= Personal Computer
Computer Language
Series

FORTRAN-77
REFERENCE

for the UCSD p-System” Version IV.0

Produced by SofTech Microsystems, Inc.
Written by Jeffrey Barth and R. Steven Glanville
Edited by Randy Clark and Stan Stringfellow

First Edition (January 1982)

Changes are periodically made to the information herein;
these changes will be incorporated in new editions of this
publication.

Products are not stocked at the address below. Requests for
copies of this product and for technical information about the
system should be made to your authorized IBM Personal
Computer Dealer.

A Product Comment Form is provided at the back of this
publication. If this form has been removed, address comment
to: IBM Corp., Personal Computer, P.O. Box 1328-C, Boca
Raton, Florida 33432. IBM may use or distribute any of the
information you supply in any way it believes appropriate
without incurring any obligations whatever.

© Copyright International Business Machines Corporation
1982

© Copyright Silicon Valley Software, Inc. 1980

© Copyright SofTech Microsystems, Inc. 1980, 1981

UCSD, UCSD Pascal, and UCSD p-System are all trademarks
of the Regents of the University of California.

CONTENTS

CHAPTER 1. INTRODUCTION 1-1
Manual Overview 1-3
Notational Conventions ... 1-4

CHAPTER 2. HOW TO USE UCSD

p-SYSTEM FORTRAN 77 2-1
How to Compile and Execute a FORTRAN
Programooiiiiiia, 2-3
Providing Runtime Support 2-3
Compilinga FORTRAN
Progam 2-4
Executing a FORTRAN
Program 2-5
Form of Input Programs 2-5
$INCLUDE Statement 2-6
Compiler Listingo..... 2-6
The Codefilecccovviiinin... 2-9
Basic Structure of a FORTRAN
Program ool 2-9
Character Set 2-10
Linesoiiiiiiiiiniinnn... 2-10
Columnscooviviievninnnnn. 2-11
Blanks i, 2-11
Compiler Directive Lines 2-12
Statements, Initial Lines, Continuation
Lines, and Labels 2-17
Labelscooiiiiiiiniiiiiinn.... 2-18
Initial Lines 2-18
Continuation Lines 2-18
Statementscceuuiin.... 2-18

iii

iv

Main Program and Subprogram Units
and Ordering of Statements within

Program Unitsooot. 2-19
Program Units - Main Program and
Subprogram Program Units 2-19
Statement Ordering Within a
Program Unit 2-20
The Final Statement of a Soruce
Programoooiiiill, 2-22
CHAPTER 3. DATATYPES 3-1
Data Types ..., 3-2
Integer ..., 3-2
Real 3-2
Logicall 3-3
Characterccovviuivnnnn... 3-4
CHAPTER 4. FORTRAN NAMES 4-1
FORTRAN Namesccovvunnn. 4-3
Scope of FORTRAN Names 4-3

Undeclared FORTRAN Names ... 4-5

CHAPTER 5. SPECIFICATION

STATEMENTS ..., 5-1
CHAPTER 6. DATA STATEMENT 6-1
CHAPTER 7. EXPRESSIONS 7-3

Arithmetic Expressions 7-3
Arithmetic Operators 7-4
Integer Division 7-5

Type Conversions and Result
types of Airthmetic Operators ... 7-5

Character Expressions 7-6
Relational Expressions 7-6
Relational Operators 7-7
Logical Expressionsc...c..... 7-8
Logical Operators 7-8

Precedence of Operators 7-9
Relative Precedence of

Operator Classes 7-9
Evaluation Rules and Restrictions
for Expressionsoiiiie.n. 7-10

CHAPTER 8. ASSIGNMENT

STATEMENTS, 8-1
Computational Assignment
Statementscceeiiiiiin... 8-3
Type Conversion for
Arithmetic Assignments 8-4

CHAPTER 9. CONTROL

STATEMENTSccoiiiiiiinn.. 9-1
CHAPTER 10. I/O SYSTEM 10-1
I/O System Overview 10-4
Recordscoviiiiiiiii.. 10-4
Files ... 10-5
File Properties 10-5
Internal Files 10-8
Units ..ottt 10-9
I/O System Concepts and
Limitationsccoiiivninn... 10-10
FORTRAN I/O System 10-10
Example Program Illustrating Most
Common I/O Operations 10-11
Use of Less Common File
Operationsccoevuun... 10-12
Limitations of the FORTRAN
I/O Systemooovei.n. 10-13
I/O Statementsccovvvnnnn.. 10-15
Elements of I/O Statements 10-15
Statementsoiiiiiiiiiiininnn. 10-18
Restrictions on Functions 10-29

vi

CHAPTER 11. FORMATTED I/O AND

THE FORMAT STATEMENT 11-1
Format Specification and the
Format Statement 11-3
Interaction between Format
Specification and I/O List 11-5
Edit Desctiptorscovveeevvnnnnn. 11-7
Nonrepeatable Edit Descriptors ... 11-7
Repeatable Edit Descriptors 11-10
CHAPTER 12. PROGRAMS, SUBROUTINES,
AND FUNCTIONScoinnn. 12-1
Main Programcooi.... 12-3
Subroutinesiiiiiiiiiinnn. 12-4
Functionso ool 12-8
Parameterscoovviiiiiinn... 12-15

CHAPTER 13. COMPILATION UNITS ... 13-1
Units, Segments, Partial

Compilation, and FORTRAN 13-4
Linking Pascal and FORTRAN 13-9
APPENDIX A. MESSAGES A-1

APPENDIX B. UCSD p-SYSTEM
FORTRAN 77 AND ANSI STANDARD

SUBSETFORTRAN 77 DIFFERENCES B-1
APPENDIX C. AMERICAN STANDARD

CODE FOR INFORMATION

INTERCHANGEcooo.. C1
INDEX ... X-1

CHAPTER 1. INTRODUCTION

Contents
Manual Overviewccovv.... 1-3
Notational Conventions 1-4

1-1

1-2

NOTES

Manual Overview

This manual is a reference manual for the UCSD
p-System’s FORTRAN 77. This is a dialect of
FORTRAN that is closely related to the ANSI
Standard FORTRAN 77 Subset language defined in
ANSI X3.9-1978. Readers familiar with the ANSI
standard will find a concise description of the
differences between the p-System’s FORTRAN 77
and the standard in Appendix B; in general, this
manual does not presume that the reader is familiar
with the standard.

The reader should be somewhat familiar with the use
of the UCSD p-System and its Text Editor, although
the specifics of how to compile, link, and execute a
FORTRAN program in the UCSD environment are
covered in this manual. Refer to the Users’ Guide for
the UCSD p-System for more details.

This manual is intended primarily as a reference
manual for the FORTRAN language and containsall
of the information necessary to fully utilize it. The
reader is assumed to have some prior knowledge of
some dialect of FORTRAN, although someone
familiar with another high level language should be
able to learn FORTRAN from this manual. The
manual is not a tutorial in the sense that it does not
teach the reader, step by step, the concepts
necessary to write successively more complex
programs in FORTRAN; rather, each section of the
manual fully explains one part of the FORTRAN
language system.

The manualis organized as follows: Chapters1and2
are general, and describe the manual and basics
necessary in order to successfully use FORTRAN in
even a trivial way. Chapters 3, 4, and 5 describe the
data types available in the language and how a
program assigns a particular data type to an
identifier or constant. Chapter 6 deals with the

1-3

DATA statement, which is used for initialization of
memory. Chapters 7, 8, 9, and 10 define the
executable parts of programs and the meanings
associated with the various executable constructs.
I/O statements are presented in Chapter 10, and the
associated FORMAT statement and formatted I/O
are described in Chapter 11. The subroutine
structure of a FORTRAN compilation, including
parameter passing and intrinsic (System-provided)
functions, is the topic of Chapter 12. Finally,
Chapter 13 discusses the rather sophisticated means
which exist for compiling FORTRAN subroutines
separately, overlaying, and linking in subroutines
which are written in other languages.

Notational Conventions

These are the notational conventions used
throughout this manual:

Upper Case and Special Characters - are written as
they would be in a program.

Lower Case Italic Letters and Words - indicate
generalizations which must be replaced by actual
FORTRAN syntax, as described in the text. The
reader may assume that once a lowercase entity is
defined, it retains its meaning for the entire context
of discussion.

Example of Upper and Lower Case: The format
which describes editing of integers is denoted Iw,
where w is a nonzero, unsigned integer constant.
Thus, in an actual statement, a program might
contain I3 or I44. The format which describes
editing of reals is Fw.4, whered isan unsigned integer
constant. In an actual statement, F7.4 or F22.0 are
valid. Notice that the period, asa special character, is
taken literally.

Brackets - indicate optional items.

Example of Brackets: A[w] indicates thateither A or
A12 are valid (as a means of specifying a character
format).

... - is used to indicate ellipsis. That is, the optional
item preceding the three dots may appear one or
more times.

Example of ...: The computed GOTO statement is
described by GOTO (s[,s] ...) [,] 7indicating that the
syntactic item denoted by s may be repeated any
number of times with commas separating them.

Blanks normally have no significance in the
description of FORTRAN statements. The general
rules for blanks, covered in Chapter 2, govern the
interpretation of blanks in all contexts.

1-5

1-6

NOTES

CHAPTER 2. HOW TO USE
UCSD p-SYSTEM
FORTRAN 77

Contents

How to Compile and Execute a
FORTRAN Program 2-3
Providing Runtime Support 2-3
Compiling a FORTRAN Program 2-4
2-5
2-5

Executing a FORTRAN Program

Form of Input Programs -
$INCLUDE Statement 2-6
Compiler Listing 2-6
The Codefilecooiiuna... 2-9
Basic Structure of a FORTRAN

Program 2-9
Character Setcccvviiiinnn. 2-10
Lines ... 2-10
Columnscooviiiiiiiiiinnnnnn.. 2-11
Blanks ... 2-11
Compiler Directive Lines 2-12
Statements, Initial Lines, Continuation

Lines, and Labels 2-17
Labelscoiiiiiiiiiiii i, 2-18
Initial Lines, 2-18
Continuation Lines 2-18
Statementsccieiiiiiieeannnn 2-18

Main Program and Subprogram Units
and Ordering of Statements within

Program Units 2-19
Program Units - Main Program and

Subprogram Program Units 2-19
Statement Ordering Within a

Program Unit 2-20
The Final Statement of a Source

Programo ool 2-22

2-2

NOTES

This chapter describes how to use the p-System’s
FORTRAN 77. It assumes that the reader is familiar
with the basic operation of the UCSD p-System. The
mechanics of preparing, compiling, linking, and
executing a FORTRAN program are outlined, and
an explanation of the Compiler listing file is given.

How to Compile and Execute a
FORTRAN Program

[—]
«
=
(1]
-
[(—]
=
-]
=
>
=

Providing Runtime Support

To run any program on the UCSD p-System, some
runtime support is needed. The package of routines
which do this for FORTRAN is distinct from the
package which does this for Pascal, and is originally
shipped in the file FORTLIB~.CODE (n=2 or 4 and
indicates two word or four word reals) on the
FORTRAN: diskette (which should be placed in the
right drive). You must change the Pascal routines
file SYSTEM.LIBRARY to PASCAL.LIBRARY (or
some other name you will remember), and
FORTLIBz.CODE to SYSTEM.LIBRARY. After
this is done, you may run your FORTRAN
programs.

In order to do this type F for Filer and then C for
Change. Specify SYSTEM.LIBRARY as the file to be
changed and PASCAL.LIBRARY as the new name.
Then change #5:FORTLIB».CODE to
SYSTEM.LIBRARY.

It may be that you have placed programs of your own
in SYSTEM.LIBRARY. In this case, you will be
familiar with the use of the Librarian.
FORTLIB~.CODE may be added to the
SYSTEM.LIBRARY file in this way if desired
(instead of changing FORTLIB~.CODE into
SYSTEM.LIBRARY). The library text file facility

2-3

described in the Users’ Guide for the UCSD p-System
is also available to FORTRAN programmers.

Note: SYSTEM.LIBRARY must be on the
boot disk unless a library text file or an
execution option string (also described in the
Users’ Guide) indicates otherwise. In order to
move SYSTEM.LIBRARY to the boot disk:
type T for Transfer and specify
#5:SYSTEM.LIBRARY as the file to be
transferred, and #4:$ as the destination. Be
certain that you have already changed the
original SYSTEM.LIBRARY to
PASCAL.LIBRARY before you do this.

Compiling a FORTRAN Program

2-4

The FORTRAN 77 Compiler is also located on the
FORTRAN: diskette and is called
FORTRAN~z.CODE (n=2 or 4 indicating 2 or4 word
reals). The compiler is invoked as the Pascal
Compiler is: by typing C at the command level. The
R(un command simply executes the codefile.)

For these commands to call FORTRAN, the
FORTRAN Compiler must be re-named
SYSTEM.COMPILER. To make it
SYSTEM.COMPILER, type F to enter the Filer,
C(hange SYSTEM.COMPILER to
PASCAL.COMPILER, and C(hange
#5:FORTRAN#~.CODE to SYSTEM.COMPILER.
To start using Pascal again, reverse the renaming
process (you may leave the FORTRAN Comopiler as
SYSTEM.COMPILER if you remove the
FORTRAN: diskette from the right drive).

Notes:

1. If you have purchased a copy of the
p-System with FORTRAN only, there willbe no
Pascal Compiler to change.

2. Typing Cor R at the command level causes
the Compiler to use the workfiles
SYSTEM.WRK.TEXT and
SYSTEM.WRK.CODE. If no workfile is
present, the Operating System, prompts for the
name of a . TEXT file to use.

3. The FORTRAN Compiler prompts for a
listing file. If an <enter> is typed, no listing is
generated.

4. Once the prompts are all answered, the
actual compilation begins. The progress of the
compilation is shown on the console by a
successive display of dots. Each dot represents
one line of source code.

Remember that anything which applies to the Pascal
SYSTEM.COMPILER also applies to FORTRAN.

The Users’ Guide for the UCSD p-System should be
referred to for more information.

Executing a FORTRAN Program

A compiled, linked FORTRAN program is executed
in the same mannerasany other user program, i.e. by
typing an X at the command level, followed by the
name of the file containing the linked program.

Form of Input Programs

All input source files read by FORTRAN must be
.TEXT files. This allows the Compiler to read large
blocks of text from a disk file in a single operation,

2-5

NYH1HO4 DNISN

increasing the compile speed significantly. The
simplest way to prepare .TEXT files is to use the
Screen Oriented Editor. For a more precise
description of the fields in a FORTRAN 77 source
statement, see Chapter 2 which explains the basic
structure of a FORTRAN program.

$INCLUDE Statement

To facilitate the manipulation of large programs,
FORTRAN 77 contains an $INCLUDE Compiler
directive. The format of the directive is:

$INCLUDE file.name

... with the $ appearing in column 1 (see “Compiler
Directive Lines” in this chapter foran explanation of
Compiler directives in general). The meaning is to
compile the contents of the file file.name, and insert
the code into the current codefile before continuing
with compilation of the current file. The included
file may contain additional $INCLUDE directives,
up to a maximum of five levels of files (four levels of
$INCLUDE directives). It is often useful to have the
description of a COMMON block kept in a single file
and to include it in each subroutine that references
that COMMON area, rather than making and
maintaining many copies of the same source, one in
each subroutine. There is no limit to the number of
$INCLUDE directives that can appear in a source
file.

Compiler Listing

2-6

The Compiler listing, if requested, contains various
information that may be useful to the FORTRAN
programmer. The listing consists of the user’s source
code asread, along with line numbers, symbol tables,
error messages, and optional cross-reference
information.

Example: FORTRAN Compiler 1V.0 [[0.0]

—
COoaNORON=O

P —
W=

14.
15.
16.
17.

A

H
EX1234
i

IABS
INIT

18.
19.
20.
21.
22,
23.

B
D
INIT

EX1234
INIT

24lines.

0C
0 C--- Example Program #1234
0C
0
0 $XREF
0
0 PROGRAM EX1234
0
0 INTEGER A(10,10)
0 CHARACTER*4 C
0
0 CALL INIT(A,C)
6 I=1
9 200A(l) =1
% Error number: 57 in line: 13
20 I=1+1
26 IF (IABS(10-1) .NE. 0) GOTO 200
37
37 END
INTEGER 3 8 11 13
CHAR* 4 103 9 11
PROGRAM 6
INTEGER 105 12 13 13 14
14 15
INTRINSIC 15
SUBROUTINE 2FWD 11
0 SUBROUTINE INIT(B,D)
0 INTEGER B(10,10)
0 CHARACTER*4 D
0
0 RETURN
2 END
INTEGER 2* 18 19
CHAR* 4 1* 18 20
SUBROUTINE 2 18
PROGRAM
SUBROUTINE 2,7
1 errors.

