
--- ------ - ---- ---- - ---- - - ----------_.- Personal Compllter
Computer Language
Series

FORTRAN-77
REFERENCE
for the UCSD p-System'· Version IV.O

Produced by SofTech Microsystems, Inc.
Written by Jeffrey Barth and R. Steven Glanville
Edited by Randy Clark and Stan Stringfellow

First Edition (January 1982)

Changes are periodically made to the information herein;
these changes will be incorporated in new editions of this
publication.

Products are not stocked at the address below. Requests for
copies of this product and for technical information about the
system should be made to your authorized IBM Personal
Computer Dealer.

A Product Comment Form is provided at the back of this
publication. If this form has been removed, address comment
to: IBM Corp., Personal Computer, P.O. Box 1328-C, Boca
Raton, Florida 33432. IBM may use or distribute any of the
information you supply in any way it believes appropriate
without incurring any obligations whatever.

© Copyright International Business Machines Corporation
1982
© Copyright Silicon Valley Software, Inc. 1980
© Copyright SofTech Microsystems, Inc. 1980, 1981

UCSD, UCSD Pascal, and UCSD p-System are all trademarks
of the Regents of the University of California.

CONTENTS

CHAPTER 1. INTRODUCTION 1-1
Manual Overview 1-3
Notational Conventions ... 1-4

CHAPTER 2. HOW TO USE UCSD
p-SYSTEM FORTRAN 77 2-1

How to Compile and Execute a FORTRAN
Program 2-3

Providing Runtime Support 2-3
Compiling a FORTRAN

Progam 2-4
Executing a FORTRAN

Program 2-5
Form of Input Programs 2-5

$INCLUDE Statement 2-6
Compiler Listing 2-6
The Code file 2-9
Basic Structure of a FORTRAN

Program 2-9
Character Set 2-10
Lines 2-10
Columns 2-11
Blanks 2-11

Compiler Directive Lines 2-12
Statements, Initial Lines, Continuation

Lines, and Labels 2-17
Labels 2-18
Initial Lines 2-18
Continuation Lines 2-18
Statements 2-18

iii

iv

Main Program and Subprogram Units
and Ordering of Statements within
Program Units 2-19

Program Units - Main Program and
Subprogram Program Units 2-19

Statement Ordering Within a
Program Unit 2-20

The Final Statement of a Soruce
Program 2-22

CHAPTER 3. DATA TYPES 3-1
Data Types 3-2

Integer 3-2
Real 3-2
Logical 3-3
Character 3-4

CHAPTER 4. FORTRAN NAMES 4-1
FORTRAN Names 4-3

Scope of FORTRAN Names...... 4-3
Undeclared FORTRAN Names 4-5

CHAPTER 5. SPECIFICATION
STATEMENTS.......................... 5-1

CHAPTER 6. DATA STATEMENT 6-1

CHAPTER 7. EXPRESSIONS............. 7-3
Arithmetic Expressions 7- 3

Arithmetic Operators 7-4
Integer Division 7-5
Type Conversions and Result

types of Airthmetic Operators ... 7-5
Character Expressions 7-6
Relational Expressions 7-6

Relational Operators 7-7
Logical Expressions 7-8

Logical Operators 7-8

Precedence of Operators. 7-9
Relative Precedence of

Operator Classes 7-9
Evaluation Rules and Restrictions

for Expressions 7-10

CHAPTER 8. ASSIGNMENT
STATEMENTS 8-1

Computational Assignment
Statements. 8-3

Type Conversion for
Arithmetic Assignments

CHAPTER 9. CONTROL

8-4

STATEMENTS 9-1

CHAPTER 10. I/O SySTEM 10-1
I/O System Overview 10-4

Records 10-4
Files 10-5
File Properties 10-5
Internal Files 10-8
Units 10-9

I/O System Concepts and
Limitations 10-10

FORTRAN I/O System 10-10
Example Program Illustrating Most

Common I/O Operations 10-11
Use of Less Common File

Operations 10-12
Limitations of the FORTRAN

I/O System 10-13
I/O Statements 10-15

Elements of I/O Statements 10-15
Statements 10-18
Restrictions on Functions 10-29

v

vi

CHAPTER 11. FORMATTED I/O AND
THE FORMAT STATEMENT 11-1

Format Specification and the
Format Statement 11-3

Interaction between Format
Specification and I/O List. 11-5

Edit Descriptors 11-7
N onrepeatable Edit Descriptors ... 11-7
Repeatable Edit Descriptors 11-10

CHAPTER 12. PROGRAMS, SUBROUTINES,
AND FUNCTIONS 12-1

Main Program 12-3
Subroutines 12-4
Functions 12-8
Parameters 12-15

CHAPTER 13. COMPILATION UNITS ... 13-1
Units, Segments, Partial

Compilation, and FORTRAN
Linking Pascal and FORTRAN

13-4
13-9

APPENDIX A. MESSAGES A-I

APPENDIX B. UCSD p-SYSTEM
FORTRAN 77 AND ANSI STANDARD

SUBSET FORTRAN 77 DIFFERENCES B-1

APPENDIX C. AMERICAN STANDARD
CODE FOR INFORMATION
INTERCHANGE C-l

INDEX X-I

CHAPTER 1. INTRODUCTION

Contents

Manual Overview 1-3
Notational Conventions 1-4

1-1

NOTES

1-2

Manual Overview
This manual is a reference manual for the UCSD
p-System's FORTRAN 77. This is a dialect of
FORTRAN that is closely related to the ANSI
Standard FORTRAN 77 Subset language defined in
ANSI X3.9-1978. Readers familiar with the ANSI
standard will find a concise description of the
differences between the p-System's FORTRAN 77
and the standard in Appendix B; in general, this
manual does not presume that the reader is familiar
with the standard.

The reader should be somewhat familiar with the use
of the UCSD p-System and its Text Editor, although
the specifics of how to compile, link, and execute a
FORTRAN program in the UCSD environment are
covered in this manuaL Refer to the Users' Guide for
the UCSD p-System for more details.

This manual is intended primarily as a reference
manual for the FORTRAN language and contains all
of the information necessary to fully utilize it. The
reader is assumed to have some prior knowledge of
some dialect of FORTRAN, although someone
familiar with another high level language should be
able to learn FORTRAN from this manuaL The
manual is not a tutorial in the sense that it does not
teach the reader, step by step, the concepts
necessary to write succe~sively more complex
programs in FORTRAN; rather, each section of the
manual fully explains one part of the FORTRAN
language system.

The manual is organized as follows: Chapters 1 and 2
are general, and describe the manual and basics
necessary in order to successfully use FORTRAN in
even a trivial way. Chapters 3,4, and 5 describe the
data types available in the language and how a
program assigns a particular data type to an
identifier or constant. Chapter 6 deals with the

1-3

DATA statement, which is used for initialization of
memory. Chapters 7,8, 9, and 10 define the
executable parts of programs and the meanings
associated with the various executable constructs.
I/O statements are presented in Chapter 10, and the
associated FORMAT statement and formatted I/O
are described in Chapter 11. The subroutine
structure of a FORTRAN compilation, including
parameter passing and intrinsic (System-provided)
functions, is the topic of Chapter 12. Finally,
Chapter 13 discusses the rather sophisticated means
which exist for compiling FORTRAN subroutines
separately, overlaying, and linking in subroutines
which are written in other languages.

Notational Conventions

1-4

These are the notational conve'ntions used
throughout this manual:

Upper Case and Special Characters - are written as
they would be in a program.

Lower Case Italic Letters and Words - indicate
generalizations which must be replaced by actual
FORTRAN syntax, as described in the text. The
reader may assume that once a lowercase entity is
defined, it retains its meaning for the entire context
of discussion.

Example of Upper and Lower Case: The format
which describes editing of integers is denoted Iw,
where w is a nonzero, unsigned integer constant.
Thus, in an actual statement, a program might
contain 13 or 144. The format which describes
editing of reals is Fw.d, whered is an unsigned integer
constant. In an actual statement, F7.4 or F22.0 are
valid. Notice that the period, as a special character, is
taken literally.

Brackets - indicate optional items.

Example of Brackets: A[w] indicates that either A or
A12 are valid (as a means of specifying a character
format) .

... - is used to indicate ellipsis. That is, the optional
item preceding the three dots may appear one or
more times.

Example of ... : The computed GOTO statement is
described by GOTO (s [, s] ...) [,] i indicating that the
syntactic item denoted by s may be repeated any
number of times with commas separating them.

Blanks normally have no significance in the
description of FORTRAN statements. The general
rules for blanks, covered in Chapter 2, govern the
interpretation of blanks in all contexts.

1-5

NOTES

1-6

CHAPTER 2. HOW TO USE
UCSD p-SYSTEM
FORTRAN 77

Contents

How to Compile and Execute a
FORTRAN Program 2- 3

Providing Runtime Support. 2-3
Compiling a FORTRAN Program.... 2-4
Executing a FORTRAN Program 2-5
Form of Input Programs 2-5
$INCLUDE Statement 2-6
Compiler Listing 2-6
The Codefile 2-9
Basic Structure of a FORTRAN

Program 2-9
Character Set 2-10
Lines 2-10
Columns 2-11
Blanks 2-11
Compiler Directive Lines 2-12
Statements, Initial Lines, Continuation

Lines, and Labels 2-17
Labels 2-18
Initial Lines 2-18
Continuation Lines 2-18
Statements 2-18
Main Program and Subprogram Units

and Ordering of Statements within
Program Units 2-19

Program Units - Main Program and
Subprogram Program Units 2-19

Statement Ordering Within a
Program Unit 2-20

The Final Statement of a Source
Program 2-22

2-1

NOTES

2-2

This chapter describes how to use the p-System's
FORTRAN 77. It assumes that the reader is familiar
with the basic operation of the UCSD p-System. The
mechanics of preparing, compiling, linking, and
executing a FORTRAN program are outlined, and
an explanation of the Compiler listing file is given.

How to Compile and Execute a
FORTRAN Program

Providing Runtime Support

To run any program on the UCSD p-System, some
runtime support is needed. The package of routines
which do this for FORTRAN is distinct from the
package which does this for Pascal, and is originally
shipped in the file FORTLIBn.CODE (n=2 or 4 and
indicates two word or four word reals) on the
FORTRAN: diskette (which should be placed in the
right drive). You must change the Pascal routines
file SYSTEM. LIBRARY to PASCAL.LIBRARY (or
some other name you will remember), and
FORTLIBn.CODE to SYSTEM. LIBRARY. After
this is done, you may run your FORTRAN
programs.

In order to do this type F for Filer and then C for
Change. Specify SYSTEM. LIBRARY as the file to be
changed and PASCAL.LIBRARY as the new name.
Then change #5:FORTLIBn.CODE to
SYSTEM. LIBRARY.

It may be that you have placed programs of your own
in SYSTEM. LIBRARY. In this case, you will be
familiar with the use of the Librarian.
FORTLIBn.CODE may be added to the
SYSTEM. LIBRARY file in this way if desired
(instead of changing FORTLIBn.CODE into
SYSTEM. LIBRARY). The library text file facility

2-3

described in the Users' Guide for the UCSD p-System
is also available to FORTRAN programmers.

Note: SYSTEM. LIBRARY must be on the
boot disk unless a library text file or an
execution option string (also described in the
Users' Guide) indicates otherwise. In order to
move SYSTEM. LIBRARY to the boot disk:
type T for Transfer and specify
#5:SYSTEM.LIBRARY as the file to be
transferred, and #4:$ as the destination. Be
certain that you have already changed the
original SYSTEM. LIBRARY to
PASCAL.LIBRARY before you do this.

Compiling a FORTRAN Program

2-4

The FORTRAN 77 Compiler is also located on the
FORTRAN: diskette and is called
FORTRANn.CODE (n=2 or4 indicating 2 or4 word
reals). The compiler is invoked as the Pascal
Compiler is: by typing C at the command level. The
R(un command simply executes the codefile.)

For these commands to call FORTRAN, the
FORTRAN Compiler must be re-named
SYSTEM. COMPILER. To make it
SYSTEM. COMPILER, type F to enter the Filer,
C(hange SYSTEM. COMPILER to
PASCAL.COMPILER, and C(hange
#5:FORTRANn.CODE to SYSTEM. COMPILER.
To start using Pascal again, reverse the renaming
process (you may leave the FORTRAN Compiler as
SYSTEM. COMPILER if you remove the
FORTRAN: diskette from the right drive).

Notes:

1. If you have purchased a copy of the
p-System with FORTRAN only, there will be no
Pascal Compiler to change.

2. Typing C or R at the command level causes
the Compiler to use the workfiles
SYSTEM. WRK. TEXT and
SYSTEM.WRK.CODE. If no workfile is
present, the Operating System, prompts for the
name of a .TEXT file to use.

3. The FORTRAN Compiler prompts for a
listing file. If an <enter> is typed, no listing is
generated.

4. Once the prompts are all answered, the
actual compilation begins. The progress of the
compilation is shown on the console by a
successive display of dots. Each dot represents
one line of source code.

Remember that anything which applies to the Pascal
SYSTEM. COMPILER also applies to FORTRAN.
The Users' Gutde for the UCSD p-System should be
referred to for more information.

Executing a FORTRAN Program

A compiled, linked FORTRAN program is executed
in the same manner as any other user program, i. e. by
typing an X at the command level, followed by the
name of the file containing the linked program.

Form of Input Programs
All input source files read by FORTRAN must be
. TEXT files. This allows the Compiler to read large
blocks of text from a disk file in a single operation,

2-5

increasing the compile speed significantly. The
simplest way to prepare. TEXT files is to use the
Screen Oriented Editor. For a more precise
description of the fields in a FORTRAN 77 source
statement, see Chapter 2 which explains the basic
structure of a FORTRAN program.

$INCLUDE Statement

To facilitate the manipulation of large programs,
FORTRAN 77 contains an $INCLUDE Compiler
directive. The format of the directive is:

$INCL UD E file. name

... with the $ appearing in column 1 (see "Compiler
Directive Lines" in this chapter for an explanation of
Compiler directives in general). The meaning is to
compile the contents of the filefile.name, and insert
the code into the current codefile before continuing
with compilation of the current file. The included
file may contain additional $INCLUDE directives,
up to a maximum of five levels of files (four levels of
$INCLUDE directives). It is often useful to have the
description of a COMMON block kept in a single file
and to include it in each subroutine that references
that COMMON area, rather than making and
maintaining many copies of the same source, one in
each subroutine. There is no limit to the number of
$INCLUDE directives that can appear in a source
file.

Compiler Listing

2-6

The Compiler listing, if requested, contains various
information that may be useful to the FORTRAN
programmer. The listing consists of the user's source
code as read, along with line numbers, symbol tables,
error messages, and optional cross-reference
information.

Example: FORTRAN Compiler IV.O [[0.0]
O. DC
1. o C --- Example Program #1234
2. DC
3. 0
4. o $XREF
5. 0
6. 0 PROGRAM EX1234
7. 0
8. 0 INTEGER A(l 0, 10)
9. 0 CHARACTER*4 C

10. 0
11. 0 CALL INIT(A,C)
12. 6 1= 1
13. 9 200A(I) = I

***** Error number: 57 in line: 13
14. 20 I = 1+1
15. 26 IF (lABS(10-1) .NE. 0) GOTO 200
16. 37
17. 37 END

A INTEGER 3 8 11 13
C CHAR* 4 103 9 11
EX1234 PROGRAM 6
I INTEGER 105 12 13 13 14

14 15
lABS INTRINSIC 15
INIT SUBROUTINE 2,FWD 11

18. 0 SUBROUTINE INIT(B,D)
19. 0 INTEGER B(l 0, 1 0)
20. 0 CHARACTER*4 D
21. 0
22. 0 RETURN
23. 2 END

B INTEGER 2* 18 19
D CHAR* 4 1* 18 20
INIT SUBROUTINE 2 18

EX1234 PROGRAM
INIT SUBROUTINE 2,7

24lines. 1 errors.

2-7

2-8

The first line indicates which version of the
Compiler was used for this compilation. In the
example it is version 0.0 for the UCSD p-System
Version IV.O. The leftmost column of numbers are
source-line numbers. The next column indicates the
procedure-relative instruction counter that the
corresponding line of source code occupies as object
code. It is only meaningful for executable
statements and data statements. To the right of the
instruction counter is the source statement.

Errors are indicated by a row of asterisks followed by
the error number and line number, as appears in the
example between lines 13 and 14. In this case it is
error number 57, "Too few subscripts", indicating
that there are not enough subscripts in the array
reference A(I). (For more information concerning
the handling of syntax errors, as well as runtime
errors, see Appendix B.)

At the end of each routine (function, subroutine, or
main program), a local symbol table is printed. This
table lists all identifiers that were referenced in that
routine, along with their definition. If the $XREF
Compiler directive has been given, a table of all lines
containing an instance of that identifier in the
current program unit is also printed. If the identifier
is a variable, it is accompanied by its type and
location. If the variable is a parameter, its location is
followed by an asterisk, such as the variables Band D
in the SUBROUTINE INIT. If the variable is in a
common block, then the name of the block follows
enclosed by slashes. If the identifier is not a variable,
it is described appropriately. For subroutines and
functions, the segment procedure number is given.
If it resides in a different segment, then the segment
number follows. If the Compiler assumes that it will
reside in the same segment, but has not appeared
yet, it is listed as a forward reference by the notation
FWD.

At the end of the compilation, the global symbol
table is printed. It contains all global FORTRAN
symbols referenced in the compilation. No
cross-reference is given. The number of source lines
compiled and the number of errors encountered
follows. If there were any errors, then no object file is
produced.

The Codefile
The object codefile generated by the FORTRAN
Compiler is compatible with the UCSD Linker and
Librarian. Indeed, it is hard to tell by examining a
codefile whether it was created by the FORTRAN
Compiler or the Pascal Compiler. For a description
of the format of a codefile, see the UCSD p-System
Internal Architecture Guide.

Basic Structure of a
FORTRAN Program

In the most fundamental sense, a FORTRAN
program is a sequence of characters which, when fed
to the Compiler, are understood in various contexts
as characters, identifiers, labels, constants, lines,
statements, or other (possibly overlapping)
syntactic substructure groupings of characters. The
rules which the Compiler uses to group the character
stream into certain substructures, as well as various
constraints on how these substructures may be
related to each other in the source program
character stream, will be the topic of this chapter.

2-9

Character Set

Lines

2-10

A FORTRAN source program consists of a stream of
characters, originating in a. TEXT file, consisting of:

• Letters - The 52 upper and lower case letters A
through Z and a through z.

• Digits - 0,1,2,3,4,5,6,7,8, and 9.

• Special Characters - The remaining printable
characters of the ASCII character set.

The letters and digits, treated as a single group, are
called the alphanumeric characters. FORTRAN
interprets lower case letters as upper case letters in
all contexts except in character constants and
Hollerith fields. Thus, the following user-defined
names are all indistinguishable to the FORTRAN
Compiler:

ABCDE abcde AbCdE aBcDe

In addition to the above, actual source programs
given to the FORTRAN Compiler contain certain
hidden (nonprintable) control characters inserted by
the Text Editor which are invisible to the user.
FORTRAN uses these control characters in exactly
the same way as the Text Editor, and transforms
them, using the rules ofUCSD .TEXT files, into the
FORTRAN character set.

The collating sequence for the FORTRAN character
set is the ASCII sequence.

A FORTRAN source program may also be
considered a sequence of lines, corresponding to
the normal notion of line in the Text Editor. Only

the first 72 characters in a line are treated as
significant by the Compiler; any trailing characters
in a line are ignored. Note that lines with fewer than
72 characters are possible and, if shorter than 72
columns, the Compiler does treat as significant the
length of a line (see "Character", which describes
character constants, for an illustration of this).

