

I/O Support
FIBs

File I/O is controlled with a structure called a FIB
(File Information Block). When a user declares a file,
the Compiler emits code to initialize a FIB for that
file. A FIB is declared as follows:

FIB=RECDRD
FWindow: Window_P;
FEDF, FEDLN: Boolean;
FState: (FJandW, FNeedChar, FGotChar);
FRecSize: integer;
Flock: semaphore;
CASE FlsDpen: Boolean OF
true:(FlsBlkd: Boolean;

FDev: DevNum;
FVoIID; VoIlD;
FReptCnt,
FNxtBlk,
FMaxBlk: integer;
FModified: Boolean;
FHeader: DirEntry;
CASE FSoftBuf: Boolean OF

END /of FIB}

true: (FNxtByte, FMaxByte: integer;
FBufChngd: Boolean;
FBuffer: PACKED ARRAY
[0 .. FBlkSize]
OF CHAR))

FWindow points to the current character in the file's
buffer. FEOF and FEOLN are the EOF and EOLN
flags. FState indicates that the file is either a standard
Oensen & Wirth) file, an INTERACTIVE file
awaiting a character, or an INTERACTIVE file with
a character. FRecSize is 0 for untyped files, 1 for
INTERACTIVE files and textfiles; if it is larger than
zero, it indicates the size (in bytes) of a record. FLock
is used to ensure that only one process at a time may
modify the file. FIsOpen is TRUE only when the file
is open.

4-19

If FIsOpen is TRUE, then several other fields
become relevant. FIsBlkd is TRUE if the file resides
on a block-structured device. FDev is the number of
that device, and FVolID the name of the volume.
FReptCnt contains a count of the number of times
the window value is valid before another GET is
needed. FNxtBlk is the next (relative) block to
access. FMaxBlk is the maximum (relative) block
that can be accessed. FModified becomes TRUE if
the file is modified: a new date is then set in the
directory. FHeader is a copy of the file's directory
entry. FSoftBuf is TRUE if soft-buffered I/O is used:
this is the case for all files on block-structured
volumes, except untyped files.

If FSoftBuf is TRUE, then the last set of FIB fields
are used: FNxtByte and FMaxByte are used for
buffer handling, FBufChngd indicates that the
buffer contents have been modified, and FBuffer is
the buffer itself.

Directories

Figure 4-1 illustrates the structure of a directory (as
on a disk or other block-structured volume):

Varieties of I/O

4-20

Record I/O
Record I/O applied to typed Pascal files, using
the intrinsics GET and PUT.

Screen I/O
Screen I/O may be handled by the unit
SCREENOPS, whose routines are described in
the UCSD p-System User's manual.

dVid}

status
bit

dtid

'"
I,
I
f

DIRENTRY RECORD (0)
for dfkind=securedir, untyped file (didO])

dfirstblk
dlastblk
filler _1 I dfkind
length (7) 1
2 3
4 5
6 7
deovblk
dnumfiles
dloadtime

(year) I (month) I (day) ~ dlastboot

DIRENTRY RECORD (1-77)

dfirstblk
dlastblk
I filler_2 I dfkind
length (15) 1

2 3

4 5
6 7
8 9
10 11

12 13

14 15
dlastbyte

(year) I (month) I (day) ~ daccess

DIRECTORY: array [0 .. 77] of direntry;

•••

Figure 4-1. Directory Format

4-21

4-22

Input from the screen is accomplished by the
procedure CHAR_DEV_GET, which uses
SC_CHECK_CHAR (in SCREENOPS) and
SYSCOM' .MISCINFO to determine whether
any special handling needs to be done.

Output to the screen is accomplished by a
simple UNITWRITE.

Block I/O
Block I/O applies to untyped files. The routines
BLOCKREAD and BLOCKWRITE are used.
These are part of the System routine
FBLOCKIO in the EXTRAIO unit.

When a file is accessed as an untyped file, all
other file formatting is disabled.

Text I/O
A textfile is a file of ASCII characters. It has a
2-block header that contains formatting
information used by the Screen Oriented
Editor. When a textfile is used by a System
program other than the Editor, the Operating
System ignores this header. When a new textfile
is created, the Operating System writes a
2-block header filled with NULs.

Textfiles always have an even number of blocks.
Thus, the smallest possible textfile is 4 blocks
long. Any extra space is padded with NULs.