2-7

NYH1HO04 ONISN

2-8

The first line indicates which version of the
Compiler was used for this compilation. In the
example it is version 0.0 for the UCSD p-System
Version IV.0. The leftmost column of numbers are
source-line numbers. The next column indicates the
procedure-relative instruction counter that the
corresponding line of source code occupies as object
code. It is only meaningful for executable
statements and data statements. To the right of the
instruction counter is the source statement.

Errorsare indicated by a row of asterisks followed by
the error number and line number, as appears in the
example between lines 13 and 14. In this case it is
error number 57, “Too few subscripts”, indicating
that there are not enough subscripts in the array
reference A(I). (For more information concerning
the handling of syntax errors, as well as runtime
errors, see Appendix B.)

At the end of each routine (function, subroutine, or
main program), a local symbol table is printed. This
table lists all identifiers that were referenced in that
routine, along with their definition. If the $XREF
Compiler directive has been given, a table of all lines
containing an instance of that identifier in the
current program unit is also printed. If the identifier
is a variable, it is accompanied by its type and
location. If the variable is a parameter, its location is
followed by an asterisk, such as the variables Band D
in the SUBROUTINE INIT. If the variable is in a
common block, then the name of the block follows
enclosed by slashes. If the identifier is not a variable,
it is described appropriately. For subroutines and
functions, the segment procedure number is given.
If it resides in a different segment, then the segment
number follows. If the Compiler assumes that it will
reside in the same segment, but has not appeared
yet, it is listed as a forward reference by the notation
FWD.

At the end of the compilation, the global symbol
table is printed. It contains all global FORTRAN
symbols referenced in the compilation. No
cross-reference is given. The number of source lines
compiled and the number of errors encountered
follows. If there were any errors, then no objectfile s
produced.

The Codefile

The object codefile generated by the FORTRAN
Compiler is compatible with the UCSD Linker and
Librarian. Indeed, it is hard to tell by examining a
codefile whether it was created by the FORTRAN
Compiler or the Pascal Compiler. For a description
of the format of a codefile, see the UCSD p-System
Internal Architecture Guide.

[
«
-
7]
-
Q
=
e
-
>
=

Basic Structure of a
FORTRAN Program

In the most fundamental sense, a FORTRAN
program is a sequence of characters which, when fed
to the Compiler, are understood in various contexts
as characters, identifiers, labels, constants, lines,
statements, or other (possibly overlapping)
syntactic substructure groupings of characters. The
rules which the Compiler uses to group the character
stream into certain substructures, as well as various
constraints on how these substructures may be
related to each other in the source program
character stream, will be the topic of this chapter.

2-9

Character Set

Lines

2-10

A FORTRAN source program consists of a stream of
characters, originating ina . TEXT file, consisting of:

® Letters- The 52 upper and lower case letters A
through Z and a through z.

® Digits-0,1,2,3,4,5,6,7,8,and9.

® Special Characters - The remaining printable
characters of the ASCII character set.

The letters and digits, treated as a single group, are
called the alphanumeric characters. FORTRAN
interprets lower case letters as upper case letters in
all contexts except in character constants and
Hollerith fields. Thus, the following user-defined
names are all indistinguishable to the FORTRAN
Compiler:

ABCDE abcde AbCdE aBcDe

In addition to the above, actual source programs
given to the FORTRAN Compiler contain certain
hidden (nonprintable) control charactersinserted by
the Text Editor which are invisible to the user.
FORTRAN uses these control characters in exactly
the same way as the Text Editor, and transforms
them, using the rules of UCSD .TEXT files, into the
FORTRAN character set.

The collating sequence for the FORTRAN character
set is the ASCII sequence.

A FORTRAN source program may also be
considered a sequence of lines, corresponding to
the normal notion of line in the Text Editor. Only

the first 72 characters in a line are treated as
significant by the Compiler; any trailing characters
inaline are ignored. Note that lines with fewer than
72 characters are possible and, if shorter than 72
columns, the Compiler does treat as significant the
length of a line (see “Character”, which describes
character constants, for an illustration of this).

Columns

Blanks

The characters in a given line fall into columns, with
the first character being in column 1, the second in
column 2, etc. The column in which a character
resides is significant in FORTRAN, with columns 1
through 5 reserved for statement labels, column 6
for continuation indicators and other conventions,
columns 7 through 72 for actual statements.

The blank character, with the exceptions noted
below, has no significance in a FORTRAN source
program and may be used for the purpose of
improving the readability of FORTRAN programs.
The exceptions are:

® Blanks within string constants are significant
® Blanks within Hollerith fields are significant

® Blanks on Compiler directive lines are
significant

® Ablankin column 6 is used to distinguish initial
lines from continuation lines

® Blanks count in the total number of characters

in Compiler processes per line and per
statement

2-11

[
L
=
[
| =
(—]
-3
-
=
>
=

Compiler Directive Lines

2-12

A line is treated as a Compiler directive if the $
character appears in column 1 of an input line.
Compiler directives are used to transmit various
kinds of information to the Compiler. A Compiler
directive line may appear any place that a comment
line can appear, although certain directives are
restricted to appear in certain places. Blanks are
significant on Compiler directive lines, and are used
to delimit keywords and filenames. The set of
directives is described below.

$INCLUDE

$INCLUDGE filename

Include textually the file fzlename at this point in the
source. Nested includes are implemented to a depth
of nesting of five files. Thus, for example, a program
may include various files with subprograms, each of
which includes various files which describe
COMMON areas (which would be a nesting depth of
three files).

NYHLHO4 ONISN

2-13

$USES

2-14

$USES ident
[IN félename]
[OVERLAY |

Similar to the USES command in the UCSD Pascal
Compiler. The already compiled FORTRAN
subroutines or Pascal procedures contained in the
.CODE file filename, (or in the file
*SYSTEM.LIBRARY if no file name is present),
become callable from the currently compiling code.
This directive must appear before the initial
non-comment input line. For more details, see
Chapter 13.

$XREF

$XREF

Produce a cross-reference listing at the end of each
procedure compiled.

[—
e
=
=
-
[—]
=
-
=
>
=

2-15

$EXT

2-16

$EXT SUBROUTINE rame #params
or
$EXT [#ype] FUNCTION name #params

The subroutine or function called #ame is an
Assembly Language routine. The routine has exactly
#params reference parameters.

Comment Lines

A line is treated as a comment if any one of the
following conditions are met:

® A C(orc)in column 1.

® An*in column 1.

® Line contains all blanks.

Comment lines do not affect the execution of the
FORTRAN program in any way. Comment lines
must be followed immediately by an initial line or
another comment line. They must not be followed
by a continuation line. Note that extrablank lines at
the end of a FORTRAN program result in a compile
time error since the compiler interprets them as
commentlinesbut theyare not followed by an initial
line.

Statements, Initial Lines,
Continuation Lines, and Labels

The following paragraphs define a FORTRAN
statement in terms of the input character stream.
The Compiler recognizes certain groups of input
characters as complete statements according to the
rules specified here. The remainder of this manual
will further define the specific statements and their
properties. When it is necessary to refer to specific
kinds of statements here, they are simply referred to
by name.

2-17

Labels

A statement label is a sequence of from one to five
digits. At least one digit must be nonzero. A label
may be placed anywhere in columns 1 through 5 of
an initial line. Blanks and leading zeros are not
significant.

Initial Lines

An initial line is any line which is not a comment line
or a Compiler directive line and containsa blank ora
0 in column 6. The first five columns of the line must
either be all blank or contain a label. With the
exception of the statement following a logical IF,
FORTRAN statements all begin with an initial line.

Continuation Lines

A continuation line is any line which is not a
comment line or a Compiler directive line and
contains any character in column 6 other than a
blank ora 0. The first five columns of a continuation
line must be blanks. A continuation line is used to
increase the amount of room to write a given
statement. If it will not fit on a single initial line, it
may be extended to include up to 9 continuation
lines.

Statements

2-18

A FORTRAN statement consists of an initial line,
followed by up to 9 continuation lines. The
characters of the statement are the up to 660
characters found in columns 7 through 72 of these
lines. The END statement must be wholly written on
an initial line, and no other statement may have an
initial line which appears to be an END statement.

Main Program and Subprogram Units
and Ordering of Statements within
Program Units

The FORTRAN language enforces a certain
ordering among statements and lines which make up
a FORTRAN compilation. In general, a compilation
consists of some number of subprograms (possibly
zero), and at most one main program (see sections on
compilation units and subroutines). The various
rules for ordering statements appear below.

&
L
=
-
-
[—]
=
e
=
>
=

Program Units - Main Program and
Subprogram Program Units

A subprogram begins with either a SUBROUTINE
or a FUNCTION statement and ends with an END
statement. A main program begins with a
PROGRAM statement, or any other than a
SUBROUTINE or FUNCTION statement, and ends
with an END statement. A subprogram or the main
program is referred to as a program unit.

2-19

Statement Ordering Within a Program Unit

2-20

Within a program unit, whether a main program ora
subprogram, statements must appear in an order
consistent with the following rules:

A SUBROUTINE or FUNCTION statement,
or PROGRAM statement, if present, must
appear as the first statement of the program
unit.

FORMAT statements may appear anywhere
after the SUBROUTINE or FUNCTION
statement, or PROGRAM statement if present.

All specification statements must precede all
DATA statements, statement function
statements, and executable statements.

All DATA statements must appear after the
specification statements and precede all
statement function statements and executable
statements.

All statement function statements must
precede all executable statements.

Within the specification statements, the
IMPLICIT statement must precede all other
specification statements.

These rules are illustrated in the following chart.
The chart is to be interpreted as follows:

Classes of lines or statements above or below
other classes must appear in the designated
order.

Classes of lines or statements may be
interspersed with other classes which appear
across from one another.

PROGRAM, FUNCTION, or
SUBROUTINE Statement

IMPLICIT Statements
Other Specification
Statements

Comment FORMAT

Lines Statements DATA Statements

Statement Function
Statements

Executable
Statements

END Statement

2-21

The Final Statement of a Source Program

2-22

When creating FORTRAN programs with the
UCSD Editor, the final END statement must be
entered as a complete line. That is, there must be a
“return” character following the statement.
Otherwise, the Compiler will not find the END
statement and will issue an error message. In
addition, that “return” character must be the final
character in the program source file. Any further
characters, even blanks, might be considered part of
a subsequent subprogram by the Comopiler.

CHAPTER 3. DATA TYPES

Contents
Data Types ...ovvvrienniennneennnnn. 3-2
Integercovviiiiiiiiii 3-2
Real ... 3-2
Logicalc..oiiiiiiiiiit 3-3
Charactercooviiiiiiinnnnnnn. 3-4

o
=
>
3
<
m
»

Data Types

Integer

Real

3-2

There are four basic data types in UCSD p-System
FORTRAN 77:

® integer

® real

® logical

® character

This chapter describes the properties of each type,
the range of values for each type, and the form of
constants for each type.

The integer data type consists of a subset of the
integers. An integer value is an exact representation
of the corresponding integer. An integer variable
occupies one word (two bytes) of storage and can
contain any value in the range -32768 to 32767.
Integer constants consist of a sequence of one or
more decimal digits preceeded by an optional
arithmetic sign, + or -, and must be in range. A
decimal point is not allowed in an integer constant.
The following are examples of integer constants:

123 +123 -123 0 000123 32767 -32768

The real data type consists of a subset of the real
numbers. A real value is normally an approximation
of the real number desired. A real variable occupies
either two consecutive words (4-bytes) or four
consecutive words (8-bytes) of in-core storage. The
range of values depends on the configuration of

Logical

hardware and software you have purchased with your
IBM Personal Computer. The precision is greater
than 6 decimal digits.

A basic real constant consists of an optional sign
followed by an integer part, a decimal point, and a
fraction part. The integer and fraction parts consist
of 1 or more decimal digits, and the decimal pointisa
period, (.). Either the integer part or the fraction part
may be omitted, but not both. Some sample basic
real constants follow:

-123.456 +123.456 123.456
-123. +123. 123.
-.456 +.456 .456

An exponent part consists of the letter E followed by
an optionally signed integer constant. An exponent
indicates that the value preceding it is to be
multiplied by 10 to the value of the exponent part’s
integer. Some sample exponent parts are:

E12 E-12 E+12 E0

A real constant is either a basic real constant, a basic
real constant followed by an exponent part, or an
integer constant followed by an exponent part. For
example:

+1.000E-2 1.E-2 1E-2
+0.01 100.0E-4 .0001E+2

all represent the same real number, one
one-hundredth.

The logical data type consists of the two logical
values true and false. A logical variable occupies one
word (two bytes) of storage. There are only two
logical constants, .TRUE. and .FALSE.,

3-3

=
-y
>
=5
-
m
(7]

representing the two corresponding logical values.
The internal representation of .FALSE. is a word of
all zeros, and the representation of .TRUE. is a word
of all zeros but a one in the least significant bit. If a
logical variable contains any other bit values, its
meaning is undefined.

Character

3-4

The character data type consists of a sequence of
ASCII (see Appendix C) characters. The length of a
character value is equal to the number of characters
in the sequence. The length of a particular constant
or variable is fixed, and must be between 1 and 127
characters. A character variable occupies one word
of storage for each two characters in the sequence,
plus one word if the length is odd. Character
variablesare alwaysaligned on word boundaries. The
blank character is allowed in a character value and is
significant.

A character constant consists of a sequence of one or
more characters enclosed by a pair of apostrophes.
Blank characters are allowed in character constants,
and count as one character each. An apostrophe
within a character constant is represented by two
consecutive apostrophes with no blanks in between.
The length of a character constant is equal to the
number of characters between the apostrophes, with
doubled apostrophes counting as a single
apostrophe character. Some sample character
constants are:

A
Help!
A very long CHARACTER constant

b

Note the last example, ’
apostrophe, .

”, that represents a single

... FORTRAN allows source lines with up to 72
columns. Shorter lines are not padded out to 72
columns, but left as input. When a character
constant extends across a line boundary, its value is
as if the portion of the continuation line beginning
with column 7 is juxtaposed immediately after the
last character on the initial line. Thus, the
FORTRAN source:

200 CH = 'ABCenter
X DEF

... (where the enter indicates a4, or the end of the
source line) is equivalent to:

200 CH = 'ABC DEF

... with the single space between the C and D being
the equivalent to the space in column 7 of the
continuation line. Very long character constants can
be represented in this manner.

=
-
>
<
)
m
w»

3-6

NOTES

CHAPTER 4. FORTRAN NAMES

Contents
FORTRAN NameScevvveennnn. 4-3
Scope of FORTRAN Names 4-3
Undeclared FORTRAN Names 4-5

4-2

NOTES

FORTRAN Names

A FORTRAN name, or identifier, consists of an
initial alphabetic character followed by a sequence
of 0 through 5 alphanumeric characters. Blanks may
appear within a FORTRAN name, but have no
significance. A name is used to denote a user-defined
or system-defined variable, array, function,
subroutine, etc. Any valid sequence of characters
may be used for any FORTRAN name. There are no
reserved names as in other languages. Sequences of
alphabetic characters used as keywords are not to be
confused with FORTRAN names. The Compiler
recognizes keywords by their context and in no way
restricts the use of user-chosen names. Thus, a
program can have, for example, an array named IF,
READ, or GOTO, with no error indicated by the
Compiler (as long as it conforms to the rules that all
arrays must obey). Using such names, however, is not
a recommended practice!

Scope of FORTRAN Names

The scope of a name is the range of statements in
which that name is known, or can be referenced,
within a FORTRAN program. In general, the scope
of a name is either global orlocal, although there are
several exceptions. A name can only be used in
accordance with a single definition within its scope.
The same name, however, can have different
definitions in distinct scopes.

A name with global scope may be used in more than
one routine (a subroutine, function, or the main
program) and still refer to the same entity. In fact,
names with global scope can only be used in a single,
consistent manner within the same program. All
subroutine, function subprogram, and common
names, as well as the program name, have global
scope. Therefore, there cannot be a function

4-3

SIWNYN NYH1HO04

4-4

subprogram that has the same name as a subroutine
subprogram or as a common data area. Similarly, no
two function subprograms in the same program can
have the same name.

A name with local scope is only visible (known)
within a single routine. A name with alocal scope can
be used in another routine with a different meaning,
or with a similar meaning, but is in no way required
to have similar meanings in a different scope. The
names of variables, arrays, parameters, and
statement functions all have local scope. A name
with a local scope can be used in the same
compilation as another item with the same name but
a global scope as long as the global name is not
referenced within the routine containing the local
name. Thus, a function can be named FOO, and a
local variable in another routine can be named FOO
without error, as long as the routine containing the
variable FOO does not call the function FOO. The
Compiler detectsall scope errors, and issues an error
message when they occur, so the user need not worry
about undetected scope errors causing bugs in
programs.

One exception to the scoping rules is the name given
to common data blocks. It is possible to refer to a
globally scoped common name in the same routine
thatan identical locally scoped name appears. Thisis
allowed because common names are always enclosed
in slashes, such as/NAME/, and are therefore always
distinguishable from ordinary names by the
Compiler.