Columns

Blanks

The characters in a given line fall into columns, with
the first character being in column 1, the second in
column 2, etc. The column in which a character
resides is significant in FORTRAN, with columns 1
through 5 reserved for statement labels, column 6
for continuation indicators and other conventions,
columns 7 through 72 for actual statements.

The blank character, with the exceptions noted
below, has no significance in a FORTRAN source
program and may be used for the purpose of
improving the readability of FORTRAN programs.
The exceptions are:

• Blanks within string constants are significant

• Blanks within Hollerith fields are significant

• Blanks on Compiler directive lines are
significant

• A blank in column 6 is used to distinguish initial
lines from continuation lines

• Blanks count in the total number of characters
in Compiler processes per line and per
statement

2-11

Compiler Directive Lines

2-12

A line is treated as a Compiler directive if the $
character appears in column 1 of an input line.
Compiler directives are used to transmit various
kinds of information to the Compiler. A Compiler
directive line may appear any place that a comment
line can appear, although certain directives are
restricted to appear in certain places. Blanks are
significant on Compiler directive lines, and are used
to delimit keywords and filenames. The set of
directives is described below.

$INCLUDE

$INCL UDE filename

Include textually the file/ilename at this point in the
source. Nested includes are implemented to a depth
of nesting of five files. Thus, for example, a program
may include various files with subprograms, each of
which includes various files which describe
COMMON areas (which would be a nesting depth of
three files).

2-13

fUSES

2-14

$USES ident
[IN filename]
[OVERLAY]

Similar to the USES command in the UCSD Pascal
Compiler. The already compiled FORTRAN
subroutines or Pascal procedures contained in the
.CODE file/ilename, (or in the file
*SYSTEM.LIBRARY if no file name is present),
become callable from the currently compiling code.
This directive must appear before the initial
non-comment input line. For more details, see
Chapter 13.

$XREF

$XREF

Produce a cross-reference listing at the end of each
procedure compiled.

2-15

$EXT

2-16

$EXT SUBROUTINE name #params
or

$EXT [type] FUNCTION name #params

The subroutine or function called name is an
Assembly Language routine. The routine has exactly
#params reference parameters.

Comment Lines

A line is treated as a comment if anyone of the
following conditions are met:

• A C (or c) in column 1.

• An * in column 1.

• Line contains all blankS.

Comment lines do not affect the execution of the
FORTRAN program in any way. Comment lines
must be followed immediately by an initial line or
another comment line. They must not be followed
by a continuation line. Note that extra blank lines at
the end of a FORTRAN program result in a compile
time error since the compiler interprets them as
comment lines but they are not followed by an initial
line.

Sta temen ts, Initial Lines,
Continuation Lines, and Labels

The following paragraphs define a FORTRAN
statement in terms of the input character stream.
The Compiler recognizes certain groups of input
characters as complete statements according to the
rules specified here. The remainder of this manual
will further define the specific statements and their
properties. When it is necessary to refer to specific
kinds of statements here, they are simply referred to
by name.

2-17

Labels

A statement label is a sequence of from one to five
digits. At least one digit must be nonzero. A label
may be placed anywhere in columns 1 through 5 of
an initial line. Blanks and leading zeros are not
significan t.

Ini tial Lines

An initial line is any line which is not a comment line
or a Compiler directive line and contains a blank or a
o in column 6. The first five columns of the line must
either be all blank or contain a label. With the
exception of the statement following a logical IF,
FORTRAN statements all begin with an initial line.

Continuation Lines

A continuation line is any line which is not a
comment line or a Compiler directive line and
contains any character in column 6 other than a
blank or a O. The first five columns of a continuation
line must be blanks. A continuation line is used to
increase the amount of room to write a given
statement. If it will not fit on a single initial line, it
may be extended to include up to 9 continuation
lines.

Statements

2-18

A FORTRAN statement consists of an initial line,
followed by up to 9 continuation lines. The
characters of the statement are the up to 660
characters found in columns 7 through 72 of these
lines. The END statement must be wholly written on
an initial line, and no other statement may have an
initial line which appears to be an END statement.

Main Program and Subprogram Units
and Ordering of Statements within
Program U ni ts

The FORTRAN language enforces a certain
ordering among statements and lines which make up
a FORTRAN compilation. In general, a compilation
consists of some number of subprograms (possibly
zero), and at most one main program (see sections on
compilation units and subroutines). The various
rules for ordering statements appear below.

Program U ni ts - Main Program and
Subprogram Program Units

A subprogram begins with either a SUBROUTINE
or a FUNCTION statement and ends with an END
statement. A main program begins with a
PROGRAM statement, or any other than a
SUBROUTINE or FUNCTION statement, and ends
with an END statement. A subprogram or the main
program is referred to as a program unit.

2-19

Statement Ordering Within a Program Unit

2-20

Within a program unit, whether a main program or a
subprogram, statements must appear in an order
consistent with the following rules:

• A SUBROUTINE or FUNCTION statement,
or PROGRAM statement, if present, must
appear as the first statement of the program
unit.

• FORMAT statements may appear anywhere
after the SUBROUTINE or FUNCTION
statement, or PROG RAM statement if present.

• All specification statements must precede all
DATA statements, statement function
statements, and executable statements.

• All DATA statements must appear after the
specification statements and precede all
statement function statements and executable
statements.

• All statement function statements must
precede all executable statements.

• Within the specification statements, the
IMPLICIT statement must precede all other
specification statements.

These rules are illustrated in the following chart.

The chart is to be interpreted as follows:

Classes of Hnes or statements above or below
other classes must appear in the designated
order.

Classes of Hnes or statements may be
interspersed with other classes which appear
across from one another.

Comment
Lines

PROGRAM, FUNCTION, or
SUBROUTINE Statement

IMPLICIT Statements

FORMAT

Other Specification
Statements

Statements DATA Statements

Statement Function
Statements

Executable
Statements

END Statement

2-21

The Final Statement of a Source Program

2-22

When creating FORTRAN programs with the
UCSD Editor, the final END statement must be
entered as a complete line. That is, there must be a
"return" character following the statement.
Otherwise, the Compiler will not find the END
statement and will issue an error message. In
addition, that "return" character must be the final
character in the program source file. Any further
characters, even blanks, might be considered part of
a subsequent subprogram by the Compiler.

CHAPTER 3. DATA TYPES

Contents

Data Types. 3-2
Integer 3-2
Real 3-2
Logical 3- 3
Character 3-4

3-1

Data Types

Integer

Real

3-2

There are four basic data types in UCSD p-System
FORTRAN 77:

• integer

• real

• logical

• character

This chapter describes the properties of each type,
the range of values for each type, and the form of
constants for each type.

The integer data type consists of a subset of the
integers. An integer value is an exact representation
of the corresponding integer. An integer variable
occupies one word (two bytes) of storage and can
contain any value in the range -32768 to 32767.
Integer constants consist of a sequence of one or
more decimal digits preceeded by an optional
arithmetic sign, + or -, and must be in range. A
decimal point is not allowed in an integer constant.
The following are examples of integer constants:

123 +123 ·123 0 000123 32767 ·32768

The real data type consists of a subset of the real
numbers. A real value is normally an approximation
of the real number desired. A real variable occupies
either two consecutive words (4-bytes) or four
consecutive words (8-bytes) of in-core storage. The
range of values depends on the configuration of

Logical

hardware and software you have purchased with your
IBM Personal Computer. The precision is greater
than 6 decimal digits.

A basic real constant consists of an optional sign
followed by an integer part, a decimal point, and a
fraction part. The integer and fraction parts consist
of 1 or more decimal digits, and the decimal point is a
period, (.). Either the integer partor the fraction part
may be omitted, but not both. Some sample basic
real constants follow:

-123.456
-123.
-.456

+123.456
+123.
+.456

123.456
123.
.456

An exponent part consists of the letter E followed by
an optionally signed integer constant. An exponent
indicates that the value preceding it is to be
multiplied by 10 to the value of the exponent part's
integer. Some sample exponent parts are:

E12 E·12 E+12 EO

A real constant is either a basic real constant, a basic
real constant followed by an exponent part, or an
integer constant followed by an exponent part. For
example:

+1.000E-2
+0.01

1.(-2
100.0E-4

1£-2
.0001£+2

... all represent the same real number, one
one-hundred tho

The logical data type consists of the two logical
values true and false. A logical variable occupies one
word (two bytes) of storage. There are only two
logical constants, .TRUE. and .FALSE.,

3-3

representing the two corresponding logical values.
The internal representation of .FALSE. is a word of
all zeros, and the representation of. TRUE. is a word
of all zeros but a one in the least significant bit. If a
logical variable contains any other bit values, its
meaning is undefined.

Character

3-4

The character data type consists of a sequence of
ASCII (see Appendix C) characters. The length of a
character value is equal to the number of characters
in the sequence. The length of a particular constant
or variable is fixed, and must be between 1 and 127
characters. A character variable occupies one word
of storage for each two characters in the sequence,
plus one word if the length is odd. Character
variables are always aligned on word boundaries. The
blank character is allowed in a character value and is
significan t.

A character constant consists of a sequence of one or
more characters enclosed by a pair of apostrophes.
Blank characters are allowed in character constants,
and count as one character each. An apostrophe
within a character constant is represented by two
consecutive apostrophes with no blanks in between.
The length of a character constant is equal to the
number of characters between the apostrophes, with
doubled apostrophes counting as a single
apostrophe character. Some sample character
constants are:

A , ,

Help!
A very long CHARACTER constant
""

Note the last example, "", that represents a single
apostrophe, '.

... FORTRAN allows source lines with up to 72
columns. Shorter lines are not padded out to 72
columns, but left as input. When a character
constant extends across a line boundary, its value is
as if the portion of the continuation line beginning
with column 7 is juxtaposed immediately after the
last character on the initial line. Thus, the
FORTRAN source:

200 CH = 'ABCenter
X OEF'

... (where the enter indicates a.J, or the end of the
source line) is equivalent to:

200 CH = 'ABC OEF'

... with the single space between the C and D being
the equivalent to the space in column 7 of the
continuation line. Very long character constants can
be represented in this manner.

3-5

NOTES

3-6

CHAPTER 4. FORTRAN NAMES

Contents

FORTRAN Names 4-3
Scope of FORTRAN Names 4-3
Undeclared FORTRAN Names 4-5

4-1

NOTES

4-2

FORTRAN Names
A FORTRAN name, or identifier, consists of an
initial alphabetic character followed by a sequence
of 0 through 5 alphanumeric characters. Blanks may
appear within a FORTRAN name, but have no
significance. A name is used to denote a user-defined
or system-defined variable, array, function,
subroutine, etc. Any valid sequence of characters
may be used for any FORTRAN name. There are no
reserved names as in other languages. Sequences of
alphabetic characters used as keywords are not to be
confused with FORTRAN names. The Compiler
recognizes keywords by their context and in no way
restricts the use of user-chosen names. Thus, a
program can have, for example, an array named IF,
READ, or GOTO, with no error indicated by the
Compiler (as long as it conforms to the rules that all
arrays must obey). Using such names, however, is not
a recommended practice!

Scope of FORTRAN Names

The scope of a name is the range of statements in
which that name is known, or can be referenced,
within a FORTRAN program. In general, the scope
of a name is either global or local, although there are
several exceptions. A name can only be used in
accordance with a single definition within its scope.
The same name, however, can have different
definitions in distinct scopes.

A name with global scope may be used in more than
one routine (a subroutine, function, or the main
program) and still refer to the same entity. In fact,
names with global scope can only be used in a single,
consistent manner within the same program. All
subroutine, function subprogram, and common
names, as well as the program name, have global
scope. Therefore, there cannot be a function

4-3

4-4

subprogram that has the same name as a subroutine
subprogram or as a common data area. Similarly, no
two function subprograms in the same program can
have the same name.

A name with local scope is only visible (known)
within a single routine. A name with a local scope can
be used in another routine with a different meaning,
or with a similar meaning, but is in no way required
to have similar meanings in a different scope. The
names of variables, arrays, parameters, and
statement functions all have local scope. A name
with a local scope can be used in the same
compilation as another item with the same name but
a global scope as long as the global name is not
referenced within the routine containing the local
name. Thus, a function can be named Faa, and a
local variable in another routine can be named Faa
without error, as long as the routine containing the
variable Faa does not call the function Faa. The
Compiler detects all scope errors, and issues an error
message when they occur, so the user need not worry
about undetected scope errors causing bugs in
programs.

One exception to the scoping rules is the name given
to common data blocks. It is possible to refer to a
globally scoped common name in the same routine
that an identical locally scoped name appears. This is
allowed because common names are always enclosed
in slashes, such as /NAME/, and are therefore always
distinguishable from ordinary names by the
Compiler.

Another exception to the scoping rules is made for
parameters to statement functions. The scope of
statement function parameters is limited to the
single statement forming that statement function.
Any other use of those names within that statement
function is not allowed, and any other use outside
that statement function is allowed.

Undeclared FORTRAN Names

When a user name that has not appeared before is
encountered in an executable statement, the
Compiler infers from the context of its use how to
classify that name. If the name is used in the context
of a variable, the Compiler creates an entry into the
symbol table for a variable of that name. Its type is
inferred from the first letter of its name. Normally,
variables beginning with the letters I,], K, L, M, or N
are considered integers, while all others are
considered reals. These defaults can be overridden
by an IMPLICIT statement (see Chapter 5). If an
undeclared name is used in the context of a function
call, a symbol table entry is created for a function of
that name, with its type being inferred in the same
manner as that of a variable. Similarly, a subroutine
entry is created for a newly encountered name that is
used as the target of a CALL statement. If an entry
for such a subroutine or function name exists in the
global symbol table, its attributes are coordinated
with those of the newly created symbol table entry. If
any inconsistencies are detected, such as a previously
defined subroutine name being used as a function
name, an error message is issued.

In general, one is encouraged to declare all names
used within a routine, since it helps to assure that the
Compiler associates the proper definition with that
name. Allowing the Compiler to use a default
meaning can sometimes result in logical errors that
are quite difficult to locate. Indeed, most modern
programming languages require the programmer to
declare all names, to avoid any such potential
difficulties.

4-5

NOTES

4-6

CHAPTER 5. SPECIFICATION
STATEMENTS

Contents

IMPLICIT Statement 5-4
DIMENSION Statement 5-6
Dimension Dec1arators 5-6
Array Element Name 5-8
Type Statements 5-9
INTEGER, REAL, and LOGICAL

Type Statements 5-10
CHARACTER Type Statement 5-11
COMMON Statement 5-12
EXTERNAL Statement 5-14
INTRINSIC Statement 5-15
SAVE Statement 5-16
EQUIVALENCE Statement 5-17
Restrictions on EQUIVALENCE

Statements 5-18

5-1

NOTES

5-2

This chapter describes the specification statements
in UCSD p-System FORTRAN 77. Specification
statements are non-executable. They are used to
define the attributes of user-defined variable, array,
and function names. There are eight kinds of
specification statements:

• IMPLICIT

• DIMENSION

• Type Statements

• COMMON

• EXTERNAL

• INTRINSIC

• SAVE

• EQUIVALENCE

Specification statements must precede all
executable statements in a routine. If present, any
IMPLICIT statements must precede all other
specification statements in a routine as welL
Otherwise, the specification statements may appear
in any order within their own group.

5-3

IMPLICIT Statement

5-4

An IMPLICIT statement is used to define the default
type for user-declared names. The form of an
IMPLICIT statement is:

IMPLICIT type (a [,a] ...) [,type (a [,a] ...)] ...

The type is one of INTEGER, LOGICAL,
REAL, or CHARACTER[*nnn]

The a is either a single letter or a range ofletters.
A range ofletters is indicated by the first and last
letters in the range separated by a minus sign.
For a range, the letters must be in alphabetical
order.

The nnn is the size of the character type that is to
be associated with that letter or letters. It must
be an unsigned integer in the range 1 to 127. If
*nnn is not specified, it is assumed to be *1.

An IMPLICIT statement defines the type and size for
all user-defined names that begin with the letter or
letters that appear in the specification. An
IMPLICIT statement applies only to the routine in
which it appears. IMPLICIT statements do not
change the type of any intrinsic functions.

Implicit types can be overriden or confirmed for any
specific user-name by the appearance of that name in
a subsequent type statement. An explicit type in a
FUNCTION statement also takes priority over an
IMPLICIT statement. If the type in question is a
character type, the user-name's length is also
overridden by a latter type definition.

IMPLICIT Statement
The routine can have more than one IMPLICIT
statement, but all implicit statements must precede
all other specification statements in that routine.
The same letter cannot be defined more than once in
an IMPLICIT statement in the same routine.

5-5

DIMENSION Statement

A DIMENSION statement is used to specify that a
user-name is an array. The form of a DIMENSION
statement is:

DIMENSION var(dim) [,var(dim)] ...

where each var(dim) is an array declarator. An
array declarator is of the form:

name(d[,d] ...)

name is the user defined name of the array.

d is a dimension declarator.

Dimension Declarators

5-6

The number of dimensions in the array is the
number of dimension declarators in the array
declarator. The maximum number of dimensions is
three. A dimension declarator can be one of three
forms:

• An unsigned integer constant.

• A user-name corresponding to a non-array
integer formal argument.

• An asterisk.

A dimension declarator specifies the upper bound of
the dimension. The lower bound is always one. If a
dimension declarator is an integer constant, then the
array has the corresponding number of elements in
that dimension. An array has a constant size if all of
its dimensions are specified by integer constants. If a
dimension declarator is an integer argument, then
that dimension is defined to be of a size equal to the
initial value of the integer argument upon entry to
the subprogram unit at execution time. In such a
case the array is called an adjustable-sized array. If
the dimension declarator is an asterisk, the array is
an assumed-sized array and the upper bound of that
dimension is not specified.

All adjustable-sized and assumed-sized arrays must
also be formal arguments to the routine in which
they appear. Additionally, an assumed-sized
dimension declarator may only appear as the last
dimension in an array declarator.

The order of array elements in memory is
column-major order. That is to say, the leftmost
subscript changes most rapidly in a
memory-sequential reference to all array elements.

5-7

Array Element Name

5-8

The form of an array element name is:

arr(sub [,sub] ...)

arr is the name of an array.

sub is a subscript expression.

A subscript expression is an integer expression used
in selecting a specific element of an array. The
number of subscript expressions must match the
number of dimensions in the array declarator. The
value of a subscript expression must be between 1
and the upper bound for the dimension it represents.

Type Statements

Type statements are used to specify the type of
user-defined names. A type statement may confirm
or override the implicit type of a name. Type
statements may also specify dimension information.

A user-name for a variable, array, external function,
or statement function may appear in a type
statement. Such an appearance defines the type of
that name for the entire routine. Within a routine, a
name may not have its type explicitly specified by a
type statement more than once. A type statement
may confirm the type of an intrinsic function, but is
not required. The name of a subroutine or main
program cannot appear in a type statement.

5-9

INTEGER, REAL, and LOGICAL
Type Statements

5-10

The form of an INTEG ER, REAL, or LOGICAL type
statement is:

type var [,var] ...

type is one of INTEGER, REAL, or LOGICAL.

var is a variable name, array name, function
name, or an array declarator. For a definition of
an array declarator, see DIMENSION
Statement.

CHARACTER Type Statement

The form of a CHARACTER type statement is:

CHARACTER [*nnn [,]] var [*nnn] [, var [*nnn]] ...

var is a variable name, array name, or an array
declarator. For a definition of an array
declarator, see DIMENSION Statement.

nnn is the length in number of characters of a
character variable or character array element. It
must be an unsigned integer in the range 1 to
127.

The length nnn following the type name
CHARACTER is the default length for any name not
having its own length specified. If not present, the
default length is assumed to be one. A length
immediately following a variable or array overrides
the default length for that item only. For an array,
the length specifies the length of each element of
that array.

