n+2
biock n+4

block n+5 [

Source Textfile

INTERFACE
USES APPLESTUF

Interface Text in Codefile

USES TRANSCEND
CONSTANT PI=3
CONSTANT E=2.7
TYPE ARRAYSIZE
VAR INRECORD:]
[— VAR CURRENT:CH
PROCEDURE A;
PROCEDURE B;
PROCEDURE C;
FUNCTION D(IN
FUNCTION E(AS

USES APPLESTUF
garbage

.
.
.
.
.
.
.
.

block m

| block m+1

FUNCTION F(PA
IMPLEMENTATION
PROCEDURE 4;

USES TRANSCEND
CONSTANT P1=3
CONSTANT E=2.7
TYPE ARRAYSIZE
VAR INRECORD:I

— VAR CURRENT:CH

PROCEDURE 4;
PROCEDURE B;
PROCEDURE ¢;
FUNCTION D (IN
FUNCTION E (AS

FUNCTION F (PA
IMPLEMENTATION
unit info

block m+2

mock m+3

block m+4

The Pascal Compiler reads source text and produces interface text in
two-block pages of 1024 bytes each. Interface text always starts on a page
boundary and follows all of the conventions of a texifile, with the
exception that the last page of the interface text may be either 1 or 2 blocks
long. The interface text is identical to the source text, except for the first
and last pages. The information in the first page of the source text is
truncated, so that the first character in the output page is the character
following the INTERFACE keyword in the original source text (U in

Figure 2-5). This format may leave a considerable amount of unused space
in the first page. The last page of the source text is truncated after the

Interface Text

v-29

IMPLEMENTATION keyword; it is possible that only one block of this page
may be produced if the IMPLEMENTATION keyword occurs in the first
block of the page. Valid data in each page of a textfile end with a CR
(ASCII 13) followed by at least one NULL (ASCII 0).

The ten characters immediately following the IMPLEMENTATION keyword
contain special unit information. All ten characters are ASCII spaces,
except for an & in the ninth position required by the Pascal Compiler and
LIBRARY programs to terminate the interface text. A P may occur, instead
of a space, in the second of the ten character positions to signify to the
Pascal Compiler that the unit requires the PASCALIO standard Program
Unit. The fourth position will be occupied by an L if the unit requires the
LONGINTIO standard Program Unit. These items—IMPLEMENTATION, P,
L, and E—are all considered tokens by the Compiler; thus, their order is
significant, but their spacing and case are not.

Interface text is not stripped of nonprinting characters or comments.
Leaving the comments in the interface text produces more corplete
internal program documentation at the expense of increased codefile length.

By the Way: The interface text of Program Unit segments is used only
during compilation. Thus it can be removed from completed codefiles that
will only be executed. The effect is a reduction in codefile size.

The TEXTADDR array of the segment dictionary contains pointers to the
starting address of the interface text for each segment. The pointers specify
block numbers, relative to the start of the codefile. The field is 0 for
segments that are not Program Unit code segments, as well as Program Unit
segments that do not have an interface part.

Code Parts

IV-30

The code part of a code segment consists of

o Code for a group of up to 254 procedures;
o A procedure dictionary, containing information about the procedures.

Figure 2-6 is a diagram of the code part of a code segment. Each code part
contains the code for the highest level procedure in the segment, as well as
the code for each of the non-SEGMENT procedures and functions within
the segment. The code of the highest level procedure, which is generated
last, appears highest in the code part.

Chapter 2: Disk Files

Figure 2-6. The Code Part of a Code Segment

high disk or memory addresses

high byte low byte
number of procedures segment number
in this segment of this segment
pointer to procedure #1
. Procedure
; > # R
pointer to procedure #2 Dictionary
|—~ pointer to procedure #n
attribute table procedure #1 CODELENG
code (highest procedure) bytes
attribute table procedure #n
code (lowest procedure)
—> attribute table

procedure #2

code __J

low disk or memory addresses

I
CODEADDR
block boundary

Each procedure in a code part is assigned a procedure number starting

at 1, for the highest level procedure or SEGMENT procedure, and ranging as
high as 254. All references to a procedure are made via its segment number
and procedure number. Translation from a procedure number to the
location of the procedure code in the code segment is accomplished via
the procedure dictionary.

Code Parts Iv-31

Iv-32

Below the procedure dictionary is the code for the various procedures in the
segment. The procedure dictionary grows downward toward lower disk
addresses; the code part starts at the first byte of the block specified in the
CODEADDR field of the segment dictionary and grows upward toward
higher addresses.

Procedure Dictionaries
]

The position of the low-order byte of the highest word in a segment’s
procedure dictionary can be calculated as

CODEADDR * 512 + CODELENG — 2

This highest word in a procedure dictionary contains the segment number
in its low-order (even) byte, and the number of procedures in the segment
in its high-order (odd) byte. Below this word is a sequence of words that
contain self-relative pointers to the top (high address) of the code of each
procedure in the segment (shown in Figure 2-6).

A Technical Note: A self-relative pointer contains the absolute
distance, in bytes, between the low-order byte of the pointer and the
low-order byte of the word to which it points. To find the address referred
to by a self-relative pointer, subtract the pointer from the address of its
location.

A procedure’s number is an index into the procedure dictionary: the nth
word in the dictionary (counting downward from higher addresses)
contains a pointer to the top (high address) of the code of procedure 7. As 0
is not a valid procedure number, the Oth word of the dictionary is used to
store the segment number of the code segment and the number of
procedures in that code segment, as described above.

Procedures
]

Each procedure consists of two parts: the procedure code itself (in the lower
portion of the procedure growing up toward higher addresses), and an
attribute table of the procedure. Some procedures have a third part called
the jump table located at the base of the attribute table. Figure 2-7is a
diagram of a typical procedure.

Chapter 2: Disk Files

Figure 2-7. A Typical Procedure

high disk or memory addresses
high byte low byte

T
attribute table
(with optional jump table)

procedure
colde

low disk or memory addresses

Attribute Tables
.

The attribute table of a procedure provides information needed to
execute the procedure. Procedure attribute tables are pointed to by entries
in the procedure dictionary of each segment.

The Compiler produces P-code by compiling source text, and the Assembler
produces native code by assembling assembly-language. Procedures may
contain solely P-code or native code, but not a mixture of both. It is possible
to produce segments with procedures of both code types, by using the
Linker. In this case the MTYPE field in the segment dictionary is set to the
value for assembled native code (7), because the code for that segment is
then machine-specific. The Interpreter is able to determine the type of code
in a particular procedure via information contained in the procedure’s
attribute table. The format of the attribute table for an assembly-language
procedure is very different from that for a P-code procedure. These two
formats are described in the following sections.

Code Parts 1V-33

1V-34

P-Code Procedure Attribute Tables

The format of a P-code procedure attribute table s illustrated in
Figure 2-8.

Figure 2-8. P-Code Procedure Attribute Table

high disk or memory addresses

high byte low byte
LEX LEVEL PROCEDURE NUMBER
ENTER IC
EXIT IC

PARAMETER SIZE(in bytes)
DATA SIZE(in bytes)

optional jump table

self-relative

low disk or memory addresses :
pointers to code

The fields of a P-code procedure attribute table are

o PROCEDURE NUMBER: This field contains the procedure number.
The procedure number field is the low-order (even) byte of the highest
word in the attribute table.

o LEX LEVEL: This field specifies the depth of lexical nesting of the
procedure. The lexical level of the Pascal operating system is —1, the
lexical level of a user program is 0, that of the first nested procedure is 1,
and so forth. The LEX LEVEL field is the high-order (odd) byte of the
highest word in the attribute table.

o ENTER IC: This field contains a self-relative pointer (again, a positive
number, pointing back) to the first P-code instruction to be executed in
the procedure.

o EXIT IC: This field contains a self-relative pointer to the beginning of the
sequence of P-code instructions that must be executed to terminate the
procedure properly.

Chapter 2: Disk Files

o PARAMETER SIZE: This field specifies the number of bytes of
parameters passed to a procedure from its calling procedure. If the
procedure is a function, this number includes the number of bytes to be
reserved for the returned value,

a DATA SIZE: This tield specifies the number of bytes to be reserved for
local variables of the procedure.

At the base of the attribute table there may be a section called the jump
table. Jump tables are used by the P-machine to determine the locations
specified by jump instructions. The entries are self-relative pointers to
addresses within the procedure code. During execution, the JTAB
pseudoregister points to the PROCEDURE NUMBER field of the attribute
table of the currently executing procedure. See Chapter 3 for an explanation
of pseudoregisters.

All jump instructions include a specified jump offset (n). In the case of short
forward jumps, the jump table is ignored, and execution jumps by n bytes.
In the case of backward or long forward jumps, the jurp offset specifies a
self-relative pointer in the jump table located n bytes below the location
pointed to by the JTAB register. Execution jumps to the byte address
pointed to by the self-relative pointer.

Assembly-Language Procedure Attribute Tables

The format of an attribute table of an assembly-language procedure is very
different from that of a P-code procedure attribute table. It is illustrated in
Figure 2-9.

Code Parts IV-35

IV-36

Figure 2-9. An Assembly-Language Procedure Attribute Table

high disk or memory addresses

high byte low byte
RELOCSEG PROCEDURE
NUMBER NUMBER (=0)
ENTER IC
number of pointers(n) }
base- . n self- pointer
relative . relative to start of
relocation table . pointers procedure code
number of pointers(m)
segment- . m self-
relative . relative
relocation table . pointers

number of pointers(p)

procedure- . p self-
relative . relative
relocation table . pointers
number of pointers(q)
interpreter- . q self-
relative . relative
relocation table . pointers

low disk or memory addresses

The highest word in the attribute table of an assembly-language procedure
always has a 0 in its PROCEDURE NUMBER field. When the Interpreter
encounters a 0 in the PROCEDURE NUMBER field as it loads the segment, it
realizes it must “fix up” references in the procedure code according to
information contained in the rest of the attribute table. The RELOCSEG
NUMBER field contains either a 0 or a positive number (the significance of
which is explained below in conjunction with base-relative relocation). In
the case of Intrinsic Units without data segments, the number placed in this
field is 1. The second highest word of the attribute table is, as in P-code
procedure attribute tables, the ENTER IC field—a self-relative pointer to
the first executable instruction of the procedure. Following this are four
relocation tables used by the Interpreter. From high address to low address,
they are base-relative, segment-relative, procedure-relative, and
Interpreter-relative relocation tables.