Each record in a textfile is one line of text,
terminated by a <return> character. If the first
character in a textfile record is a DLE (decimal
16), it is interpreted as a blank-compression
code: the following byte is (32+n), where n is
the number of leading blanks. This
blank-compression code is generated by the
Editor (chiefly for the purpose of saving space in
indented program source).

User programs typically handle textfiles with
READ, READLN, WRITE, and WRITELN.
GET and PUT may be used, and follow the
Jensen & Wirth standard for files of type TEXT.

4-23

NOTES

4-24

CHAPTER 5. PROGRAM
EXECUTION

Contents

Runtime Environment 5-3

5-1

NOTES

5-2

R.untime Environment

The runtime environment for a user program is
created by the Operating System's GETCMD unit.
GETCMD starts the execution of System programs
such as the Compiler, Linker, Filer, etc., and user
programs named in the eX(ecute command. In all
such cases, GETCMD calls the procedure
ASSOCIATE, which finds the appropriate codefile,
and then calls BUILDENV. BUILDENV constructs
a program's runtime environment, as outlined in
Chapter 1.

BUILDENV recursively traverses the segments used
by a program. For each segment, it initializes an
E_Vec, E_Rec, and SIB. As each E_Rec is created, it is
linked to a chain of segments that are already active:
in this way, the Operating System can keep track of
all active segments. Before BUILDENV initializes
segment information, it checks to see if that segment
is already active, and if it is, it does nothing but
initialize the proper pointers. Otherwise, the E_ Vee,
E~ec, and SIB must be created from information
present in the codefile.

SEGREFs are segment reference assignments
emitted by the Compiler. Segment numbers are
local to a code segment. The main program is
segment 2, and subsidiary segments, if any, are
numbered starting from 3. Segment 1 is always the
Operating System's KERNEL unit. SEGREFs are
emitted for any principal segments used by the
compilation (such as a used unit). At associate time,
BUILDENV uses the SEGREF list to find the
segments that the program uses.

All runtime errors detected by the System cause the
current program to halt. The System displays an
error message, and when the user types a <space>,
the System is reinitialized. The program's runtime
environment is lost.

5-3

5-4

When a program terminates, control returns to
GETCMD, which waits for further instructions.
When a program terminates normally, its
environment is not lost, and the program can be re­
re-started with the U(ser restart command. The
System mayor may not need to call BUILDENV
again.

APPENDIXES

Contents

Appendix A. Summary of BIOS Calling
Sequences A-I

Appendix B. IBM Personal Computer
BIOS Calls B-1

Appendix C. P-Codes C-l
Appendix D. ASCII Chart D-l
Glossary Glossary-l

Appendixes 1

Appendixes 2

APPENDIX A. SUMMARY OF BIOS
CALLING
SEQUENCES

The following is a summary of the calling
conventions described in "Calling Mechanisms" in
Chapter 3. Specific protocols for the IBM Personal
Computer are shown in the following section. All
calls to the BIOS return a completion code.

Entry Point

CONSOLEREAD
CONSOLEWRITE
CONSOLECTRL

CONSOLEST AT

PRINTERREAD
PRINTERWRITE
PRINTERCTRL
PRINTERSTA T

DISKREAD

DISKWRITE
DISKCTRL
DISKSTAT

Parameters

single data byte
single data byte
BREAK vector
SYSCOM pointer
STATREC pointer
CONTROL word
single data byte
single data byte
(none)
STATREC pointer
CONTROL word

block number
byte count
data area address
drive number
CONTROL word
(same as DISKREAD)
drive number
drive number
STATREC pointer
CONTROL word

A-I

A-2

Entry Point

REMOTEREAD
REMOTEWRITE
REMOTECTRL
REMOTESTAT

USERREAD

USERWRITE
USERCTRL
USERSTAT

SYSREAD

SYSWRITE
SYSCTRL
SYSSTAT

Parameters

single data byte
single data byte
(none)
STATREC pointer
CONTROL word

block number
byte count
data area address
device number
CONTROL word
(same as USERREAD)
device number
device number
STATREC pointer
CONTROL word

block number
byte count
data area address
device number
CONTROL word
(same as SYSREAD)
device number
ST A TREC pointer
CONTROL word

APPENDIX B. IBM PERSONAL
COMPUTER BIOS
CALLS

Entry Points: All BIOS entry points are given as
positive offsets from the beginning of the BIOS code
space. These locations contain appropriate
addresses of routines within the BIOS.

Parameters: When parameters are not being passed
in a specified register, they are pushed on the stack.
Offsets from top-of-stack are given, recognizing that
the stack grows down.