5-11

COMMON Statement

5-12

The COMMON statement provides a method of
sharing storage between two or more routines. Such
rou tines can share the same data wi thou t passing it as
arguments. The form of the COMMON statement is:

COMMON [/ [enamel /] nlist [[,] / [enamel / nlist] ...

ename is a common block name. If a ename is
omitted, then the blank common block is
specified.

nlist is a comma separated list of variable names,
array names, and array declarators. Formal
argument names and function names cannot
appear in a COMMON statement.

In each COMMON statement, all variables and
arrays appearing in each nlist following a common
block name ename are declared to be in that common
block. If the first ename is omitted, all elements
appearing in the first nlist are specified to be in the
blank common block.

Any common block name can appear more than
once in COMMON statements in the same routine.
All elements in all nlists for the same common block
are allocated storage sequentially in that common
storage area in the order that they appear.

COMMON Statement
All elements in a single common area must be either
all of type CHARACTER or none of type character.
Furthermore, if two routines reference the same
named common containing character data,
association of character variables of different length
is not allowed. Two variables are said to be associated
if they refer to the same actual storage.

The size of a common block is equal to the number
of bytes of storage required to hold all elements in
that common block. If the same named common
block is referenced by several distinct routines the
size must be the same in all routines.

5-13

EXTERNAL Statement

5-14

An EXTERNAL statement is used to identify a
user-defined name as an external subroutine or
function. The form of an EXTERNAL statement is:

EXTERNAL name [,name] ...

name is the name of an external subroutine or
function.

Appearance of a name in an EXTERNAL statement
declares that name to be an external procedure.
Statement function names cannot appear in an
EXTERNAL statement. If an intrinsic function
name appears in an EXTERNAL statement, then
that name becomes the name of an external
procedure, and the corresponding intrinsic function
can no longer be called from that routine. A
user-name can only appear once in an EXTERNAL
statement.

INTRINSIC Statement

An INTRINSIC statement is used to declare that a
user-name is an intrinsic function. The form of an
INTRINSIC statement is:

INTRINSIC name [,name] ...

name is an intrinsic function name.

Each user-name may only appear once in an
INTRINSIC statement. If a name appears in an
INTRINSIC statement, it cannot appear in an
EXTERNAL statement. All names used in an
INTRINSIC statement must be system-defined
INTRINSIC functions. For a list of these functions,
see Chapter 12.

5-15

SAVE Statement

5-16

A SAVE statement is used to retain the definition of a
common block after the return from a procedure
that defines that common block. Within a
subroutine or function, a common block that has
been specified in a SAVE statement does not become
undefined upon exit from the subroutine or
function. The form of a SAVE statement is:

SAVE /name/ [,/name/] ...

... where name is the name of a common block.

Note: In UCSD p-System FORTRAN 77 all
common blocks are statically allocated, so the
SAVE statement is not necessary. Common
blocks are never disposed on exiting a
procedure. The SAVE statement is
implemented here for the sake of program
portability.

EQUIVALENCE Statement

An EQUIVALENCE statement is used to specify
that two or more variables or arrays are to share the
same storage. If the shared variables are of different
types, the EQUIVALENCE does not cause any kind
of automatic type conversion. The form of an
EQUIVALENCE statement is:

EQUIVALENCE (ntist) [, (nltst)] ...

... where nlist is a list of at least two variable
names, array names, or array element names.
Argument names may not appear in an
EQUIVALENCE statement. Subscripts must
be integer constants and must be within the
bounds of the array they index.

An EQUIVALENCE statement specifies that the
storage sequences of the elements that appear in the
list nltst have the same first storage location. Two or
more variables are said to be associated if they refer
to the same actual storage. Thus, an
EQUIV ALENCE statement causes its list of
variables to become associated. An element of type
character can only be associated with another
element of type character with the same length. If an
array name appears in an EQUIVALENCE
statement, it refers to the first element of the array.

5-17

Restrictions on EQUIVALENCE Statements

Example:

5-18

An EQUIVALENCE statement cannot specify that
the same storage location is to appear more than
once, such as:

REAL R, S(1 0)
EQUIVALENCE (R,S(1»,(R,S(5»

... which forces the variable R to appear in two
distinct memory locations. Furthermore, an
EQUIVALENCE statement cannot specify that
consecutive array elements are not stored in
sequential order. For example:

REAL R(lO),S(lO)
EQUIVALENCE (R(1),S(1»,(R(5),S(6»

... is not allowed.

When EQUIVALENCE statements and COMMON
statements are used together, several further
restrictions apply. An EQUIVALENCE statement
cannot cause storage in two different common
blocks to become equivalenced. An
EQUIVALENCE statement can extend a common
block by adding storage elements following the
common block, but not preceding the common
block.

COMMON /ABCDE/ R(10)
REAL 5(10)
EQUIVALENCE (R(l),5(1 0))

... is not allowed because it extends the common
block by adding storage preceding the start of the
block.

CHAPTER 6. DATA STATEMENT

~1

6-2

The DATA statement is used to assign initial values
to variables. A DATA statement is a non-executable
statement. If present, it must appear after all
specification statements and prior to any statement
function statements or executable statements. The
form of a DATA statement is:

DATA nlist 1 clist 1[[,] nlist 1 clist I] ...

nlist is a list of variable, array element, or array
names.

clist is a list of constants or constants preceded
by an integer constant repeat factor and an
asterisk, such as:

5*3.14159 3*'HELP' 100*0

A repeat factor followed by a constant is the
equivalent of a list all of constants of that
constant's value repeated a number of times
equal to the repeat constant.

There must be the same number of values in each
clist as there are variables or array elements in the
corresponding nlist. The appearance of an array in an
nlist is the equivalent to a list of all elements in that
array in storage sequence order. Array elements
must be indexed only by constant subscripts.

The type of each non-character element in a clist
must be the same as the type of the corresponding
variable or array element in the accompanying nlist.
Each character element in a clist must correspond to
a character variable or array element in the nlist, and
must have a length that is less than or equal to the
length of that variable or array element. If the length
of the constant is shorter, it is extended to the length
of the variable by adding blank characters to the
right. Note that a single character constant cannot
be used to define more than one variable or even
more than one array element.

Only local variables and array elements can appear in
a DATA statement. Formal arguments, variables in
common, and function names cannot be assigned
initial values with a DATA statement.

6-3

NOTES

6-4

CHAPTER 7. EXPRESSIONS

Contents

Arithmetic Expressions 7 -3
Arithmetic Operators. 7-4
Integer Division 7-5
Type Conversions and Result types

of Arithmetic Operators.. 7-5
Character Expressions 7-6
Relational Expressions 7-6
Relational Opera tors 7-7
Logical Expressions 7-8
Logical Operators 7-8
Precedence of Operators 7-9
Relative Precedence of Operator

Classes 7-9
Evaluation Rules and Restrictions

for Expressions 7 -10

7-1

NOTES

7-2

This chapter describes the four classes of
expressions found in the FORTRAN language.
They are:

1) Arithmetic Expressions

2) Character Expressions

3) Relational Expressions

4) Logical Expressions

~rithmetic Expressions
An arithmetic expression produes a value which is
either of type integer or of type real. The simplest
forms of arithmetic expressions are:

• Unsigned integer or real constant.

• Integer or reai variable reference.

• Integer or real array element reference.

• Integer or real function reference.

The value of a variable reference or array element
reference must be defined for it to appear in an
arithmetic expression. Moreover, the value of an
integer variable must be defined with an arithmetic
value, rather than a statement label value previously
set in an ASSIGN statement.

7-3

Other arithmetic expressions are built up from tht
above simple forms using parentheses and these
arithmetic operators:

Arithmetic Operators

7-4

Operation Precedence

** Exponentiation Highest

I Division
Intermediate

* Multiplication

- Subtraction/Negation
Lowest

+ Addition/Identity

All of the operators are binary operators, appearing
between their arithmetic expression operands. The
+ and - may also be unary, preceding their operand.
Operations of equal precedence are left-associative
except exponentiation which is right-associative.
Thus, AI B * C is the same as (AI B) * C and
A ** B ** C is the same as A ** (B ** C). Arithmetic
expressions may be formed in the usual algebraic
sense, as in most programming languages, except
that FORTRAN prohibits two operators from
appearing consecutively. Thus, A ** - B is
prohibited, although A ** (-B) is permissible. Note
that unary minus is also oflowest precedence so that
- A * B is interpreted as - (A * B). Parentheses may be
used in a program to control the associativity and the
order of operator evaluation in an expression.

Integer Division

The division of two integers results in a value which
is the quotient of the two values, truncated toward o.
Thus, 7/3 evaluates to 2, (-7) /3 evaluates to -2,
9/10 evaluates to 0 and 9 / (-10) evaluates to O.

Type Conversions and Result Types of
Arithmetic Operators

Arithmetic expressions may involve operations
between operands which are of different type. The
general rules for determining type conversions and
the result type for an arithmetic expression are:

• An operation between two integers results in an
expression of type integer.

• An operation between two reals results in an
expression of type real.

• For any operator except **, an operation
between a real and an integer converts the
integer to type real and performs the operation,
resulting in an expression of type real.

• For the operator **, a real raised to an integer
power is computed without conversion of the
integer, and results in an expression of type
real. An integer raised to a real power is
converted to type real and the operation results
in an expression of type real. Note that for
integer I and negative integer], I **] is the same
as 1 / (I ** IABS(J)) which is subject to the rules
of integer division so, for example, 2 ** (-4) is
1/16 which is O.

• Unary operators result in the same type as their
operand type.

7-5

The type which results from the evaluation of an
arithmetic operator is not dependent on the context
in which the operation is specified. For example,
evaluation of an integer plus a real results in a real
even if the value obtained is to be immediately
assigned into an integer variable.

Character Expressions
A character expression produces a value which is of
type character. The forms of character expressions
are:

• Character constant.

• Character variable reference.

• Character array element reference.

• Any character expression, enclosed in
parentheses.

There are no operators which result in character
expressions.

Relational Expressions

7-6

Relational expressions are used to compare the
values of two arithmetic expressions or two
character expressions. It is not allowed to compare
an arithmetic value with a character value. The result
of a relational expression is of type logical.

Relational Operators

Relational expressions may use any of these
operators to compare values:

Operator Representing Operation

.LT. Less than

.LE. Less than or equal to

.EQ. Equal to

.NE . Not equal to

. GT. Greater than

.GE. Greater than or equal to

All of the operators are binary operators, appearing
between their operands. There is no relative
precedence or associativity among the relational
operands since an expression of the form
A .LT. B .NE. C violates the type rules for operands.
Relational expressions may only appear within
logical expressions.

Relational expressions with arithmetic operands
may have an operand of type integer and one of type
real. In this case, the integer operand is converted to
type real before the relational expression is
evaluated.

Relational expressions with character operands
compare the position of their operands in the ASCII
collating sequence. An operand is less than another
if it appears earlier in the collating sequence, etc. If
operands of unequal length are compared, the
shorter operand is considered as if it were blank
extended to the length of the longer operand.

7-7

Logical Expressions
A logical expression produces a value which is of
type logical. The simplest forms of logical
expressions are:

• Logical constant.

• Logical variable reference.

• Logical array element reference.

• Logical function reference.

• Relational expression.

Other logical expressions are built up from the
above simple forms using parentheses and these
logical operators:

Logical Opera tors

7-8

Operation

.NOT.

.AND.

.OR.

Negation

Conjunction

Inclusive
disjunction

Precedence

Highest

Intermediate

Lowest

The .AND. and. OR. operators are binary operators,
appearing between their logical expression
operands. The .NOT. operator is unary, preceding
its operand. Operations of equal precedence are
left-associative so, for example,

A .AND. B .AND. C is equivalent to (A .AND. B)
.AND. C. As an example of the precedence rules,
.NOT. A .OR. B .AND. C is interpreted the same as
(.NOT. A) .OR. (B .AND. C). It is not permitted to
have two .NOT. operators adjacent to each other,
although A .AND .. NOT. B is an example of an
allowable expression with two operators being
adjacent.

The meaning of the logical operators is their
standard semantics, with .OR. being
"nonexclusive"; that is, .TRUE .. OR. .TRUE.
evaluates to the value. TRUE ..

Precedence of Operators
When arithmetic, relational, and logical operators
appear in the same expression, their relative
precedences are:

Relative Precedence of Operator Classes

Operator Precedence

Arithmetic Highest

Relational Intermediate

Logical Lowest

7-9

Evaluation Rules and Restrictions
for Expressions

7-10

Any variable, array element, or function referenced
in an expression must be defined at the time of the
reference. Integer variables must be defined with an
arithmetic value, rather than a statement label value
as set by an ASSIGN statement.

Certain arithmetic operations are prohibited if they
cannot be evaluated (e.g., dividing by zero). Other
prohibited operations are raising a zero valued
operand to a zero or negative power and raising a
negative valued operand to a power of type real.

CHAPTER 8. ASSIGNMENT
STATEMENTS

Contents

Computational Assignment
Statements 8-3

Type Conversion for Arithmetic
Assignments 8-4

8-1

NOTES

8-2

An assignmen t sta temen t is used to assign a value to a
variable or an array element. There are two basic
kinds of assignment statements: computational
assignment statements, and label assignment
statements.

Computational Assignment
Statements

The form of a computational assignment statement
is:

var= expr

var is a variable or array element name, and

expr is an expression.

Execution of a computational assignment statement
evaluates the expression and assigns the resulting
value to the variable or array element appearing on
the left. The type of the variable or array element and
the expression must be compatible. They must both
be either numeric, logical, or character, in which
case the assignment statement is called an
arithmetic, logical, or character assignment
statement.

If the type of the elements of an arithmetic
assignment statement are not identical, automatic
conversion of the value of the expression to the type
of the variable is done. The following table gives the
conversion rules:

8-3

Type Conversion for Arithmetic Assignments

8-4

Type of
variable or
array element

integer

real

Type of expression

integer real

expr INT(expr)

REAL(expr) expr

If the length of the expression does not match the
size of the variable in a character assignment
statement, it is adjusted so that it does. If the
expression is shorter, it is padded with enough
blanks on the right to make the sizes equal before the
assignment takes place. If the expression is longer,
characters on the right are truncated to make the
sizes the same.

Label Assignment Statement

The label assignment statement is used to assign the
value of a format or statement label to an integer
variable. The form of the statement is:

ASSIGN label TO var

label is a format label or statement label, and

var is an integer variable.

Execution of an ASSIGN statement sets the integer
variable to the value of the labeL The label can be
either a format label or a statement label, and it must
appear in the same routine as the ASSIGN
statement. When used in an assigned GOTO
statement, a variable must currently have the value
of a statement label. When used as a format specifier
in an 1/0 statement, a variable must have the value of
a format statement label. The ASSIGN statement is
the only way to assign the value of a label to a
variable.

8-5

NOTES

8-6

CHAPTER 9. CONTROL
STATEMENTS

Contents

Unconditional GOTO 9-4
Computed GOTO 9-5
Assigned GOTO 9-6
Arithmetic IF 9-7
Logical IF 9-8
Block IF THEN ELSE 9-9
Block IF 9-13
ELSEIF 9-14
ELSE 9-15
ENDIF 9-16
DO 9-17
CONTINUE 9-20
STOP 9-21
PAUSE 9-22
END 9-23

9-1

NOTES

9-2

Control statements are used to control the order of
execution of statements in the FORTRAN
language. This chapter describes the following
control statements:

• Unconditional GOTO.

• Computed GOTO.

• Assigned GOTO.

• Arithmetic IF.

• Logical IF.

• Block IF THEN ELSE.

• Block IF.

• ELSEIF.

• ELSE.

• ENDIF.

• DO.

• CONTINUE.

• STOP.

• PAUSE.

• END.

The two remaining statements which control the
order of execution of statements are the CALL
statement and the RETURN statement, both of
which are described in Chapter 12.

9-3

Unconditional GO TO

9-4

The syntax for an unconditional GOTO statemen1
is:

GOTOs

... where s is a statement label of an executable
statement that is found in the same routine as the
GOTO statement. The effect of executing a GOTO
statement is that the next statement executed is thE
statement labeled s. It is not legal to jump into a DO,
IF, ELSEIF, or ELSE block from outside the block
(see the various sections for an explanation of the
kinds of blocks).

Computed GOTO

The syntax for a computed GOTO statement is:

GOTO (s [, s] ...)[,] i

... where i is an integer expression and each s is a
statement label of an executable statement that is
found in the same routine as the computed GOTO
statement. The same statement label may appear
repeatedly in the list of labels. The effect of the
computed GOTO statement can be explained as
follows: Suppose that there are n labels in the list of
labels. If i < 1 or i > n then the computed GOTO
statement acts as if it were a CONTINUE statement,
otherwise, the next statement executed will be the
statement labeled by the ith label in the list oflabels.
It is not allowed to jump into a DO, IF, ELSEIF, or
ELSE block from outside the block (see the various
sections for an explanation of the kinds of blocks).

Note: Computed GOTOs are often used to
implement a CASE construct.

9-5

Assigned GO TO

9-6

The syntax for an assigned GOTO statement is:

GOTO i [[,] (s [, s] ...)]

... where i is an integer variable name and each s is a
statement label of an executable statement that is
found in the same routine as the assigned GOTO
statement. The same statement label may appear
repeatedly in the list of labels. When the assigned
GOTO statement is executed, i must have been
assigned the label of an executable statement that is
found in the same routine as the assigned GOTO
statement. The effect of the statement is that the
next statement executed will be the statement
labelled by the label last assigned to i. If the optional
list oflabels is present, a runtime error is generated if
the label last assigned to i is not among those listed.
It is notlegal to jump into aDO, IF, ELSEIF, or ELSE
block from outside the block (see the various
sections for an explanation of the kinds of blocks).

Arithmetic IF

The syntax for an arithmetic IF statement is:

IF (e) sl, s2, s3

... where e is an integer or real expression and each
of sl, s2, and s3 are statement labels of executable
statements found in the same routine as the
arithmetic IF statement. The same statement label
may appear more than once among the three labels.
The effect of the statement is to evaluate the
expression and then select a label based on the value
of the expression. Label sl is selected if the value
of e is less than 0, s2 is selected if the value of e equals
0, and s3 is selected if the value of e exceeds o. The
next statement executed will be the statement
labeled by the selected label. It is not legal to jump
into a DO, IF, ELSEIF, or ELSE block from outside
the block (see the various sections for an
explanation of the kinds of blocks).

9-7

Logical IF

9-8

The syntax for a logical IF statement is:

IF (e) st

... where e is a logical expression and st is any
executable statement except a DO, block IF,
ELSEIF, ELSE, ENDIF, END, or another logical IF
statement. The statement causes the logical
expression to be evaluated and, if the value of that
expression is .TRUE., then the statement, st, is
executed. Should the expression evaluate to
.FALSE., the statementst is not executed and the
execution sequence continues as if a CONTINUE
statement had been encountered.

