
--- ------ - ---- ---- - ---- ------------_.- Personal Computer
Computer Language
Series

BEGINNER'S
GUIDE
for the UCSD p-System'· Version IV.O

Written by Kenneth L. Bowles
Edited by Stan Stringfellow

First Edition (January 1982)

Changes are periodically made to the information herein;
these changes will be incorporated in new editions of this
publication.

Products are not stocked at the address below. Requests for
copies of this product and for technical information about the
system should be made to your authorized IBM Personal
Computer Dealer.

A Product Comment Form is provided at the back of this
publication. If this form has been removed, address comment
to: IBM Corp., Personal Computer, P.O. Box 1328-C, Boca
Raton, Florida 33432. IBM may use or distribute any of the
information you supply in any way it believes appropriate
without incurring any obligations whatever.

© Copyright International Business Machines Corporation
1982
© Copyright Kenneth 1. Bowles 1980
© Copyright Soffech Microsystems, Inc. 1981

UCSD, UCSD Pascal, and UCSD p-System are all trademarks
of the Regents of the University of California.

This book is a Revised Edition of BEGINNER'S GUIDE TO
UCSD Pascal by Kenneth 1. Bowles.

CONTENTS

CHAPTER 1. AN OVERVIEW............ 1-1
Who................................. 1-3
What 1-3
Pascal 1-4
How to Use this Book 1-6

CHAPTER 2. ORIENTATION FOR
BEGINNERS. .. 2-1

Goals for this Chapter 2- 3
Getting Started 2- 3
Simple Commands.................... 2-5
Special Keyboard Characters 2-9

ENTER.......................... 2-9
CONTROL 2-9

The Concept of a Program. 2-11
Building Bigger Programs out of

Smaller Programs 2-14
Commands that Ask for Data 2-16

I(nsert 2-17
D(elete 2-18
P(osition 2-19

Summary of the Data W orId Example 2-19

CHAPTER 3. ORIENTATION FOR
EXPERIENCED PROGRAMMERS 3-1

Goals for this Chapter 3-3
Brief Overview 3-4
The W orkfile 3-6
Running the Edited Program 3-7
SavingWorkfilesforFutureUse ... 3-9

Entering and Testing a Simple
Program 3-9

The I(nsert Command 3-11
The D(elete Command 3-15
Q(uit and U(pdate your Workfile 3-16

iii

iv

R(un your Program 3-17
Coping with a Compile-time

"Syntax" Error 3-18
Saving your W orkfile in the

Disk Directory 3-19
Suppressing Execution of the Maze at

Bootload Time 3-25

CHAPTER 4. SCREEN EDITOR 4-1
Goals for this Chapter 4- 3
Editor Overview :................ 4-4
Cursor Movement Commands 4-7

Arrow Commands and Their
Relatives 4-9

Repeated execution of an arrow
command 4-10

Moving the cursor off the screen ... 4-10
Using SPACE, BACKSPACE, and

ENTER 4-14
The TAB key 4-15
Multiple occurrences of the target 4-23
F(inding backwards 4-24
L(iteral Targets vs Tokens 4-25
Commands that Change the

Workfile's contents 4-29
The Q(uit command and its options 4-46
Using the Editor for Word Processing 4-48

CHAPTER 5. FILEMANAGER(FILER) 5-1
Goals for this Chapter 5-3
Overview of Files and the Filer.. 5-4
Volume Identifiers... 5-5

Simplified Titles for disk files 5-6
Naming Conventions to Simplify

Work with Groups of Files...... 5-7
W orkfile Commands 5-9
Status checking/setting commands 5-17
Shorthand entry of the destination

file name 5-27

Disk to Disk bulk T(ransfer 5-28
T(ransferring only selected files ... 5-29

Rearranging the files on one disk 5-30
Directory Maintenance Commands 5- 32
Checking for disk errors and

repairing them 5-42

CHAPTER 6. PASCAL COMPILER-
SYNTAX ERRORS 6-1

Goals for this Chapter. 6- 3
Preliminaries 6-4
Comments and Compiler Directives '" 6-5
Include Directive 6-7
The Compiler's CRT Display and

the List Directive 6-8
Miscellaneous Compiler "Switch"

Directives 6-13
I/O Check Switch 6-13

Quiet Compilation Switch 6-14
Syntax Errors 6-14
Unmatched BEGIN .. END pairs 6-17
Comment Not Completed with a

Closing "*)" Symbol " 6-19
Nested IF Statements 6-20
Execution or Run-Time Errors 6-27

CHAPTER 7. PROGRAMMING TO USE
DISK FILES............................. 7-1

Goals for this Chapter 7 -3
Overview 7-4
Physical Description of UCSD Pascal

Disk Files........................... 7-7
Sector Interleaving 7-8
512-Byte Blocks - Universal Units

of Disk Transfer 7-9
Structured Logical Records 7-11
Text Files 7-13

Working with Structured Data Files ... 7-16
File Declarations and the Buffer

(Window) Variable 7-19

v

Sample Program - Sequential
File-to-File Copying 7-32

Random Access Handling of Disk Files. .. 7 -35
Sample Program UPDATE 7-3 5
Indexed Access - Efficiency

Considerations 7-41
Text Files 7-44
READ and WRITE 7-45
EOLN, READLN, WRITELN:

End-Of-Line 7-47
Efficiency Considerations 7-51

Error Recovery 7-52

CHAPTER 8. USING LIBRARIES OF
SPECIALIZED ROUTINES (UNITS) 8-1

Goals for this Chapter 8-3
The Reason for Having Preprogrammed

Units 8-3
Overview of Units 8-5
A Sample Unit and its Use 8-8
The Librarian 8-13

APPENDIX A. SPECIAL KEYS A-I

APPENDIX B. SCREEN EDITOR
COMMANDS B-1

APPENDIX C. FILER COMMANDS C-l

APPENDIX D. OPERATING SYSTEM
COMMANDS D-l

APPENDIX E. COMPILER SYNTAX
ERROR MESSAGES E-l

APPENDIX F. EXECUTION ERROR
MESSAGES F-l

APPENDIX G. I/O ERROR MESSAGES G-l

vi

CHAPTER 1. AN OVERVIEW

Contents

Who................................. 1-3
What 1-4
Pascal 1-5
How to Use this Book 1-7

1-1

NOTES

1-2

Who

What

This book is intended to be used as an introduction
and reference manual for people just beginning to
use the UCSD p-System. The book is designed to be
used by at least the following three groups of people:

1) College students, high school students, and
others who have never used a computer before;

2) Experienced programmers who have not used
UCSD Pascal, particularly those who have been
using BASIC and those not yet familiar with
interactive CRT based programming systems;

3) Non-programmers who intend to use packaged
programs designed to run within the UCSD
p-System.

Some portions of the book are designed for use by
only one or two of these groups, and can readily be
scanned or ignored by others.

Our intent is to make it possible, and relatively easy,
for you to learn to use the UCSD p-System by
working just with the book and an IBM Personal
Computer. You may find it useful to obtain
assistance from someone already familiar with the
p-System, but that help should not be necessary.

If you are a beginner, and do not recognize the terms
used in this section, you may wish to skim over the
rest of this overview chapter and jump directly to
Chapter 2.

The UCSD p-System is a complete general purpose
software package for users of the IBM Personal
Computer. The p-System is designed to make it easy

1-3

Pascal

1-4

to develop and use programs. Though designed for
program development, the UCSD p-System can also
be used for many special purpose applications.
Examples include Word Processing, Computer
Assisted Instruction (CAl), interactive business data
processing, communications, process control, and
scientific analysis. While designed primarily for use
with programs written in the Pascal programming
language, the UCSD p-System also allows work with
FORTRAN.

This book concentrates on features of the UCSD
p-System intended for all users, especially beginners
and students. A full user-oriented description of the
p-System, including its many advanced features, is
given in the User's Guideforthe UCSD p-System which is
intended for experienced programmers. The
PASCAL Referencefor the UCSD p-System by Clark and
Koehler describes the Pascal language in detail. The
FORTRAN-77 Reference for the UCSD p-System
describes the FORTRAN language. The Assembler
Reference for the UCSD p-System describes the
Assembler and the 8086/87 assembly language. The
Internal Architecture Guide discusses details of the
internal workings of the p-System.

Pascal is a powerful general purpose programming
language designed by Professor Niklaus Wirth of the
Technical University in Zurich, Switzerland. The
language is named in honor of Blaise Pascal, a
famous mathematician. However, mathematics is by
no means the only field in which the Pascal language
is found to be useful.

The "standard" Pascal language, consisting of
Wirth's definition published in 1971 and a few
corrections made since then, was originally
introduced to help in teaching a systematic approach
to good program design. You may have heard of a

method known as "Structured Programming", with
which professional programmers are able to write
large complex programs in a manner that avoids
most of the errors that plague programming work in
older languages like BASIC, COBOL or FORTRAN.
Among the practical and usable programming
languages currently in widespread use, Pascal is the
best statement of what structured programming is
all about.

Pascal is coming into widespread use for writing
complex programs in almost all fields where
computers are applied to practical problems. For
these applications, the standard Pascal language is
often extended to provide specialized facilities not
present in Wirth's original definition.

Virtually all of the UCSD p-System is programmed
using a slightly extended version of the Pascal
language that I will call "UCSD Pascal" in this book.
UCSD Pascal includes almost all of the standard
language. The extensions beyond the standard
language in UCSD Pascal have been included to
facilitate teaching using non-mathematics-oriented
problem examples, and to facilitate writing a variety
of large interactive programs.

UCSD Pascal is relatively easy for beginners to learn,
as proven by the thousands of students who have
completed an introductory problem solving and
computer programming course at UCSD. It is
probably true that beginners can learn to write very
small programs slightly faster using BASIC than they
can using Pascal. As soon as the beginner reaches the
stage of needing more than a very few "GO TO"
statements, learning to solve the same problem
using Pascal becomes easier. Thereafter, the larger
the program, the greater will be the advantage in
using Pascal instead of BASIC. Most people who are
familiar with both Pascal and BASIC agree that the
extra effort to learn Pascal is easily saved as soon as
one tries to write a program larger than "toy" size.

1-5

How to Use this Book

1-6

This book is designed to be used both as an
orientation guide for people first learning to use the
UCSD p-System, and as a reference manual for the
same people once they are familiarized with the
p-System. As a reference manual, this book contains
enough information to assist in a wide variety of
advanced applications of the p-System. However,
advanced users with a serious interest in the
p-System should supplement this book with the
detailed reference manuals for the p-System.

If you have not used computers before, or if your
experience is with an "old" system such as those
using punched cards for input, you probably should
start reading this book in Chapter 2, "Orientation
for Beginners". If you have written programs before
using some language other than Pascal, and if you
have used an interactive computer facility, then you
probably can start in Chapter 3, "Orientation for
Experienced Programmers". To avoid any more
duplication of text than necessary, Chapter 3 is also
intended to be read by beginners who have already
gone through Chapter 2.

Whether you are a beginner or an experienced
programmer, you will find this book easier to use if
you have ready access to an IBM Personal Computer
along with the STARTUP disk which contains
several sample disk files designed specifically for use
with this book. These include SYSTEM. STARTUP,
and the text files EDITDEMO, and COMPDEMO.

Whether you are learning to program using Pascal,
or just learning to use the p-System, you will then
want to concentrate on the earlier portions of
Chapters 4 and 5 on the Screen Editor and the File
Manager respectively. These are the portions of the
p-System with which you will be spending most of
your time. The Screen Editor and the File Manager

are major tools to be used in making your use of the
p-System easier. Both chapters are organized to
present the most frequently used commands in an
order designed to get beginners making practical use
of the p-System as quickly as possible. Since this
order does not lend itself to convenient reference
use of the book, summaries of the commands are
also given in Appendix A in alphabetic order.

Chapter 6 gives many helpful insights into the use of
the Pascal Compiler. Chapter 7 describes how to
write Pascal programs which use disk files under the
UCSD p-System.

The UCSD p-System provides a method of
augmenting the Pascal language, for specialized
programming applications, using separately
prepared libraries of routines. Chapter 8 describes
how to use these library routines.

1-7

NOTES

1-8

CHAPTER 2. ORIENTATION FOR
BEGINNERS

Contents

Goals for this Chapter 2-3
Getting Started. 2-3
Simple Commands 2-5
Special Keyboard Characters 2-9
ENTER.............................. 2-9
CONTROL 2-9
Arrow Keys for Moving the Cursor 2-10
The Concept of a Program 2-12
Building Bigger Programs out of

Smaller Programs 2-14
Commands that Ask for Data 2-16
Summary of the Data W orId Example ... 2-19

2-1

NOTES

2-2

Goals for this Chapter
The following are the goals for this chapter:

a) Familiarize yourself with the IBM Personal
Computer, with its keyboard, and with the
method of inserting your floppy disk to get the
UCSD p-System started (called "bootloading").

b) Learn what it means to use a "command"
directing the computer to do something.

c) Distinguish between single-character
commands and commands that ask for data.

d) Distinguish between a series of commands and a
"program", which is really just a series of
commands stored in the computer's memory in
such a way that those commands can be
repeated upon request.

e) Learn how to translate the important abstract
control commands used throughout this book
into actions you need to take using your
computer in order to invoke those commands.

Getting Started
This chapter is designed to be read when you have an
IBM Personal Computer next to you and can use the
computer immediately to tryout the steps described
in this book. To do this exactly as described in the
book, the STARTUP disk should be used.

If you are like most people when they first start to
use a computer, you probably do not know what to
expect at this point. If someone who has already
used the UCSD p-System is available to help, a
fifteen minute demonstration would be a good idea
to cover the material of this chapter and the next.

2-3

2-4

Lacking someone to demonstrate, I will give you
step by step instructions so that you can get
familiarized with the p-System by yourself.

First, I assume that your computer has been turned
on and is functioning correctly. To turn the
computer on the system unit switch should be in the
up position. Carefully insert your STARTUP:
diskette into the left disk drive connected to your
computer.

CAUTION: The floppy disk can be damaged
or ruined if not handled carefully! Dust picked
up off a table, through one of the slots in the
protective jacket, can often ruin a disk. The disk
can also be ruined if you write on it with a ball
point pen, if you fold the disk or jam it under the
cover of a three-ring notebook, if you leave
fingerprints on the disk itself by holding
through one of the slots in the protective
jacket, or if you toss it around like a Frisbee! All
these precautions may suggest that you should
have second thoughts about getting involved
with computers in the first place. Actually, it
takes just a little effort to take care of your
diskettes. When you do, they can last without
damage through years of frequent use.

Both the disk and the computer itself might be
damaged if you insert the disk into the disk drive in
the wrong direction! Out of the eight different ways
in which the disk might be inserted into the drive,
only one is correct. The protective envelope, within
which the actual disk lives, is generally marked on
one side with a printed label. The correct orientation
of the disk is the one you get by holding the diskette
with your thumb holding the printed label (or at
least holding the same side of the diskette envelope).
You hold the diskette with the labelled side nearest
to you, i. e., so that the printing appears upside down
to your eyes.

Once the diskette is safely in the disk drive, the IBM
Personal Computer will boot automatically. If at any
time you wish to re-boot, you may either turn the
power off, wait five seconds and turn it on again, or
you may hold down the Ctrl and AL T keys and type
the DEL key on the number pad.

In the jargon of the computer industry, the process
of getting the system started is called "bootstrap
loading", or simply "bootloading". What happens,
when you bootload, is that essential parts of the
System are copied from the diskette into the active
memory of the computer's central processor unit. If
the bootloading process is successful, the result will
be a displayed figure as in Figure 2-1.

What if you do not get this result? You can detect
whether bootloading is proceeding correctly by
listening to clicking noises from the disk drive. Also,
the indicator light should go on while information is
being transferred from the disk into the computer's
memory. In most cases, you should experience no
problem in bootloading the System for the first
time. If something does go wrong, it is advisable to
go back through the steps that got you to this point,
to make sure that you have not forgotten something.

Simple Commands
When you first unpack the STARTUP disk
associated with this book, it will be arranged to
produce the display shown in Figure 2-1 as the result
of bootloading.

2-5

2-6

Ma:a: U(O O(own Rtlqnt L(eft Black H(el~ X(ecute C(lear Olult
.;i);i); ... ; ;;);i);;) ;;) .. ;v .. ;i);;) .•• ii.;) ;.
iiii ..
• .;) .. ; ... ; ... ;;) .i)" .•. i) .. ;;);......... .i)
;).. ..;) ;vi)

i) v ·v;); ... ;i) ·il ";."·;).ii .;)
i) .. .i) i i- ;) i .i) .i) .;)

.i) .i);i).i) ·v .il ;)OlOl .il .il.;);;) ;) .;) ;);;);i)

ii i) i il ;)i).v

i) i)Ol;i";i) ·v i).;);i);v;;);;)";i);i);;);i);;);i) i).il"

·il ii .il .;) ;) oil
i) ~ .• ;il;i);il;) .i).";i.;);;);i);i,i);il .;) .;) .•

i) vi) i) i i) .• ;)

;) ;);i;v;il.;) .;);i);;);i).;) .;);i).i).;); ••. ;););ilo;

il;) i).il. i) ii ;)
;)ii-i)";).;)";;) .• il ·i)';)";i);il".;) ;;);;)Ol i)

;) i) i) i) i) il
il.;);i););.;i);.;i) i) .iI ;) .i).'.;).i);.;;;.;) ·v ;)
;) ·il·il il;) i)

i);il;;).il;;); • .il.;);i) ·.";i)";i);i)".;);.;i);;);ii.il .. ;ii;;).il

Figure 2-1. Initial display for Maze exercise

Now direct your attention to the character "#"
displayed just 5 lines below the character "R" in
"R(ight", which is on the top line of the screen. The
display consisting of barriers made out of"@"
characters is a maze. In the exercise associated with
this display, you will go through the steps necessary
to find the exit from the maze, starting at the point
marked with the character "#". The object of the
exercise is to give you concrete examples and
practice with what we call a "command" in computer
jargon.

Now press the "D" key on your keyboard exactly
once. The result should be the appearance of the
character "+" immediately below the "#" character.
At the same time, the cursor position should move to
mark the newly created "+". A single "D" character
will also appear near the bottom left side of your
screen.

If nothing at all happens on the screen in response to
your pressing the "D" key, chances are that you have
not pressed it hard enough! Note: If you press the
"D" key again at this point (or if you inadvertently

pressed it more than once) the speaker on your
computer will beep. If that did not happen, do not be
afraid to press "D" again just to see what it sounds
like. The beep is frequently used as a signal to warn
you that you are attempting to use a command that
does not make good sense just when you try to use it.

Next, press the "R" key twice. The cursor should
move two boxes to the right, placing additional" +"
characters on the screen as it goes. If you press "R" a
third time, the speaker will beep again signifying
that you are trying to bump into another wall. Press
"D" once or twice, and the result should be to move
the cursor down an equal number of places, again
leaving "+" characters on the screen.

By this time, you can see that you" command" the
computer to do something each time you press the
"D" or "R" key. Note in the top line of the screen
that there are command characters associated with
all four directions in which the cursor can move
within the maze. "D" stands for "Down", "R" stands
for "Right", "L" for "Left", and "U" for Up. The top
line is used as a handy reminder about the available
command letters, and what they are supposed to do.

The "(" character used with each command word is a
reminder that only one character needs to be pressed
to initiate the associated command. On some
computer systems, you need to type in the whole
word to initiate a command.

Try your hand at finding your way out of the maze.
The only way out is at the open box along the
bottom line of the maze. Figure 2-2 shows the result
of taking a shortcut, which is obviously wrong. Do
not let the beeps of the speaker bother you. They
simply tell you that you can not keep moving in the
direction indicated by the command letter you have
just used.

2-7

~a=e: U~O 0(cwn R(lgMt L(eft 3<ack HCelp X(ecu~e CClear Q(Ult
,·i);,,;i);;);;);i):i);i)·,;i);;);i);;).i):i);il;i);.;i) ;i);il;i);;)

.i) .i) .i) .i)

·il i).i);;);i);,.i);;).i).i) .i) ., ·i);il;;)":i);i):i) •• ;i) .i)

~ :~+"""""''''''''''''':i).j) iI .j)

, , ·i) ... ·il;i/:i):i);, .. .i):i);;);;):;)i) ·i);''';il; ••

i) ,i) ,i) ... ,i) • ,i),i),i).;) •

. i) ,.i);;)..... • ';;):i) .i) .i)":i)i) .i) ;";i)"

j) ... - :;).~ ~ 1).j).j)

.... ·il.;)·i);i);i) i) ·il;;);i);;):i);;);il;il:i);;),":;).i) :;).;):i)

.... ·il i) il ·il.i)

..... il.;);i);i).i) ; •. i) .• ;,;, •• .;).'.;):i) .i) ., .i)

il'" .il il·il ., .il i);)

" ... ;i/.iI .. ;iI;il il;i):i);iI;il .i):;):i);i);i) ;i) i) .i);;).i)

i)..... i) il .i) il i) .i)

""'.il.i);' .i).i);;);;);;) .il il;,;;).il.il";i) .i)";i) .,

~+ ·iJ .~ 1) j) ,j)

;),;);;)"'.il;;);i);;);i) i), i) ';i);;):i):;).i);i) .il'

j) ~ _~ .j) ,j).1} 1)

iI.i);;);i).';i);;);i);;) il.il.i);i).';';;);i);';;).'.,.i);';i);i).i)

JLLLL:"'L:JDDDLLLLDDDDDDDDRRDDR

Figure 2-2. A bad way out of the maze

H(elp

2-8

Next, if you have not already done so, it would be a
good time to see what the "B(ack" command does by
pressing "B". If you have moved from the starting
position of the "#", each press of "B" will remove
one "+" from the screen, backing you up toward the
starting point. You may already have noticed that
none of the commands "U", "D", "R", or "L" will
allow you to back over a "+" already placed on the
screen.

Press "H" to see what the "Help" command does.
The maze will disappear off the screen, and a list of
brief explanations of the available commands will
appear. You can return to the maze display by
pressing the SPACEBAR key (the long thin key at
the bottom of your keyboard - i.e. the one closest to
you).

The "c" key, for the "C(lear" command restores the
maze display to the condition it was in when you first
bootloaded.

The "X(ecute" command is explained in Chapter 5.

If at this point you press the "Q" key for "Q(uit", it
might be best to start over by bootloading again. I
will explain what's going on in a later section.

Special Keyboard Characters

ENTER

The IBM Personal Computer keyboard has some
characters designed to be used for special control
purposes. I am not yet ready to show you all of the
special control characters, but we can begin at this
point with a few of the characters used for moving
the cursor around on the screen.

As a starting exercise, go through the maze as in the
previous section leaving at least a dozen or so "+"
characters in the maze. As before, the "B" key causes
you to back up toward the starting location each
time it is pressed. Now press the ENTER key
(marked as a bent arrow going down and turning left)
and note what happens. We have arranged things for
this exercise alone so that the ENTER key is an
alternate method for invoking the "B(ack"
command. The ENTER key is used commonly for
several other purposes throughout the UCSD
p-System. For now, I just want you to be familiar
with the ENTER key itself.

CONTROL

Now, notice that your keyboard has a key marked
Ctrl. This key is similar in effect to the SHIFT
keys, at least in that Ctrl changes the effect you get
from pressing many of the keys on the keyboard. In
the maze exercise, if you press the "M" key, the
computer will simply beep at you signifying that it

2-9

has no corresponding command. Now, hold down
the Ctrl key, then press "M" while still holding
Ctrl down. Note that what happens is the same as
what you get when you press "B" or ENTER.
Explanation: Each key on the keyboard, when
pressed, sends a unique coded message to the
computer. If you hold down SHIFT, the message
may change, as from lower case "a" to upper case
"A". If you hold down Ctrl, the message changes
so that each key showing a letter has some special
meaning, generally a meaning that cannot be
expressed by showing a single character on the
screen. One can arrange the computer to interpret
Ctrl+letter messages as calling for a command to
be invoked, just as we have used simple letter
commands in the maze exercise.

It is often confusing to rememJ:>er the association
between a Ctrl+letter combination and the
command action it is intended to invoke. Therefore,
the IBM Personal Computer keyboard provides a
few specially labelled keys which send the same
messages as the associated Ctrl+letter combinations.
The keyboard has an ENTER key. For that reason,
we do not have to remember that the same effect can
be obtained using Ctrl+"M".

Arrow Keys for Moving the Cursor

2-10

N ow, go back through the maze exercise using the
special CONTROL commands for UP, DOWN,
RIGHT, and LEFT. These commands are associated
with four special control keys marked with arrows
pointing in the four directions. (The arrows are
located on the number pad keys 2, 4, 6, and 8.)

A few words about context may help you to
understand what we have been doing here. You may
wonder why we need the special Ctrl+letter
combinations at all if the command letters "U", "D",

"R", and "L" will work just as well. The answer is that
we have arranged for those letter commands to work
as described just within the maze exercise. In using
the UCSD p-System, you will see that we go from the
context or environment of one "world" to that of
another quite frequently. A little later in this
chapter, we will switch to another world in order to
illustrate how you use commands that require data.
(Thus far, the commands we have been using are all
invoked just by pushing one key - or the equivalent
Ctrl+letter combination.) Since there are only 26
letters in the English alphabet, there are not enough
single letter commands to go around to cover all of
the things we want to do in different worlds within
the UCSD p-System. Even if there were enough
letters (as in the Chinese language) you would not
want to spend the time to memorize all the
letter-command associations. The UCSD p-System
has been designed to make use of some of the
commonly available special control keys in order to
simplify the use of the System as much as possible.

The Concept of a Program
Computer people use the term "program" with
several slightly different shades of meaning from a
beginner's point of view, and we shall have to do so in
this book. Basically, a program is a sequence of
commands stored in the computer in such a way that
each command in the sequence can be carried out
automatically, i.e. with no help from a human to go
from one command to the next. Generally the first
command in the sequence is carried out first, then
the next, and so on in the order the commands
appear. Methods are available to alter the sequence
of commands automatically under certain
conditions. Discussion of those methods is best left
until you get around to studying the Pascal language
for writing programs.

2-11

2-12

In the Maze example, the sequence of command
letters appears in the lower part of the screen in the
order in which you type them, i.e. left to right. When
more than one line is needed to hold a complete
sequence, the command letters go from the right
end of one line to the left end of the next, as in the
presentation of English text. The Maze program can
automatically carry out each command shown at the
bottom of the screen, since it is also stored in the

, a h 1 "+" computer s memory. nce you ave severa
characters deposited in the maze, press the "X" key
and wait to see what happens. The cursor first jumps
back to its original position at the "#" character.
Then the cursor follows the same route that you
followed when you first put the series of "+"
characters on the screen. The rate at which it does
this is deliberately slowed down so that you can see
the correspondence between the position of the
cursor within the maze, and the command character
marked in the command sequence at the same time.

The sequence of command characters at the bottom
of the screen is a crude program. When you press
"X", for "Execute", the program is executed. To
"execute" a program is basically the same as to
"run" the program (although the UCSD p-System,
like many others, makes a fine distinction between
"eX(ecute" and "R(un" as we shall see in the next
chapter). Both terms are used to describe what
happens when a sequence of stored commands is
carried out automatically one by one. Generally, it is
possible to cause a program to be executed as many
times as one wishes without altering the program as
stored in the computer's memory.

In general, the symbols that we use to represent each
command are assigned arbitrarily and purely for
convenience. If we spoke Spanish rather than
English "RIGHT" would become "DERECHA",
"DOWN" might become "BAJa", "up" would be
"ARRIBA", and "LEFT" would be "IZQUIERDA".

Thus it would be convenient to change the letter
assignments which correspond to movement of the
cursor in the maze example to different values. In
fact the meaning of the letter "D" would change!
Thus the command letters must be regarded simply
as "codes" that are assigned to shorten the amount
of information the computer must be given in order
that a given command "action" should be carried
out.

The "program" we have been considering here, in
connection with the maze example, is of course a
simplified analogy to the programs one finds on
most computers. The computer's "hardware",
which you can touch or pick up and carry around,
generally understands command codes expressed as
small numbers. The command actions called for by
those codes are typically very simple in concept.
Even the simplest of the popular microprocessors
now in use has roughly 70 different commands, and
their corresponding codes. A program that carries
out any useful function usually consists of hundreds
or many thousands of these simple commands.

Fortunately, most humans who use computers have
no need to work directly with the numbered
command codes. Instead, we write our programs in a
form that looks much closer to a sequence of English
language statements about what needs to be done. A
translator program, called a "compiler", then
converts the human readable form of the program
into the coded sequence of commands that the
computer hardware itself can understand. The form
that most humans use today for writing programs is
called a "higher level language" . For example, the
form we use is at a substantially higher level than
simple coded commands. Pascal, BASIC, COBOL,
and FORTRAN are all commonly used higher level
languages.

2-13

In the UCSD p-System, a command that you tell the
computer to carry out from the keyboard is usually
expressed by pressing a single key. In Pascal and
other higher level languages, a program more often
consists of English words mixed with special
characters which represent commands. The English
words are used to make a program more readable
than a tightly packed sequence of single character
commands like the "program" displayed at the
bottom of the screen in the maze example. When
you are issuing commands to the computer from the
keyboard, you are generally aware of the context
since the result obtained from issuing"each
command is apparent immediately. Thus effort is
saved by not requiring that whole words be typed
into the computer to cause the execution of each
command to be initiated. When you read a computer
program on paper, or on the screen, many
commands are lumped together without obvious
and immediate connection with the actions they
cause when executed. In this context, the readability
is much more important than the immediacy
afforded by the single letter encoding of the
"interactive" commands. Interactive commands are
those yau use when you interact directly with the
computer rather than waiting for a program to run.

Building Bigger Programs out of
Smaller Programs

2-14

You may have noticed that we used a single letter
command "X" to call for the "program" of moves
through the maze to be executed. In effect the maze
example is a simulation of a very simple computer
designed for a special purpose. It happens that the
simulation is itself a program (written in the Pascal
programming language) which is arranged to
respond to the various command letters we have
been describing in this chapter.

There is nothing to prevent us from deciding to
assign a different command code letter to each of
several different programs. Thus "X" might cause
the execution of one sequence of commands taking
us off toward the true exit from the maze. "Y" might
be another program which goes off toward a dead
end in the maze. "2" might refer to yet another dead
end program. In fact, each of the command letters
assigned in the maze program actually calls for the
execution of a small program designed to carry out a
specific simple action.

Obviously, if we can build a program out of any
sequence of command codes, and can give that
program itself another unique code, it must be
possible to build big programs out of small
programs. In other words, we can create a set of
special purpose commands by writing "low level"
programs (i.e. simple ones) to carry out those
commands. We can then create a "higher level"
program (i.e. one that is larger, more capable, or
more complex) by using a sequence of commands
each of which calls for execution of one of the low
level programs. We can then create an even higher
level program by using a sequence of commands
from the next lower level (and perhaps also from the
lower levels within the same sequence). This point is
one of the main study goals of Chapter 2 in the
textbook Microcomputer Problem Solving Using Pascal,
by K. L. Bowles, (Springer Verlag, New York NY,
1977).

2-15

Commands that Ask for Data

2-16

Assuming that you are still working within the Maze
example on the computer, now press the "Q" key
for Quit. The result should be the display shown in
Figure 2-3:

Data: I(nsert D(elete P(os R(ight l(eft G(lear O(uit

ROW ROW YOUR BOAT

Figure 2-3. Initial Display of Data Oriented
Command Example.

This example is designed to illustrate how to use
commands that ask for data in the UCSD p-System.
It also provides a simplified orientation to the use of
built-in facilities for working with "Strings" of
characters in the UCSD Pascal language.

The general idea of this example is that commands
are provided which allow you to alter the phrase
"ROW ROW YOUR BOAT" displayed in the
middle of the screen. You can I(nsert additional
characters wherever the arrow symbol displayed on
the next lower line happens to be pointing. You can
move the arrow left or right using "L" and "R" as in
the Maze example. You can D(elete characters
starting at the position where the arrow points by
typing one "x" character for each character you want
to be deleted from the displayed phrase. Notice that
this is a completely different definition for the "D"
command character compared with its use in the
Maze example. There should be no confusion since
we are now in the Data example's "world" rather
than that of the Maze example.

I(nsert

Try using I(nsert to obtain the result shown in
Figure 2-4.

Data: I(nsert D(elete P(os R(ight L(eft C(lear O(uit

ROW ROW YOUR big old BOAT

Enter string to be inserted:big old
Then press RETURN

Note: Use BACKSPACE (8S) to erase characters

Figure 2-4. Displayed String with Additional
Data Inserted.

When you press "I" for the I(nsert command, a
message appears on the display screen asking that
you type in the characters you want inserted. The
cursor waits immediately following this
"prompting" message. When you type characters
they appear on the screen starting at that point. You
can back over characters typed in error by using the
BACKSPACE key (marked as a left arrow at the
upper right of the keyboard). Once the characters
typed in are equal to what you had in mind, you cause
those characters to be transferred to the program
controlling the I(nsert command by pressing the
ENTER key. You should then notice that a copy of
the characters you typed in has now appeared within
the phrase displayed in mid-screen.

2-17

D(elete

2-18

The sequence of actions you employ to get D(elete
to take effect is very similar to that just described. In
this case, the D(elete command asks that you type
one "x" character for each character you want
deleted in the displayed phrase. Again BACKSPACE
can be used to erase excess characters from the
screen. ENTER causes the D(elete command action
to be completed. Figure 2-5 shows the appearance of
the screen just before ENTER is typed to cause
deletion of the string "YOUR" from the display. Try
this same operation with your computer to observe
what happens.

Data: I(nsert Dlelete P(os R(ight I.(eft Cllaar Oluit

ROW ROW YOUR big old BOAT

Type an X for each character to be deleted above
Then press RETURN

Note: Use BACKSPACE (BS) to erase characters

Figure 2-5. Display in D(elete Command
Before Pressing ENTER.

P(osition

The Data example also offers a command for finding
the position of a short "pattern" string of characters
within the main string displayed in mid-screen. Press
"P" to see what happens. The computer will then ask
for you to type in the string of characters you want to
be found. As an example, type "BOA" followed by
ENTER. The pointer arrow on the display should
move to point to the "B" at the beginning of
"BOAT".

Summary of the Data World Example

In the UCSD p-System, virtually all commands that
require you to supply data are handled like the
commands in the Data example. You press the
command code key and a new "prompt" appears on
the screen asking for data. You type in the string of
characters, usually a name or a number, and then you
press ENTER. The command action is then carried
out.

As pointed out earlier, commands expressed in the
Pascal language generally have the appearance of
English language words instead of single characters.
Remember that a program is basically a sequence of
commands stored for later use. In a program,
commands that require data must have that data
supplied as part of the program. Unless the program
is specifically designed to pick up data from the
keyboard, it is generally necessary to store the data
needed by the commands as part of the program
itself.

2-19

NOTES

2-20

CHAPTER 3. ORIENTATION FOR
EXPERIENCED
PROGRAMMERS

Contents

Goals for this Chapter 3-3
Brief Overview. 3-4
The W orkfile. 3-6
Running the Edited Program........... 3-7
Saving Workfiles for Future Use....... 3-9
Entering and Testing a Simple Program. . 3-9
Finish fixing the other errors. 3-16
Coping with a Compile-time

"Syntax" Error 3-18
Saving your Workfile in the Disk

Directory. .. 3-19
First Check Your Disk Directory

Using L(ist. .. 3-19
Now S(ave the Workfile 3-21
What to do if you want to change a

previously S(aved Workfile 3-23
Suppressing Execution of the Maze at

Bootload Time. .. 3-25

3-1

NOTES

3-2

Goals for this Chapter
To make effective use of this chapter, you should
either have some experience in using an interactive
computer system for program development, or you
should have studied Chapter 2 of this book.

For most programmers, the principal working
environment of the UCSD p-System is concentrated
in three facilities: the Screen Editor, the File
Manager, and the Pascal Compiler. This chapter is
intended to give you an overall understanding of
how the working environment is used. Details on
each of the three major facilities are left until
Chapters 4, 5, and 6.

Specifically, here is what you should accomplish in
going through this chapter:

a) Learn to enter a small Pascal program into the
computer, and how to test and run that
program.

b) Learn how to make simple modifications in a
small program already stored on your diskette,
and to test and save the modified program.

c) Learn what is meant by the "Workfile", and
how the Editor, Compiler, and File Manager all
cooperate with each other to help you handle
the W orkfile.

d) Distinguish between the human readable
"Text" version of a Pascal program, and the
"Code" version of the same program which is
executable by the computer.

e) Learn how the File Manager is used as a utility
with which you can keep track of your library of
program files. Specifically, acquaint yourself
with the disk Directory as a tool for telling what
currently is saved on your disk(s).