Completion Code: Return in register AH.

Calling Sequence: The RSP will use the CALL
instruction to call the BIOS. Thus the return address
is at (SP),(SP)+ 1. All registers are available for use by
the BIOS. The BIOS should clean off the stack
before returning to the RSP.

Offset
Entry Point (hex) Parameters

CONSOLEREAD 00

CONSOLEWRITE 02
CONSOLECTRL 04

CONSOLESTAT 06

return data byte in Reg
AL
write data byte in Reg AL
BREAK vector at
(SP)+2,(SP)+3
SYSCOM pointer at
(SP)+4,(SP)+5
STATREC pointer at
(SP)+2,(SP)+3
CONTROL word at
(SP)+4,(SP)+5

B-1

Offset
Entry Point (hex) Parameters

PRINTERREAD 08 return data byte in Reg
AL

PRINTERWRITE OA write databyte in Reg AL
PRINTERCTRL OC (none)
PRINT ERST AT OE STATREC pointer at

(SP)+2,(SP)+3
CONTROL word at
(SP)+4,(SP)+5

DISKREAD 10 block number at
(SP)+2,(SP)+3
byte count at
(SP)+4,(SP)+5
data area address at
(SP)+6,(SP)+7
drive number at
(SP)+8,(SP)+9
CONTROL word at
(SP)+A,(SP)+B

DISKWRITE 12 (same as DISKREAD)
DISKCTRL 14 drive number in Reg CL
DISKSTAT 16 drive number in Reg CL

STATREC pointer at
(SP)+2,(SP)+3
CONTROL word at
(SP)+4,(SP)+5

REMOTEREAD 18 return data byte in Reg AL
REMOTEWRITE lA write data byte in Reg AL
REMOTECTRL lC (none)
REMOTESTAT IE STATREC pointer at

(SP)+2,(SP)+3
CONTROL word at
(SP)+4,(SP)+5

B-2

Entry Point

USERREAD

USERWRITE
USERCTRL
USERSTAT

SYSREAD

SYSWRITE

SYSCTRL
SYSSTAT

Offset
(hex) Parameters

20 block number at
(SP)+2,(SP)+3
byte count at
(SP)+4,(SP)+5
data area address at
(SP)+6,(SP)+ 7
device number at
(SP)+8,(SP)+9
CONTROL word at
(SP)+A,(SP)+B

22 (same as USERREAD)
24 device number in Reg CL
26 device number in Reg CL

STATREC pointer at
(SP)+2,(SP)+3
CONTROL word at
(SP)+4,(SP)+5

28 programmed halt (see
"System Input" in Chapter 3)

3F programmed halt (see
"System Output" in
Chapter 3)

2C (none)
2E STATREC pointer at

(SP)+2,(SP)+3
CONTROL word at
(SP)+4,(SP)+5

B-3

B-4

APPENDIX C. P-CODES

SLDC 0 .. 31 Short Load Word Constant
LDCN 152 Load Constant NIL
LDCB 128 Load Constant Byte
LDCI 129 Load Constant Word
LCO 130 Load Constant Offset

SLDL1 32 Short Load Local Word

SLDL16 47

LDL 135 Load Local Word

SLLA1 96 Short Load Local Address

SLLA8 103

LLA 132 Load Local Address

SSTL1 104 Short Store Local Word

SSTL8 111

STL 164 Store Local Word

SLD01 48 Short Load Global Word

SLD016 63

LDO 133 Load Global Word
LAO 134 Load Global Address
SRO 165 Store Global Word

C-l

SLOD1 173 Short Load Intermediate Word
SLOD2 174
LOD 137 Load Intermediate Word
LDA 136 Load Intermediate Address
STR 166 Store Intermediate Word

LDE 154 Load Extended Word
LAE 155 Load Extended Address
STE 217 Store Extended Word

SINDO 120 Short Index and Load Word

SIND7 127

IND 230 Index and Load Word
STO 196 Store Indirect

LDC 131 Load Multiple Word Constant
LDM 208 Load Multiple Words
STM 142 Store Multiple Words
LDCRL 242 Load Real Constant
LDRD 243 Load Real
STRL 244 Store Real

CAP 171 Copy Array Parameter
CSP 172 Copy String Parameter

LDB 167 Load Byte
STB 200 Store Byte

LDP 201 Load a Packed Field
STP 202 Store into a Packed Field

MOV 197 Move
INC 231 Increment Field Pointer
IXA 215 Index Array
IXP 216 Index Packed Array