Block IF THEN ELSE

Block IF, ELSEIF, ELSE, and ENDIF are described
in this chapter. These statements are new to
FORTRAN 77 and can be used to dramatically
improve the readability of FORTRAN programs and
to cut down the number of GOTOs of the various
forms. As an overview of these sections, the
following three code skeletons illustrate the basic
concepts:

Skeleton 1 - Simple Block IF which skips a group of
statements if the expression is false:

IF(I.LT.l0)THEN

ENDIF

Some statements executed
only if I.LT.l0

9-9

Block IF THEN ELSE

9-10

Skeleton 2 - Block IF with a Series of ELSEIF
statements:

IF(J.GT.l000)THEN

Some statements executed
only if J.GT.l000

ELSEIF(J.GT.l00)THEN

Some statements executed
only if J.GT.l00 and
J.LE.l000

ELSEIF(J.GT.l0)THEN

ELSE

ENDIF

Some statements executed
only if J.GT.l0 and
J. LE.l 000 and J. LE.l 00

Some statements executed
only if none of the above
conditions were true

Block IF THEN ELSE

Skeleton 3 - Illustrates that the constructs can be
nested and that an ELSE statement can follow a
block IF without intervening ELSEIF statements
(indentation solely to enhance readability):

IF(I.LT.l00)THEN

Some statements executed
only If I.LT.l00

IF(J.LT.l0)THEN

ENDIF

Some statements executed
only if I. LT. 1 00
and J.LT.l0

Some statements executed
only if I. LT. 1 00

ELSEIF(I.LT.1000)THEN

ENDIF

Some statements executed
only if I.GE.1DO and
I.LT.l000

IF(J.LT.l0)THEN

ENDIF

Some statements executed
only if I.GE.l00
and I.LT.l000 and J.LT.l0

Some statements executed
only if I.GE.l00 and
I. LT. 1 000

9-11

Block IF THEN ELSE

9-12

In order to understand, in de-tail, the block IF and
associated statements, the concept of an IF-level is
introduced. For any statement, its IF-level is

n1 • n2

... where n1 is the number of block IF statements
from the beginning of the program unit that the
statement is in, up to and including that statement,
and n2 is the number of END IF statements from the
beginning of the program unit up to, but not
including, that statement. The IF-level of every
statement must be greater than or equal to 0 and the
IF-level of every block IF, ELSEIF, ELSE, and
ENDIF must be greater than o. Finally, the IF-level
of every END statement must be o. The IF-level will
be used to define the nesting rules for the block IF
and associated statements and to define the extent of
IF blocks, ELSEIF blocks, and ELSE blocks.

Block IF

The syntax for a block IF statement is:

IF (e) THEN

... where e is a logical expression. The IF block
associated with this block IF statement consists of all
of the executable statements (possibly none) that
appear following this statement up to, but not
including, the next ELSEIF, ELSE, or ENDIF
statement that has the same IF-level as this block IF
statement (the IF-level defines the notion of
"matching" ELSEIF, ELSE, or ENDIF). Executing
the block IF statement first causes the expression to
be evaluated. If it evaluates to .TRUE. and there is at
least one statement in the IF block, the next
statement executed is the first statement of the IF
block. Following the execution of the last statement
in the IF block, the next statement to be executed is
the next ENDIF statement at the same IF-level as
this block IF statement. If the expression in this
block IF statement evaluates to .TRUE. and the IF
block has no executable statements, the next
statement executed is the next ENDIF statement at
the same IF level as the block IF statement. If the
expression evaluates to . FALSE., the next statement
executed is the next ELSEIF, ELSE, or ENDIF
statement that has the same IF-level as the block IF
statement. Note that transfer of control into an IF
block from outside that block is not allowed.

9-13

ELSEIF

9-14

The syntax of an ELSEIF statement is:

ELSEIF (e) THEN

... where e is a logical expression. The ELSEIF block
associated with an ELSEIF statement consists of all
of the executable statements, possibly none, that
follow the ELSEIF statement up to, but not
including, the next ELSEIF, ELSE, or ENDIF
statement that has the same IF-level as this ELSEIF
statement. The execution of an ELSEIF statement
begins by evaluating the expression. If its value is
. TRUE. and there is at least one statement in the
ELSEIF block, the next statement executed is the
first statement of the ELSEIF block. Following the
execution of the last statement in the ELSEIF block,
the next statement to be executed will be the next
ENDIF statement at the same IF-level as this ELSEIF
statement. If the expression in this ELSEIF
statement evaluates to .TRUE. and the ELSEIF
block has no executable statements, the next
statement executed is the next ENDIF statement at
the same IF level as the ELSEIF statement. If the
expression evaluates to .FALSE., the next statement
executed is the next ELSEIF, ELSE, or ENDIF
statement that has the same IF-level as the ELSEIF
statement. Note that transfer of control into an
ELSEIF block from outside that block is not allowed.

ELSE

The syntax of an ELSE statement is:

ELSE

The ELSE block associated with an ELSE statement
consists of all of the executable statements (possibly
none) that follow the ELSE statement up to, but
not including, the next ENDIF statement that has
the same IF-level as this ELSE statement. The
"matching" ENDIF statement must appear before
any intervening ELSE or ELSEIF statements of the
same IF-level. Note that transfer of control into an
ELSE block from outside that block is not allowed.

9-15

ENDIF

9-16

The syntax of an ENDIF statement is:

ENDIF

There is no effect of executing an ENDIF statement.
An ENDIF statement is required to "match" every
block IF statement in a program unit in order to
specify which statements are in a particular block IF
statement.

DO

The syntax of a DO statement is:

DO s [,] i=el, e2 [, e3]

... where s is a statement label of an executable
statement. The label must follow this DO statement
and be contained in the same program unit. In the
DO statement, i is an integer variable, and el,
e2, and e3 are integer expressions. The statement
labeled by s is called the terminal statement of the
DO loop. It must not be an unconditional GOTO,
assigned GOTO, arithmetic IF, block IF, ELSEIF,
ELSE, ENDIF, RETURN, STOP, END, or DO
statement. If the terminal statement is a logical IF
it may contain any executable statement except
those not permitted inside a logical IF statement.
(For safety's sake, the statement labeled s is often a
CONTINUE statement.)

A DO loop is said to have a "range", beginning with
the statement which follows the DO statement and
ending with (and including) the terminal statement
of the DO loop. If a DO statement appears in the
range of another DO loop, its range must be entirely
contained within the range of the enclosing DO
loop, although the loops may share a terminal
statement (not recommended). If a DO statement
appears within an IF block, ELSEIF block, or ELSE
block, the range of the associated DO loop must be
entirely contained in the particular block. If a block
IF statement appears within the range of a DO loop,
its associated ENDIF statement must also appear
within the range of that DO loop. The DO variable i,

9-17

DO

9-18

may not be set by the program within the range of
the DO loop associated with it. It is not allowed to
jump into the range of a DO loop from outside its
range.

The execution of a DO statement causes the
following steps to happen in order:

The expressions el, e2, and e3 are evaluated. If
e3 is not present, e3 defaults to 1 (e3 must not
evaluate to 0).

The DO variable, i, is set to the value of el .

The iteration count for the loop is computed to
be MAXO«(e2 - el + e3)/e3),0) which may be
zero (Note: unlike FORTRAN 66) if either
el > e2 and e3 > 0, or el < e2 and e3 < O.

The iteration count is tested, and if it exceeds
zero, the statements in the range of the DO loop
are executed.

Following the execution of the terminal statement
of a DO loop, the following steps occur in order:

The value of the DO variable, i, is incremented
by the value of e3 which was computed when
the DO statement was executed.

The iteration count is decremented by one.

The iteration count is tested, and if it exceeds
zero, the statements in the range of the DO loop
are executed again.

DO
The value of the DO variable is well-defined after
execution of the loop, regardless of whether the DO
loop exits as a result of the iteration count becoming
zero, as the result of a transfer of control out of the
DO loop, or as the result of a RETURN statement.

Example of the final value of a DO variable:

C This program fragment
C prints the numbers
C 1 to 11 on the CONSOLE:

DO 200 1=1,10
200 WRITE(*',(l5),) I
WRITE(*',(15),)1

9-19

CONTINUE

9-20

The syntax of a CONTINUE statement is:

CONTINUE

There is no effect associated with execution of a
CONTINUE statement. The primary use for the
CONTINUE statement is a convenient statement to
label, particularly as the terminal statement in a DO
loop.

STOP

The syntax of an STOP statement is:

STOP [n]

... where n is either a character constant or a string of
not more than 5 digits. The effect of executing a
STOP statement is to cause the program to
terminate. The argument, n, if present, is displayed
on CONSOLE: upon termination.

9-21

PAUSE

9-22

The syntax of an PAUSE statement is:

PAUSE [n]

... where n is either a character constant or a string of
not more than 5 digits. The effect of executing a
PAUSE statement is to cause the program to be
suspended pending an indication from the
CONSOLE: that it is to continue. The argument, n,
if present, is displayed on the CONSOLE: as part of
the prompt requesting input from the CONSOLE:.
If the indication from the CONSOLE: is received to
continue execution of the program, execution
resumes as if a CONTINUE statement had been
executed.

END

The syntax of an END statement is:

END

Unlike other statements, an END statement must
wholly appear on an initial line and contain no
continuation lines. No other FORTRAN statement,
such as the ENDIF statement, may have an initial
line which appears to be an END statement. The
effect of executing the END statement in a
subprogram is the same as execution of a RETURN
statement and the effect in the main program is to
terminate execution of the program. The END
statement must appear as the last statement in every
routine.

9-23

NOTES

9-24

CHAPTER 10. I/O SYSTEM

Contents

I/O System Overview
Records
Files
File Properties
Internal Files
Units
I/O System Concepts and

Limitations
FORTRAN I/O System
Example Program Illustrating Most

Common I/O Operations
Use of Less Common File

10-4
10-4
10-5
10-5
10-8
10-9

10-10
10-10

10-11

Operations 10-12
Limitations of the FORTRAN I/O

System 10-13
I/O Statements 10-15
Elements of I/O Statements 10-15
Statements 10-18
Restrictions on Functions 10-29

10-1

NOTES

10-2

Chapters 10 and 11 of this manual describe the
FORTRAN I/O System. Chapter 10 describes the
basic FORTRAN I/O concepts and statements and
Chapter 11 describes the FORMAT statement. The
four major Sections of these chapters are:

1) 1/ 0 System Overview - Provides an overview of
the FORTRAN file System. Defines the basic
concepts of I/O records, I/O units, and the
various kinds of file access available under the
System.

2) General Discussion of I/O System Concepts
and Limitations - The definitions made in I/O
System Overview are related to how to
accomplish various simple, as well as complex,
tasks using the I/O System. There is a general
discussion of I/O System limitations.

3) I/O Statements - The statements of the I/O
System are presented with the exception of the
FORMAT statement.

4) Formatted I/O and the FORMAT Statement­
The FORMAT statement and formats in
general are described.

Note: The reader is directed to I/O System
Concepts and Limitations for a brief discussion
of the most commonly used forms of files and
I/O statements, and a complete sample
program illustrating the most commonly used
forms of I/O.

10-3

I/O System Overview

Records

10-4

In order to fully understand the I/O statements, it is
necessary to be familiar with a variety of terms and
concepts related to the structure of the FORTRAN
I/O System. Most I/O tasks can be accomplished
without a complete understanding of this material
and the reader is encouraged to skip to General
I/O System Concepts and Limitations on first
reading and subsequently use I/O System Overview
primarily for reference.

The building block of the FORTRAN file system is
the Record. A Record is a sequence of characters or a
sequence of values. There are three kinds of records:

1) Formatted.

2) Unformatted.

3) Endfile.

A formatted record is a sequence of characters
terminated by the character value which
corresponds to the <return> key on a terminal
(character value 13). Formatted records are
processed on input consistent with the way that the
Operating System and Text Editor process
characters. Thus, reading characters from formatted
records in FORTRAN is identical to reading
characters in other System programs and other
languages on the System. Formatted files are
normally transportable between different
P-machine interpreters.

An unformatted record is a sequence of values, with
no System alteration or processing; no physical
representation for the end of record exists.

Files

Unformatted files generated on different processors
are not generally interchangeable, since the internal
representations of integers and reals differ among
the various interpreters.

The System makes it appear as though an endfile
record exists after the last record in a file, although
no physical endfile mark ever exists.

A FORTRAN file is a sequence of records.
FORTRAN files are one of two kinds:

• External.

• Internal.

An external FORTRAN file is a file on a device, or
the device itself. An internal FORTRAN file is a
character variable which serves as the source or
destination of some I/O action. From this point on,
both FORTRAN files and the notion of a file as
known to the Operating System and the Editor will
be referred to simply as files, with the context
determining which meaning is intended. (The
OPEN statement provides the linkage between the
two notions of files, and in most cases the ambiguity
disappears, since after a file has been opened, the
two notions are one and the same.)

File Properties

A file which is being acted upon by a FORTRAN
program has a variety of properties. These
properties are described in File Position and
Sequential and Direct Access Properties in this
chapter.

10-5

10-6

File Name

A file may have a name. If present, a name is a
character string identical to the name by which it is
known to the Filer. There may be more than one
name for the same file, such as SYS:A. TEXT and
#4:A.TEXT.

File Position

A file has a position property which is usually set by
the previous I/O operation. There is a notion of the
initial point in the file, the terminal point in the file,
the current record, the preceding record, and the
next record of the file. It is possible to be between
records in a file, in which case the next record is the
successor to the previous record and there is no
current record. The file position after sequential
writes is at the end of file, but not beyond the endfile
record. Execution of the ENDFILE statement
positions the file beyond the endfile record, as does a
read statement executed at the end of file (but not
beyond the endfile record). Reading an endfile
record may be trapped by the user using the
END= option in a READ statement.

Formatted and Unformatted Files

An external file is opened as either formatted or
unformatted. All internal files are formatted. Files
which are formatted consist entirely of formatted
records and files which are unformatted consist
entirely of unformatted records. Files which are
formatted obey all the structural rules of . TEXT
files, so that they are compatible with the System
Text Editor.

Sequen tial and Direct Access Properties

An external file is opened as either sequential or
direct. Sequential files contain records with an order
property determined by the order in which the
records were written (the normal sequential order).
These files must not be read or written using the
REC= option which specifies a position for direct
access I/O. The System will attempt to extend
sequential access files if a record is written beyond
the old terminating boundary of the file, but the
success of this depends on the existence of room on
the physical device at the appropriate location.

Direct access files may be read or written in any order
(they are random access files). Records in a direct
access file are numbered sequentially, with the first
record numbered one. All records in a direct access
file have the same length, which is specified at the
time the file is opened. Each record in the file is
uniquely identified by its record number, which was
specified when the record was written. It is entirely
possible to write the records out of order, including,
for example, writing record 9, 5, and 11 in that order
without the records in between. It is not possible to
delete a record once written, but it is possible to
overwrite a record with a new value. It is an error to
read a record from a direct access file which has not
been written, but the System will not detect this
error unless the record which is being read is beyond
the last record written in the file (a non-written
record before the end-of-file contains garbage).
Direct access files must reside on block-structured
peripheral devices such as the diskette, so that it is
meaningful to specify a position in the file and
reference it. The System will attempt to extend
direct access files if an attempt is made to write to a
position beyond the previous terminating boundary
of the file, but the success of this depends on the
existence of room on the physical device at the
appropriate location.

10-7

Internal Files

10-8

Internal files provide a mechanism for using the
formatting capabilities of the I/O System to convert
values to and from their exter9-al character
representations, within the FORTRAN internal
storage structures. That is, reading a character
variable converts the character values into numeric,
logical, or character values and writing into a
character variable allows values to be converted into
their (external) character representation.

Special Properties of Internal Files

An internal file is a character variable or character
array element. The file has exactly one record, which
has the same length a~the character variable or
character array element. Should less than the entire
record be written by a WRITE statement, the
remaining portion of the record is filled with blanks.
The file position is always at the beginning of the file
prior to I/O statement execution. Only formatted,
sequentialI/O is permitted with internal files, and
only the I/O statements READ and WRITE may
specify an internal file.

Units

A unit is a means of referring to a file. A unit specified
in an I/O statement is one of:

External unit specifier/

Internal file specifier

External unit specifiers are either integer
expressions which evaluate to non-negative values,
or the character *, which stands for the CONSOLE:
device. In most cases, external unit specifier values
are bound to physical devices (or files resident on
those devices) by name (using the OPEN statement).
Once this binding of value to System file name
occurs, FORTRAN I/O statements refer to the unit
number as a means of referring to the appropriate
external entity. Once opened, the external unit
specifier value is uniquely associated with a
particular external entity until an explicit CLOSE
occurs or until the program terminates. The only
exception to the above binding rules is that the unit
value 0 is initially associated with the CONSOLE:
device for reading and writing and no explicit OPEN
is necessary. The character * is interpreted by the
System as specifying unit O.

An internal file specifier is a character variable or
character array element which directly specifies an
internal file.

10-9

I/O System Concepts and
Limitations

FORTRAN I/O System

10-10

FORTRAN provides a rich combination of possible
file structures. Choosing from among these many
structures may at first seem somewhat confusing.
However, two kinds of files will suffice for most
applications.

* - CONSOLE:, a sequential, formatted file,
also known as unit 0 - This particular unit has
the special property that an entire line is
terminated by the <return> key (which must be
entered when reading from it), and the various
backspace and line delete keys familiar to the
System user serve their normal functions. Note
that a READ from any other unit will not have
these properties, even if that unit is bound to
CONSOLE: by an explicit OPEN statement.

Explicitly opened external, sequential,
formatted files - These files are bound to a
System file by name in an OPEN statement.
They can be read and written in the System Text
Editor format.

Example Program Illustrating Most Common
I/O Operations

Here is a sample program which uses the kinds of
files discussed in the previous paragraphs for reading
and writing. The various I/O statements are
explained in detail in I/O Statements in this chapter.

C Copy a file with three
C columns of integers, each 7
C columns wide, from a file
C whose name Is Input by the
C user to another file names
C OUT. TEXT, reversing the
C positions of the first
C and second column.

PROGRAM COLSWP
CHARACTER*23 FNAME

C Prompt to the CONSOLE:
C by writing to *

WRITE(*,900)
900 FORMAT(,lnput file name - '\)
C Read the file name from
C the CONSOLE: by reading from *

READ(*,910) FNAME
910 FORMAT(A)
C Use unit 3 for Input, any unit
C number except 0 will do

OPEN(3, FI LE= FNAM E)
C Use unit 4 for output, any unit
C number except 0 and 3 will do

OPEN(4,FILE='OUT.TEXT',
1 STATUS=NEW)

C Read and write until end of file
100 READ(3,920,END=200)l,J,K

WRITE(4,920)J,I,K
920 FORMAT(317)

GOTO 100
200 WRITE(*,910)'Done'

END

10-11

Use of Less Common File Operations

10-12

The less commonly used file structures are
appropriate for certain classes of applications. A
very general indication of the intended usages for
them are as follows: if the I/O is to be random
access, such as in maintaining a database, direct
access files are probably necessary. If the data is to be
written by FORTRAN and reread by FORTRAN (on
the same brand of processor), unformatted files are
more efficient both in file space and in I/O overhead.
The combination of direct and unformatted is ideal
for a database to be created, maintained, and
accessed exclusively by FORTRAN. If the data must
be transferred without any System interference,
especially if all 25 6 possible bytes will be transferred,
unformatted I/O will be necessary, since. TEXT files
are constrained to contain only the printable
character set as data. An example of a usage of
unformatted I/O would be in the control of a device
which has a single byte, binary interface. Formatted
I/O would, in this example, interpret certain
characters, such as the ASCII representation for
carriage return, and fail to pass them through to the
program unaltered. Internal files are not I/O in the
conventional sense but rather provide certain
character string operations and conversions within a
standard mechanism.

Use of formatted direct files requires special cau tion.
FORTRAN formatted files attempt to comply with
the Operating System rules for. TEXT files (for a
discussion of . TEXT files, see the Users' Guide).
FORTRAN I/O is able to enforce these rules for
sequential files, but it cannot always enforce them
for direct files. Direct files are not necessarily legal
.TEXT files, since any unwritten records contain
undefined values which do not follow. TEXT file
constraints. Direct files do, of course, obey
FORTRAN I/O rules.