Another exception to the scoping rules is made for
parameters to statement functions. The scope of
statement function parameters is limited to the
single statement forming that statement function.
Any other use of those names within that statement
function is not allowed, and any other use outside
that statement function is allowed.

Undeclared FORTRAN Names

When a user name that has not appeared before is
encountered in an executable statement, the
Compiler infers from the context of its use how to
classify that name. If the name is used in the context
of a variable, the Compiler creates an entry into the
symbol table for a variable of that name. Its type is
inferred from the first letter of its name. Normally,
variables beginning with the letters I, J, K, L, M, or N
are considered integers, while all others are
considered reals. These defaults can be overridden
by an IMPLICIT statement (see Chapter 5). If an
undeclared name is used in the context of a function
call, a symbol table entry is created for a function of
that name, with its type being inferred in the same
manner as that of a variable. Similarly, a subroutine
entry is created for a newly encountered name thatis
used as the target of a CALL statement. If an entry
for such a subroutine or function name exists in the
global symbol table, its attributes are coordinated
with those of the newly created symbol table entry. If
any inconsistencies are detected, suchasa previously
defined subroutine name being used as a function
name, an error message is issued.

In general, one is encouraged to declare all names
used within a routine, since it helps to assure that the
Compiler associates the proper definition with that
name. Allowing the Compiler to use a default
meaning can sometimes result in logical errors that
are quite difficult to locate. Indeed, most modern
programming languages require the programmer to
declare all names, to avoid any such potential
difficulties.

4-6

NOTES

CHAPTER 5. SPECIFICATION

STATEMENTS
Contents
IMPLICIT Statement 5-4
DIMENSION Statement 5-6
Dimension Declarators 5-6
Array Element Name 5-8
Type Statementscco.... 5-9
INTEGER, REAL, and LOGICAL
Type Statements 5-10
CHARACTER Type Statement 5-11
COMMON Statementcvvvnnn. 5-12
EXTERNAL Statement 5-14
INTRINSIC Statement 5-15
SAVE Statementcoovnn... 5-16
EQUIVALENCE Statement 5-17
Restrictions on EQUIVALENCE
Statementscoiiiiiiiiiinnn.. 5-18

(7]
-
m
[
(<]
-
=
=
-
(]

5-1

5-2

NOTES

This chapter describes the specification statements
in UCSD p-System FORTRAN 77. Specification
statements are non-executable. They are used to
define the attributes of user-defined variable, array,
and function names. There are eight kinds of
specification statements:

e IMPLICIT

e DIMENSION

® Type Statements

e COMMON

® EXTERNAL

® INTRINSIC

® SAVE

® EQUIVALENCE

Specification statements must precede all
executable statements in a routine. If present, any
IMPLICIT statements must precede all other
specification statements in a routine as well.

Otherwise, the specification statements may appear
in any order within their own group.

5-3

IMPLICIT Statement

5-4

An IMPLICIT statement is used to define the default
type for user-declared names. The form of an
IMPLICIT statement is:

IMPLICIT #ype (@ [,4]...) [,type (@ [,4]...)]...

The type is one of INTEGER, LOGICAL,
REAL, or CHARACTER[*n77]

Thea is eithera single letter orarange of letters.
A range of lettersisindicated by the firstand last
letters in the range separated by a minus sign.
For a range, the letters must be in alphabetical
order.

The nnn is the size of the character type thatis to
be associated with that letter or letters. It must
be an unsigned integer in the range 1 to 127. If
*nnn is not specified, it is assumed to be *1.

An IMPLICIT statement defines the type and size for
all user-defined names that begin with the letter or
letters that appear in the specification. An
IMPLICIT statement applies only to the routine in
which it appears. IMPLICIT statements do not
change the type of any intrinsic functions.

Implicit types can be overriden or confirmed for any
specific user-name by the appearance of that name in
a subsequent type statement. An explicit type in a
FUNCTION statement also takes priority over an
IMPLICIT statement. If the type in question is a
character type, the user-name’s length is also
overridden by a latter type definition.

IMPLICIT Statement

The routine can have more than one IMPLICIT
statement, but all implicit statements must precede
all other specification statements in that routine.
The same letter cannot be defined more than oncein
an IMPLICIT statement in the same routine.

5-5

DIMENSION Statement

A DIMENSION statement is used to specify that a
user-name is an array. The form of a DIMENSION
statement is:

DIMENSION var(dim) [,var(dim)]...

where each var(dim) is an array declarator. An
array declarator is of the form:

name(d[,d]...)
name is the user defined name of the array.

d is a dimension declarator.

Dimension Declarators

The number of dimensions in the array is the
number of dimension declarators in the array
declarator. The maximum number of dimensions is
three. A dimension declarator can be one of three
forms:

® An unsigned integer constant.

® A user-name corresponding to a non-array
integer formal argument.

® An asterisk.

A dimension declarator specifies the upper bound of
the dimension. The lower bound is always one. If a
dimension declarator is an integer constant, then the
array has the corresponding number of elements in
that dimension. An array has a constant size if all of
its dimensions are specified by integer constants. If a
dimension declarator is an integer argument, then
that dimension is defined to be of a size equal to the
initial value of the integer argument upon entry to
the subprogram unit at execution time. In such a
case the array is called an adjustable-sized array. If
the dimension declarator is an asterisk, the array is
an assumed-sized array and the upper bound of that
dimension is not specified.

All adjustable-sized and assumed-sized arrays must
also be formal arguments to the routine in which
they appear. Additionally, an assumed-sized
dimension declarator may only appear as the last
dimension in an array declarator.

The order of array elements in memory is
column-major order. That is to say, the leftmost
subscript changes most rapidly in a
memory-sequential reference to all array elements.

(]
-
m
(]
(<]
P
=
=
-
]

Array Element Name

The form of an array element name is:
arr(sub [,s4b]...)
arr is the name of an array.
sub is a subscript expression.

A subscript expression is an integer expression used
in selecting a specific element of an array. The
number of subscript expressions must match the
number of dimensions in the array declarator. The
value of a subscript expression must be between 1
and the upper bound for the dimensionitrepresents.

Type Statements

Type statements are used to specify the type of
user-defined names. A type statement may confirm
or override the implicit type of a name. Type
statements may also specify dimension information.

A user-name for a variable, array, external function,
or statement function may appear in a type
statement. Such an appearance defines the type of
that name for the entire routine. Within a routine, a
name may not have its type explicitly specified by a
type statement more than once. A type statement
may confirm the type of an intrinsic function, but is
not required. The name of a subroutine or main
program cannot appear in a type statement.

INTEGER, REAL, and LOGICAL
Type Statements

The form of an INTEGER, REAL, ot LOGICAL type
statement is:

type var [var]...

type is one of INTEGER, REAL, or LOGICAL.
var is a variable name, array name, function
name, or an array declarator. For a definition of

an array declarator, see DIMENSION
Statement.

5-10

CHARACTER Type Statement

The form of a CHARACTER type statement is:
CHARACTER [*nnn [,]] var [*nnn] [, var [*nnn]]...

var is a variable name, array name, or an array
declarator. For a definition of an array
declarator, see DIMENSION Statement.

nnn is the length in number of characters of a
character variable or character array element. It
must be an unsigned integer in the range 1 to
127.

The length nnr following the type name
CHARACTER is the default length for any name not
having its own length specified. If not present, the
default length is assumed to be one. A length
immediately following a variable or array overrides
the default length for that item only. For an array,
the length specifies the length of each element of
that array.

5-11

COMMON Statement

5-12

The COMMON statement provides a method of

sharing storage between two or more routines. Such
routines can share the same data without passingitas
arguments. The form of the COMMON statementis:

COMMON [/ [crame] [nlist [[,]] [crame] | nlist]...

cname is a common block name. If a crname is
omitted, then the blank common block is
specified.

nlist is a comma separated list of variable names,
array names, and array declarators. Formal
argument names and function names cannot
appear in a COMMON statement.

In each COMMON statement, all variables and
arrays appearing in each #/ist following a common
block name crame are declared to be in that common
block. If the first cname is omitted, all elements
appearing in the first #/ist are specified to be in the
blank common block.

Any common block name can appear more than
once in COMMON statements in the same routine.
All elements in all #/ists for the same common block
are allocated storage sequentially in that common
storage area in the order that they appear.

COMMON Statement

All elements in a single common area must be either
all of type CHARACTER or none of type character.
Furthermore, if two routines reference the same
named common containing character data,
association of character variables of different length
isnotallowed. Two variables are said to be associated
if they refer to the same actual storage.

The size of a common block is equal to the number
of bytes of storage required to hold all elements in
that common block. If the same named common
block is referenced by several distinct routines the
size must be the same in all routines.

5-13

EXTERNAL Statement

5-14

An EXTERNAL statement is used to identify a
user-defined name as an external subroutine or
function. The form of an EXTERNAL statement is:

EXTERNAL name [,name]...

name is the name of an external subroutine or
function.

Appearance of a name in an EXTERNAL statement
declares that name to be an external procedure.
Statement function names cannot appear in an
EXTERNAL statement. If an intrinsic function
name appears in an EXTERNAL statement, then
that name becomes the name of an external
procedure, and the corresponding intrinsic function
can no longer be called from that routine. A
user-name can only appear once in an EXTERNAL
statement.

INTRINSIC Statement

An INTRINSIC statement is used to declare that a
user-name is an intrinsic function. The form of an
INTRINSIC statement is:

INTRINSIC rame [,name]...
name is an intrinsic function name.

Each user-name may only appear once in an
INTRINSIC statement. If a name appears in an
INTRINSIC statement, it cannot appear in an
EXTERNAL statement. All names used in an
INTRINSIC statement must be system-defined
INTRINSIC functions. For a list of these functions,
see Chapter 12.

5-15

SAVE Statement

5-16

A SAVE statement is used to retain the definition of a
common block after the return from a procedure
that defines that common block. Within a
subroutine or function, a common block that has
been specified ina SAVE statementdoes not become
undefined upon exit from the subroutine or
function. The form of a SAVE statement is:

SAVE /name/ [,/namel]...
... where name is the name of a common block.

Note: In UCSD p-System FORTRAN 77 all
common blocks are statically allocated, so the
SAVE statement is not necessary. Common
blocks are never disposed on exiting a
procedure. The SAVE statement is
implemented here for the sake of program
portability.

EQUIVALENCE Statement

An EQUIVALENCE statement is used to specify
that two or more variables or arrays are to share the
same storage. If the shared variables are of different
types, the EQUIVALENCE does not cause any kind
of automatic type conversion. The form of an
EQUIVALENCE statement is:

EQUIVALENCE (n/ist) [, (nlist)]...

... where nlist is a list of at least two variable
names, array names, or array element names.
Argument names may not appear in an
EQUIVALENCE statement. Subscripts must
be integer constants and must be within the
bounds of the array they index.

An EQUIVALENCE statement specifies that the
storage sequences of the elements that appear in the
list n/ist have the same first storage location. Two or
more variables are said to be associated if they refer
to the same actual storage. Thus, an
EQUIVALENCE statement causes its list of
variables to become associated. An element of type
character can only be associated with another
element of type character with the same length. Ifan
array name appears in an EQUIVALENCE
statement, it refers to the first element of the array.

5-17

[
-
m
(1}
o
-
=
=
]
(]

Restrictions on EQUIVALENCE Statements

An EQUIVALENCE statement cannot specify that
the same storage location is to appear more than
once, such as:

REAL R,S(10)
EQUIVALENCE (R,S(1)),(R,S(5))

... which forces the variable R to appear in two
distinct memory locations. Furthermore, an
EQUIVALENCE statement cannot specify that
consecutive array elements are not stored in
sequential order. For example:

REAL R(10),5(10)
EQUIVALENCE (R(1),5(1)),(R(5),5(6))

... is not allowed.

When EQUIVALENCE statements and COMMON
statements are used together, several further
restrictions apply. An EQUIVALENCE statement
cannot cause storage in two different common
blocks to become equivalenced. An
EQUIVALENCE statement can extend a common
block by adding storage elements following the

common block, but not preceding the common
block.

Example: COMMON /ABCDE/ R(10)
REAL S(10)
EQUIVALENGE (R(1),S(10))

... is not allowed because it extends the common
block by adding storage preceding the start of the
block.

5-18

CHAPTER 6. DATA STATEMENT

6-2

The DATA statement is used to assign initial values
to variables. A DATA statement is a non-executable
statement. If present, it must appear after all
specification statements and prior to any statement
function statements or executable statements. The
form of a DATA statement is:

DATA nlist | clist |[[,] nlist | clist /]...

nlist is a list of variable, array element, or array
names.

clist is a list of constants or constants preceded
by an integer constant repeat factor and an
asterisk, such as:

5*3.14159 3*’HELP’ 100*0

A repeat factor followed by a constant is the
equivalent of a list all of constants of that
constant’s value repeated a number of times
equal to the repeat constant.

There must be the same number of values in each
clist as there are variables or array elements in the
corresponding n/ist. The appearance of anarrayinan
nlist is the equivalent to a list of all elements in that
array in storage sequence order. Array elements
must be indexed only by constant subscripts.

The type of each non-character element in a c/ist
must be the same as the type of the corresponding
variable or array element in the accompanying n/ist.
Each character element in a c/Zst must correspond to
a character variable or array element in the #/s¢, and
must have a length that is less than or equal to the
length of that variable or array element. If the length
of the constantis shorter, itis extended to the length
of the variable by adding blank characters to the
right. Note that a single character constant cannot
be used to define more than one variable or even
more than one array element.

Onlylocal variablesand array elements can appearin
a DATA statement. Formal arguments, variables in
common, and function names cannot be assigned
initial values with a DATA statement.

=
-]
b
@
-
=
=)

6-3

6-4

NOTES

CHAPTER 7. EXPRESSIONS

Contents

Arithmetic Expressions
Arithmetic Operators
Integer Division
Type Conversions and Result types

of Arithmetic Operators 7-5
Character Expressions 7-6
Relational Expressions 7-6
Relational Operators 7-7
Logical Expressions 7-8
Logical Operators 7-8
Precedence of Operators 7-9
Relative Precedence of Operator

Classesovviviiiiiiiniiienannns 7-9
Evaluation Rules and Restrictions

for Expressions 7-10

7-1

7-2

NOTES

This chapter describes the four classes of
expressions found in the FORTRAN language.

They are:

1) Arithmetic Expressions
2) Character Expressions

3) Relational Expressions
4) Logical Expressions

Arithmetic Expressions

An arithmetic expression produes a value which is
either of type integer or of type real. The simplest
forms of arithmetic expressions are:

Unsigned integer or real constant.
Integer or real variable reference.
Integer or real array element reference.

Integer or real function reference.

The value of a variable reference or array element
reference must be defined for it to appear in an
arithmetic expression. Moreover, the value of an
integer variable must be defined with an arithmetic
value, rather than a statement label value previously
set in an ASSIGN statement.

Other arithmetic expressions are built up from the
above simple forms using parentheses and these
arithmetic operators:

Arithmetic Operators

Operation Precedence

** Exponentiation Highest

/ Division
Intermediate

* Multiplication

- Subtraction/Negation

Lowest
+ Addition/Identity

All of the operators are binary operators, appearing
between their arithmetic expression operands. The
+ and - may also be unary, preceding their operand.
Operations of equal precedence are left-associative
except exponentiation which is right-associative.
Thus, A/ B * Cis the same as (A/ B) * C and

A ** B** Cis the same as A ** (B ** C). Arithmetic
expressions may be formed in the usual algebraic
sense, as in most programming languages, except
that FORTRAN prohibits two operators from
appearing consecutively. Thus, A **- B is
prohibited, although A ** (-B) is permissible. Note
that unary minus is also of lowest precedence so that
- A* Bisinterpretedas- (A * B). Parentheses may be
used in a program to control the associativity and the
order of operator evaluation in an expression.

Integer Division

The division of two integers results in a value which
is the quotient of the two values, truncated toward 0.
Thus, 7 / 3 evaluates to 2, (-7) / 3 evaluates to -2,
9 /10 evaluates to 0 and 9 / (-10) evaluates to O.

Type Conversions and Result Types of
Arithmetic Operators

Arithmetic expressions may involve operations
between operands which are of different type. The
general rules for determining type conversions and
the result type for an arithmetic expression are:

An operation between two integers resultsin an
expression of type integer.

An operation between two reals results in an
expression of type real.

For any operator except **, an operation
between a real and an integer converts the
integer to type real and performs the operation,
resulting in an expression of type real.

For the operator **, a real raised to an integer
power is computed without conversion of the
integer, and results in an expression of type
real. An integer raised to a real power is
converted to type real and the operation results
in an expression of type real. Note that for
integer [and negative integerJ, I ** Jis the same
as 1/ (I** IABS(J)) which is subject to the rules
of integer division so, for example, 2 ** (-4) is
1/ 16 which is 0.

Unary operators result in the same type as their
operand type.

7-5

The type which results from the evaluation of an
arithmetic operator is not dependent on the context
in which the operation is specified. For example,
evaluation of an integer plus a real results in a real
even if the value obtained is to be immediately
assigned into an integer variable.