C-2

LAND 161 Logical And
LOR 160 Logical Or
LNOT 229 Logical Not
BNOT 159 Boolean Not

LEUSW 180 Less Than or Equal Unsigned
GEUSW 181 Greater Than or Equal Unsigned

ABI 224 Absolute Value Integer
NGI 225 Negate Integer
INCI 237 Increment Integer
DECI 238 Decrement Integer
ADI 162 Add Integers
SBI 163 Subtract Integers
MPI 140 Multiply Integers
DVI 141 Divide Integers
MODI 143 Modulo Integers
CHK 203 Check Sub range Bounds
EQUI 176 Equal Integer
NEQI 177 Not Equal Integer
LEQI 178 Less Than or Equal Integer
GEQI 179 Greater Than or Equal Integer

FLT 204 Float Top-of-Stack
TNC 190 Truncate Real
RND 191 Round Real
ABR 227 Absolute Value of Real
NGR 228 Negate Real
ADR 192 Add Reals
SBR 193 Subtract Reals
MPR 194 Multiply Reals
DVR 195 Divide Reals
EQREAL 205 Equal Real
LEREAL 206 Less Than or Equal Real
GEREAL 207 Greater Than or Equal Real

C-3

ADJ 199 Adjust Set
SRS 188 Build a Sub range Set
INN 218 Set Membership
UNI 219 Set Union
INT 220 Set Intersection
DIF 221 Set Difference
EQPWR 182 Equal Set
LEPWR 183 Less Than or Equal Set
GEPWR 184 Greater Than or Equal Set

EQBYT 185 Equal Byte Array
LEBYT 186 Less Than or Equal Byte Array
GEBYT 187 Greater Than or Equal Byte

Array

UJP 138 Unconditional Jump
FJP 212 False Jump
TJP 241 True Jump
EFJ 210 Equal False Jump
NFJ 211 Not Equal False Jump
JPL 139 Unconditional Long Jump
FJPL 213 False Long Jump
XJP 214 Case Jump

CPL 144 Call Local Procedure
CPG 145 Call Global Procedure

SCPIl 239 Short Call Intermediate
Procedure

SCPI2 240

CPI 146 Call Intermediate Procedure
CXL 147 Call Local External Procedure

SCXGl 112 Short Call External Global
Procedure

SCXG8 119

C-4

CXG 148 Call Global External Procedure
CXI 149 Call Intermediate External

Procedure
CPF 151 Call Formal Procedure
RPU 150 Return from Procedure
LSL 153 Load Static Link
BPT 158 Breakpoint

SIGNAL 222 Signal
WAIT 223 Wait

EQSTR 232 Equal String
LESTR 233 Less Than or Equal String
GESTR 234 Greater Than or Equal String
ASTR 235 Assign String
CSTR 236 Check String Index

LPR 157 Load Processor Register
SPR 209 Store Processor Register
DUP1 226 Duplicate One Word
DUPR 198 Duplicate Real
SWAP 189 Swap
NOP 156 No Operation
NAT 168 Native Code
NAT-INFO 169 Native Code Information

RESERVE 1 250 reserved

RESERVE6 255

C-5

C-6

APPENDIX D. AMERICAN
STANDARD CODE
FOR INFORMATION
INTERCHANGE

o 000 00 N.L 32 040 20 5P 64 100 40 (8l 96 140 60
1 001 01 5Q-1 33 041 21 65 101 41 A 97 141 61 a
2 002 02 5TX 34 042 22 " 66 102 42 6 98 142 62 b
3 003 03 ETX 35 043 23 1/ 67 103 43 C 99 143 63 c
4 004 04 EOT 36 044 24 $ 68 104 44 0 100 144 64 d
5 005 05 EN] 37 045 25 % 69 105 45 E 101 145 65 e
6 006 06 flO< 38 046 26 & 70 106 46 F 102 146 66 f
7 007 07 BEL 39 047 27 71 107 47 G 103 147 67 9
8 010 08 65 40 050 28 72 110 48 H 104 150 68 h
9 011 09 Hr 41 051 29 73 111 49 I 105 151 69

10 012 OA LF 42 052 2A * 74 112 4A J 106 152 6A j
11 013 DB VT 43 053 2B + 75 113 4B K 107 153 66 k
12 014 CC FF 44 054 2C 76 114 4C L 108 154 f£ I
13 015 CD CR 45 055 2D - 77 11540 M 109 155 6D m
14 016 DE SO 46 056 2E 78 116 4E N 110 156 6E n
15 017 CF 51 47 057 2F 79 117 4F 0 111 157 6F 0