A file opened in FORTRAN is either" old" or" new",
but there is no concept of" opened for reading" as
distinguished from" opened for writing". Therefore,
you may open "old" (existing) files and write to
them, with the effect of modifying existing files.
Similarly, you may alternately write and read to the
same file (providing that one avoids reading beyond
end of file, or reading unwritten records in a direct
files). A write to a sequential file effectively deletes
any records which had existed beyond the freshly
written record. Normally, when a device is opened as
a file (such as CONSOLE: or PRINTER:) it makes no
difference whether the file is opened as "old" or
"new". With diskette files, opening "new" creates a
new temporary file. If that file is closed using the
"keep" option, or if the program is terminated
without doing a CLOSE on that file, a permanent file
is created with the name given when the file was
opened. If a previous file existed with the same
name, it is deleted. If closed using the "delete"
option, the newly created temporary file is deleted,
and any previous file of the same name is left intact.
Opening a diskette file as "old" generates a runtime
error if the file does not exist, and alters the existing
file if it does.

Limitations of the FORTRAN I/O System

Direct Files must be Associated with
Blocked Devices

The p-System storage devices are either
block-structured or sequential. Sequential files may
be thought of as streams of characters, with no
explicit action allowed except reading and! or
writing. CONSOLE: and PRINTER: are examples of
sequential devices. Block-structured devices, such as
diskette files, allow the additional operation of
seeking a specific location. They can be accessed
either sequentially or randomly and thus can support

10-13

10-14

direct files. Since there is no notion of seeking a
position on a file which is not block-structured,
FORTRAN I/O does not allow direct file access to
sequential devices.

BACKSPACE only applies to files associated with
blocked devices.

Sequential devices produce a stream of characters.
There is no way to "unread" a character, once it is
read, so FORTRAN I/O disallows backspacing a file
on a sequential device.

BACKSPACE may not be used on unformatted
sequential files

It is not possible to implement BACKSPACE on
unformatted sequential files since there is no
indication in the file itself of the record boundaries.
It would be possible to append end of record marks
to unformatted sequential files, but this would
interfere with the notion of an unformatted file
being a "pure" sequence of values, and would
interfere with the most common usage for such files,
such as the direct control of an external device.
Direct files contain records of fixed and specified
length, so it is possible to backspace direct
unformatted files.

Side Effects of Functions Called in I/O Statements

During the course of executing any I/O statement,
the evaluation of an expression may cause a function
to be called. That function call must not cause any
I/O statement to be executed.

I/O Statements
This Section describes these I/O statements which
are available from FORTRAN:

• OPEN.

• CLOSE.

• READ.

• WRITE.

• BACKSPACE.

• ENDFILE.

• REWIND.

In addition, there is an I/O intrinsic function EOF,
presented in Chapter 12, which returns a logical
value indicating whether the file associated with the
unit specifier passed to it is at end-of-file. A
familiarity with the FORTRAN file system, units,
records, and access methods as described in the
previous Sections is assumed.

Elements of I/O Statements

The various I/O statements take certain parameters
and arguments which specify sources and
destinations of data transfer, as well as other facets of
the I/O operation. The abbreviations used
throughout I/O statements are defined in the
following paragraphs:

10-15

10-16

The Unit Specifier (u)

The unit specifier, u, can take one of these forms in
an I/O statement:

1) * - refers to the CONSOLE:.

2) integer expression - refers to external file with
unit number equal to the value of the
expression (* is unit number 0).

3) name of a character variable or character array
element - refers to the internal file which is the
character datum.

The Format Specifier (f)

The format specifier,/, can take one of these forms
in an I/O statement:

statement label - refers to the FORMAT
statement labeled by that label.

integer variable name - refers to the FORMAT
label which that integer variable has been
assigned (using the ASSIGN statement).

character expression - the format which is
specified is the current value of the character
expression provided as the format specifier.

The Input-Output list (iolist)

The input-output list, iolist, specifies the entities
whose values are transferred by READ and WRITE
statements. An iolist is a possibly empty list,
separated by commas, of items which consist of:

Input Entities. An input entity may be specified in
the ioNst of a READ statement and is of one of these
forms:

• Variable name.

• Array element name.

• Array name - this is a means of specifying all of
the elements of the array in storage sequence
order.

Output Entities. An output entity may be
specified in the iolist of a WRITE statement, and is
of one of these forms:

• Variable name.

• Array element name.

• Array name - this is a means of specifying all of
the elements of the array in storage sequence
order.

• Any other expression not beginning with the
character (- to distinguish implied DO lists
from expressions.

10-17

Implied DO lists. Implied DO lists may be
specified as items in the I/O list of READ and
WRITE statements, and are of the form:

(iolist, i = e1, e2 [, e3])

... where the iolist is as above (including nested
implied DO lists) and i, el, e2 and the optional e3
are as defined for the DO statement. That is, i is an
integer variable and el, e2, and e3 are integer
expressions. In a READ statement, the DO variable i
(or an associated entity) must not appear as an input
list item in the embedded iolist, but may have been
read in the same READ statement outside of the
implied DO list. The embedded iolist is effectively
repeated for each iteration of i with appropriate
substitution of values for the DO variable i.

Statements

10-18

The following I/O statements are supported by
FORTRAN. The possible form for each statement is
specified first, with an explanation of the meanings
for the forms following. Certain items are specified
as required if they must appear in the statement, and
are specified as optional if they need not appear.
Typically, optional items have defaults. Examples
are provided.

OPEN Statement

OPEN(

u,

Required, must appear as the first argument.
Must not be internal unit specifier.

FILE=fname,

The file name, fname, is a character expression.
This argument at OPEN is required and must
appear as the second argument.

The following arguments are all optional, and
may appear in any order. The options are
character constants with optional trailing
blanks (except RECL=). Defaults are indicated.

STATUS='OLD'

Default, for reading or writing existing files.

STATUS='NEW'

For writing new files.

ACCESS='SEOUENTlAL' (Default)

ACCESS='DIRECT

fORM='fORMAnED' (De'ault)

fORM='UNfORMAnED'

10-19

OPEN Statement

10-20

RECL=rl)

The record length, rl is an integer expression.
This argument to OPEN is for DIRECT access
files only, for which it is required.

The OPEN statement binds a unit number to an
external device or file on an external device by
specifying its file name. If the file is to be direct, the
RECL=rl option specifies the length of the records
in that file.

Example program fragment 1:

C Prompt user for a file name
WRITE(* ,'(AI)')

1 'Specify output file name-'
C Presume that FNAME is specified
C to be CHARACTER*23
C Read the file name from
C the CONSOLE:

READ(*,'(A)') FNAME
C Open the file as formatted
C sequential as unit 7, note
C that the ACCESS specified
C need not have appeared
C since it is the default.

OPEN(7, FILE=FNAME,
1 ACCESS='SEOUENTlAI.,'
2 STATUS='NEW);'

Example program fragment 2:

C Open an existing file
C created by the editor called
C DATA3.TEXT as unit 3
OPEN(3,FILE='DATA3.TEXT')

CLOSE Statement

CLOSE(

u,

Required, must appear as the first argument.
Must not be internal unit specifier.

STATUS=KEEP
STATUS=DELETE

Optional argument which applies only to files
opened NEW; default is KEEP. The option is a
character constant.

)

CLOSE disconnects the unit specified and prevents
subsequent I/O from being directed to that unit
(unless the same unit number is reopened, possibly
bound to a different file or device). Files opened
NEW are temporaries and discarded if
STATUS=DELETE is specified. Normal
termination of a FORTRAN program automatically
closes all open files as if CLOSE with
ST A TUS= KEEP had been specified.

Example program fragment:

C Close the file opened in OPEN
C example, discarding the file

CLOSE(7,STATUS='DELETE')

10-21

READ Statement

10-22

READ(

u,

Required, must be first argument.

J,

Required for formatted read as second
argument, must not appear for unformatted
read.

REC=rn

For direct access only, otherwise error.
Positions to record number rn, where rn is a
positive integer expression. If omitted for
direct access file, reading continues from the
current position in the file.

END=s)

Optional statement label. If not present,
reading end of file results in a runtime error. If
present, encountering the end of file results in
the transfer to the executable statement labeled
s, which must be in the same routine as the
READ statement.

iolist

READ Statement
The READ statement sets the items in ioNst
(assuming that no end of file or error condition
occurs). If the read is internal, the character variable
or character array element specified is the source of
the input, otherwise the external unit is the source.

Example program fragment:

e Need a two dimensionale
e array for the example

DIMENSION IA(10,20)
e Read in bounds for array
e off first line, hopefully less
ethan 10 and 20. Then read
e in the array in nested
e implied DO lists with input
e format of 8 columns of
e width 5 each.

READ(3,990) I,J,
1 ((IA(I,J),J=l,J),
2 1= 1 ,1,1)

990 FORMAT(215/,(815))

10-23

WRITE Statement

10-24

WRITE(

u,

Required, must be first argument.

f,

Required for formatted write as second
argument, must not appear for unformatted
write.

REC=rn)

For direct access only, otherwise error.
Positions to record number rn, where rn is a
positive integer expression. If omitted for
direct access file, writing continues at the
current position in the file.

iolist

WRITE Statement
The WRITE statement transfers the iolist items to
the unit specified. If the write is internal, the
character variable or character array element
specified is the destination of the output, otherwise
the external unit is the destination.

Example program fragment:

C Place message: "One = 1,
C Two = 2, Three = 3" on the
C CONSOLE:, not doing things
C in the simplest way!

WRITE(*,9S0)'One =',1,
1 1+1,'ee = ',+(1+1+1)

9S0 FORMAT(A,12,',
1 Two = ',lX,I1,',
2 Thr' ,A, 11)

10-25

BACKSPACE Statement

10-26

BACKSPACEu

Unit is not an internal unit specifier. Can only
be issued on units which are bound to blocked
devices. Can only be issued on units which are
direct or sequential formatted (Le., not on
sequential unformatted).

BACKSPACE causes the file connected to the
specified unit to be positioned before the preceding
record. If there is no preceding record, the file
position is not changed. Note that if the preceding
record is the endfile record, the file becomes
positioned before the endfile record.

ENDFILE Statement

ENDFILEu

Unit is not an internal unit specifier.

ENDFILE "writes" and end of file record as the next
record of the file connected to the specified unit.
The file is then positioned after the end of file
record, so further sequential data transfer is
prohibited until either a BACKSPACE or REWIND
is executed. An ENDFILE on a direct access file
makes all records written beyond the position of the
new end of file disappear.

10-27

REWIND Statement

10-28

REWINDu

Unit is not an internal unit specifier.

Execution of a REWIND statement causes the file
associated with the specified unit to be positioned at
its initial point.

Restriction on Functions
Any function referenced in an expression within any
I/O statement must not cause any I/O statement to
be executed.

10-29

NOTES

10-30

CHAPTER 11. FORMATTED I/O
AND THE FORMAT
STATEMENT

Contents

Format Specification and the
Format Statement 11-3

Interaction between Format Specification
and I/O List 11-5

Edit Descriptors 11-7
Nonrepeatable Edit Descriptors...... 11-7
Repeatable Edit Descriptors 11-10

11-1

NOTES

11-2

This chapter describes formatted I/O and the
FORMAT statement. A familiarity with the
FORTRAN file system, units, records, access
methods, and I/O statements as described in the
previous chapters is assumed.

Format Specifications and the
FORMAT Statement

If a READ or WRITE statement specifies a format, it
is considered a formatted, rather than an
unformatted I/O statement. Such a format may be
specified in one of three ways, as explained in the
previous chapter. Two ways refer to FORMAT
statements and one is an immediate format in the
form of a character expression containing the
format itself. The following are all valid and
equivalent means of specifying a format:

WRITE(*,990)I,J,K
990 FORMAT(215,13)

ASSIGN 990 TO IFMT
990 FORMAT(215,13)

WRITE(*, I FMn I,J, K

WRITE(* ,'(215,13),) I,J, K

CHARACTER*8 FMTCH
FMTCH = '(215,13),
WRITE(*, FMTCH) I,J, K

The format specification itself must begin with "(",
possibly following initial blank characters, and end
with a matching ")". Characters beyond the
matching ")" are ignored.

FORMAT statements must be labelled, and like all
nonexecutable statements, may not be the target of
a branching operation.

11-3

11-4

Between the initial "(" and terminating ")" is a list of
items, separated by commas, each of which is one of:

[r] ed - repeatable edit descriptors

ned - nonrepeatable edit descriptors

[r]ft - a nested format specification. At most 3
levels of nested parentheses are permitted
within the outermost leveL

... where r is an optionally present, nonzero,
unsigned, integer constant called a repeat
specification. The comma separating two list items
may be omitted if the resulting format specification
is still unambiguous, such as after a P edit descriptor
or before or after the / edit descriptor.

The repeatable edit descriptors, explained in detail
below, are:

Iw
Fw.d
Ew.d
Ew.eEe
Lw
A
Aw

... where I, F, E, L, and A indicate the manner of
editing and, wand e are nonzero, unsigned,
integer constants, and d is an unsigned integer
constant.

The nonrepeatable edit descriptors, which are
also explained in detail below, are:

xxxx - character constants of any length; see
special rules below.

nHxxxx - another means of specifying character
constants; see rules below.

nX
I
\
kP
BN
BZ

... where apostrophe, H, X, slash, backslash, P,
BN, and BZ indicate the manner of editing
and, x is any ASCII character, n is a nonzero,
unsigned, integer constant, and k is an
optionally signed integer constant.

Interaction between Format
Specification and I/O List

Before describing in greater detail the manner of
editing specified by each of the above edit
descriptors, it must be explained how the format
specification interacts with the input/output list
(iolist) in a given READ or WRITE statement.

If an iolist contains at least one item, at least one
repeatable edit descriptor must exist in the format
specification. In particular, the empty edit
specification, 0, may be used only if no items are
specified in the iolist (in which case the only action
caused by the I/O statement is the implicit record
skipping action associated with formats). Each item
in the iolist will become associated with a repeatable
edit descriptor during the I/O statement execution
in turn. In contrast to this, the other format control
items interact directly with the record and do not
become associated with items in the iolist.

The items in a format specification are interpreted
from left to right. Repeatable edit descriptors act as
if they were present r times (omitted r is treated as a

11-5

11-6

repeat factor of 1). Similarly, a nested format
specification is treated as if its items appeared r
times.

The formatted I/O process proceeds as follows: The
"format controller" scans the format items in the
order indicated above. When a repeatable edit
descriptor is encountered, either

... a corresponding item appears in the io/ist in
which case the item and the edit descriptor
become associated and I/O of that item
proceeds under format control of the edit
descriptor, or

... the "format controller" terminates I/O.

If the format controller encounters the matching
final) of the format specification and there are no
further items in the io/ist, the "format controller"
terminates I/O. If, however, there are further items
in the iolist, the file is positioned at the beginning of
the next record and the "format controller"
continues by rescanning the format starting at the
beginning of the format specification terminated by
the last preceding right parenthesiS. If there is no
such preceding right parenthesis, the "format
controller" rescans the format from the beginning.
Within the portion of the format res canned, there
must be at least one repeatable edit descriptor.
Should the res can of the format specification begin
with a repeated nested format specification, the
repeat factor is used to indicate the number of times
to repeat that nested format specification. The
rescan does not change the previously set scale
factor or BN or BZ blank control in effect. When the
"format controller" terminates, the remaining
characters or an input record are skipped or an end
of record is written on output, except as noted under
the \ edit descriptor.

Edit Descriptors
Here are the detailed explanations of the various
format specification descriptors, beginning with the
nonrepeatable edit descriptors:

Nonrepeatable Edit Descriptors

xxxx (Apostrophe Editing)

The apostrophe edit descriptor has the form of a
character constant. Embedded blanks are significant
and double "are interpreted as a single '. Apostrophe
editing may not be used in a READ statement. It
causes the character constant to be transmitted to
the output unit.

H (Hollerith Editing)

The nH edit descriptor cause the following n
characters, with blanks counted as significant, to be
transmitted to the output. Hollerith editing may not
be used in a READ.

Examples of Apostrophe and Hollerith editing:

C Each write outputs
C characters between the
C slashes: /ABC'OEF/hm=1.,3.]
C Each write outputs characters
C between characters between the
C slashes: /ABC'OEF/hm=1.,3.]
C Each write outputs characters
C between the
C slashes: /ABC'OEF/

WRITE(*,970)
970 FORMAT(' ABC" OEF')

WRITE(* ,'(" ABC"" OEF")')
WRITE(*,'(7HABC"OEF)')
WRITE(*,960)

960 FORMAT(7HABC'OEF)

11-7

11·8

X (Positional Editing)

On input (a READ), the nX edit descriptor causes the
file position to advance over n character, thus the
next n characters are skipped. On output (a
WRITE), the nX edit descriptor causes n blanks to
be written, providing that further writing to the
record occurs, otherwise, the nX descriptor results
in no operation.

/ (Slash Editing)

The slash indicates the end of data transfer on the
current record. On input, the file is positioned to the
beginning of the next record. On output, an end of
record is written and the file is positioned to write on
the beginning of the next record.

\ (Backslash Editing)

Normally when the "format controller" terminates,
the end of data transmission on the current record
occurs. If the last edit descriptor encountered by the
"format controller" is the backslash, this automatic
end of record is inhibited. This allows subsequent
I/O statements to continue reading (or writing) out
of (or into) the same record. The most common use
for this mechanism is to prompt to the CONSOLE:
and read a response off the same line as in:

WRITE(*,'(A)') 'Input an integer .> '
REAO(*,'(BN,16),) I

The backslash edit descriptor does not inhibit th~
automatic end of record generated when reading
from the * unit. Input from the CONSOLE: must
always be terminated by the <return> key. This
permi ts the backspace character and the line delete
key to functin properly.

P (Scale Factor Editing)

The kP edit descriptor is used to set the scale factor
for subsequent F and E edit descriptors until another
kP edit descriptor is encountered. At the start of
each I/O statement, the scale factor equals o. The
scale factor affects format editing in the following
ways:

On input, with F and E editing, providing that no
explicit exponent exists in the field, and F output
editing, the externally represented number equals
the internally represented number multiplied by
lo**k.

On input, with F and E editing, the scale factor has
no effect if there is an explicit exponent in the input
field.

On output, with E editing, the real part of the
quantity is output multiplied by lo**k and. the
exponent is reduced by k (effectively altering the
column position of the decimal point, but not the
value that is output).

BN and BZ (Blank Interpretation)

These edit descriptors specify the interpretation of
blanks in numeric input fields. The default, BZ, is set
at the start of each I/O statement. This makes
blanks, other than leading blanks, identical to zeros.
If a BN edit descriptor is processed by the "format
controller", blanks in subsequent input fields will be
ignored unless, and until, a BZ edit descriptor is
processed. The effect of ignoring blanks is to take all
the nonblank characters in the input field, and treat
them as if they were right-justified in the field with
the number ofleading blanks equal to the number of
ignored blanks. For instance, the following READ

11-9

statement accepts the characters shown between the
slashes as the value 123 (where <cr> indicates hitting
the return key):

READ(*,100) I
100 FORMAl(BN,16)

/123 <cr>/,
/123 456<cr>/,
/123<cr>/, or
/ 123 <cr>/.

The BN edit descriptor, in conjunction with the
infinite blank padding at the end of formatted
records, makes interactive input very convenient.

Repeatable Edit Descriptors

11-10

I, F, and E (Numeric Editing, General Description)

The I, F, and E edit descriptors are used for I/O of
integer and real data. The following general rules
apply to all three of them:

On input, leading blanks are not significant.
Other blanks are interpreted differently
depending on the BN or BZ flag in effect, but all
blank fields always become the value O. Plus
signs are optional.

On input, with F and E editing, an explicit
decimal point appearing in the input field
overrides the edit descriptor specification of
the decimal point position.

On output, the characters generated are right
justified in the field with padding leading blanks
if necessary.

On output, if the number of characters
produced exceeds the field width or the
exponent exceeds is specified width, the entire
field is filled with asterisks.