3-3

f) Use the File Manager to change your copy of the
UCSD p-System on the STARTUP: disk so that
it no longer starts up the orientation program
(Maze and Data examples for Chapter 2) when
you bootload the System.

CAUTION: Some of the steps described in
this chapter, and involving use of the File
Manager, can leave your diskette changed in
such a way that it can no longer be used directly
with the step-by-step descriptions in this book.
If you decide to jump ahead and make random
experiments "just to see what will happen",
please be prepared for the possibility that you
may have to acquire another diskette in order to
start over.

Brief Overview

3-4

In this chapter, I assume that you already know what
I mean by a single character" command", and have a
rough idea of what I mean by a "program". We
assume that you know how to "bootload"
(Bootstrap Load) the System. If in doubt, it would be
best to scan through Chapter 2, even if you are an
experienced programmer. We also assume that you
will be programming in the Pascal language, even
though FORTRAN can also be used with the
p-System in much the same manner as described
here.

The purpose of this section is to give you a quick
description about how the various major pieces of
the UCSD p-System fit together. In later sections, I
give simple hands-on exercises using the computer
with each of those pieces. Depending upon your own
personal way of going at things, you may find it most
effective to go through either the quick description
or the exercises first, then follow by going through

the other. In any event, you will save time in using
the rest of this manual if you take time to get "the big
picture" by going through this section.

When you prepare a program to be executed by the
UCSD p-System, you write program "statements" in
a form that can readily be understood by any human
who understands the "programming language" that
you use. To get the program statements into the
computer in a form that the computer itself can
understand, you use a big program called the
"Screen Editor", which is provided as a built-in part
of the UCSD p-System. The Screen Editor is
basically a tool used for purposes similar to those for
which you use a pencil and eraser when writing
English language text on a piece of paper. There is
no really practical way for you to write out a program
on paper in such a way that your writing can be
directly understood by the computer. Instead, it is
necessary to use a keyboard like that on a typewriter,
and each key pressed transmits an electronic
message to the computer. Without a program to
make sense out of the sequence of key-press
messages that you send to the computer, those
messages would be of very little value. The Editor is
the general purpose program tool that we use to
prepare programs for the computer. (It can also be
used for preparing ordinary written text material,
such as this book, as I describe later in this Chapter.)

When you use the Screen Editor, the program text
(or any other material that you are writing) is saved
temporarily in the computer's memory. We say
"temporarily" because all of the contents of the
computer's memory are lost when you turn the
machine off, and arrangements are generally made
for more permanent storage of the information on a
flexible diskette, or "Floppy Disk". When you finish
changing the text of a program with the Editor, and
are ready to try it out, you must use the Editor's
Q(uit command. The Q(uit command will respond

3-5

by asking whether you wish to "Update" the version
of your text on the diskette. If you do request an
Update, the text stored in the computer's memory
will be transferred to the diskette, and stored in an
area called the "W orkfile".

The W orkfile

3-6

To understand the purpose of the Workfile, it will
help for you to understand just a little of how
information is stored on the diskette. Information is
recorded on a floppy disk using microscopic changes
in a magnetic coating on the plastic surface of the
diskette. These changes are organized in circular
tracks whose purpose is very similar to the
"grooves" on a home phonograph record. One
diskette has a capacity for approximately 163,000
characters of text. This space is enough to allow
storage of many different programs, both in the
human readable "Text" form and in the computer
executable "Code" form. Therefore the UCSD
p-System provides a means for keeping a directory of
the various programs stored on the same diskette.
The disk directory gives the name of each program,
its location on the diskette, how much space on the
diskette it occupies, and some additional
information needed by the System itself. We say that
each entry in the disk directory refers to a "file" of
information stored on the disk. For each program,
there is a "Text" file, and in most cases there will also
be a "Code" file. The disk may also be used for
storing various other kinds of information referred
to separately in the disk directory is called a "file".

The W orkfile is just one of many files stored on your
diskette, but its entry in the disk directory uses a
special naming convention that saves you trouble
while you are working on a new program or changing
an old one. When you use the Editor's Q(uit
command, and ask for an Update, the text you have
been working on is saved on the disk under the

directory name" SYSTEM. WRK. TEXT". Any older
version of the file having the same directory name is
removed from the disk when you Update in this
manner. Whenever you start up the Editor, it
assumes that there is a W orkfile on the disk and that
you wish to work with the text stored in the
W orkfile. The Compiler and File Manager also make
assumptions about the Workfile that save you from
having to take explicit actions to keep track of the
file you are currently working on.

Running the Edited Program

Once you are finished making changes in the text of
a program using the Editor, you will usually want to
have that program turned into the form that can be
executed directly by the computer. Then you will
want to try the program to see whether it works
correctly. This cannot be done until the edited text
of the program is translated into the form that will
run directly on the computer.

The Compiler resides on the IBM! disk (which you
should place in the right drive). It translates
programs saved on disk in their "Text" form into the
equivalent "Code" form which can be executed
directly by the computer.

Weare glossing over a fine point here. The UCSD
p-System actually executes all programs using a
special "interpreter" program, which makes your
computer's processor appear to be a processor
designed especially for the purpose of executing
Pascal programs. This makes it possible to use the
same "Code" form of a Pascal program on anyone of
many different popular processors, including most
of those used in microcomputers.

When you bootload the UCSD p-System, you will
find yourself in a command "world" labelled

3-7

3-8

"Command:" at the left of the Prompt Line at the
top of the screen. From the Command: world, you
use the E(dit command to start up the Editor. When
you use the Editor's Q(uit command, the result will
be to bring you back to the Command: world.

When you first boot the STARTUP diskette, the
Maze: and Data: command worlds will always appear.
I will give you instructions in a later section in this
chapter on how to avoid having the Maze: and Data:
command worlds will always appear. I will give you
instructions in a later section in this chapter on how
to avoid having the Maze: always appear, once you
have finished using it to get oriented to the System.
The Command: world is what appears when you use
Q(uit to get out of the Maze: world, and again Q(uit
to get out of the Data: world.

If you elect to U(pdate the W orkfile when you use
the Editor's Q(uit command, you can request the
Compiler to translate the program text stored in the
Workfile in either of two ways. The most obvious
way is to use the Command: world's C(ompile
command. A shortcut way is to use the Command:
world's R(un command. The System keeps track of
what you have'been doing to the Workfile, and
knows whether you have changed the text stored in
the W orkfile since the last time you used the
Compiler. When you use the R(un command, and
the W orkfile has been changed, the Compiler is
automatically told to translate the text in the
W orkfile. If the Compiler finds no errors in the
program, it then saves the "Code" form of the
program on the disk, and then tells the System to go
ahead and execute the program. The compiler leaves
the Code form of the program in a disk file called
SYSTEM.WRK.CODE. Thereafter, you can
execute the same version of the program over and
over again using the Command: world's R(un
command, without calling the Compiler into action
again until you change the Text form of the Workfil€
using the Editor.

Each time your program finishes executing on the
computer, control of what happens returns to the
Command: world where the System waits for your
next command.

Saving Workfiles for Future Use

Once you have finished making changes in a
program you probably will want to save that
program on the disk for later use. You will also
probably want to clear out your Workfile in order to
work on another program. To do this, you use the
Command: world's F(ile command, which takes you
into the File: Manager's world. (Most of us have
become lazy and refer to the File Manager simply as
the "Filer".) The Filer provides commands for
saving a Workfile under a directory name you may
designate, for removing old files no longer needed,
for transferring files from one disk to another, for
displaying the disk directory on the CRT screen, and
other file-related commands. As usual, you use the
File: world's Q(uit command to get back to the
Command: world.

Entering and Testing a
Simple Program

In this section, I will give a step-by-step account of
how you enter a simple program into the computer
and then compile it and execute it. I will start from
the "Command:" world. To get there after
bootloading the STARTUP: disk, you should use the
Q(uit commands of the "Maze:" world and the
"Data:" world. In the last section of this chapter, I
will show you how to arrange to get to the
"Command:" world directly after bootloading. (It
would be best not to jump to that point right away,
since some familiarity with the System gained with a
little practice will help you to avoid making an error
that could be very awkward to correct.)

3-9

3-10

As subject matter, I will use the sample program
STRING 1 from Chapter 1, Section 11, of the Bowles
text Problem Solving Using Pascal. We reproduce
that program in Figure 3-1 as follows:

PROGRAM STRING1;
BEGIN

WRITE('HI');
WRITE(' ','THERE');
WRITELN; (*moves to start of next line*)
WRITE('HI THERE');
WRITELN('THIS IS A DEMONSTRATION');
WRITELN('OF PROGRAM EXECUTION');

END.

Figure 3-1. Sample program for familiarization
with the System.

You should start from the "Command:" world by
typing "E" for the E(dit command. The screen will
go blank and then, after some clicking by the floppy
disk drive, the following will appear:

>Edit:
No workfile is present. File? «ent> for no file)

The Prompt line at top of the screen informs you
that you have arrived in the "Edit:" world. No
command options are shown yet, since no W orkfile
is stored on the disk, and it is necessary to establish
one. The second line on the screen requests that you
type in the name of a text file already stored on the
disk, and follow by pressing the ENTER key. In the
present instance, you have no such file to use, so you
simply press the ENTER key without typing in any
name. The Editor will respond with the screen
display as follows:

>Edlt: A(dist C(py D(lete FUnd I(nsrt J(mp ...

Except for the list of available command characters
in the Prompt line at top of the screen, the display is
completely blank. This shows that the working space
used by the Editor in the computer's memory is
completely blank. It is, as it were, a "blank slate" on
which you can start writing.

The I(nsert Command

To begin typing in the text of the STRINGl
program, use the I(nsert command of the "Edit:"
world. The somewhat cryptic Prompt message that
goes with the I(nsert command tells you that you can
start typing in the text. Begin with "PROGRAM"
and continue typing until you make a mistake. You
can erase a character typed in error by using the
BACKSPACE key. One character is erased for each
BACKSPACE typed, and you can back up all the way
to the point where the I(nsert command's world was
entered. Continue typing after any erasure until you
finish entering a section of text that you wish to
retain. You can terminate the I(nsert command,
while retaining the text typed in, by pressing
Ctrl-C. Ctrl-C is used on the IBM Personal Computer
keyboard as the ETX key (which stands for "End of
TeXt").

While within the I(nsert command's world, you
move the cursor from the end of one line to the
begining of the next by using the ENTER key. To
obtain the two column indentation in the third line
of the STRING 1 program example, press the
SPACEBAR twice. When you press ENTER to begin

3-11

The I(nsert Command

3-12

the subsequent lines, the cursor will return to the
same column indented two spaces from the left
margin. This is just what you want until you arrive at
the last line containing "END."

To eliminate the indentation for that line, there are
several ways of proceeding. I will mention only the
most frequently used method here, and leave other
suggestions for Chapter 4. After pressing ENTER at
the end of the previous line, the cursor again comes
to the third column and waits for further characters
to be typed. At that point, you can use the
BACKSPACE key to move the cursor to the left edge
of the line. Press BACKSPACE only twice to get
there. If you press BACKSPACE once more, you will
return to the end of the previous line, effectively
backing over and erasing the ENTER character from
the text as saved in the computer's memory. No
harm is done by this action, but when you again press
ENTER to get back to the new line, the cursor will
again go to the third column.

N ow suppose that you have typed in the lines of text
shown in Figure 3-2 which contains several errors.
The next question is how to go about correcting
those errors without having to start all over again.

>Insert: Text «bs> a char, a line)
PROGRAM STRING1;
BEGIN

WRITE ('HI');
WRITE(' ','TREE');
WRITELN: (*moves to start of next line*)
WRITE('HI THERE');
WRITELN('THISA DEMSTATlON');
WRITELN('OF PROGRAM EXECUTION)

END.

Figure 3-2. End of I(nsertion With Errors
In the Text.

The I(nsert Command

Compare the fourth line in this figure with the
fourth line in the STRING1 program in Figure 3-l.
In Figure 3-2, the word "THERE" is misspelled
"TREE". As a first step to correct this, complete
the I(nsertion by pressing Ctrl-C, if you have not
already done so. Next, move the cursor so that it
points to the character "R" in "TREE". You do this
by using the four cursor positioning arrows on the
number pad. These are the same keys as used for
moving around the maze in the example given in
Chapter 2 of this book. With the cursor pointing at
the "R", use the I(nsert command again. Once in the
"Insert:" world, type in "HE" followed by pressing
Ctrl-C. Notice that the I(nsert command in this
case moves everything starting with the "R" over to
the right hand margin of the screen. This is done in
order to leave you blank columns into which the
additional characters may be typed. When you press
Ctrl-C, the characters moved to the right of the
screen will be returned to connect up once again
with the portion of the line still on the left side. At
this point the misspelled word has been partially
corrected, and should read "THEREE".

Before you continue, it would be worthwhile to
review what you can do with the I(nsert command:

a) You enter the "Insert:" world by typing "I"
while in the "Edit:" world. You can then type in
characters of text starting from the cursor's
position (as it was when the "Insert:" world was
entered).

b) You can erase unwanted characters (of those
typed in so far during this insertion) by pressing
the BACKSPACE key once for each character.

3-13

The I(nsert Command

3-14

c) You are able to erase all the characters typed so
far on any whole line, after the first ENTER is
typed during the insertion, by pressing the
DELETE-LINE key (Ctrl-BACKSPACE). Do
not confuse the DELETE-LINE key with the
DEL key which performs a different function
not described here. Press the DELETE-LINE
key repeatedly to remove additional lines typed
in during the current insertion.

d) When you decide to keep the text typed in
within the "Insert:" world, press Ctrl-C.

e) If you decide just to leave the "Insert:" world
without keeping any of the characters already
typed in, press the ESC key, for "escape". This
will terminate the "Insert:" world, and return
you to the "Edit:" world, with the displayed text
again just as it was before you entered the
insertion.

Try using the DELETE-LINE and ESC keys while
using the I(nsert command to observe what happens.

The D(elete Command

Now we continue from the point where you have
"THEREE" on the screen following use of I(nsert.
To obtain "THERE", you will have to delete the last
"E" (or the one before it). Move the cursor to point
to the" E" you wish to remove. Press "D", for
D(elete, and observe that the screen now displays
what is shown in Figure 3-3.

> Delete: <> < Moving commands> « etx> ...
PROGRAM STRING1;
BEGIN

WRIU(' HI');
WRITE (' ','THERE!');
WRITELN; (*moves to start of next line*)
WRITE('HI THERE');
WRITELN(' THISA OEM STATION');
WRTIELN('OF PROGRAM EXECUTION)

END.

Figure 3-3. Display upon entering D(elete.

To delete one or more characters, move the cursor
to the right, or to following lines using the regular
cursor moving commands. Each character deleted
disappears off the screen. For example, you can
delete "E');" by pressing the right arrow four times.
Just a with the "Insert:" world, you can back up by
using the BACKSPACE key. In the "Delete:" world,
you restore characters to the screen when you use
BACKSPACE.

Finally, when you are ready to terminate the
D(eletion, press Ctrl-C. This will return you to the
"Edit:" world, with the text redisplayed and the

3-15

The D(elete Command

deleted characters eliminated. You can terminate
the deletion using ESC, just as you can escape out of
the "Insert:" world. Again, the displayed text returns
to the status it had before you entered the "Delete:"
world.

Finish fixing the other errors

Now try your hand with the Editor by fixing the
errors on the last two lines in Figure 3-2 containing
"WRITELN". The next to last contains spelling
errors. The last lacks an apostrophe just before ")".

Q(uit and U(pdate your Workfile

3-16

At this point, you should be ready to compile and
test the small program displayed on your screen.
Press "Q" (for Q(uit), and you will be shown a
selection of three or four options, as shown in Figure
3-4.

>Ouit:
U(pdate the workfile and leave
E(xit without updating
R(eturn to the editor without updating
W(rite to a file name and return

Figure 3-4. Options for Q(uit command
of the "Edit:" world.

Q(uit and U(pdate your Workfile
Press "u" (for U(pdate) to cause the Pascal program
displayed on your screen to be saved in your
W orkfile on the disk. If you press" E", the Editor will
terminate and return you to the "Command:" world
without saving anything you have done with the
Editor! Press "R" to R(eturn back into the "Edit:"
world. The R(eturn option saves you from
embarrassing problems if you press Q(uit by mistake
while in the "Edit:" world. The W(rite command is
useful to record a copy of text under a specified
name, without leaving the Editor.

R(un your Program

Now press "R" (for R(un) from the "Command:"
world. The result should be a notice at the top of the
screen saying:

Compiling ...

followed by much clicking and some additional
displayed information. I will defer explaining what is
happening here until Chapter 6. For now, these
displayed lines tell you that the Compiler is busy
trying to translate your Pascal program in the
Workfile into the "Code" form that can be executed
by the computer. If the Compiler finds no errors, it
will save the executable Code form of your Workfile
on the disk, and then will cause your program to start
executing (i.e. to start "running"). You will be
notified that this is happening by the legend
"Running ... " at the top of the screen.

3-17

R(un your Program

Coping with a Compile-time "Syntax" Error

3-18

If the Compiler does find an error in your Pascal
program, it will not be able to save the Code form of
your workfile on the disk, nor will it start execution
of your program. Instead, after more clicking of the
disk, you will find yourself presented with a message
and an opportunity to either continue the
compilation or go back in the "Edit:" world with the
cursor pointing at the end of the logical item where
the Compiler found the error. A message displayed
in the promptline will give an explanation of the
error the Compiler found. An error found by the
Compiler is called a "Syntax Error" because it
indicates that you have violated one or more of the
formal Syntax Rules which describe how a Pascal
program should be constructed. See Chapter 6 for
more details on this point.

If you decide to enter the Editor by typing "E", you
will need to press the SPACE bar to get the "Edit:"
world's promptline so that you can fix the problem.

At this point, it would be a good idea to think over
the rest of your program, to see if there might be
additional errors similar to the one found by the
Compiler. When you are satisfied that you have
found "all" the errors, you can Q(uit, U(pdate, and
R(un once again to see what happens.

R(un your Program

Saving your W orkfile in the Disk
Directory

Eventually, you will finish editing and testing revised
versions of your program. You may then wish to
start working on a completely different program,
but may also wish to save the program just finished
so that it can be used again at a later time. To do this,
use the "F" for F(ile command when in the
"Command:" world. After some clicking of the disk,
you should receive the following display:

Filer: G(et Slave W(hat N(ew L(dir R(em C(hng

First Check Your Disk Directory Using L(ist

Press "L" for L(ist to see the list of titles of all the files
currently stored on your disk. The L(ist command
requests data input whereby you tell it which disk to
refer to. In the UCSD p-System, each disk has a
"Volume Identifier", which is the name of the disk
itself. For the present example, respond to the
prompt requesting a Volume Identifier by pressing
":" (the Colon key) followed by ENTER. The Filer
will respond by listing out the directory showing
your disk's contents. Figure 3-5 shows
approximately the directory listing you should get at
this point.

3-19

R(un your Program

3-20

Filer: G(et, Slave, W(hat, N(ew, L(dir, R(em, C(hng, T(rans.
STARTUP:
SYSTEM. PASCAL 121 15-NoY-81
SYSTEM.MISCINFO 1 15-NoY-81
SYSTEM.INTERP 26 15-NoY-81
SYSTEM. FILER 32 15-NoY-81
SYSTEM.EDITOR 49 i5-Nov-S1
SYSTEM.STARTUP 12 15-NoY-81
SYSTEM.SYNTAX 14 15-NoY-81
NAMEFILE 3 15-NoY-81
SCDEMO.CODE 3 15-NoY-81
COPYSCUNIT.CODE 4 15-NoY-81
UPDATE. CODE 4 15-Noy-81
COMPDEMO.TEXT 6 15-NoY-81
EDITDEMO.TEXT 4 15-NoY-81
UPDATE.TEXT 8 15-NoY-81
SYSTEM.WRIlTEXT 4 1-Jan-82
SYSTEM. WRIlCODE 2 1-Jan-82
16/16 files<listed/in-dir>,299 blocks used, 21 unused,21 in

Figure 3-5. Response to the Filer's
L(ist Command.

Note: The two directory entries labelled
SYSTEM. WRK. TEXT and
SYSTEM.WRK.CODE. These are the two files
associated with your Workfile. The first is the
form saved by the Editor when you use Q(uit
followed by U(pdate starting in the "Edit:"
world. The second is the executable form of the
same Pascal program, which was saved on the
disk by the Compiler.

R(un your Program

Now S(ave the Workfile

Press "S" for S(ave, and note the prompt for a file
title on the top line. If the W orkfile has not yet been
S(aved in a previous version, the Filer will prompt
with:

Save as what file ?

You type in a name followed by ENTER to complete
the S(ave command. If you do not wish to lose a
previously S(aved workfile, use a name different
from any other already in use in the disk's directory.
Suppose we respond to the prompt by typing in
"NEWNAME" followed by ENTER. Now repeat the
L(ist command to see the result, which is shown in
Figure 3-6.

Filer: G(et, Slave, W(hat, N(ew, L(dir, R(em, C(hng, T(rans,
STARTUP:
SYSTEM. PASCAL 121 15-Nov-81
SYSTEM.MISCINFO 1 15-Nov-81
SYSTEM.INTERP 26 15-Nov-81
SYSTEM.FILER 32 15-Nov-81
SYSTEM.EDITOR 49 15-Nov-81
SYSTEM. STARTUP 12 15a Nov-81
SYSTEM.SYNTAX 14 15-Nov-81
NAMEFILE 3 15-Nov-81
SCDEMO.CODE 3 15-Nov-81
COPYSCUNIT.CODE 4 15-Nov-81
UPDATE.CODE 4 15-Nov-81
COMPDEMO.TEXT 6 15-Nov-81
EDITDEMO.TEXT 4 15-Nov-81
UPDATE.TEXT 8 15-Nov-81
NEWNAME.TEXT 4 l-Jan-82
NEWNAME.CODE 2 l-Jan·82
16/16 files<listed/in-dir>, 299 blocks used, 21 unused,21 in

Figure 3-6. L(isting of directory after
S(ave of "NEWNAME".

3-21

R(un your Program

3-22

Notice that the entries which had been shown as
SYSTEM. WRK. TEXT and SYSTEM. WRK.CODE
are now shown as NEWNAME. TEXT and
NEWNAME. CODE respectively.

If the Filer finds that the file had previously been
saved under a particular name, it asks if the file
should again be saved with that name:

Save as DEMO:NEWNAME.TEXT ?

You can respond to this prompt either with "Y", for
Y(es, or "N", for N(o. If Y(es, then the previously
S(aved files called NEWNAME.TEXT and
NEWNAME.CODE will be removed from the disk
directory, and your new version of the W orkfile(s)
will be given the names:

NEWNAME.TEXT
NEWNAME.CODE

If you respond to the prompt with N(0, the Filer will
prompt with:

Save as what file?

as described above, and you can then use almost any
new name not already in use in the disk directory.
Note, however, that a Workfile name cannot be
longer than 10 characters (plus ".CODE" or
".TEXT").

R(un your Program

What to do if you want to change a previously
S(aved W orkfile

You often will S(ave a Workfile only to realize that
you need to make changes in that W orkfile at a later
time. The Filer's G(et command allows you to
designate the name of an old file as the current name
associated with the Workfile. Press "G", for G(et,
and note the prompt message that appears in
response. If the response is:

Get what file?

then you can type in any name previously used when
S(ave was used in connection with a Workfile (that
still is stored on your disk). If it finds the directory
entry for the file name you give it, the Filer will
respond with:

Text and Code files loaded

or:

Text file loaded

or:

Code file loaded

as the case may be. If the Filer prompts with:

Throwaway current workfile?

you have the opportunity to avoid possible loss of
your files named SYSTEM. WRK.. TEXT and
SYSTEM.WRK..CODE by typing "N" for N(o. If
you type "Y" for Y(es, the Filer will discard your old
unsaved workfile, and then prompt you for the file
name you want to be loaded as your new W orkfile as
described above.

3-23

R(un your Program

If you change your mind after starting the G(et
command, you can get back to the "File:" world by
pressing the ESC key, or by typing in the name of a
nonexistent file followed by ENTER.

After using G(et to establish the name of a
previously S(aved file as the current Workfile, you
can leave the "File:" world using Q(uit. This gets you
back to the "Command:" world. If you then use
E(dit, the Editor's world will be entered, and the first
screen- full of the now current Workfile will be
displayed. If you use C(ompile, instead of E(dit, the
Compiler will proceed to try to translate the. TEXT
form of your now current W orkfile into executable
form. If the Compiler succeeds, it will save the
resulting executable file, as usual, as
SYSTEM.WRK.CODE. Regardless of whether the
Compiler succeeds, use of the Compiler will cause
any previous file with the directory name of
SYSTEM.WRK.CODE to be removed from the
directory.

If, upon reaching the "Command:" world after
leaving the "File:" world, you use the R(un
command, the System will attempt to execute the
currently saved .CODE form of your Workfile
without using either the compiler or the Editor. If
there is no . CODE form of the W orkfile on the disk,
the Compiler will be invoked to translate the. TEXT
form of the Workfile into executable form.

3-24

R(un your Program

Suppressing Execution of the Maze at
Bootload Time

When you first receive your IBM Personal
Computer, the "Maze:" world will always appear
immediately after you Bootload the STARTUP disk.
As soon as you feel familiar with the idea of single
character commands, you will probably want to
dispense with the "Maze:" and "Data:" world
exercises. To do this, enter the "File:" world by
using the F(ile command while in the "Command:"
world.

Now use the L(ist command, as described earlier in
this chapter, and note the entry called
SYSTEM. STARTUP. That entry is a special
"reserved" name used with the code form of a
program workfile called ORIENTER. The
ORIENTER W orkfile contains the programs which
create both the "Maze:" and "Data:" worlds. You
can retain that file, but suppress its automatic
execution at Bootload time, by changing its name
back to ORIENTER.CODE. To do this, press "c"
for C(hange. The Filer will prompt with:

Change what file?

You answer by typing in:

SYSTEM.STARTUP

followed by ENTER. The Filer will respond with:

Change to what?

You answer by typing in:

ORIENTER.CODE

followed by ENTER.
3-25

R(un your Program

3-26

If you have followed these steps without error, the
final result will be indicated by a message verifying
that the change has been made. Having made that
change, you should no longer have a file called
SYSTEM. STARTUP on your disk. You might want
to check to make sure that this is correct by using the
Filer's L{ist command.

It may help to explain what I have been doing here.
When you Bootload the System, it is programmed to
look through the disk directory for an executable
file called SYSTEM. STARTUP. If one is present, the
program contained in that file is loaded into memory
and executed automatically. If no such file is present
on the disk, then bootloading takes you immediately
to the "Command:" world. Now try Bootloading
again to verify that this indeed is what happens.

You may wish to get rid of the file containing the
"Maze:" and "Data:" worlds entirely, in order to
release space on your disk for other uses. To do this,
see Chapter 5 on the Filer regarding the R(emove
command.

CHAPTER 4. SCREEN EDITOR

Contents

Goals for this Chapter 4- 3
Editor Overview 4-4
Cursor Movement Commands 4-7
Arrow Commands and Their Relatives .. 4-9
Repeated executon of an arrow

command 4-10
Moving the cursor off the screen 4-10
Using SPACE, BACKSPACE,

and ENTER 4-14
The TAB key 4-15
Multiple occurrences of the target 4-23
F(inding backwards 4-24
L(iteral Targets vs Tokens 4-25
Commands that Change the

Workfile's contents 4-29
The Q(uit command and its options 4-46
Using the Editor for Word Processing ... 4-48

4-1

NOTES

4-2

Goals for this Chapter
To use the UCSD p-System effectively, you need to
be familiar enough with the Screen Editor to use it as
a convenient tool. The main goal of this chapter is to
provide you with a reference summary of how the
Editor is used. In each section, the order of
presentation starts with the Editor's facilities you are
likely to use most often. See Appendix Bl for an
alphabetic summary of the Editor's commands with
references to descriptive text in this chapter.

Many beginners do not bother to learn how to use all
the available facilities of the Editor. While you can
make extensive use of the UCSD p-System by
knowing how to use only a small part of the Editor's
facilities, it will probably save you time to become
familiarized with each of the Editor's commands.

Specific goals for this chapter include the following:

a) Learn to use each of the principal commands of
the Editor to the point where you are
comfortable in using them as tools.

b) Edit a file established as the current W orkfile by
the Filer, one named at the time when the
Editor starts up, and a new file not previously
stored on the disk.

c) Terminate the Editor by U(pdating the current
Workfile, by E(xiting without update, and by
W(riting a named file to disk. Check using the
Filer to see what happens in each case.

4-3

Editor Overview

4-4

The Editor is the UCSD p-System' s principal tool for
creating, reading, and changing text files, i.e. files of
information in the form directly readable by humans
when displayed. The Editor is designed to work with
the entire contents of a text file in the computer's
main memory as one unit. It can usually handle more
than 700 lines of Pascal program text in one file. The
Compiler provides a convenient means for
combining several of these files into a single large
program.

Since your CRT screen cannot display the entire
contents of most Workfiles, the screen is used as a
movable "window" through which you can view the
contents of the Workfile. You point at the place in
the W orkfile you wish to view by moving the cursor
up or down with the commands provided. When
moving the cursor would have the effect of shifting
to a text line not currently displayed on the screen,
the Editor automatically causes the window to be
moved so as to display the section of text to which
the cursor has moved. In addition to various
commands provided to move the cursor from place
to place in the W orkfile, there are also commands
with which you can change the content of the
Workfile at the place where the cursor points.

The simplest of the cursor movement commands are
the up-pointing and down-pointing arrows, and the
arrow keys pointing right and left. Though the
content of the Editor's window is displayed as a
sequence of lines as in a page of printed text, you can
think of the Workfile stored in the computer's
memory as if it were stored on one long thin
continuous strip of paper, with all the lines
connected end to end. Therefore, when the cursor is
at the right end of one displayed line, pressing the
right arrow once moves the cursor to the left end of
the next line below on the display. Similarly, when

the cursor points to the left-most nonblank
character in a line, pressing the left arrow returns
you to the right end of the line above. (If you are
running with a forty column screen, see Appendix A
for a description of screen handling keys.)

In addition to the four arrow command keys, there
are several other commands for moving the cursor.
If you know of a word, or other string of characters
stored in the W orkfile, you can use the F(ind
command to scan through the Workfile looking for
that word or string rapidly. You can also S(et
markers in the W orkfile, and use the J(ump
command to shift the displayed window suddenly to
anyone of the markers. Markers at the B(eginning
and E(nd of the W orkfile are built into the Editor
and you do not need to use the S(et command to
establish their positions. There is also a P(age
command which allows you to shift the displayed
window one screen-full at a time. The direction of
the shift depends on whether the" direction flag" in
the upper left corner of the screen points right (">"),
i.e. toward the end of the Workfile, or left ("<"), i.e.
toward the beginning.

Press the keys containing the broken brackets ">"
and" <" to change the pointing direction at will.
Press the TAB key (the key with the left and right
arrows pointing into veritcal bars) to shift the cursor
8 columns to the right or left in the workfile
depending on which direction the flag indicates.
Press the ENTER key (the bent arrow key) to
command the cursor to move to the left-most
character of the line following the line where the
cursor currently points. Type a number before any
of these commands (the number will not be echoed
on your screen as you type) to cause the command to
be repeated that number of times.

4-5

4-6

Most of the other commands of the Editor are used
to change the contents of the W orkfile. I(nsert
allows you to type text into the Workfile starting at
the position just before the character pointed at by
the cursor when you enter the I(nsert command's
world. D(elete allows you to remove characters from
the W orkfile, starting where the cursor points when
you enter the D(elete world, and ending where the
cursor points when you press Ctrl-C. R(eplace is an
extension of the F(ind command which allows you to
specify a string of characters to substitute for the
word or string which is found after scanning through
the W orkfile. C(opy is used to insert into the
W orkfile a passage of text that has previously been
saved temporarily in a "buffer" area of the
computer's memory following an I(nsert or D(elete
command. C(opy can also be used to insert a portion
of the text stored in another named W orkfile. The
A(djust command lets you shift the entire line where
the cursor is currently located to the left or to the
right. The eX(change command lets you type over
characters stored in the W orkfile on a one-for-one
basis, thus simplifying the steps needed to make
some changes in the text.

When you finish editing a W orkfile, and need to
move on to other activities, use the Editor's Q(uit
command which offers several options. The U(pdate
option causes the text stored in the computer's
memory to be saved on the disk under the reserved
Workfile name SYSTEM.WRK.TEXT. Any
previous version of your W orkfile will be lost when
this happens! The E(xit option allows you to leave
the Editor without changing anything on the disk. In
this case, the text stored in the computer's memory
is lost! The W(rite option allows saving the text
stored in the computer's memory under a name that
you can designate. This option permits you to
continue editing without having to restart the
Editor. The R(eturn option is provided to allow you
to continue editing even if you trigger the Q(uit
command by pressing "Q" inadvertently.

Cursor Movement Commands
To provide an example large enough to give you
worthwhile practice with the Editor, we will use the
Workfile EDITDEMO, which is supplied on the
STARTUP disk. This Workfile contains a Pascal
program which combines the programs REPEA Tl
and REPEAT2, which are presented in Chapter 3,
Section 8, of the book Microcomputer Problem Solving
Using Pascal referred to in Chapter 2 of this book.
Each of these two programs has been changed into a
procedure in order to produce a W orkfile long
enough to occupy at least two windows when viewed
on the CRT screen. The program contained in the
EDITDEMO Workfile can be compiled and
executed, but it is supplied to you primarily for use
as a starter file for practicing with the Editor.

To get started, enter the Filer from the "Command:"
world by pressing "F". Then use the G(et command
to establish EDITDEMO as your current W orkfile.
Next Q(uit from the Filer, and press "E" for E(dit
from the "Command:" world. The result should be
the display shown in Figure 4-1.

4-7

4-8

>Edit: A(djst C(py D(let F(ind I(nsrt J(mp K(ol R(plc O(uit X(ch
fROGRAM EDITDEMO;

PROCEDURE REPEAT1;
VAR S,SG:STRING;

I.,N:INTEGER;
BEGIN

WRITELN(
'TYPE ANY STRING FOLLOWED BY <ent>'

);
READLN(S);
N:=l;
L:=LENGTH(S);
REPEAT
SG:=COPY(S,l,N);
WRITELN(SG);
N:=N+l;

UNTIL N>L
END (*REPEAT1*);

PROCEDURE REPEAT2;
VAR S:STRING;

PROCEDURE REVERSE;
(*REVERSE THE ORDER OF CHARACTERS

Figure 4-1. The EDITDEMO Workfile.

Arrow Commands and Their Relatives

The IBM Personal Computer has four arrow keys on
the key pad intended for moving the cursor around
on the screen. The up arrow moves the cursor up one
line on the screen, the down arrow one line down.
The right and left pointing arrow keys similarly
move the cursor one position to the right or left. If
you want a more detailed introduction to the use of
the cursor positioning arrow keys, please see the
sections of Chapter 2 which present the Maze
example.

As an exercise at this point, note a specific place in
the displayed text of the EDITDEMO program, and
move the cursor to that place using the arrow keys.
Notice that movement to the right or left will only
place the cursor within the group of characters
starting with the left-most nonblank character on a
line, and ending with the blank following the
right-most nonblank character. This is intended to
be a convenience to users, since the long runs of
blank characters displayed elsewhere on the screen
are not actually stored in the computer's memory.
Vertical movement through the runs of blanks is
permitted however. For example, start with the
cursor pointing at the "G" in STRING within the
long line just 3 lines below "BEGIN" in the
REPEA Tl procedure, then press the down arrow 6
times to reach ";" in the line

SG:=COPY(S,l,N);

Now press the up arrow once, leaving the cursor in
the line just above the ";". Now press the left arrow
just once, and note that the cursor jumps to the "T"
in REPEAT.

4-9

Repeated execution of an arrow command

There is a facility which allows you to simulate
repeated pressing a key, such as any of the arrow
keys. This is accomplished just by holding down the
key to be repeated for about one-half second or
more. The Editor program also provides a way to
move the cursor a repeated number of positions. To
see how it works, place the cursor again on the "G"
in STRING in the line:

'TYPE ANY STRING FOLLOWED BY <ent>'

within the REPEAT1 procedure. Now press the "6"
key followed by the down arrow. The cursor should
again jump to the ";" in:

SG:= COPY(S, 1, N);

You can cause repeated execution of many Editor
commands by first typing in the number of
repetitions you want.