16 020 10 D..£ 48 060 30 0 80 120 50 P 112 160 70 P
17 021 11 CCI 49 061 31 1 81 121 51 Q 113 161 71 q
18 022 12 CC2 50 062 32 2 82 122 52 R 114 162 72 r
19 023 13 CC3 51 063 33 3 83 123 53 5 115 163 73 s
20 024 14 CC4 52 064 34 4 84 124 54 T 116 164 74 t
21 025 15 N!lK 53 065 35 5 85 125 55 U 117 165 75 u
22 026 16 5'tN 54 066 36 6 86 126 56 V 118 166 76 v
23 027 17 ETB 55 067 37 7 87 127 57 W 119 167 77 w
24 030 18 0lN 56 070 38 8 88 130 58 X 120 170 78 x
25 031 19 EJVI 57 071 39 9 89 131 59 Y 121 171 79 y
26 032 lA 9-.B 58 072 3A 90 132 5A Z 122 172 7A z
27 033 16 ESC 59 073 36 ; 91 133 56 [123 173 7B {
28 034 lC F5 60 074 3C < 92 134 5C \ 124 174 7C I
29 035 10 a; 61 075 n 93 135 50] 125 175 7D 1
30 036 IE RS 62 076 3E > 94 136 5E A 126 176 7E -
31 037 IF US 63 077 3F ? 95 137 SF 127 177 7F aL

D-l

D-2

Glossary

This is intended as an aid to readers who are
unfamiliar with many "buzz words" used in this
document, and is not meant to be either
comprehensive or precise.

Associate Time: That part of a program's lifetime in
which the segments and their various references to
each other are associated by the Operating System.
This occurs when the program is prepared for
execution.

Blank-Filled: All 8-bit bytes within the specified
region are filled with blanks (ASCII 32).

Block: An area of memory (usually on a disk) with a
fixed size of 512 contiguous 8-bit bytes (256
contiguous 16 bit-words).

Block Boundary: Byte zero of any block.

Byte Pointer: A byte address (as opposed to a word
address).

Byte Sex: Some processors address 16-bit words
with the most-significant-byte first, others with the
least-significant-byte first. Byte sex refers to this
difference in addressing; two machines with
different addressing styles are said to have different
(or opposite) byte sex.

Compilation Unit: A program or portion of a
program that can be compiled by itself: in other
words, a program or a UNIT.

Compile Time: That part of a program's lifetime in
which it is being compiled (or assembled).

Glossary-1

Glossary-2

Concurrency: The execution of two or more tasks
or processes in parallel, i.e. at the same time.
Synonymous with multitasking.

Dynamic: Information which changes during
program execution (or is not known before
runtime).

Filler: A field in a data structure that is at present
unused. If this area is described as "reserved for
future use" then it usually should be zero-filled. This
avoids confusion when future versions of the System
make use of filler space.

Inter-Segment: The data (or program) in question
occupies more than one segment, or contains
pointers to another segment.

Link Time: That part of a program's lifetime in
which it is being operated on by the Linker.

Multiprogramming: An environment that
supports more than one user, where each user can
perform multitasking. (The p-System does not
support multiprogramming.)

Multitasking: The execution of two or more tasks
in parallel, i.e. at the same time. A task is a PROCESS
from the user's point of view; from the System's
point of view it might be a program. (The p-System
does support multitasking.)

Multiword: Some positive integral number of
words.

Native Code: Assembled code for some physical (as
opposed to ideal) processor. Also called machine
code or (sometimes) hard code.

One's Complement: All bits in the deSignated field
are flipped.

P-code: Assembled code for an ideal processor.
P-code stands for "pseudo-code." The p-System
Interpreter implements a "pseudo-machine."

Postprocessor: A program which is executed after
the completion of some other program, and uses as
input the output of that previous program. A
postprocessor that creates output which can be used
by still another program is often called a "filter".

Principal Segment: A segment that has a segment
reference list, i.e., a segment with a SEG_TYPE of
PROG_SEG or UNIT_SEG. Corresponds to the
outer segment of any compilation unit. UNITs,
FORTRAN programs, and the outermost block of a
Pascal program are all principal segments.

Recursion: The continued repeating of the same
operation or group of operations.