Chapter 2: Disk Files

Relocation Tables

A relocation table is a sequence of records that contain information
necessary to relocate any relocatable addresses used by code within the
procedure. Relocatable addresses are relocated whenever the segment
containing the procedure is loaded into memory. Only native code
procedures use relocatable addresses; procedures that contain P-code are
completely position-independent, and no relocation list is needed.

The format of all four relocation tables is the same: the highest word of each
table specifies the number of entries (possibly 0) that follow (at lower disk
addresses) in the table. The remainder of each table comprises that number
of one-word self-relative pointers to locations in the procedure code that
must be “fixed.” The locations are “fixed” when the segment is loaded by
the addition of the appropriate relative relocation constant, which is known
to the Interpreter.

Addresses pointed to by a base-relative relocation table are relocated
relative to the address contained in the P-machine’s BASE pseudoregister
if the RELOCSEG NUMBER field of the procedure’s attribute table is 0. The
BASE register is a pointer to the activation record of the most recently
invoked base procedure (lexical level 0 or —1). Global (lexical level 0)
variables are accessed by indexing from the value of the BASE register. If
the RELOCSEG NUMBER field is not 0, the relocations will be relative to the
lowest address of the segment whose segment number is contained in the
RELOCSEG NUMBER field. Base-relative relocation is used by assembly
procedures that are linked with Intrinsic Units to access the Intrinsic Unit's
data segment. .PUBLIC and .PRIVATE are the Assembler directives that
generate base-relative relocation fields.

Addresses pointed to by a segment-relative relocation table are
relocated relative to the lowest address of the segment. The value of the
address of the lowest byte in the segment is added to each of the addresses
pointed to in the relocation table. REF and .DEF are the Assembler
directives that generate segment-relative relocation fields.

Addresses pointed to by a procedure-relative relocation table are
relocated relative to the lowest address of the procedure. The value of the
address of the lowest byte in the procedure is added to each of the
addresses pointed to in the relocation table.

The Interpreter-relative relocation fields point to relocatable addresses that
access Pascal Interpreter procedures or variables. Addresses pointed to by
an Interpreter-relative relocation table are relocated relative to a table
in the Interpreter. See the explanation of the .INTERP directive in Part II,
Chapter 6.

Code Parts 1v-37

Linker Information

IV-38

Following the code part of a segment there may be Linker information.
Linker information is the portion of a code segment that enables the Linker
to resolve references to variables, identifiers, and constants between
separately compiled or assembled code. Segments produced by an
Assembler always have Linker information. Segments produced by the
Compiler have Linker information only if they are segments with
EXTERNAL procedures or Program Units, or user programs that USE
Regular Units.

The starting location of Linker information is not included in the segment
dictionary (as was the case with the starting location of the interface text
and code parts); it must be inferred. Linker information starts on the block
boundary following the last block of code for a segment, and grows toward
higher addresses. The block number of the first record of Linker
information can be calculated as

CODEADDR + ((CODELENG + 511) DIV 512)

where CODEADDR and CODELENG are the values of fields in the segment
dictionary.

Linker information is stored as a sequence of records—one record for each
indentifier, constant, or variable that is referenced but not defined in the
source, as well as records for items defined to be accessible from other
procedures.

The following Pascal declaration describes one record that may appear
within Linker information.

Chapter 2: Disk Files

LITYPES = (EOFMARK, UNITREF, GLOBREF, PUBLREF, PRIVREF,
CONSTREF, GLOBDEF, PUBLDEF, CONSTDEF, EXTPROC, EXTFUNC,
SEPPROC, SEPFUNC, SEPPREF, SEPFREF); {Linker information types}
OPFORMAT = (WORD,BYTE,BIG); {label size}

LCRANGE: 1..MAXLC; A{currently MAXINT (32767)}

PROCRANGE: 1..MAXPROC; {currently 254}

LIENTRY = RECORD

NAME: PACKED ARRAY(@..7] OF CHAR; {name of unit, proc, or variable symbol}

CASE LITYPE: LITYPES OF

GLOBREF, {reference to a global address}
PUBLREF, {reference to a host program variable}
PRIVREF, {reference to private variables in a host

activation record}
CONSTREF, {reference to a global constant}

UNITREF, {reference to a Regular Unit}
SEPPREF, {unused}
SEPFREF : {unused}

(FORMAT: OPFORMAT;

NREFS: INTEGER;

NWORDS: LCRANGE;

POINTERLIST: ARRAY [1..C(NREFS-1) DIV 8)+11 OF

ARRAY [@..71 OF INTEGER); {segment-relative pointers}

GLOBDEF : {global address definition}
C(HOMEPROC: PROCRANGE;
ICOFFSET: LCRANGE);

PUBLDEF : (BASEOFFSET: LCRANGE); {host program variable definition}

CONSTDEF: (CONSTVAL: INTEGER); {host program constant definition}

EXTPROC, {EXTERNAL procedure declaration}
EXTFUNC, {EXTERNAL function declaration}
SEPPROC, {separate assembly procedure}
SEPFUNC: {separate assembly function}

(SRCPROC: PROCRANGE;
NPARAMS: INTEGER);

EOFMARK : {end-of-file mark}
(NEXTBASELC: LCRANGE;
PRIVDATASEG: SEGNUMBER);

END;

Linker Information

V-39

1V-40

Linker Information Fields

]

The Linker information types GLOBREF, PUBLREF, PRIVREF,
CONSTREF, and UNITREF, all have similar fields. The FORMAT field may
be BIG, BYTE, or WORD, and specifies the format of the P-machine
operand that refers to the entity given by the NAME array. See
“Instruction Formats,” in Chapter 4, for a description of these formats. The
NREFS field specifies the number of references to this entity in the code
segment; there will be an equivalent number of entries in the
POINTERLIST array. The NWORDS field specifies the amount of space, in
words, to be allocated for PRIVREF Linker information types; the NWORDS
field is ignored for all other Linker information types.

The POINTERLIST array is a list of pointers into the code segment, each
of which points to a location within the code segment where there is a
reference to the entity specified by the NAME array. The locations are given
as absolute byte addresses within the code segment. The POINTERLIST
array is composed of records of eight words, but only the first

((NREFS—1) MOD 8)+1 words of the last record are used. All unused
words in each array are zeroed.

Global Address Linker Information Types

]

Separate assembly-language procedures and functions can share data
structures and subroutines by means of the .DEF, .REF, .PROC, and .FUNC
Assembler directives. These directives cause the Assembler to generate
information that the Linker uses to resolve external references between
separate procedures and functions in the same assembly or between
procedures and functions assembled separately. Each entity referenced by
a .REF Assembler directive results in a GLOBREF Linker information type
entry that designates fields to be updated by the Linker. Each entity defined
by a .DEF, PROC, or .FUNC Assembler directive results in a GLOBDEF
Linker information type entry that provides the Linker with the values to
fix the .REF references.

The GLOBREF Linker information type is used to link addresses between
assembled procedures. The FORMAT field is always WORD. The NREFS
field specifies the number of pointers in the POINTERLIST array (each of
which points to a different reference).

The GLOBDEF Linker information type defines the location of an entity in
an assembled procedure. The HOMEPROC field contains the number of the
procedure that defines the entity specified by the NAME array. The

Chapter 2: Disk Files

ICOFFSET field specifies the location within the named procedure where
the entity is defined. The location is given as a byte offset, relative to the
start of the procedure. There is no POINTERLIST array associated with a
GLOBDEF Linker information type.

As a program is linked, the Linker picks up each address defined explicitly
by .DEF and implicitly by .PROC and .FUNC, and fixes up each reference to
it in other procedures. The Linker must insert the final segment offset of the
address in all words pointed to by the POINTERLIST array.

Host-Communication Linker Information Types
L

The Assembler directives .CONST, .PUBLIC, and .PRIVATE enable an
assembly-language procedure or function to share addresses and data space
with the host program that calls it. Data values and locations are referred to
by name in both the host program and the called procedure or function.
Each entity referenced by a .CONST, .PUBLIC, or .PRIVATE Assembler
directive results in a CONSTREF, PUBLREF, or PRIVREF Linker
information type entry, respectively, that designates fields to be fixed up by
the Linker. Each entity defined by a CONSTANT or VARIABLE declaration
results in a CONSTDEF or PUBLDEF Linker information type entry,
respectively, that provides the Linker with the values to fix references. As a
program is linked, the Linker picks up each entity defined by .CONST,
PUBLIC, and .PRIVATE, and fixes up each reference to it in other
procedures. The Linker must insert the final segment offset of the address
in all words pointed to by the POINTERLIST array.

The PUBLREF Linker information type is used to link global variables in the
activation record of a host program to assembly-language procedures or
Regular Units. The PUBLREF Linker information type results from a
PUBLIC directive in an assembly-language procedure or from use of
variables declared in the INTERFACE of Regular Units. The NAME array
specifies a variable that is referenced in the segment, and defined as a
global variable in the host program. The FORMAT field is WORD for
assembly-language procedures, and BIG for Regular Units. The NREFS field
specifies the number of pointers in the POINTERLIST array (each of which
points to a different reference). The Linker must add the offset of the
referenced identifier to all words pointed to by the POINTERLIST array.
Activation records are explained in Chapter 3.

The PUBLDEF Linker information type declares a global variable in the
host program. A PUBLDEF Linker information type is generated for each
global variable in the host program that appears in a VAR declaration. The
BASEOFFSET field specifies the location of the variable specified by the

Linker Information 1V-41

1V-42

NAME array within the activation record of the host program that contains
it. The location is given as a word offset, relative to the start of the data
area. There is no POINTERLIST array associated with a PUBLDEF Linker
information type.

The CONSTREF Linker information type is used to link constants in an
assembled procedure to a global constant in the host program. The
CONSTREF Linker information type results from a .CONST directive in an
assembly-language procedure. The NAME array specifies a constant that is
referenced in the segment, and defined as a global constant in the host
program. The FORMAT field is WORD. The NREFS field specifies the
number of pointers in the POINTERLIST array (each of which points to a
different reference). The Linker must place the constant value into all
locations pointed to by the POINTERLIST array.

The CONSTDEF Linker information type declares a global constant in the
host program. A CONSTDEF Linker information type is generated for each
global constant in the host program that appears in a CONSTANT
declaration. The CONSTVAL field contains the value of the declared
constant. There is no POINTERLIST array associated with a CONSTDEF
Linker information type.