Character Expressions

A character expression produces a value which is of
type character. The forms of character expressions
are:

® Character constant.

® Character variable reference.

® Character array element reference.

® Any character expression enclosed in
parentheses.

There are no operators which result in character
expressions.

Relational Expressions

Relational expressions are used to compare the
values of two arithmetic expressions or two
character expressions. It is not allowed to compare
anarithmetic value with a character value. The result
of a relational expression is of type logical.

Relational Operators

Relational expressions may use any of these
operators to compare values:

Operator Representing Operation

.LT. Less than

.LE. Less than or equal to
.EQ. Equal to

.NE. Not equal to

.GT. - Greater than

.GE. Greater than or equal to

All of the operators are binary operators, appearing
between their operands. There is no relative
precedence or associativity among the relational
operands since an expression of the form

A .LT. B.NE. Cviolates the type rules for operands.
Relational expressions may only appear within
logical expressions.

Relational expressions with arithmetic operands
may have an operand of type integer and one of type
real. In this case, the integer operand is converted to
type real before the relational expression is
evaluated.

Relational expressions with character operands
compare the position of their operands in the ASCII
collating sequence. An operand is less than another
if it appears earlier in the collating sequence, etc. If
operands of unequal length are compared, the
shorter operand is considered as if it were blank
extended to the length of the longer operand.

7-7

Logical Expressions

A logical expression produces a value which is of
type logical. The simplest forms of logical
expressions are:

® Logical constant.

® Logical variable reference.

® Logical array element reference.

® Logical function reference.

® Relational expression.

Other logical expressions are built up from the

above simple forms using parentheses and these
logical operators:

Logical Operators

Operation Precedence
.NOT. Negation Highest
.AND. Conjunction Intermediate
.OR. Inclusive Lowest

disjunction

The .AND. and .OR. operatorsare binary operators,
appearing between their logical expression
operands. The .NOT. operator is unary, preceding
its operand. Operations of equal precedence are
left-associative so, for example,

A .AND. B .AND. C is equivalent to (A .AND. B)
.AND. C. As an example of the precedence rules,
.NOT. A.OR. B.AND. Cis interpreted the same as
(.NOT. A) .OR. (B .AND. C). It is not permitted to
have two .NOT. operators adjacent to each other,
although A .AND. .NOT. B is an example of an
allowable expression with two operators being
adjacent.

The meaning of the logical operators is their
standard semantics, with .OR. being
“nonexclusive”’; that is, . TRUE. .OR. .TRUE.
evaluates to the value .TRUE..

Precedence of Operators
When arithmetic, relational, and logical operators

appear in the same expression, their relative
precedences are:

Relative Precedence of Operator Classes
Operator Precedence
Arithmetic Highest

Relational Intermediate

Logical Lowest

Evaluation Rules and Restrictions
for Expressions

7-10

Any variable, array element, or function referenced
in an expression must be defined at the time of the
reference. Integer variables must be defined with an
arithmetic value, rather than a statement label value
as set by an ASSIGN statement.

Certain arithmetic operations are prohibited if they
cannot be evaluated (e.g., dividing by zero). Other
prohibited operations are raising a zero valued
operand to a zero or negative power and raising a
negative valued operand to a power of type real.

CHAPTER 8. ASSIGNMENT
STATEMENTS

Contents >
&

Computational Assignment F
Statementseieiienenan.. =

Type Conversion for Arithmetic 4
Assignmentsooiiaa. ;

»

8-2

NOTES

Anassighmentstatementisused to assignavaluetoa
variable or an array element. There are two basic
kinds of assighment statements: computational
assignment statements, and label assignment
statements.

Computational Assignment
Statements

The form of a computational assignment statement
is:

var = expr
var is a variable or array element name, and
expr is an expression.

Execution of a computational assighment statement
evaluates the expression and assigns the resulting
value to the variable or array element appearing on
the left. The type of the variable orarray elementand
the expression must be compatible. They must both
be either numeric, logical, or character, in which
case the assignment statement is called an
arithmetic, logical, or character assignment
statement.

If the type of the elements of an arithmetic
assignment statement are not identical, automatic
conversion of the value of the expression to the type
of the variable is done. The following table gives the
conversion rules:

8-3

Type Conversion for Arithmetic Assignments

8-4

Type of Type of expression

variable or

arrayelement integer real
integer expr INT(expr)
real REAL(expr) expr

If the length of the expression does not match the
size of the variable in a character assignment
statement, it is adjusted so that it does. If the
expression is shorter, it is padded with enough
blanks on the right to make the sizes equal before the
assignment takes place. If the expression is longer,
characters on the right are truncated to make the
sizes the same.

Label Assignment Statement

The label assignment statement is used to assign the
value of a format or statement label to an integer
variable. The form of the statement is:

ASSIGN /label TO var
label is a format label or statement label, and
var is an integer variable.

Execution of an ASSIGN statement sets the integer
variable to the value of the label. The /zbe/ can be
either aformatlabel or a statementlabel, and it must
appear in the same routine as the ASSIGN
statement. When used in an assigned GOTO
statement, a variable must currently have the value
of a statement label. When used as a format specifier
inan I/O statement, a variable must have the value of
aformat statement label. The ASSIGN statement is
the only way to assign the value of a label to a
variable.

>
(]
@«
(1]
=
«
-
=
=
-
(7]

8-6

NOTES

CHAPTER 9. CONTROL
STATEMENTS

Contents

Unconditional GOTO
Computed GOTO
Assigned GOTO
ArithmeticIF
Logical IF,
Block IFTHEN ELSE
Block IFo
ELSEIF

DO

(1]
-]
=
-
«»
—-—f
=
=
o
[

STOP ..

9-2

NOTES

Control statements are used to control the order of
execution of statements in the FORTRAN
language. This chapter describes the following
control statements:

® Unconditional GOTO.
® Computed GOTO.

® Assigned GOTO.

® Arithmetic IF.

® Logical IF.

® Block IF THEN ELSE.

o
-
=
® Block IF. ;
=
® ELSEIF. =
P
® ELSE.
® ENDIF.
e DO.

® CONTINUE.

® STOP.
® PAUSE.
® END.

The two remaining statements which control the
order of execution of statements are the CALL
statement and the RETURN statement, both of
which are described in Chapter 12.

9-3

Unconditional GOTO

The syntax for an unconditional GOTO statement
is:

GOTO+s

... where s is a statement label of an executable
statement that is found in the same routine as the
GOTO statement. The effect of executinga GOTO
statement is that the next statement executed is the
statement labeled s. Itis notlegal to jump into a DO,
IF, ELSEIF, or ELSE block from outside the block
(see the various sections for an explanation of the
kinds of blocks).

Computed GOTO

The syntax for a computed GOTO statement is:
GOTO (s [, 5] ...)L,) 7

... where 7 is an integer expression and eachsis a
statement label of an executable statement that is
found in the same routine as the computed GOTO
statement. The same statement label may appear
repeatedly in the list of labels. The effect of the
computed GOTO statement can be explained as
follows: Suppose that there are n labels in the list of
labels. If 7/ < 1 or7 > n then the computed GOTO
statement acts as if it were a CONTINUE statement,
otherwise, the next statement executed will be the
statement labeled by thesth label in the list of labels.
It is not allowed to jump into a DO, IF, ELSEIF, or
ELSE block from outside the block (see the various
sections for an explanation of the kinds of blocks).

(1]
—f
=
-
(-]
-]
=
=
-]
(7]

Note: Computed GOTOs are often used to
implement a CASE construct.

Assigned GOTO

9-6

The syntax for an assigned GOTO statement is:
GOTO/[[,] ([, 4] --.)]

... where 7 is an integer variable name and each s is a
statement label of an executable statement that is
found in the same routine as the assigned GOTO
statement. The same statement label may appear
repeatedly in the list of labels. When the assigned
GOTO statement is executed, 7 must have been
assigned the label of an executable statement that is
found in the same routine as the assighed GOTO
statement. The effect of the statement is that the
next statement executed will be the statement
labelled by the label last assigned to 7. If the optional
list of labels is present, a runtime error is generated if
the label last assigned to 7 is not among those listed.
Itisnotlegal to jump into a DO, IF, ELSEIF, or ELSE
block from outside the block (see the various
sections for an explanation of the kinds of blocks).

Arithmetic IF

The syntax for an arithmetic IF statement is:
IF (¢) 51, 52, 53

... where e is an integer or real expression and each
of 51, 52, and 53 are statement labels of executable
statements found in the same routine as the
arithmetic IF statement. The same statement label
may appear more than once among the three labels.
The effect of the statement is to evaluate the
expression and then select a label based on the value
of the expression. Label 57 is selected if the value
of e isless than 0, 52 is selected if the value of ¢ equals
0, and 53 is selected if the value of ¢ exceeds 0. The
next statement executed will be the statement
labeled by the selected label. It is not legal to jump
into a DO, IF, ELSEIF, or ELSE block from outside
the block (see the various sections for an
explanation of the kinds of blocks).

(1]
-
=
-
(7]
-]
=
=
-
(7]

9-7

Logical IF

The syntax for a logical IF statement is:
IF () st

... where e is a logical expression and s¢ is any
executable statement except a DO, block IF,
ELSEIF, ELSE, ENDIF, END, or another logical IF
statement. The statement causes the logical
expression to be evaluated and, if the value of that
expression is . TRUE., then the statement, s¢, is
executed. Should the expression evaluate to
.FALSE., the statement s¢ is not executed and the
execution sequence continues as if a CONTINUE
statement had been encountered.

Block IF THEN ELSE

Block IF, ELSEIF, ELSE, and ENDIF are described
in this chapter. These statements are new to
FORTRAN 77 and can be used to dramatically
improve the readability of FORTRAN programsand
to cut down the number of GOTOs of the various
forms. As an overview of these sections, the
following three code skeletons illustrate the basic
concepts:

Skeleton 1 - Simple Block IF which skips a group of
statements if the expression is false:

(1]
=1
=
-
(-]
-
=
=
-y
(7]

IF(LLT.10)THEN

Some statements executed
only if I.LT.10

ENDIF

9-9

Block IF THEN ELSE

9-10

Skeleton 2 - Block IF with a Series of ELSEIF
statements:

IF(J.6T.1000) THEN

Some statements executed
only if J.GT.1000

ELSEIF(J.GT.100) THEN

Some statements executed
only if J.GT.100 and
. J.LE. 1000
ELSEIF(J.GT.10)THEN

Some statements executed
only if J.GT.10 and
J.LE.1000 and J.LE.100

ELSE
Some statements executed
only if none of the ahove
. conditions were true
ENDIF

Block IF THEN ELSE

Skeleton 3 - Illustrates that the constructs can be
nested and that an ELSE statement can follow a
block IF without intervening ELSEIF statements
(indentation solely to enhance readability):

IF(LLT.100)THEN

Some statements executed
only if LLT.100

IF(J.LT.10)THEN

Some statements executed
only if L.LT.100
. and J.LT.10
ENDIF

Some statements executed
only if LLT.100

(1]
-y
=
P
(]
-
=
=
-]
»

ELSEIF(I.LT.1000) THEN

Some statements executed
only if .GE.100 and
1.LT.1000

IF(J.LT.10)THEN

Some statements executed
only if L.GE.100
. and L.LT.1000 and J.LT.10
ENDIF

Some statements executed
only if .GE.100 and

. I.LT.1000

ENDIF

9-11

Block IF THEN ELSE

9-12

In order to understand, in detail, the block IF and
associated statements, the concept of an IF-level is
introduced. For any statement, its IF-level is

nt - n2

... where nl is the number of block IF statements
from the beginning of the program unit that the
statement is in, up to and including that statement,
and n2 is the number of ENDIF statements from the
beginning of the program unit up to, but not
including, that statement. The IF-level of every
statement must be greater than or equal to 0 and the
IF-level of every block IF, ELSEIF, ELSE, and
ENDIF must be greater than 0. Finally, the IF-level
of every END statement must be 0. The IF-level will
be used to define the nesting rules for the block IF
and associated statements and to define the extent of
IF blocks, ELSEIF blocks, and ELSE blocks.

Block IF

The syntax for a block IF statement is:
IF (¢) THEN

... wheree is a logical expression. The IF block
associated with this block IF statement consists of all
of the executable statements (possibly none) that
appear following this statement up to, but not
including, the next ELSEIF, ELSE, or ENDIF
statement that has the same IF-level as this block IF
statement (the IF-level defines the notion of
“matching” ELSEIF, ELSE, or ENDIF). Executing
the block IF statement first causes the expression to
be evaluated. If it evaluates to . TRUE. and there isat
least one statement in the IF block, the next
statement executed is the first statement of the IF
block. Following the execution of the last statement
in the IF block, the next statement to be executed is
the next ENDIF statement at the same IF-level as
this block IF statement. If the expression in this
block IF statement evaluates to . TRUE. and the IF
block has no executable statements, the next
statement executed is the next ENDIF statement at
the same IF level as the block IF statement. If the
expression evaluates to .FALSE., the next statement
executed is the next ELSEIF, ELSE, or ENDIF
statement that has the same IF-level as the block IF
statement. Note that transfer of control into an IF
block from outside that block is not allowed.

9-13

ELSEIF

9-14

The syntax of an ELSEIF statement is:
ELSEIF (¢) THEN

... where e is a logical expression. The ELSEIF block
associated with an ELSEIF statement consists of all
of the executable statements, possibly none, that
follow the ELSEIF statement up to, but not
including, the next ELSEIF, ELSE, or ENDIF
statement that has the same IF-level as this ELSEIF
statement. The execution of an ELSEIF statement
begins by evaluating the expression. If its value is
.TRUE. and there is at least one statement in the
ELSEIF block, the next statement executed is the
first statement of the ELSEIF block. Following the
execution of the last statement in the ELSEIF block,
the next statement to be executed will be the next
ENDIF statementat the same IF-level as this ELSEIF
statement. If the expression in this ELSEIF
statement evaluates to . TRUE. and the ELSEIF
block has no executable statements, the next
statement executed is the next ENDIF statement at
the same IF level as the ELSEIF statement. If the
expression evaluates to .FALSE., the next statement
executed is the next ELSEIF, ELSE, or ENDIF
statement that has the same IF-level as the ELSEIF
statement. Note that transfer of control into an
ELSEIF block from outside that block is notallowed.

ELSE

The syntax of an ELSE statement is:
ELSE

The ELSE block associated with an ELSE statement
consists of all of the executable statements (possibly
none) that follow the ELSE statement up to, but
not including, the next ENDIF statement that has
the same IF-level as this ELSE statement. The
“matching” ENDIF statement must appear before
any intervening ELSE or ELSEIF statements of the
same IF-level. Note that transfer of control into an
ELSE block from outside that block is not allowed.

9-15

(1]
-f
=
-
(]
-
=
=
—f
(7]

ENDIF

9-16

The syntax of an ENDIF statement is:
ENDIF

There is no effect of executing an ENDIF statement.
An ENDIF statement is required to “match” every
block IF statement in a program unit in order to
specify which statements are in a particular block IF
statement.

DO

The syntax of a DO statement is:
DO s [,] 7=e1, e2 [, €3]

... where s is a statement label of an executable
statement. The label must follow this DO statement
and be contained in the same program unit. In the
DO statement, 7 is an integer variable, and e7,

e2, and e3 are integer expressions. The statement
labeled by s is called the terminal statement of the
DO loop. It must not be an unconditional GOTO,
assigned GOTO, arithmetic IF, block IF, ELSEIF,
ELSE, ENDIF, RETURN, STOP, END, or DO
statement. If the terminal statement is a logical IF
it may contain any executable statement except
those not permitted inside a logical IF statement.
(For safety’s sake, the statement labeled s is oftena
CONTINUE statement.)

A DO loop is said to have a “range”, beginning with
the statement which follows the DO statement and
ending with (and including) the terminal statement
of the DO loop. If a DO statement appears in the
range of another DO loop, its range must be entirely
contained within the range of the enclosing DO
loop, although the loops may share a terminal
statement (not recommended). If a DO statement
appears within an IF block, ELSEIF block, or ELSE
block, the range of the associated DO loop must be
entirely contained in the particular block. If a block
IF statement appears within the range of a DO loop,
its associated ENDIF statement must also appear
within the range of that DO loop. The DO variable 7,

9-17

(1]
i
=
F
(-]
-
=
=
e’
(7]

DO

9-18

may not be set by the program within the range of
the DO loop associated with it. It is not allowed to
jump into the range of a DO loop from outside its
range.

The execution of a DO statement causes the
following steps to happen in order:

The expressions el, €2, and e3 are evaluated. If
¢3 is not present, e3 defaults to 1 (¢3 must not
evaluate to 0).

The DO variable, 7, is set to the value ofe?.

The iteration count for the loop is computed to
be MAXO(((¢2 - e1 +¢3)/e3),0) which may be
zero (Note: unlike FORTRAN 66) if either

el >e2ande3 >0, orel <e2ande3 <O0.