Relocatable: A portion of object code that can be
moved to different locations in memory without
changing its meaning. P-code is relocatable. Native
code mayor may not be.

Runtime: That part of a program's lifetime in which
it is being executed (or "run").

Self-Modifying: Code which overwrites or modifies
itself during execution, thus changing its meaning.
This is not recommended!

Seg-Relative: The address of an object is specified
as an offset from the beginning of the code segment
in which it resides.

Static: Information which does not change
throughout program execution (it is known before
runtime).

GlossarY-3

Glossary-4

Subsidiary Segment: A segment that has no
segment reference list, i.e., a segment with a
SEG_TYPE of PROC_SEG or SEPRT_SEG.
Corresponds to the object code of any segment
whose source text is not separately compilable.
Pascal segment procedures and segments produced
by the UCSD Adaptable Assembler are subsidiary
segments.

TOS: Short for "top-of-stack." The object that is on
the top of the P-machine stack (which is the object
that was most recently pushed).

Upward Compatibility: Code that runs on current
versions of a system will run on future versions of
that system. A more limited and more easily
obtained version of upward compatibility requires
source code to be recompiled on new versions, but
ensures that it will run once recompiled.

Word: 16 bits aligned on an even byte-address
boundary. The byte which is most significant is
determined by the byte sex of the machine for which
it was generated.

Word Poin ter: A word address (as opposed to a byte
address). The address of a word must be even.

Zero-Filled: A field of data that contains nothing
but zeroes (all bits must be 0).

INDEX

ABI 2-59
ABR 2-61

A

activation record 2-46
ADI 2-59
AD] 2-62
ADR 2-61
ALPHALOCK 3-17
ASCII 3-22, D-l
ASTR 2-73
ATTACH 4-16,4-18

B
BIO 2-4, 3-3, 3-18
blank compression, see DLE
BNOT 2-58
bootstrap 3-28
BPT 2-71
BREAK 3-25
BUILDENV 5-3
byte sex 2-5, 2-29

c
CAP 2-55
carriage return 3-16, 3-22
CHAIN 4-7
CHK 2-60
code segment, see segment
codefile 2-23

Codepool 2-3,2-17,2-32,
2-33

compilation unit 2-3,2-16,
2-17

Compiler 1-3, 2-3, 2-10,
2-16, 2-28, 2-29, 5-3

completion code 3-19
concurrency 2-38, 4-16
constant pool 2-6, 2-8
CONTROL 3-7,3-13,3-19,

3-29
copyright message 2-29
CPF 2-70
CPG 2-68
CPI 2-69
CPL 2-68
CSP 2-56
CSTR 2-73
CURTSK 2-39
CXG 2-69
CXI 2-69
CXL 2-69

D
DATASIZE 2-7
DECI 2-59
DIF 2-63
disk directory 4-20
DISPOSE 4-6
DLE 3-15, 4-22
DUPI 2-74
DUPR 2-74
DVI 2-60
DVR 2-61

X-I

E

EFJ 2-67
EMPTYHEAP 4-10
ENABLE 4-16,4-18
environment 2-3

record 2-34, 5-3
vector 2-14, 2-34, 5-3

EOF 3-16,4-19
EOLN 4-19
EQBYT 2-64
EQPWR 2-63
EQREAL 2-62
EQSTR 2-71
EQUI 2-60
E Rec, see environment,

record
E Vee, see environment,

vector
EVENT 4-16,4-18
event number 4-18
EXECERROR 4-15,4-16
EXITIC 2-7, 2-29
external

Codepool 2-4,4-9, 4-11
routine 2-3,2-7,2-20

F
Faulthandler 4-15
FIB (File Information

Block) 4-19
file directory 4-20
file I/O, see Input/Output,

file
FJP 2-66
FJPL 2-67
FLT 2-61
FLUSH 3-24
forward routine 2-7

X-2

G

GEBYT 2-66
GEPWR 2-64
GEQI 2-60
GEREAL 2-62
GESTR 2-72
GET 4-23
GEUSW 2-59

H

Heap 2-3, 2-4, 2-30, 2-32,
2-34,4-7,4-9,4-10

HMR (Heap Mark
Record) 4-8

INC 2-57
INCI 2-59
IND 2-53
INN 2-63

I

Input, see Input/Output
Input/Output 3- 3

block 4-22
console 3-21
device 2-5, 3-6
disk 3-20, 3-28
file 4-19
printer 3-20, 3-27
record 4-23
remote 3-21, 3-30
text 4-23