Moving the cursor off the screen

4-10

Try moving the cursor to the bottom line of the
screen. Now press the down arrow, noting that the
entire content of the screen shifts up one line. This is
equivalent to moving the displayed "window" down
in the text by one line, thus revealing an additional
line at the bottom of the screen, and hiding a line at
the top. Continue pressing the down arrow until the
line:

PROCEDURE REPEAT2;

appears on the top line of the screen. The screen
should appear as shown in Figure 4-2.

PROCEDURE REPEAT2;
VAR S:STRING;

PROCEDURE REVERSE;
(*REVERSE THE ORDER OF CHARACTERS
IN S*)

VAR NB,NE:INTEGER;
(*BEGIN AND END POINTERS*)
SAVE:CHAR;

BEGIN
NB:=l;
NE:= LENGTH(S);
REPEAT

(*EXCHANGE CHAR'S NB & NE,
SHIFT NB & NE *)

SAVE:=S[NE];
S[NE]:=S[NB];
S[NB]:=SAVE;
NB:=NB+l;
NE:=NE-l

UNTIL NB>=NE;
END (*REVERSE*);

BEGIN (*REPEAT2*)

Figure 4-2. Display Following Multiple Use
of the Down Arrow Key.

The upward shifting of the screen contents is called
"scrolling", as if the displayed text were actually ona
scroll of paper being pulled upwards behind the
screen's "window". You cause the screen content to
scroll upwards by one line with the Editor, if the
cursor is located in the bottom line of the screen and
you press the down arrow. This keeps the cursor
within the displayed window. Continue pressing the
down arrow (or use the repeat feature) causing the
text to scroll upwards until it stops scrolling. The
cursor will then be in the last line of text in the
W orkfile, presenting the display shown in
Figure 4-3.

4-11

>Edll: A(djsl C(py 0(181 F(iod I(osrl J(mp K(ol R(plc O(ull X(ch Z(ap [E.7h]

BEGIN (*REPEA12*)
WRITElN(
'nPE ANY STRING FOLLOWED BY <801>'

);
READLN(S);
WHILE LENGTH(S»O DO
BEGIN

REVERSE;
WRITElN(S);
WRITELN;
WRITELN('nPE ANOTHER STRING');
READLN(S);

END;
END (*REPEA12*);

BEGIN (*MAIN PROGRAM*)
WRITELN('START EDITDEMO');
WRITELN;
REPEAT1;
WRITElN;
REPEA12;

END.

Figure 4-3. Display After Scrolling to the
End of the Workfile.

4-12

Shifting the cursor off-screen in the other direction
is more awkward. To see what happens, move the
cursor upwards carefully until it rests in the top line
displayed on the screen. Now press the up arrow just
one more time. The result should be as shown in
Figure 4-4.

>Edit: A(dist C(py D(let F(ind I(nsrt J(mp K(ol R(plc O(uit X(ch Z(ap [E.7h)
BEGIN

NB:=l;
NE:=LENGTH(S);
REPEAT

(*EXCHANGE CHAR'S NB & NE,
SHIFT NB & NE *)

SAVE:=S[NE);
S[NE):=S[NB);
S[NB):=SAVE;
NB:=NB+l;
NE:=N8-1;

UNTIL NB>=NE;
END (*REVERSE*);

BEGIN (*REPEAT2*)
WRITELN(

'TYPE ANY STRING FOLLOWED BY <ent>'
);

READLN(S);
WHILE LENGTH(S»O DO
BEGIN

REVERSE;
WRITELN(S);
WRITELN;

Figure 4-4. Display Following Use of Up Arrow
in the Top Line.

In this situation as in several others, the Editor solves
the problem of displaying the new cursor position by
clearing the screen and then re-displaying to show a
window with the cursor in the middle line of the
screen.

4-13

Using SPACE, BACKSPACE, and ENTER

4-14

The SPACE bar can be used to substitute for both
the right arrow and the left arrow (when you are in
the "Edit:" or "Delete:" world). W.hen the Editor's
direction flag, located in the upper left corner of the
screen, points forward (">") the SPACE bar
substitutes for the right arrow. When the direction
flag points backwards ("<"), i.e. toward the
beginning of the W orkfile, the SPACE bar
substitutes for the left arrow.

The BACKSPACE key is equivalent to the left arrow
when you are in the "Edit:" or "Delete:" world. The
Editor's direction flag has no effect on the operation
of the BACKSPACE key.

The ENTER key causes the cursor to jump to the
beginning of the next line. If the Editor's direction
flag points forward, i.e. ">", then the ENTER key
moves the cursor to the first nonblank character on
the next lower line in the Workfile. The displayed
window is scrolled upwards if necessary to display
the next line. If the Editor's direction flag points
backwards, i. e. "<", then the ENTER Key moves the
cursor to the first nonblank character on the
previous line in the W orkfile. The screen window is
re-displayed if the ENTER key is pressed when the
cursor is located in the top line of text on the screen
(and when that line is not the first line in the
Workfile).

You might wonder why no special provision has
been made to cause the cursor to jump easily to the
end of the next or previous line in the W orkfile. This
can be done by the simple expedient of jumping to
the beginning of the line following the line whose
end you wish to jump to. Then press the
BACKSPACE (or left arrow) key just once.

The TAB key

The TAB key is used as an "express" version of the
SPACE key in the Editor. Each time you press TAB,
the cursor is moved until it coincides with a column
at which a new group of 8 columns starts. Thus the
TAB "stops" are located at columns 1, 9,17,25,33,
etc. (It is possible to change the positions of the
TAB-stop columns using S(et E(nvironment. See the
User's GUide for the UCSD p-System for a
description of this). If the Editor's direction flag
points forward (">"), then the TAB moves the
cursor toward the end of the W orkfile, jumping
from the end of one line to the beginning of the next
if necessary. If the flag points backwards (" <"), then
the TAB moves the cursor towards the beginning of
the W orkfile.

4-15

The P(age command

4-16

The P(age command is an "express" equivalent of
the up arrow and down arrow commands of the
"Edit:" world. It is similar in concept to the TAB key
command, but moves the cursor whole lines up or
down in the Workfile depending upon the current
status of the Editor's direction flag. If the direction
flag points forward (">"), then the P(age command
causes the display and the cursor to move forward in
the W orkfile as many lines as the screen window is
high. Thus, the displayed window will show the next
24 lines in the Workfile. The cursor's position on the
screen will remain the same, but its logical position
will be moved forwards by 24 lines. Similarly, if the
direction flag points backwards ("<") then the P(age
command will jump to the previous group of
screen-height lines. At the end of the Workfile, the
P(age command may not display a complete window
full if there are not enough additional lines available
in the W orkfile to fill the screen. In that case, the
cursor will be placed at the end of the file, and only
the top half of the window will be filled.

TheJ(ump command and its relatives

The Editor's J(ump command provides a way to
move the cursor quickly from one place in the file to
another without having to use the up or down arrow
commands repeatedly. Here is the promptline
displayed by the J(ump command:

>JUMP: B(eginning E(nd M(arker <esc>

Respond to this prompt with B(eginning, and the
cursor will be moved suddenly to the beginning of
the W orkfile. Similarly, E(nd places the cursor at the
end of the W orkfile. In both cases, the screen
window will be re-displayed if necessary. If you
respond with M(arker, the Editor will respond with
the following prompt:

Jump to what marker?

This refers to "markers" that you can place
anywhere in the W orkfile using the S(et command.
As used with many commands in the Editor, you can
press the ESqape key to simply terminate theJ(ump
command's world without doing anything.

4-17

The S(et Command Used For Setting
Markers

4-18

The S(et command has several different purposes,
mainly related to setting "switches" which control
how the Editor operates. It can also be used to read
the current values of those switches. For purposes of
this section on cursor movement commands, we will
only be concerned with setting markers into the
Workfile for use with theJ(ump command. Various
other switches that can be reached with the S(et
command are intended mainly for use in Word
Processing applications and are discussed later in
this chapter.

To establish a marker, use the S(et command when
in the "Edit:" world. The result will be the
promptline:

>Set: E(nvironment M(arker <esc>

If you respond with M(arker, the Editor's prompt
will be:

Set what marker?

to which you can respond with a number, name, or
other short identifier terminated by ENTER. The
position of the marker will be the position of the
cursor at the time when you enter the S(et
command.

The S(et Command Used For Setting
Markers

As an example, go through the sequence of steps
needed to display the portion of the EDITDEMO file
shown in Figure 4-4. Place the cursor in the blank
line between "END (*REVERSE*);" and
"BEGIN ... " which is two lines below. Now use S(et
to establish a marker simply called" 1" (do not type
in the quotes when responding to the command).
You can check to see the result of doing this by using
the E(nvironment option of the S(et command. The
response from this option should be as shown in
Figure 4-5 if you have successfully established a
marker called" 1".

>Environment: (options) <spacebar> to leave
A(uto indent True
F(illing False
L(eft margin 1
R(ight margin 80
P(ara margin 6
C(ommand ch ""
S(et tabstops
T(oken de' True

989 bytes used, 21539 available.

Created June9, 1981; Last updated June9, 1981 (Revision 0).
Editor Version E.1h iv.O.

Figure 4-5. S(et E(nvironment display.

4-19

J(umping to markers

4-20

NowuseJ(ump to move the cursor to the B(eginning
of the Workfile. The resulting display should be as
shown in Figure 4-1. Next,J(ump to the E(nd of the
Workfile, getting essentially the display shown in
Figure 4- 3. In this case, the cursor will be at the very
last character position in the Workfile, rather than at
the beginning of the last line, as resulted from the
sequence of steps that led to Figure 4-3.

Neither of the displays reached by J(umping to the
B(eginning or the E(nd of the W orkfile shows the
text which includes the marker" 1 " which was S(et in
the previous subsection. Now use J(ump, respond to
the prompt with M(arker, and then with 1 followed
by ENTER. The Editor will respond with a display
like that shown in Figure 4-4, and with the cursor at
the same position it had when you established the
marker.

You can establish 20 markers within a workfile. The
Editor will keep track of the logical position of each
marker, even when you change the contents of the
W orkfile. Of course, if you D(elete a section of text
containing a marker, it does not make sense to
maintain the position of the marker. In this case, the
position of the marker may show up almost
anywhere in the text that remains. If you use more
than two or three markers, it will generally be
difficult to remember their logical positions in the
text unless you give them names that suggest their
locations. However, the Editor will remember only
the first 8 characters of a long marker name. If you
want to reuse a marker name at a new location,
simply S(et it again. If you try to S(et too many
different markers, the Editor will prompt you on

J(umping to markers
steps to follow in replacing one of the markers
already established. You can always get a listing of
the markers currently established (but not their
locations) by using the E(nvironment option of the
S(et command.

The F(ind command

Quite often you will want to jump to a place in a
W orkfile where you have not previously thought to
leave a marker. If you remember at least a small part
of the contents of the text near that place, you can
easily get there using the F(ind command. To see
how the F(ind command works, using the
EDITDEMO file as an example, firstJ(ump to the
B(eginning of the Workfile (again leading to the
display of Figure 4-1). Now press "F" to enter the
F(ind command's world, with the promptline:

>FindJ1J: L(it <target> =>

The Editor now waits for you to type in a "pattern"
string of characters which will be the "target" of a
fast search through the W orkfile. Before proceeding
further, make sure that the Editor's direction flag
points forward (">") as shown in the promptline
above. If it does not, press ESC, change the direction
flag by pressing ">", and again enter the F(ind
command.

4-21

The F(ind command

4-22

As an example, respond to the prompt shown above
by typing in:

IBEGINI

The two characters "/" serve to bracket or "delimit"
the string of characters which are to be found in the
Workfile, and they are not included in the target.
You can use any special character as a delimiter,
including either the single or double quote symbols.
We use the right slash "/" because it is conveniently
located on the keyboard, and it rarely is included in
the target of a F(ind command.

Note that the F(ind command distinguishes between
upper case and lowercase characters. If you typed in
"begin" or "Begin" rather than "BEGIN", the
command will respond by telling you that it could
not find any occurrence of the target string.

As soon as you press the delimiter key ("/" in this
example) for the second time, the F(ind command
will start searching through the W orkfile looking for
an occurrence matching the target string you have
typed in. If all goes well in our example, the F(ind
command will complete its work and the cursor will
be left pointing at the end of the sixth line of the
Workfile's text, immediately following the target
pattern "BEGIN".

If at any time, while typing in your desired target
string, you decide that you wish to terminate the
F(ind command so as to start over again, just press
the ESC(ape key.

The F(ind command

Multiple occurrences of the target

In many cases, you will pick a target string that
occurs more than once in the W orkfile. The F(ind
command starts searching (in the direction shown by
the Editor's direction flag) from the current position
of the cursor. After F(inding the first occurrence of
the target, the cursor will be displayed immediately
following that target. You may well be looking for a
later re-occurrence of the same target. It is simple
enough to repeat the same F(ind command at this
point, again typing in the same target string.
However, there is an easier way.

Continuing our example with the target "BEGIN",
again press "F" to enter the F(ind command. Now
simply press the "s" key, and note what happens.
The cursor will jump to the end of the next
occurrence of "BEGIN" in the W orkfile. Keep
doing this several times, noting what happens. Once
the last occurrence of "BEGIN" has been found in
the W orkfile, an "error" message will appear in the
promptline at the top of the screen. In further uses of
the F(ind command using thesame target, the Editor
will refuse to move the cursor any further.

Now J(ump back to the B(eginning of the W orkfile.
This time, press "2" before pressing "F" to enter the
F(ind command. Note that the F(ind command's
prompt now appears as follows:

>Find[2]: L(it <target> =>

with the digit "2" appearing within the square
brackets. This is the F(ind command's "repeat
factor", showing how many times the search for the
target string will be repeated once typing of the
target has been completed. You can type in any
whole number as a repeat factor before ~yping "F".

4-23

The F(ind command
This feature is not designed to make it convenient to
type in large repeat factors, and the value of the
repeat factor will not be shown on the screen until
the F(ind command's own promptline is displayed.

You can get the result of using a very large repeat
factor without having to think about its value by
typing "I" as a repeat factor. Upon entering F(ind
the resulting prompt will be:

>Find[/): L(it <target> =>

The result of doing this should be to F(ind the last
occurrence of the target within the W orkfile.

F(inding backwards

4-24

As mentioned earlier, the F(ind command conducts
its search in the direction shown by the Editor's
direction flag. So far we have been F(inding only in
the forward direction. Now J(ump to the E(nd of the
W orkfile, and then set the direction flag to
backwards ("<") by pressing the "<" key. Next, use
F(ind for the S(ame target, noticing that the cursor
stops at the end of the last occurrence of "BEGIN".
Use F(ind followed by S(ame again (without repeat
factor) and note that the cursor does not move. This
is because the search starts from the current cursor
position, and of course the first occurrence of the·
target found in the backwards direction is the one
already adjacent to the cursor's position.

To perform a multiple search in the backwards
direction, you may find any of several tactics useful.
After stopping at one occurrence of the target, you
can get to the next previous occurrence by using a
repeat factor of2. Another possibility is to use the up
arrow once, thus placing the cursor in the line above

The F(ind command
the one where an occurrence of the target has just
been found. This has the effect of putting the cursor
at a point in the W orkfile before the target's
occurrence just found, and another application of
F(ind followed by S(ame will no longer encounter
that occurrence. Just as one can use the "infinite"
repeat factor [I] to F(ind the last occurrence of the
target when going forward, you can use the same
repeat factor when going backwards to F(ind the first
occurrence of the target starting from the end of the
Workfile.

L(iteral Targets vs Tokens

Unless you use the L(it option of the F(ind command
(before typing in the first delimiter of your target)
the Editor will assume that you want to locate a
target consisting of one or more" tokens". A token
may be a complete word, a number, a special
(punctuation) character, or an "identifier". As in
Pascal, and many other programming languages, an
identifier is defined as a string of characters which
must start with a letter, and thereafter may consist of
additional letters or digits. For example,

A
abc
n123
X25p

are all identifiers in this context. In the F(ind
command, the Editor distinguishes between upper
case and lower case letters, regardless of the rules on
this subject for any programming language. Thus:

BEGIN
begin
Begin
beGin

are regarded as four different targets.
4-25

The F(ind command

4-26

The F(ind command permits you to string together
several different tokens into a single target.
Moreover, it is indifferent to the number of blank
space characters between tokens in the W orkfile.
For example, a target typed in as:

S:STRING;

would be matched in the Workfile by any of the
following:

S:STRING;

S : STRING

S: STRING;

S: STRING;

or even:

S:
STRING;

In the last of these examples, the target appears in
pieces shown on two successive lines. For the
purposes of the F(ind command, the end-of-line
marker spearating two successive lines is to be
regarded as equivalent to one blank character. (This
is equivalent to the definition of end-of-line marks in
a file of Type TEXT in Pascal.)

The F(ind command

Now to understand the distinction between a token
and a L(iteral target, J(ump back to the B(eginning
of the EDITDEMO Workfile. Enter the F(ind
command and use the target:

/PROC/

noting that the Editor will claim that this target
cannot be found. This is because the target typed in
does not match any complete token in the Workfile.
Now enter F(ind again, this time pressing the "L"
key followed by the "S" key. The cursor will come to
rest pointing at the character "E" within the first
occurrence of "PROCEDURE". The L(iteral option
of the F(ind command tells the Editor to look for a
target string which exactly matches the target that
you type in. In the L(iteral option, blank characters
count exactly as they are found, and all of the target
string examples shown in the group just above will
be regarded as different.

4-27

The "-" key command

After F(inding a target that you want, it may
sometimes be more convenient to have the cursor
placed where the target begins rather than at its end.
Press the "=" key, when in this situation, and the
cursor will be moved to the beginning of the target.
In fact the "=" key command serves as the equivalent
of aJ(ump to beginning of target key even after you
have used several other cursor movement
commands following the F(ind. (However, the
destination of the "=" key command will change to
the beginning of the most recent insertion if you use
the I(nsert command.)

The V(erify command

4-28

The V(erify command is used to re-display the
contents of the Editor's window, placing the cursor
as near the center of the screen as makes good sense.
Occasionally, the Editor will lose track of characters
displayed on the screen which should have been
moved. If you have any doubt about the correctness
of the displayed text following any command that
changes the content of the W orkfile, use the V(erify
command to get a fresh display. The window
displayed by the V(erify command will be a correct
representation of the text stored in the computer's
memory.

The V(erify command

Commands that Change the
Workfile's contents

All of the commands described in this section are
designed for use in changing the contents of the
workfile copy currently stored in the computer's
main memory. All of the commands described in the
previous section are used for moving the cursor from
place to place in the workfile, but they do not change
the content of the workfile. Some of the commands
described in this section are designed so that you can
change your mind after altering the workfile
contents, and can return to the status of the workfile
as it was just before the command was entered.

Remember that the changes you make using the
commands described in this section affect only the
copy of the workfile in the computer's active
memory. They have no effect on any copies stored
on a disk. Changes on the disk are only made through
the Q(uit command which is described in the next
major section of this chapter. In general it is a good
idea to save the results of your editing changes in the
workfile on the disk periodically, (e.g. once every ten
minutes or so). If instead, you work without saving
the workfile for a long period, you leave yourself
vulnerable to losing all your work during that period
if the electric power should faiL Since the main
memory retains its stored information only as long
as the electric power is maintained, even a
momentary failure of the electric power could result
in loss of your work. If you save your work every ten
minutes or so, you will only lose a few minutes worth
of work if the power fails.

4-29

I(nsert

4-30

The I(nsert command puts the Editor in a mode
allowing you to type information into the workfile.
All text characters typed in while in the I(nsert
command's world become part of the workfile
stored in main memory if you terminate the I(nsert
using Ctrl-C. If, after I(nserting a substantial
amount of text, you decide to back up and start over
again, the ESC key allows terminating the I(nsert
command without saving anything typed in since the
command was last entered.

The entry of information typed in while in the I(nsert
command's world starts at the position where the
cursor points when the I(nsert command is entered.
As noted in the previous section, the cursor's logical
position can never be to the left of the left-most
nonblank character on a line, nor to the right of the
position immediately following the right-most
nonblank character on a line. If the cursor's position
is between those two limits when you enter the
I(nsert command, the Editor will split the characters
already in the same line. The portion starting at the
cursor's position, when I(nsert is entered, will be
pushed as far as possible to the right side of the
screen. This is illustrated in Figure 4-6.

I(nsert
> Insert: Text {<bs> a char, a line} [<etD accepts, <esc> escapes]
PROGRAM EDITDEMO;

PROCEDURE REPEATl;
VAR S,SG:STRING;

I.,N:INTEGER;
BEGIN

WRITELN(
'TYPE ANY STRL

);
READLN(S);
N:=l;
l:= LENGTH(S);
REPEAT

SG:=COPY(S,l,N);
WRITELN(SG);
N:=N+l;

UNTIL N>L
END (*REPEAT1*);

PROCEDURE REPEAT2;
VAR S:STRING;

PROCEDURE REVERSE;
(*REVERSE THE ORDER OF CHARACTERS

NG FOLLOWED BY <ent>'

Figure 4-6. I(nsert command at entry.

Now if you type characters into the gap within the
split line, the display will remain stable unless you
type in enough characters to fill up the gap. Figure
4-7 shows what happens when you type in more
characters than will fit within the gap.

4-31

I(nsert

>Insart: Taxt{<bs> a char,<dal> a lina} [<alX> accapts,<esc> escapes]
PROGRAM EDITDEMO;

PROCEDURE REPEAT1;
VAR S,SG:STRING;

I.,N:INTEGER;
BEGIN

WRITELN(
'TYPE ANY STRlxyzxyzxyzxyzxyzxyzxYZXYZXYZXYlXYlXYlXYlXYZ-

4-32

NG FOLLOWED BY <enl>'

Figure 4-7. After filling the gap on entry line.

Notice that the right side of the line where the cursor
started remains on the screen, but it has been moved
down one line to make room for additional text to be
typed in. Notice also that when this happens all the
subsequent lines in the workfile are removed from
the screen. This should be of no concern to you.
These subsequent lines of text are still stored in the
computer's memory. They have been removed from
the screen simply to make room so that you can type
in as many lines of additional text as you like.

To continue typing at the beginning of the next line
below, press the ENTER key. Notice that the result
of doing this is to place the cursor immediately
below the left-most character on the line from which
the ENTER key was pressed. Figure 4-8 shows the
result of typing in "xx" immediately after pressing
ENTER following the state of the workfile shown in
Figure 4-7.

I(nsert

> Insert: Text {<bs> a char, a line} [<etx> accepts, <esc> escapes]
PROGRAM EDITDEMOj

PROCEDURE REPEATl j
VAR S,SG:STRINGj

I., N: INTEGER:
BEGIN

WRITELN(
'TYPE ANY STRlxyzxyzxyzxyzxyzxyzxyzxyzxyzxyzxyzxyzxyzxyz
X1L--

NG FOLLOWED BY <ent>'

Figure 4-8. I(nsert after ENTER followed by "xx".

In some cases you may not wish the indentation of a
new line to be the same as that of the line from which
ENTER is pressed. You can change the indentation
if you press either SPACE or BACKSPACE
immediately following ENTER and before typing in
any visible text. Once you have typed in any visible
character at the beginning of the line, use of SPACE
or BACKSPACE on that line will no longer affect the
indentation.

Quite often you will make errors while typing in
characters. If you have not typed in too many
characters following an error, the easiest remedy is
to use BACKSPACE to remove the offending
characters from the screen. Each time you press
BACKSPACE while in the I(nsert world, one
character previously typed in will disappear from the
screen. Naturally, after all characters typed in during
the present I(nsert command have been removed, no
additional characters that were previously there will
be removed. You can use the D(elete command to
get rid of characters displayed when in the "Edit:"
world.

4-33

I(nsert

4-34

The DELETE-LINE Key (Ctrl-BACKSPACE) can
be used when in the I(nsert command's world as an
express version of the BACKSPACE key. Each time
DELETE-LINE is pressed, you remove the entire
line where the cursor is located, and the cursor
returns to the end of the previous line. The
DELETE-LINE key cannot be used to remove the
line where the cursor was located when I(nsert was
entered, and an error message will appear on the
promptline if you try to do this.

Occasionally, you may have reason to type in enough
characters on one line to cause part of the line to be
displayed beyond the right limit of the screen, if that
were possible. If you do this, the editor will notify
you of the problem by displaying an exclamation
point ("!") at the right margin of the screen. The
portion of the text that cannot be displayed on that
line is still stored in the computer's memory. To get
it displayed again on the screen, you may wish to split
the line into two by I(nserting an ENTER in the
middle of the line. Another possibility is to shift the
whole line to the left resulting in less indentation.
This can be done with the A(djust command, which
is explained in a later section.

A common inadvertent error is the attempt to type
in nonvisible control characters like the cursor
positioning arrows. The result of doing this will be
the display of question mark characters. You can
erase these characters in the usual manner, as with
any other errors.

D(elete

The D(elete command is used to remove characters
from the text stored in the workfile copy in the
computer's memory. After entering the D(elete
command, you can move the cursor using any of the
cursor moving commands described in this chapter,
i.e. the arrow commands and their relatives. J(ump
and F(ind do not work within the D(elete command's
world.

We can refer to the position of the cursor, when the
D(elete command is entered, as the" entry postion".
Upon moving the cursor to another position, note
that all the characters between the new position and
the entry position are erased from the screen. As an
example, consider the first window displayed for the
EDITDEMO workfile, as shown in Figure 4-1. Place
the cursor so that it points at the "R" in "REPEAT"
in the third line of the program. Now enter D(elete,
then press the space bar three times. The result
should be as shown in Figure 4-9.

4-35

D(elete
>Dalala: < > <Moving commands> {<elx> 10 dalela, <asc> 10 abort}
PROGRAM EDITDEMO;

PROCEDURE ~AT1;
VAR S,SG:STRING;

l,N:INTEGER;
BEGIN

WRITELN(
'TYPE ANY STRING FOLLOWED BY <enl>'

);
READLN(S)j
N:=l:
1.:= LENGTH(S);
REPEAT

SG:=COPY(S,l,N);
WRITELN(SG)j
N:=N+1j

UNTIL N>L
END (*REPEATl *)j

PROCEDURE REPEAT2;
VAR S:STRINGj

PROCEDURE REVERSE:
(*REVERSE THE ORDER OF CHARACTERS

4-36

Figure 4-9. D(elete after pressing the space bar
three times.

Now press the BACKSPACE key several times,
noting that characters backed over in this fashion
reappear on the screen.

As with the I(nsert command, you can terminate the
D(elete command in either of two ways. Press
Ctrl-C to complete the job of removing the text
enclosed between the entry position and final
position of the cursor (as established during use of
D(elete). Press ESC to terminate D(elete in such a
way as to leave the workfile just as it was before the
D(elete was entered.

R(eplace

The R(eplace command is an extension of the F(ind
command. For details on the F(ind command, see
"The F(ind Command" in this chapter. Upon
entering the R(eplace command, the following
promptline is displayed:

>Replace[l]: L(il V(tv <Iarg> <sub> =>

The bracketed number and "L(it" have the same
meanings as they do with the F(ind command. The
"targ" is an abbreviated reference to the same target
as used with F(ind. As in the F(ind command, after
typing in the target explicitly once, subsequent uses
of the same target can be made by using "S" for
S(ame. In fact, you can use F(ind to establish the
target, and then use the S(ame option with R(eplace
to refer to the same target. Similarly, you can
establish the target explicitly using R(eplace, and
then use F(ind with the S(ame option to refer to the
same target.

After R(eplace carries out the same search as carried
out by F(ind, it deletes the found occurrence of the
target and then inserts the substitution string
indicated by "sub". As an example, you might
respond to the prompt shown above by typing in:

/BEGINI/START/

with the result that the first occurrence of "BEGIN"
will be changed to "START". Although both target
and sub strings are of the same length in this case,
they need not be of equal lengths. In fact the
substitution string can be of zero length, with the
result that the target string will simply be deleted
from the workfile after it is found.

4-37

R(eplace

4-38

As with the F(ind command, you can use a repeat
factor with R(eplace. Use the slash repeat factor [I]
to change all occurrences of the target to the sub
string.

Quite often you will want to change some
occurrences of the target string but not all of them in
the workfile. You can change the occurrences that
are found by R(eplace selectively by using the
V(erify option (abbreviated V(fy to keep the
promptline as short as possible). The "V" must be
included in your response to R(eplace' s prompt
before you type in the substitution string. A
convenient way to go through most of your workfile
with R(eplace, selectively changing only some
occurrences of the target, is to use the slash repeat
factor [/1 and also the V(erify option. Each time a
new occurrence of the target is found, the following
prompt will appear:

>RlpllclllI:<ISC> Iborts, R rlpllclS, ' ,
dOlsn'l

You then have three options. Press "R" to complete
the replacement of that occurrence with the
substitution string, and to cause the cursor to move
on to the next occurrence of the target. Press the
SPACE bar to bypass the substitution, but allow the
search to continue for the next occurrence of the
target. Press ESC to cause the R(eplace command to
be terminated at that point without either making
the substitution or continuing the search.

C(opy

The C(opy command is used to insert passages of
text that have previously been saved into the
workfile at the cursor's position. The C(opy
command's prompt is as follows:

>Copy: B(uffer F(rom file <esc>

showing that the command has two distinct options.

The B(uffer option is used together with a passage of
text that is automatically saved in a "buffer" area of
the computer's memory whenever you use either the
I(nsert or the D(elete command. Each use ofI(nsert
or D(elete saves the associated passage of text in the
buffer area, removing the previously saved contents
of the buffer. After entering C(opy, press "B" for
B(uffer to have a copy of the buffer's saved contents
inserted in the workfile at the place where the cursor
points.

It is important to note that the buffer is filled with a
new passage of text whether you terminate the
I(nsert or D(elete using either Ctrl-C or ESC. Thus
it is possible to mark a passage of text within the
workfile using the D(elete for later C(opying, but to
leave the original passage intact by terminating the
D(elete using ESC.

As an example of the use of the B(uffer option,
J(ump to the B(eginning of the EDITDEMO
workfile, then carry out the following steps. (The
display should be the same as shown in Figure 4-1).
First, move the cursor to point to the "V" in "V AR"
on the fourth line of the display. Now enter D(elete

4-39

C(opy
and press ENTER twice. The result will be to blank
out the two lines:

VAR S,SG:STRINGj
I,N:INTEGERj

from the display. Next, press ESC, with the result
that the display will again appear as in Figure 4-l.
Now move the cursor up two lines, so that it points at
the left end of the blank line between
"PROGRAM ... " and "PROCEDURE ... ". Next,
press "c" for C(opy followed by "B" for B(uffer. The
result should be as shown in Figure 4-10.

>Edil: A(dlsi C(py D(181 F(ind I(nsrt J(mp K(ol R(plc O(uit X(ch Z(ap [E.7h]
PROGRAM EDIlDEMOj
VAR S,SG:STRINGj

I,N:INTEGERj

PROCEDURE REPEATl j
VAR S,SG:STRINGj

I,N:INTEGERj
BEGIN

WRIlELN(
'nPE ANY STRING FOLLOWED BY <Inl>'

)j
READLN(S)j
N:=lj
l.:=LENGTH(S)j
REPEAT

SG:=COPY(S,l,N)j
WRIlELN(SG)j
N:=N+lj

UNTIL N>L
END (*REPEAT1*)j

PROCEDURE REPEAT2j
VAR S:STRINGj

Figure 4-10. Display after C(opy of two lines
from the B(uffer.

C(opy
Note that the original two lines following
"PROCEDURE ... " still remain in the display. They
could have been eliminated in the same operation by
terminating the D(elete command using Ctrl-C as
usual.

The F(rom file option of the C(opy command is used
in a similar manner, but draws its passage of text
from another workfile saved on the disk. If you use
this option, the Editor will prompt you to type in the
name of the file to be copied into the current
workfile. You can C(opy just a portion of another
workfile starting at one marker and continuing to a
second marker saved in that other workfile. Those
markers must be established using the Editor while
working with the other workfile. It is not possible to
set markers in the other workfile without Q(uitting
out of the Editor, typically U(pdating the current
workfile as you go. The promptline for the F(rom file
option is as follows:

>Copy: From what file[marker,marker]?

The pair of marker names can be omitted, and the
result will be that the entire file whose name is typed
in will be C(opied. Enclose two marker names within
square brackets, to get only that portion of the
named workfile enclosed between the two markers
C(opied into the current workfile. Of course, the
first marker should be placed earlier in the other
workfile than the second marker to make this
operation sensible.

4-41

A(djust

4-42

The A(djust command is used to shift selected lines
of text to the right or left without changing their
contents otherwise. Either single lines or groups of
lines can be shifted. The A(djust command has
several options shown in its promptline as follows:

>Adlust: L(just RUust C(enter
<Ieft,rlght,up,down-arrows>

All of the options refer to the line in which the cursor
is located. L(just causes that line to be left justified,
i.e. to be pushed to the left as far as possible. R(just
causes the cursor's line to be pushed as far right as
specified by the right margin currently specified for
the Editor. (To find out at which columns the right
and left margins are currently set, use the
E(nvironment option of the S(et command.) C(enter
causes the cursor's line to be placed half-way
between the left and right margins as currently
specified.

The left and right arrows cause the cursor's line to be
shifted one position in the indicated direction each
time they are pressed. If you want to shift a group of
lines by the same amount, start with the top line of
the group and shift it the desired amount using the
left ,and/or right arrow keys. Next, press the down
arrow once for each additional line that you want
shifted. A similar strategy applies by first shifting the
bottom line of the group, then using the uparrow for
the other lines of the group. The best way to see how
this works is to experiment with it.

You terminate the A(djust command using Ctrl-C.
There is no means provided whereby you can escape
out of the A(djust command in a way that will restore
the text to the status it had before the A(djust
command was entered.

eX(change

Sometimes it is necessary to change just a few
characters in the workfile on a one-for-one basis.
The eX(change command allows you simply to type
over characters already in the workfile without going
through the complications of using D(elete followed
by I(nsert. Press "X" to enter the eX(change
command. Figure 4-11 exemplifies how the
eX(change command is used.

>eXchange: Text <vector keys> {<etx>, <esc> CURRENT line}
PROGRAM EDITDEMO;

PROCEDURE REPEATl;
VAR S,SG:STRING;

L,N:INTEGER;
BEGIN

WRITELN(
'type any striNG FOLLOWED BY <en!>'

);
READLN(S);
N:=l;
L:= LENGTH(S);
REPEAT

SG:=COPY(S,l,N);
WRITELN(SG);
N:=N+l;

UNTIL N>L
END (*REPEAT1*);

PROCEDURE REPEAT2;
VAR S:STRING;

PROCEDURE REVERSE;
(*REVERSE THE ORDER OF CHARACTERS

Figure 4-11. Illustration of the
eX(change command.

4-43

Z(ap

4-44

To reproduce this example,](ump to the B(eginning
of the EDITDEMO workfile as in Figure 4-1. Then
move the cursor to point at the "T" at the left end of
the long line beginning "TYPE ANY ... ". Now enter
eX(change by typing "X". Next, type in "type any
str".

Each character typed replaces one that had been in
the workfile when the eX(change command was
entered. You may also use 5ACKSPACE, ENTER,
TAB and the arrows to move the cursor around,
non-distructively, in the eX(change mode. When
you have no further characters to exchange, press
Ctrl-C to make the changes permanent. Press ESC
to cancel any changes made so far on the current line
and to exit from the eX(change command.

The Z(ap command is designed to be used following
F(ind, R(eplace, and I(nsert commands.

CAUTION: Do not try to use Z(ap if you
follow anyone of these three commands with
any other command that changes the text of the
workfile, or any command that moves the
cursor - the results will be hard to predict.

Z(ap
If the most recent text changing command was
I(nsert, Z(ap deletes the text that was I(nserted.
Thus, if you complete an I(nsertion using Ctrl-C,
and then realize that you made a mistake, Z(ap
allows you to start over again.

If the most recent command was F(ind, then Z(ap
deletes the occurrence of the target string that was
found.

If the most recent command was R(eplace, then Z(ap
deletes the substitution string from the text of the
workfile.

Following Z(ap, you can use the B(uffer option of
the C(opy command to restore the text that was
deleted by Z(ap. Thus Z(ap provides an "express"
method for F(inding a target and then moving it to
an alternate place within the workfile. You use
F(ind, followed by Z(ap, then move the cursor to an
alternate location, and finally use C(opy followed by
B(uffer.

If you use a repeat factor with either F(ind or
R(eplace, only the most recent target or substitution
string will be deleted by the Z(ap command. If you
repeat the Z(ap command, it will delete the contents
of the C(opy buffer, with the effect that C(opy
cannot be used to restore the effect of the first Z(ap
of the group. After Z(ap has been used once,
repetition will have no effect on the stored text in
the workfile (until you use F(ind, R(eplace, or I(nsert
again).