The PRIVREF Linker information type is used to indicate a reference to
variables of an assembly-language procedure or Regular Unit, to be stored in
the host program’s global data area, and yet be inaccessible to the host
program. The PRIVREF Linker information type results from either a
.PRIVATE directive in assembly language, or by the use of global variables
declared in the IMPLEMENTATION of Regular Units. The FORMAT field is
always WORD. The NWORDS field specifies the amount of space, in words,
to be allocated. The NREFS field specifies the number of pointers in the
POINTERLIST array. The Linker must add the offset of the start of the
allocated area within the global data area to all words pointed to by the
POINTERLIST array.

The UNITREF Linker information type is used to link references between
Regular Units. The NAME array specifies the name of a Regular Unit that is
referenced within another Regular Unit. The FORMAT field is always
BYTE. The NREFS field specifies the number of pointers in the
POINTERLIST array (each of which points to a different reference). The
Linker must insert the final segment number of the referenced unit in all
locations pointed to by entries in the POINTERLIST array.

Chapter 2: Disk Files

Procedure and Function Linker Information Types
L]

Separate assembly-language procedures and functions are referenced via
EXTERNAL declarations in the calling segment. The Linker information
types EXTPROC, EXTFUNC, SEPPROC, and SEPFUNC, are used to link
procedures and functions between segments. Each .PROC or .FUNC entity
referenced by a PROCEDURE.. EXTERNAL declaration results in an
EXTPROC or EXTFUNC Linker information type entry, respectively, that
designates fields to be fixed up by the Linker. All procedure or function code
that begins with .PROC or .FUNC results in a SEPPROC or SEPFUNC Linker
information type entry, respectively, that provides the Linker with the
values to fix references. As each procedure or function is linked, the Linker
picks up each procedure number and parameter size declared in the
separate procedure or function, and transfers it to each external reference
of that same procedure or function.

The SRCPROC field specifies the procedure number of the referenced or
declared procedure. The NPARAMS field specifies the number of words of
parameters indicated in the .PROC or .FUNC directive. There is no
POINTERLIST array associated with EXTPROC, EXTFUNC, SEPPROC, or
SEPFUNC Linker information types.

Miscellaneous Linker Information Types
L]

The EOFMARK Linker information type indicates the end of Linker
information records. Additionally, if the segment is of the host program, the
NEXTBASELC field indicates the number of words in the host program’s
global data area. If the segment is an Intrinsic Unit code segrent, the
PRIVDATASEG field contains the segment number of the associated data
segment.

Linker Information IV-43

Chapter 3 The P-Machine

1v-45

[V-46

The previous chapter discussed the static structure of program codefiles on
disk and in memory. This chapter discusses the dynamic structure of
program code as it is being executed in memory.

The Apple Pascal pseudomachine or P-machine, a version of the UCSD
Pascal P-machine, is the software-generated device that executes P-code as
its machine language. Every computer operating under a form of UCSD
Pascal has been programmed to “look like” this common P-machine, or a
related variant, from the viewpoint of a program being executed. The
P-machine has an evaluation stack, several registers, and a user
memory. The user memory contains the program stack and the heap.
These memory structures are described in Chapter 1. They are discussed in
detail below.

The P-machine supports
o Variable addressing, including strings, byte arrays, packed fields, and
dynamic variables,

o Logical, integer, real, set, array, and string, top-of-stack arithmetic and
comparisons;

o Multi-element structure comparisons;
o Branches;

o Procedure and function calls and returns, including overlayable
procedures;

o Miscellaneous procedures used by system and user programs.
The P-machine uses 16-bit words, with two 8-bit bytes per word. Words
consist of two bytes, of which the lower, even-address byte is least

significant. See Figure 3-1. The least significant bit of a word is bit 0, the
most significant is bit 15.

Figure 3-1. Relationship of Words and Bytes

higher, odd addresses lower, even addresses
1 l]] J | | l i }]] 1l }
T T T T T T T T T T T T T 1
high byte low byte

} 4 1 | Il 1 } J } } 1 } l }

T ¥ T Ll T T T T T T T T T T
bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
L _J

one word

Chapter 3: The P-Machine

The Evaluation Stack

In the Apple il family, the evaluation stack uses a portion of the 6502
hardware stack, starting at memory location $1FF and growing downward
to location $100. It is used for passing parameters, for returning function
values, and as an operand source for many P-machine instructions. When
an instruction is said to push an item, that item is placed on the top of the
evaluation stack (the evaluation stack grows downward). The evaluation
stack is extended by loads and is reduced by stores and most arithmetic
operations.

Registers

L ___]
The Apple [I P-machine uses 8 pseudoregisters, and the hardware stack
pointer. All registers are pointers to word-aligned structures, except the
IPC register, which is a pointer to byte-aligned structures. The
pseudoregisters are the following:

o SP: Evaluation Stack Pointer. This register contains a pointer to the
current fop of the evaluation stack (one byte below the last byte in use).
It is actually the Apple Il hardware stack pointer.

o [PC: Interpreter Program Counter. This register contains the address
of the next instruction to be executed in the currently executing
procedure. It is located at address $58.

0 SEG: SEGment pointer. This register points to the highest word of the
procedure dictionary of the segment to which the currently executing
procedure belongs. It is located at address $56.

o JTAB: Jump TABle pointer. This register contains a pointer to the
highest word of the attribute table in the procedure code of the currently
executing procedure. (Attribute tables are explained in Chapter 2.) It is
located at address $54.

o MP: Markstack Pointer. This register contains a pointer to the
MSSTAT field, in the markstack of the currently executing procedure.
Local variables in the activation record of the current procedure are
accessed by indexing off of the location pointed to by the MP register.
(Markstacks are explained later in this chapter.) It is located at
address $52.

Registers 1V-47

BASE: BASE procedure pointer. This register contains a pointer to
the MSSTAT field of the activation record of the most recently invoked
base procedure (lexical level 0 or 1). Global (lex level 0) variables are
accessed by indexing off of the location pointed to by the BASE register.
(Activation records are explained later in this chapter.) It is located at
address $50.

KP: program stacK Pointer. This register contains a pointer to the
lowest byte of the lowest word actually in use on the program stack. The
program stack starts in high addresses of user memory and grows
downward toward the heap. KP is located at address $5C.

NP: New Pointer. This register contains a pointer to the current top of
the heap (one byte above the last byte in use). The heap starts in low
addresses of user memory and grows upward toward the program stack.
It contains all dynamic variables. The heap is extended by the standard
Pascal procedure NEW, and is cut back by the standard procedure
RELEASE. NP is located at address $5A.

STRP: STRing Pointer. This register exists in the 128K Pascal system
only. It is a pointer to the first element of the linked list of strings and
packed character arrays on the stack. Whenever the P-machine executes
an LPA or LSA instruction (see Chapter 4), and the literal packed array
or string constant contained in the instruction is not already on the
program stack, the P-machine pushes it onto the program stack and links
it to the list pointed to by this pseudoregister. STRP is located at

address $5E.

The Program Stack and the Heap

1v-48

The operating system uses two dynamic structures called the program
stack and the heap to store memory-resident code and data of an executing
program. The program stack is used to store four kinds of items:

[

]

0

In the 64K system only, a code segment for each active program segment
and for each active Program Unit.

In the 128K system only, assembly-language procedures and functions
for each active program segment and for each active Program Unit.

In both systems, an activation record containing local variables and
markstack parameters for each procedure activation.

In both systems, a data segment for each active Intrinsic Unit that
requires one.

The heap is used to store dynamic variables.

Chapter 3: The P-Machine

Figure 3-2 is a diagram of the Apple Pascal program stack and heap with
four active procedures.

Figure 3-2. The Program Stack and Heap With Four Active Procedures

high memory addresses

SYSCOM

code segment (64K only)

PASCALSYSTEM

activation record i
————————— -+— BASE register

markstack

code segment (64K only)

MAINPROG
activation record

markstack

code segment (64K only)

UNITPROC
activation record

markstack

code segment (64K only)

ALPHAPROCDRE
activation record

markstack

---— MP and KP registers

free memory

-«— NP register

HEAP

low memory addresses

SYSCOM

]

The operating system and the P-machine exchange information via the
system communications area (also called SYSCOM) at the bottom (high
addresses) of the stack. SYSCOM is accessible to both assembly-language
procedures in the Interpreter and system procedures coded in Pascal (as if it

The Program Stack and the Heap IV-49

1V-50

were part of the Pascal system global data). SYSCOM serves as an
important communication link between these two levels of the system.
These are the

fields in SYSCOM relevant to communication between the operating system
and the P-machine:

]

IORSLT: This field contains the error code returned by the last activated
or terminated 1/0 operation (see Appendix 2H for a list of 1/0 Error
messages).

XEQERR: This field contains the error code of the last execution error
(see Appendix 2H for a list of execution error messages).

BOMBP: This field contains a pointer to the activation record of the
procedure that caused the execution error.

BOMBIPC: This field contains the IPC value when an execution error
oceurs,

SYSUNIT: This field contains the Pascal volume number of the device
from which the operating system was started up (usually the startup
disk drive, volume #4).

GDIRP: This field contains a pointer to the most recent disk directory
read in, unless dynamic allocation or deallocation has taken place since
then (see the MRK, RLS, and NEW instructions in Chapter 4). Disk
directories are read into a temporary buffer directly above the heap.
Segment Table: The segment table is a record that contains information
needed by the P-machine to read code segments into memory or to
allocate space for data segments.

The Segment Table

Every code segment has a name, but when a given segment references
another during the execution of a program, it refers not to the segment’s
name, but to the segment’s number. The Interpreter uses the segment
nurnber as an index into the segment table, which contains an entry for

each segment in the program. See Figure 3-3. The segrent table entries are
indexed by segment number; each entry contains information needed to
load the segment from the codefile on disk into memory. The segment table
is a dynamie structure of SYSCOM, but is somewhat analagous to a segment
dictionary, in that it is used to locate segments on disk.

Chapter 3: The P-Machine

The segment table is located in the higher addresses of the SYSCOM area, at
the bottom of the program stack. It contains entries for

o The segments of the Pascal operating system itself (numbers 0, 2..6);
o Each segment in the segment dictionary of the program codefile;
o Each Intrinsic Unit code and data segment needed by the host program.

No two segments in an executing program can have the same number
because the numbers are used to index the segment table. The segment
table has space for up to 64 entries in the 128K system, 32 in the 64K
system. Because the system uses some segments, this means that 52 entries
(26 in the 64K system) are left for the program to use.