I (Integer Editing)

The edit descriptor Iw must be associated with
an iolt'st item which is of type integer. The field
width is w characters in length. On input, an
optional sign may appear in the field. The general
rules of I, F, and E (Numeric Editing, General
Description) apply to the I edit descriptor.

F (Real Edi ting)

The edit descriptor Fw.d must be associated with an
iolist item which is of type real. The width of the field
is w positions, the fractional part of which consists
of d digits. The input field begins with an optional
sign followed by a string of digits optionally
containing a decimal point. If the decimal point is
present, it overrides the d specified in the edit
descriptor, otherwise the rightmost d digits of the
string are interpreted as following the decimal point
(with leading blanks converted to zeros if necessary).
Following this is an optional exponent which is one
of:

plus or minus followed by an integer, or

E or D followed by zero or more blanks followed
by an optional sign followed by an integer (E
and D are treated identically).

The output field occupies w digits, d of which fall
beyond the decimal point, and the value output is
controlled both by the iolt'st item and the current
scale factor. The output value is rounded rather than
truncated.

The general rules of I, F, and E (Numeric Editing,
General DeSCription) apply to the F edit descriptor.

11-11

11-12

E (Real Editing)

An E edit descriptor either takes the form Ew.d or
Ew.dEe. In either case the field width is w characters.
The e has no effect on input. The input field for an E
edit descriptor is identical to that described by an F
edit descriptor with the same wand d. The form of
the output field depends on the ::scale factor (set by
the P edit descriptor) which is in effect. For a scale
factor of 0, the output field is a minus sign (if
necessary), followed by a decimal point, followed by
a string of digits, followed by an exponent field for
exponent, exp, of one of the following forms:

Ew.d -99 <= exp <= 99
E followed by plus or minus followed by the two
digit exponent.

Ew.d -999 <= exp <= 999
Plus or minus followed by three digit exponent.

Ew.dEe -«10**e) - 1) <= exp <= (10**e) -1
E followed by plus or minus followed by e
digits which are the exponent with possible
leading zeros.

The form Ew.d must not be used if the absolute
value of the exponent to be printed exceeds 999.

The scale factor controls the decimal normalization
of the printed E field. If the scale factor, k, is in the
range -d < k <= 0 then the output field contains
exactly -k leading zeros after the decimal point and
d+k significant digits after this. Ifo< k < d+2then
the output field contains exactly k significant digits
to the left of the decimal point and d - k - 1 places
after the decimal point. Other values of k are
errors.

The general rules of I, F, and E (Numeric Editing,
General Description) apply to the E edit descriptor.

L (Logical Edi ting)

The edit descriptor is Lw, indicating that the field
width is w characters. The iolist element which
becomes associated with an L edit descriptor must be
of type logical. On input, the field consists of
optional blanks, followed by an optional decimal
pOint, followed by a T (for .TRUE.) or an F (for
.FALSE.). Any further characters in the field are
ignored, but accepted on input, so that .TRUE. and
.FALSE. are valid inputs. On output, w - 1 blanks
are followed by either T or F as appropriate.

A (Character Editing)

The forms of the edit descriptor are A or Aw. If w is
not present, the number of characters in the iolt'st
item with which it is associated determines the
length (an implicit w). The iolt'st item must be of
character type if it is to be associated with an A or Aw
edit descriptor. On input, if w exceeds or equals the
number of characters in the iOlt'st element, the
rightmost characters of the input field are used as the
input characters, otherw1se the input characters are
left-justified in the input iolist item and trailing
blanks are provided. On output, if w should exceed
the characters produced bv the iolt'st item, leading
blanks are provided, otherwise, the leftmost w
characters of the iolt'st item are output.

11-13

NOTES

11-14

CHAPTER 12. PROGRAMS,
SUBROUTINES AND
FUNCTIONS

Contents

Main Program 12-3
Subroutines 12-4
Functions 12-8
Parameters 12-15

12-1

NOTES

12-2

This chapter describes the format of routines. A
routine is either a main program, a subroutine, or a
function program unit. The term procedure is used
to refer to either a function or a subroutine. This
chapter also describes the CALL and RETURN
statements as well as function calls.

Main Program
A main program is any routine that does not have a
FUNCTION or SUBROUTINE statement as its first
statemen t. It may have a PROG RAM statement as its
first statement. The execution of a program always
begins with the first executable statement in the'
main program. Consequently, there must be
precisely one main program in every executable
program. The form of a PROGRAM statement is:

PROGRAM pname

... where pname is a user-defined name that is
the name of the main program.

The name pname is a global name. Therefore, it
cannot be the same as another external procedure's
name or a common block's name. It is also a local
name to the main program, and must not conflict
with any local name in the main program. The
PROG RAM statement may only appear as the first
statement of a main program.

12-3

Subroutines

12-4

A subroutine is a routine that can be called from
other routines by a CALL statement. When evoked,
it performs the set of actions defined by its
executable statements, and then returns control to
the statement immediately following the statement
that called it. A subroutine does not directly return a
value, although values can be passed back to the
calling program unit via parameters or common
variables.

SUBROUTINE Statement

A subroutine begins with a SUBROUTINE
statement and ends with the first following END
statement. It may contain any kind of statement
other than a PROGRAM statement or a
FUNCTION statement. The form of a
SUBROUTINE statement is:

SUBROUTINE sname [([farg [,/arg] ...])]

sname is the user-defined name of the
subroutine.

farg is a user-defined name of a formal
argument.

The name sname is a global name, and it is also local
to the subroutine it names. The list of argument
names defines the number and, with any subsequent
IMPLICIT, type, or DIMENSION statements, the
type of arguments to that subroutine. Argument
names cannot appear in COMMON, DATA,
EQUIVALENCE, or INTRINSIC statements.

12-5

CALL Statement

12-6

A subroutine is executed by executing a CALL
statement in another routine. The form of a CALL
statement is:

CALL sname [([arg [,arg] ...])]

sname is the name of a subroutine.

arg is an actual argument.

An actual argument may be either an expression or
the name of an array. The actual arguments in the
CALL statement must agree in type and number with
the corresponding formal arguments specified in the
SUBROUTINE statement of the referenced
subroutine. If there are no arguments in the
SUBROUTINE statement, then a CALL statement
referencing that subroutine must not have any
actual arguments, but may optionally have a
matched pair of parentheses following the name of
the subroutine. Note that a formal argument may be
used as an actual argument in another subprogram
call.

Execution of a CALL statement proceeds as follows:
All arguments that are expressions are evaluated. All
actual arguments are associated with their
corresponding formal arguments, and the body of
the specified subroutine is executed. Control is
returned to the statement following the CALL
statement upon exiting the subroutine, by
executing either a RETURN statement or an END
statement in that subroutine.

CALL Statement
A subroutine specified in any routine may be called
from any other routine within the same executable
program. Recursive subroutine calls, however, are
not allowed in FORTRAN. That is, a subroutine
cannot call itself directly, nor can it call another
subroutine that will result in the first subroutine
being called again before it returns control to its
caller.

12-7

Functions

12-8

A function is referenced in an expression and returns
a value that is used in the computation of that
expression. There are three kinds of functions:
external functions, intrinsic functions, and
statement functions. This section describes the
three kinds of functions.

A function reference may appear in an arithmetic
expression. Execution of a function reference
causes the function to be evaluated, and the
resulting value is used as an operand in the
containing expression. The form of a function
reference is:

fname ([arg [,arg] ...])

fname is the name of an external, intrinsic, or
statement function.

arg is an actual argument.

An actual argument may be an arithmetic expression
or an array. The number of actual arguments must be
the same as in the definition of the function, and the
corresponding types must agree.

External Functions

An external function is specified by a function
routine. It begins with a FUNCTION statement and
ends with an END statement. It may contain any
kind of statement other than a PROGRAM
statement or a SUBROUTINE statement. The form
of a FUNCTION statement is:

[type] FUNCTION fname ([farg [!arg] ...])

type is one of INTEGER, REAL, or LOGICAL.

fname is the user defined name of the function.

farg is a formal argument name.

The name fname is a global name, and it is also local
to the function it names. If no type is present in the
FUNCTION statement, the function's type is
determined in the same way as the type of an
ordinary variable. If a type is present, then the
function name cannot appear in any additional type
statements. In any case, an external function cannot
be of type character. The list of argument names
defines the number and, with any subsequent
IMPLICT, type, or DIMENSION statements, the
type of arguments to that subroutine. Neither
argument names nor fname can appear in
COMMON, DATA, EQUIVALENCE, or
INTRINSIC statements.

12-9

External Functions

12-10

The function name must appear as a variable in the
routine that defines the function. Every execution of
that function must assign a value to that variable.
The final value of this variable, upon execution of a
RETURN or of an END statement, is the value
returned by the function. After being defined, the
value of this variable can be referenced in an
expression, exactly like any other variable. An
external function may return values in addition to
the value of the function by assignment to one or
more of its formal arguments.

Intrinsic Functions

Intrinsic functions are functions that are predefined
by the FORTRAN compiler and are available for use
in a FORTRAN program. The table at the end of this
chapter gives the name, definition, number of
parameters, and type of the intrinsic functions
available in UCSD p-System FORTRAN 77. An
IMPLICIT statement does not alter the type of an
intrinsic function. For those intrinsic functions that
allow several types of arguments, all arguments in a
single reference must be of the same type.

All intrinsic functions used in a routine must appear
in an INTRINSIC statement.

An intrinsic function name may appear in an
INTRINSIC statement, but only those intrinsic
functions listed in the table at the end of this chapter
may do so. An intrinsic function name also may
appear in a type statement, but only if the type is the
same as the standard type of that intrinsic function.

Arguments to certain intrinsic functions are limited
by the definition of the function being computed.
For example, the logarithm of a negative number is
undefined, and therefore not allowed.

12-11

Statement Functions

12-12

A sta temen t function is a function that is defined by a
single statement. It is similar in form to an
assignment statement. A statement function
statement can only appear after the specification
statements and before any executable statements in
the routine in which it appears. A statement function
is not an executable statement, since it is not
executed in order as the first statement in its
particular routine. Rather, the body of a statement
function serves to define the meaning of the
statement function. It is executed, as any other
function, by the execution of a function reference.
The form of a statement function is:

fname ([arg [, arg) ...)) = expr

fname is the name of the statement function.

arg is a formal argument name.

expr is an expression.

The type of the expr must be assignment
compatible with the type of the statement function
name. The list of formal argument names serves to
define the number and type of arguments to the
statement function. The scope of formal argument
names is the statement function. Therefore, formal
argument names may be used as other user-defined
names in the rest of the routine enclosing the
statement function definition. The name of the
statement function, however, is local to the
enclosing routine, and must not be used otherwise

Statement Functions
(except as the name of a common block, or as the
name of a formal argument to another statement
function). The type of all such uses, however, must
be the same. If a formal argument name is the same
as another local name, then a reference to that name
within the statement function defining it always
refers to the formal argument, never to the other
usage.

Within the expression expr, references to variables,
formal arguments, other functions, array elements,
and constants are allowed. Statement function
references, however, must refer to statement
functions that have been defined prior to the
statement function in which they appear. Statement
functions cannot be recursively called, either
directly or indirectly.

A statement function can only be referenced in the
routine in which it is defined. The name of a
statement function cannot appear in any
specification statement, except in a type statement
which may not define the name as an array, and in a
COMMON statement as the name of a common
block. A statement function cannot be of type
character.

12-13

RETURN Statement

12-14

A RETURN statement causes return of control to
the calling routine. It may appear only in a function
or subroutine. The form of a RETURN statement is:

RETURN

Execution of a RETURN statement terminates the
execution of the enclosing subroutine or function. If
the RETURN statement is in a function, then the
value of that function is equal to the current value of
the variable with the same name as the function.
Execution of an END statement in a function or
subroutine is equivalent to execution of a RETURN
statement.

Parameters
This section discusses the relationship between
formal and actual arguments in a function or
subroutine call. A formal argument refers to the
name by which the argument is known within the
function or subroutine, and an actual argument is
the specific variable, expression, array, etc., passed
to the procedure in question at any specific calling
location.

Arguments are used to pass values into and out of
procedures. Variables in common can be used to
perform this task as well. The number of actual
arguments must be the same as formal arguments,
and the corresponding types must agree.

On entry to a subroutine or function, the actual
arguments become associated with the formal
arguments, much as an EQUIVALENCE statement
associates two or more arrays or variables, and
COMMON statements in two or more program units
associate lists of variables. This association remains
in effect until execution of the subroutine or
function is terminated. Thus, assigning a value to a
formal argument during execution of a subroutine
or function may alter the value of the corresponding
actual argument. If an actual argument is a constant,
function reference, or an expression other than a
simple variable, assigning a value to the
corresponding formal argument is not allowed, and
may have some strange side effects. In particular,
assigning a value to a formal argument of type
character, when the actual argument is a literal, can
be disastrous.

12-15

12-16

If an actual argument is an expres,sion, it is evaluated
immediately prior to the association of formal and
actual arguments. If an actual argument is an array
element, its subscript expression is evaluated just
prior to the association, and remains constant
throughout the execution of the procedure, even if
it contains variables that are redefined during the
execution of the procedure.

A formal argument that is a variable may be
associated with an actual argument that is a variable,
an array element, or an expression.

A formal argument that is an array may be associated
with an actual argument that is an array or an array
element. The number and size of dimensions in a
formal argument may be different than those of the
actual argument, but any reference to the formal
array must be within the limits of the storage
sequence in the actual array. While a reference to an
element outside these bounds is not detected as an
error in a running FORTRAN program, the results
are unpredictable.

Intrinsic No. Type of
Function Definition Args Name Argument Function

Type Conversion Conversion 1 INT Real Integer
to Integer IFIX Real Integer
int{a) -
See Note 1

Conversion 1 REAL Integer Real
to Real FLOAT Integer Real
See Note 2

Conversion 1 ICHAR Character Integer
to Integer
See Note 3

Conversion 1 CHAR Integer Character
to Character

Truncation int{a) 1 AINT Real Real
See Note 1

Nearest Whole int{a.5) a>=O 1 ANINT Real Real
Number int{a.5) a<O

Nearest Integer int{a.5) a>=O 1 NINT Real Integer
int{a.5) a<O

Absolute Value a 1 lABS Integer Integer
1 ABS Real Real

Remaindering alint{al/a2)*a2 2 MOD Integer Integer
See Note 1 AMOD Real Real

Transfer of Sign al if a2>=O 2 ISIGN Integer Integer
al if a2<O SIGN Real Real

Positive ala2 if al>a2 2 101M Integer Integer
Difference Oif al <=a2 DIM Real Real

12-17

Intrinsic No. Type of
Function Definition Args Name Argument Function

Choosing Largest max (a 1 ,a2, .. .) >=2 MAXO Integer Integer
Value AMAX1 Real Real

AMAXO Integer Real
MAX1 Real Integer

Choosing Smallest min (a 1 ,a2, .. .) >=2 MINO Integer Integer
Value AMIN1 Real Real

AMINO Integer Real
MIN1 Real Integer

Square Root a**0.5 1 SQRT Real Real

Exponential e**a 1 EXP Real Real

Natural Logarith m log(a) 1 ALOG Real Real

Common Logarithm log 1 O(a) 1 ALOG10 Real Real

Sine sin(a) 1 SIN Real Real

Cosine cos(a) 1 COS Real Real

Tangent tan(a) 1 TAN Real Real

Arcsine arcsin (a) 1 ASIN Real Real

Arccosine arccos(a) 1 ACOS Real Real

Arctangent arctan(a) 1 ATAN Real Real

arctan (a 1 /a2) 2 ATAN2 Real Real

Hyperbolic Sine sinh(a) 1 SINH Real Real

Hyperbolic Cosine cosh(a) 1 COSH Real Real

Hyperbolic Tangent tanh (a) 1 TANH Real Real

Lexically Greater a1 >= a2 2 LGE Character Logical
Than or Equal See Note 4

12-18

Notes:

1. For a of type real, if a > = 0 then int(a) is the
largest integer not greater than a, if a < 0 then int(a)
is the most negative integer not less than a. IFIX(a) is
the same as INT(a).

2. For a of type integer, REAL(a) is to the greatest
possible precision. This varies from processor to
processor. FLOAT(a) is the same as REAL(a).

3. ICHAR converts a character value into an
integer value. The integer value of a character is the
ASCII internal representation of that character, and
is in the range 0 to 127. For any two characters, c1
and c2, (c1 .LE. c1) is .TRUE. if and only if
(ICHAR(c1) .LE. ICHAR(c2» is .TRUE ..

4. LGE(a1,a2) returns the value .TRUE. if a1 = a2
or if a1 follows a2 in the ASCII collating sequence.
Otherwise it returns .FALSE ..

LGT(a1,a2) returns .TRUE. if a1 follows a2 in the
ASCII collating sequence, otherwise it returns
.FALSE ..

LLE(a1,a2) returns .TRUE. if a1 = a2 or if a1
precedes a2 in the ASCII collating sequence,
otherwise it returns .FALSE..

LLT(a1,a2) returns .TRUE. if a1 precedes a2 in the
ASCII collating sequence, otherwise it returns
. FALSE..

The operands or LG E, LG T, LLE, and LL T must be
of the same length.

12-19

12-20

5. EOF(a) returns the value. TRUE. if the unit
specified by its argument is at or past the end of fih
record, otherwise it returns .FALSE .. The value of ~
must correspond to an open file, or to zero (whid
indicates CONSOLE:).

6. All angles are expressed in radians.

7. All arguments in an intrinsic function reference:
must be of the same type.

CHAPTER 13. COMPILATION
UNITS

Contents

Units, Segments, Partial
Compilation, and FORTRAN 13-4

Linking Pascal and FORTRAN 13-9

13-1

NOTES

13-2

This chapter describes the relationship between
FORTRAN 77 and the UCSD Pascal segment
mechanism. In normal use, the user need not be
aware of such intricacies. However, if the user
desires to interface FORTRAN with Pascal, to create
overlays, or to take advantage of separate
compilation or libraries, the details contained here
are helpful. This chapter consists of the following:

• Units, Segments, Partial Compilation

• The $USES Compiler Directive

• Linking Pascal and FORTRAN

• The $EXT Compiler Directive

The first section discusses the general form of a
FORTRAN program in terms of the p-System code
segments. The next section describes the $USES
compiler directive. This directive provides access
libraries or already compiled procedures, and
provides overlays in FORTRAN. The next section
describes how one links FORTRAN with Pascal. The
final section explains the $EXT compiler directive.

13-3

Units, Segments, Partial
Compilation, and FORTRAN

13-4

If a FORTRAN compilation contains no main
procedure, then it is output as if it were a Pascal unit
compilation. The unit is given the name U followed
by the name of its first procedure. For example:

c .. No PROGRAM statement present
SUBROUTINE X

END
SUBROUTINE Y

END

SUBROUTINE Z

END

... would be compiled into a sirigle unit named UX.
(Assume for later examples that the object code is
output to file X.CODE.) All procedures called from
within unit UX must be defined within unit UX,
unless a $USES or a $EXT statement has shown
them to reside in another unit. Similarly, procedures
in unit UX cannot be called from other units unless
the other units contain a $USES UX statement.

Thus, a typical main program that would call X
might be:

C
C .• This is the main program BIGGIE
C

$USES UX IN X.CODE

PROGRAM BIGGIE

CALL X

END
SUBROUTINE W

CALL Y

END

If the $USES statement were not present, the
FORTRAN compiler would expect subroutines X
and Y to appear in the same compilation, somewhere
after subroutine W. Assume that the code from this
compilation is output to the file BIGGIE.CODE.

Thus, the user can create libraries of functions,
partial compilations, etc., and save compilation time
and disk space by a simple use of the $USES
statement. For more information on the $USES
statement, see the section on the $USES statement.