4-45

Z(ap

The Q(uit comm~nd and its- options

4-46

The Q(uit command is used to leave the Editor in an
orderly way. Use of the Q(uit command is required if
you wish to save the results of an editing session in
which you have changed your workfile. (You could
also terminate an editing session in a more drastic
way by Bootloading again, or by withdrawing your
disk from the machine and walking away.) The
prompt messages that appear for the Q(uit
command were shown in Figure 3-6.

The U(pdate option causes the contents of the
computer's memory to be saved on the disk in the
reserved file SYSTEM.WRK.TEXT, i.e. in the
"unnamed" workfile on the disk. Any previously
saved file called SYSTEM.WRK.TEXT will be
removed from the disk as a result of this action.
Having reached the Q(uit command, there is no way
for you to change the name of the file
SYSTEM. WRK. TEXT, which is already saved on the
disk, in order to prevent it from being removed.
However, you can use the W(rtie option of the Q(uit
command to save the contents of the computer's
memory (resulting from the current Editor session)
under a different file name. You can then use the
E(xit option to prevent the old version of the
workfile from being removed from the disk.

The E(xit option terminates the Editor without
taking any action at all to save the contents of the
computer's memory. You might use the E(xit option
after using the Editor to read the contents of a
workfile without making any changes. E(xit from the
Editor will then have no effect on your disk
directory. Since data errors can sometimes be caused
in the process ofreading information from the disk,
or writing to it, it is best to avoid any more disk

Z(ap
operations than necessary. The E(xit option is a
facility designed to assist in avoiding disk operations
that are not needed.

The R(eturn option is provided for those of us who
develop sloppy habits in typing into the Editor. If
you hit the "Q" key inadvertently, you may not
really have it in mind to terminate the Editor session
quite yet. Press "R" for R(eturn to get back into the
Editor at the same place you had been just before the
Q(uit was invoked.

The W(rite option allows you to save the current
contents of the computer's memory in a named disk
file. After the disk file has been saved, the Editor
session continues.

The W(rite option requests a file name using the
following prompt:

Name of output file «CI'> to return) .>

You can respond by typing in the name you want the
workfile saved under (leaving out ".TEXT") and
following with ENTER. If you simply press the
ENTER key (referred to here as "er" for Carriage
Return), no disk file will be saved and the Q(uit
command will be terminated as if you had used the
R(eturn option. If you do respond to the W(rite
option with a file name, the Editor will notify you
when the disk file has been saved, and then will offer
you the option of E(xiting or R(eturning to the
Editor.

If you are editing a file which existed before the edit
session began, the W(rite option will allow you to
write the workfile back to disk under the same name.
This can be done by simply typing "$" followed by
ENTER. If, for example, the name of the file you are

4·47

Z(ap
editing is FILE. TEXT, the write option will display
the following prompts:

$ <ret> writes to FILE. TEXT
Nama of output file «cr> to return) ">

You may either respond with "$" followed by
ENTER, which will write the workfile to FILE. TEXT
(destroying the old FILE. TEXT), or you may specify
a file name as described above.

Using the Editor for Word Processing

4-48

The principal difference between the use of the
Editor for Word Processing, and for editing
programs, is the automatic "filling" of each line of a
paragraph. When filling is used, the Editor scans
ahead for the right margin, keeping track of the
beginning of the last word you typed in. If the Editor
detects that the current word you are typing would
extend past the right margin, it automatically moves
the current word to the beginning of the next line,
filling in the rest of the previous line with blanks. To
prepare the Editor for paragraph filling, you will
need to use the S(et command to change several
switches in the Editor's E(nvironment. (A switch is
an option which has only two states, such as "Yes" or
"N ""T " "F I ") F· 4 5 h hI 0, rue or a se. 19ure - sows roug y
the display you should get using the E(nvironment
option of the S(et command when the Editor is first
entered.

As an exercise to see how paragraph filling works,
change the A(utoindent option to False, and the
F(illing option to True.

Z(ap
Within the E(nvironment sub-command's world,
you select an option to be changed by typing its
leading character. For example, to change F(illing
type "F". The Editor responds by placing the cursor
at the first character position of the current value of
the option, i. e. over the "F" in "False". (The legend
"False" will Simultaneously disappear.) Now type
"T", and observe that the displayed value of the
option changes to "True". Similarly, to change
A(utoindent, type "A" followed by "F" (for "False")

"T" (1: "T ") or lor rue.

Now you can type in a small paragraph. Notice that
you do not need to use the ENTER key to get from
the end of one line to the beginning of the next. If
the last word you try to type into a line cannot fit
within the established margins, the Editor will move
the word to the beginning of the next line.

With a small paragraph on the screen, now try an
insertion in the middle of that paragraph. The Editor
will refill all of the lines following the point of the
insertion, putting as many words as possible within
each line.

Deleting a portion of a paragraph is slightly more
complicated. To see how it works, delete several
words from the middle of your paragraph. After
completing the deletion (with Ctrl-C), notice that
the lines within your paragraph have not been
refilled to give the appearance of a properly filled
paragraph. Instead, you have to call for the filling
explicitly by using the M(argin command in the
"Edit:" world. After pressing "M" to initiate the
M(argin command, the sreen will go blank for several
seconds. The paragraph will then be redisplayed with
all lines correctly filled.

4-49

4-50

Within the Editor's E(nvironment switches, the
L(eft margin and R(ight margin have the obvious
roles of limiting the left and right extent of a
paragraph. The P(aramargin (for "Paragraph
margin") switch refers to the indentation of the first
line of a paragraph. If you want to change the
appearance of any single paragraph, use the
following steps:

• S(et the E(nvironment switches to the desired
values (and leave the S(et command by pressing
SPACE).

• Place the cursor at any point within the
paragraph to be changed.

• Press "M" for M(argin.

The Editor recognizes the beginning and ending
lines of a paragraph by looking for a completely
blank line.

As a final note on Word Processing uses of the
Editor, be careful not to try using the M(argin
command when the cursor is within a table of data,
or in some other passage which you do not want to be
filled as if it were a paragraph. The Editor will
prevent this from happening ifF(illing is set False. If
you inadvertently work on a Pascal program with
F{illing set True, and ifM(argin is also inadvertently
used, the results become unreadable.

CHAPTER 5. FILE MANAGER
(FILER)

Contents

Goals for this Chapter 5-3
Overview of Files and the Filer 5-4
Volume Identifiers 5-5
Simplified Titles for disk files 5-6
Naming Conventions to Simplify Work

with Groups of Files 5-7
Workfile Commands 5-9
Status checking/setting commands 5-17
Shorthand entry of the destination

file name 5-27
Disk to Disk bulk T(ransfer 5-28
T(ransferring only selected files 5-29
Rearranging the files on one disk. 5-30
Directory Maintenance Commands 5-32
Checking for disk errors and

repairing them ,................. 5-42

5-1

NOTES

5-2

Goals for this Chapter
The File Manager (which is affectionately called the
"Filer") is the UCSD p-System's principal tool for
keeping track of files stored on your disks. The main
goal of this chapter is to provide you with a reference
summary of how the Filer is used. As in Chapter 4,
the order of presentation starts with the facilities
you are most likely to use frequently. See Appendix
C for an alphabetic summary of the Filer's
command , with references to descriptions in this
chapter.

The full set of facilities provided with the Filer is
extensive, and goes beyond the range of tasks many
beginners will need to handle. Following is a list of
specific learning goals for beginners. A good grasp of
each of these goals will simplify the use of the UCSD
p-System conSiderably.

a) Establish a previously saved file as the current
Workfile for use with the Editor and Compiler.

b) S(ave the current Workfile in the disk directory
for later use.

c) Create a N(ew clean Workfile without
destroying any previous W orkfile.

d) R(emove unwanted old files from your disk
directory. Eliminate scattered empty areas on
the disk if necessary to make room for new files.

e) T(ransfer a file, or group of files, from one disk
to another. T(ransfer a .TEXT file to your
CONSOLE: display device or to a remote
terminal or printer.

f) Establish the current directory D(ate of your
disk.

5-3

g) Initialize a new or used disk by clearing it of any
previous contents using the Z(ero command.

h) C(hange the directory title of an old file so that
you can re-use the same title for a new file
without losing the old file.

i) Check your disk for possible B(ad-blocks. Use
eX(amine to attempt a repair of marginally bad
areas of the disk.

j) Use the "wild-card" file title characters "=" and
"?" to simplify the use of certain commands
applied to whole groups of files.

Overview of Files and the Filer

5-4

A point of confusion for beginning users of the
UCSD p-System is that the term "file" has several
related but distinct meanings. Within a Pascal
program, an identifier declared to be of a Type
associated with a file provides a means of referring to
an Input/Output device. I will call this identifier the
file's "internal" identifier. The device may be a CRT
display, a keyboard, a disk drive, a remote terminal, a
printer, or anyone of many other possible items of
peripheral equipment.

If the I/O device is a disk drive (or perhaps a tape
drive), it is used for storing and retrieving
information recorded on a secondary storage
medium such as floppy disk. In this case, there is
usually room for storage of many different
collections of information, each separately referred
to as a "file". A typical file on the disk might be all the
Pascal program statements for a single program, or
the executable .CODE version of another program,
or possibly a collection of data designed to be used
by yet another program. To keep track of all the
stored files, a" directory" of the files is also stored on

the disk. Each disk has its own directory, which is
available to the System only when the disk is actually
mounted in a disk drive connected to the computer.
The directory is basically a listing of the names of the
files on the disk, their locations, the amount of space
they occupy, and several other items of importance
mainly to the System itself.

Volume Identifiers

To distinguish between separate disks, each disk is
given a "volume identifier", i.e. a name for the disk
itself, which is also stored in the directory. The
volume identifier should begin with a letter, and may
consist of a total of up to 7 letters and digits. The full
"external" name of a disk file consists of the volume
identifier followed by the directory name of the file.
So that the System may distinguish between the
volume identifier and the directory name, the two
are separated by a colon character (":"). For
example, you might have a disk with a volume
identifier of "CLASS", and on that disk a file with a
directory name of "TESTPROG. TEXT". The full
title of the file would therefore be:

CLASS:TESTPROG.TEXT

Volume identifiers in the UCSD p-System refer not
only to disks but also to peripheral devices which
have no directories. For example, the principal CRT
display has the volume identifier "CONSOLE:".
Since that device has no directory and is not
subdivided logically into files, its full title is:

CONSOLE:

with no characters to the right of the colon
character. Your IBM Personal Computer also has

5-5

facilities to handle the predeclared volumes:

PRINTER:
REMOUT:
HEMIN:

where REMOUT: and REMIN: are used for
communicating with a remote terminal device or
telephone line. You can get a listing of the volumes
currently available on your machine by using the
Filer's V(olumes command.

Simplified Ti tIes for disk files

5-6

The UCSD p-System allows you to refer to a disk file
(either by typing-in a response to a prompt, or by
executing a Pascal program statement that refers to
the file) without specifying the volume identifier
explicitly in certain common circumstances.

If the reference to a file title lacks a volume identifier
entirely, the System assumes that the volume
intended is the "default volume". When you
Bootload, the disk volume containing the UCSD
p-System operating system (the file
SYSTEM. PASCAL) is initially considered to be the
default volume. If the volume identifier of the disk
from which you Bootload is

MYDISK:

and you have a file called

FI RSTPROG. TEXT

on that disk, then that file can be referred to by
either of the following title strings:

MYDISK:FIRSTPROG.TEXT

FIRSTPROG.TEXT

with the same results. You can use the Filer's P(refix
command to change the default volume identifier to

some disk other than the one from which you
Bootloaded. Then it will still be possible to refer to
the same file on MYDISK: by either of the following:

MYDISK: FIRSTPROG. TEXT

* FI RSTPROG. TEXT

where the "*,, is interpreted by the System as a
substitute for the Bootload disk's volume identifier.
These conventions are designed to reduce the
amount of typing you need to do to refer to files on
several different disks, particularly when using the
Filer.

Naming Conventions to Simplify Work
with Groups of Files

Since you will often have to work with a disk that has
dozens of directory entries, it sometimes becomes
desirable to perform similar operations on many
directory entries all at once. The Filer provides
several naming conventions that simplify these
operations. One common tactic is to construct the
directory titles of all files belonging to a related
group of files using the same prefix. For example,
most of the files provided to you as part of the system
software of the UCSD p-System are identified by the
prefix:

SYSTEM.

and include the files:

SYSTEM. COMPILER
SYSTEM.PASCAL
SYSTEM. EDITOR
SYSTEM. FILER

and so on. The period character (".") is included to
make the file titles more readable to humans, and has

5-7

5-8

no special significance to the System. Because some
users of the System are accustomed to using other
separator characters for this purpose, you can also
use the characters "I", "\", "-", and "_" in file
directory titles.

Some of the Filer's commands permit selective
reference to all files which have the same prefix or
suffix. If one of these commands prompts for a file
title, and you respond with

SYSTEM=

the command would refer to all of the files in the list
shown above. The character = is a "wild card" which
substitutes for any characters in a title following the
prefix "SYSTEM". In the list of files shown above,
you could equally well have used

SYS=

or

SYSTEM.=

with the same results. If you have a mixture of files
with .TEXT and .CODE suffixes, the generalized
title:

=.TEXT

or

= TEXT

would refer only to the. TEXT files and not to the
.CODE files.

As an extension of the wild card concept, the Filer
allows you to substitute the question mark? for the
equals sign =. The Filer will then halt upon reaching
each directory entry associated with the prefix or

suffix, and ask whether you wish the command to
apply to that particular entry. You respond with Y
for Y(es if you wish the command to apply, and with
N for N(o (or any other character) if not. The Filer
will then continue searching through the directory
looking for additional titles matching the wild card
specifica tion.

If you leave out the prefix and suffix in a file title,
using only the = or? character, the Filer will refer to
each and every title in the directory.

Another possibility is to "sandwich" the wild card
character between prefix and suffix, as in:

PREf=SUFF

or

MINE?TEXT

The wild card naming conventions apply to the
following commands: L(ist, E(xtended-directory,
T(ransfer, R(emove, and C(hange.

W orkfile Commands
The W orkfile concept is designed to simplify the
number of steps a user of the UCSD p-System has to
take in editing, compiling, and testing new
programs. The Filer's Workfile commands are tools
for handling the disk directory entries associated
with the temporary "unnamed" W orkfile and with
saved W orkfiles on the disk.

Each Workfile may have a .TEXT part and a .CODE
part. The .TEXT part is an independent disk file
containing, in the case of computer programs, the
Pascal or other source programming language
statements of one program. The. TEXT file is

5-9

5-10

produced by the Editor as the result of an editing
session. The. CODE part of a W orkfile is another
disk file containing executable code generated by
the Compiler based on translation of the source
language statements in a .TEXT file.

When you finish an Editor session, using the
U(pdate option of the Q(uit command, the Editor
leaves on disk a file called

SYSTEM.WRK. TEXT

which is what we are calling the "unnamed" or
temporary W orkfile. The file title
"SYSTEM.WRK.TEXT" is reserved by the System
for this use. If you then use the Command: world's
C(ompile command, the Compiler will be invoked,
and it in turn will look for a file called
SYSTEM.WRK.TEXT as its input. If the Compiler
succeeds in translating the source language
statements from the .TEXT file into executable
code, it will leave on disk a file called

SYSTEM.WRK.CODE

In the typical program development situation, you
can then R(un the program from the Command:
world, and will probably discover that further
alterations are needed in the source statements of
the program. You re-enter the Editor using the
Command: world's E(dit command, and the Editor
automatically assumes that you want to work with
the file SYSTEM. WRK. TEXT if it is present on the
disk.

As you can see, the two reserved file names,
SYSTEM.WRK.TEXT and SYSTEM.WRK.CODE
provide a means of communication among the
Editor, the Compiler, and the R(un command of the
System's Command: world. When these files are
present you do not need to respond to the E(dit,
C(ompile, or R(un commands with any file name,

because it is assumed that you want to use the files
with the reserved titles.

Of course you will eventually reach the stage where
you want to save a version of the. TEXT and. CODE
files you have been working with in order to develop
a different program. At that point, you enter the
Filer, and use the S(ave command. The S(ave
command asks for a name, which in practice can be
up to 10 characters long. The Filer assumes that you
want to retain the .TEXT and .CODE suffixes in
these file titles respectively, resulting in titles that
are up to 15 characters long. You might respond
with the name "PROBLEM 1 ", followed by pressing
the ENTER key, at which point the directory entry
for SYSTEM. WRK. TEXT is changed to show its
title as

PROBLEM1.TEXT

and similarly the entry for SYSTEM.WRK.CODE is
changed to

PROBLEM1.CODE

The Filer now retains "PROBLEMl" as the
(simplified) title of your current Workfile. You
could verify this by using the Filer's W(hat command
which displays the title of the current W orkfile.

At this point, the disk no longer contains any files
called SYSTEM. WRK. TEXT or
SYSTEM.WRK.CODE. However you could Q(uit
from the Filer, and use R(un in the Command: world,
with the result that the System will start execution of
the named Workfile, i.e.

PROBLEM1.CODE

If you enter the Editor, using the Command: world's
E(dit command, the Editor will load the contents of

5-11

5-12

PROBLEM1.TEXT into the computer's memory in
preparation for an Editing session. If you then make
editing changes in this W orkfile, or even if you don't,
use of the U(pdate option of the Editor's Q(uit
command will result in the creation_of a new text file
on disk called:

SYSTEM. WRK. TEXT

That file will be separate and independent of the file
PROBLEM1. TEXT until or unless you return to the
Filer and use the S(ave command. The S(ave
command will then offer you the option of retaining
the new temporary W orkfile under the name
PROBLEM1. TEXT. If you respond with Y(es, the
old file under that same name will be removed from
the disk, and the temporary W orkfile will be given
that name instead of SYSTEM. WRK. TEXT.

Of course many other scenarios are possible. You
should find it helpful to experiment with the Filer's
four Workfile commands to gain a better
understanding of how the Workfile is used. Use the
L(ist directory command, described in Chapter 4, to
observe the directory changes that result from using
the W orkfile commands in conjunction with the
Editor and Compiler.

G(et

Use the G(et command to establish an existing file
(or a .TEXT and .CODE pair) as the current
Workfile. If no files called SYSTEM. WRK. TEXT or
SYSTEM.WRK.CODE are currently present in the
disk directory, G(et will simply ask for the name of
the Workfile you want "loaded" into memory. For
example, your disk directory might include the files:

SNAP.TEXT
SNAP. CODE

When the Filer responds to G(et with the prompt:

Get what file?

you might answer by typing:

SNAP

followed by ENTER. The Filer will respond with:

Text and Code file loaded

if it finds the W orkfile, or:

No file loaded

if not. If SYSTEM. WRK. TEXT or
SYSTEM.WRK.CODE already exists in the disk
directory, then G(et will respond with:

Throwaway current workfile?

If you answer with Y(es, then those files will be
removed from the disk, and the System tables will be

5-13

G(et

S(ave

5-14

updated to show that the SNAP files are now to be
regarded as the current Workfile. If you answer with
N(o (or anything other than Y(es), the G(et
command will terminate with no effect, and the
Filer's main prompt line will reappear.

If you press G for G(et inadvertently, and wish to
return to the main level of the Filer, answer the
prompt simply by pressing ENTER.

Once you have created a new temporary. TEXT
Workfile with the Editor (Le. SYSTEM.WRK.TEXT)
and! or a new temporary. CODE W orkfile with the
Compiler (i.e. SYSTEM.WRK.CODE) the S(ave
command can be used to give those files permanent
directory names. If the temporary files are actually
on the disk, the S(ave command's prompt will be:

Save as what file?

to which you might answer:

WORK2

followed by ENTER. As a result, a directory entry for
SYSTEM.WRK.TEXTwill become WORK2.TEXT,

and SYSTEM.WRK.CODE will become
WORK2.CODE.

S(ave

Note: Any old files called WORK2.TEXTand
WORK2.CODE will automatically be removed
from the disk by this process, and replaced with
the new version of the W orkfile. So, make sure
you create a new name, or are not concerned
with any older versions of the files of the same
name.

N(ew

The N(ew command has the effect of clearing out
the current W orkfile recognized by the System so
that you can begin creating a completely new text
file with the Editor. If there is a
SYSTEM.WRK.TEXT or SYSTEM.WRK.CODE
on the disk when N(ew is entered, the Filer prompts
with:

Throwaway current workfile?

If you answer Y(es, then both the. TEXT and. CODE
file are removed from the disk. If you answer with
N(0, or any key other than "y", then the N(ew
command is terminated without having any effect.

N(ew has no effect on the actual disk files associated
with a current W orkfile name. As in the examples
presented in earlier subsections, you might have a

5-15

N(ew

W(hat

5-16

named W orkfile SNAP active and associated with
the disk files SNAP. TEXT and SNAP.CODE
following use of the G(et command. You might then
try to use N(ew, whether inadvertently or
intentionally. Even if the temporary version(s) of the
Workfile in SYSTEM. WRK. TEXT and
SYSTEM.WRK.CODE were thrown away by this
process, the original files SNAP.TEXT and
SNAP.CODE would not be touched by the N(ew
command.

The W(hat command is used to display the name of
the currently active Workfile. If the files
SYSTEM. WRK. TEXT and! or
SYSTEM.WRK.CODE are present, but no G(et
operation has been done on a named W orkfile, then
the Filer will respond with:

Workfile is not named (not saved)

If a G(et has been performed on a named W orkfile
called SNAP, then the response to W(hat will be

SNAP

If neither named or unnamed W orkfiles are present,
then the response to W(hat will be

No workflle

W(hat

Status checking/setting commands

The principal source of information about the status
of files in the UCSD p-System is the directory of files
stored on each disk. Content of the directory can be
displayed using the L(ist directory and E(xtended
directory commands of the Filer.

The other commands in this group provide
supplementary information on the V(olumes
currently accessible to I/O operations, on D(ate
stored in the System disk from which you
Bootloaded, and on the default. P(refix volume
name currently in force.

L(ist directory

The L(ist command normally is used to display part
or all of the directory of a selected disk volume. The
prompt to this command is

Oir listing of what vol?

You can answer with an abbreviated volume name,
or a complete volume name. You can also provide an
optional destination name requesting that the
directory listing be sent to some device other than
the principal console device of your machine. For
example, the optional destination might be a printer
connected to the REMOUT: I/O port.

5-17

L(ist directory
To L(ist the content of the System disk from which
you have Bootloaded, respond to the prompt by
pressing the colon key (":") followed by ENTER.
The resulting display will have roughly the
appearance shown in Figure 5-1.

Filar: 8(al, S(ava, W(hal, N(aw, l(dlr, R(am, C(hng, T(rans, D(ala,? (C.ll]
STARTUP:
SYSTEM. PASCAL 121 15-Nov-81
SYSTEM.MISCINFD 1 15-Nov-81
SYSTEM.INTERP 26 15-Nov-81
SYSTEM. FILER 32 15-Nov-81
SYSTEM. EDITOR 49 15-Nov-81
SYSTEM. STARTU P 12 15-Nov-81
SYSTEM. SYNTAX 14 15-Nov-81
NAMEFILE 3 15-Nov-81
SCDEMO.CODE 3 15-Nov-81
COPYSCUNIT.CODE 4 15-Nov-81
UPDATE.CODE 4 15-Nov-81
COMPDEMO.TEXT 6 15-NoY-81
EDITDEMO.TEXT 4 15-NoY-81
UPDATE.TEXT 8 15-NoY-81
14/14 filas<lislad/in-dir>, 293 blocks usad, 27 unusad, 27 in largesl

5-18

Figure 5-1. Display ofthe L(ist directory command.

If the directory is too long to be listed at once on the
CRT screen, the Filer will stop after filling the
screen. It will then prompt you to press the SPACE
bar to continue, i.e. to display the next group of
directory entries. If, at this point, you wish to
terminate the L(ist command and leave displayed the
partial directory already on the screen, press the ESC
key instead.

Sometimes you may have too long a directory to be
listed at once on the screen, but may wish to L(ist
only selected file titles from the entire directory. For
example, you might wish to display only the titles of

L(ist directory

the. TEXT files on your disk. You can do this, when
you respond to the L(ist command's prompt, by
following the "wild card" naming conventions
described in "Workfile commands" in this chapter
as in:

=.TEXT

This will produce the display shown in Figure 5-2
based on the directory contents shown in Figure 5-1.

Filer: G(et, Slave, W(hat, N(ew, L(dir, R(em, C(hng, T(rans, D(ate,? [C.ll)
STARTUP:
COMPDEMO.TEXT 6 15-Nov-81
EDITDEMO.TEXT 4 15-Nov-81
UPDATE.TEXT 8 15-Nov-81
3/14 files<listed/in-dir>, 24 blocks used, 27 unused, 27 in largest

Figure 5-2. L(ist of =. TEXT files only.

If you want to L(ist the directory of a disk other than
the one from which you bootIoaded, then give its
volume name. For example, to list all of the
directory of a disk called OTHER, answer the L(ist
command's prompt with:

OTHER:

followed by ENTER. If you want to L(ist only the file
ti ties prefixed by SYSTEM on that disk, answer wi th:

OTH ER: SYSTEM=

followed by ENTER.

Sometimes it is useful to have a copy of the directory
for one of your disks printed out on paper. If you

5-19

L(ist directory
have a teleprinter connected to the REMOUT: port
of your computer, and wish to list out the directory
of the disk called SNAP:, then anS'wer the L(ist
command's prompt with:

OTHER:, REM OUT:

followed by ENTER.

V(olumes

The V(olumes command will display a list of the
identifiers of I/O volumes currently available to
programs running on your machine. Figure 5-3
shows an example:

Filer: G(et, Slave, W(hat, N(ew, l(dir, R(em, C(hng, T(rans, O(ate,? [C.B]
Vols on-line:

1 CONSOLE:
2 SYSTERM:
4 # STARTUP:
5 # PASCA~
6 PRINTER:
7 REMIN:
B REMOUT:

Root vol is- STARTUP:
Prefix is - STARTUP:

5-20

Figure 5-3. Example of display by
V(olumes command.

V(olumes

The numbers shown on the left of this list are the
logical numbers of the I/O units. You can refer to
any unit by substituting for the volume identifier
with an entry like this:

#4:

which refers to the disk in unit 4. Normally, the
volume names of your floppy disk will be found in
units 4 and 5 in this display. The UCSD p-System
provides space for additional floppy disk drives
starting at unit 9. I strongly suggest that you avoid
using the unit number designation for referring to
disks with the Filer, since doing that gives you no
protection if you happen to have a different disk
than you thought in the drive.

5-21

E(xtended directory list

The E(xtended directory command is similar to the
L(ist command but provides more information in its
display, as shown in Figure 5-4.

Filer: G(et, Slave, W(hat, N(ew, L(dir, R(em, C(hng, T(rans, D(ate,? [C.ll]
STARTUP:
SYSTEM. PASCAL 121 15·Nov·81 6 ·512 Datafile
SYSTEM.MISCINFO 1 15·Nov·81 127 512 Datafile
SYSTEM.INTERP 26 15·Nov·81 128 512 Datafile
SYSTEM.FILER 32 15·Nov·81 154 512 Codefile
SYSTEM. EDITOR 49 15·Nov·81 186 512 Codefile
SYSTEM.STARTUP 12 15·Nov·81 235 512 Codefile
SYSTEM. SYNTAX 14 15·Nov·81 247 512 Datafile
NAMEFILE 3 15·Nov·81 261 512 Datafile
SCDEMO.CODE 3 15·Nov·81 264 512 Codefile
COPYSCUNIT.CODE 4 15·Nov·81 267 512 Codefile
UPDATE.CODE 4 15·Nov·81 271 512 Codefile
COMPDEMO.TEXT 6 15·Nov·81 275 512 Textfile
EDITDEMO.TEXT 4 15·Nov·81 281 512 Textfile
< UNUSED > 2 285
UPDATE.TEXT 8 15·Nov·81 287 512 Textfile
< UNUSED> 25 295
14/14 files<listed/in·dir>, 293 blocks used, 27 unused, 25 in largest

5-22

Figure 5-4. E(xtended directory display
corresponding to Figure 5 -1.

E(xtended directory list
This display includes information showing where on
the disk each file begins (block number) and on the
kind of information stored in each file. These items
are primarily of use to advanced programmers.

One other item shown by the E(xtended directory
will often be of assistance to readers of this book.
Note that Figure 5-4 shows entries marked as unused
along with their sizes and starting block locations on
the disk. These are areas on the disk where there are
no files currently allocated. They are areas that
potentially could be used for additional files not yet
stored on the disk. You will find that successive
editing and compiling operations will eventually
leave your disk with many small unused areas
separating the useful files stored on the disk. When a
substantial fraction of the disk is occupied by useful
files, it may happen that no one of the unused areas is
large enough to provide space for a new file that
needs space. If the total area contained in the several
unused areas is large enough to accommodate the
new file, it may be time to use the K(runch command
to "push" all the useful files together, leaving all the
unused space at the end of the directory. The
E(xtended directory command can be used to judge
when it may be useful to use the K(runch command.

5-23

D(ate

5-24

The D(ate command is used to display the date
information currently stored on the disk with which
you bootloaded. It can also be used to change the
date. Figure 5-5 shows an example in which we are
preparing to change the date. Our answer to the
prompt will be completed when we press the
ENTER key.

Date set: <1 .. 32>-<Jan .. Dec>-<OO .. 99>
Today is l-Jan-82
New date 7 2

Figure 5-5. D(ate command just before
new date is completed.

If you find that the date displayed by the D(ate
command is correct, terminate the command simply
by pressing the ENTER key (without typing in a new
date). If you do supply a new date, the D(ate
command will verify its understanding of the date
you have typed in.

Note that the format of the date you supply to the
command must be:

day-month-year

where" day" is a one or two digit number, "year" is a
two- digit number, and "month" is a three letter
abbreviation. The date command is unforgiving

D(ate
about this format mainly because the program
needed to accept other commonly used date formats
unambiguously would occupy scarce space
unnecessarily in the microcomputer's memory.

If you need to change only the day, leaving the
month and year information unchanged, simply type
in the one or two digits for the new day, followed by
ENTER. Otherwise it is necessary to enter all three
items, separated by dashes.

P(refix

The P(refix command is used to display and/or
change the default volume name prefix
automatically applied by the System to file names
given to it without any explicit mention of a volume
name. The prompt message displayed by the P(refix
command is:

Prefix titles by what vol?

If you wish simply to display the name of the current
default volume, press the colon (":") key followed by
ENTER. For example, if you bootloaded from a
volume called "KB99", and have not used the

5-25

P(refix

P(refix command to change the default, then the
P(refix command will display:

Prefix is KB99:

If you wish to change the default volume name to
make it refer to a different disk, say NEWVOL, then
you should answer the prompt by typing in:

NEWVOl.:

followed by ENTER. As a result a future program
reference to a disk file called "ANYFILE. TEXT"
would, by lacking any explicit reference to a volume
name, have the effect of referencing the full file title:

NEWVOl.:ANYFllE.TEXT

T(ransferring files from one place
to another

5-26

The T(ransfer command is used to copy one or more
files from a source device to a destination device.
Most often, both devices are likely to be disks. When
you press the "T" key, the Filer prompts with:

Transfer what file ?

If you respond with:

SRCNAME.TEXT

T(ransferring files from one place
to another

followed by ENTER, the Filer will again prompt
with:

To where?

to which you might answer:

NEWVDL:SRCNAME.TEXT

The Filer will then copy the file SRCNAME.TEXT
from your default volume over to the disk whose
volume name is NEWVOL. It will confirm the
completion of each file transfer with a message
similar to this:

DLDVDL:SRCNAME.TEXT -->
NEWVDL:SRCNAME.TEXT

The T(ransfer command is used in a wide variety of
commonly occurring situations, some of which are
described in the following subsections:

Shorthand en try of the destination file name

Following the initial prompt "Transfer what file ?",
you can type in both the source file name and the
destination file name separated by a comma (" ,"), as
in:

SRCNAME.TEXT,NEWVDL:SRCNAME.TEXT

The effect of this is the same as the example given
above, in which we waited for the second prompt
message "To where ?".

5-27

T(ransferring files from one place
to another

We can carry this a step further by using the filename
duplicator character ("$") as in:

SHCNAME. TEXT,NEWVOl.:$

in which the character dollar sign ("$") will be
interpreted as equal to "SRCNAME.TEXT".

CAUTION: If the T(ransfer command
responds to your typing in the source and
destination names with a message such as:

Destroy NEWVOL:?

or

Transfer 320 blocks? (YIN)

then you probably have forgotten to type in the
dollar sign as an instruction of what file name to
use. You should respond by pressing "N" for
N(0, or the ENTER key. See the next
subsection regarding T(ransfers in which only
the volume names are used.

Disk to Disk bulk T(ransfer

5-28

You can T(ransfer the entire contents of one disk to
another by using disk volume names alone for the
source and destination. For example, answer the
T(ransfer command's prompt with:

SHCVOL:,DESTVOL:

to which the Filer should respond with the prompt
message:

Destroy DESTVOL:?

T(ransferring files from one place
to another

If you wish the T(ransfer to proceed, answer with
Y(es. The result will be that the disk whose volume
name is currently "DESTVOL" will become an exact
copy of the contents of the disk "SRCVOL"
including even the volume identification. Any
answer other than Y(es will terminate the T(ransfer
command without any copy action taking place.

Since the result of a full volume to volume T(ransfer
leaves two volumes with the same name on the
System at the same time, it is important to resolve
the volume name ambiguity immediately after the
T(ransfer is completed. If you intend to keep both
disks on-line at the same time, it would be best to
C(hange the volume name of the destination disk.
See "C(hange" in this chapter regarding the C(hange
command.

T(ransferring only selected files

There are two commonly used ways to T(ransfer only
a selected group of files from the source disk to the
destination.

You can T(ransfer a11 the files whose titles begin with
the characters "SYS" from a disk called "SOURCE"
to a disk ca11ed "DEST" by responding to the
T(ransfer command's prompt as follows:

SOURCE:SYS=,DEST:SYS=

fo11owed by ENTER. Along the same lines, you
could transfer a11 of the. TEXT files from your
default disk to the disk ca11ed "DEST" as fo11ows:

=.TEXT,DEST:=.TEXT

5-29

T(ransferring files from one place
to another

Note that the equals character ("=") specifies all of
the files on a disk if it is not "qualified" with
additional characters as in these examples.

If you want a simplified way to review all or part of
the directory of your source disk, indicating
separately whether each file is to be T(ransferred,
substitute the question mark character ("?") for the
equals character ("=") in these examples. This will
cause the Filer to pause after displaying each file
name. If you respond with Y(es, the T(ransfer of the
indicated file will be carried out. Otherwise, the Filer
will pass over the indicated file and go on to the next.

Rearranging the files on one disk

5-30

The Filer provides limited facilities to allow you to
reorganize the order in which files are stored on a
single disk by using the T(ransfer command. Of
course you can respond to the T(ransfer command's
prompt as follows:

TESTFILE. TEXT,COPYFILE. TEXT

which will leave the old file TESTFILE. TEXT intact,
but create a new file COPYFILE. TEXT on the same
disk containing the same information.

If you want to move the old file, use the same title for
both source and destination, as in:

TESTFI LE. TEXT, TESTFI LE. TEXT

or the equivalent

TESTFILE. TEXT, $

T(ransferring files from one place
to another

This will cause a new copy of the old file to be made,
and given the same directory name as the old file, and
the directory entry pointing to the old copy of the
file will be removed.

One common situation occurs when you have an
unused area near the beginning of the directory
(shown by E(xtended directory list at the top of the
screen), and a frequently used file near the end of the
directory. Use the L(ist command to find out how
many blocks this file occupies, as shown by the
number displayed by L(ist in the column just to the
right of the file titles. For example, let us assume that
the file TESTFILE. TEXT is 23 blocks long, and that
the unused area is at least 23 blocks long. You can
then cause that file to be moved to the beginning of
the unused area by responding to the T(ransfer
command's prompt as follows:

TESTFILE. TEXT, TESTFILE. TEXT[23]

By placing the length of the file, in blocks, at the end
of the destination title within square brackets, you
tell the Filer to place the destination file as near the
beginning of the destination disk as possible without
overwriting any other file.

The use of T(ransfer in this manner, together with
the M(ake command which is described in "M(ake"
in this chapter, can sometimes be used to force the
Filer to place a copy of a file at some exact starting
block number. You are not likely to need to do this
unless your disk becomes damaged in some area,
which then needs to be avoided. Normally, you can
use the K(runch command to rearrange your disk
when there are too many small unused areas, and
dummy files of type .BAD will prevent the use of
damaged areas. See "Checking for disk errors and
repairing them" for additional information on
handling damaged disks.