Remember: A program codefile contains 16 or fewer segments; any
excess over 16 must be in either a program library, SYSTEM.LIBRARY, or
library files specified in a Library Name File.

Figure 3-3. The Segment Table

high memory addresses

entry 63 (information about.
segment number 63)

entry 62

entry 1

entry 0 (information about
segment number ()

low memory addresses

Activation Records
L~]

When a procedure is called, the code segment, containing that procedure
code is loaded by the Interpreter if it is not already present in memory. An
activation record for the procedure is built on top of the program stack each
time the procedure is called. See Figure 3-4. Only code segments require

The Program Stack and the Heap V51

1V-52

activation records; data segments do not. The activation record for a
procedure consists of

o The markstack, which contains addressing context information (static
links), and information on the calling procedure’s environment;

a Space for storing the value returned by the procedure, if the procedure is
a function;

o Space for parameters passed to the procedure when it is called;

o Space for the local variables of the procedure.
Caution: When writing recursive procedures or functions, remember
that each incarnation creates an activation record. These activation
records can build up on the stack, causing a stack overflow. For further
information on recursion, see Part 1, Chapter 8.

Figure 3-4. An Activation Record

high memory addresses

A local — DATA SIZE
variables

data area — passed —
parameters

PARAMETER SIZE

function
value

MSSP

MSIPC

MSSEG
MSJTAB

MARKSTACK

MSDYN

MSSTAT ~————— MP register

low memory addresses

Space is allocated in the higher addresses of the activation record for
variables local to the procedure. This variable space is allocated in the
reverse order that variables are declared. Variables of the same type, whose
declarations are separated by commas, are allocated space in forward order.

Chapter 3: The P-Machine

For example, the declarations

VAR I,J: INTEGER;
BOOL: BOOLEAN;

will cause space in the activation record to be allocated as shown in
Figure 3-5.

Figure 3-5. The Order of Local Variable Allocation in an Activation Record

high memory addresses

BOOL
[

J

low memory addresses

Space for parameter passing is allocated below the local variable space. If
the procedure is a function, space is also reserved (below the parameter
space) for storing the value returned by the function. A description of the
format of variables in activation records is given in Chapter 4. The order of
passed parameters is discussed in Part III, Chapter 9.

Local variables in the activation record of an active procedure are accessed
by indexing from the location pointed to by the MP register. Global variables
in the activation record of an active procedure are accessed by indexing
from the location pointed to by the BASE register.

When a procedure is terminated, its activation record is removed from the
stack.

Markstacks

The lower portion of the activation record is called a markstack. When a
procedure call is made, the current values of the system pseudoregisters
that characterize the operating environment of the calling procedure are
stored in the markstack of the called procedure. Thus the system registers
can be restored to precall conditions when control is returned to the calling
procedure.

The Program Stack and the Heap IV-53

A procedure call causes the operating environment that existed in the
system registers just at the time of the procedure call to be stored in the
fields of the called procedure’s markstack in the following manner:

System

Registers Markstack Fields

Sp — MSSP (MarkStack evaluation Stack Pointer)

[PC — MSIPC (MarkStack Interpreter Program Counter)
SEG — MSSEG (MarkStack SEGment pointer)

JTAB — MSJTAB (MarkStack Jump TABle pointer)
MP MSDYN (MarkStack DYNamic link)

STRP MSSTRP (MarkStack STRing Pointer— 128K system
only)

The MSDYN field of a markstack contains a pointer to the MSSTAT field in
the markstack of the procedure that called the new procedure. The
combined MSDYN fields of all markstacks form a dynamic chain of links
that describe the “route” by which the new procedure was called.

The MSSTAT field of a markstack contains a pointer to the MSSTAT field
in the most recent markstack of the procedure that is the lexical parent of
the called procedure. The Interpreter “knows” which procedure is the
lexical parent, by looking up the static chain until it encounters a
procedure whose lexical level is one less than the lexical level of the current
procedure. The combined MSSTAT fields of a group of markstacks form a
static chain of links that describe the lexical nesting of the called procedure.

|

|

The NP register is not stored because it does not change during a procedure
call. The BASE register is not stored on the markstack because its value is
related only to base procedure calls.

After building the new procedure’s activation record on the program stack,
new values for the [PC, SEG, JTAB, MP, and STRP registers are established.
The registers are updated as follows:

o The [PC register points to the first instruction of the called procedure.

o The SEG register points to the procedure dictionary of the code segment
that contains the called procedure.

o The JTAB register points to the attribute table of the called procedure.
o The MP register points to the markstack of the called procedure.
o The STRP register is initialized to NIL (zero).

Chapter 3: The P-Machine

After the registers are updated, the following takes place:

o If the called procedure has a lexical level of —1 or 0, the contents of the
BASE register are saved on the evaluation stack, and the BASE register
is set to the value of the MP register.

o Finally, KP is saved on top of the stack and a new value for KP is
calculated.

These elements are not part of the markstack or activation record.

Each time a procedure is called, another activation record is added to the
program stack. Once again the register values and the appropriate static
link and dynamic link are stored in the new markstack, and the system
registers are then updated. Note that the SEG register always points to the
procedure dictionary of the segment that contains the procedure, and not
the segment that called the procedure.

Once the code for a procedure has been loaded into memory, each further
invocation of the same procedure causes only an activation record to be
added to the program stack. The code is not loaded again.

When a return from a procedure occurs, the information in the markstack
fields is transferred to the system registers, and the activation record of the
inactive procedure is removed from the stack.

Additional information on procedure calls, and the relation of attribute
tables to activation records, can be found in the section “Procedure and
Function Calls” in Chapter 4.

The Program Stack and the Heap 1V-55

Chapter 4 The P-Machine Instruction Set

IV-57

Instruction Formats
L]
Instructions for the P-machine consist of one or two bytes, followed by 0 to 4
parameters. Most parameters specify one word of information. There are
five basic types of parameters:

UB: Unsigned Byte. Represents a nonnegative integer less than 256.
The high-order byte of the parameter is implicitly zero.

SB: Signed Byte. Represents an integer from — 128 to 127, in
two’s-complement form. The high-order byte is a sign extension of
bit 7 of the low order byte.

DB: Don’t-care Byte. Represents a nonnegative integer less than 128;
thus it can be treated as SB or UB.

B: Big. This parameter is one byte long when used to represent values
in the range 0 through 127, and is two bytes long when used to
represent values in the range 128 through 32767. If the value
represented is in the range 0 through 127, the high-order byte of the
parameter is implicitly zero. If the value represented is in the range
128 through 32767, bit 7 of the first byte is cleared and the first byte
1s used as the high order byte of the parameter. The second byte is
used as the low-order byte.

W: Word. A two-byte parameter, low byte first. Represents values in
the range — 32768 through 32767.

Any exceptions to these formats are noted below, in the descriptions of the
individual instructions.

Operand Formats

L ___]
Although an element of a structure in memory may be as small as one bit
(as in a packed array of boolean), variables to be operated on by the
P-machine are always unpacked into full words. All top-of-stack (tos)
operations expect their operands to occupy at least one word on the
evaluation stack.

IV-58 Chapter 4: The P-Machine Instruction Set.

Formats of Variables on the Stack
.|

Variables are stored in activation records and on the evaluation stack in the
manner described below.

Boolean

One word. Bit (indicates the value (0=FALSE, 1=TRUE), and this is the
only information used by boolean comparisons. However, the boolean
operators LAND, LOR, and LNOT operate on all 16 bits, in a bitwise manner.

Integer

One word, two’s complement notation, capable of representing values in the
range —32768..32767.

Long Integer

3..11 words. A variable declared as INTEGER]n] is allocated

((n+3) DIV 4) + 2 words of memory space. Regardless of the value of a long
integer, its actual size remains the same as its allocated size. Each decimal
digit of a long integer is stored as four bits of binary-coded decimal. The
format of long integers on the stack is as follows:

word 0 (tos): contains the allocated length, in words.

word 1 (tos—1): low byte contains the sign (all zeros = positive, all
ones = negative); high byte not used.

word 2 (tos—2): four least significant decimal digits. The low byte
contains the two more significant decimal digits (BCD).
The high byte contains the two less significant digits.

word n (tos—n): four most significant decimal digits. The low byte
contains the two more significant decimal digits (BCD).
The high byte contains the two less significant digits.

The format of long integers in activation records is as follows: word 0 is not
stored; word 1 is the lowest word in memory; word n is the highest word in
memory.

Scalar (User-Defined)

One word, in range 0..32767.

Operand Formats IV-59

[V-60

Char

One word, with the low byte containing a character. The internal character
set is extended ASCII, with 0..127 representing the standard ASCII set, and
128..255 representing user-defined characters.

Real

Two words, whose format is diagrammed in Part Il of this manual,
Appendix 3C. In general, the format for 32-bit real numbers is as follows:

Bit Item Contained In
0.15 fraction tos

1522 fraction

23.30 exponent tos—1

31 sign

Pointer

One or three words, depending on the type of pointer. Pascal pointers
(internal word pointers) consist of one word that contains a word address
(the address of the low byte of the word). Internal byte pointers consist of
one word that contains a byte address. Internal packed field pointers consist
of three words:

word 0 (tos): right bit number of field
word 1 (tos—1): field width (in bits)
word 2 (tos—2): word pointer to the word that contains the field

Set

0..31 words in an activation record, 1..32 words on the evaluation stack.
Sets are implemented as bit vectors, always with a lower index of zero. A
set variable declared as SET OF m..n is allocated (n+15) DIV 16 words of
memory space. All words allocated in an activation record for a set contain
valid information (the set’s actual size agrees with its allocated size).

A set on the evaluation stack is represented by a word (tos) specifying the
length of the set, followed by that number of words of information. The set
may be padded with extra words (to compare it with another set of different
size, say), and the length word changed to indicate the number of words in

Chapter 4: The P-Machine Instruction Set

the structure when padded. Before storing it back in an activation record,
you must force a set back to the size allocated to it, by issuing an ADJ
instruction.

Records and Arrays

Any number of words. Arrays are stored in forward order, with
higher-indexed array elements appearing in higher-numbered memory
locations. Only the address of the record or array is loaded onto the
evaluation stack, never the structure itself. Packed arrays must have an
integral number of elements in each word, as there is no packing across
word boundaries (it is acceptable to have unused bits in each word). The
first element in each word has bit 0 as its low-order bit.