13-5

$USES Compiler Directive

13-6

The $USES compiler directive provides several
distinct functions to the user. It allows procedures
and functions in separately compiled units, such as
the system library, to be called from FORTRAN. It
provides the user a relatively secure form of separate
compilation for FORTRAN compilations. It allows
the user to call Pascal routines that have been
compiled into Pascal units.

The format of the $USES control statement is:

$USES unitname [IN filename] [OVERLAY]

... where unitname is the name of a unit.

filename is a valid UCSD file name.

As with all $ control statements, the $ must appear in
column one. This compiler directive directs the
compiler to open the .CODE file filename, locate the
unit unitname, and process the INTERFACE
information associated with that unit, generating a
reasonable FORTRAN equivalent declaration for
the FORTRAN compilation in progress. All $USES
commands must appear before any FORTRAN
statements, specification or executable, but they are
allowed to follow comment lines and other $ control
lines. If the optional IN filename is present, the
name filename is used as the file to process. If it is
not, the file * SYSTEM. LIBRARY is used as a default.
The optional field OVERLAY has no effect on

$USES Compiler Directive _

program execution, and is included in version IV.O
only for compatibility with version 11.0.

WARNING: If a FORTRAN main program
$USES a Pascal unit, any global variables in the
INTERFACE part of that unit will not be accessible
from FORTRAN. See Linking Pascal and
FORTRAN for further information.

13-7

Separate Compilation

13-8

Separate compilation is accomplished by compiling
a set of subroutines and functions without any main
program. Each such compilation creates a codefile
containing a single UCSD unit. Then, when the main
program is compiled, possibly along with many
subroutines or functions, it $USES the separately
compiled units. The routines compiled with the
main program obtain the correct definition of each
externally compiled procedure through the $USES
directive.

In the simplest form, when no $USES statements
appear in any of the separate compilations, the user
simply $USES all separately compiled FORTRAN
units in the main program. However, this limits the
procedure calls in each of the separately compiled
units to procedures defined in the same unit. If there
are calls to procedures in unit A from unit B, then
unit B must contain a $USES A statement. The main
program must then contain a $USES A statement as
its first $USES statement, followed by a $USES B
statement. This is necessary for the Compiler to get
the unit numbers allocated consistently.

In more complicated cases, the user must ensure that
all references to procedures in outside units are
preceded by the proper $USES statement in the
same order, not missing any units. If unit B $USES
unit A, and unit C $USES unit B, then unit C must
first $USES unit A. Likewise, if units D and E both
$USES unit F, they both must contain exactly the
same $USES statements prior to the $USES F
statement.

Linking Pascal and FORTRAN
In order to call Pascal routines from FORTRAN, the
Pascal routines must first be compiled into a Pascal
unit. The FORTRAN program can then $USES that
unit. Unfortunately, the exceedingly rich type
structure present in Pascal is not present in
FORTRAN. Also, the I/O systems of FORTRAN
and Pascal are not compatible. Therefore it is not
possible to do everything one might desire. This
section does, however, help the user do what is
possible in interfacing the two languages.

It is not generally possible to do I/O from Pascal
routines called from a main program that is written
in FORTRAN. Normal Pascal I/O to and from the
console, however, can always be done from Pascal
routines providing that there is no file name in the
I/O statement. The Pascal routines RESET,
REWRITE, CLOSE, etc., should not be called from
Pascal routines running under a FORTRAN main
program.

It is possible to do I/O from a FORTRAN procedure
tha t is called from a Pascal main program. In general,
however, this practice should be avoided. This
section is provided to allow the user who absolutely
must mix I/O operations from both languages to do
what is possible. While the following information is
believed to be correct, it is neither warranted to
work nor guaranteed to remain valid in future
releases. Again, mixed I/O is not supported. It is
done at the user's risk.

There are several precautions that the user must take
for FORTRAN I/O to work from Pascal programs.
The FO R TRAN I/O procedures use the Heap for the
allocation of file-related storage, so the user should
not force the deallocation of Heap memory via calls
to MARK or RELEASE. Other restrictions may
apply in special cases. As stated above, one should

13-9

13-10

avoid doing I/O from both FORTRAN and Pascal in
the same program as the two systems are not totally
compatible.

Since there are Pascal types that have no FORTRAN
equivalent, the way FORTRAN looks at Pascal
parameters is somewhat limited. FORTRAN does
recognize both reference and value parameters
when calling Pascal subroutines. The following table
shows how FORTRAN views Pascal declarations:

Pascal Declaration:

CONST anything ... ;
TYPE anything ... ;
PROCEDURE

X(arg-list);
FUNCTION

X(arg-list):
type;

type:
REAL
BOOLEAN
CHAR
ALFAn

see note. below
any other identifier

arg-list:
(V AR IJ: type)

(IJ: type)

FORTRAN's View:

Ignored.
Ignored.
SUBROUTINE

X(arg-list)
type FUNCTION

X(arg-list)

Note: type must be
INTEGER, LOGICAL,
or REAL.

REAL
LOGICAL
CHARACTER*1
CHARACTER *n

1<=n<=127
INTEGER

(IJ)
type IJ
*** There is no proper
FORTRAN equivalent
to value parameters, but
the FORTRAN
compiler does generate
the correct calling
sequence for Pascal
routines with value
parameters.

Note: Pascal types STRING and PACKED
ARRAY OF CHAR are not directly recognizable by
the FORTRAN compiler. However, a PACKED
ARRAY OF CHAR may be indirectly recognized by
FORTRAN by the use of the identifier ALFA within
the Pascal unit. Thus the Pascal type declarations:

TYPE ALFA4: PACKED ARRAY[O .. 3] OF
CHAR;

ALFAI21: PACKED ARRAY[1. .. 121]
OF CHAR;

will be ignored by FORTRAN, but the variables
which may then be declared:

V AR P4: ALF A4;
P121: ALFAI21;

will be recognized by FORTRAN and mapped into
CHARACTER*4 and CHARACTER*121
respectively. A user may also use the type STRING
in this manner if caution is used.

When the INTERFACE information of a
FORTRAN compilation used by Pascal, it must be
mapped onto :pascal declarations. The following
table gives the corresponding declarations:

13-11

13-12

FORTRAN Declaration:

SUBROUTINE
X(arg-list)

type FUNCTION
X(arg-list)

type:
INTEGER
REAL
LOGICAL
CHARACTER *n

arg-list:
(I)
type I

Pascal's View:

PROCEDURE
X(ar..g-list);

FUNCTION
X(arg-list):
type;

INTEGER
REAL
BOOLEAN
CHAR, n= 1
STRING or
PACKED ARRAY
of CHAR
2 <= n <= 127

(VAR I: type)

Note: When a Pascal compilation USES a
FORTRAN unit, it is the responsibIlity of the Pascal
program to make sure that any needed type
declarations for the ALFAn types are properly
defined. This cannot consistently be done by
FORTRAN as it would lead to duplicate type
definitions should a user use two FORTRAN units
which each declare the same type. There is another
point that must be made for Pascal programs that
call FORTRAN subroutines. If the subroutine has a
REAL parameter that is in actuality an array, the
Pascal program must pass a scalar instead of an array.
This should not be a problem. Since the Pascal
program can pass the first element of the array, and
all FORTRAN parameters are reference parameters,
the FORTRAN subroutine has access to the whole
array. The user is cautioned to remember that Pascal
stores its arrays in row-major order, while
FORTRAN stores them in column-major order.

When a FORTRAN program $USES a Pascal unit,
the interface section variables in that Pascal unit are
not accessible from FORTRAN.

$EXT Compiler Directive

The $EXT compiler directive is used when one
desires to call assembly language routines, or
routines in $SEPARA TE FORTRAN or Pascal units,
from a FORTRAN 77 routine. The form of the
$EXT directive is:

SUBROUTINE }
$EXT { } procname #params

{ [type] FUNCTION}

... where type is either INTEGER, LOGICAL, or
REAL,

procname is the name of the subroutine or function,
and

#params is an integer equal to the number of
parameters that this procedure requires.

This directive must appear before any FORTRAN
statements, either specification or executable, but
may follow comment lines or other $ compiler
directives. All parameters are passed by reference
(called V AR parameters if Pascal) to procedures
defined by the $EXT directive. It is up to the user to
follow this convention, as the Linker does not
enforce it. The Linker does, however, check the
number of parameters.

13-13

NOTES

13-14

APPENDIXES

Contents

Appendix A. Messages A- 3
Compile-Time Error Messages A-3
Runtime Error Messages A-l4

Appendix B. UCSD p-System
FORTRAN 77 and ANSI Standard
Subset FORTRAN 77 Differences B-l

Unsupported Features. B-l
Full-Language Features. B-2
Extensions to Standards B-3

Appendix C. American Standard Code
for Information Interchange C-l

Appendixes 1

Appendixes 2

APPENDIX A. MESSAGES
Compile-Time Error Messages

Syntax errors occur during compilation when an
incorrect FORTRAN construct is found. They
appear on the console and within compiler listings
preceded by five asterisks. The following is an
example:

***** Error number: 2 in line: 35
sp (continue), esc (terminate), E(dit

At this point the compilation process will pause. The
information given indicates that at line 35 in the
source file a nonnumeric character was found in the
label field (error number 2, below).

By typing space, you may continue the compilation.
Although an executable codefile will not be
produced by doing this, other syntax errors may be
found.

By typing esc, the compilation will be aborted and
the p-System will return to the main promptline.

By typing E, the Editor will be invoked, and will
display the portion of the source file that was in
error. The cursor will be left pointing just beyond
the problem that was detected. The error number
will be re-displayed at the top of the screen, and
a space should be typed in order to proceed using
the Editor to correct the problem.

The following are the error messages which
correspond to the error numbers the compiler
indicates:

A-I

1 Fatal error reading source block

2 Non-numeric characters in label field

3 Too many continuation lines

4 Fatal end of file encountered

5 Labeled continuation line

6 Missing field on $ compiler directive line

7 Unable to open listing file specified on $
compiler directive line

8 Unrecognizable $ compiler directive

9 Input source file not valid textfile format

10 Maximum depth of include file nesting
exceeded

11 Integer constant overflow

12 Error in real cons tan t

13 Too many digits in constant

14 Identifier too long

15 Character constant extends to end of line

16 Character constant zero length

17 Illegal character in input

18 Integer constant expected

19 Label expected

20 Error in label

A-2

21 Type name expected (INTEGER, REAL,
LOGICAL, or CHARACTER[*n])

22 Integer constant expected

23 Extra characters at end of statement

24 '(' expected

25 Letter IMPLICIT'ed more than once

26 ')' expected

27 Letter expected

28 Identifier expected

29 Dimension(s) required in DIMENSION
statement

30 Array dimensioned more than once

31 Maximum of 3 dimensions in an array

32 Incompatible arguments to EQUIVALENCE

33 Variable appears more than once in a type
specification statement

34 This identifier has already been declared

35 This intrinsic function cannot be passed as
an argument

36 Identifier must be a variable

37 Identifier must be a variable or the current
FUNCTION

38 '/' expected

39 Named COMMON block already saved

A-3

40 Variable already appears in a COMMON
block

41 Variables in two different COMMON blocks
cannot be equivalenced

42 Number of subscripts in EQUIVALENCE
statement does not agree with variable
declara tion

43 EQUIVALENCE subscript out of range

44 Two distinct cells EQUIVALENCE' d to the
same location in a COMMON block

45 EQUIVALENCE statement extends a
COMMON block in the negative direction

46 EQUIVALENCE statement forces a variable
to two distinct locations, not in a COMMON
block

47 Statement number expected

48 Mixed CHARACTER and numeric items not
allowed in same COMMON block

49 CHARACTER items cannot be
EQUIVALENCE'd with non-character items

50 Illegal symbol in expression

51 Can't use SUBROUTINE name in an
expression

52 Type of argument must be INTEGER or
REAL

53 Type of argument must be INTEGER,
REAL,orCHARACTER

54 Types of comparisons must be compatible

A-4

55 Type of expression must be LOGICAL

56 Too many subscripts

57 Too few subscripts

58 Variable expected

59 '=' expected

60 Size of EQUIVALENCE'd CHARACTER
items must be the same

61 Illegal assignment - types do not match

62 Can only call SUBROUTINES

63 Dummy parameters cannot appear in
COMMON statements

64 Dummy parameters cannot appear in
EQUIVALENCE statements

65 Assumed-size array declarations can only be
used for dummy arrays

66 Adjustable-size array declarations can only
be used for dummy arrays

67 Assumed-size array dimension specifier
must be last dimension

68 Adjustable bound must be either parameter
or in COMMON prior to appearance

69 Adjustable bound must be simple integer
variable

70 Cannot have more than 1 main program

71 The size of a named COMMON must be the
same in all procedures

A-5

72 Dummy arguments cannot appear in DATA
statements

73 COMMON variables cannot appear in DATA
statements

74 SUBROUTINE names, FUNCTION names,
INTRINSIC names, etc. cannot appear in
DATA statements

75 Subscript out of range in DATA statement

76 Repeat count must be > = 1

77 Constant expected

78 Type conflict in DATA statement

79 Number of variables does not match number
of values in DATA statement list

80 Statement cannot have label

81 No such INTRINSIC function

82 Type declaration for INTRINSIC function
does not match actual type of INTRINSIC
function

83 Letter expected

84 Type of FUNCTION does not agree with a
previous call

85 This procedure has already appeared in this
compilation

86 This procedure has already been defined to
exist in another uni t via a $USES command

87 Error in type of argument to an INTRINSIC
FUNCTION

A-6

88 SUBROUTINE/FUNCTION was previously
used as a FUNCTION/SUBROUTINE

89 Unrecognizable statement

90 Functions cannot be of type CHARACTER

91 Missing END statement

92 A program unit cannot appear in a
$SEPARATE compilation

93 Fewer actual arguments than formal
arguments in FUNCTION/SUBROUTINE
call

94 More actual arguments than formal
arguments in FUNCTION/SUBROUTINE
call

95 Type of actual argument does not agree with
type of format argument

96 The following procedures were called but
not defined:

97 This procedure was already defined by a
$EXT directive

98 Maximum size of type CHARACTER is 255,
minimum is 1

100 Statement out of order

101 Unrecognizable statement

102 Illegal jump into block

103 Label already used for FORMAT

104 Label already defined

A-7

105 Jump to format label

106 DO statement forbidden in this context

107 DO label must follow DO statement

108 END IF forbidden in this context

109 No matching IF for this ENDIF

110 Improperly nested DO block in IF block

111 ELSEIF forbidden in this context

112 No matching IF for ELSEIF

113 Improperly nested DO or ELSE block

114 '(' expected

115 ')' expected

116 THEN expected

117 Logical expression expected

118 ELSE statement forbidden in this context

119 Noma tching IF for ELSE

120 Unconditional GOTO forbidden in this
context

121 Assigned GOTO forbidden in this context

122 Block IF statement forbidden in this context

123 Logical IF statement forbidden in this
context

124 Arithmetic IF statement forbidden in this
context

A-8

125 ',' expected

126 Expression of wrong type

127 RETURN forbidden in this context

128 STOP forbidden in this context

129 END forbidden in this context

131 Label referenced but not defined

132 DO or IF block not terminated

133 FORMAT statement not permitted in this
context

134 FORMAT label already referenced

135 FORMAT must be labeled

136 Identifier expected

137 Integer variable expected

138 'TO' expected

139 Integer expression expected

140 Assigned GOTO but no ASSIGN statements

141 Unrecognizable character constant as
option

142 Character constant expected as option

143 Integer expression expected for unit
designation

144 STATUS option expected after ',' in CLOSE
statement

A-9

145 Character expression as filename in OPEN

146 FILE= option must be present in OPEN
statement

147 RECL= option specified twice in OPEN
statement

148 Integer expression expected for RECL=
option in OPEN statement

149 Unrecognizable option in OPEN statement

150 Direct access files must specify RECL= in
OPEN statement

151 Adjustable arrays not allowed as I/O list
elements

152 End of statement encountered in implied
DO, expressions beginning with '(' not
allowed as I/O list elements

153 Variable required as control for implied DO

154 Expressions not allowed as reading I/O list
elements

155 REC= option appears twice in statement

156 REC= expects integer expression

157 END= option only allowed in READ
statement

158 END= option appears twice in statement

159 Unrecognizable I/O unit

160 Unrecognizable format in I/O statement

161 Options expected after ',' in I/O statement

A-10

162 Unrecognizable VO list element

163 Label used as format but not defined in
format statement

164 Integer variable used as assigned format but
no ASSIGN statements

165 Label of an executable statement used as a
format

166 Integer variable expected for assigned
format

167 Label defined more than once as format

200 Error in reading $USES file

201 Syntax error in $USES file

202 SUBROUTINE/FUNCTION name in
$USES file has already been declared

203 FUNCTIONS cannot return values of type
CHARACTER

204 Unable to open $USES file

205 Too many $USES statements

206 No .TEXT info for this unit in $USES file

207 Illegal segment kind in $USES file

208 There is no such unit in this $USES file

209 Missing UNIT name in $USES statement

210 Extra characters at end of $USES directive

211 Intrinsic units cannot be overlayed

A-11

A-12

212 Syntax error in $EXT directive

213 A SUBROUTINE cannot have a type

214 SUBROUTINE/FUNCTION name in $EXT
directive has already been defined

400 Code file write error

401 Too many entries inJTAB

402 Too many SUBROUTINES/FUNCTIONS in
segment

403 Procedure too large (code buffer too small)

404 Insufficient room for scratch file on system
disk

405 Read error on scratch file

Run time Error Messages

FORTRAN runtime errors occur during program
execution. An error message is displayed on the
console and the program is terminated. The
following is an example of a runtime error message:

**** FORTRAN Runtime Error #603 ****
Sagmant TEST Proc 2 Offset 20

This indicates that a digit was expected to be input
(error 603 below) in Segment TEST, Procedure 2,
byte offset 20.