The iteration count is tested, and if it exceeds
zero, the statements in the range of the DO loop
are executed.

Following the execution of the terminal statement
of a DO loop, the following steps occur in order:

The value of the DO variable, 7, isincremented
by the value of e3 which was computed when
the DO statement was executed.

The iteration count is decremented by one.
The iteration count is tested, and if it exceeds

zero, the statements in the range of the DO loop
are executed again.

DO

The value of the DO variable is well-defined after

execution of the loop, regardless of whether the DO
loop exits asa result of the iteration countbecoming
zero, as the result of a transfer of control out of the
DO loop, or as the result of a RETURN statement.

Example of the final value of a DO variable:

C This program fragment

C prints the numbers

C 1to 11 on the CONSOLE:
DO 200 1=1,10
200 WRITE(*’,(15)")1

WRITE(*’,(15))1

(1]
-
=
F
[]
-
=
=
-
(7]

9-19

CONTINUE

9-20

The syntax of a CONTINUE statement is:
CONTINUE

There is no effect associated with execution of a
CONTINUE statement. The primary use for the
CONTINUE statement is a convenient statement to
label, particularly as the terminal statement in a DO
loop.

STOP

The syntax of an STOP statement is:
STOP [#]

... where 7 is either a character constant or a string of
not more than 5 digits. The effect of executing a
STOP statement is to cause the program to
terminate. The argument, 7, if present, is displayed
on CONSOLE: upon termination.

(1]
-
=
F
(]
-
=
=
-
(-]

9-21

PAUSE

9-22

The syntax of an PAUSE statement is:
PAUSE [#]

... where 7 is either a character constant or a string of
not more than 5 digits. The effect of executing a
PAUSE statement is to cause the program to be
suspended pending an indication from the
CONSOLE: that it is to continue. The argument, 7,
if present, is displayed on the CONSOLE: as part of
the prompt requesting input from the CONSOLE:.
If the indication from the CONSOLE: is received to
continue execution of the program, execution
resumes as if a CONTINUE statement had been
executed.

END

The syntax of an END statement is:
END

Unlike other statements, an END statement must
wholly appear on an initial line and contain no
continuation lines. No other FORTRAN statement,
such as the ENDIF statement, may have an initial
line which appears to be an END statement. The
effect of executing the END statement in a
subprogram is the same as execution of a RETURN
statement and the effect in the main program is to
terminate execution of the program. The END
statement must appear as the last statement in every
routine.

(x]
—f
=
F
(]
e
=
=
o’
(7]

9-23

NOTES

9-24

CHAPTER 10. I/0 SYSTEM

Contents

I/O System Overview 10-4
Records «ovvviiiiiiii i 10-4
Files oot 10-5
File Properties 10-5
Internal Files 10-8
Units .ovtiiiin ittt 10-9
I/O System Concepts and

Limitationsccciiiiian. 10-10
FORTRAN I/O System 10-10
Example Program Illustrating Most

Common I/O Operations 10-11
Use of Less Common File

Operationscceveeeevnnnnn. 10-12
Limitations of the FORTRAN I/O

System 10-13
I/O Statementscovvivneeennnn 10-15
Elements of I/O Statements 10-15
Statementscoiiiiiiiiiennenn. 10-18
Restrictions on Functions 10-29

10-1

NOTES

10-2

Chapters 10 and 11 of this manual describe the
FORTRAN I/O System. Chapter 10 describes the
basic FORTRAN I/O concepts and statements and
Chapter 11 describes the FORMAT statement. The
four major Sections of these chapters are:

1) I/O System Overview - Provides an overview of
the FORTRAN file System. Defines the basic
concepts of I/O records, I/O units, and the
various kinds of file access available under the
System.

2) General Discussion of I/O System Concepts
and Limitations - The definitions made in I/O
System Overview are related to how to
accomplish various simple, as well as complex,
tasks using the I/O System. There is a general
discussion of I/O System limitations.

3) I/O Statements - The statements of the I/O
System are presented with the exception of the
FORMAT statement.

4) Formatted I/O and the FORMAT Statement -
The FORMAT statement and formats in
general are described.

=
(—]
()
-
«n
-
™m
=

Note: The reader is directed to I/O System
Concepts and Limitations for a brief discussion
of the most commonly used forms of files and
I/O statements, and a complete sample

program illustrating the most commonly used
forms of I/O.

10-3

I/O System Overview

Records

10-4

In order to fully understand the I/O statements, it is
necessary to be familiar with a variety of terms and
concepts related to the structure of the FORTRAN
I/O System. Most I/O tasks can be accomplished
without a complete understanding of this material
and the reader is encouraged to skip to General
I/O System Concepts and Limitations on first
reading and subsequently use I/O System Overview
primarily for reference.

The building block of the FORTRAN file system is
the Record. A Record isasequence of charactersora
sequence of values. There are three kinds of records:

1) Formatted.
2) Unformatted.

3) Endfile.

A formatted record is a sequence of characters
terminated by the character value which
corresponds to the <return> key on a terminal
(character value 13). Formatted records are
processed on input consistent with the way that the
Operating System and Text Editor process
characters. Thus, reading characters from formatted
records in FORTRAN is identical to reading
characters in other System programs and other
languages on the System. Formatted files are
normally transportable between different
P-machine interpreters.

An unformatted record is a sequence of values, with
no System alteration or processing; no physical
representation for the end of record exists.

Unformatted files generated on different processors
are not generally interchangeable, since the internal
representations of integers and reals differ among
the various interpreters.

The System makes it appear as though an endfile
record exists after the last record in a file, although
no physical endfile mark ever exists.

Files

A FORTRAN file is a sequence of records.
FORTRAN files are one of two kinds:

® External.
® Internal.

An external FORTRAN file is a file on a device, or
the device itself. An internal FORTRAN file is a
character variable which serves as the source or
destination of some I/O action. From this point on,
both FORTRAN files and the notion of a file as
known to the Operating System and the Editor will
be referred to simply as files, with the context
determining which meaning is intended. (The
OPEN statement provides the linkage between the
two notions of files, and in most cases the ambiguity
disappears, since after a file has been opened, the
two notions are one and the same.)

<
(—}
(/]
-<
]
-]
m
=

File Properties

A file which is being acted upon by a FORTRAN
program has a variety of properties. These
properties are described in File Position and
Sequential and Direct Access Properties in this
chapter.

10-5

10-6

File Name

A file may have a name. If present, a name is a
character string identical to the name by which it is
known to the Filer. There may be more than one
name for the same file, such as SYS:A. TEXT and
#4:A. TEXT.

File Position

A file has a position property which is usually set by
the previous I/O operation. There is a notion of the
initial point in the file, the terminal point in the file,
the current record, the preceding record, and the
next record of the file. It is possible to be between
records in a file, in which case the next record is the
successor to the previous record and there is no
current record. The file position after sequential
writes is at the end of file, but not beyond the endfile
record. Execution of the ENDFILE statement
positions the file beyond the endfile record, asdoesa
read statement executed at the end of file (but not
beyond the endfile record). Reading an endfile
record may be trapped by the user using the
END= option in a READ statement.

Formatted and Unformatted Files

An external file is opened as either formatted or
unformatted. All internal files are formatted. Files
which are formatted consist entirely of formatted
records and files which are unformatted consist
entirely of unformatted records. Files which are
formatted obey all the structural rules of . TEXT
files, so that they are compatible with the System
Text Editor.

Sequential and Direct Access Properties

An external file is opened as either sequential or
direct. Sequential files contain records with an order
property determined by the order in which the
records were written (the normal sequential order).
These files must not be read or written using the
REC= option which specifies a position for direct
access I/0O. The System will attempt to extend
sequential access files if a record is written beyond
the old terminating boundary of the file, but the
success of this depends on the existence of room on
the physical device at the appropriate location.

Directaccessfiles maybe read or written inany order
(they are random access files). Records in a direct
access file are numbered sequentially, with the first
record numbered one. All records in a direct access
file have the same length, which is specified at the
time the file is opened. Each record in the file is
uniquely identified by its record number, which was
specified when the record was written. It is entirely
possible to write the records out of order, including,
for example, writing record 9, 5,and 11 in that order
without the records in between. It is not possible to
delete a record once written, but it is possible to
overwrite a record with a new value. It is an error to
read a record from a direct access file which has not
been written, but the System will not detect this
error unless the record which is being read is beyond
the last record written in the file (a non-written
record before the end-of-file contains garbage).
Direct access files must reside on block-structured
peripheral devices such as the diskette, so that it is
meaningful to specify a position in the file and
reference it. The System will attempt to extend
direct access files if an attempt is made to write to a
position beyond the previous terminating boundary
of the file, but the success of this depends on the
existence of room on the physical device at the
appropriate location.

10-7

<
(—]
()
-<
(]
-
m
=

Intemai Files

10-8

Internal files provide a mechanism for using the
formatting capabilities of the I/O System to convert
values to and from their external character
representations, within the FORTRAN internal
storage structures. That is, reading a character
variable converts the character values into numeric,
logical, or character values and writing into a
character variable allows values to be converted into
their (external) character representation.

Special Properties of Internal Files

An internal file is a character variable or character
array element. The file has exactly one record, which
has the same length as.the character variable or
character array element. Should less than the entire
record be written by a WRITE statement, the
remaining portion of the record is filled with blanks.
The file position is always at the beginning of the file
prior to I/O statement execution. Only formatted,
sequential I/O is permitted with internal files, and
only the I/O statements READ and WRITE may
specify an internal file.

Units

A unitisameansof referring toafile. A unitspecified
in an I/O statement is one of:

External unit specifier/
Internal file specifier

External unit specifiers are either integer
expressions which evaluate to non-negative values,
or the character *, which stands for the CONSOLE:
device. In most cases, external unit specifier values
are bound to physical devices (or files resident on
those devices) by name (using the OPEN statement).
Once this binding of value to System file name
occurs, FORTRAN I/O statements refer to the unit
number as a means of referring to the appropriate
external entity. Once opened, the external unit
specifier value is uniquely associated with a
particular external entity until an explicit CLOSE
occurs or until the program terminates. The only
exception to the above binding rules is that the unit
value O is initially associated with the CONSOLE:
device for reading and writing and no explicit OPEN
is necessary. The character * is interpreted by the
System as specifying unit 0.

<
(—]
(]
-<
(]
-4
m
=

An internal file specifier is a character variable or
character array element which directly specifies an
internal file.

10-9

I/O System Concepts and
Limitations

FORTRAN I/O System

10-10

FORTRAN provides a rich combination of possible
file structures. Choosing from among these many
structures may at first seem somewhat confusing.
However, two kinds of files will suffice for most
applications.

* - CONSOLE:, a sequential, formatted file,
also known as unit 0 - This particular unit has
the special property that an entire line is
terminated by the <return> key (which must be
entered when reading from it), and the various
backspace and line delete keys familiar to the
System user serve their normal functions. Note
that a READ from any other unit will not have

these properties, even if that unit is bound to
CONSOLE: by an explicit OPEN statement.

Explicitly opened external, sequential,
formatted files - These files are bound to a
System file by name in an OPEN statement.
They canbe read and written in the System Text
Editor format.

Example Program Illustrating Most Common
I/O Operations

Here is a sample program which uses the kinds of
files discussed in the previous paragraphs for reading
and writing. The various I/O statements are

explained in detail in I/O Statements in this chapter.

Copy a file with three
columns of integers, each 7
columns wide, from a file
whose name is input by the
user to another file names
OUT.TEXT, reversing the
positions of the first
and second column.
PROGRAM COLSWP
CHARACTER*23 FNAME
Prompt to the CONSOLE:
by writing to *
WRITE(*,900)
900 FORMAT('Input file name - ’\)
C Read the file name from
C the CONSOLE: by reading from *
READ(*,910) FNAME
910 FORMAT(A)
C Use unit 3 for input, any unit
C number except 0 will do
OPEN(3,FILE=FNAME)

C Use unit 4 for output, any unit
C number except 0 and 3 will do
OPEN(4,FILE="OUT.TEXT,

1 STATUS=NEW)
C Read and write until end of file
100 READ(3,920,END=200)I1,J.K
WRITE(4,920)J,1,K
920 FORMAT(317)
GOTO 100
200 WRITE(*,910)’Done’
END

(TN TN NN N N

[1]

]
(—]
(]
-
(]
-
m
=

10-11

Use of Less Common File Operations

10-12

The less commonly used file structures are
appropriate for certain classes of applications. A
very general indication of the intended usages for
them are as follows: if the I/O is to be random
access, such as in maintaining a database, direct
access filesare probably necessary. If the data is to be
written by FORTRAN and reread by FORTRAN (on
the same brand of processor), unformatted files are
more efficientboth in file space and in I/O overhead.
The combination of direct and unformatted is ideal
for a database to be created, maintained, and
accessed exclusively by FORTRAN. If the data must
be transferred without any System interference,
especially ifall 256 possible bytes will be transferred,
unformatted I/O will be necessary, since . TEXT files
are constrained to contain only the printable
character set as data. An example of a usage of
unformatted I/O would be in the control of a device
which has a single byte, binary interface. Formatted
I/O would, in this example, interpret certain
characters, such as the ASCII representation for
carriage return, and fail to pass them through to the
program unaltered. Internal files are not I/O in the
conventional sense but rather provide certain
character string operations and conversions withina
standard mechanism.

Use of formatted directfiles requires special caution.
FORTRAN formatted files attempt to comply with
the Operating System rules for .TEXT files (for a
discussion of .TEXT files, see the Users” Guide).
FORTRAN I/O is able to enforce these rules for
sequential files, but it cannot always enforce them
for direct files. Direct files are not necessarily legal
.TEXT files, since any unwritten records contain
undefined values which do not follow .TEXT file
constraints. Direct files do, of course, obey
FORTRAN I/O rules.

Afile opened in FORTRAN is either “old” or “new”,
but there is no concept of “opened for reading” as
distinguished from “opened for writing”. Therefore,
you may open “old” (existing) files and write to
them, with the effect of modifying existing files.
Similarly, you may alternately write and read to the
same file (providing that one avoids reading beyond
end of file, or reading unwritten records in a direct
files). A write to a sequential file effectively deletes
any records which had existed beyond the freshly
written record. Normally, when a device is opened as
afile (suchas CONSOLE: or PRINTER:) it makes no
difference whether the file is opened as “old” or
“new”’. With diskette files, opening “new” createsa
new temporary file. If that file is closed using the
“keep” option, or if the program is terminated
without doing a CLOSE on thatfile, a permanentfile
is created with the name given when the file was
opened. If a previous file existed with the same
name, it is deleted. If closed using the “delete”
option, the newly created temporary file is deleted,
and any previous file of the same name is left intact.
Opening a diskette file as “old” generates a runtime
error if the file does not exist, and alters the existing
file if it does.

<
(—]
(]
-
(]
-
m
=

Limitations of the FORTRAN I/O System

Direct Files must be Associated with
Blocked Devices

The p-System storage devices are either
block-structured or sequential. Sequential files may
be thought of as streams of characters, with no
explicit action allowed except reading and/or
writing. CONSOLE: and PRINTER: are examples of
sequential devices. Block-structured devices, such as
diskette files, allow the additional operation of
seeking a specific location. They can be accessed
either sequentially or randomly and thus can support

10-13

10-14

direct files. Since there is no notion of seeking a
position on a file which is not block-structured,
FORTRAN I/O does not allow direct file access to
sequential devices.

BACKSPACE only applies to files associated with
blocked devices.

Sequential devices produce a stream of characters.
There is no way to “unread” a character, once it is
read, so FORTRAN I/O disallows backspacing a file
on a sequential device.

BACKSPACE may not be used on unformatted
sequential files

It is not possible to implement BACKSPACE on
unformatted sequential files since there is no
indication in the file itself of the record boundaries.
It would be possible to append end of record marks
to unformatted sequential files, but this would
interfere with the notion of an unformatted file
being a “pure” sequence of values, and would
interfere with the most common usage for such files,
such as the direct control of an external device.
Direct files contain records of fixed and specified
length, so it is possible to backspace direct
unformatted files.

Side Effects of Functions Called inI/O Statements

During the course of executing any I/O statement,
the evaluation of an expression may cause a function
to be called. That function call must not cause any
I/O statement to be executed.

I/O Statements

This Section describes these I/O statements which
are available from FORTRAN:

e OPEN.
® CLOSE.
® READ.
® WRITE.

® BACKSPACE.
® ENDFILE.
® REWIND.

In addition, there is an I/O intrinsic function EOF,
presented in Chapter 12, which returns a logical
value indicating whether the file associated with the
unit specifier passed to it is at end-of-file. A
familiarity with the FORTRAN file system, units,
records, and access methods as described in the
previous Sections is assumed.