5-31

T(ransferring files from one place
to another

Directory Maintenance Commands
Grouped within this section are several commands
used primarily to make changes in the directory
which describes the files on a disk, rather than in the
files themselves. You can R(emove a file by deleting
its directory entry and marking it unused. You can
C(hange the directory title of a file. You can M(ake a
new file by creating its directory entry and giving a
title. You can "push" all of the files on a disk
together in the lowest numbered group of blocks
using the K(runch command, thus shifting all of the
unused space into one area occupying the high
numbered blocks. Finally, you can mark a disk to
show its directory empty and all blocks unused with
the Z(ero command.

R(emove

5-32

R(emove is used to eliminate one or more entries
from a disk directory, leaving the space formerly
occupied by the file marked unused. R(emove only
changes the directory, and all information stored
within the file itself is left untouched by the
R(emove command. The prompt message displayed
by this command is:

Remove what file?

You can respond with a single file title, or you can
designate that several files are to be removed

R(emove
selectively. To remove the file WORK. TEXT,
answer the prompt by typing in:

WORK.TEXT

followed by ENTER. Note that it is not sufficient to
give just the simplified name of a W orkfile. Thus, if
you have files WORK. TEXT and WORK. CODE on
your disk, the R(emove command will respond with
an error message if you answer the prompt by typing
in only "WORK". The R(emove command does not
recognize the simplified W orkfile name because it
often happens that you may wish to remove either
the .TEXT or the .CODE portion of a Workfile
without losing the other portion.

You can R(emove several files with one use of the
command by listing their titles separated by comma
characters (","). For example, to R(emove the files
ALPHA, BETA, GAMMA and DELTA, answer the
prompt with:

AlPHA,BETA,GAMMA,DELTA

followed at the end by ENTER. The Filer will
respond with acknowledgement of its action with
each file actually removed. If you misspell a file title,
and the resulting title does not also exist in your
directory, then the Filer will display an error message
noting that the indicated file is not in your directory.

A more effective way to R(emove groups of files in
one operation is to use either of the wild card naming
options. For example, to remove both the. TEXT
and .CODE portions of the Workfile WORK
mentioned earlier, respond to the R(emove
command's prompt with:

WORK.=

5-33

R(emove

5-34

Since it is common for a user to forget that other files
on the disk may have the same prefix, the Filer will
display the titles of all files to be removed, and then it
will prompt with:

Update directory 7

You should review the list of titles actually displayed
before responding with Y(es, since it may be
virtually impossible to reverse a mistake in this
process.

If you wish to R(emove various files from your
directory, but cannot find a common prefix or
suffix, use the questionmark ("?") wild card
reference. The Filer will display one file title at a
time, and will wait for you to answer with Y(es or
N(o. For example, respond to the R(emove
command's prompt with:

:7

to indicate that you want a list of all files on your
default disk. To R(emove only files whose titles end
in ".TEXT" from a disk volume called "AUDIT",
respond to R(emove' s prompt with:

AUDIT:7.TEXT

As with the use of the equal sign wild card, the Filer
will prompt at the end of the sequence to ask
whether you really want to update the directory by
making the indicated changes.

If at some point you wish to terminate the R(emove
command without making any directory changes,
press the ESC key to get back to the Filer's main
command world.

C(hange

The C(hange command is used to alter the directory
titles of selected files. It can also be used to alter the
name of a disk volume. The command prompts with:

Change what file ?

It waits until you type in the name of the file to be
C(hanged, followed by ENTER, and then prompts
for the name to which the name is to be C(hanged. If
you answer the first prompt with

ABC.TEXT

followed by ENTER, and answer the second prompt
with:

XYl.TEXT

followed by ENTER, the Filer should respond with:

V013:ABC.TEXT "> XYl.TEXT

assuming that the file is on a volume called "VOL3".

You could call for the same C(hange without waiting
for the second prompt by answering the first prompt
with the following:

ABC. TEXT,XYl. TEXT

i. e. by listing both the original title and the desired
new title separated by a comma (",").

To C(hange the name of a disk volume, use only the
volume identifiers followed by colon (":")

5-35

C(hange
characters, making no reference at all to any file in
the directory of that volume. For example, if you
want to C(hange a volume name "KB99" to
"NEWID", answer the C(hange command's prompt
with:

KB99:,NEWID:

followed by ENTER.

The wild card file naming options can be used with
the C(hange command. The portion of all original
file titles represented by the equal sign ("=") will be
duplicated in place of the equal sign in the desired
new titles. Additional title string characters may be
used before or after the equal sign, or both, in either
the original or desired new titles. For example, you
might have a set of files WORK. TEXT and
WORK.CODE and wish to change them to read
OLDWORK.TEXT and OLDWORK.CODE in
order to reuse the Workfile name "WORK". To do
this, answer the C(hange command's prompt with:

WORK=,OLDWORK=

M(ake

The M(ake command is used to create a new
directory entry. The command prompts with:

Make what file ?

and expects a file name as a response. Normally, you
should append the number of blocks the file is to
occupy on the disk, within square brackets (" [" and
"] "), as an extension to the file title. The occasion to
use M(ake sometimes arises when you wish to
prevent temporarily the assignment of files to an
unused area of the disk which you intend to occupy
with another file at a later time. Thus you might
create a new temporary file called "DUMMY" which
you want to fill a 20-block unused area near the
beginning of the disk directory. To do this, you
answer the M(ake command's prompt with:

DUMMY[20]

followed by ENTER. This causes the Filer to M(ake a
new directory entry for a file called DUMMY
occupying 20 blocks within the first (closest to
beginning) unused area in the directory that is at
least 20 blocks long. An unused area that is located
closer to the beginning of the directory will be
ignored if it is 19 or fewer blocks long.

If you leave out the file length specification in
brackets, the M(ake command will create a file which
completely fills the largest unused area in the
directory when the M(ake command is entered. If
you use an asterisk, i.e. ("*"), in place of a number in

5-37

M(ake

5-38

the file length specification, the M(ake command
will place the new file either in one-half of the largest
unused area, or in all of the second largest unused
area, whichever is larger.

The M(ake command is sometimes used to change
the directory information on the number of
512-byte blocks occupied by a file. The need to do
this can arise if you run a program which creates a
new file on the disk, but fails to reduce the space
occupied by that file to the minimum number of
blocks needed before terminating. Let us assume
that you have some independent way available to
determine how many blocks the file should occupy.
If the file title is DATA, and it originally occupies 97
blocks, but you want it to occupy only 43, then use
the following sequence:

a) M(ake dummy files to fill all unused areas on
your disk which occur closer to the beginning of
the directory than the entry for the file DATA.

b) R(emove DATA. The result will be that the
space occupied by DATA becomes part of the
first unused area on the disk.

c) M(ake "DATA[43]".

d) R(emove the dummy files created in step (a).

K(runch

The K(runch command moves files toward the
beginning of the disk directory in such a way as to
shift all unused areas into a single large unused area
at the end of the directory. The command prompts
with the following message:

Crunch what vol?

You should answer by typing in the name of the
volume you want K(runched, followed by a colon
(":") and then ENTER. For example, to K(runch the
volume "KB99", type:

KB99:

followed by ENTER. The Filer will then respond by
displaying the message:

From end of disk, block 320? (Y/N)

If you respond with Y(es, the command will then
move the files as commanded. The Filer will display a
message confirming the name of each file actually
moved on the disk by K(runch.

CAUTION: Because the K(runch command
is required to change the disk directory, and
because it does not get around to doing this
until after finishing a fairly lengthy sequence of
operations, it is a dangerous command to use. If
K(runch is interrupted in the midst of doing its
work (power failure, damaged area on the disk,
disk drive opened during K(runching
operation, ...) your disk directory will no longer
correctly describe the contents of your disk! It is
generally very desirable to use the B(ad-blocks
command before using K(runch. See Section 7
regarding strategies to use if your disk does in
fact have bad blocks.

5-39

Z(ero

5-40

The Z(ero command creates a new empty directory
on the indicated disk volume. The previous
directory on that volume will be destroyed as a result
of this operation. Z(ero prompts with:

larD dlr of what vol ?

to which you respond with a volume identifier such
as:

OLDVOL:

followed by ENTER. If the disk contains no
directory, as would be the case with a new disk that
has not previously been used with the UCSD
p-System, then use the explicit unit deSignation in
place of the volume identifier. For example, if the
disk to be Z(eroed is in your spare disk drive (the one
you do not use for bootloading), then respond with

#5:

followed by ENTER.

If the disk to be Z(eroed already contains an old
directory, the Filer will prompt with:

Destroy OLDVOl: ?

If you answer with Y(es, the Filer will ask whether
you want a duplicate directory to be created on the
disk, with:

Duplicate dlr ?

Z(ero
If you respond with Y(es, the System will maintain a
duplicate copy of your disk directory for possible
future use in recovering from an error associated
with the main directory on your disk. Any of several
conditions might cause such an error, as discussed in
"Checking for disk errors and repairing them" in this
chapter. In most cases an error in the main directory
will not be reflected also in the duplicate copy of the
directory. A utility program COPYDUPDIR is
supplied with the System for copying the duplicate
directory into the main directory's area of the disk,
thus allowing recovery from the error.

The Filer will then ask how many blocks are to be
available for files to be stored on the disk being
Z(eroed. If the disk already has a directory, you will
be asked to confirm with a Y(es response that the
same number of blocks is again to be used:

Are there 320 blks on the disk? (Y/N)

If you respond with N(o, or if the disk previously
contained no directory, the Filer will prompt with:

of blocks?

You should respond to this message with a number
indicating the maximum capacity of the disk since
the Filer has no way of knowing that capacity by
itself. For the IBM Personal Computer, you should
respond with 320. Note that the number of blocks
given here includes a provision for the blocks
occupied by the bootstrap loader, the main
directory, and the optional duplicate directory, on
your disk.

The Filer will then ask for the volume name you want
to use with the disk being Z(eroed, with the message:

New vol name ?

5-41

Z(ero

You should answer with an identifier (first character
a letter, other characters may be letters or digits) up
to 7 characters long. The Filer will prompt by asking
you to verify the new volume name (since incorrectly
typed volume names can lead to problems later in
using the disk). If you respond with Y(es, the Filer
will then write a new directory on the disk, and the
Z(eroing process will be completed.

You can terminate the Z(ero command following
any of the prompt messages by pressing the ESC key,
and no new directory will be written on the disk as a
result.

Checking for disk errors and
repairing them

5-42

One of the annoying facts of life in computing work
is that secondary storage media such as floppy disks
can often transmit imperfect copies of stored
information when they are reread. If the information
transmitted is not a perfect reproduction of the
information that was originally sent to the disk, it is
said to contain "errors". If a .CODE file contains no
more than one 8-bit byte that is in error, that.CODE
file may be effectively useless.

There are many potential causes for errors
associated with disk files. Errors can be caused by a
malfunctioning disk drive, by incorrect operation of
the electronic connections between computer and
disk drive, by a flawed area on the recording surface
of the disk, by dust or grime that has found its way
into the disk's protective cover, and so on.

Z(ero

Some errors are marginal in nature, with the result
that correct information will be transmitted on some
attempts and erroneous information will be
transmitted on others. A standard part of most
software systems, including the UCSD p-System, is
an arrangement whereby the data read from the disk
is checked for errors. If errors are detected, the
System will automatically reread the data several
times in an effort to complete a read operation
without any indicated errors. If rereading in this
manner fails to produce an error-free copy of the
data, the error is said to be "unrecoverable". It is not
unusual for a block of data to contain unrecoverable
errors, when read on one disk drive, but to be
readable without any errors at all when read on a
different disk drive of the same type.

With careful handling of the disks and disk drives,
you will usually need to contend with very few
disk-related data errors indeed. However, anyone
who makes much use of a computer learns to cope
with occasional errors. This section deals with two
commands provided with the Filer to assist in
controlling disk errors when using the UCSD
p-System.

5-43

B(ad blocks scan

5-44

The B(ad-blocks command prompts with the
message:

Bad blocks scan of what vol?

You should respond with the name of the disk
volume which is to be checked for bad blocks. The
disk volume must be in a disk drive and ready for use
when the B(ad-blocks command is invoked.

This command reads each block on the disk,
checking for unrecoverable errors. If there are no
errors at all, you should note a regular clicking noise
in the disk drive as the read/write head is moved from
track to track. If the clicking noise comes at irregular
intervals, there may be marginal errors in reading
from the disk. If a block cannot be read without
errors, after many tries, the Filer will display the
number of the bad block on the screen, and the
B(ad-blocks command will continue scanning for
additional errors.

You should take note of the block numbers where
errors are found. If you have access to a second disk
drive, it would be best to try the B(ad-blocks scan
again using that drive. If the list of bad blocks
displayed with the second drive is identical to the
first list, then the signs are not good for the blocks
listed. If the list differs from the first drive to the
second, then the errors are likely to he marginal and
quite possibly recoverable.

eX(amine command

The eX(amine command is provided as a tool to be
used in repairing some types of marginal floppy disk
recording errors. A common type of error arises
when a disk drive uses too weak or too strong a
recording signal in storing information on the disk.
The problem may be the fault of either a maladjusted
disk q.rive or of a disk with a slightly damaged
recording surface. Either way, it is sometimes
possible to rerecord the information (usually with a
different disk drive) in such a way that it can be read
without errors thereafter.

Errors on reading from a disk are usually detected
through use of a check sum which is stored with each
sector of information when it is recorded on the disk.
The check sum is generally computed as the result of
a "Cyclic Redundancy Check" (CRC). A two-byte
CRC check sum stored on the disk with the useful
data is compared with a CRC check sum computed
from the useful data when it is read from the disk. If
the two are not equal (the recorded and recompu ted
CRC check sums) then a read error is detected. The
System usually tries to read the same block of data,
which may contain several sectors containing their
own individual CRC check sums, at least 10 times in
an effort to complete one read operation without a
detected CRC error. Only if no error free read can be
completed will an unrecoverable error be detected.

The eX(amine command tries to read the blocks you
select without unrecoverable errors. If it succeeds, it
then rewrites the information thus read back to the
same block on the disk. It then rereads that block,
and cross-compares the information read first with
that obtained after the rewrite operation. If the two

5-45

eX(amine command

5-46

are the same, the Filer will inform you that the
indicated block "may be ok" as a result of the
operation. The eX(amine command first prompts
with the message:

Examine blocks on what volume?

After you respond with the volume name, followed
by colon (":") and ENTER, the Filer will prompt
with:

Block-range?

You should respond with a list of block numbers
separated by commas (","), or by giving a starting
block number and a stopping block number
separated by a dash character ("-"). For example:

234-240

followed by ENTER. The Filer will then prompt by
displaying the names of all files found in the
directory to include blocks within this range. (It is
possible that these files could be damaged by the use
of Examine.) It will then prompt with:

Try to fix them ?

If you respond with Y(es, the Filer will attempt to
read/write operation described above on each block
in the indicated group (in the example blocks 234
through 240 inclusive). If, during this operation, the
Filer finds any blocks which cannot be read correctly

eX(amine command

after many tries, it will display a message stating
which blocks are bad. If it prompts with:

Fix them?

and you respond with Y(es, the directory will be
marked showing the damaged area of the disk to be
in a file with a .BAD suffix. Subsequent K(runch
operations will not attempt to move any files with
the. BAD suffix.

CAUTION: Even if the eX(amine operation
terminates, showing that all indicated areas of
the disk "may be ok", it is possible that your
original information has been lost. This is
possible because the error checking logic is not
perfect, and the information read initially and
rewritten by the eX(amine command may in
fact be in error. It would be best to check the
contents of your disk, with the Editor, by trying
to eX(ecute a .CODE file, by checking the
contents of a data file with an associated
program, or by other means after using the
eX(amine command.

5-47

NOTES

5-48

CHAPTER 6. PASCAL COMPILER­
SYNTAX ERRORS

Contents

Goals for this Chapter 6-3
Preliminaries 6-4
Comments and Compiler Directives ... 6-5
Include Directive 6-7
The Compiler's CRT Display and

the List Directive 6-8
Miscellaneous Compiler "Switch"

Directives 6-13
I/O Check Switch 6-13
Quiet Compilation Switch 6-14
Syntax Errors 6-14
Unmatched BEGIN ... END pairs 6-17
Comment Not Completed with a

Closing "*)" Symbol 6-19
Nested IF Statements 6-20
Execution or Run-Time Errors 6-27

6-1

NOTES

6-2

Goals for this Chapter
The Pascal Compiler is used to translate Pascal
programs from their human readable. TEXT form,
saved on the disk by the Editor, into their directly
executable .CODE form, which the Compiler itself
saves on the disk. The Compiler is designed to
translate the entire contents of a .TEXT file in on~
continuous operation. Unlike the Editor and the
Filer, the compiler has hardly any interactive
commands. However, it is possible to change certain
controls which govern the way in which the
Compiler does its work. This is done using Compiler
"Directives", which are written in the form of Pascal
language comments that start with the dollar sign
character ("$"). One of the main purposes of this
chapter is to present those Compiler Directives
available in the UCSD p-System which are of use to
beginning users of the p-System.

Also included in this chapter is a discussion of
strategies for coping with program errors. If your
program contains statements which fail to conform
with the syntax rules of the Pascal language, the
Compiler will halt at each point where it finds an
error. You then have the option of returning
immediately to the Editor to correct the syntax
errors, or of continuing with the Compilation to see
if there are any additional errors.

Once the Compiler can go through the entire
program file without finding any syntax errors,
execution of the program may halt abruptly with the
display of an exectuion error message (also called a
"run-time" error message, since it occurs while the
program is running). The run-time message contains
coded information which can be used to find the
place in the text of the Pascal program where the
execution error occurred. Illustrations of both
syntax and execution errors are given in this chapter,
along with various suggestions on how to go about
resolving the errors.

6-3

Following is a list of specific learning goals for
beginners.

a) Use the Include-file option to compile a
program from Pascal procedures located in two
or more separate. TEXT files.

b) Use the Compiler's List option directing its
output to the CONSOLE: display screen of
your computer. Use the procedure number and
byte offset values shown in the Listed output to
find where a run-time error has occurred.

c) Place several types of syntax errors in a test
program intentionally, and note how they are
identified by the Compiler.

Preliminaries

6-4

The Compiler performs its translation tasks by
breaking the source program into "tokens", i.e. into
logically separate items. Examples of tokens include
identifiers (see the PASCAL Reference for the UCSD
p-System for a definition), individual special

h l·k h . 1 ("") (" ") c aracters 1 e t e semlco on ; ,comma , ,or
equal sign ("="), and integer or real constants
(numbers). In a few special cases, two characters

h . k ("") " "" "" " toget er compnse a to en .. , :=, <> , <= ,
and ">="). An entire quoted string such as "this is a
string" comprises one token.

If the Compiler finds a place in the source program
which fails to conform with the syntax of the Pascal
language, it halts and causes a brief message to be
displayed explaining the nature of the error. As it
proceeds through the text of the source program,
the Compiler maintains a pointer showing where the
next token to be scanned begins. Thus, when an
error is detected, the pointer indicates the beginning
of the token immediately following the token found
to be in error. Note that SPACE characters in a

Pascal program simply separate adjacent tokens. A
SPACE character is permitted between any pair of
adjacent tokens. Unless both tokens are identifiers,
the SPACE is not required. From the point of view of
the syntax, any number of adjacent SPACE
characters are considered to be the equivalent of just
one separator. Also the end of one line is considered
to be adjacent to the beginning of the next, and thus
is considered to be equivalent to one SPACE
character in the program text. (However, remember
that it is not permitted to break any single token into
two or more parts located on separate lines.)

Comments and Compiler Directives

A Comment may be placed in a Pascal program at any
point where a SPACE character would be permitted.
In the UCSD p-System, a comment may begin with
the character pair "(*" and end with the matching
pair "*)", or it may begin with a left curly bracket
("(") and end with a right curly bracket ("}"). As with
the five two-character tokens discussed earlier, no
SPACE is allowed between the asterisk ("*") and
either the left parenthesis ("(") or right parenthesis
(")"). Thus, the Compiler will not recognize

(* illegal comment *)

as a comment. However the following would be
recognized as a comment:

(* this is a legal comment *)

Of course, the main reason why comments are
permitted in Pascal program is to encourage
programmers to include notes which explain what
each portion of a program is intended to do. Though

6-5

6-6

a well written Pascal program should be relatively
easy to read and understand without comments,
judiciously placed comments can greatly improve
the reader's chances of understanding a program
quickly and thoroughly.

While a comment embedded in a Pascal program is
not considered to be part of the program, and thus
not a token to be translated into executable object
code, it is possible for the Compiler to extract
information from the characters contained within a
comment. The UCSD Pascal Compiler recognizes
any comment that begins with a dollar sign character
("$") as a "Directive" to the compiler itself. Note
that the dollar sign must be the first character
following "(*" or the left curly bracket ("{"). There
can be no intervening SPACE characters.

Compiler Directives are instructions to the
Compiler which cause it to change selected
"switches" controlling the way it operates. For
example, the Compiler is capable of sending a
specially formatted copy of the source program text
to a printer, or to a disk file for later printing, or even
directly to the computer's console CRT. This
formatted output adds substantially to the time
taken by the Compiler to complete its program
translation tasks. Consequently the formatted
output is normally not activated. However, the
source program can contain a Compiler Directive
(the "List" directive) instructing the Compiler to
begin generating the formatted output. If the slower
formatted output is not needed throughout the
entire source program, another compiler Directive
can be included at the appropriate point in the
source program to deactivate the formatted output
thereafter. Details on the List Directive will be given
in a later Section of this chapter.

Include Directive

Sometimes it is convenient to keep portions of a
Pascal program in separately Edited. TEXT files.
The Include Directive tells the Compiler to regard
the entire text contained in a named. TEXT file as if
it were part of the source program text at the point
where the Include Directive occurs. For example, in
the following small piece of a program:

PROGRAM TEST;
VAR X,Y,l;
BEGIN

(*$1 PREAMBLE.TEXT*)
IF)(>=100 THEN

would instruct the Compiler to treat all of the
program statements contained in a file called
PREAMBLE. TEXT as if they had been included
within the text of the program at the point
immediately following "BEG IN".

One situation in which one might use the Include
Directive occurs when one wants to develop several
programs, all of which are to have an identical
section of program statements. Of course, if the
Included file is changed, then all of the programs
which use the Include Directive referring to that file
will have to be recompiled in order to take advantage
of the changes.

Occasionally, one wants to Include a file which
contains CONST, TYPE, V AR, PROCEDURE, and
FUNCTION declarations. If the program file
containing the Include Directive must also have its
own set of declarations, it is implied that there must
be a relaxation of the Pascal syntax requirement that
CONST declarations occur before TYPE
declarations, TYPE must occur before V AR, and so
on. The UCSD Pascal Compiler allows relaxation of
this strict sequence in the special case in which the
Include Directive occurs between the last variable

6-7

declared in a V AR list, and the first PROCEDURE or
FUNCTION heading declared in the main program.

Include directives may be placed in files which are
themselves include files. These directives may only
be nested to three levels, however.

The Compiler's CRT Display and the
List Directive

6-8

As the Compiler works its way through the text of
the source program, it is capable of generating two
kinds of displayed or printed output designed to
assist a user to keep track of its progress. The
principal uses of this output are associated with
program debugging, and will be discussed further in
later sections of this chapter.

Normally, the Compiler displays only a very terse
summary of its progress as it goes through the source
program. Figure 6-1 provides an example.

Compiling ...

Pascal compiler - release level IV.O b20-2
< 0>
REPEAT1
< 10>
REVERSE
< 33>
REPEAT2
< 47>
BLOWUP
< 67>

A(I):=I*I;
WRITELN(I,': ',A(I); <---

Illegal symbol (terminator expected)
Une 73
Type <sp> to continue, <esc> to terminate, or 'e' to edit

Figure 6-1. Example of the Compiler's Display
Showing a Syntax Error.

In this display, a line with the following appearance:

< 10>

shows how many lines of Pascal source text have
been compiled so far. One dot character is displayed
for each line compiled, as the line is being compiled.
The number within broken brackets at the left
margin is the number oflines already compiled at the
time when this line starts being displayed.

A line with the following appearance:

REPEAT1

shows the name of the procedure or function body
(executable statement part) which the Compiler is
just beginning to translate.

The output generated by the List Directive is
illustrated in Figure 6-2.

6-9

6-10

1 0
2 2
3 2
4 2
5 2
6 2
7 2
8 2
9 2

10 2
11 2
12 2
13 2
14 2
15 2
16 2
17 2
18 2
19 2
20 2
21 2
22 2
23 2
24 2

O:d 1
l:d 1
l:d 1
l:d 1
l:d 1
l:d 5
l:d 8
l:d 8
2:d 1
2:d 83
2:0 0
2:1 0
2:1 0
2:1 3
2:1 20
2:1 38
2:1 41
2:1 47
2:2 47
2:2 63
2:2 80
2:1 85
1:0 0
1:0 0

(*$L console: *)
PROGRAM EDITDEMO;
VAR Gl,

G2,
G3,G4:INTEGER;
Bl,B2,B3:BOOLEAN;

PROCEDURE REPEAT1;
VAR S,SG:STRING;

I.,N:INTEGER;
BEGIN
WRITELN(
'nPE ANY STRING FOLLOWED BY <el

);
READLN(S);
N:=l;
L:=LENGTH(S);
REPEAT
SG:=COPY(S,l,N);
WRITELN(SG);
N:=N+l;

UNTIL N>L
END (*REPEAn*);

Figure 6-2. Illustration of Output using
List Directive.

In addition to showing the text of the source
program as it is being compiled, on a line by line
basis, this display also includes formatted
information of potential use in program debugging.
The List option is activated by the Directive:

(*$L CONSOLE:*)

which may be seen in the top line of Figure 6-2.
"CONSOLE:" is the volume identifier of the CRT
display on output operations (It also is used for input
from the keyboard.). In its place, you could put any
desired disk file title, making sure to use the suffix

". TEXT". The resulting file will contain the
formatted listing generated by the Compiler in a
form that can be read using the Editor. You may
substitute either "PRINTER:" or "REMOUT:" in
place of "CONSOLE:" to have the listing sent to an
external printer or other remote terminal device.

The List option can be deactivated by the Directive:

(*$L-*)

In Figure 6-2, the number displayed to the right of
the dot character is the number of the program text
line being Compiled. Next to the right is the digit
"2" on each line. This is the number of the program
"segment". Separately compiled program segments
provide a means of controlling" overlays" in the
UCSD p-System, i.e. a means to conserve on
memory space when working with large programs.
The rules on preparing programs containing
separately compiled segments are beyond the scope
of this book, but they are described in the User's
Guide for the UCSD p-System.

To the right of the segment number, there is a
number immediately followed by a colon character
(":"). This number is assigned by the Compiler as a
unique identification of each program block
(procedure or function) within a segment. The main
program itself is always block number 1. The block
numbers are assigned in the order of appearance of
the PROCEDURE and FUNCTION headings. The
order of appearance of the procedure and function
identifiers in the Compiler's normal display
corresponds to the appearance of the executable
parts of each block, and thus may not be the same as
the order of block number assignments.

6-11

6-12

Immediately to the right of the colon character (":")
is the character "D", in lines that pertain to the
declarations, or a number, in Hnes containing
executable program statements. This number is the
level of "nesting" of Pascal statements, and it may be
useful in finding unmatched "BEGIN" ... "END"
pairs in a program.

The final column of numbers, located just to the left
of the Pascal program statements proper, is to be
interpreted differently depending upon whether the
associated lines are declarations or executable
statements. On a declaration line, the number tells
how many two-byte memory cells intervene between
the base address of the block and the first declared
identifier in a list such as Gl, G2, G3, G4. These
location numbers are valuable when using the built
in p-System Debugger (see the User's Guide for the
UCSD p-System).

On a line containing executable statements, the
number in the last column tells how many bytes of
compiled code were generated before the first code
bytes of the current line started being generated.
These numbers can be of considerable assistance' to a
beginner who is searching for the source of a
run-time error in a program. I will explore that topic
in some detail in a later section.

Miscellaneous Compiler "Switch"
Directives

All of the miscellaneous Compiler "Switch"
Directives tell the compiler to start or stop doing
something as it goes through the source program. In
each case, the Directive is selected using a single
character followed by either a plus character (" +") to
turn the switch "On", or a minus character ("-") to
turn the switch "Off'. For example:

(*$0+*)

turns on the Compiler's Quiet mode. On the other
hand:

(*$0-*)

turns it off.

1/ 0 Check Switch

The UCSD p-System terminates a program
abnormally in the event of an error encountered
during an Input/Output operation. The Compiler
can be instructed not to generate the code which
checks on the result of an I/O operation using the
option

(*$1-*)

Means are available then for the programmer to
provide program checks to determine how to cope
with an I/O error. This subject is beyond the scope of
a book for beginners. Details may be found in the
User's Gutde for the UCSD p-System. Unless you find it
essential to do your own checking for I/O errors in a
program, I strongly urge you to forget about the I/O
Check Switch Directive! However, its use is
discussed in this book in Chapter 7, "Programming
to use Disk Files".

6-13

Quiet Compilation Switch

There may be situations when, during compilation,
you will want to suppress the Compiler's normal
progress messages. For example, if you have
redirected the standard CONSOLE: output to a hard
copy device (see the Users Guide for information
about Redirection), you may be concerned about
the time required to output all of the Routine names
and lines of dots during a large compile. The
Compiler's "Quiet" switch directive suppresses
normal progress messages if it is turned on:

(*$0+*)

Conversely, if you want to turn off the suppression
of progress messages, use the directive:

(*$0-*)

Syntax Errors

6-14

If the Compiler finds a section of program text which
fails to conform with the syntax rules of Pascal, it
halts and causes an error message to be displayed. An
example of the display you should expect to see is
shown in Figure 6-1, which refers to a sample
program called COMPDEMO. This program is
supplied as one of the files on the STARTUP disk.

In Figure 6-1, the right-parenthesis character (")")
which should be placed just to the left of the
semicolon (";") has been left out of the program.
The Compiler's progress display contains copies of
the line where the program error is found (up to the
token where the Compiler notes the error) and the
previous program line. The symbol "««"
amounts to a cursor pointing to the token found to
be in error.

The next line shown in Figure 6-1 describes the error
encountered. The line following that indicates the
line number of the program where the error was
found. The final line provides several options. If you
press the "E" key, to invoke the E(dit option, the
result will be to return to the Editor. In this case, a
message briefly describing the nature of the syntax
error will be redisplayed at the top of your CRT
screen. This is shown in Figure 6-3 which replicates
the Editor's display resulting from this operation.

Illegal symbol (terminator expected). type <sp>

FUNCTION BLOWUP (X,Y:INTEGER):BOOLEAN;
VAR

I,LB,UB:INTEGER;
CH:CHAR;
A:ARRAY(1 .. 10] OF INTEGER;

BEGIN
LB:=X;
UB:=Y;
FOR I:=LB TO UB DO

BEGIN
A(I]:=I*I;
WRITELN(I,': ',A(I];_

END;
BLOWUP:=UB> 10;

END (*BLOWUP*);

BEGIN (*MAIN PROGRAM*)
WRITELN('START EDITDEMO');
WRITELN;

REPEAT1;
WRITELN;
REPEAT2;
WRITELN;

Figure 6-3. Editor display after Syntax Error
return from Compiler.

6-15

6-16

The Editor's cursor is left pointing at the same
position where the symbol "<---" pointed when the
Compiler halted. You can continue at this point to
use the Editor by pressing the space bar.

The two other command options made available by
the Compiler, as in Figure 6-1, are intended for use in
working with large programs. If you press the
SPACE bar key when the Compiler has halted, the
Compiler will continue attempting to compile the
rest of the program. Because of the nature of the
Compiler itself, this mayor may not be a sensible
thing to do. Some Syntax error conditions leave the
Compiler confused, and all it can db is to produce an
unending sequence of error messages at the same
program location. Other error conditions are not as
drastic and the Compiler can sometimes continue all
the way to the end of the program with no problem.
If you suspect that the Compiler has become
confused after a sequence of syntax error conditions,
you can terminate further compilation without
automatically invoking the Editor by pressing the
ESC key while the Compiler is halted.

If the file SYSTEM. SYNTAX is not present on the
boot disk, the error messages shown in the figures
will not be displayed. A complete list of the
numbered syntax error messages used in UCSD
Pascal may be found in Appendix E of this book for
reference purposes.

If you are working with a large Pascal program, it
may be most efficient to use a printed listing of the
program as an aid during compilation. If none of the
errors are fatal (i.e. cause the compiler to terminate)
then during the compiler's second pass all of the
syntax errors will be printed in the listing. Then the
Editor may be entered once and all errors may be
corrected. This method saves the time that would
otherwise be taken up in multiple switching back
and forth from Compiler to Editor to Compiler. ... It

also simplifies the process that you should go
through after noting each error - i. e. the visual search
for errors similar to the one just flagged by the
Compiler.

The following subsections provide suggestions on
how to find some of the more troublesome syntax
errors that often arise in use of the UCSD p-System.

Unmatched BEGIN ... END pairs

One of the more common errors in writing Pascal
programs is the failure to match each BEGIN in a
source program with a corresponding END. The
problem is exaggerated when one uses a CRT for
most program editing work, since then it is often the
case that both BEGIN and END of a pair cannot be
displayed on the screen at the same time. While the
compiler has no trouble discovering that each
BEGIN has not been matched with an END (or vice
versa), it may point to the problem at a point far
removed from the place in the source program
where the error is actually caused. Figure 6-4
illustrates the problem.

Illegal symbol (terminator expected), type <sp>
BLOWUP:=UB> 10;

(*END*) (*BLOWUP*);

BEGIN (*MAIN PROGRAM*)
WRITELN('START EDITDEMO');
WRITELN;
REPEAT1;
WRITELN;
REPEAT2;
WRITELN;
IF BLOWUP(5,15) THEN
WRITE('Upper Bound too large');

END.

Figure 6-4. Syntax Error caused by BEGIN
not matched by END.

6-17

6-18

But the error is not caught until the "END." at the
end of the program and the message is not helpful.

The section of program that is shown here is the
same as shown in Figure 6-3, but the missing right
parenthesis character (")") has been correctly
restored. The error occurs at the line: (*END*)
(*BLOWUP*). The "END" should not be
commented out. The commenting prevents the
Compiler from regarding the "END" as part of the
program. The Compiler thus goes on translating,
and regards the "END." which terminates the
program as an inappropriate end to the function
Blowup. The Compiler assumed that the lines which
followed the commented "END" were still part of
the BLOWUP function.

The failure to match END's with their
corresponding BEGIN's is often a difficult error to
trace to its cause when working with a large program.
The block number and bytes-generated columns of
the Compiler's List option provide a mechanism
which should help materially to find these errors.

Comment Not Completed with a Closing "*)"
Symbol

In a similar vein, it is all too easy to forget to finish a
comment with the necessary closing "*)" or "I"
symbol. Figure 6-5 provides an illustration.

Semicolon expected. type <sp>
BEGIN

LB:=X;
UB:=Y;
FOR I:=LB TO UB DO

BEGIN
A[I):= 1*1;
WRITELN(I,': ',A[I));

END;
BLOWUP:=UB> 10;

END (*BLOWUP);

BEGIN (*MAIN PROGRAM*)
WRITELN('START EDITDEMO');
WRITELN;
REPEAT1;
WRITELN;
REPEAT2;
WRITELN;
IF BLOWUP(5,15) THEN

WRITE('Upper Bound too large');
END.

Figure 6-5. Error caused by improper closing
delimiter in a comment.

In this case, the actual error occurs at the line "END
(*BLOWUP);", where an asterisk character ("*")
has been left out. The Compiler does not detect an
error until a couple of lines later. The error message
given is:

; expected (possibly on line above)

6-19

Since correct syntax clearly does not require a
semicolon on the indicated line, we must look closer
to notice that an open comment caused the compiler
to disregard some of the Pascal source.

Nested IF Statements

Nested IF statements are an invitation to make
syntax errors, some of which the Compiler is unable
to detect. Figure 6-6 provides an example of a
correct small program for use in seeing how some of
the errors arise.