INTERACTIVE 4-19
internal Codepool 2-4, 4-9,

4-13
Interpreter 1-5,2-2,3-3,3-5,

3-29,4-15

I/O, see Input/Output
IORESULT 2-40, 3-8
IPC 2-40
IXA 2-58
IXP 2-58

J
JPL 2-67

K
KERNEL 3-5,4-4,4-5,4-12

L

LAE 2-52
LAND 2-58
LAO 2-51
LCO 2-49
LDA 2-52
LDB 2-56
LDC 2-53
LDCB 2-49
LDCI 2-49
LDCN 2-49
LDCRL 2-54
LDE 2-52
LDL 2-50
LDM 2-54
LDO 2-51
LDP 2-57
LDRL 2-54
LEBYT 2-65
LEPWR 2-64
LEQI 2-60
LEREAL 2-62

LESTR 2-72
LEUSW 2-58
Librarian, see LIBRARY
LIBRARY 2-4,4-4
Linker 2-13,2-17,2-20,2-30,

5-3
Linker info 2-17, 2-2 5
LLA 2-50
LNOT 2-58
LOD 2-52
LOR 2-58
LPR 2-74
LSL 2-70

M
MARK 4-6,4-16
MEMLOCK 2- 33
MEMSW AP 2-33
MODI 2-60
MOV 2-57
MPI 2-59
MPR 2-61
MSCW 2-40

N
NAT 2-75
NAT-INFO 2-75
native code 2-3,2-9,2-20,

2-26, 2-29,4-11
NEQI 2-60
NEW 4-6,4-16
NFJ 2-67
NGI 2-59
NGR 2-61
NOP 2-75

X-3

o
Operating System 2-5,

2-16,2-17,2-37, 3-5, 3-29,
4-3, 5-3

Output, see Input/Output

p

P-code 1-3, 2-3 2-10 2-12 , , ,
2-17,2-26,2-27,2-38,2-43,
3-3
operands 2-43

PERMDISPOSE 4-7
PERMNEW 4-7,4-8,4-16
P-machine 1-3, 2-42
P_MACHINE Intrinsic 2-42
procedure dictionary 2-7
PROCESS 2- 38
PUT 4-20

Q
QUIET 4-16,4-17

R

READ 4-16,4-23
READLN 3-3,4-23
READYQ 2-39
real constants 2-10
REALSIZE 2-10
RELEASE 4-6,4-7
RELFUNC 2-26
relocation list 2-12,2-29
relocation sublist 2-13,2-30
RELPROC 2-26
RESERVEn 2-76

X-4

RET 2-32
RND 2-61
routine dictionary 2-7
RPU 2-70
RPS (Runtime Support

Package) 3-3

s
SBI 2-59
SBR 2-61
SCPln 2-68
SCXGn 2-69
sector 3-10
segment 2-3, 2-5, 5-3

dictionary 2-22
name 2-5,2-16,2-18,2-25
number 2-5,2-16 2-28 , ,

2-35
reference list 2-16, 2-28

SIB (Segment Information
Block) 2-30,2-35,4-10,5-3

SIGNAL 2-70,4-16
SINDn 2-53
SLDC 2-49
SLDLn 2-50
SLDOn 2-51
SLLAn 2-50
SLODn 2-51
SP 2-40,4-13
SPR 2-74
SRO 2-51
SRS 2-63
SSTLn 2-50
Stack 2-3,2-4,2-38,4-16
ST ACKSIZE 2- 38
START 2-38,4-15,4-16
START/STOP 3-24
STB 2-56
STE 2-52
STL 2-50

STM 2-54
STO 2-53
STP 2-57
STR 2-52
STRL 2-55
SWAP 2-75
SYSCOM 3-9, 3-23,4-15

T
task

environment 2- 38
switching 4-16

TIB (Task Information
Block) 2-37,2-38,2-39

TJP 2-66
TNC 2-61
type-ahead 3-25

UCSD 1-4
UJP 2-66
UNI 2-63
unit 2-4

u

initialization code 2-17
interface part 2-26, 2-28
Operating System units

4-3
termination code 2-17

UNIT CLEAR 3-4, 3-6, 3-8
UNITNUMBER 3-6
UNITREAD 3-3,3-7,3-8,

3-13, 3-14
UNITWRITE 3-3, 3-7, 3-8,

3-13,3-14

v
VARNEW 4-6
V ARDISPOSE 4-6

w
WAIT 2-71,4-15,4-16
WRITE 4-23
WRITELN 3- 3, 4-23

x
XJP 2-67

X-5

X-6

--- ------ - ---- ---- - ---- - - ----------_.-

Product Comment Form

Internal Architecture Guide

Personal Computer
Computer Language Series

6936557

Your comments assist us in improving our products. IBM
may use and distribute any of the information you supply
in anyway it believes appropriate without incurring any
obligation whatever. You may, of course, continue to use
the information you supply.