<
(—}
()
-<
[(]
-
m
=

Elements of I/O Statements

The various I/O statements take certain parameters
and arguments which specify sources and
destinations of data transfer, as well as other facets of
the I/O operation. The abbreviations used
throughout I/O statements are defined in the
following paragraphs:

10-15

10-16

The Unit Specifier ()

The unit specifier, #, can take one of these forms in
an I/O statement:

1) *- refers to the CONSOLE:.

2) integer expression - refers to external file with
unit number equal to the value of the
expression (* is unit number 0).

3) name of a character variable or character array
element - refers to the internal file which is the
character datum.

The Format Specifier (f)

The format specifier, f, can take one of these forms
in an I/O statement:

statement label - refers to the FORMAT
statement labeled by that label.

integer variable name - refers to the FORMAT
label which that integer variable has been
assigned (using the ASSIGN statement).

character expression - the format which is
specified is the current value of the character
expression provided as the format specifier.

The Input-Output list (70/is5t)

The input-output list, 7/ist, specifies the entities
whose values are transferred by READ and WRITE
statements. An 7olist is a possibly empty list,
separated by commas, of items which consist of:

InputEntities. Aninputentity may be specifiedin
the 70list of a READ statement and is of one of these
forms:

® Variable name.
® Array element name.

® Arrayname - thisisa means of specifying all of
the elements of the array in storage sequence
order.

Output Entities. An output entity may be
specified in the 7o/ist of a WRITE statement, and is
of one of these forms:

® Variable name.
® Array element name.

® Arrayname - thisisa means of specifying all of
the elements of the array in storage sequence
order.

® Any other expression not beginning with the
character (- to distinguish implied DO lists
from expressions.

10-17

Implied DO lists. Implied DO lists may be
specified as items in the I/O list of READ and
WRITE statements, and are of the form:

(dolist, i=el, e2 [, e3])

... where the Zolist is as above (including nested
implied DO lists) and 7 eZ, e2 and the optional e3
are as defined for the DO statement. Thatis, 7 isan
integer variable and eZ, €2, and e3 are integer
expressions. Ina READ statement, the DO variable 7
(or an associated entity) must not appear as an input
list item in the embedded 70/is¢t, but may have been
read in the same READ statement outside of the
implied DO list. The embedded 7o/ist is effectively
repeated for each iteration of 7 with appropriate
substitution of values for the DO variable 7

Statements

10-18

The following I/O statements are supported by
FORTRAN. The possible form for each statement is
specified first, with an explanation of the meanings
for the forms following. Certain items are specified
as required if they mustappear in the statement, and
are specified as optional if they need not appear.
Typically, optional items have defaults. Examples
are provided.

OPEN Statement

OPEN(
4,

Required, must appear as the first argument.
Must not be internal unit specifier.

FILE=fname,

The file name, frame, isacharacter expression.
This argument at OPEN is required and must
appear as the second argument.

The following arguments are all optional, and
may appear in any order. The options are
character constants with optional trailing
blanks (except RECL=). Defaults are indicated.

STATUS="0LD’

Default, for reading or writing existing files.

STATUS="NEW’

For writing new files.
ACCESS—"SEQUENTIAL (Default)
ACCESS—'DIRECT
FORM="FORMATTED’ (Default)

FORM="UNFORMATTED’

10-19

OPEN Statement

10-20

RECL=r/)

The record length, 7/ is an integer expression.
This argument to OPEN is for DIRECT access
files only, for which it is required.

The OPEN statement binds a unit number to an
external device or file on an external device by
specifying its file name. If the file is to be direct, the
RECL=r/ option specifies the length of the records
in that file.

Example program fragment 1:

C Prompt user for a file name
WRITE(*,’(A/))

1 ’Specify output file name-’
Presume that FNAME is specified
to be CHARACTER*23
Read the file name from
the CONSOLE:

READ(*,’(A)’) FNAME
Open the file as formatted
sequential as unit 7, note
that the ACCESS specified
need not have appeared
since it is the defaulit.

(T N N N 7]

[N Ny N N]

OPEN(7, FILE=FNAME,
1 ACCESS="SEQUENTIAL’
2 STATUS="NEW);

Example program fragment 2:

C Open an existing file

C created hy the editor called
C DATA3.TEXT as unit 3
OPEN(3,FILE="DATA3.TEXT))

CLOSE Statement

CLOSE(
4,

Required, must appear as the first argument.
Must not be internal unit specifier.

STATUS=KEEP
STATUS=DELETE

Optional argument which applies only to files
opened NEW; default is KEEP. The optionisa
character constant.

)

CLOSE disconnects the unit specified and prevents
subsequent I/O from being directed to that unit
(unless the same unit number is reopened, possibly
bound to a different file or device). Files opened
NEW are temporaries and discarded if
STATUS=DELETE is specified. Normal
termination of a FORTRAN program automatically
closes all open files as if CLOSE with
STATUS=KEEP had been specified.

Example program fragment:

C Close the file opened in OPEN
C example, discarding the file
CLOSE(7,STATUS="DELETE))

10-21

READ Statement

10-22

READ(

u’
Required, must be first argument.

£

Required for formatted read as second
argument, must not appear for unformatted
read.

REC=rn

For direct access only, otherwise error.
Positions to record number rz, where rz is a
positive integer expression. If omitted for
direct access file, reading continues from the
current position in the file.

END=y)

Optional statement label. If not present,
reading end of file results in a runtime error. If
present, encountering the end of file results in
the transfer to the executable statement labeled
5, which must be in the same routine as the
READ statement.

0list

READ Statement

The READ statement sets the items in 7o/ist
(assuming that no end of file or error condition
occurs). If the read is internal, the character variable
or character array element specified is the source of
the input, otherwise the external unit is the source.

Example program fragment:

C Need a two dimensionalC

G array for the example
DIMENSION 1A(10,20)

Read in bounds for array

off first line, hopefully less

than 10 and 20. Then read

in the array in nested

implied DO lists with input

format of 8 columns of

width 5 each.
READ(3,990)1,J,

1 ((1A(LJ),d=1,4),

2 =1,11)

990 FORMAT(215/,(815))

oMO0O0O0O0O0

=
(—]
(<]
-
«
-
m
=

10-23

WRITE Statement

WRITE(
u,
Required, must be first argument.

/

Required for formatted write as second
argument, must not appear for unformatted
write.

REC=r7)

For direct access only, otherwise error.
Positions to record number 7, where rz is a
positive integer expression. If omitted for
direct access file, writing continues at the
current position in the file.

Zolist

10-24

WRITE Statement

The WRITE statement transfers the 7Zo/ist items to
the unit specified. If the write is internal, the
character variable or character array element
specified is the destination of the output, otherwise
the external unit is the destination.

Example program fragment:

C Place message: “One = 1,
C Two = 2, Three = 3” on the
C CONSOLE:, not doing things
C in the simplest way!
WRITE(*,980)'0ne =',1,

1 1+1ee=",+(1+1+1)
980 FORMAT(A12,,

1 Two=",1X1I1.,

2 Thr Al

<
(—]
«
&
-
m
=

10-25

BACKSPACE Statement

10-26

BACKSPACE #

Unit is not an internal unit specifier. Can only
be issued on units which are bound to blocked
devices. Can only be issued on units which are
direct or sequential formatted (i.e., not on
sequential unformatted).

BACKSPACE causes the file connected to the
specified unit to be positioned before the preceding
record. If there is no preceding record, the file
position is not changed. Note that if the preceding
record is the endfile record, the file becomes
positioned before the endfile record.

ENDFILE Statement

ENDFILE #
Unit is not an internal unit specifier.

ENDFILE “writes” and end of file record as the next
record of the file connected to the specified unit.
The file is then positioned after the end of file
record, so further sequential data transfer is
prohibited until either a BACKSPACE or REWIND
is executed. An ENDFILE on a direct access file
makes all records written beyond the position of the
new end of file disappear.

<
Q
(]
-<
(]
-
m
=2

10-27

REWIND Statement

REWIND #
Unit is not an internal unit specifier.
Execution of a REWIND statement causes the file

associated with the specified unit to be positioned at
its initial point.

10-28

Restriction on Functions

Any function referenced in an expression within any
I/O statement must not cause any I/O statement to
be executed.

<
(-]
(]
-
(<]
-4
m
=

10-29

NOTES

10-30

CHAPTER 11. FORMATTED I/O
AND THE FORMAT
STATEMENT

Contents

Format Specification and the

Format Statement 11-3
Interaction between Format Specification

and /O Listocoviinionn.. 11-5
Edit Descriptorsccovvvnnn.. 11-7
Nonrepeatable Edit Descriptors 11-7
Repeatable Edit Descriptors 11-10

11-1

NOTES

11-2

This chapter describes formatted I/O and the
FORMAT statement. A familiarity with the
FORTRAN file system, units, records, access
methods, and I/O statements as described in the
previous chapters is assumed.

Format Specifications and the
FORMAT Statement

IfaREAD or WRITE statement specifies a format, it
is considered a formatted, rather than an
unformatted I/O statement. Such a format may be
specified in one of three ways, as explained in the
previous chapter. Two ways refer to FORMAT
statements and one is an immediate format in the
form of a character expression containing the
format itself. The following are all valid and
equivalent means of specifying a format:

WRITE(*,990)1,J,K
990 FORMAT(215,13)

ASSIGN 990 TO IFMT
980 FORMAT(215,I3)
WRITE(*,IFMT)1,J,K

WRITE(*,(215,i3)')1,4,K

CHARACTER*8 FMTCH
FMTCH = ’(215,13)’
WRITE(*,FMTCH)L,J,X

The format specification itself must begin with *“(*,
possibly following initial blank characters, and end
with a matching *)”. Characters beyond the
matching *)” are ignored.

FORMAT statements must be labelled, and like all
nonexecutable statements, may not be the target of
a branching operation.

11-3

11-4

Between the initial ““(”’ and terminating ‘)" isa list of
items, separated by commas, each of which is one of:

[r] ed - repeatable edit descriptors

ned - nonrepeatable edit descriptors

[7] fs - a nested format specification. At most 3
levels of nested parentheses are permitted
within the outermost level.

... where r is an optionally present, nonzero,
unsigned, integer constant called a repeat
specification. The comma separating two list items
may be omitted if the resulting format specification
is still unambiguous, such as after a P edit descriptor
or before or after the / edit descriptor.

The repeatable edit descriptors, explained in detail
below, are:

Iw
Fw.d
Ew.d
Ew.cEe
Lw

A

Aw

...wherel, F, E, L, and A indicate the manner of
editing and, w and ¢ are nonzero, unsigned,
integer constants, and 4 is an unsigned integer
constant.

The nonrepeatable edit descriptors, which are
also explained in detail below, are:

xxxx - character constants of any length; see
special rules below.

nHxxxx - another means of specifying character
constants; see rules below.

nX
/

\
kP
BN
BZ

... where apostrophe, H, X, slash, backslash, P,
BN, and BZ indicate the manner of editing
and, x is any ASCII character, 7 is a nonzero,
unsigned, integer constant, and £ is an
optionally signed integer constant.

Interaction between Format
Specification and I/O List

Before describing in greater detail the manner of
editing specified by each of the above edit
descriptors, it must be explained how the format
specification interacts with the input/output list
(folist) in a given READ or WRITE statement.

If an 7olist contains at least one item, at least one
repeatable edit descriptor must exist in the format
specification. In particular, the empty edit
specification, (), may be used only if no items are
specified in the 7o/ist (in which case the only action
caused by the I/O statement is the implicit record
skipping action associated with formats). Each item
in the 7o/ist will become associated with a repeatable
edit descriptor during the I/O statement execution
in turn. In contrast to this, the other format control
items interact directly with the record and do not
become associated with items in the Zo/ist.

The items in a format specification are interpreted
from left to right. Repeatable edit descriptors act as
if they were present r times (omitted r is treated as a

11-5

11-6

repeat factor of 1). Similarly, a nested format
specification is treated as if its items appeared r
times.

The formatted I/O process proceeds as follows: The
“format controller” scans the format items in the
order indicated above. When a repeatable edit
descriptor is encountered, either

... a corresponding item appears in the 7o/t in
which case the item and the edit descriptor
become associated and I/O of that item
proceeds under format control of the edit
descriptor, or

... the “format controller” terminates I/O.

If the format controller encounters the matching
final) of the format specification and there are no
further items in the 70/i5¢, the “format controller”
terminates I/O. If, however, there are further items
in the 7o/ist, the file is positioned at the beginning of
the next record and the “format controller”
continues by rescanning the format starting at the
beginning of the format specification terminated by
the last preceding right parenthesis. If there is no
such preceding right parenthesis, the “format
controller” rescans the format from the beginning.
Within the portion of the format rescanned, there
must be at least one repeatable edit descriptor.
Should the rescan of the format specification begin
with a repeated nested format specification, the
repeat factor is used to indicate the number of times
to repeat that nested format specification. The
rescan does not change the previously set scale
factor or BN or BZblank controlin effect. When the
“format controller” terminates, the remaining
characters or an input record are skipped or an end
of record is written on output, exceptas noted under
the | edit descriptor.

Edit Descriptots

Here are the detailed explanations of the various
format specification descriptors, beginning with the
nonrepeatable edit descriptors:

Nonrepeatable Edit Descriptotrs
xxxx (Apostrophe Editing)

The apostrophe edit descriptor has the form of a
character constant. Embedded blanks are significant
and double”’ are interpreted asasingle’. Apostrophe
editing may not be used in a READ statement. It
causes the character constant to be transmitted to
the output unit.

H (Hollerith Editing)

The »H edit descriptor cause the following 7
characters, with blanks counted as significant, to be
transmitted to the output. Hollerith editing may not
be used in a READ.

Examples of Apostrophe and Hollerith editing:

Each write outputs

characters hetween the

slashes: /ABC’'DEF/hm=1.,3.]

Each write outputs characters

hetween characters hetween the

slashes: /ABC'DEF/hm=1.,3.]

Each write outputs characters

hetween the

slashes: /ABC DEF/

WRITE(*,970)

970 FORMAT(ABC”’DEF)
WRITE(*,’("’ABG””’DEF’)’)
WRITE(*,’(7HABC” DEF)’)
WRITE(*,960)

960 FORMAT(7HABC’DEF)

[T N NN NN NN N r]

11-7

11-8

X (Positional Editing)

Oninput(aREAD), the#X editdescriptor causes the
file position to advance over # character, thus the
next 7z characters are skipped. On output (a
WRITE), the »X edit descriptor causes # blanks to
be written, providing that further writing to the
record occurs, otherwise, the X descriptor results
in no operation.

/ (Slash Editing)

The slash indicates the end of data transfer on the

current record. On input, the file is positioned to the
beginning of the next record. On output, an end of
record is written and the file is positioned to write on
the beginning of the next record.

| (Backslash Editing)

Normally when the “format controller” terminates,
the end of data transmission on the current record
occurs. If the last edit descriptor encountered by the
“format controller” is the backslash, this automatic
end of record is inhibited. This allows subsequent
I/O statements to continue reading (or writing) out
of (or into) the same record. The most common use
for this mechanism is to prompt to the CONSOLE:
and read a response off the same line as in:

WRITE(*,’(A)’) ’Input an integer ->°’
READ(*,’(BN,16)’) |

The backslash edit descriptor does not inhibit the
automatic end of record generated when reading
from the * unit. Input from the CONSOLE: must
always be terminated by the <return> key. This
permits the backspace character and the line delete
key to functin properly.

P (Scale Factor Editing)

The £P edit descriptor is used to set the scale factor
for subsequent Fand E edit descriptors until another
kP edit descriptor is encountered. At the start of
each I/O statement, the scale factor equals 0. The
scale factor affects format editing in the following
ways:

On input, with F and E editing, providing that no
explicit exponent exists in the field, and F output
editing, the externally represented number equals
the internally represented number multiplied by
10**&.

On input, with F and E editing, the scale factor has
no effect if there is an explicit exponent in the input

field.

On output, with E editing, the real part of the
quantity is output multiplied by 10**£ and the
exponent is reduced by £ (effectively altering the
column position of the decimal point, but not the
value that is output).

BN and BZ (Blank Interpretation)

These edit descriptors specify the interpretation of
blanks in numeric input fields. The default, BZ, is set
at the start of each I/O statement. This makes
blanks, other than leading blanks, identical to zeros.
If a BN edit descriptor is processed by the “format
controller”, blanks in subsequent input fields will be
ignored unless, and until, a BZ edit descriptor is
processed. The effect of ignoring blanks is to take all
the nonblank characters in the input field, and treat
them as if they were right-justified in the field with
the number of leading blanks equal to the number of
ignored blanks. For instance, the following READ

<
(—]
-
(—]
=
=
f=r]

11-9

statementaccepts the characters shown between the
slashes as the value 123 (where <cr> indicates hitting
the return key):

READ(*,100) |
100 FORMAT(BN,I6)

/123 <er>/,
/123 456<cr>/,
/123<er>/, or

/ 123<er>/.

The BN edit descriptor, in conjunction with the
infinite blank padding at the end of formatted
records, makes interactive input very convenient.