Strings

1..128 words. Strings are a flexible version of packed arrays of CHAR. A
STRING|n] declaration occupies (n DIV 2)+1 words of memory space.
Byte 0 of a string is the current length of the string, and bytes
1..length(string) contain valid characters.

Formats of Constants in P-Code
L.

Constant scalars, sets, and strings may be embedded in the instruction
stream, in which case they have special formats.

o All scalars (excluding reals) greater than 127 are represented by two
bytes, high byte first.

o All string literals occupy length(literal)+1 bytes of memory space, and
are word-aligned. The first byte is the length, the rest are the actual
characters. This format applies even if the literal should be interpreted
as a packed array of characters.

o Allreals, sets, and long integers are word-aligned and in REVERSE word
order, that is, the higher-order bits of the real or set are in
lower-numbered memory locations.

Operand Formats IV-61

Conventions and Notation

Each operand on the evaluation stack (for example, tos or tos—1), can
contain from one byte to 2566 bytes, depending on its type and value. Unless
specifically noted to the contrary, operands used by an instruction are
popped off the evaluation stack (removed from the stack and not returned)
as they are used.

In the descriptions of the various P-machine instructions the parameters are
givenas UB, SB, DB, B, or W. The term tos means the operand on the top
of the evaluation stack, tos — I is the next operand, and so on. The columns
of information in the various instruction descriptions have the following
meaning:

Column 1 Column 2 Column 3 Column 4

opcode decimal instruction full name and

mnemonic opcode parameters operation of the
instruction

P-Machine Instructions

SLDC_0 0
SLDC_1 1

SLDC_127 127

LDCN 159
LDCI 199
1V-62

This section lists all the P-machine opcodes by their class of operation.

One-Word Loads and Stores

This section lists opcodes that load and store single words.

Constant

Short load one-word constant. For an instruction SLDC_x , push the
opcode, x , with the high byte zero. That is, push an integer with
the value x.

Load constant NIL. Push 0.
Load one-word constant. Push W.

Chapter 4: The P-Machine Instruction Set

SLDL_1
SLDL_2

SLDL_16
LDL

LLA

STL

SLDO_1
SLDO_2

SLDO__16
LDO

LAO

SRO

LOD

LDA

216
217
231
202

198

204

232
233

247
169

165

171

182

178

DB,B

DBB

Local

Short load local word. For an instruction SLDL_x , fetch the word
with offset x in the data area of the executing procedure’s activation
record and push it.

Load local word. Fetch the word with offset B in the data area of the
executing procedure’s activation record and push it.

Load local address. Fetch the address of the word with offset B in the
data area in the executing procedure’s activation record and push it.

Store local word. Store tos into word with offset B in the data area of
the executing procedure’s activation record.

Global

Short load global word. For an instruction SLDO_x , fetch the word
with offset x in the data area of the activation record of the base
procedure and push it.

Load global word. Fetch the word with offset B in the data area of the
activation record of the base procedure and push it

Load global address. Fetch the address of the word with offset B in
the data area of the activation record of the base procedure and push it.

Store global word. Store tos into the word with offset B in the data
area of the activation record of the base procedure.

Intermediate

Load intermediate word. Fetch the word with offset B in the
activation record found by traversing DB links in the static chain, and
push it.

Load intermediate address. Fetch address of the word with offset B
in the activation record found by traversing DB links in the static chain,
and push it.

P-Machine Instructions IV-63

STR

SIND_0

SIND__1
SIND.2
SIND_7
IND

STO

LDE
LAE

STE

LDC
LDM

ST™™

IV-64

184

248

249
2560
265
163

154

157
167

209

179
188

189

DB,B

UB,B
UB,B

UB,B

Store intermediate word. Store tos into the word with offset B in the
activation record found by traversing DB links in the static chain.

Indirect

Load indirect word. Fetch the word pointed to by tos and push it (this
is a special case of SIND_x , described below).

Short index and load word. For an instruction SIND_x , index the
word pointer tos by x words, and push the word pointed to by the
result.

Static index and load word. Index the word pointer tos by B words,
and push the word pointed to by the result.

Store indirect word. Store tos into the word pointed to by tos—1.

Extended

Load extended word. Fetch the word with offset B in the data segment
number UB (of an Intrinsic Unit) and push it.

Load extended address. Fetch the address of the word with offset B in
the data segment number UB (of an Intrinsic Unit), and push it.

Store extended word. Store tos into the word with offset B in the data
segment number UB (of an Intrinsic Unit).

Multiple-Word Loads and Stores (Sets and Reals)

UB, < data> Load multiple-word constant. Fetch the word-aligned <Cdata>

UB

UB

of UB words in reverse word order, and push the data.

Load multiple words. Fetch UB words of word-aligned data in reverse
order, whose beginning is pointed to by tos , and push the block.

Store multiple words. Transfer UB words of word-aligned data in
reverse order, whose beginning is pointed to by tos , to the location block
pointed to by tos—1.

Chapter 4: The P-Machine Instruction Set

LDB

STB

LSA

190

191

166

Byte Array Handling

L]

Load byte. Index the byte pointer tos—1 by the integer index tos ,and
push the byte (after zeroing high byte) pointed to by the resulting byte
pointer.

Store byte. Index the byte pointer tos—2 by the integer index tos—1,
and push the byte tos into the location pointed to by the resulting byte
pointer.

String Handling

UB,<<chars>

Load constant string address. (64K system): Push a byte
pointer to the location containing UB, then skip IPC past
<<chars>. (128K system): Push a word pointer to the constant
character string UB, <Cchars> onto the evaluation stack. As the
constant string is contained in the code segment, not in the

stack /heap space, a copy of the string is pushed onto the program
stack. If this string has not previously been pushed onto the stack
during the currently active procedure, copy UB< chars> onto the
program stack (add one space to the end of the string if
UB<<chars> is an even number of characters); push a 16-bit
integer onto the program stack that points to the first byte of the
string in the procedure code; push a 16-bit linkage pointer onto the
program stack that points to the string or packed array most
recently pushed onto the program stack (the linkage pointer is 0 if
no other string or packed array has yet been pushed onto the stack);
push a pointer onto the evaluation stack that points to the string
length byte UB on the program stack. If UB<cchars> has been
pushed onto the stack during the currently active procedure, push a
pointer onto the evaluation stack that points to the string length
byte UB on the program stack. The contents of the program stack
are not changed. In either case, advance the IPC register past the
original copy of the string in the code space.

P-Machine Instructions 1V-65

SAS

IXS

MOV

INC

IXA

IXP

1V-66

170

165

168

162

164

192

UB

UB1,UB2

String assign. tos is either a source byte pointer or a character.
(Characters always have a high byte of zero, while pointers never do.)
tos—1 is a destination byte pointer. UB is the declared size of the
destination string. If the declared size is less than the current size of the
source string, give an execution error; otherwise transfer all bytes of
source containing valid information to the destination string.

Index string array. tos—1 is a byte pointer to a string. tos is an index
into the string. Check to see that the index is in the range 1..current string
length. If so, continue execution; if not, give an execution error.

Record and Array Handling

.]
Move words. Transfer a source block of B words, pointed to by byte

pointer tos , to a similar destination block pointed to by byte pointer
tos—1.

Increment field pointer. Index the word pointer tos by B words and
push the resultant word pointer.

Index array. tos is an integer index, tos—1 is the array base word
pointer, and B is the size (in words) of an array element. Compute a word
pointer (tos—1) + (B * tos) to the indexed element and push the
pointer.

Index packed array. tos is an integer index, tos—1 is the array
base word pointer. UBI is the number of elements per word, and
UB2 is the field width (in bits). Compute a packed field pointer to
the indexed field and push the resulting pointer.

Chapter 4: The P-Machine Instruction Set

LPA

LDP

STP

NEW

MRK

RLS

208

186

187

1581

168 31

158 32

UB,<<chars> Load a packed array. (64K system): Push a byte pointer to the

first location following the one that contains UB , and then skip IPC
past <<chars>. (128K system): Push a word pointer to the packed
array <<chars>> onto the evaluation stack. As the packed array is
contained in the code segment, not in the stack /heap space, a copy
of the array is pushed onto the program stack. If this array has not
previously been pushed onto the stack during the currently active
procedure, copy < chars>> onto the program stack (add one space
to the end of the array if <<chars> has an odd number of
characters); push a 16-bit integer onto the program stack that points
to the first byte of the array in the procedure code; push a 16-bit
linkage pointer onto the program stack that points to the string or
packed array most recently pushed onto the program stack (the
linkage pointer is 0 if no other string or packed array has yet been
pushed onto the stack); push a pointer onto the evaluation stack
that points to the first byte of the packed array on the program
stack. If the same packed array has been pushed onto the stack
during the currently active procedure, push a pointer onto the
evaluation stack that points to the first byte of the array on the
program stack. The contents of the program stack are not changed.
In either case, advance the IPC register past the original copy of the
array in the code space.

Load a packed field. Fetch the field indicated by the packed field
pointer tos, and push it.

Store into a packed field. Store the data tos into the field indicated by
the packed field pointer tos—1 .

Dynamic Variable Allocation
L |

Note that the NP register points to the current top of the heap (one byte
beyond the last byte in use). GDIRP is a SYSCOM field that points to the top
of a temporary directory buffer above the heap.

New variable allocation. tos is the size (in words) to allocate for the
variable, and tos—1 is a word pointer to a pointer variable. If the GDIRP
field is non-NIL, set GDIRP to NIL. Store the NP register into the word
pointed to by tos—1, and increment the NP register by tos words.

Mark heap. Set the GDIRP field to NIL, then store the NP register into
the word indicated by the word pointer tos .

Release heap. Set the GDIRP field to NIL, then store the word indicated
by the word pointer tos into the NP register.

P-Machire Instructions IV-67

ABI

ADI
NGI

SBI

MPI

SQI

DVI

MODI

CHK

EQUI
NEQI
LEQI
LESI
GEQI
GRTI

Iv-68

128

130
145

149

143

162

134

142

136

195
203
200
201
196
197

Top-of-Stack Arithmetic

L]
These operations perform arithmetic on values at the top of the stack.

Integers

Note: Overflows do not cause an execution error; they are ignored and the
results are undefined.

Absolute value of integer. Push the absolute value of the integer tos .
The result is undefined if tos is initially —32768.

Add integers. Add tos and tos—1, and push the resulting sum.

Negate integer. Push the two’s complement of tos . The result is
undefined if tos is intially —32768.

Subtract integers. Subtract tos from tos—1, and push the resulting
difference.