>Edil: A(dlsl C(py D(lel F(ind I(nsrl J(mp K(ol R(plc O(ull X(ch Z(ap (E.7h]
Pascal Complier IV.O b20-2

1 0 O:d
2 2 l:d
3 2 l:d
4 2 1:0
5 2 1:1
6 2 1:1
7 2 1:1
8 2 1:1
9 2 1:1

10 2 1:2
11 2 1:3
12 2 1:2
13 2 1:3
14 2 1:4
15 2 1:5
16 2 1:3
17 2 1:1
18 2 1:2
19 2 1:1
20 2 :0

1 (*$lIB1.TEXJ*)
1 PROGRAM IFBOMB;
1 VAR W,X,Y,Z:INTEGER;
o BEGIN
o WRITE('Enter value of W:'); READLN(W);

29 WRITE('X:'); READLN(X);
58 WRITE('Y:'); READLN(Y);
87 Z:=O;
90 IF W > X THEN
95 IF W > Y THEN

100 Z:= W
100 ELSE
105 BEGIN
105 IFW=YTHEN
109 Z:= Y
109 END
112 ELSE
114 Z := X;
117 WRITELN('Z=',Z);

o END.

End of Compilation.

6-20

Figure 6-6. Program containing nested
IF statements - no errors.

Compiled listings are used in the examples in this
section. In this case, one of the best clues to checking
correct program construction is the column of
numbers representing depth of nesting (the
numbers immediately to the right of the column of
colon (":") characters). Notice that the nesting
depth is increased by 1 each time a statement
controlled by another is entered. It is reduced by 1
when the same controlled statement terminates. For
example, the IF statement in line 9 controls the IF
statement starting in line 10. Line 9 is atlevel1, while
line 10 (the controlled statement) is at level 2. The
ELSE in line 12 refers back to the IF ... THEN in line
10, and hence is shown at level 2. The compound
statement (BEGIN ... END) starts in line 13 at level
3, being controlled by the IF ... THEN ... ELSE ... at
level 2, and it ends in line 16, again at level 3.

6-21

Now consider Figure 6-7, in which we have placed an
additional BEGIN '" END pair to make the program
logic a little more obvious. This program is still
correct, and carries out the same steps shown in
Figure 6-6. However, the additional compound
statement brings an additional level of nesting. Thus
the new BEGIN in line 1 0 of Figure 6-7 is at level 2 ,
while the IF ... THEN in line 11 is at level 3. This
same IF ... THEN had been at level 2 in Figure 6-6.

> Edit: A(dist C(py D(let F(ind I(nsrt J(mp K(ol R(plc O(uit X(ch Z(ap [E.7h]
Pascal Compiler IV.O b20·2

1 0
2 2
3 2
4 2
5 2
6 2
7 2
8 2
9 2

10 2
11 2
12 2
13 2
14 2
15 2
16 2
17 2
18 2
19 2
20 2
21 2
22 2

O:d 1
l:d 1
l:d 1
1:0 0
1:1 0
1:1 29
1:1 58
1:1 87
1:1 90
1:2 95
1:3 95
1:4 100
1:3 100
1:4 105
1:5 105
1:6 109
1:4 109
1:2 112
1:1 112
1:2 114
1:1 117
:0 0

End of Compilation.

(*$L IB2.TEXJ*)
PROGRAM IFBOMB;
VAR W,X,Y,Z:INTEGER;
BEGIN
WRITE('Enter value of W:'); READLN(W);
WRITE('X:'); READLN(X);
WRITE('Y:'); READLN(Y);
Z:=O;
IF W> X THEN

BEGIN
IF W > Y THEN
Z:= W

ELSE
BEGIN
IF W = Y THEN
Z:= Y

END
END

ELSE
Z:= X;

WRITELN('Z=',Z);
END.

Figure 6-7. Nested IF program with extra
BEGIN ... END pair.

6-22

The addition of extra BEGIN ... END pairs is often
useful when working with a complicated set of
nested IF statements as a way to force the program
logic to go as one plans. If the extra compound
statement is redundant, as in Figure 6-7, no harm is
done since the compiler generates no corresponding
code. However, the extra compound statement
makes it unnecessary for the programmer to trace
back through the nested IF's to make sure that the
ELSE in line 17 of Figure 6-6 (line 19 of Figure 6-7)
belongs to the IF ... THEN in line 9 of both figures.

Unfortunately, one sometimes decides to clarify a
set of nested IF statements by using extra compound
statements after getting a large part of the nested
structure into the program via the Editor. Thus, a
common error is to add the END but forget the
corresponding BEGIN that should be placed earlier
in the program. Figure 6-8 provides an illustration.

6-23

>Edll: A(dlsl C(py D(lel F(lnd I(nsrt J(mp K(ol R(plc O(ult X(ch Z(ap [E.7hJ
Pascal Compiler IV.O b20·2

1 0
2 2
3 2
4 2
5 2
6 2
7 2
8 2
9 2

10 2
11 2
12 2
13 2
14 2
15 2
16 2
17 2

O:d 1
l:d 1
l:d 1
1:0 0
1:1 0
1:1 29
1:1 58
1:1 87
1:1 90
1:2 94
1:3 98
1:2 98
1:3 101
1:4 101
1:5 104
1:3 104
1:0 107

(*$L IB2.TEXT*)
PROGRAM IFBOMB;
VAR W,X,Y,Z:INTEGER;
BEGIN
WRITE('Enter value of W:'); READLN(W);
WRITE('X:'); READLN(X);
WRITE('Y:'); READLN(y);
Z:=O;
IF W > X THEN

IF W > Y THEN
Z:= W

ELSE
BEGIN
IF W = Y THEN
Z:= Y

END
END

•••• > Syntax Error # 6
18 2 :0 0
19 2 :0 0

ELSE
Z:= X;

WRITELN('Z=',Z);
END.

6-24

20 2 :0 0
21 2 :0 0

Figure 6-8. Nested IF statements with
unmatched extra END.

The extra END appears on line 17. It should be
matched by a BEGIN between lines 9 and 10. The
END on line 17 is indented two columns less than
line 16, a natural step to take when increasing
the indentation by two for .each additional
statement level, and decreasing the indentation
correspondingly for each statement level
terminated. This time the Compiler again generates
the ubiguitous "invalid symbol" message (error 6)
which is virtually equivalent to "something is wrong
but I don't see what".

The clue to look for in this situation is the level
numbers on lines 15, 16, and 17. Since the level is
shown as 0 in line 17, the Compiler considers this
END to be the match for the BEGIN in line4, i.e. the
opening BEGIN of the block. But visual inspection
of the program (if a reasonable effort at logical
indentation has been made in writing the program)
quickly shows that it had not been intended that the
END in line 17 would be the closing END of the
block. Otherwise that END would have been placed
in the program with zero indentation. At this point
we trace back, and discover that the level 3
statements are properly balanced, but that there is
no BEGIN at level 2 to match the END in line 17.
Since the nested IF structure began at level 1 in line
9, the END should necessarily have matched a
BEGIN at level 2 somewhere after line 9. Thus the
problem is narrowed quickly to the point where the
infraction effectively took place.

Next, let us see what happens if one neglects to put
in both the BEGIN and the END in a situation where
the program logic is changed as a result. This is
illustrated in Figure 6-9.

6-25

>Edit: A(dist C(py Dliet F(ind I(nsrt J(mp K(ol R(plc O(uit X(ch Z(ap [E.7h]

Pascal Compiler IV.O b20-2

1 0
2 2
3 2
4 2
5 2
6 2
7 2
8 2
9 2

10 2
11 2
12 2
13 2
14 2
15 2
16 2
17 2
18 2

O:d 1
l:d 1
l:d 1
1:0 0
1:1 0
1:1 29
1:1 58
1:1 87
1:1 90
1:2 95
1:3 100
1:2 100
1:3 105
1:4 109
1:3 109
1:4 114
1:1 117

:0 0

(*$L IB4.TEXT*)
PROGRAM IFBOMB;
VAR W,X,Y,Z:INTEGER;
BEGIN
WRITE('Enter value of W:'); READLN(W);
WRITE ('X:'); READLN(X);
WRITE('Y:'); READLN(Y);
Z:=O;
IF W> X THEN
IF W > Y THEN
Z:= W

ELSE
IF W = Y THEN
Z:= Y

ELSE
Z:= Xj

WRITELN('Z=',Z);
END.

End of Compilation.

6-26

Figure 6-9. Nested IF's with BEGIN ... END
missing.

In this illustration, the ELSE in line 15 has been left
indented as if it belongs still with the IF ... THEN in
line 9. However, if that were true, then the level of
line 15 would be 1, as associated with the same ELSE
in Figures 6-6 and 6-7. Since the level in line 15 is
actually 3, it is clear that the ELSE associated back to
the IF ... THEN in line 13, thus having quite a
different effect than it did in the preceding figures.
Here, there has been no error of syntax detectable
by the Compiler, but there may well have been an
error of program logic detectable because the level
entries are not consistent with the indentation used
when editing the program.

Execution or Run-Time Errors

An execution error occurs at "run-time", i.e. while a
program is running, if the program attempts an
invalid action. A list of the execution errors
detectable by the UCSD p-System is given in
Appendix F of this book. The most likely error in
most programs is a "Value range error", indicating
that the program tried to assign a value outside the
declared range of an array index or subrange
variable. Other common errors are "stack overflow"
(you ran out of working memory space), "integer
overflow" (attempt to assign an integer value larger
than can be expressed within a 16-bit memory word),
"divide by zero", and" string too long".

When a run-time error occurs, the System halts and
displays a three-line error message on the CRT. The
top line is one of the messages tabulated in Appendix
F. The second line contains an entry such as:

Segment EDITDEMO, Proc #5, Offset #22

meaning that the program halted within Segment
EDITDEMO, Procedure (block) number 5, at a code
offset of 22 bytes from the beginning of the block.
The procedure and offset numbers correspond to
the numbers in the third, and fifth columns of the
Compiler's List option output.

6-27

58 2
59 2
60 2
61 2
62 2
63 2
64 2
65 2
66 2
67 2
68 2
69 2
70 2
71 2
72 2
73 2
74 2
75 2
76 2
77 2
78 2
79 2
80 2
81 2

6-28

As a concrete example, consider Figures 6-10 and 6-
6-11. Figure 6-10 shows a section of the program file
COMPDEMO, which is supplied with the files on
your STARTUP: diskette. Not shown is the
statement which calls the function BLOWUP, in
which X is given the value 5, and Y the value 15.
Figure 6-11 shows the displayed output of this
program. The top few lines in Figure 6-11 result
from the parts of COMPDEMO which have simply
been copied from the EDITDEMO program used in
Chapter 4.

3:3 70
3:3 90
3:2 107
1:0 0
1:0 0
l:d 1
5:d 1
5:d 1
5:d 4
5:d 5
5:0 0
5:1 0
5:1 3
5:1 5
5:2 15
5:3 15
5:3 27
5:2 73
5:1 78
1:0 0
1:0 0
1:0 0
1:1 0
1:1

WRITELN('TYPE ANOTHER STRING');
READLN(S);

END;
END (*REPEAT2*);

FUNCTION BLOWUP (X,Y:INTEGER):BOOlEAN;
VAR

I,LB,UB:INTEGER;
CH:CHAR;
A:ARRAY[1..10] OF INTEGER;

BEGIN
LB:=X;
UB:=Y;
FOR I:=LB TO UB DO

BEGIN
A[I]:=I*I;

WRITELN(I,': ',A[I));
END;

BLOWUP:=UB> 10;
END (*BLOWUP*);

BEGIN (*MAIN PROGRAM*)
WRITELN('START EDITDEMO');

Figure 6-10. Display of Function BLOWUP.

Running ...
START EDlTDEMO

TYPE ANY STRING FOLLOWED BY <RET>
ANY
A
AN
ANY

TYPE ANY STRING FOLLOWED BY <RET>

5: 25
6: 36
7: 49
8: 64
9: 81
10: 100

Value range error
Segment EDlTDEMO Proc# 5
type < space> to continue

Offset# 22

Figure 6-11. COMPDEMO output with
run-time error.

At the bottom of Figure 6-11, we see that the
program "blew up" in Segment 1, Block 5, and at a
point in the code 24 bytes from the beginning of the
block. Referring to Figure 6-10, we see that this
offset occurs within line 73, which starts in byte 15
and ends in byte 26. (The dot which appears
coincidentally on the same line is part of the output
of the compiler's second pass.) Since the error was a
"Value range error", we immediately suspect the
index value I in the subscripted array variable A[I].
There are no other items in line 73 which would
correspond to a Value range error. Now we trace
back through the program to see where I might have
taken on a value outside the range 1 .. 10 which was
declared in line 67. Since the value of DB is
initialized to the value of Y when the function was

6-29

6-30

entered, and since the value ofY is 15, we see that the
FOR statement will inevitably generate a value of 11.
This is the first value outside the declared range, and
hence is the value which will trigger the Value range
error. We cross-check this conclusion with the
displayed output of the program itself in Figure 6-
11. The program ran long enough to display lines for
values of! ranging from 5 through 10, but it failed to
continue to display values from 11 through 15. Thus
the conclusion is confirmed that the Value range
error arose because of a value of! outside the allowed
range.

As an exercise, try using a similar method to find the
error in the REVERSE procedure of the same
program. This can be found by running the program,
and by responding to the second prompt message
with a string which contains an even number of
characters, for example" even".

Of course, not all execution errors are as easy to find
as the error illustrated in this section. The error
message allows you to find out which block contains
the statement where the program finally blew up. It
may then be necessary to insert extra WRITELN
statements into the program to determine the values
of essential variables at times immediately before
the execution error occurs. These values mayor may
not make sense relative to the program logic, and it
may be necessary to go back to earlier points in the
program, again with extra WRITELN statements, to
determine how the essential variables took on the
offending values. For more complicated program
debugging, the Debugger may be used. For a
description of the Debugger see the User's Guide for
the UCSD p-System.

CHAPTER 7. PROGRAMMING TO
USE DISK FILES

Contents

Goals for this Chapter 7-3
Overview 7-4
Physical Description of UCSD Pascal

Disk Files........................... 7-7
Sector Interleaving 7-8
512-Byte Blocks - Universal Units of

Disk Transfer 7-9
Structured Logical Records 7-11
Text Files 7-13
Working with Structured Data Files ... 7-16
File Declarations and the Buffer

(Window) Variable 7-19
Sample Program - Sequential
File-to-File Copying 7-32
Random Access Handling of Disk Files ... 7-35
Sample Program UPDATE 7-35
Indexed Access - Efficiency

Considerations 7-41
Text Files 7-44
READ and WRITE 7-45
EOLN, READLN, WRITELN:

End-Of-Line 7-47
Efficiency Considerations 7-51
Error Recovery 7-52

7-1

NOTES

7-2

Goals for this Chapter
Perhaps the single most important area of
applications programming of concern to users of the
UCSD p-System is the handling of disk files.
Whether your interest is in business databases, word
processing, experimental data collection, process
control, or some other field, you are likely to need to
work with disk files.

The main goal of this chapter is to provide an
introduction to programming for disk files using the
UCSD p-System. It is unfortunate that the present
accepted standard definition of the Pascal language
lacks facilities for several important aspects of disk
file handling. Since UCSD Pascal extends the
standard language to allow random access handling
of disk files, readers are warned that some of the
facilities described in this chapter will not be found
in all Pascal systems, or will differ in those systems.

Specific learning goals for this chapter include the
following:

a) Create a new disk file containing structured
records.

b) Update selected records in the file created in
step (a).

c) Using a Pascal program, create a new text file on
disk. Read the contents of this file using the
Editor.

d) Process the data contained in the file contained
in step (c), changing selected data within that
file. Read the contents of the altered file to
check your results.

7-3

e) Write a program capable of running without
abnormal termination even if certain disk
processing Input/Output errors are
encountered.

Note: This chapter does not provide a
comprehensive review of all kinds of disk
oriented Input/Output facilities that are
available with the UCSD p-System. Readers
interested in going further should refer to the
USER'S GUIDE for the UCSD p-System.

Overview

7-4

Disk files are commonly used for any and all of the
following purposes:

1) Storage of information one wishes not to lose
when the computer is turned off.

2) Storage of files of information too large to fit
within the computer's main memory all at once.

3) Saving data representing the status of a partially
completed long computing task. This permits
restarting the tast without repeating the entire
computation, should the task be interrupted for
any reason.

4) Communication of files of data from one
machine to another via physical transportation
of the disks themselves.

In programming to use disk files one must be
concerned about several levels of detailed
information. On one level, the physical
characteristics of the disk medium and the
mechanical drive on which it runs are important.
The relationship of these characteristics to the
UCSD p-System, and the resulting file deSCriptions
are the subject of "Physical Description of UCSD
Pascal Disk Files" in this chapter.

In Pascal, a file is an ordered sequence or collection
of data items all of which are of the same declared
type. In this sense, a file is similar to an array. Unlike
an array, a Pascal file may contain a variable number
of data items. Moreover, the time required for a
program to gain access to anyone data item in a file
may range from tens of milliseconds (i.e. hundredths
of a second) to several tenths of a second. The time
taken to access an item in an array is typically only a
few tens of microseconds (i.e. tens of millionths of a
second). Because of these differences, the means of
handling the storage of data into Pascal files, and
retrieval of data from those files, is very different
from the handling of Pascal arrays.

The data items stored in Pascal files are often
composed of structured data types, usually Pascal
Records. Formally, a file may be composed of items
declared to be of any type that can be declared in the
language. One exception is that a file of items that
are themselves files is generally not allowed. A
special file type of considerable importance among
Pascal users is the Text file, which consists of a
stream of single character items broken into lines.
Generally a text file is accessed sequentially rather
than by random record selection.

Pascal language facilities for handling files take the
form of built-in procedures and functions. The
philosophy surrounding these procedures and
functions in the accepted standard definition of
Pascal is oriented toward the use of magnetic tape
files. UCSD Pascal includes two additional built-in
procedures (SEEK and CLOSE), and slightly alters
definitions of those in the standard language, in
order to provide random disk access following a
philosophy very close to that of the standard
language. These changes are considered
controversial among language specialists in the
Pascal community, and should be regarded as unique
to UCSD Pascal. Other Pascal implementations use

7-5

7-6

their own approaches, each typically altering the
standard language in subtle but different ways. For
this reason, readers are strongly urged to isolate
their uses of input/ output references to disk files in a
small number of easily modified procedures and/or
functions. This will reduce the effort needed to
modify a program developed in UCSD Pascal for use
in another system.

"W orking with Structured Data Files" in this
chapter presents the built-in facilities of Pascal for
working with disk files composed of structured data.
Wherever practical, without detracting from the
readability of the presentation, differences between
standard Pascal and UCSD Pascal are pointed out.

"Random Access Handling of Disk Files" in this
chapter applies the built-in facilities to random
access handling of disk files.

"Text Files" in this chapter discusses text files with
particular attention to their storage on disks. Since
text files are byte-stream oriented, they may also
provide the best means of handling the Input/Output
connected with a wide variety of peripheral devices
including those interfaced to the UCSD p-System by
users themselves.

"Error Recovery" in this chapter discusses error
recovery, a troublesome but extremely important
topic. Disks and tapes provide imperfect media for
the storage of data, and it is generally necessary to
provide means for coping with errors. Errors can be
made in the process of recording data on a disk, in
reading the data back from the disk, or even in
passive storage intervening between recording and
reading.

Physical Description of UCSD Pascal
Disk Files

Data is recorded on magnetic disks for digital
computers in a manner reminiscent of recording on
home phonograph records. In both cases, the
information is contained in a large number of
(nearly) circular tracks. The tracks of a phonograph
record actually form one long spiral track. On a
computer disk, the tracks are separate concentric
circles which are not connected with each other.

Digital information is stored on a computer disk
within a thin magnetic recording surface very similar
to the surface of a magnetic recording tape. The
important difference between a computer disk and a
cassette tape intended for playing back music is the
manner in which the information is expressed
electronically. On a computer disk, the manner of
recording is designed to store binary digital
information with a very low probability that errors
will be made on playback.

Within one of the tracks on a computer disk, the
data is stored as a stream of binary bits. Usually, the
stream of bits is a multiple of 8-bits long, and
logically considered to be a stream of 8-bit bytes.
The full capacity of one track on a floppy disk is
about 4000 bytes. The disk is made to rotate
continuously, because the time delay to start the
disk drive spinning fast enough for data to be read
can be at least several seconds. The rate of rotation
results in the transfer of data between disk and
computer so fast that it cannot be processed while
the transfer is under way.

7-7

Sector Interleaving

7-8

The disk interface hardware is relatively simple and
leaves much of the logic to be carried out by the
computer's central processor. This makes it
impossible to read or write two or more adjacent
sectors on the disk during a single rotation. If sectors
in adjacent locations going around one track are
given numbers in sequential 1 , 2, 3,4, ... order, the
result can be to force a full rotation of the disk in
between read/write transfers involving sectors with
adjacent numbers. Transfers of groups of sectors
with adjacent numbers are so common that the
numbering is often arranged to provide a physical
separation between sectors with adjacent numbers.
Thus the (logical) sector number sequence on one
track might be 1, 14,2, 15, 3, 16, ... In reading the
sequential sectors 1, 2, 3, ... there is a time delay
between finishing the read of one sector, and
starting the next, because of the rotation time
associated with the intervening sector not found in
that sequence. For example, after finishing the read
of sector 2, there is a time delay for sector 15 to be
passed over before reading of sector 3 can begin.
This time delay is used by the computer's central
processor to catch up with its work associated with
the read operation. In that way, it becomes possible
to read a second sector after wasting only a very small
portion of one disk revolution, rather than having to
wait for more than one complete revolution if the
sectors were in adjacent physical locations.

512-Byte Blocks - Universal Units of
Disk Transfer

The UCSD p-System regards all disk files as if they
were composed of "blocks" 512-bytes long. In this
respect, a block can be thought of as if it were a
logical sector. The System interacts with the
hardware through a set of low level driver routines
known as the "Basic I/O Subsystem" or BIOS. The
BIOS accepts a request for transfer of a numbered
block, and takes care of collecting together the
actual sectors on the disk which (in combination)
make up the block. From the point of view of the
operating system (the control software part of the
UCSD p-System), all disk Input/Output transfers
take place via 512-byte units called blocks. Details of
how the BIOS copes with the actual physical sectors
on the disk are of no direct concern to the software,
nor to most programmers.

The blocks on a disk are given successive integer
numbers starting atO and counting upwards, i.e. 0,1,
2, 3,4, ... Since the number of sectors on one track
often does not work out to provide capacity exactly
equal to an integer multiple of 512-bytes, some
blocks overlap two tracks. The BIOS is expected to
accept a block number, and to handle all the details
of making the equivalent of that block out of sectors
actually stored on the disk. The operating system
retains an area of memory called a "buffer" for each
file which is in use. The buffer has capacity to store
one complete block. The upper portion of Figure
7-1 illustrates this part of the process.

7-9

ALTERNATE
SECTORS

,- -

BIOS
ROUTINES

(

OPERATING SYSTEM

I/O ROUTINES

(

USER'S PROGRAM

FLOPPY DISK

(Just before 4-sector block starts to be picked up)

REA~/WRITE HEAD

~

r

Nth RECORD

WINDOW VARIABLE

~
COMPUTER'S MEMORY

Figure 7-1. Illustration of steps invoked on read
of N'th record.

7-10

512~BYTE

BUFFER

Structured Logical Records

Of course it is recognized that very few programmers
will find it convenient to declare a Record type for
their disk files that just happens to be exactly 512
bytes long. It is much more usual for the length of a
Record to be less than 512 bytes and not evenly
divisible into 512 bytes. Also, some Records are
longer than 512 bytes, but not an integer multiple of
512.

To provide maximum flexibility for the Pascal
programmer, the UCSD p-System takes care of
packing logical typed Records into the 512-byte
blocks, when writing to the disk, and unpacking the
Records when reading from the disk. All of the
necessary bookkeeping is done so that the
programmer does not need to be directly concerned
with the calculation of which block(s) any logical
Record will occupy. Moreover, a logical Record may
overlap from one block to another, allowing full use
to be made of the storage capacity of each block in
the file (except for the last one which usually is only
partially occupied).

As a result, the user's Pascal program needs only to
request access to a specific logical record in a file by
using its number. For reading the N' th logical record
from the file, Figure 7-1 shows how the operating
system and BIOS routines team up to transfer just
the requested Record into the "window variable"
associated with the file. A similar process takes place
in the reverse direction when writing to the disk. For
a discussion of programming fine points associated
with the file and its window variable, see "Working
with Structured Data Files" in this chapter.

Sometimes the logic of a program will make it
desirable to include Records, which are declared to
be laid out quite differently, mixed together within
the same file. Pascal allows you to declare that the

7-11

7-12

last field of a Record type has several different
"variants". For example, we might want to mix
together Records on people and on inventory items
within the same file. We might also want to slip an
occasional note into the file in the form of a long
packed array of characters not broken into
independent fields. The declarations associated with
these records might appear as follows:

TYPE RECTYPE=(PERSON,INVENTORY,MEMO);
PERSREC=

RECORD
NAME,COMPANY:STRING[32);
STREET:STRING[20);
CITYSTATE:STRING[30);
TEL:PACKED ARRAY[O .. 9) OF CHAR;
BALANCE:INTEGER[8)

END;
INVREC=

RECORD
ITEMNAME:STRING[40);
PLANT: INTEGER;
LOCATlON:PACKED ARRAY[O .. 3) OF

CHAR;
VALU E: INTEG ER[6);
DATE_ACQUIRED:PACKED ARRAY[O .. 5) OF

CHAR
END;

NOTEREC=PACKED ARRAY[O .. 131) OF CHAR;
RECDEF=

RECORD CASE RECTYPE OF
PERSON:(PERS: PERSREC);
INVENTORY:(INV:INVREC);
MEMO:(NOTE:NOTEREC)

END;
VAR

RD:RECDEF;

I will defer until "Working with Structured Data
Files" in this chapter any Pascal programming
consideration of how to associate these Record types
with a file. Notice that the type PERSREC occupies a
total of136 bytes (Strings include a length field. The
total length of a string variable must fill an even

number of bytes), INVREC occupies 58 bytes, and
NOTEREC 132 bytes. Since the UCSD p-System has
no way to enforce which of the three types will
occupy the variable RD at any instant, it is necessary
for RD to occupy the maximum record size
regardless of which type occupies RD. A similar
consideration makes it necessary for a file
constructed on disk from variant type records to use
the size of the largest variant as the size of all records
stored on the disk. In our example, this would mean
that a substantial amount of disk space would be
wasted if a large part of the file actually consisted of
records of the INVREC type.

If you have in mind using disk storage for large
numbers of records using several different Record
types which differ markedly in size, it probably
would be best to create separate files in order to save
space. The largest record size is used if records vary
in size. Variable length records are not arranged to
occupy only their individual sizes on a disk. If they
were, either access to these records would have to be
sequential (i.e. not random), or a relatively complex
indexing scheme would have to be used. The only
simple method available in the UCSD p-System for
storing variable length records on disk files uses
Text files, as discussed in the following subsection.

Text Files

The conceptual view of a Text file in Pascal is that it
consists of an indefinite number of lines, each line
being composed of an indefinite number of
characters followed by an end-of-line marker. In this
section I present a brief discussion of how this
concept is implemented in the UCSD p-System.
Programming details are deferred until "Text File"
in this chapter. Most beginners who follow the
Pascal rules on Text files will have very little reason
to be concerned with the file characteristics

7-13

7-14

described in the rest of this section. They are
presented here for those curious enough to get into
trouble if they do not understand these details. The
details will also be helpful to readers who wish to
write programs which transfer text data between the
UCSD p-System and another system which uses
simpler text file conventions.

On the IBM Personal Computer, which uses the
fixed length block scheme for disk storage, the
storage of text information within the blocks is very
simple. The characters in each line are written into a
block sized buffer area in memory until the block
fills up. The block is then transferred to the disk, and
the buffer cleared for additional characters. The
remaining characters on the line are then written
into the buffer, and the end-of-line marker is also
written into the buffer.

The design of Text files in UCSD Pascal has been
strongly influenced by the requirements of the
screen-oriented Editor. The objective was to make
the Editor as fast and user-responsive as possible.
Several of the design decisions have made UCSD
Pascal Text files less similar to textfiles in other
popular micro co muter systems than is probably
necessary.

The principal differences between UCSD Pascal
Text files, and the simpler format found on most
small systems, are as follows:

a) The end-of-line character is a single ASCII CR
character.

b) Blank characters at the beginning (left side) of a
line are compressed into an "indentation code"
which consists of an ASCII DLE character
(decimal value is 16) followed by a character
representing the number of blanks. The
decimal equivalent value of this second
character is 32 plus the number of blanks
represented by the code. The indentation
code-pair is missing if there are no blanks at the
beginning of a line.

c) The text is written into the disk file in two-block
logical records called "pages" (1024 bytes
long).

d) No line of text is split between the end of one
page and the beginning of the next. Instead, the
empty space at the end of a page, which is too
short to accommodate the line that would
otherwise start there, is filled with ASCII NUL
characters. The binary or decimal value of a
NUL character is zero.

e) Page number zero of a Text file is reserved for
control information used by the screen Editor.
Text is stored in a Text file starting at the
beginning of page number one. Unless you use
special I/O facilities intended for advanced
users of the UCSD p-System, a Pascal program
using a Textfile will not be able to refer to the
contents of page zero.

Note that the page-oriented layout, and the page
zero requirement, are the reasons why the minimum
size of a Text file in the UCSD p-System is 4 blocks.

7-15

Working with Structured Data Files

7-16

The general philosophy associated with
Input/Output operations in Pascal is conceptually
similar to the model of a magnetic tape file. In this
concept, the (usually imaginary) tape is seen as
resting in a position such that one record of the type
associated with the file will be transferred upon the
next request for an input or output operation. The
record is transferred from the tape to a special buffer
variable associated with the file as a result of
executing a GET statement. Similarly, the content
of the buffer variable is transferred to the tape as a
result of executing a PUT statement. The pointer
indicating where the tape is positioned is advanced
by the length of one record when GET or PUT is
executed. In UCSD Pascal, as in standard Pascal,
repeated execution of GET results in successive
transfers of records in the sequence in which they are
recorded on a disk. In standard Pascal, PUT may only
be executed when the position pointer is at the
current end-of-file position. One reason for this rule
is that computer tape drives are not generally built to
allow overwriting a previously written record within
a file. Since UCSD Pascal is designed for work with
disk files, which do allow overwriting records within
a file, repeated execution of PUT is allowed as long
as the file's position pointer indicates a record
location within the range allocated to the file. UCSD
Pascal provides a built-in SEEK statement for
assigning a new value to the file's position pointer.
Standard Pascal provides no equivalent of the SEEK
facility.

All Pascal input and output data transfers take place
via the buffer variable. Hence the buffer variable is
sometimes referred to as a "window" through which
the file may be viewed. The window, i.e. buffer, is
treated as if it were an ordinary variable for purposes
of assigning value to or from that variable within the
Pascal program. Hqwever the buffer variable

behaves unlike ordinary variables in the sense that
certain Input/Output operations leave the content
of the buffer variable undefined, even when a value
has previously been assigned by the Pascal program.

Pascal READ and WRITE statements are really
composite statements constructed using GET and
PUT respectively, in addition to implicit assignment
statements involving the file's buffer variable.

In addition to dealing with the actual transfer of data
to or from a disk file, the programmer also has to be
concerned with instructions to the operating system
on how the file should be handled. Until a file is
"opened", using a Pascal RESET or REWRITE
statement, the UCSD Pascal operating system does
not allocate space for the 512-byte buffer illustrated
in Figure 7-1. Moreover, it is necessary for the
program to inform the operating system what
directory name is to be associated with a file. The file
declaration specifies the program's internal
identifier and record type. However, the same file in
the same program can be made to refer to many
different disk files, each having a different directory
name. In UCSD Pascal, the RESET and REWRITE
statements of standard Pascal have been extended to
provide the means for the program to communicate
the file's directory name to the operating system.
This allows one program to compute the directory
names of several different files, each being
associated with the same internal file identifier in the
program at separate times. Only one of the actual
disk files can be "open" at one time for input and/ or
output transfers.

Since there are several possible dispositions of a file
after it has been used in a UCSD Pascal program, the
program must generally inform the operating
system how to "close" the file. This is done using the
CLOSE statement, a UCSD extension to the
language which does not exist in standard Pascal.

7-17

7-18

CLOSE with the LOCK option requests the
operating system to retain the directory entry for a
new file for future use. If LOCK is not used, a file
newly created by the program will be regarded as
temporary, and the space it occupies during the
program execution will be marked as unused when
the CLOSE action takes place. In addition to
controlling the disposition of a file's directory entry,
the CLOSE statement also informs the operating
system that it may release the buffer space associated
with the file for other uses. A CLOSE without LOCK
is automatically invoked if no CLOSE statement has
been explicitly executed before termination of the
block (procedure or function) in which the file is
declared.

Because the number of data items stored in a file may
vary, it is necessary to provide a facility whereby a
Pascal program repetition statement involving input
or output may be told when to stop. For structured
data files, the only facility provided for this purpose
in standard Pascal is the built-in Boolean function
EOF (End-Of-File). "EOF" in this chapter describes
the handling of EOF in some detail because of its
importance in controlling the other disk related
statements.

As a final introductory note, RESET and CLOSE are
automatically executed by UCSD Pascal for the
predeclared files INPUT, OUTPUT, and
KEYBOARD. Moreover, the definition of INPUT
and OUTPUT files in UCSD Pascal differs from
Standard Pascal because of fundamental differences
in handling single-character transfers involving
interactive terminals.

File Declarations and the Buffer (Window)
Variable

If T is a predeclared or user-declared data type in a
Pascal program, one declares a file identifier, for
example FID, along with other variable declarations
as in:

TYPE
T=RECDRO

IFIELO:INTEGER;
B:BDDLEAN;
S:STRING;

END;
VAR

FID:FILE OF T;
X,Y:INTEGER;
A,B:T;

The buffer variable associated with the file FID is
referred to as FID . The up arrow or carat character
should not be confused with the up arrow cursor
positioning key on your keyboard. Assuming that
RESET or REWRITE has previously been executed
for this file, it is then possible to assign the value of
the file's buffer variable, for example:

A:= FlO"

or, if B has previously been assigned a set of values,
then:

FIO":= B

Since the file is associated with a record type, it is also
possible to assign individual fields from within the
record as with any other record type variable. For
example:

X := FID",IFIELO

or

FID".IFIELO := A.lFIELO 7-19

GET, PUT, READ, and WRITE

7-20

Assuming that the file FID has been declared as in
"File Declarations and the Buffer (Window)
Variable", that the file is open, and that the position
pointer of the indicated file points to a record
actually stored on the disk, then:

GET(FID)

transfers one record from the disk file into the buffer
variable FID. The record transferred is the one
referred to by the position pointer. After the record
is transferred, the position pointer associated with
the file is advanced by one record position. Here
again UCSD Pascal differs from Standard Pascal in
which GET advances the position pointer before
transferring the record. The order is reversed in
UCSD Pascal in order to make SEEK operate in a
straightforward manner.

If the position pointer associated with the file points
to a position not occupied by a record when
GET(FID) is executed, then the End-Of-File flag
associated with the file becomes TRUE (see "EOF"
in this chapter), and the content of FID" is left
undefined. Experimentation with UCSD Pascal will
show you that execution of GET(FID) with EOF
already set to true, or when the position pointer
points outside the range of record numbers
contained in the file, will leave the content of FIn
unchanged. This is not a behavior you should
depend upon, since Standard Pascal specifies that
the contents of FID'" are undefined under these
conditions.

GET, PUT, READ, and WRITE
Assuming the declarations shown in "File
Declarations and the Buffer (Window) Variable",
READ(FID,A) is equivalent to the following
compound statement in Standard Pascal:

BEGIN
A := FlO"';
GET(FID)

END

UCSD Pascal does not support the use of READ for
structured data files, however.

Again assuming that the file FID is open, and that the
position pointer points to a legal record position,
then the statement:

PUT(FID)

transfers the current contents of the buffer variable
FID'" to that record position in the disk file. It then
advances the position pointer to the next position.
Once again, the transfer of data takes place in
Standard Pascal after the position pointer is
advanced.

In Standard Pascal, the only legal record position
prior to execution of a PUT statement is the position
just before the first unoccupied record position at
the end of the file. In UCSD Pascal, because of the
need to update any record in a disk file, the legal
record positions include all positions starting with
record zero, and extending to the highest numbered
unused position following the current end of the file.
Therefore, the condition of EOF(FID) before
PUT(FID) is executed has no effect on the PUT
operation. If PUT transfers data to a record position
located beyond the last currently occupied record in
the file, i.e. in an unused area immediately following

7-21

GET, PUT, READ, and WRITE

7-22

the file and adjacent to it, then the disk directory will
be updated to show that the file occupies all
positions up to and including the position to which
the transfer took place.