Comments:

If you wish a reply, provide your name and address in
this space.

~ame ____________________________________ ___

Address __________________________________ __

City __________ _ State --------------
Zip Code ________ _

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 123 BOCA RATON, FLORIDA 33432

POSTAGE WILL BE PAID BY ADDRESSEE

IBM PERSONAL COMPUTER
SALES & SERVICE
P.O. BOX 1328-C
BOCA RATON, FLORIDA 33432

9J94 PIO::!

alde~s ~ou op aseald

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

ade.l

Iltinued from inside front cover

ME STATES DO NOT ALLOW THE
CLUSION OF IMPLIED
\RRANTIES, SO THE ABOVE
CLUSION MAY NOT APPLY TO
IV. THIS WARRANTY GIVES YOU
ECIFlC LEGAL RIGHTS AND YOU
\ Y ALSO HAVE OTHER RIGHTS
-IICH V AR Y FROM STATE TO
ATE.

vI does not warrant that the functions
ttained in the program will meet your
uirements or that the operation of the
19ram will be uninterrupted or error
e.

wever, IBM warrants the diskette(s) or
sette(s) on which the program is fur­
hed, to be free from defects in materials
1 workmanship under normal use for a
'iod of ninety (90) days from the date of
ivery to you as evidenced by a copy of
If receipt.

MIT A nONS OF REMEDIES

VI's entire liability and your exclusive
nedy shall be:

the replacement of any diskette(s) or
cassette(s) not meeting IBM's "Limited
Warranty" and which is returned to

IBM or an authorized IBM PERSONAL
COMPUTER dealer wi th a copy of your
receipt, or

if IBM or the dealer is unable to deliver a
replacement diskette(s) or cassette(s)
which is free of defects in materials or
workmanship, you may terminate this
Agreement by returning the program
and your money will be refunded.

. NO EVENT WILL IBM BE LIABLE
) YOU FOR ANY DAMAGES,
[CLUDING ANY LOST PROFITS,
)ST SAVINGS OR OTHER
rCIDENT AL OR CONSEQUENTIAL

DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE SUCH
PROGRAM EVEN IF IBM OR AN
AUTHORIZED IBM PERSONAL
COMPUTER DEALER HAS BEEN
ADVISED OF THE POSSIBLITY OF
SUCH DAMAGES, OR FOR ANY
CLAIM BY ANY OTHER PARTY.

SOME STATES DO NOT ALLOW THE
LIMITATION OR EXCLUSION OF
LIABILITY FOR INCIDENTAL OR
CONSEQUENTIAL DAMAGES SO
THE ABOVE LIMIT A TION OR
EXCLUSION MAY NOT APPLY TO
YOU.

GENERAL

You may not sublicense, assign or
transfer the license or the program
except as expressly provided in this
Agreement. Any attempt otherwise to

sublicense, assign or transfer any of the
rights, duties or obligations hereunder is
void.

This Agreement will be governed by the
laws of the State of Florida.

Should you have any questions
concerning this Agreement, you may
contact IBM by writing to IBM Personal
Computer, Sales and Service, P.O. Box
1328-W, Boca Raton, Florida 33432.

YOU ACKNOWLEDGE THAT YOU
HA VE READ THIS AGREEMENT,
UNDERSTAND IT AND AGREE TO
BE BOUND BY ITS TERMS AND
CONDITIONS. YOU FURTHER
AGREE THAT IT IS THE COMPLETE
AND EXCLUSIVE STATEMENT OF
THE AGREEMENT BETWEEN US
WHICH SUPERSEDES ANY
PROPOSAL OR PRIOR AGREEMENT,
ORAL OR WRITTEN, AND ANY
OTHER COMMUNICATIONS
BETWEEN US RELATING TO THE
SUBJECT MATTER OF THIS
AGREEMENT.

--- ------- - ---- ---- - ---..:. .:.: :: ';' == ®

International Business Machines Corporation

P.O. Box 1328-W
Boca Raton, Florida 33432

6936557

Printed in United States of America