Multiply integers. Multiply tos and tos—1, and push the resulting
product.

Square integer. Square tos, and push the result.

Divide integers. Divide tos—1 by tos and push the resulting integer
quotient (any remainder is discarded). Division by zero causes an
execution error.

Modulo integers. Divide tos—1 by tos and push the resulting
remainder.

Check against subrange bounds. Insure that

tos—1 <=tos—2 <<= tos, leaving tos—2 on the stack. If conditions
are not satisfied, give an execution error.

tos—1 =tos.

tos—1 <> tos.

tos—1 <= tos.

tos—1 < tos.

tos—1 >=tos.

tos—1 > tos.

Integer comparisons. Compare tos—1 to tos and push the result,
TRUE or FALSE.

Chapter 4: The P-Machine Instruction Set

EQU
NEQ
LEQ
LES
GEQ
GRT

FLT

FLO

TNC

RND

ABR
ADR
NGR
SBR

175
183
180
181
176
177

138

137

158 22

158 23

129
131
146
150

UB
UB
UB
UB
UB
UB

Noninteger Comparisons

The next six instructions are nonspecific noninteger comparisons.
Comparisons using specific values of UB are given in later sections.
tos—1 = tos .

tos—1 <> tos.

tos—1 <=tos.

tos—1 << tos.

tos—1 >=tos.

tos—1 > tos.

Compare tos—1 to tos, and push the result, TRUE or FALSE. The type of
comparison is specified by UB:

Contents of tos—1 & tos Value of UB for Comparison

reals 2

strings 4

booleans 6

sets 8

byte arrays 10
words 12
Reals

Float top-of-stack. Convert the integer tos to a floating-point number,
and push the result.

Float next to top-of-stack. tos is a real, tos— 1 is an integer. Convert
tos—1 to a real number, and push the result.

Truncate real. Truncate (as defined by Jensen and Wirth) the real tos
and convert it to an integer, and push the result.

Round real. Round (as defined by Jensen and Wirth) the real tos , then
truncate and convert to an integer, and finally push the result.

Absolute value of real. Push the absolute value of the real tos .
Add reals. Add tos and tos—1, and push the resulting sum.
Negate real. Negate the real tos , and push the result.

Subtract reals. Subtract tos from tos— 1 and push the resulting
difference.

P-Machine Instructions 1V-69

MPR 144 Multiply reals. Multiply tos and tos— 1 and push the resulting product.

SQR 153 Square real. Square tos , and push the result.

DVR 135 Divide reals. Divide tos— 1 by tos , and push the resulting quotient.

POT 158 35 Power of ten. If the integer tos is in the range 0 <<= tos <= 38, push
the real value 10 tos . If the integer tos is not in this range, give an
execution error.

EQUREAL 1752 tos—1 =tos.

NEQREAL 1832 tos—1 <> tos.

LEQREAL 1802 tos—1 <<= tos.

LESREAL 1812 tos—1 < {os.

GEQREAL 1762 tos—1 >=tos.

GTRREAL 1772 tos—1 > tos.

Real comparisons. Compare the real tos—1 to the real tos , and push
the result, TRUE or FALSE.

Strings
EQUSTR 1754 tos—1 =tos.
NEQSTR 1834 tos—1 <> tos.
LEQSTR 1804 tos—1 <<= tos.
LESSTR 1814 tos—1 << tos.
GEQSTR 1764 tos—1 >=tos.
GRTSTR 1774 tos—1 > tos.

String comparisons. Find the string pointed to by word pointer tos—1,
compare it alphabetically to the string pointed to by word pointer tos, and
push the result, TRUE or FALSE.

Logical

LAND 132 Logical AND. Push the result of tos—1 AND tos . This is a bitwise AND
of two 16-bit words.

LOR 141 Logical OR. Push the result of tos—1 OR tos . This is a bitwise OR of two
16-bit words.

IV-70 Chapter 4: The P-Machine Instruction Set

LNOT

EQUBOOL
NEQBOOL
LEQBOOL
LESBOOL
GEQBOOL
GRTBOOL

ADJ

SGS

SRS

INN

UNI
INT

DIF

EQUPOWR
NEQPOWR
LEQPOWR
GEQPOWR

147

1756
1836
1806
1816
176 6
1776

160

151

148

139

156
140

133

1758
1838
1808
176 8

UB

Logical NOT. Push the one's complement of tos . This is a bitwise
negation of one 16-hit word.

tos—1=tos.
tos—1 <> tos.
tos—1 <<=tos.
tos—1 < tos.
tos—1 >=tos.

tos—1 > tos.
Boolean comparisons. Compare bit 0 of tos—1 to bit 0 of tos and push
the result, TRUE or FALSE.

Sets

Adjust set. Force the set tos to occupy UB words, either by expansion
(putting zeros “between” tos and tos—1)or by compression (chopping
high words off the set), discard the length word, and push the resulting
set.

Build a one-member set. If the integer tos is in the range
0 <<= tos <<=511, push the set [tos]. If not, give an execution error.

Build a subrange set. If the integer tos is in the range

0 <<=tos <<=511, and the integer tos—1 is in the same range, push
the set [tos—1..tos] (push the set [] if tos—1 > tos). If either integer
exceeds the range, give an execution error.

Set membership. If integer tos—1 isin set tos, push TRUE. If not,
push FALSE.

Set union. Push the union of sets tos and tos—1.(tos ORtos—1)

Set intersection. Push the intersection of sets tos and tos—1 .
(tos ANDtos—1)

Set difference. Push the difference of sets tos—1 and tos .
(tos—1 AND NOT tos).

tos—1 =tos .
tos—1 <> tos.
tos—1 <<= (is a subset of) tos .

tos—1 == (is a superset of) tos .
Set comparisons. Compare set tos—1 to the set tos , and push the
result, TRUE or FALSE.

P-Machine Instructions IV-71

EQUBYT
NEQBYT
LEQBYT
LESBYT
GEQBYT
GRTBYT

EQUWORD
NEQWORD

UJP

FJP

IV-72

17510
18310
180 10
18110
176 10
17710

17512
183 12

185

161

[seliveRlioviiveillorilivs}

=

SB

SB

Byte Arrays

tos—1 = tos .

tos—1 <> tos.

tos—1 <=tos.

tos—1 << tos.

tos—1 >=tos.

tos—1 > tos.

Byte array comparisons. Compare byte array tos—1 to byte array
tos and push the result, TRUE or FALSE. Note: <=, <<, > =, and >

must be used with packed arrays of characters only. B specifies the
number of bytes to compare.

Records and Word Array Comparisons
L.]

tos—1 =tos.

tos—1 <> tos.

Word or multiword structure comparisons. Compare word structure
tos—1 to word structure tos, and push the result, TRUE or FALSE. B
gives the number of bytes to compare

Jumps

|

The JTAB register points to the highest word of the attribute table in the
currently executing procedure. The IPC register points to the next
instruction to be executed in the currently activating procedure.

Unconditional jump. SB is a jump offset. If this offset is nonnegative (a
Jump less than 128 bytes forward), it is simply added to the IPC register.
(A value of zero for the jump offset will make any jump a two-byte NOP.)
If SB is negative (a jump backward or more than 127 bytes forward),
then SB is used as a byte offset into the jump table within the attribute
table pointed to by the JTAB register, and the IPC register is set to the
byte address (JTAB[SB]) — contents of (JTAB[SB]).

False jump. Jump (as described for UJP}if tos is FALSE.

Chapter 4: The P-Machine Instruction Set

XJP

CLP

172

206

W1,W2, <case table> W3

UB

Case jump. W1 is word-aligned and the minimum case selector of the
case table. W2 is the maximum case selector. W3 is an unconditional jump
offset past the case table. The case table is (W2 — W1 + 1) words long,
and contains self-relative pointers.

If tos, the case selector expression, is not in the range W1..W2 | then
point the IPC register at W3 . Otherwise, use (tos — W1) as an index into
the case table, and set the IPC register to the byte address

(casetable tos — W1]) minus the contents of (casetable tos — W1]), and
continue execution.

Procedure and Function Calls
]

Here is the general method of procedure/function invocation:

1. Find the procedure code of the called procedure.

2. From the DATA SIZE and PARAMETER SIZE fields of the attribute
table of the called procedure, determine the size (in bytes) of the needed
activation record, and extend the program stack by that number of
bytes.

3. Copy the number of bytes specified by the PARAMETER SIZE field from
the top of the evaluation stack (tos) to the beginning of the space just
allocated on the program stack. This passes parameters to the new
procedure from its calling procedure.

4. Build a markstack, saving the SP, IPC, SEG, JTAB, STRP, MP, and a
static link pointer (MSSTAT) to the most recent activation record of the
procedure that is the lexical parent of the called procedure.

5. Calculate new values for the SP, IPC, JTAB, and MP registers; if
necessary, calculate a new value for the SEG register. Issue an
execution error if the program stack overflows.

6. If the called procedure has a lexical level of —1 or 0 (in other words, if
it is a base procedure) save the value of the BASE register on the
evaluation stack and then equate the BASE register with the MP
register.

7. Save the value of the KP register on the program stack.

8. Calculate a new value for the KP register.

Call local procedure. Call procedure number UB, which is an
immediate child of the currently executing procedure and in the same
segment. The MSSTAT field (static link) of the markstack is set to the
value of the old MP register.

P-Machine Instructions IV-73

CGP

CIP

CBP

CXP

CSp

RNP

RBP

[V-74

207

174

194

205

158

173

193

UB

UB

UB

UBL,UB2

UB

DB

DB

Call global procedure. Call procedure number UB, which is at lexical
level 1 and in the same segment as the currently executing procedure. The
MSSTAT field (static link) of the markstack is set to the value of the
BASE register.

Call intermediate procedure. Call procedure number UB in the same
segment as the currently executing procedure. The MSSTAT field (static
link) of the markstack is set by looking up the dynamic chain (MSDYN
fields) until an activation record is found whose caller had a lexical level
one less than the procedure being called. Use that activation record’s
MSSTAT field (static link) as the static link of the new markstack.

Call base procedure. Call procedure number UB, which is at lexical
level —1or (). The MSSTAT field (static link) of the markstack is set to
the MSSTAT field in the activation record of the procedure pointed to by
the BASE register. The value of the BASE register is saved on the
evaluation stack, after which it is set to point to the MSSTAT field of the
activation record just created.