In UCSD Pascal, execution of PUT(FID) has no
effect on the EOF(FID) flag unless it attempts to
transfer data to an illegal record location, for
example a location within a file which follows the
open file to which PUT refers. In that case,
EOF(FID) is set TRUE, and no data tr:ansfer takes
place.

Analogous to READ, the draft description of
Standard Pascal defines WRITE(FID,A) to mean:

BEGIN
flD":=A;
PUT(flD)

END

UCSD Pascal does not, at this time, allow the use of
WRITE with structured data files.

RESET, REWRITE, and CLOSE

As described in the introduction to "Working with
Structured Data Files" in this chapter, a program
must inform the operating system when to allocate
memory space to the block buffer for a disk file, and
which file in the disk directory to equate with the
internal file identifier. In the examples shown here,
we will continue to use the internal file identifier
FID, as declared in the example of "File
Declarations and the Buffer (Window) Variable" in
this chapter, but of course any declared file identifier
could be used. The program passes the necessary
information to the operating system by executing a
RESET or a REWRITE statement. After one of these
statements is executed successfully, i.e. without
reporting an error, the file is then regarded as
"open" and thus available to the program for input
and output operations.

Unlike Standard Pascal, UCSD Pascal allows mixed
input and output operations following either
RESET or REWRITE. The draft description of
Standard Pascal states that if PUT(FID) is not
separated from a previous GET(FID) or
RESET(FID) by an intervening execution of
REWRITE(FID), then the results are
implementation dependent. Since UCSD Pascal is
designed to allow random access updating of disk
files, it differs in several detailed respects from
Standard Pascal regarding the opening and closing of
disk files, and regarding the detection of End-Of-File
status (see "EOF" in this chapter).

7-23

RESET

7-24

To open a disk file which already exists, i. e. a file with
a directory entry already on the disk, use:

RESET(FID, <title-string>)

where the ti tle string may be ei ther a quoted string or
a string variable. Assuming that S is a variable of type
STRING, either:

RESET(FID, 'DATAFILE')

or:

S := 'DATAFILE';
RESET(FID,S)

would open a file with the directory title DA TAFILE
for use associated with the internal identifier FID.
Notice that this arrangement allows the value of the
string variable S to be assigned while the program is
running, perhaps through use of a READ(S)
statement which calls for the user of the program to
type in the name of the file.

The string parameter which gives the file's directory
title in a RESET statement is a nonstandard
extension unique to UCSD Pascal. Both Standard
Pascal and UCSD Pascal provide the form:

RESET(FID)

In Standard Pascal, this is used to open the file, but
the means of associating the file title with the
internal identifier are left to be defined by the
implementor (i.e. the person or organization that
arranges to install Pascal within a software system).

RESET

Once the file FID is open, the RESET intrinsic uses
the form RESET(FID) to move the file's position
pointer back to the beginning of the file. This also
causes the contents of the first record stored in the
file to be assigned to the file's buffer variable.
Although UCSD Pascal is oriented to disk files, this
operation is like performing a rewind operation on a
magnetic tape, and then executing a single (Hidden)
G ET(FID) statement.

Either form of the RESET statement sets
EOF(FID) = FALSE, assuming that there is no error
indication. An error will be indicated if
RESET(FID, filetitle) cannot be completed
because the requested filetitle cannot be found in
the disk directory. The same form of RESET will also
cause an error indication ifFID is already open, since
no indication will be available to the operating
system at that point on what to do with the disk file
that is already open. Repeated execution of
RESET(FID) does not produce any error indication,
since the only effect is to cause GET and PUT
operations to start again at the beginning of the file.
An error indication of either type mentioned here
will cause your program to terminate abnormally
unless you use a Compiler Directive which
suppresses I/O error terminations. This option is
provided to allow the programmer to arrange for
program recovery in the case of Input or Output
errors. See "Error Recovery" in this chapter for
details.

7-25

REWRITE

7-26

To open a new disk file, i.e. one with a title not
matched by an existing directory entry, use:

REWRITE(FIO, <title-string>)

where the title string is required. Unlike RESET,
REWRITE in UCSD Pascal has no optional form
without a title string parameter. REWRITE in
Standard Pascal uses no title string, and leaves
optional the question of how the directory title will
be established.

This statement requests the operating system to
establish a new temporary directory entry for the
file, and to allocate the block buffer area in memory
needed for input and output operations. The
directory entry will be made permanent as a result of
executing a CLOSE(FID,LOCK) statement. Any file
already on the disk with a directory title which
matches the title string will be removed in order to
make way for the new file. Vestiges of a directory
entry for the new file will also remain "permanently"
on the disk, after the REWRITE is executed, if you
open the door of the floppy disk drive and/or take
the disk out of the machine. This is not an action that
I advise, since the directory entry left on the disk in
that way will probably not reflect accurately how
many records have actually been PUT into the file.
In fact, the directory will probably show that the file
occupies the entire unused area to which it was
allocated when the REWRITE was executed!

The form of the title string used with REWRITE will
determine which unused area on the disk the

REWRITE
operating system will use in allocating space to the
file. If you use a simple title string such as:

NEW FILE

then the file will be allocated starting at the
beginning of the largest unused area currently in the
directory. It will then be legal to execute PUT(FID)
operations referring to any record position
throughout that (initially) unused area. The ultimate
size of the file, as shown in the directory after the file
is closed, will be the number of blocks starting at the
beginning of the unused area, and extending
through the highest numbered block to which a
PUT(FID) operation is directed.

If you know in advance that the new file will not have
to occupy more than a certain number of blocks,
then an alternate form of the title string may be
useful. For example, if the number of blocks desired
is no more than 15, then use the form:

Unfortunately, it is not possible to substitute a
variable identifier for the desired number of blocks
within this title string. However the value actually
passed to the REWRITE(FID,S) statement can be
computed by the program, and the value of a
STRING variable S can then be composed using the
STRING operations provided in UCSD Pascal. The
operating system will respond to

REWRITE(FID, 'NEWFILE(27),)

by allocating the file to the first unused area in the
directory which contains at least 27 blocks. If no
unused area at least 27 blocks long can be found,
then an I/O error indication will result. In case of an

7-27

REWRITE

error, the program will terminate abnormally unless
the methods described in "Error Recovery" in this
chapter are used.

Another alternative is to use an asterisk within the
square brackets after the file name:

REWRITE(FID, 'NEWFILEW[*J')

This will cause the file to be created to fill either the
second largest area on disk, or half of the largest area
on disk, whichever is largest.

If you want to create two or more independent new
files that are to be open simultaneously, you should
use the square brackets in one of these two ways.

CLOSE

7-28

After the completion of a program's work in a disk
file, it may be necessary to request the operating
system to deallocate the block buffer area assigned
to the file in memory. In the case of a new file opened
with REWRITE, a permanent directory entry must
be completed, if the file is to be retained. In the case
of an established file opened with RESET, the
directory may have to be updated to reflect the use oj
record positions that had previously been in the
unused area adjacent to the file. In UCSD Pascal,
these operations are accomplished in response to
execution of a CLOSE statement, for which there an

CLOSE

several forms. Standard Pascal provides no
equivalent operation.

If the file has been opened with RESET, or if a new
file opened with REWRITE is not to be retained,
then use:

CLOSE(FID)

If the file is new, having been opened using
REWRITE, and you wish to retain the file with a
permanent directory entry, then use:

CLOSE(FID, LOCK)

If you wish to use a program to remove a disk
directory entry, with an effect equivalent to the
R(emove command of the Filer, then open the file
using:

RESET(FID, <title-string>)

followed by:

CLOSE(FID, PURGE)

All forms of CLOSE will mark the file FID no longer
open. Further attempts to use GET, PUT, SEEK,
EOF, READ or WRITE referring to the file FID will
result in an I/O execution error indication. Unless
the method described in "Error Recovery" in this
chapter is used, the program will then terminate
abnormally.

If a program terminates normally, without ever
executing CLOSE for any file that is open at
termination time, then the first illustrated form of
CLOSE is automatically executed for each open file.

7-29

SEEK

7-30

To change the position pointer associated with an
open file FID, use:

SEEK(flD, <record·number»

where the record number is an integer valued
arithmetic expression. For example:

SEEK(flD, 57);
SEEK(fID, INTVAR);
SEEK(flD, LASTREC . 2*1)

If the value of the record number is non-negative,
then the next GET(FID) or PUT(FID) to be
executed will refer to the disk record indicated by
that value. If the value of the record number is
negative, then the result of the SEEK is undefined.

SEEK with a non-negative record number always
sets EO F(FID) to FALSE, regardless of whether the
value of the record number is within the areas where
GET or PUT operations would be legal. It is
necessary to execute either GET or PUT to discover
whether EOF(FID) will remain FALSE thus
signifying successful completion of the GET or
PUT. There is no equivalent of SEEK in Standard
Pascal.

EOF

The built-in Boolean "Ehd-Of-File" function:

EOF(FID)

is used to determine the result of an Input/Output
operation. Because of a desire to keep UCSD Pascal
extensions beyond Standard Pascal to a minimum,
EOF works somewhat differently in UCSD Pascal
than in Standard Pascal when dealing with a disk file.
This makes it unnecessary to extend the language
with another special function to handle virtually the
same purpose for disk files alone.

If the disk file FID is already open, RESET(FID) will
leave EOF(FID) set to FALSE. If the disk file
referred to by the title string is present in the disk
directory, then RESET(FID, title-string) will leave
EOF(FID) set to FALSE. Otherwise an I/O
execution error will result. If there is enough room
to allocate space for the requested new file,
REWRITE(FID, title-string) will leave EOF(FID) set
to FALSE. Otherwise, an I/O execution error
indication will result. If the record position pointer
associated with an open file FID points to any
position starting with position zero, and ending with
the last position containing a valid data record, then
GET(FID) will leave EOF(FID) set to FALSE. If the
position pointer points to a location beyond the last
valid data record, then GET(FID) will leave
EOF(FID) set to TRUE.

If the record position pointer associated with an
open file FID points to any position already
established within the file, or to any position within
the unused area following the file, the PUT(FID) will

7-31

EOF
leavel EOF(FID) set to FALSE. Otherwise
PUT(FID) will leave EOF(FID) set to TRUE.
SEEK(FID, record-number) will leave EOF(FID) set to
FALSE if the value of the record number is
non-negative. Otherwise the value of EOF(FID) will
not be changed. If EOF(FID) is executed when the
file FID is not open, it will return the value TRUE.

Sample Program - Sequential
F ile- to-File Copying

7-32

In this section we provide a simple concrete example
of the use of the facilities just described for handling
structured data files in UCSD Pascal. In this
example, we copy the contents of one file into a new
file on the disk. Both files are then left on the disk.
Additional examples showing random access use of
structured data disk files, are shown in "Random
Access Handling of Disk Files" in this chapter.

PROGRAM FILECOPY;
CONST RECSIZE= 1 99;
TYPE

STRUCTURE=
PACKED ARRAY[O .. RECSIZE] OF CHAR;

VAR
RECNUM: INTEGER;
FIN,FOUT:FILE OF STRUCTURE;

BEGIN
RESET(FIN, 'OLD FILE') ;
REWRITE(FOUT,'NEWFILE');
RECNUM:=O;
WRITE('CoPving');
WHILE NOT EOF(FIN) DO

BEGIN
FOUr:=FIN";
PUT(FOUT);
RECNUM:=RECNUM+l ;
WRITE('.');
GET(FIN);

END;
WRITELN;
WRITELN(RECNUM, 'records copied');
ClOSE(FOUT,LOCK);

END.

Listing 7-1. Program which copies from
OLDFILE to NEWFILE.

In this simple example, we ignore the internal layout
of the fixed length records of type STRUCTURE. All
we are concerned about is their total size, which is
one more than the constant RECSIZE, or 200 bytes
in this case. There is no information in the directory
entry for a file indicating the structure of the records
contained in the file. However, the directory does
contain an integer value representing the number of
the last record stored in the file. This number,
multiplied by the size of the structured records
originally PUT into the file, controls the value
returned by EOF(FIN) following each use of
GET(FIN). (Thus it is possible to refer to an old file

7-33

7-34

by associating the input file type with a structure
whose size is not the same as that used in creating the
old file. However doing this will yield records not
matched to those originally written into the file, and
the EOF function will return TRUE for a GET when
the position pointer does not point at the true end of
the file.)

In this sample program, we assume that the file with
the directory title "OLDFILE" exists on the disk
before the program is run. A file called "NEWFILE"
might also exist before the program is run, but that
previous file will be removed as a result of the
REWRITE statement in this program. If you want to
avoid inadvertent loss of an old file in this way, it
would be best to try to RESET the old file (Le. the
existing file with the title "NEWFILE") as a first
step. Your program can then inform you if the
RESET(FIN, old filename) succeeds. If it does not, you
will have to use the error recovery approach
described in "Error Recovery" in this chapter to
avoid abnormal termination of your program. The
program FILECOPY leaves its new copy in the file
"NEWFILE" .

This program displays two lines on the computer's
console device, namely:

Copying
27 records copied

as direct verification for the user that the program is
actually doing its work. The first line displays one
dot after the PUT of the associated record is
completed. The second line provides a simple
summary. In general, you will probably find it useful
to provide some visual indication of activity in any
program that spends much time in disk I/O or other
time consuming computations.

Notice that the GET takes place after the PUT
within the main WHILE loop of the program. This is

because the first GET effectively takes place as a part
of the RESET statement referring to the input file
FIN. The last executed GET statement switches the
EOF(FIN) flag to TRUE, and this information is
immediately used to terminate the WHILE
statement.

Random Access Handling of Disk
Files

In this section, we will start with a disk file containing
name, address, and telephone number information
on some imaginary people. We will then illustrate
how to go about updating selectively chosen records
already in the file, and also appending additional
records to the file.

In the example given here, we will assume that it
makes sense to determine which record to select
from the file by simply making use of its record
number. In practical applications, this is obviously
not a suitable procedure, and some means of
indexing the records in the file must be used. The
last subsection provides a brief discussion of
indexing strategies, but no solid sample program
example because of space limitations.

Sample Program UPDATE

Listing 7-2 shows a sample program which illustrates
the creation and updating of a simple file. Display
7-1 shows a portion of the screen display associated
with this program. All of the disk file handling is
accomplished in the main program of Listing 7-2. In
a larger program containing indexed access to the
stored records, management of available record
positions, and other amenities the disk file handling
statements should be isolated in procedures which
can be readily altered without changing the whole

7-35

7-36

program. This strategy reduces the amount of effort
that may be necessary to change the program when
moving from one machine to another with differing
characteristics.

Handling of input from the keyboard, and display on
the CRT screen, is very simple in this sample
program. In this program, the user is prompted to
type in the number of the record wanted. The
current contents of the record are then displayed in a
meaningful format. The user is then prompted to
type in new contents for each field in the record
separately. If the user wishes to leave a field
unchanged, ENTER skips to the next field. ESC(ape
followed by ENTER jumps out of the field updating
cycle without any further change of a field. If the
requested record position is in the unused area
following the previous end of the file, the program
prompts immediately for new contents.

PROGRAM UPDATE;
TYPE

STRUCTURE=
RECORD
NAME,COMPANY:STRING[32);
STREET:STRING[20);
CITYSTATE:STRING[30);
TEL:STRING[10]

END;
VAR

RECNUM:INTEGER;
BUF:STRUCTURE;
TITLE: STRING;
FID:FILE OF STRUCTURE;

PROCEDURE ZEROREC
(VAR REC:STRUCTURE);

BEGIN
WITH REC DO

BEGIN
NAME:=";
COMPANY:=";
STREET:=";
CITYSTATE:=";
TEL:=";

END;
END (*ZEROREC*);

PROCEDURE SHOWREC(REC:STRUCTURE);
BEGIN
WRITELN;
WITH REC DO

BEGIN
WRITELN(,NAME: ',NAME);
WRITELN(,COMPANY: ',COMPANy);
WRITELN(,STREET: ',STREET);
WRITELN(,CITY&STATE: ',CITYSTATE);
WRITELN(,TELEPHONE:',TEL);

END;
END (*SHOWREC*);

PROCEDURE GETREC(VAR REC:STRUCTURE);
lABEL 1;
VAR S:STRING;

FUNCTION READIT(VAR T:STRING)
: BOOLEAN;

BEGIN
READLN(S);
READlT:=FALSE;
IF LENGTH(S»O THEN
IF S[LENGTH(S)]=CHR(27(*ESC*))

THEN READlT:= TRUE
ELSE
T:=S;

END (*READlT*);

7-37

7-38

BEGIN
WRITE
('RETURN skips item with no change;');
WRITE~ -
(' ESC+RETURN skips whole Record');

WRITELN;
WITH REC DO

BEGIN
WRITE('NAME: 'J;
IF READIT(NAME) THEN GOTO 1;
WRITE(,COMPANY: 'J;

IF READIT(COMPANy) THEN GOTO 1;
WRITE(,STREET: 'I;
IF READIT(STREET) THEN GOTO 1;
WRITE(,CITY&STATE:');
IF READIT(CITYSTATE) THEN GOTO 1;

WRITE(,TELEPHONE: 'J;

1:

IF READIT(TEL) THEN GOTO 1;
END;

END (*GETREC*);

BEGIN (*main program*)
WRiTE('File title:');
READLN(TITlE);

[*turn off i/O ~!I'I~!l!J!, I:hecking*J
YJl:Sn(FID,TllLE);
!i~ il!JRESUU<>O THEN fAEWRITE(fID,1I1UE);

["turn on I/O Cl'll~f;ildng again"]
IfiIECNUM:=O;
\\lIj1~II.E RECNUM>=O DO
iUGIN

\I!IIRITELN;
WRITE('Record number:');
IlUADLN(RECNUM);
IF RECNUM>=O THEN

BEGIN
SEEK(FID,RECNUM);
GET(FID);
IF EOF(FID) THEN

BEGIN
WRITELN('Enter new Record:');
ZEROREC(FIIr);

END
ELSE

BEGIN
WRITELN('OId Record:');
SHOWREC(FIIr);
WRITELN;
WRITELN('Enter Changes:');

END;
GETREC(FIIr);
SEEK(FID,RECNUM);
PUT(FID);

END;
END (*WHILE*);

CLOSE(FID,LOCK);
END.

Listing 7-2. Sample Program UPDATE.
(Program is contained on STARTUP: diskette.)

7-39

Execute what file? UPDATE
File title:NAMEFILE

Record number:3
Old Record:

NAME:
COMPANY:
STREET:
CITY&STATE:
TELEPHONE:

Bull, Terry
Ramona Stock Farm
Box 48 RFD #2
Ramona, CA 92065
789·1573

Enter Changes:
RETURN skips item with no change; ESC+RETURN skips whole Record

NAME:
COMPANY:
STREET:
CITY&STATE: Any town, U.S.A._

7-40

Figure 7-2. Illustration of CRT display
wi th UPDATE Program.

The Compiler Directive (*$1-*) turns off the
IOCHECK option so that the program itself can
cope with the problem that may arise if the file
whose directory name is read into TITLE happens
not to be on the disk. In this simple program, the
response to this is to create a new file using the
REWRITE statement. The use of the IOCHECK
option in connection with recovery from I/O errors
is discussed in "Error Recovery" in this chapter. If
the IOCHECK option were not turned off, and the
requested file not in the directory, then the RESET
statement would cause the program to terminate
abnormally.

The program cycles, each time requesting a new
record number until a negative record number is
typed in. It then terminates after closing the file with
LOCK. If the file was already on the disk when the

program started, the LOCK option would be
ignored in executing the CLOSE statement.

No provision is made for the problem which would
occur if the requested record position were outside
the existing file or unused area immediately
following the file. In that case this program will
terminate abnormally.

No provision is made for the case in which one
simply wishes to read a record, and thus make no
change at all in the record stored on the disk. In that
situation, the PUT(FID) statement is not needed.

Indexed Access - Efficiency Considerations

While the design of databases for use in the UCSD
p-System is beyond the scope of this book, a few
comments on efficiency and the construction of
indexes may prove helpful.

In the terms relevant to this chapter, an index is a
logical device which allows rapid determination of
the position number of a record within a data file.
The sequential index, which is one of the simplest
index designs, is also one of the most useful in the
interactive environment for which the UCSD
p-System is designed. A sequential index is basically
a table in which each entry is a record containing two
fields:

a) A copy of one field of a record from the main
data file, for example the name of a person. This
field is called the "Key" referred to by the
index.

b) The position number of the data record in the
main data file which is associated with the value
of the Key in field (a).

7-41

7-42

The "table" might be stored, during processing, in
an array of records containing these two fields. It is
more likely to be stored on two levels, one called the
"coarse index" in a small array, and the other called
the "fine index" stored in a file. Because of space
limitations, only one "page" of this file will be
brought into the computer's memory at anyone
time (See below for a definition of "page").

In any event, the records in the index table are sorted
according to the value of the Key, usually in
ascending order. This makes it possible to use an
efficient searching algorithm such as a binary search
to find any entry having a specific Key value in the
index. In the interactive situation, one often knows
only an approximate value for a desired Key. One
may not even know whether a given Key is stored in
the file and index. Either way, a binary search yields
the location in the index where the Key would be
located if it were present. It is then possible to
display on the CRT screen a listing of a few index
entries both before and after the one desired. A
visual scan of this list will allow using a simple
process to indicate whether the full data record
associated with any particular index Key value
should be retrieved from the main data file. The
record position number associated with the Key in
the index table entry is then used to make the desired
random access to the data file. Many people refer to
the use of a sequential index, to make random access
to a data file, as the "Indexed Sequential Access
Method", or simply "ISAM", because of the
widespread use of that term on the large IBM
computers.

In a floppy disk based interactive system, as in any
other, there are questions about the design of the
index, the order in which the data records of the
main file should be stored, and many others.
Typically the sequential index file is broken up into
groups of several dozen to several hundred index
table records, each group being stored in a separate

large record in the index file. This makes it possible
to bring a whole group of index table records into
main memory in one GET operation. Because it
takes time to complete a GET operation, each group
or "page" of index table entries should contain a
reasonably large number of index entry records. If
the number gets larger than can be accommodated
in roughly half of one floppy disk track, then the
time taken just to transfer the index page into
memory becomes an important consideration.

If the size of the index is large enough to occupy
several pages, a small" coarse" index should be
maintained just to allow fast computation of the
number of the index page in which a desired Key
value will be found. The time taken to perform a
binary search within one index page will usually be
far smaller than the time taken to access, i.e. GET,
just one index page from the disk. The entries in the
coarse index usually contain copies of the last key
value found in each page of the main index, which is
now called the "fine" index. In floppy disk based
systems, the size of the coarse index will almost
always be quite small. It can therefore be loaded into
memory when the program is initialized, and
maintained there without disk accesses until the files
are closed.

If the sorted sequential index table is arranged to fill
every available index record position, then there will
be serious problems in providing rapid interactive
response to a user who is updating a file. Each update
will probably require adding a new index record
somewhere in the middle of the index, or deleting an
old record from the middle. The time taken to resort
a sequential index is likely to be prohibitive. With
floppy disks, a good strategy is the following. A
portion of each index page is kept unused and
available for expansion of the contents of the page.
It then is only necessary to PUT the updated page
containing the Key when the update operation
terminates.

7-43

Maintenance of the main data file will probably
require occasional sorting at times when it is desired
to conduct a batch (non-interactive) or bulk update
operation involving a large fraction of all the data
records in the file. Batch operations usually proceed
sequentially from beginning to end of a file, rather
than using randomly ordered accesses. The time
needed to sort the main data file in a floppy disk
system will probably run into many minutes, or even
hours. However, the time saved in making it
unnecessary to use an index in the batch update will
often more than compensate for the time taken in
the sort.

The data records are usually not moved during
interactive updating activities. New records are
appended to the end of the file, or they replace
records that have been marked as "empty" during
previous update transactions. Once it becomes
necessary to sort the main data file, any indexes
referring to that file must also be updated. The
simplest and most efficient procedure will probably
involve rebuilding the indexes after the sort is
completed.

Text Files

7-44

Much of the Input/Output environment of Standard
Pascal is designed for working with Text files which
can be thought of as stored on magnetic tape. UCSD
Pascal provides two similar kinds of files for handling
text streams of characters. A general description of
Text files in UCSD Pascal was given in "Physical
Description of UCSD Pascal Disk Files" in this
chapter. One kind, associated with the predeclared
type TEXT, works essentially the same as type
TEXT in Standard Pascal. The other, associated with
type INTERACTIVE, is intended primarily for use
with interactive terminal devices. Both types can be

used with disk files however. File variable
declarations have the following appearance.

FT:TEXT;
FI: INTERACTIVE

Differences between these two forms are explained
in the following subsections.

READ and WRITE

The READ statement is used to obtain characters
from the input device, and to assign a value based on
those characters to a variable within the program. If
the variable is of type INTEG ER or REAL, the value
represented by the input stream of characters is
converted into the internal binary form used by the
program.

If CH is a variable of type CHAR, then:

READ(FT,CH)

is equivalent to:

BEGIN
CH := FT';
GET(FT)

END

while:

READ(FI,CH)

is equivalent to

BEGIN
GET(FI);
CH:= FI'"

END

7-45

7-46

In effect, a READ involving a variable of any other
type causes repeated use of this form. If X is a
variable of type INTEGER or of type REAL, then:

READ(n,X)

and:

READ(FI,X)

carry out format conversion of the input character
stream, and the internal binary form of the number is
assigned to X. In either case, termination of the
READ operation occurs upon detection of the first
character which is not legally part of a constant of
INTEGER or REAL type, as the case may be. In
either case, the value of the window variable is left
equal to the first non-numeric character following
the number scanned by the READ statement. This is
equivalent to including the first implicit GET(FI)
operation of the next READ(FI, ...) at the end of
READ(FI,X). Consequently, the next READ(FI, ...)
statement omits execution of the first implicit
GET(FI). In this way, a sequence ofREAD(FI, ...) or
READ(FT, ...) operations will produce the same
values when reading the same disk file.

Note that RESET(FI, title-string) does not execute an
implied GET(FI), whereas RESET(FT, title-string)
executes GET(FT) automatically.

If S is a variable of type STRING, then:

READ(n,S)

and:

READ(FI,S)

both assign all characters from the input stream to S
up to the next end-of-line character, or up to the

maximum capacity ofS. The end-of-line character is
not moved into the string, and the file's character
pointer is left pointing at the end-of-line character.

Output using:

WRITE(FT,CH)

or:

WRITE(FI,CH)

both produce the equivalent of:

BEGIN
FT":= CH;
PUT(FT)

END

In other words, output using WRITE gives the same
results regardless of whether the file is declared to be
of type INTERACTIVE or TEXT. If WRITE refers
to a variable of type INTEGER or REAL, then
format conversion takes place from internal binary
form to an external stream of characters.

EOLN, READLN, WRITELN: End-Of-Line

Text files in Pascal are subdivided into lines, each
consisting of a sequence of characters terminated by
an End-Of-Line marker is a single ASCII CR control
character (Carriage Return) which has a decimal
value of 13. In Standard Pascal, the End-Of-Line
marker is not regarded as a character, and it cannot
be handled in the way normal characters are handled.
If you use conventional Pascal I/O operations with
Text files in UCSD Pascal, you will have no occasion
to work directly with the CR control character.

The built in Boolean function EOLNifile-identifier)
returns the value TRUE when the position pointer of

7-47

7-48

a Text file points at an End-Of-Line marker. This
occurs at the termination of a READ statement
which finishes its work because it encounters an
End-of-line marker. Consider the program fragment
shown in Listing 7-3:

WRITELN;
RESET(F1);
WHILE NOT EOF(FT) DO

BEGIN
WHILE NOT EOUI(Fll DO

BEGIN
READ(rr,CH);
WRllE(CH);

END;
RElUUN(fT];
WRITUN;

END;

Listing 7-3. Program fragment showing
use of EOLN(FT).

The first WRITELN statement moves the CRT
display cursor to the left margin of a new line.
(Remember that READ or READLN without an
explicit reference to a file identifier refer by default
to the predeclared file INPUT, which in UCSD
Pascal obtains characters from the keyboard.
Similarly WRITE and WRITELN refer by default to
the file OUTPUT.)

RESET(FT) leaves EOLN(FT) and EOF(FT) set to
FALSE. Individual characters from the first line in
the file are then assigned to the character variable
CH, and then written to the computer's console
CRT (or other display device). READ(FT,CH) for
the last text character on a line assigns that character
to CH, and then executes the G ET(FT) which picks

up the End-of-line character. This leaves EOLN(FT)
set TRUE, and the WHILE loop terminates.

READLN(FT) is equivalent to:

BEGIN
WHILE NOT EOLN(FT) DO GET(FT);
GET(FT);

END

which causes the file's position pointer to skip to the
beginning of the next line of text. At the end of the
WHILE statement in this fragment, the position
pointer points to the End-of-line marker, the value
returned by EOLN(FT) is TRUE, and the content of
the window variable FTA is a SPACE character. The
single G ET(FT) then advances the pointer and picks
up the first character on the next line. The matching
WRITELN does the equivalent on the display in
preparation for the next line of text.

To produce precisely the same result using a disk file
FI declared to be of type INTERACTIVE, the
program fragment in Listing 7-4 should be used:

mHlUIHN;
~!ESH(f!];

WHilE NOI DO
9!EI]!FI!

WHIUE NOi illlill
i!JIEGIN

READ[fl,CH];
IF NOT EOlN[fl) iHEN

WIUTE(CH);
END;

READLN(FI);
WRITELN;

END;

Listing 7-4. Program fragment showing
use of EOLN(FI).

7-49

7-50

The extra IF NOT EOLN(FI) ... within the inner
compound statement is needed to suppress writing
the blank character assigned to CH by the last
READ(FI,CH) on a line. If the program is only to be
used for display purposes, there may be no reason to
include the extra IF statement, since the display of
this implied blank will usually not be noticed. If the
program is to be used for copying one disk file into
another, there may be no reason to use files of type
INTERACTIVE, since WRITE statements function
in the same manner for files of both type TEXT and
type INTERACTIVE. Thus the principal reason for
using the program fragment shown in Listing 7-4
would be a desire to use precisely the same program
taking its input character stream either from a disk
file or from the keyboard (by using the title string
"CONSOLE:").

In order to account for the difference between
handling of files of type INTERACTIVE, from those
of type TEXT, READLN(FI) is equivalent to the
fragment:

WHILE NOT EOLN(FI) DO GET(FI)

The trailing G ET(FI) is not needed, as in the case of
READLN(FT) since the next READ(FI, ...)
statement will implicitly perform a GET(FI) as its
first action.

WRITELN(FT) is equivalent to WRITELN(FI), and
both have the effect of appending an End-of-line
marker to the output file.

Efficiency Considerations

For practical reasons associated with the way in
which Text files have been implemented in the
UCSD p-System, it will generally cost much less
processing time to READ into variables of type
INTEGER, REAL, or STRING than to carry out
the equivalent steps using repeated READ(CH) with
associated program logic. The same general
observation also applies to WRITE.

Note that it is often convenient in UCSD Pascal to
fill a sequence of character positions with blank
SPACE characters using a statement like this:

WRITE«output-file-id>,' ': <field-width>)

where field width is an integer valued expression.
This is compiled to be roughly the equivalent of:

FOR 1:=1 TO <field-width> DO
WRITE« output-file-identifier>,' ')

and thus is much slower than:

WRITE«output-file-id>, S: <field-width>)

where S is a variable of type STRING which has been
preassigned a string of SPACE characters.

If you plan to work with large Text files in UCSD
Pascal, you will probably find it useful to become
acquainted with several built-in procedures and
functions provided with the UCSD p-System
expressly for working with packed arrays of
characters (of which strings are a special case). These
include MOVERIGHT, MOVELEFT, SCAN, and
FILLCHAR. These are implemented so as to run
about as fast as possible in assembly language.

7-51

Error Recovery

7-52

Before you do much work with disk files, you will
learn that I/O related processing errors do occur,
and that it would be best to write programs capable
of recovering from those errors without terminating
abnormally. The potential sources of error are many.
They include the following, as well as others not
mentioned here:

• Marginal recording or playback error due to a
flawed surface on the disk itself, or due to
improper adjustment of the disk drive. This
often will cause just a single isolated bit to be
recovered by a program incorrectly. The IBM
Personal Computer provides hardware
intended to check for errors of this type. The
operating system then rereads the data on
input, and attempts to complete a GET
operation without an error being signalled. The
data thus obtained will usually be correct, but
may contain an error in one or more bytes.

• Failure of a recording or playback operation
with the result that a complete 512-byte block
of data is unrecoverable (i.e. for all practical
purposes destroyed). This can happen as a resul1
of having an intermittent eletronic failure, or a1
a result of a power failure at the time when a
PUT operation is in progress.

• Failure of a READ statement due to
encountering data of the wrong format. For
example, a READ into an INTEGER variable
will expect to find a blank SPACE character,
"+", "-", or a numeric digi t. If the first characte
is a letter or special punctuation character, the
READ statement will fail on a format I/O error

• Loss of a complete disk for some reason. An
example might be excessive temperature in th,

room where the disk is stored. Another might
be failure of the disk drive mechanism.

• An attempt to PUT a record outside the disk
area allocated to a file.

• An attempt to open a disk file that is not
currently available on a disk drive (or volume)
connected to the machine.

• An attempt to create a new disk file with a title
that matches the title of a file already in the disk
directory.

The UCSD p-System is programmed to terminate
abnormally when an Input/Output related error is
detected in a user program, unless the programmer
has suppressed error termination logic using the
Compiler Directive:

(*$1-*)

If this option is in use, then the programmer can
determine whether each I/O statement has
completed its work properly by checking the value
of the built-in function IORESUL T which returns an
integer value. If the value ofIORESUL T is zero, then
the most recent I/O related statement terminated
normally, i.e. with no error. Otherwise, the value of
IORESULT is determined by the nature of the error,
and it can be used to control whatever recovery
action the programmer may wish to take. The values
ofIORESULT correspond to the I/O error messages
given in Appendix G of this book.

Just how your program should proceed to cope with
an error once it has been discovered is a large topic
that I cannot discuss in more than a cursory way in
this book. As a brief example, let us assume that you
want to create a new disk file which is to occupy an
area of 100 blocks. Since the disk may already
contain other files, it is possible that there will be no

7-53

7-54

unused area large enough to hold the file. A suitable
recovery procedure for the user of your program
might be to mount an alternative disk, which has
previously been initialized with a UCSD Pascal file
directory, but which is known to have enough space
for the file. The program fragment shown in Listing
7-5 shows how this might be handled:

(*$1-*)
REPEAT

REWRITE(FID,'VOLlD: NEWFILE(l 00],);
RSLT:= 10RESULT;
IF RSLT<>O THEN
IF RSLT=8 THEN

WRITELN
('No room for file; Mount another disk')

ELSE
IF RSLT=9 THEN

WRITELN
(,Requested volume Is not on-line')

ELSE
WRITELN

('Unable to open new file! Check disk drive');
UNTIL RSLT=O;
(*$1+*)

Listing 7-5. Program fragment illustrating
use of IORESUL T.

This program fragment is designed to loop until the
REWRITE statement terminates normally. The user
is given suggestions about how to cope with the most
likely errors. The integer variable RSL T is needed to
provide temporary storage for the value of
IORESULT at termination of the REWRITE
statement. Otherwise the WRITELN statement
containing an error message will reset the value of
IORESUL T to zero, and the loop will terminate
immediately whether there is an error or not!

In general, the 10CHECK option should be enabled
again after any section of a program which requires it
to be turned off in order to cope with specific errors.
Otherwise the program may encounter an I/O error
from which it cannot recover, yet it might continue
to run causing further damage. To re-enable the
10CHECK option use the Compiler Directive
(*$1+*) as shown in Listing 7-5.

As a general strategy for recovering from errors in
working with disk files, you should generally arrange
to save "backup" copies of master disk files
periodically. How long the period is will depend
upon how much work you are willing to do in
recovering from an error which completely destroys
the current working version of a file containing
important data. To assist in backing up to an earlier
version of your working file, it may be useful to
retain a Text file containing a copy of all input from
the keyboard which resulted in updates to that file. It
then should be possible to rerun the update program
using the copies" audit trail" of input text from that
file, and thus to recreate the state of the main data
file as it was just before the fatal error took place.

7-55

NOTES

7-56

CHAPTER 8. USING LIBRARIES
OF SPECIALIZED
ROUTINES (UNITS)

Contents

Goals for this Chapter 8-3
The Reason for Having Preprogrammed

Units 8-3
Overview of Units 8-5
A Sample Unit and its Use 8-8
The Librarian 8-13

8-1

NOTES

8-2

Goals for this Chapter

Once you have become an experienced beginner in
the use of Pascal, you are likely to realize that it
would be possible to extend the Pascal language to
simplify the writing of programs in whatever field of
applications you happen to prefer. Rather than
extending the language itself, it turns out to be
better to provide sets of preprogrammed routines
which perform frequently needed computations in
various fields of applications. In the UCSD
p-System, a set of preprogrammed routines can be
grouped together in a separate "Unit" in such a way
that any of the routines (procedures and/or
functions) may be used as if they had been declared
within the using Pascal program. Several Units may
be grouped together into a disk file called a
"Library" .