The following error messages correspond to the
FORTRAN runtime error numbers:

600 Format missing final ')'

601 Sign not expected in input

602 Sign not followed by digit in input

603 Digit expected in input

604 Missing N or Z after B in format

605 Unexpected character in format

606 Zero repetition factor in format not allowed

607 Integer expected for w field in format

608 Positive integer required for w field in
format

609 '.' expected in format

610 Integer expected for d field in format

611 Integer expected for e field in format

612 Positive integer required fore field in format

613 Positive integer required for w field in A
format

614 Hollerith field in format must not appear for
reading

615 Hollerith field in format requires repetition
factor

616 X field in format requires repetition factor

617 P field in format requires repetition factor

618 Integer appears before '+' or '.' in format

619 Integer expected after '+' or '.' in format

620 P format expected after signed repetition
factor in format

A-13

621 Maximum nesting level for formats
exceeded

622 ')' has repetition factor in format

623 Integer followed by',' illegal in format

624 '.' is illegal format control character

625 Character constant must not appear in
forma t for reading

626 Character constant in format must not be
repeated

627 'I' in format must not be repeated

628 ' , in format must not be repeated

629 BN or BZ format control must not be
repeated

630 Attempt to perform I/O on unknown unit
number

631 Formatted I/O attempted on file opened as
unforma tted

632 Format fails to begin with '('

633 I format expected for integer read

634 F or E format expected for real read

635 Two '.' characters in formatted real read

636 Digit expected in formatted real read

637 L format expected for logical read

639 T or F expected in logical read

A-14

640 A format expected for character read

641 I format expected for integer write

642 w field in F format not greater than
d field + 1

643 Scale factor out of range of d field in E format

644 E or F format expected for real write

645 L format expected for logical write

646 A format expected for character write

647 Attempted to do unformatted I/O to a unit
opened as formatted

648 Unable to write blocked output, possible no
room on device for file

649 Unable to read blocked input

650 Error in formatted textfile, no <cr> in last
512 bytes

651 Integer overflow on input

652 Too many bytes read out of direct access unit
record

653 Incorrect number of bytes read from a direct
access uni t record

654 Attempt to open direct access unit on
unblocked device

655 Attempt to do external I/O on a unit beyond
end of file record

656 Attempt to position a unit for direct access
on a non positive record number

A-15

A-16

657 Attempt to do direct access to a unit opened
as sequential

658 Attempt to position direct ~ccess unit on
unblocked device

659 Attempt to position direct access unit
beyond end of file for reading

660 Attempt to backspace unit connected to
unblocked device

661 Attempt to backspace sequential,
unformatted unit

662 Argument to ASIN or ACOS out of bounds
(ABS(X) .GT. 1.0)

663 Argument to SIN or COS too large
(ABS(X) .GT. 10E6)

664 Attempt to do unformatted I/O to internal
unit

665 Attempt to put more than one record into
in ternal uni t

666 Attempt to write more characters to internal
uni t than its length

667 EOF called on unknown unit

697 Integer variable not currently assigned a
format label

698 End of file encountered on read with no
END= option

699 Integer variable not ASSIGNed a label used
in assigned GOTO

1000+ Compiler debug error messages - should
never app~ar in correct programs

Appendix B. UCSD p-System
FORTRAN 77 and
ANSI Standard Subset
FORTRAN 77
Differences

This appendix is directed at the reader who is
familiar with the ANSI Standard FORTRAN 77
Subset language as defined in ANSI X3.9-1978. It
concisely describes how the UCSD p-System
FORTRAN 77 differs from the standard language.
The differences fall into three general categories:

1) Unsupported Features

2) Full-Language Features

3) Extensions to Standard

Unsupported Features

There are two significant places where UCSD
p-System FORTRAN 77 does not comply with the
standard. One is that procedures cannot be passed as
parameters and the other is that INTEGER and
REAL data types do not occupy the same amount of
storage. Both differences are due to limitations of
the UCSD P-machine architecture.

Parametric procedures are not supported simply
because there is no practical way to do so in the
UCSD P-machine. The instruction set does not allow
the loading of a procedure's address onto the stack,
and more significantly, does not provide for the
calling of a procedure whose address is on the stack.

REAL variables require 4 bytes of storage while
INTEGER and LOGICAL variables only require 2

B-1

B-2

bytes. This is due to the fact that the UCSD
P-machine supported operations on those types are
implemented in those sizes.

Full-Language Features

There are several features from the full language that
have been included in this implementation for a
variety of reasons. Some were done at either minimal
or zero cost, such as allowing arbitrary expressions
in subscript calculations. Others were included
because it was felt that they would significantly
increase the utility of the implementation, especially
in an engineering or laboratory application. An
example is the generalized I/O that allows easier
control of peripherals. In all cases, a program which
is written to comply with the subset restrictions will
compile and execute properly, since the full
language properly includes the subset constructs. A
short description of full language features included
in the implementation follows.

Subscript Expressions - The subset does not allow
function calls or array element references in
subscript expressions, but the full language and this
implementation do.

DO Variable Expressions - The subset restricts
expressions that define the limits of a DO statement,
but the full language does not. UCSD p-System
FORTRAN 77 also allows full integer expressions in
DO statement limit computations. Similarly,
arbitrary integer expressions are allowed in implied
DO loops associated with READ and WRITE
statements.

Unit I/O Number - FORTRAN 77 allows an I/O
unit to be specified by an integer expression as does
the full language.

Expressions in I/O list - The subset does not allow
expressions to appear in an I/O list whereas the full
language does allow expressions in the I/O list of a
WRITE statement. FORTRAN 77 allows
expressions in the I/O list of a WRITE statement,
providing that they do not begin with an initial left
parenthesis.

Note: The expression (A+B)*(C+D) can be
specified in an output list as +(A+B)*(C+D)
which incidently, does not generate any extra
code to evaluate the leading +.

Expression in computed GOTO - FORTRAN 77
allows an expression for the value of a computed
GOTO, consistent with the full language rather than
the subset language.

Generalized I/O - FORTRAN 77 allows both
sequential and direct access files to be either
formatted or unformatted. The subset language
restricts direct access files to be unformatted, and
sequential files to be formatted. FORTRAN 77 also
contains an augmented OPEN statement which
takes additional parameters that are not included in
the subset. There is also a form of the CLOSE
statement, which is not included at all in the subset.
I/O is described in more detail in Chapters 10 and 11.

Extensions to Standard

The language implemented has several minor
extensions to the full language standard. These are
briefly described below:

Compiler Directives - Compiler directives have
been added to allow the programmer to
communicate certain information to the Compiler.
An additional kind of line, called a Compiler
directive line, has been added. It is characterized by a
dollar sign $ appearing in column 1. A Compiler

B-3

B-4

directive line may appear any place that a comment
line can appear, although certain directives are
restricted to appear in certain places. A Compiler
directive line is used to convey certain compile-time
information to the System about the nature of the
current compilation. The set of directives is briefly
listed below:

$INCLUDE filename

Include textually the file filename at this point in the
source. Nested includes are implemented to a depth
of nesting of five files. Thus, for example, a program
may include various files with subprograms, each of
which includes various files which describe common
areas (which would be a depth of nesting of three
files).

$USES ident
[IN filename]
[OVERLAY]

Similar to a USES command in the UCSD Pascal
Compiler. The already compiled FORTRAN
subroutines or Pascal procedures contained in the
.CODE file filename, or in the file
*SYSTEM.LIBRARY (if no file name is present),
become callable from the currently compiling code.
This directive must appear before the initial
non-comment input line. For more details, see
Chapter 13.

$XREF

Produce a cross-reference listing at the end of each
procedure compiled.

$EXT SUBroutine name #parms
or

$EXT [type] FUNCTION name #params

The subroutine or function named name is either an
assembly language routine or a routine in a
$SEPARATE unit (either FORTRAN or Pascal).
The routine has exactly #params reference
parameters.

Backslash Edit Control- The edit control character
can be used in formats to inhibit the normal

advancement to the next record which is associated
with the completion of a READ or a WRITE
statement. This is particularly useful when
prompting to an interactive device, such as
CONSOLE:, so that a response can be on the same
line as the prompt.

End of File Intrinsic Function - An intrinsic
function, EOF, has been provided. The function
accepts a unit specifier as an argument and returns a
logical value which indicates whether the specified
unit is at its end of file.

Lower Case Input - Upper and lowercase source
input is allowed. In most contexts, lowercase
characters are treated as indistinguishable from their
uppercase counterparts. Lower case is significant in
character constants and Hollerith fields.

B-5

B-6

Appendix C. American Standard
Code for Information
Interchange

0 000 00 N..L 32 040 20 5P 64 100 40 @ 96 140 60
1 001 01 5CH 33 041 21 65 101 41 A 97 141 61 a
2 002 02 5TX 34 042 22 " 66 102 42 B 98 142 62 b
3 003 03 ETX 35 043 23 1/ 67 103 43 C 99 143 63 c
4 004 04 Em 36 044 24 $ 68 104 44 D 100 144 64 d
5 005 05 ~ 37 045 25 % 69 105 45 E 101 145 65 e
6 006 06 PO< 38 046 26 & 70 106 46 F 102 146 66 f
7 007 07 BEL 39 047 27 71 107 47 G 103 147 67 9
8 010 08 B5 40 050 28 72 110 48 H 104 150 68 h
9 Oll 09 HT 41 051 29 73 III 49 I 105 151 69

10 012 OA LF 42 052 2A * 74 ll2 4A J 106 152 6A j
II 013 08 VT 43 053 2B + 75 ll3 4B K 107 153 6B k
12 014 DC FF 44 054 2C 76 ll4 4C L 108 154 6C I
13 015 DO rn 45 055 2D - 77 ll5 4D M 109 155 6D m
14 016 DE SO 46 056 2E 78 ll6 4E N 110 156 6E n
15 017 OF 5I 47 057 2F / 79 ll7 4F 0 III 157 6F 0

16 020 10 D...E 48 060 30 0 80 120 50 P ll2 160 70 P
17 021 II 0:1 49 061 31 1 81 121 51 Q ll3 161 71 q
18 022 12 o:z 50 062 32 2 82 122 52 R ll4 162 72 r
19 023 13 D:3 51 063 33 3 83 123 53 5 ll5 163 73 s
20 024 14 DC4 52 064 34 4 84 124 54 T ll6 164 74 t
21 025 15 NOt< 53 065 35 5 85 125 55 U ll7 165 75 u
22 026 16 5'rN 54 066 36 6 86 126 56 V ll8 166 76 v
23 027 17 ETB 55 067 37 7 87 127 57 W ll9 167 77 w
24 030 18 ~ 56 070 38 8 88 130 58 X 120 170 78 x
25 031 19 EJv1 57 071 39 9 89 131 59 Y 121 171 79 Y
26 032 1A SlB 58 072 3A 90 132 5A Z 122 172 7A z
27 033 IB ESC 59 073 3B ; 91 133 5B [123 173 7B {
28 034 lC F5 60 074 3C < 92 134 5C \ 124 174 7C I
29 035 10 a; 61 075 3D 93 135 50] 125 175 7D t
30 036 IE RS 62 076 3E > 94 136 5E . 126 176 7E -
31 037 1F US 63 077 3F ? 95 137 SF 127 177 7F l:E.-

C-l

C-2

INDEX

A
ANSI standard,

differences B-1
apostrophe editing 11-7
arithmetic expressions 7-3
arithmetic IF statement 9-7
arithmetic type

conversion 7-5
array element name 5-8
ASCII C-l
assigned GOTO

statement 9-6
assignment statements 8- 3

B

backslash editing 11-8
BACKSPACE

statement 10-26
blank interpretation

(BN,BZ) 11-9
blanks 2-11

c
CALL statement 12-6
character editing 11-13
character expressions 7-6
character set 2-10, C-l
CHARACTER

statement 5-11

character type 3-4
CLOSE statement 10-21
compilation units 13-4
compile-time errors A-I
compiling FORTRAN

programs 2-3
computational assignment

statements 8-3
computed GOTO

statement 9-5
COMMON statement 5-12
codefile 2-9
columns 2-11
comment lines 2-17
compiler directives 2-12
compiler listing 2-6
compiling 2-3
console 10-16
continuation lines 2-17
CONTINUE statement 9-20

D
DATA statement 6-2
data types 3-2
DIMENSION

dec1arators 5-6
DIMENSION

statement 5-6
dollar sign ($) 2-12
DO statement 9-17

X-I

E

edit descriptors 11-7
ELSEIF statement 9-14
ELSE statement 9-15
ENDIF statement 9-16
END statement 9-23
ENDFILE statement 10-27
EQUIVALENCE

statement 5-17
errors 2-8, A-I
executing programs 2-5
$EXT 2-16, 13-13
external functions 12-9
EXTERNAL

statement 5-14

F
f, format specifier 10-16
file name 10-6
file position 10-6
files 10-5
FORMAT statement 11-3
formatted files 10-6
FORTRAN. CODE 2-4
FORTRAN names 4-3
functions 12-8

G

GOTO statement 9-3

H

hollerith editing 11-7

X-2

I

iden tifiers 4- 3
IF statement 9-7
IF-THEN-ELSE 9-9
IMPLICIT statement 5-4
implied DO lists 10-17
$INCLUDE 2-6,2-13
initial lines 2-17
integer division 7-5
integer editing 11-11
integers 3-2
INTEGER statement 5-10
internal files 10-8
intrinsic functions 12-11,

12-17
INTRINSIC statement 5-15
iolist 10-16
I/O statements 10-15,10-IE
I/O system 10-3, 10-10
I/O system limitations 10-lC

L

label assignment
statements 8-5

labels 2-17
lines 2-12
linking Pascal and

FORTRAN 13-9
logical editing 11-13
logical expressions 7-8
LOGICAL IF statement 9-E
LOGICAL statement 5-10
logical type 3-3

M

main program 2-19, 12-3

N
notational conventions 1-4
numeric editing 11-10

o
OPEN statement 10-19

p

parameters 12-15
PAUSE statement 9-22
positional editing 11-8
precedence, all ops. 7-9
precedence, arith. ops. 7-4
precedence, logic. ops. 7-8
precedence, relat. ops. 7-7

R

READ statement 10-22
real editing 11-11
reals 3-2
REAL statement 5-10
records 10-4
relational expressions 7-6
RETURN statement 12-14
REWIND statement 10-28
RTUNIT.CODE 2-3
runtime errors A-12
runtime support 2-3

s
SAVE statement 5-16
scale factor editing 11-9
separate compilation 13-8
sequential files 10-7
specification statements 5- 3
slash editing 11-8
statement functions 12-12
statements 2-18
statement ordering 2-19
STOP statement 9-21
subprogram units 2-19
SUBROUTINE

statement 12-5
SYSTEM. LIBRARY 2- 3

T
type statements 5-9

u
undeclared identifiers 4-5
units 10-9, 13-4
u, unit specifier 10-16
$USES 2-14, 13-6

w
WRITE statement 10-24

x
$XREF 2-15

X-3

X-4

--- ------ - ---- ---- - ---- - - ----------_.-

Product Comment Form

FORTRAN-77

Personal Computer
Computer Language Series

6936518

Your comments assist us in improving our products. IBM
may use and distribute any of the information you supply
in anyway it believes appropriate without incurring any
obligation whatever. You may, of course, continue to use
the information you supply.

Comments:

If you wish a reply, provide your name and address in
this space.

Name ____________________________________ ___

Address __________________________________ __

City __________ _ State --------------
Zip Code ______ ___

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 123 BOCA RATON, FLORIDA 33432

POSTAGE WILL BE PAID BY ADDRESSEE

IBM PERSONAL COMPUTER
SALES & SERVICE
P.O. BOX 1328-C
BOCA RATON, FLORIDA 33432

8J84 PIO::!

!!IIolrln'lt'l' 'I I"U I _nftl I

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Product Comment Form

FORTRAN-n

Personal Computer
Computer Language Series

6936518

Your comments assist us in improving our products. IBM
may use and distribute any of the information you supply
in anyway it believes appropriate without incurring any
obligation whatever. You may, of course, continue to use
the information you supply.

Comments:

If you wish a reply, provide your name and address in
this space.

Name ____________________________________ ___

Address __________________________________ __

City __________________ __
State --------------

Zip Code ______ ___

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 123 BOCA RATON, FLORIDA 33432

POSTAGE WILL BE PAID BY ADDRESSEE

I BM PERSONAL COMPUTER
SALES & SERVICE
P.O. BOX 1328-C
BOCA RATON, FLORIDA 33432

aJa4 PIO:!

aldelS lOU Op aseald

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

ade.l

--- ------ - ---- ---- - ---- - - ----------_.-

Product Comment Form

FORTRAN-77

Personal Computer
Computer Language Series

6936518

Your comments assist us in improving our prodtlcts. IBM
may use and distribute any of the information you supply
in anyway it believes appropriate without incurring any
obligation whatever. You may, of course, continue to use
the information you supply.

Comments:

If you wish a reply, provide your name and address in
this space.

Name ____________________________________ ___

Address __________________________________ __

City _________ _ Sta te --------------

Zip Code ----------

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 123 BOCA RATON, FLORIDA 33432

POSTAGE WILL BE PAID BY ADDRESSEE

IBM PERSONAL COMPUTER
SALES & SERVICE
P.O. BOX 1328-C
BOCA RATON, FLORIDA 33432

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

..
aJa4 PIO::!

alde~s ~ou op aseald ade.L

--- ------ - ---- ---- - ---- - - ----------_.-

Product Comment Form

FORTRAN-77

Personal Computer
Computer Language Series

6936518

Your comments assist us in improving our products. IBM
may use and distribute any of the information you supply
in anyway it believes appropriate without incurring any
obligation whatever. You may, of course, continue to use
the information you supply.

Comments:

If you wish a reply, provide your name and address in
this space.

Name ____________________________________ __

Address __________________________________ __

City _____________ _ Sta te --------------
Zip Code ----__ __

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 123 BOCA RATON, FLORIDA 33432

POSTAGE WILL BE PAID BY ADDRESSEE

IBM PERSONAL COMPUTER
SALES & SERVICE
P.O. BOX 1328-C
BOCA RATON, FLORIDA 33432

a1a4 PIO:!

alde~s ~ou op aseald

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

ade.l

Continued from inside front cover

SOME STATES DO NOT ALLOW THE
EXCLUSION OF IMPLIED
WARRANTIES, SO THE ABOVE
EXCLUSION MAY NOT APPLY TO
YOU. THIS WARRANTY GIVES YOU
SPECIFIC LEGAL RIGHTS AND YOU
MA Y ALSO HAVE OTHER RIGHTS
WHICH V AR Y FROM STATE TO
STATE.

IBM does not warrant that the functions
contained in the program will meet your
requirements or that the operation of the
program will be uninterrupted or error
free.

However, IBM warrants the diskette(s) or
casselte(s) on which tlw program is fur­
nished, to be free from defects in materials
and workmanship under normal use for a
period of ninety (90) days from the date of
delivery to vou as evidenced by a COPy of
your recei pt.

LIMITATIONS OF REMEDIES

IBM's entire liability and your exclusive
re medy shall be:

I. the replacement of any disketle(s) or
cassclle(s) not meeting IBM's "Limited
\Varranty" and which is returned to
IBM or an authorized IIHI PERSONAL
COMPCTER dealer wi th a copy of your
receipt, or

2. if IBM or the dealer is unable todclivera
replacement diskette(s) or cassette(s)
which is free of defects in materials or
workmanship, you may terminate this
Agreemen t by returning the program
and your money will be refunded.

IN NO EVENT WILL IBM BE LIABLE
TO YOU FOR ANY DAMAGES,
INCLUDING ANY LOST PROFITS,
LOST SAVINGS OR OTHER
INCIDENTAL OR CONSEQUENTIAL

DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE SUCH
PROGRAM EVEN IF IBM OR AN
AUTHORIZED IBM PERSONAL
COMPUTER DEALER HAS BEEN
ADVISED OF THE POSSIBLITY OF
SUCH DAMAGES, OR FOR ANY
CLAIM BY ANY OTHER PARTY.

SOME STATES DO NOT ALLOW THE
LIMITATION OR EXCLUSION OF
LIABILITY FOR INCIDENTAL OR
CONSEQUENTIAL DAMAGES SO
THE ABOVE LIMITATION OR
EXCLUSION MAY NOT APPLY TO
YOU.

GENERAL

You may not sublicense, assign or
transfer the license or the program
except as expressly provided in this
Agreement. Any attempt otherwise to

sublicense, assign or transfer any of the
rights, duties or obligations hereunder is
void.

This Agreement will be governed by the
laws of the State of Florida.

Should you have any questions
concerning this Agreement, you may
contact IBM by writing to IBM Personal
Computer, Sales and Service, P.O. Box
1328-W, Boca Raton, Florida 33432.

YOU ACKNOWLEDGE THAT YOU
HA VE READ THIS AGREEMENT,
UNDERSTAND IT AND AGREE TO
BE BOUND BY ITS TERMS AND
CONDITIONS. YOU FURTHER
AGREE THAT IT IS THE COMPLETE
AND EXCLUSIVE STATEMENT OF
THE AGREEMENT BETWEEN US
WHICH SUPERSEDES ANY
PROPOSAL OR PRIOR AGREEMENT,
ORAL OR WRITTEN, AND ANY
OTHER COMMUNICA TrONS
BETWEEN US RELATING TO THE
SUBJECT MATTER OF THIS
AGREEMENT.

--- ------- - ---- ---- - ---- - - ---===7=®
International Business Machines Corporation

P.O. Box 1328-W
Boca Raton, Florida 55152

69.16518

Printed in United States of America