Call external procedure. Call procedure number UB2 , in segment
UB1 . Used to call any procedure not in the same segment as the calling
procedure, including base procedures. If the desired segment is not
already in memory, it is read from disk. Build an activation record.
Calculate the static link for the markstack (if the called procedure has a
lex level of —1 or 0, set as in the CBP instruction; otherwise set as in the
CIP instruction).

Call standard procedure. Used to call standard procedures built into
the P-machine.

Return from nonbase procedure. DB is the number of words that
should be returned as a function value (0 for procedures, 1 for nonreal
functions, and 2 for real functions). Copy DB words from the higher
addresses of the current procedure’s activation record, and push them
onto the evaluation stack. Then copy the information in the current
procedure’s markstack fields into the pseudoregisters to restore the calling
procedure’s correct environment.

Return from base procedure. Move the value of the BASE register
saved on the evaluation stack by a CBP, back into the BASE register, and
then proceed as in the RNP instruction.

Chapter 4: The P-Machine Instruction Set

EXIT

FLC

SCN

MVL

MVR

1568 4

1568 10

158 11

158 02

1568 03

Exit from procedure. tos is the procedure number, tos—1 is the
segment number. First, set the MSIPC field to point to the exit code of the
currently executing procedure.

If the current procedure is not the one to exit from, change the MSIPC field
of each markstack to point to the exit code of the procedure that invoked
it, until the desired procedure is found. Then continue execution.

If at any time the saved MSIPC field of the main body of the operating
system is about to be changed, give an execution error,

System Support Procedures
]

Fillchar. tos is the source character. tos—1 is the number of bytes in the
source character that are to be filled. tos—2 is a byte pointer to the first
byte to be filled in the destination. Copy the character tos into tos—1
characters of the destination.

Scan. tos is a two-byte quantity (usually the default integer 0) that is
pushed, but later discarded without being used in this implerentation.
tos—1 is a byte pointer to the first character to be scanned. tos—2 is the
character against which each scanned character of the array is to be
checked. tos—3 is 0 if the check is for equality, or 1 if the check is for
inequality. tos—4 specifies the maximum number of characters to be
scanned (scan to the left if negative). If a character check yields TRUE,
push the number of characters scanned (negative, if scanning to the left).
If tos—4 characters are scanned before character check yields TRUE,
push tos—4.

Moveleft. tos specifies the number of bytes to move. tos—1 is a byte
pointer to the first destination byte. tos—2 is a byte pointer to the first
source byte. Copy tos bytes from the source to the destination,
proceeding from left to right through both source and destination.

Moveright. tos specifies the number of bytes to move. tos—1 is a byte
pointer to the first destination byte. tos —2 is a byte pointer to the first
source byte. Copy tos bytes from the source to the destination,
proceeding from right to left through both source and destination,

P-Machine Instructions IV-75

TIM
XIT

BPT
NOP

158 09
214

213
215

Miscellaneous
]

Time. Pop two pointers to two integers, and place zero in both integers.

Exit the operating system. Do a cold start of the system, as the
operating system’s Quit command.

Breakpoint. Not used (acts as a NOP).

No operation. Sometimes used to reserve space in the code for later
additions.

Numerical Listing of Opcodes

For your convenience in finding a given P-code instruction, here they are in
the numerical order of their opcodes.

Table 4-1. P-Codes in Numerical Order

Decimal
Opcode

IV-76

Mnemonic

SLDC_0
SLDC_1

SLDC__127
ABI
ABR
ADI
ADR
LAND
DIF
DVI
DVR
CHK
FLO
FLT
INN
INT
LOR
MODI
MPI

Full Name Location in Main Listing

Short-load one-word constant
Short-load one-word constant

Short-load one-word constant

One-Word Loads and Stores
One-Word Loads and Stores

One-Word Loads and Stores

Absolute value of integer Top-of-Stack Arithmetic
Absolute value of real Top-of-Stack Arithmetic
Add integers Top-of-Stack Arithmetic
Add reals Top-of-Stack Arithmetic
Logical AND Top-of-Stack Arithmetic
Set difference Top-of-Stack Arithmetic
Divide integers Top-of-Stack Arithmetic
Divide reals Top-of-Stack Arithmetic
Range check Top-of-Stack Arithmetic
Float TOS—1 Top-of-Stack Arithmetic
Float TOS Top-of-Stack Arithmetic
Set membership Top-of-Stack Arithmetic
Set intersection Top-of-Stack Arithmetic
Logical OR Top-of-Stack Arithmetic
Modulo integers Top-of-Stack Arithmetic
Multiply integers Top-of-Stack Arithmetic

Chapter 4: The P-Machine Instruction Set

Decimal
Opcode

144
145
146
147
148

149
150
151
152
153
154
155
156
157
158
1581
1682
1683
1568 4
1589
15810
158 11
158 22
156823
168 31
158 32
1568 36
159
160
161
162
163
164
165
166
167
168
169
170
171
172

Mnemonic

MPR
NGI
NGR
LNOT
SRS

SBI
SBR
SGS
SQl
SQR
STO
IXS
UNI
LDE
CSp
NEW
MVL
MVR
EXIT
TIM
FLC
SCN
TNC
RND
MRK
RLS
POT
LDCN
ADJ
FJP
INC
IND
IXA
LAO
LSA
LAE
MOV
LDO
SAS
SRO
XJP

Full Name

Multiply reals
Negate integer
Negate real

Logical NOT

Build a subrange set

Subtract integers
Subtract reals

Build a one-member set
Square integer

Square real

Store indirect word
Index string array

Set union

Load extended word
Call standard procedure
New variable allocation
Moveleft

Moveright

Exit from procedure
Time

Fillchar

Scan

Truncate real

Round real

Mark heap

Release heap
Power-of-ten

Load constant NIL
Adjust set

False jump

Increment field pointer
Static index and load word
Index array

Load global address
Load constant string address
Load extended address
Move words

Load global word

String assign

Store global word

Case jump

Numerical Listing of Opcodes

Location in Main Listing

Top-of-Stack Arithmetic
Top-of-Stack Arithmetic
Top-of-Stack Arithmetic
Top-of-Stack Arithmetic
Top-of-Stack Arithmetic

Top-of-Stack Arithmetic
Top-of-Stack Arithmetic
Top-of-Stack Arithmetic
Top-of-Stack Arithmetic
Top-of-Stack Arithmetic
One-Word Loads and Stores
String Handling
Top-of-Stack Arithmetic
One-Word Loads and Stores
Procedure and Function Calls
Dynamic Variable Allocation
System Support Procedures
System Support Procedures
Procedure and Function Calls
Miscellaneous

System Support Procedures
System Support Procedures
Top-of-Stack Arithmetic
Top-of-Stack Arithmetic
Dynamic Variable Allocation
Dynamic Variable Allocation
Top-of-Stack Arithmetic
One-Word Loads and Stores
Top-of-Stack Arithmetic
Jumps

Record and Array Handling
One-Word Loads and Stores
Record and Array Handling
One-Word Loads and Stores
String Handling

One-Word Loads and Stores
Record and Array Handling
One-Word Loads and Stores
String Handling

One-Word Loads and Stores
Jumps

Iv-77

Decimal

Opcode Mnemonic Full Name Location in Main Listing
173 RNP Return from nonbase procedure Procedure and Function Calls
174 CIP Call intermediate procedure Procedure and Function Calls
175 EQU Equal Top-of-Stack Arithmetic
1752 EQUREAL Real comparison Top-of-Stack Arithmetic
1754 EQUSTR String comparison Top-of-Stack Arithmetic
1756 EQUBOOL Boolean comparison Top-of-Stack Arithmetic
17658 EQUPOWR Set comparison Top-of-Stack Arithmetic
17510 EQUBYT Byte array comparison Top-of-Stack Arithmetic
17512 EQUWORD Word or multiword structure comparison Record and Word Array Comparisons
176 GEQ Greater than or equal Top-of-Stack Arithmetic
1762 GEQREAL Real comparison Top-of-Stack Arithmetic

176 4 GEQSTR String comparison Top-of-Stack Arithmetic

176 6 GEQBOOL Boolean comparison Top-of-Stack Arithmetic

176 8 GEQPOWR Set comparison Top-of-Stack Arithmetic

176 10 GEQBYT Byte array comparison Top-of-Stack Arithmetic

177 GRT Greater than Top-of-Stack Arithmetic
1772 GTRREAL Real comparison Top-of-Stack Arithmetic
1774 GRTSTR String comparison Top-of-Stack Arithmetic
1776 GRTBOOL Boolean comparison Top-of-Stack Arithmetic
17710 GRTBYT Byte array comparison Top-of-Stack Arithmetic

178 LDA Load intermediate address One-Word Loads and Stores
179 LDC Load multiple-word constant Multiple-Word Loads and Stores
180 LEQ Less than or equal Top-of-Stack Arithmetic
1802 LEQREAL Real comparison Top-of-Stack Arithmetic
1804 LEQSTR String comparison Top-of-Stack Arithmetic
1806 LEQBOOL Boolean comparison Top-of-Stack Arithmetic
1808 LEQPOWR Set comparison Top-of-Stack Arithmetic

180 10 LEQBYT Byte array comparison Top-of-Stack Arithmetic

181 LES Less than Top-of-Stack Arithmetic
1812 LESREAL Real comparison Top-of-Stack Arithmetic
1814 LESSTR String comparison Top-of-Stack Arithmetic
1816 LESBOOL Boolean comparison Top-of-Stack Arithmetic
18110 LESBYT Byte array comparison Top-of-Stack Arithmetic

182 LOD Load intermediate word One-Word Loads and Stores
183 NEQ Not equal Top-of-Stack Arithmetic
1832 NEQREAL Real comparison Top-of-Stack Arithmetic
1834 NEQSTR String comparison Top-of-Stack Arithmetic
1836 NEQBOOL Boolean comparison Top-of-Stack Arithmetic
1838 NEQPOWR Set comparison Top-of-Stack Arithmetic
18310 NEQBYT Byte array comparison Top-of-Stack Arithmetic
18312 NEQWORD Word or multiword structure comparison Record and Word Array Comparisons
184 STR Store intermediate word One-Word Loads and Stores
185 UJP Unconditional jump Jumps