The main goal of this chapter is to provide an
introduction showing how preprogrammed Units
and Libraries of Units can be used by Pascal
programmers. Instructions on how to prepare a Unit
to be used in this manner are beyond the scope of
this book, but may be found in the User's Guide/or the
UCSD p-System. The introduction provided here is
left rather general of necessity.

The Reason for Having
Preprogrammed Units

A principal reason for the growing popularity of
Pascal is the fact that the language is powerful yet
very concise. By "powerful" I mean that Pascal can
be used with a minimum of effort to write programs
in almost any field of application, not to mention its
use in writing system software. By "concise" I mean
that the translation of Pascal programs into
executable form requires a relatively small, and

8-3

8-4

relatively simple, compiler compared with the
compilers needed for COBOL, FORTRAN, PLlI, or
similar general purpose programming languages.
Another principal strength of Pascal is that
programs written in Pascal tend to be relatively
"clean", i. e. free of logical errors, compared to
programs written in the other popular languages to
perform the same actions.

A growing community of programmers have come
to realize that Professor Wirth's original design for
Pascal provides a remarkable balance between
conciseness and power. Programmers who have
started to use Pascal for creating large and complex
programs often have realized that the language lacks
various specialized facilities that they know are built
into COBOL, FORTRAN, PL/I or other high level
languages. They have then tried to bring about
agreement with other programmers who want to use
Pascal for similar purposes on how Pascal should be
"extended" to provide the missing facilities. It has
turned out to be virtually impossible to obtain any
such agreement, because very few programmers
agree on details of how the extensions should be
designed. The only point on which agreement has
been growing is that an international standard on
Pascal is needed, and that it should be based almost
entirely on Wirth's original definition of Pascal (with
a few minor errors or misconceptions corrected).

The preprogrammed Units facility, provides a way to
extend the utility of the language through the use of
a very small set of simple extensions to the standard
base language. This facility makes it possible to
reduce the number of extensions contained in the
UCSD Pascal language, while allowing the utility oj
UCSD Pascal to be greatly expanded.

Overview of Units

In UCSD Pascal, a Unit is a collection of procedures
and! or functions which can be used as if they were
declared within the using program. A Unit may also
contain CaNST, TYPE, and VAR declarations, and
these may be used as if they were declared in the
using program. A Unit is similar to an "Include file"
(see "Include Directive" in Chapter 6 of this book) in
that the content of the Unit is prepared separately
from the text of the program in which it will be used.
Unlike an Include file, a Unit is usually compiled
separately from the using program. This makes it
unnecessary to spend the time needed to compile
the Unit each time it is used.

An Include file is just an ordinary text file, the
contents of which are substituted by the Compiler
for the directive:

(*$1 Include-file-name*)

Thus the Compiler must treat the entire contents of
the Include file as if they were contained in the main
source program file. If the Include file is long, then a
large amount of compile time may be needed each
time one compiles the program file containing the
Include directive, even though the Include file may
never be changed.

A Unit is prepared in two main sections, the
INTERFACE section and the IMPLEMENTATION
section. The INTERFACE section contains CaNST,
TYPE, and VAR declarations, as well as
PRODCEDURE and FUNCTION heading
declarations. All of these declarations look just as
they would if the same declarations were placed
directly in the program which uses the Unit. All of
the declarations in the INTERFACE section are
intended to be treated as if they were actually
present within the declarations at the global level of

8-5

8-6

the program which uses the Unit. All of the
declarations in the INTERFACE section are
intended to be treated as if they were actually
present within the declarations at the global level of
the program which uses the Unit. The
IMPLEMENTATION section contains any LABEL
declaration, and additional CONST, TYPE, V AR,
PROCEDURE and FUNCTION declarations, along
with the local declarations and executable parts of all
the PROCEDUREs and FUNCTIONs. The
INTERFACE section may also contain an
Initialization Section for the Unit itself. (For more
information about these see the User's Guide.

The using program may refer only to the items
contained in the INTERFACE section. All of the
contents of the IMPLEMENTATION section are
considered to be "private" to the Unit, and not
available directly to the using program. The
contents of the INTERFACE section are considered
to be "public" and thus available directly to the
using program.

During compilation of the using program, the
contents of the INTERFACE section of a Unit are
treated as if they were in an Include file referred to by
an Include directive at the beginning of the using
program. This allows the compiler to treat the public
parts of a Unit just as if they had been included in the
using program. Since the IMPLEMENTATION
section of the Unit is precompiled, it does not need
to be compiled again. In other words, the executable
code part of the Unit needs to be generated by the
compiler only once - not each time the Unit is used.
However the routines (PROCEDUREs and
FUNCTIONs) whose headings appear in the
INTERFACE section of the Unit may be called by
the using program just as if their entire contents had
been compiled along with the program.

The advantage of this approach is that a programmer
can now be given a large library of routines designed
to carry out most of the "primitive" operations
commonly needed to write Pascal programs for
almost any field of applications. For example,
anyone who writes a program designed to display
data on a CRT screen, and/or to collect input data by
filling in the blanks in a "form" displayed on the
screen, needs to perform certain simple operations
over and over again. These operations may include
placing the cursor at a particular location on the
screen, clearing all parts of a line to the right of the
cursor, clearing the entire screen from the cursor
location to the end, underlining a specified "field" of
columns on one line and accepting only certain data
values within that field, and so on. The Screen
Control Unit, which provides routines for these and
other purposes is available as part of the UCSD
p-System.

8-7

A Sample Unit and its Use

8-8

Listing 8-1 shows the INTERFACE section of a
simplified screen control Unit. Listing 8-2 shows a
test program SCDEMO which uses this Unit. Both
the test program and the Unit with the files are
available on the STARTUP disk. You should be able
to experiment with the program to verify your
understanding of how Units work.

UNIT SCDEMO;
INTERFACE
TYPE

SCCHSET = SET Of CHAR;
SCKEYCOMMAND =

(!mAC KSPACEKEY, nXKEl U PKEY, DOWN KIHf,
UEfTKEY,RiGHTi<n,NDUEGIU);

VAR
SCCH:CHAR;

PROCEDURE SCINI1'IAUlE;
PROCEIlUIU sellEn;
PROCEDUIU SCRIGHT;
PROCEDURE seup;
PROCEDURE SCDOWN;
PROCEDURE SCGETCCH(VAR CH:CHAR;

IUTURNONMATCH:SCCHSEll;
FUNCTION SCMAPCRTCOMMAND

(Kelt: CHAR): SCKEYCOMMAND;

IMPLEMENTATION
(*1he Implementation section begins here*)

Listing 8-1. Sample of a Simplified Screen
Control Unit.

(Only the INTERFACE section is shown.)

PROGRAM TESTSCUNIT;

USES (*$U SCDEMO.CODE*) SCDEMO;

VAR DONE:BOOLEAN;CH:CHAR;
CHOK:SCCHSET;

PROCEDURE SQUAWK;
BEGIN
WRITE(CHR(7(*BEL*)JJ;

END;

PROCEDURE CONTROL
(CMD:SCKEYCOMMAND);

BEGIN
If CMIl IN [BACKSPACEKEf, IJPKEW,

!lOWN KEY, lEfTKn, RIG Hun,
EXTKEV] nm\!

CASE eMil Of
9ACKSPACEK!E'f:

BEGIN
StIHT;
W!fUUr '];
SellEn;

END;
UFTKEY: SCI.HT;
RIGHTKEY: SCHIGHT;
IJPK!EY: SClIP;
DOWN KEY: SCDOWN;
nnE\': OON£:= TRUlE

lEND [*CASES*J
ElSE
SQUAWK;

!ENIJ [*I:ON1801.*);

8-9

8-10

BEGIN (*MAIN PROGRAM*)
SCINITIALlZE;
CHOK:=[CHR(O) .. CHR(31), , A' . .'Z'];
WRITE
(,Arrow keys move cursor <CTRL-C> <BS>');
DONE:=FALSE;
REPEAT

SCGETCCH(CH,CHOK);
IF CH IN [CHR(O) .. CHR(31)] THEN
CONTROL(SCMAPCRTCOMMAND(CH))

ELSE
WRITE(CH);

UNTIL DONE;
END.

Listing 8-2. Sample Program TESTSCUNIT
which Uses the SCDEMO Unit.

The program TESTSCUNIT makes use of the
procedures and functions contained in the
SCDEMO Unit. TESTSCUNIT also makes use of the
scalar type SCKEYCOMMAND, and the variable
SCCH, both of which are declared in the
INTERFACE section of the Unit.

For example, the first statement in the main section
of the program TESTSCUNIT is a call to the
procedure SCINITIALIZE which is contained in the
Unit SCDEMO. Only the heading of the procedure
appears in the INTERFACE section. In effect, the
heading of the procedure here is like a FORWARD
procedure declaration. The body of the procedure is
declared in the IMPLEMENTATION section of the
Unit, and its detailed contents are of no concern to
us in working on the program. Of course one needs
to know what each procedure in the Unit does in
order to write the program sensibly. The
SCINITIALIZE procedure is used to load initial
values into tables used by the other procedures and
function in the Unit.

The program TESTSCUNIT provides a means of
moving the cursor about on the screen, and for
typing upper case letters wherever the cursor may be
located. The BACKSPACE key may be used to back
over and erase a displayed character. Pressing
CTRL-C causes the program to terminate. Cursor
movement is controlled by the procedures SCUP,
SCDOWN, SCRIGHT, and SCLEFT, all of which
are contained in the Unit.

The procedure SCG ETCCH is used to read one
character (a Command CHaracter) from the
keyboard, returning the value of that character in
the variable parameter CH. The procedure fails to
return if a character typed on the keyboard is not in
the set RETURNONMA TCH. Instead, additional
characters are read from the keyboard until a
character falling in that set is pressed. In the main
program of TESTSCUNIT, the variable CHOK is
initialized to the set of characters considered "OK"
when SCG ETCCH is called within the REPEAT
loop.

If the character returned by SCG ETCCH falls in the
group of control characters, which in ASCII have
decimal equivalent values ranging from 0 to 31, then
the procedure CONTROL is called. The single
parameter of CONTROL is of type
SCKEYCOMMAND, which is the scalar type
declared in the Unit. But the values returned by
SCG ETCCH correspond to the codes assigned to the
keys on your keyboard. Since there are no industry
standards on which character codes should be
associated with the cursor positioning arrows (Up,
Down, Right, Left), it is necessary to arrange for the
arrow keys to cause the corresponding display
procedures to be called. This is accomplished with
the help of the function SCMAPCRTCOMMAND
which accepts a character value as its input
parameter, and returns a value of type
SCKEYCOMMAND. This function makes use of a

8-11

8-12

table hidden in the Unit which relates each ASCII
control code to one value of type
SCKEYCOMMAND. The values in the table are
initialized by the procedure SCINITIALIZE, often
by reading information stored in the miscellaneous
information file supplied with the UCSD p-System.

You might ask why we do not simply arrange to have
the arrow keys move the cursor on the screen
without having to handle the problem explicitly in a
Pascal program. The reason is that many programs
are written to control the response to cursor
movement key commands in different ways
depending upon circumstances. For example, in the
Editor's I(nsert command, use of the arrow keys
could cause a mess on the screen if they were not
trapped out and translated into the question-mark
character "?". However, outside the I(nsert
command, the Editor makes use of the arrow keys to
move the cursor in the familiar way.

Notice the two lines immediately following the
program's heading line, i. e.

PROGRAM TESTSCUNIT;
USES (*$U SCDEMO.CODE*) SCDEMO;

The Unit is made available to the program by the
USES statement, which must appear immediately
following the PROG RAM heading, before any of the
program's own declarations. The comment line
contains an optional compiler directive which
informs the Compiler which disk file to reference for
any subsequent Units referred to by the USES
statement. If all the Units you wish to employ are in
the file SYSTEM. LIBRARY then there is no need to
employ the directive:

(*$U library·filename*)

since the Compiler assumes that all Units referred to
in the USES list are to be found in

SYSTEM. LIBRARY unless told otherwise. If you
want to use Units called UNITA and UNITB, both
located in the SYSTEM. LIBRARY, and also the Unit
SCDEMO as above, then the USES statement should
read as follows:

USES UNITA,UNITB,
(*$U SCDEMO.CODE*)

SCDEMO;

If Units from several different files are to be used,
then place the appropriate compiler directive
referring to each file before the list of Units
contained in that file in the USES statement. The
program may contain only one USES statement.

The Librarian

A utility "Library" program file called
LIBRARY.CODE is supplied with the UCSD
p-System for the purpose of binding together
various separately compiled Units into a single
"library" file or to bind units into a host file. This
utility is described in the User's Gutde for the UCSD
p-System.

8-13

NOTES

8-14

APPENDIXES

Contents

Appendix A. Special Keys A-I
Appendix B. Screen Editor Commands. .. B-1
Appendix C. Filer Commands C-l
Appendix D. Operating System

Commands D-l
Appendix E. Compiler Syntax Error

Messages E-l
Appendix F. Execution Error Messages. .. F-l
Appendix G. I/O Error Messages G-l

Appendixes 1

NOTES

Appendixes 2

APPENDIX A. SPECIAL KEYS ON
THE IBM PERSONAL
COMPUTER
KEYBOARD

UCSD p-System Related Keys
The following table lists the special keys that are
used by the UCSD p-System on the IBM Personal
Computer:

FUNCTION

ESC

DEL

RETURN

EOF

BACKSPACE

ETX

TAB

BREAK

KEY

ESC

Ctrl-BACKSPACE

The bent left arrow key.

Ctrl-C

The left arrow at the upper right
of the keyboard.

Ctrl-C

The left/right arrow key at the
upper left of the keyboard.

Ctrl-BREAK - This key is a "hard"
break which forces an immediate
halt in program execution,
followed by system
re-initialization.

A-I

BREAK

STOP

DCl

LF

FLUSH

INS

DEL

Ctrl-@ - This key is a "soft" break
which causes a halt in program
execution at the next I/O
operation, followed by System
re- ini tializa tion.

Ctrl-S - Stops execution at the
next I/O operation until pressed
again.

Ctrl-Q - In Editor's I(nsert mode,
pressing this twice jumps to left
margin.

Ctrl-RETURN

Ctrl-F - Discards output waiting
to be displayed.

INS - Inserts a blank character in
the Editors eX(change mode.

DEL - Deletes a character in the
Editors eX(change mode.

CRT Related Keys

A-2

The PRINT key will send whatever is currently
displayed on the CRT to the Printer.

When the screen is in40 character mode Ctrl-Right
Arrow will shift the window 20 characters to the
right. Ctrl-Left Arrow will perform the same shift 20
characters to the left. These commands will wrap
around if the right-most (or left-most) portion of the
screen is already displayed. Also, in 40 character
mode, the usual cursor moving keys (Left Arrow,
Space Bar, etc.) will perform the same shift of the
display window whenever the cursor moves off the
screen.

For color monitors, AL T-C is a toggle which turns
color on and off.

APPENDIX B. SCREEN EDITOR
COMMANDS

repeat factor is a number typed before any of the
following commands. If not typed at all, value of
repeat factor is assumed to be 1. 'j' in place of a number
causes repetition until end of file is reached.

direction is either forward or backward. Current
direction is indicated by the broken bracket in 1 st
character position of the prompt line. '>' signifies
forward. '<' signifies backward. Press '>' key to force
direction to be forward, or '<' to force backward.

down-arrow moves repeat-factor lines down.

up-arrow moves repeat-factor lines up.

right-arrow moves repeat-factor spaces right.

left-arrow moves repeat-factor spaces left.

space moves repeat-factor spaces in direction

back-space moves repeat factor spaces left.

tab moves repeat-factor tab positions in direction.

return moves to the beginning ofline repeat-factor lines
in indicated direction.

"<" "," "-" changes indicated direction to backward.

">" "." "+" changes indicated direction to forward.

"=" moves to the beginning of what was just found,
replaced, inserted, or exchanged.

B-1

B-2

A{djust: Adjusts the indentation of the line that the
cursor is on. Use the arrow keys to move. Moving up
(down) adjusts line above (below) by same amount of
adjustment as on the line you were on. repeat-factor is
valid. ETX terminates.

C(opy B{ uffer - Copies what was last inserted,
deleted, or zapped into the file at the position of the
cursor.

C(opy F{ile - Copies from a portion or all of a text file
that exists in the directory. Partial files are identified
by use of file markers.

D{ elete: Treats the starting position of the cursor as
the anchor. Use any moving commands to move the
cursor. ETX deletes everything between the cursor
and the anchor. ESC cancels the deletion.

F{ind: Operates in L{iteral or T{ oken mode. Finds
the target string. Use any special character to delimit
the target. repeat-factor is valid. direction is applied. "S'
may be substituted for the target previously used.

I{nsert: Inserts text. Use Backspace to erase one
inserted character, DEL erases last inserted whole
line. ETX accepts inserted text. ESC cancels the
insertion.

J{ump: Jumps to the B(eginning, E{nd or previousl)
set marker.

M{argin: Adjusts anything between two blank or
command lines to the margins which have been S(e
in the E(nvironment. Command lines are identifie(
by A in 1 st column. Invalidates the copy buffer.

P(age: Moves the cursor one page in indicated
direction. repeat-factor is valid. direction is applied.

Q{uit: Leaves the editor. You may U{pdate, E{xit,
W(rite, or R(eturn.

R(eplace: Extension of the F(ind command.
Operates in L(iteral or T(oken mode. Replaces the
target string with the substitute string. V(erify option
asks you to indicate whether each occurrence of the
target is to be replaced or skipped. S may substitute
for either target or substitute and means that previous
target or subst is to be used. repeat-factor applies.
direction is valid. ESC aborts R(eplace before
specifications are complete.

S(et: M(arkers by assigning a string name to them.

S(et: E(nvironment for A(uto-indent, F(illing,
margins, T(oken, and C(ommand characters.

V(erify: Redisplays the screen with the cursor in
center of screen.

eX(change: Exchanges the current text for the text
typed while in this mode. Each line must be done
separately. backspace causes the original character to
reappear. ETX completes the exchange.

Z(ap: Treats the starting position of the last thing
found, replaced, or inserted as an anchor and deletes
everything between the anchor and the current
cursor position.

B-3

NOTES

B-4

APPENDIX C. FILE MANAGER
(FILER)
COMMANDS

wild indicates wildcards can be used. = substitutes for
all or part of each file name, and causes automatic
reference to all files matching the resulting pattern.
? is similar to = but requests the user to indicate
whether each individual file should be affected by
the command.

B(ad blocks: Scans the disk and detects bad blocks.

C(hange: Changes a file or volume name. wild

D(ate: Lists the current system-disk date, and
enables the user to change all or part of that date.

E(xtended list: Lists the specified directory as in
L(dir but in more detail. wild

G(et: Loads the designated file into the workfile.

K(runch: Moves the files on the specified volume so
that all the unused blocks are moved to the end of
the disk.

L(dir: List a specified disk's directory or any subset
thereof to the volume and file specified
(CONSOLE: is default). wild

M(ake: Creates a directory entry with the specified
name and size.

N(ew: Clears the workfile (workspace).

P(refix: Changes the current default volume
identifier to the volume specified.

C-l

C-2

Q(uit: Returns user to the Command: world.

R(emove: Removes file entries fram the specified
directory. wild

S(ave: Saves the workfile under the name specified
by the user.

T(ransfer: Copies the specified file(s) to the given
destination. wild

W(hat: Identifies the name and state (saved or not
saved) of the workfile.

V(olumes: Lists volumes currently on-line, along
with their unit numbers.

eX(amine: Attempts to physically repair suspected
bad blocks.

Z(era: Creates a blank directory on the specified
volume. The previous directory is no longer
retrievable. Creates a directory on previously
uninitialized disks (but does not Iformat} a
previously unformatted disk).

APPENDIX D. OPERATING
SYSTEM
COMMANDS

A(ssem: Executes the Assembler
(SYSTEM. ASSEMBLER). The Assembler expects
its input in SYSTEM.WRK.TEXT and generates its
output in SYSTEM.WRK.CODE.

C(omp: Executes the Pascal Compiler
(SYSTEM. COMPILER).

D(ebug: Invokes the Pascal Debugger which is a unit
within the Operating System.

E(dit: Executes the Screen Editor
(SYSTEM. EDITOR).

F(ile: Executes the File Manager (SYSTEM. FILER).

H(alt: Stops execution of the Pascal P-machine
Interpreter. The System must be bootloaded to
restart.

I(nit: Re-initializes the System.

L(ink: Executes the System's Linker program, used
for linking assembly language routines to a "host"
routine.

U(ser: Re-starts the program which most recently
was executed.

X(ecute: Prompts for the name of a CODE file for a
program to be executed. If that name (leaving off the
".CODE") is typed in, and terminated with
RETURN, and the name is found in the disk
directory, then the named program will be executed.

D-l

NOTES

D-2

APPENDIX E. COMPILER SYNTAX
ERROR MESSAGES

1 Error in simple type

2 Iden tifier expected

3 Unimplemented error

4) expected

5 : expected

6 Invalid symbol (terminator expected)

7 Error in parameter list

8 OF expected

9 (expected

10 Error in type

11 [expected

12] expected

13 END expected

14 ; expected

15 Integer expected

16 = expected

17 BEGIN expected

18 Error in declaration part

E-l

E-2

19 error in <field-list>

20 . expected

21 * expected

22 INTERF ACE expected

23 IMPLEMENTATION expected

24 UNIT expected

50 Error in constant

51 : = expected

52 THEN expected

53 UNTIL expected

54 DO expected

54 TO or DOWNTO expected in for statement

56 IF expected

57 FILE expected

58 Error in <factor> (bad expression)

59 Error in variable

60 Must be of type SEMAPHORE

61 Must be of type PROCESSID

62 Process not allowed at this nesting level

63 Only main task may start processes

101 Identifier declared twice

102 Low bound exceeds high bound

103 Identifier is not of the appropriate class

104 Undeclared identifier

105 Sign not allowed

106 Number expected

107 Incompatible sub range types

108 File not allowed here

109 Type must not be real

110 <tagfield> type must be scalar or subrange

111 Incompatible with <tagfie1d> part

112 Index type must not be real

113 Index type must be a scalar or a sub range

114 Base type must not be real

115 Base type must be a scalar or a sub range

116 Error in type of standard procedure
parameter

117 Unsatisfied forward reference

118 Forward reference type identifier in
variable declaration

119 Re-specified params not OK for a forward
declared procedure

E-3

E-4

120 Function result type must be scalar,
subrange or pointer

121 File value parameter not allowed

122 A forward declared function's result type
can't be re-specified

123 Missing result type in function declaration

124 F-format for reals only

125 Error in type of standard procedure
parameter

126 Number of parameters does not agree with
declaration

127 Invalid parameter substitution

128 Result type does not agree with declaration

129 Type conflict of operands

130 Expression is not of set type

131 Tests on equality allowed only

132 Strict inclusion not allowed

133 File comparison not allowed

134 Invalid type of operand(s)

135 Type of operand must be Boolean

136 Set element type must be scalar or sub range

137 Set element types must be compatible

138 Type of variable is not array

139 Index type is not compatible with the
declaration

140 Type of variable is not record

141 Type of variable must be file or pointer

142 Invalid parameter solution

143 Invalid type of loop control variable

144 Invalid type of expression

145 Type conflict

146 Assignment of files not allowed

147 Label type incompatible with selecting
expression

148 Sub range bounds must be scalar

149 Index type must be integer

150 Assignment to standard function is not
allowed

151 Assignmen t to formal function is not
allowed

152 No such field in this record

153 Type error in read

154 Actual parameter must be a variable

155 Control variable cannot be formal or
non-local

E-5

156 Multidefined case label

157 Too many cases in case statement

158 No such variant in this record

159 Real or string tagfields not allowed

160 Previous declaration was not forward

161 Again forward declared

162 Parameter size must be constant

163 Missing variant in declaration

164 Substitution of standard proc/func not
allowed

165 Multidefined label

166 Multideclared label

167 Undeclared label

168 Undefined label

169 Error in base set

170 Value parameter expected

171 Standard file was re-declared

172 Undeclared external file

173 FORTRAN procedure or function expected

174 Pascal function or procedure expected

175 Semaphore value parameter not allowed

182 Nested UNITs not allowed

E-6

183 External declaration not allowed at this
nesting level

184 External declaration not allowed in
INTERFACE section

185 Segment declaration not allowed in
INTERFACE section

186 Labels not allowed in INTERFACE section

187 Attempt to open library unsuccessful

188 UNIT not declared in previous uses
declara tion

189 USES not allowed at this nesting level

190 UNIT not in library

191 Forward declaration was not segment

192 Forward declaration was segment

193 Not enough room for this operation

194 Flag must be declared at top of program

195 Unit not importable

201 Error in real number - digit expected

202 String cons tan t must not exceed source line

203 Integer constant exceeds range

204 8 or 9 in octal number

250 Too many scopes of nested identifiers

251 Too many nested procedures or functions

E-7

E-8

252 Too many forward references of procedure
entries

253 Procedure too long

254 Too many long constants in this procedure

256 Too many external references

257 Too many externals

258 Too many local files

259 Expression too complicated

300 Division by zero

301 No case provided for this value

302 Index expression out of bounds

303 Value to be assigned is out of bounds

304 Element expression out of range

398 Implementation restriction

399 Implementation restriction

400 Invalid character in text

401 Unexpected end of input

402 Error in wri ting code file, not enough room

403 Error in reading include file

404 Error in writing list file, not enough room

405 PROGRAM or UNIT expected

406 Include file not legal

407 Include file nesting limit exceeded

408 INTERFACE section not contained in one
file

409 Unit name reserved for system

410 Disk error

500 Assembler error

E-9

NOTES

E-10

APPENDIX F. EXECUTION
ERROR MESSAGES

o System error (fatal)

1 Invalid index, value out of range

2 No segment, bad code file

3 Procedure not present at exit time

4 Stack overflow

5 In teger overflow

6 Divide by zero

7 Invalid memory reference <bus timed out>

B User break

9 System I/O error (fatal)

10 User I/O error

11 Unimplemented instruction

12 Floating point math error

13 String too long

14 Halt, Breakpoint

15 Bad Block

(fatal) indicates a fatal error. All fatal errors either
cause the system to rebootstrap, or if the error was
totally lethal to the system, the user will have to
reboot. All errors cause the system to re-initialize
itself.

F-l

NOTES

F-2

APPENDIX G. INPUT/OUTPUT
ERROR MESSAGES

o No error

1 Bad Block, Parity error (eRC)

2 Bad Unit Number

3 Bad Mode, Illegal operation

4 Undefined hardware error

5 Lost unit, Unit is no longer on-line

6 Lost file, File is no longer in directory

7 Bad Title, Illegal file name

8 No room, insufficient space

9 No unit, No such volume on line

10 No file, No such file on volume

11 Duplicate file

12 Not closed, attempt to open an open file

13 Not open, attempt to access a closed file

14 Bad format, error in reading real or integer

15 Ring buffer overflow

G-1

G-2

INDEX

Note: Items containing 'C as second character are commands
or command options. Items with lower case first character are
generic.

A
A(djust - Editor 4-42
arrow command - Editor 4-5
arrow keys 2-10
A(uto indent - Editor 4-49

B
BACKSPACE A-I
B(ad blocks - Filer 5-44
block - disk 7-9
block-range - Filer 5-46
bootload 2-5
B(uffer - Editor 4-39
buffer - I/O 7-9

c
C(enter - Editor 4-42
C(hange - Filer 5-35
CLOSE 7-23
.CODE 5-8
CODE file 3-7
Comment - Compiler 6-5
COMPDEMO program 6-14
Compiler 6- 3
CONSOLE: 6-10
Ctrl key 2-10

C(opy- Editor 4-39
crunch directory 5-39
cursor 2-6
cursor movement 4-4

D

Data: example 2-19
D(ate - Filer 5-24
D(elete - Editor 3-15
directory - disk 5-5
direction flag - Editor 4-5
diskette 2-5
disk file 5-5
dollar sign - Compiler 6- 3
down arrow 4-9

E

Editor 4-3
End-line character 7-14
End of Line 7-14
ENTER 2-10
E(nvironment - Editor 4-18
EOF 7-31
EOLN 7-47
Equal sign command -
Editor 4-28

errors - disk 5-42

X-I

error recovery - I/O 7-52
ESC A-I
ESC - Editor D(elete 4- 36
ESC - Editor I(nsert 4-30
ETX A-I
eX(amine - Filer 5-45
eX(change - Editor 4-43
E(xecute 2-12
execution error 6-27
E(xit - Editor 3-16
E(xtended directory -

Filer 5-22

F
file 5-3
F(illing - Editor 4-49
F(ind - Editor 4-21
floppy disk 7 -7
F(rom file - Editor 4-39

G
GET(FID) 7-21
G(et Filer 5-13

I

IMPLEMENTATION
section 8-5

Include - Compiler directive
6-7

indentation - Editor 3-12
I(nsert - Editor 4-30
INTERFACE section 8-5
VO check - Compiler

directive 6-13

X-2

J
J(ump - Editor 4-17

K

K(runch - Filer 5-39

L

left arrow key 4-9
Librarian 8-13
List- Compiler directive 6-10
L(ist - Filer 5-17
L(it - Editor 4-21
L(iteral- Editor 4-21
LOCK (CLOSE) 7-29
logical record 7-11

M

M(ake - Filer 5-37
M(argin - Editor 4-50
M(arker - Editor 4-17
Maze: exercise 2-6

N
N(ew - Filer 5-15

p

P(age - Editor 4-16
page - text file 7-15
P(refix - Filer 5-25

program concept 2-14
PURGE (CLOSE) 7-29
PUT(FID) 7-21

Q
Quiet - Compiler

directive 6-14
Q(uit - Editor 3-17

R

READ 7-20
R(emove - Filer 5-32
repeated commands-

Editor 4-9
R(eplace - Editor 4-37
RESET 7-23
REWRITE 7-23
right arrow 4-8
R(ight margin 4-42
R(un - a program 3-7
run-time error 6-27

s
S(ame - Editor 4-37
S(ave - Filer 3-21,5-15
scrolling - Editor 4-10
SEEK 7-30
S(et M(arker - Editor 4-18
S(et E(nvironment -

Editor 4-50
SPACE - Editor 4-14
<sub> Editor 4- 3 7
switch - Compiler 6-13
syntax error 3-18,6-14

SYSTEM. LIBRARY 8-1 3
SYSTEM. STARTUP 3-25
SYSTEM.WRK.CODE 5-11
SYSTEM. WRK. TEXT 5-11

T
TAB - Editor 4-15
<target> - Editor 4-37
.TEXT 5-10
Text file 3-6, 7-15
title - file 5-6
title string 7-26
T(ransfer - Filer 5-26

u
Unit - precompiled 8-5
<unused> - Filer 5-23
up arrow key 4-8
U(pda te - Editor 3-17, 4-46
USES (a Unit) 8-8

v
V(erify - Editor 4-28
volume 5-5
V(olume - Filer 5-20

w
W(hat- Filer 5-16
wildcard - Filer 5-8
workfile 3-6
WRITE 7-17
W(rite to file - Editor 4-47

X-3

x
eX(amine - Filer 5-45
eX(change - Editor 4-43
eX(ecute - CODE file 2-12

z
Z(ap - Editor 4-44
Z(ero - Filer 5-40

= command - Editor 4-28
$ - Compiler directive 6-6

X-4

Product Comment Form

Beginner's Guide
6936583

Your comments assist us in improving our products. IBM
may use and distribute any of the information you supply
in anyway it believes appropriate without incurring any
obligation whatever. You may, of course, continue to use
the information you supply.

Comments:

If you wish a reply, provide your name and address in
this space.

Name --------------------
Address ___________________ _

City---------- Statc-------
Zip Code ________ _

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 123 BOCA RATON. FLORIDA 33432

POSTAGE WILL BE PAID BY ADDRESSEE

IBM PERSONAL COMPUTER
SALES & SERVICE
P.O. BOX 1328-C
BOCA RATON, FLORIDA 33432

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

...
aJa4 PIOj

aldl!~s ~ou op aSl!ald adl!.L

::;:-:--== = - ---= :--::. === -------_.-

Product Comment Form

Beginner's Guide
6936583

Your comments assist us in improving our products. IBM
may use and distribute any of the information you supply
in anyway it believes appropriate without incurring any
obligation whatever. You may, of course, continue to use
the information you supply.

Comments:

If you wish a reply, provide your name and address in
this space.

Name ---------------------
Address ___________________ _

City-------__ _ State --------
Zip Code ________ _

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 123 BOCA RATON, FLORIDA 33432

POSTAGE WILL BE PAID BY ADDRESSEE

IBM PERSONAL COMPUTER
SALES & SERVICE
P.O. BOX 1328-C
BOCA RATON, FLORIDA 33432

a1a4 PIO:::!

BldelS lOU op aseald

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

adeJ.

Continued from inside front cover

SOME STATES DO NOT AllOW THE
EXCLUSION OF IMPLIED
WARRANTIES, SO THE ABOVE
EXCLUSION MAY NOT APPLY TO
YOU. THIS WARRANTY GIVES YOU
SPECIFIC LEGAL RIGHTS AND YOU
MA Y ALSO HAVE OTHER RIGHTS
WHICH V AR Y FROM STATE TO
STATE.

IBM does not warrant that the functions
contained in the program will meet your
requirements or that the operation of the
program will be uninterrupted or error
free.

l [owever, IBM warrants the diskette(s) or
cassette(s) on which the program is fur­
nished, to be free from defecb in materials
and workmanship under normal use for a
pniod of ninety (90) days from the date of
d(,livery to you as evidenced by a copy of
your receipt.

LIMITATIONS OF REMEDIES

IBM's entire liability and your exclusive
remedy shall be:

I. the replacement of any diskette(s) or
cassette(s) not meeting IBM's "Limited
Warranty" and which is returned to
IBM or an authorized IBM PERSONAL
COMPGTER dealer with a copy of your
receipt, or

:!. ifIBM or the dealer is unable to deliver a
replacement diskette(s) or cassette(s)
which is frec of defects in materials or
workmanship, you may terminate this
Agrecment by returning the program
and your money will be refunded.

IN NO EVENT WIll IBM BE LIABLE
TO YOU FOR ANY DAMAGES,
INCLUDING ANY LOST PROFITS,
LOST SAVINGS OR OTHER
INCIDENTAL OR CONSEQUENTIAL

DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE SUCH
PROGRAM EVEN IF IBM OR AN
AUTHORIZED IBM PERSONAL
COMPUTER DEALER HAS BEEN
ADVISED OF THE POSSIBLITY OF
SUCH DAMAGES, OR FOR ANY
CLAIM BY ANY OTHER PARTY.

SOME STATES DO NOT AllOW THE
LIMITATION OR EXCLUSION OF
LIABILITY FOR INCIDENTAL OR
CONSEQUENTIAL DAMAGES SO
THE ABOVE LIMITATION OR
EXCLUSION MAY NOT APPLY TO
YOU.

GENERAL

You may not sublicense, assign or
transfer the license or the program
except as expressly provided in this
Agreement. Any attempt otherwise to
sublicense, assign or transfer any of the
rights, duties or obligations hereunder is
void.

This Agreement will be governed by the
laws of the State of Florida.

Should you have any questions
concerning this Agreement, you may
contact IBM by writing to IBM Personal
Computer, Sales and Service, P.O. Box
1328-W, Boca Raton, Florida 33432.

YOU ACKNOWLEDGE THAT YOU
HA VE READ THIS AGREEMENT,
UNDERSTAND IT AND AGREE TO
BE BOUND BY ITS TERMS AND
CONDITIONS. YOU FURTHER
AGREE THAT IT IS THE COMPLETE
AND EXCLUSIVE STATEMENT OF
THE AGREEMENT BETWEEN US
WHICH SUPERSEDES ANY
PROPOSAL OR PRIOR AGREEMENT,
ORAL OR WRITTEN, AND ANY
OTHER COMMUNICATIONS
BETWEEN US RELATING TO THE
SUBJECT MATTER OF THIS
AGREEMENT.

--- ------ - ---- ---- - ---- - - ---==-=":"=®
International Business Machines Corporation

P.O. Box 1328-W
Boca Raton, Florida 33432

6936583

Printed in United States of America