Repeatable Edit Descriptors

11-10

L F, and E(Numeric Editing, General Description)

The I, F, and E edit descriptors are used for I/O of
integer and real data. The following general rules
apply to all three of them:

On input, leading blanks are not significant.
Other blanks are interpreted differently
depending on the BN or BZ flag in effect, butall
blank fields always become the value 0. Plus
signs are optional.

On input, with F and E editing, an explicit
decimal point appearing in the input field
overrides the edit descriptor specification of
the decimal point position.

On output, the characters generated are right
justified in the field with padding leading blanks
if necessary.

On output, if the number of characters
produced exceeds the field width or the
exponent exceeds is specified width, the entire
field is filled with asterisks.

I (Integer Editing)

The edit descriptor I must be associated with

an zolist item which is of type integer. The field
width is w characters in length. On input, an
optional sign may appear in the field. The general
rules of I, F, and E (Numeric Editing, General
Description) apply to the I edit descriptor.

F (Real Editing)

The edit descriptor Fw.4 must be associated with an
dolist item which is of type real. The width of the field
is w positions, the fractional part of which consists
of 4 digits. The input field begins with an optional
sign followed by a string of digits optionally
containing a decimal point. If the decimal point is
present, it overrides the 4 specified in the edit
descriptor, otherwise the rightmost 4 digits of the
string are interpreted as following the decimal point
(with leading blanks converted to zeros if necessary).

Following this is an optional exponent which is one
of:

plus or minus followed by an integer, or

E or Dfollowed by zero or more blanks followed
by an optional sign followed by an integer (E
and D are treated identically).

The output field occupies w digits, 4 of which fall
beyond the decimal point, and the value output is
controlled both by the 70/ist item and the current

scale factor. The output value is rounded rather than
truncated.

The general rules of I, F, and E (Numeric Editing,
General Description) apply to the F edit descriptor.

11-11

<
=
-
o
=
=
=

11-12

E (Real Editing)

An E edit descriptor either takes the form Ew.d or
Ew.dEe. In either case the field width is w characters.
The e hasno effectoninput. Theinputfield foranE
edit descriptor is identical to that described by an F
edit descriptor with the same w and 4. The form of
the output field depends on the scale factor (set by
the P edit descriptor) which is in effect. For a scale
factor of 0, the output field is a minus sign (if

necessary), followed by a decimal point, followed by
a string of digits, followed by an exponent field for
exponent, exp, of one of the following forms:

Ewd -99 <=exp <=99
E followed by plus or minus followed by the two
digit exponent.

Ewd -999 <= exp <= 999
Plus or minus followed by three digit exponent.

Ew.dEe -((10**¢) - 1) <= exp <= (10**¢) -1
E followed by plus or minus followed by e
digits which are the exponent with possible
leading zeros.

The form Ew.d must not be used if the absolute
value of the exponent to be printed exceeds 999.

The scale factor controls the decimal normalization
of the printed E field. If the scale factor, £, is in the
range -4 < k£ <= 0 then the output field contains
exactly -£ leading zeros after the decimal point and
d+k significantdigitsafter this. f0 < £ < 4+2 then
the output field contains exactly £ significantdigits
to the left of the decimal point and 4- £ - 1 places
after the decimal point. Other values of £ are
errors.

The general rules of I, F, and E (Numeric Editing,
General Description) apply to the E edit descriptor.

L (Logical Editing)

The edit descriptor is Lw, indicating that the field
width is w characters. The 7o/ist element which
becomesassociated withanL editdescriptor mustbe
of type logical. On input, the field consists of
optional blanks, followed by an optional decimal
point, followed by a T (for .TRUE.) or an F (for
.FALSE.). Any further characters in the field are
ignored, but accepted on input, so that .TRUE. and
.FALSE. are valid inputs. On output, » - 1 blanks
are followed by either T or F as appropriate.

A (Character Editing)

The forms of the edit descriptor are A or Aw. If w is
not present, the number of characters in the zolist
item with which it is associated determines the
length (an implicit w). The 7Zolist item must be of
character type if it is to be associated with an A or Aw
edit descriptor. Oninput, if w exceeds or equals the
number of characters in the 7o/ist element, the
rightmost characters of the input field are used as the
input characters, otherwise the input characters are
left-justified in the input 7/ist item and trailing
blanks are provided. On output, if w should exceed
the characters produced by the 70/ist item, leading
blanks are provided, otherwise, the leftmost w
characters of the 7o/ist item are output.

11-13

NOTES

11-14

CHAPTER 12. PROGRAMS,

SUBROUTINES AND
FUNCTIONS
Contents
Main Program 12-3
Subroutinescoiiiiiiiiinn, 12-4
Functionscoiiiiiiinnn.. 12-8
Parameters ..., 12-15

12-1

NOTES

12-2

This chapter describes the format of routines. A
routine is either a main program, a subroutine, ora
function program unit. The term procedure is used
to refer to either a function or a subroutine. This
chapter also describes the CALL and RETURN
statements as well as function calls.

Main Program

A main program is any routine that does not have a
FUNCTION or SUBROUTINE statement as its first
statement. [t may havea PROGRAM statementasits
first statement. The execution of a program always
begins with the first executable statement in the
main program. Consequently, there must be
precisely one main program in every executable
program. The form of a PROGRAM statement is:

PROGRAM pname

... where pname is a user-defined name that is
the name of the main program.

The name pname is a global name. Therefore, it
cannot be the same as another external procedure’s
name or a common block’s name. It is also a local
name to the main program, and must not conflict
with any local name in the main program. The
PROGRAM statement may only appear as the first
statement of a main program.

12-3

.-
=
s
SN
(]
[—]
-}
=
SN
b s |
(—
=
(]

Subroutines

12-4

A subroutine is a routine that can be called from
other routines by a CALL statement. When evoked,
it performs the set of actions defined by its
executable statements, and then returns control to
the statement immediately following the statement
that called it. A subroutine does not directly returna
value, although values can be passed back to the
calling program unit via parameters or common
variables.

SUBROUTINE Statement

A subroutine begins with a SUBROUTINE
statement and ends with the first following END
statement. It may contain any kind of statement
other than a PROGRAM statement or a
FUNCTION statement. The form of a
SUBROUTINE statement is:

SUBROUTINE sname [([farg [, farg]...])]

sname is the user-defined name of the
subroutine.

farg is a user-defined name of a formal
argument.

The name sname is a global name, and it is also local
to the subroutine it names. The list of argument
names defines the number and, with any subsequent
IMPLICIT, type, or DIMENSION statements, the
type of arguments to that subroutine. Argument
names cannot appear in COMMON, DATA,
EQUIVALENCE, or INTRINSIC statements.

12-5

-
=
]
SN
(]
(—
-]
=
SN
-
[—
=
(]

CALL Statement

12-6

A subroutine is executed by executing a CALL
statement in another routine. The form of a CALL
statement is:

CALL sname [([arg [,arg)...]1)]
sname is the name of a subroutine.
arg is an actual argument.

An actual argument may be either an expression or
the name of an array. The actual arguments in the
CALL statement mustagree in type and number with
the corresponding formal arguments specified in the
SUBROUTINE statement of the referenced
subroutine. If there are no arguments in the
SUBROUTINE statement, then a CALL statement
referencing that subroutine must not have any
actual arguments, but may optionally have a
matched pair of parentheses following the name of
the subroutine. Note thata formal argument may be
used as an actual argument in another subprogram
call.

Execution of a CALL statement proceeds as follows:
All arguments that are expressions are evaluated. All
actual arguments are associated with their
corresponding formal arguments, and the body of
the specified subroutine is executed. Control is
returned to the statement following the CALL
statement upon exiting the subroutine, by
executing either a RETURN statement or an END
statement in that subroutine.

CALL Statement

A subroutine specified in any routine may be called
from any other routine within the same executable
program. Recursive subroutine calls, however, are
not allowed in FORTRAN. That is, a subroutine
cannot call itself directly, nor can it call another
subroutine that will result in the first subroutine
being called again before it returns control to its
caller.

12-7

-
=
[—]
&
N
@
&
-}
-
SN
-
(—
=
(1]

Functions

12-8

A functionis referenced in an expression and returns
a value that is used in the computation of that
expression. There are three kinds of functions:
external functions, intrinsic functions, and
statement functions. This section describes the
three kinds of functions.

A function reference may appear in an arithmetic
expression. Execution of a function reference
causes the function to be evaluated, and the
resulting value is used as an operand in the
containing expression. The form of a function
reference is:

fname ([arg [,arg]...])

Jfname is the name of an external, intrinsic, or
statement function.

arg is an actual argument.

Anactual argument may be anarithmetic expression
oranarray. The number of actual arguments mustbe
the same as in the definition of the function, and the
corresponding types must agree.

External Functions

An external function is specified by a function
routine. It begins with a FUNCTION statement and
ends with an END statement. It may contain any
kind of statement other than a PROGRAM
statement or a SUBROUTINE statement. The form
of a FUNCTION statement is:

[#ype] FUNCTION frame ([farg [farg]...])
type is one of INTEGER, REAL, or LOGICAL.
frame is the user defined name of the function.
farg is a formal argument name.

The name frame is a global name, and it is also local
to the function it names. If no type is present in the
FUNCTION statement, the function’s type is
determined in the same way as the type of an
ordinary variable. If a type is present, then the
function name cannot appear in any additional type
statements. In any case, an external function cannot
be of type character. The list of argument names
defines the number and, with any subsequent
IMPLICT, type, or DIMENSION statements, the
type of arguments to that subroutine. Neither
argument names nor frame can appear in
COMMON, DATA, EQUIVALENCE, or
INTRINSIC statements.

)
=
e
SN
(-]
(—
(-]
=
SN
-n
[—
=
(1]

12-9

External Functions

12-10

The function name must appear as a variable in the
routine that defines the function. Every execution of
that function must assign a value to that variable.
The final value of this variable, upon execution of a
RETURN or of an END statement, is the value
returned by the function. After being defined, the
value of this variable can be referenced in an
expression, exactly like any other variable. An
external function may return values in addition to
the value of the function by assighment to one or
more of its formal arguments.

Intrinsic Functions

Intrinsic functions are functions that are predefined
by the FORTRAN compiler and are available for use
ina FORTRAN program. The table at the end of this
chapter gives the name, definition, number of
parameters, and type of the intrinsic functions
available in UCSD p-System FORTRAN 77. An
IMPLICIT statement does not alter the type of an
intrinsic function. For those intrinsic functions that
allow several types of arguments, all argumentsina
single reference must be of the same type.

All intrinsic functions used in a routine must appear
in an INTRINSIC statement.

An intrinsic function name may appear in an
INTRINSIC statement, but only those intrinsic
functions listed in the table at the end of this chapter
may do so. An intrinsic function name also may
appear in a type statement, but only if the type is the
same as the standard type of that intrinsic function.

Arguments to certain intrinsic functions are limited
by the definition of the function being computed.

For example, the logarithm of a negative number is
undefined, and therefore not allowed.

12-11

-
=
[(—
o0
SN
(-]
[—
-]
=
SN
-n
(—
=
(1]

Statement Functions

12-12

A statement functionisafunction thatis definedbya
single statement. It is similar in form to an
assignment statement. A statement function
statement can only appear after the specification
statements and before any executable statements in
the routine in whichitappears. A statement function
is not an executable statement, since it is not
executed in order as the first statement in its
particular routine. Rather, the body of a statement
function serves to define the meaning of the
statement function. It is executed, as any other
function, by the execution of a function reference.
The form of a statement function is:

fname ([arg [, arg)...]) = expr

fname is the name of the statement function.
arg is a formal argument name.

expr is an expression.

The type of the expr must be assignment
compatible with the type of the statement function
name. The list of formal argument names serves to
define the number and type of arguments to the
statement function. The scope of formal argument
names is the statement function. Therefore, formal
argument names may be used as other user-defined
names in the rest of the routine enclosing the
statement function definition. The name of the
statement function, however, is local to the
enclosing routine, and must not be used otherwise

Statement Functions

(except as the name of a common block, or as the
name of a formal argument to another statement
function). The type of all such uses, however, must
be the same. If a formal argument name is the same
as another local name, then a reference to that name
within the statement function defining it always
refers to the formal argument, never to the other
usage.

Within the expression expr, references to variables,
formal arguments, other functions, array elements,
and constants are allowed. Statement function
references, however, must refer to statement
functions that have been defined prior to the
statement function in which they appear. Statement
functions cannot be recursively called, either
directly or indirectly.

A statement function can only be referenced in the
routine in which it is defined. The name of a
statement function cannot appear in any
specification statement, except in a type statement
which may not define the name as an array, and ina
COMMON statement as the name of a common
block. A statement function cannot be of type
character.

12-13

O
=
Q
&
SN
)
(—
-]
=
SN
N
[—
-
(]

RETURN Statement

12-14

A RETURN statement causes return of control to
the calling routine. It may appear only in a function
or subroutine. The form of a RETURN statement is:

RETURN

Execution of a RETURN statement terminates the
execution of the enclosing subroutine or function. If
the RETURN statement is in a function, then the
value of that function is equal to the current value of
the variable with the same name as the function.
Execution of an END statement in a function or
subroutine is equivalent to execution of a RETURN
statement.

Parametetrs

This section discusses the relationship between
formal and actual arguments in a function or
subroutine call. A formal argument refers to the
name by which the argument is known within the
function or subroutine, and an actual argument is
the specific variable, expression, array, etc., passed
to the procedure in question at any specific calling
location.

Arguments are used to pass values into and out of
procedures. Variables in common can be used to
perform this task as well. The number of actual
arguments must be the same as formal arguments,
and the corresponding types must agree.

On entry to a subroutine or function, the actual
arguments become associated with the formal
arguments, much as an EQUIVALENCE statement
associates two or more arrays or variables, and
COMMON statements in two or more program units
associate lists of variables. This association remains
in effect until execution of the subroutine or
function is terminated. Thus, assigning a value to a
formal argument during execution of a subroutine
or function may alter the value of the corresponding
actual argument. If anactual argumentis a constant,
function reference, or an expression other than a
simple variable, assigning a value to the
corresponding formal argument is not allowed, and
may have some strange side effects. In particular,
assigning a value to a formal argument of type
character, when the actual argument is a literal, can
be disastrous.

)
=
Q
£
SN
(]
(—
- -
=
N
-
(—
=
(1]

12-15

12-16

Ifanactual argumentis an expression, it is evaluated
immediately prior to the association of formal and
actual arguments. If an actual argument is an array
element, its subscript expression is evaluated just
prior to the association, and remains constant
throughout the execution of the procedure, even if
it contains variables that are redefined during the
execution of the procedure.

A formal argument that is a variable may be
associated with an actual argument that is a variable,
an array element, or an expression.

Aformalargument thatisan array may be associated
with an actual argument that is an array or an array
element. The number and size of dimensions in a
formal argument may be different than those of the
actual argument, but any reference to the formal
array must be within the limits of the storage
sequence in the actual array. While a reference to an
element outside these bounds is not detected as an
error in a running FORTRAN program, the results
are unpredictable.

Intrinsic No. Type of
Function Definition Args | Name Argument Function
Type Conversion Conversion 1 INT Real Integer
to Integer IFIX Real Integer
int(a) -
See Note 1
Conversion 1 REAL Integer Real
to Real FLOAT | Integer Real
See Note 2
Conversion 1 ICHAR Character Integer
to Integer
See Note 3
Conversion 1 CHAR Integer Character
to Character
Truncation int(a) 1 AINT Real Real
See Note 1
Nearest Whole int(a.) a>=0 | 1 ANINT | Real Real
Number int(a.b) a<0
Nearest Integer int(a.5) a>=0 1 NINT Real Integer
int(a.5) a<0
Absolute Value a 1 1ABS Integer Integer
1 ABS Real Real
Remaindering alint(al/a2)*a2 | 2 MOD Integer Integer
See Note 1 AMOD Real Real
Transfer of Sign al ifa2>=0 2 ISIGN Integer Integer
al if a2<0 SIGN Real Real
Positive ala2if a1>a2 2 IDIM Integer Integer
Difference 0if a1<<=a2 DIM Real Real
12-17

O
=
—3
£
SN
(-]
[—
=
SN
"
(—
=
(1

Intrinsic No. Type of
Function Definition Args | Name Argument Function
Choosing Largest max(a1,a2,...) >=2 | MAX0 Integer Integer
Value AMAX1 | Real Real
AMAXO0 | Integer Real
MAX1 Real Integer
Choosing Smallest min(al,a2,...) =2 | MINO Integer Integer
Value AMIN1 Real Real
AMINO Integer Real
MIN1 Real Integer
Square Root a**0.5 1 SART Real Real
Exponential e**a 1 EXP Real Real
Natural Logarithm log(a) 1 ALOG Real Real
Common Logarithm | log10(a) 1 ALOG10 | Real Real
Sine sin(a) 1 SIN Real Real
Cosine cos(a) 1 cos Real Real
Tangent tan(a) 1 TAN Real Real
Arcsine arcsin(a) 1 ASIN Real Real
Arccosine arccos(a) 1 ACOS Real Real
Arctangent arctan(a) 1 ATAN Real Real
arctan(a1/a2) 2 ATAN2 | Real Real
Hyperbolic Sine sinh(a) 1 SINH Real Real
Hyperbolic Cosine cosh(a) 1 COSH Real Real
Hyperbolic Tangent | tanh(a) 1 TANH Real Real
Lexically Greater al >=a2 2 LGE Character Logical
Than or Equal See Note 4

12-18

Notes:

1. For a of type real, if a > = 0 then int(a) is the
largest integer not greater than a, if a< 0 then int(a)
is the most negative integer not less than a. IFIX(a) is
the same as INT(a).