186 LDP Load a packed field Record and Array Handling

IV-78 Chapter 4: The P-Machine Instruction Set

Decimal
Opcode

187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
208
204

Mnemonic

STP
LDM
STM
LDB
STB
IXP
RBP
CBP
EQUI
GEQI
GRTI
LLA
LDCI
LEQI
LESI

NOP
SLDL_1
SLDL_2

SLDL_16
SLDO_1
SLDO_2

SLDO_-16
SIND_0
SIND_I
SIND_2

SIND_7

Full Name

Store into a packed field
Load multiple words
Store multiple words
Load byte

Store byte

Index packed array
Return from base procedure
Call base procedure
Equals integer

Greater than or equal integer
Greater than integer

Load local address

Load one-word constant
Less than or equal integer
Less than integer

Load local word

Not equal integer

Store local word

Call external procedure
Call local procedure

Call global procedure
Load a packed array
Store extended word
Breakpoint

Exit the operating system
No operation

Short load local word
Short load local word

Short load local word
Short load global word
Short load global word

Short load global word
Load indirect word

Short index and load word
Short index and load word

Short index and load word

Numerical Listing of Opcodes

Location in Main Listing

Record and Array Handling
Multiple-Word Loads and Stores
Multiple-Word Loads and Stores
Byte Array Handling

Byte Array Handling

Record and Array Handling
Procedure and Function Calls
Procedure and Function Calls
Top-of-Stack Arithmetic
Top-of-Stack Arithmetic
Top-of-Stack Arithmetic
One-Word Loads and Stores
One-Word Loads and Stores
Top-of-Stack Arithmetic
Top-of-Stack Arithmetic
One-Word Loads and Stores
Top-of-Stack Arithmetic
One-Word Loads and Stores
Procedure and Function Calls
Procedure and Function Calls
Procedure and Function Calls
Record and Array Handling
One-Word Loads and Stores
Miscellaneous

Miscellaneous

Miscellaneous

One-Word Loads and Stores
One-Word Loads and Stores

One-Word Loads and Stores
One-Word Loads and Stores
One-Word Loads and Stores

One-Word Loads and Stores
One-Word Loads and Stores
One-Word Loads and Stores
One-Word Loads and Stores

One-Word Loads and Stores

V-79

Appendix 4A Memory Maps

IV-81

64K System Memory

External Language (

Card (Apple [T or
Apple Il Plus) or
Main Memory
(Apple Ile or
Apple llc)

Main
Memory

Appendix 4A: Memory Maps

—

P-code
Interpreter
and
part of the
Operating
System

1/0 Device
Addresses & ROMs

SYSCOM

part of the
Operating System

Program Stack
(builds down)
P-code, 6502 code
and data

———— e

Heap
(builds up)

Text Screen

Disk & Console
Buffers

Evaluation Stack
(builds down)

Zero Page

$FFFF 64K

$D000 52K

$CFFFF
$C0000 48K

-«— KP(Top of Program Stack)

-+— NP (Top of Heap)

$0800 2K

-+— SP(Top of Evaluation Stack)
$0100 0.25K

$0000 OK

128K System Main Memory

“

Pade] T SRR
Interpreter
and
part of the
Operating
System
1/0 Device $D000 52K
Addresses & ROMs $C000 48K
SYSCOM
Program Stack
(builds down)
data and
6502 code
————————————————— ~+— KP (Top of Program Stack)
Main J Free Memory
Memory)L ~— NP (Top of Heap)
Heap
{builds up) $0800 2K
Text Screen $0400 1K
Disk & Console |
Buffers _ﬁOgO_O 05K
Evaluation Stack
(Builds down)
————————————————— ~+— SP (Top of Evaluation Stack)
$0100 0.25K
| Zero Page $0000 0K

128K System Main Memory IV-83

128K System Auxiliary Memory

V-84

Auxiliary
Memory

Appendix 4A: Memory Maps

$FFFF 64K
Reserved
for
System
Use
_____SDOOOSK
1/0 Device
Addresses & ROMs $C0000 48K
Part of the
Operating System
P-code
(builds down)
———————————————— -«-- CODEP
Free Memory
- s08002K ____
Text Screen $0400 1K
System Use $0000 0K

Code Segments in a Codefile

b —
high disk addresses

first segment

sixteenth segment

fifteenth segment

third segment

second segment,

segment dictionary

low disk addresses

Code Segments in a Codefile V-85

Blocks in a Code Segment

1V-86

high disk addresses
t

Second Code Segment Block 6 Interface tex

Block 5 Linker information

Block 4 code part

Block 3

Block 2 interface text

(unit segments only)

First Code Segment Block 1

Block 0 segment dictionary

Appendix 4A: Memory Maps

low disk addresses

byte 511
byte 0

Correlation Between Programs and Codefiles

e

Source text files

Segments in codefile

after linking
PROGRAM MAIN;
USES MAINLIBIU,REGUNIT;
SEGMENT FUNCTION DIVID; REGUNIT code segment
BEGIN
END; “w "
SEGMENT PROCEDURE BYFOUR; MAIN “outer” code segment
BEGIN .
MULT? function
END; STOR procedure
FUNCTION MULT2;
BEGIN
BYFOUR code segment
END;
PROCEDURE STOR;
BEGIN
DIVID code segment
END;
BEGIN

END

UNIT REGUNIT;
BEGIN

END.

Segment in library

UNIT MAINLIBIU;INTRINSIC
CODE 48 DATA41;
BEGIN

END

MAINLIBIU code segment,

Correlation Between Programs and Codefiles

Iv-87

Segment Dictionary

DISK INFO

SEGNAME

SEGKIND

TEXTADDR

SEGINFO

INTRINS-SEGS

FILLER

COMMENT

bit

bit

low disk addresses

high byte low byte
CODEADDR(block number) (segment 0)
CODELENG(in bytes)
(segments 115)
1st character Oth character
3rd character 2nd character
(seg0)
5th character 4th character
Tth character 6th character
: (segments 1-15)
SEGKIND (segment 0)
(segments 1-15)
TEXTADDR (segment 0) |
(segments 1-15)
| VERSION MTYPE SEGNUM |
51413121110 9 8 76 543 2 10

(segments 1-15)

51413121110 9 8 765 43210
3130 29 28 27 26 25 24 23 22 21 20 19 18 17 16
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
63 62 61 60 59 58 57 56 b5 54 53 52 51 50 49 48

1st character (Oth character
79th character 78th character
high disk addresses

V-88 Appendix 4A: Memory Maps

word

0

32
33
34
35

96

112

128

144
145
146
147
148

216

255

Interface Text in a Codefile

pagen
block n

block n+1

page n+1
block n+2

block n+3

pagen+2
block n+4

block n+5

Source Textfile

.
.
.
.
.
.
-
.

INTERFACE
USES APPLESTUF

Interface Text in Codefile

—

USES TRANSCEND
CONSTANT PI=3
CONSTANT E=2.7
TYPE ARRAYSIZE
VAR INRECORD:I
—VAR CURRENT:CH
PROCEDURE A:;
PROCEDURE B;
PROCEDURE C;
FUNCTION D(IN
FUNCTION E(AS

USES APPLESTUF
garbage

block m

| block m+1

USES TRANSCEND
CONSTANT PI=3
CONSTANT E=2.7
TYPE ARRAYSIZE
VAR INRECORD!I
—VAR CURRENT:CH
PROCEDURE A;
PROCEDURE B:
PROCEDURE C;
FUNCTION D (IN
FUNCTION E (AS

FUNCTION F(PA
IMPLEMENTATION
PROCEDURE A;

block m+2

[block m+3

FUNCTION F (PA

IMPLEMENTATION
unit info

block m+4

Interface Text in a Codefile

1V-89

Code Part of a Code Segment

IV-90

high disk or memory addresses

high byte low byte
number of procedures segment nurber
in this segment of this segment

pointer to procedure #1

pointer to procedure #2

pointer to procedure #n

attribute table procedure #1
code (highest procedure)
attribute table procedure #n
code (lowest procedure)
> attribute table
procedure #2
code
CODEADDR low disk or memory addresses
block boundary

Appendix 4A: Memory Maps

Procedure
Dictionary

CODELENG
bytes

Procedure Code Structure

—

high disk or memory addresses
high byte low byte

T
attribute table
(with optional jump table)

procedure
colde

low disk or memory addresses

P-Code Procedure Attribute Table

high disk or memory addresses

high byte low byte
LEX LEVEL PROCEDURE NUMBER
ENTER IC
EXITIC

PARAMETER SIZE(in bytes)
DATA SIZE(in bytes)

optional jump table

\

low disk or memory addresses self-relative
pointers to code

P-Code Procedure Attribute Table V91

6502 Procedure Attribute Table

1V-92

base-
relative
relocation table

segment-
relative
relocation table

procedure-
relative
relocation table

interpreter-
relative
relocation table

high disk or memory addresses

high byte

low byte

RELOCSEG
NUMBER

PROCEDURE
NUMBER (=0)

ENTER IC

number of pointers(n)

-

n self-
relative
pointers

pointer
to start of
procedure code

number of pointers(m)

m self-
relative
pointers

number of pointers(p)

.

p self-
relative
pointers

number of pointers(q)

q self-
relative
pointers

low disk or memory addresses

Appendix 4A: Memory Maps

Bytes and Words

‘

higher, odd addresses lower, even addresses
| i l] 1 1 | 1 { 1] | l l
1 T T L] T T] 1 T L] T T T T
high byte low byte
} 1 L l | } I 1 l l } l } l
T T T T L] T T T T T T T T T

bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
(- _J

—
one word

Bytes and Words Iv-93

Program Stack

high memory addresses

SYSCOM

code segment (64K only)

PASCALSYSTEM
activation record

-+— BASE register

1

markstack

code segment (64K only)

MAINPROG
activation record

markstack

code segment (64K only)

UNITPROC
activation record

markstack

code segment (64K only)

ALPHAPROCDRE
activation record

markstack

-— MP and KP registers

free memory

-«— NP register
HEAP

low memory addresses

IV-94 Appendix 4A: Memory Maps

Segment Table

—

high memory addresses

entry 63 (information about

segment number 63)
entry 62
entry |

entry 0 (information about
segment number ()

low memory addresses

Segment Table IV-95

Activation Record

o

high memory addresses

local — DATA SIZE
variables

ssed
data area — pa
parameters

PARAMETER SIZE

function
value

MSSP

MSIPC
MSSEG

MARKSTACK

MSJTAB

MSDYN
MSSTAT ~a————— MP register

low memory addresses

Variable Allocation in an Activation Record

-

For the declaration

VAR I, J : INTEGER;
BOOL : BOOLEAN;

the local variable portion of an activation record is constructed like this:
high memory addresses
BOOL
I
J

low memory addresses

IV-96 Appendix 4A: Memory Maps