2. Foraof type integer, REAL(a) is to the greatest
possible precision. This varies from processor to
processor. FLOAT(a) is the same as REAL(a).

3. ICHAR converts a character value into an
integer value. The integer value of a character is the
ASCII internal representation of that character, and
is in the range 0 to 127. For any two characters, c1
and c2, (c1 .LE. c1) is .TRUE. if and only if
(ICHAR(c1) .LE. ICHAR(c2)) is .TRUE..

4. LGE(al,a2) returns the value .TRUE. if al = a2
or if a1l follows a2 in the ASCII collating sequence.
Otherwise it returns .FALSE..

LGT(al,a2) returns .TRUE. if al follows a2 in the
ASCII collating sequence, otherwise it returns
.FALSE..

LLE(al,a2) returns .TRUE. if al = a2 or if al
precedes a2 in the ASCII collating sequence,
otherwise it returns .FALSE..

LLT(al,a2) returns .TRUE. if al precedes a2 in the
ASCII collating sequence, otherwise it returns
.FALSE..

The operands or LGE, LGT, LLE, and LLT must be
of the same length.

12-19

-
=
(=]
[
SN
«\
[
-]
-
N
-
]
=
<«

12-20

5. EOF(a) returns the value . TRUE. if the unit
specified by its argument is at or past the end of file
record, otherwise it returns .FALSE.. The value of ¢
must correspond to an open file, or to zero (whick
indicates CONSOLE:).

6. All angles are expressed in radians.

7. Allarguments in an intrinsic function reference
must be of the same type.

CHAPTER 13. COMPILATION S
UNITS =
m
c
=
7
Contents
Units, Segments, Partial
Compilation, and FORTRAN 13-4
Linking Pascal and FORTRAN 13-9

13-1

NOTES

13-2

This chapter describes the relationship between
FORTRAN 77 and the UCSD Pascal segment
mechanism. In normal use, the user need not be
aware of such intricacies. However, if the user
desires to interface FORTRAN with Pascal, to create
overlays, or to take advantage of separate
compilation or libraries, the details contained here

(x]
[—]
=
2
r—-
m
(—
=
-4
[~

are helpful. This chapter consists of the following:

Units, Segments, Partial Compilation
The $USES Compiler Directive
Linking Pascal and FORTRAN

The $EXT Compiler Directive

The first section discusses the general form of a
FORTRAN program in terms of the p-System code
segments. The next section describes the $USES
compiler directive. This directive provides access
libraries or already compiled procedures, and
provides overlays in FORTRAN. The next section
describes how one links FORTRAN with Pascal. The
final section explains the $EXT compiler directive.

13-3

Units, Segments, Partial
Compilation, and FORTRAN

13-4

If a FORTRAN compilation contains no main
procedure, then it is output as if it were a Pascal unit
compilation. The unit is given the name U followed
by the name of its first procedure. For example:

G -- No PROGRAM statement present
SUBROUTINE X

END
SUBROUTINE Y
END
SUBROUTINE Z
END

... would be compiled into a sifigle unit named UX.
(Assume for later examples that the object code is
output to file X.CODE.) All procedures called from
within unit UX must be defined within unit UX,
unless a $USES or a $EXT statement has shown
them to reside in another unit. Similarly, procedures
in unit UX cannot be called from other units unless
the other units contain a $USES UX statement.

Thus, a typical main program that would call X
might be:

H
C -- This is the main program BIGGIE
H

SUSES UX IN X.CODE

PROGRAM BIGGIE

CALL X

END

SUBROUTINE W

EAI.I. Y

END
If the $USES statement were not present, the
FORTRAN compiler would expect subroutines X
and Y toappearin the same compilation, somewhere

after subroutine W. Assume that the code from this
compilation is output to the file BIGGIE.CODE.

Thus, the user can create libraries of functions,
partial compilations, etc., and save compilation time
and disk space by a simple use of the $USES
statement. For more information on the $USES
statement, see the section on the $USES statement.

13-5

(x}
(=]
=
2
-
m
(—
=
-]
[°]

$USES Compiler Directive

13-6

The $USES compiler directive provides several
distinct functions to the user. It allows procedures
and functions in separately compiled units, such as
the system library, to be called from FORTRAN. It
provides the user a relatively secure form of separate
compilation for FORTRAN compilations. It allows
the user to call Pascal routines that have been
compiled into Pascal units.

The format of the $USES control statement is:
$USES unitname [IN filename 1 [OVERLAY]
... where wunitname is the name of a unit.
filename is a valid UCSD file name.

Aswith all $ control statements, the $ mustappearin
column one. This compiler directive directs the
compiler to open the .CODE file filename, locate the
unit unitname, and process the INTERFACE
information associated with that unit, generating a
reasonable FORTRAN equivalent declaration for
the FORTRAN compilation in progress. All $USES
commands must appear before any FORTRAN
statements, specification or executable, but they are
allowed to follow comment lines and other $ control
lines. If the optional IN filename is present, the
name filename is used as the file to process. If it is
not, the file *SYSTEM.LIBRARY is used as a default.
The optional field OVERLAY has no effect on

$USES Compiler Directive

program execution, and is included in version IV.0
only for compatibility with version IL.O.

(x]
(=)
=
p
-
m
(—
=
-
»

WARNING: If a FORTRAN main program

$ USES a Pascal unit, any global variables in the
INTERFACE part of that unit will not be accessible
from FORTRAN. See Linking Pascal and
FORTRAN for further information.

13-7

Separate Compilation

13-8

Separate compilation is accomplished by compiling
a set of subroutines and functions without any main
program. Each such compilation creates a codefile
containing a single UCSD unit. Then, when the main
program is compiled, possibly along with many
subroutines or functions, it $USES the separately
compiled units. The routines compiled with the
main program obtain the correct definition of each
externally compiled procedure through the $USES
directive.

In the simplest form, when no $USES statements
appear in any of the separate compilations, the user
simply $USES all separately compiled FORTRAN
units in the main program. However, this limits the
procedure calls in each of the separately compiled
units to procedures defined in the same unit. If there
are calls to procedures in unit A from unit B, then
unit B must contain a $USES A statement. The main
program must then contain a §USES A statement as
its first $USES statement, followed by a $USES B
statement. This is necessary for the Compiler to get
the unit numbers allocated consistently.

In more complicated cases, the user must ensure that
all references to procedures in outside units are
preceded by the proper $USES statement in the
same order, not missing any units. If unit B $USES
unit A, and unit C $USES unit B, then unit C must
first $USES unit A. Likewise, if units D and E both
$USES unit F, they both must contain exactly the
same $ USES statements prior to the $USES F
statement.

Linking Pascal and FORTRAN

In order to call Pascal routines from FORTRAN, the
Pascal routines must first be compiled into a Pascal
unit. The FORTRAN program can then $ USES that
unit. Unfortunately, the exceedingly rich type
structure present in Pascal is not present in
FORTRAN. Also, the I/O systems of FORTRAN
and Pascal are not compatible. Therefore it is not
possible to do everything one might desire. This
section does, however, help the user do what is
possible in interfacing the two languages.

(]
(—]
=
=
F
m
[—
=
e
(7]

It is not generally possible to do I/O from Pascal
routines called from a main program that is written
in FORTRAN. Normal Pascal I/O to and from the
console, however, can always be done from Pascal
routines providing that there is no file name in the
I/O statement. The Pascal routines RESET,
REWRITE, CLOSE, etc., should not be called from
Pascal routines running under a FORTRAN main
program.

Itis possible to do I/O from a FORTRAN procedure
thatis called from a Pascal main program. In general,
however, this practice should be avoided. This
section is provided to allow the user who absolutely
must mix I/O operations from both languages to do
what is possible. While the following information is
believed to be correct, it is neither warranted to
work nor guaranteed to remain valid in future
releases. Again, mixed I/O is not supported. It is
done at the user’s risk.

There are several precautions that the user must take
for FORTRAN I/O to work from Pascal programs.
The FORTRANI/O procedures use the Heap for the
allocation of file-related storage, so the user should
not force the deallocation of Heap memory via calls
to MARK or RELEASE. Other restrictions may

apply in special cases. As stated above, one should

13-9

13-10

avoid doing I/O from both FORTRAN and Pascal in
the same program as the two systems are not totally

compatible.

Since there are Pascal types that have no FORTRAN
equivalent, the way FORTRAN looks at Pascal
parameters is somewhat limited. FORTRAN does
recognize both reference and value parameters

when calling Pascal subroutines. The following table
shows how FORTRAN views Pascal declarations:

Pascal Declaration:

CONST anything...;
TYPE anything...;
PROCEDURE
X(arg-list);
FUNCTION
X(arg-list):
type;

type:
REAL

BOOLEAN
CHAR
ALFAn
see note below
any other identifier

arg-list:
(VAR L]J: type)

(LJ: type)

FORTRAN'’s View:

Ignored.

Ignored.

SUBROUTINE
X(arg-list)

type "FUNCTION
X(arg-list)

Note: type must be
INTEGER, LOGICAL,
or REAL.

REAL
LOGICAL
CHARACTER*1
CHARACTER*n
1<=n<=127
INTEGER

((N))

type LJ

*** There is no proper
FORTRAN equivalent
to value parameters, but
the FORTRAN
compiler does generate
the correct calling
sequence for Pascal
routines with value
parameters.

Note: Pascal types STRING and PACKED
ARRAY OF CHAR are not directly recognizable by
the FORTRAN compiler. However, a PACKED
ARRAY OF CHAR may be indirectly recognized by
FORTRAN by the use of the identifier ALFA within
the Pascal unit. Thus the Pascal type declarations:

TYPE ALFA4: PACKED ARRAY|[0..3] OF
CHAR;

ALFA121: PACKED ARRAY[1...121]

OF CHAR;

will be ignored by FORTRAN, but the variables
which may then be declared:

VAR P4: ALFA4;
P121: ALFA121;

will be recognized by FORTRAN and mapped into
CHARACTER*4 and CHARACTER*121
respectively. A user may also use the type STRING
in this manner if caution is used.

When the INTERFACE information of a
FORTRAN compilation used by Pascal, it must be
mapped onto Pascal declarations. The following
table gives the corresponding declarations:

13-11

[x]
[—]
=
2
-
™m
(—
=z
-
(-]

13-12

FORTRAN Declaration: Pascal’s View:

SUBROUTINE ~ PROCEDURE
X(arg-list) - X(arg-list);
type FUNCTION FUNCTION
X(arg-list) X(arg-list):
type;
type:
INTEGER INTEGER
REAL REAL
LOGICAL BOOLEAN
CHARACTER*n CHAR,n=1
STRING or
PACKED ARRAY
of CHAR
2<=n<=127
arg-list:
4y) (VAR I: type)
type I

Note: When a Pascal compilation USES a
FORTRAN unit, it is the responsibility of the Pascal
program to make sure that any needed type
declarations for the ALFAn types are properly
defined. This cannot consistently be done by
FORTRAN as it would lead to duplicate type
definitions should a user use two FORTRAN units
which each declare the same type. There is another
point that must be made for Pascal programs that
call FORTRAN subroutines. If the subroutine has a
REAL parameter that is in actuality an array, the
Pascal program must passa scalarinstead of an array.
This should not be a problem. Since the Pascal
program can pass the first element of the array, and
all FORTRAN parametersare reference parameters,
the FORTRAN subroutine has access to the whole
array. The user is cautioned to remember that Pascal
stores its arrays in row-major order, while
FORTRAN stores them in column-major order.

When a FORTRAN program $USES a Pascal unit,
the interface section variables in that Pascal unit are
not accessible from FORTRAN.

$EXT Compiler Directive

The $EXT compiler directive is used when one
desires to call assembly language routines, or
routines in $SEPARATE FORTRAN or Pascal units,
from a FORTRAN 77 routine. The form of the
$EXT directive is:

{ SUBROUTINE |}
$EXT | \ procname #params
{[#ype 1 FUNCTION }

... where type is either INTEGER, LOGICAL, or
REAL,

procname is the name of the subroutine or function,
and

#params is an integer equal to the number of
parameters that this procedure requires.

This directive must appear before any FORTRAN
statements, either specification or executable, but
may follow comment lines or other $ compiler
directives. All parameters are passed by reference
(called VAR parameters if Pascal) to procedures
defined by the $ EXT directive. It is up to the user to
follow this convention, as the Linker does not
enforce it. The Linker does, however, check the
number of parameters.

13-13

NOTES

13-14

APPENDIXES

Contents
Appendix A. Messages A-3
Compile-Time Error Messages A-3
Runtime Error Messages A-14

Appendix B. UCSD p-System
FORTRAN 77 and ANSI Standard

Subset FORTRAN 77 Differences B-1
Unsupported Features.............. B-1
Full-Language Features............. B-2
Extensions to Standards B-3

Appendix C. American Standard Code
for Information Interchange C1

Appendixes 1

>
]
o
m
=
=
>
m
»

Appendixes 2

APPENDIX A. MESSAGES

Compile-Time Error Messages

Syntax errors occur during compilation when an
incorrect FORTRAN construct is found. They
appear on the console and within compiler listings
preceded by five asterisks. The following is an
example:

***x* Error number: 2 in line: 35
§p (continue), esc (terminate), E(dit

At this point the compilation process will pause. The
information given indicates that at line 35 in the
source file a nonnumeric character was found in the
label field (error number 2, below).

By typing space, you may continue the compilation.
Although an executable codefile will not be
produced by doing this, other syntax errors may be
found.

By typing esc, the compilation will be aborted and
the p-System will return to the main promptline.

By typing E, the Editor will be invoked, and will
display the portion of the source file that was in
error. The cursor will be left pointing just beyond
the problem that was detected. The error number
will be re-displayed at the top of the screen, and
a space should be typed in order to proceed using
the Editor to correct the problem.

The following are the error messages which
correspond to the error numbers the compiler
indicates:

10

11
12
13
14
15
16

17

18

19

20

Fatal error reading source block
Non-numeric characters in label field
Too many continuation lines

Fatal end of file encountered

Labeled continuation line

Missing field on $ compiler directive line

Unable to open listing file specified on $
compiler directive line

Unrecognizable $ compiler directive
Input source file not valid textfile format

Maximum depth of include file nesting
exceeded

Integer constant overflow

Error in real constant

Too many digits in constant

Identifier too long

Character constant extends to end of line
Character constant zero length

Illegal character in input

Integer constant expected

Label expected

Error in label

21

22
23
24
25
26
27
28

29

30
31
32

33

34

35

36

37

38

39

Type name expected (INTEGER, REAL,
LOGICAL, or CHARACTER[*n])

Integer constant expected

Extra characters at end of statement
(" expected

Letter IMPLICIT’ed more than once
")’ expected

Letter expected

Identifier expected

Dimension(s) required in DIMENSION
statement

Array dimensioned more than once

Maximum of 3 dimensions in an array

Incompatible arguments to EQUIVALENCE

Variable appears more than once in a type

specification statement

This identifier has already been declared

This intrinsic function cannot be passed as

an argument

Identifier must be a variable

Identifier must be a variable or the current

FUNCTION
'/’ expected

Named COMMON block already saved

A-4

40

41

42

43

45

46

47

48

49

50

51

52

53

54

Variable already appears in a COMMON
block

Variables in two different COMMON blocks
cannot be equivalenced

Number of subscripts in EQUIVALENCE
statement does not agree with variable
declaration

EQUIVALENCE subscript out of range

Two distinct cells EQUIVALENCE’d to the
same location in a COMMON block

EQUIVALENCE statement extends a
COMMON block in the negative direction

EQUIVALENCE statement forces a variable
to two distinct locations, notin a COMMON
block

Statement number expected

Mixed CHARACTER and numeric items not
allowed in same COMMON block

CHARACTER items cannot be
EQUIVALENCE’d with non-character items

Illegal symbol in expression

Can’t use SUBROUTINE name in an
expression

Type of argument must be INTEGER or
REAL

Type of argument must be INTEGER,
REAL, or CHARACTER

Types of comparisons must be compatible

55
56
57
58
59

60

61
62

63

64

65

66

67

68

69

70

71

Type of expression must be LOGICAL
Too many subscripts

Too few subscripts

Variable expected

=" expected

Size of EQUIVALENCE’d CHARACTER
items must be the same

Illegal assignment - types do not match
Can only call SUBROUTINES

Dummy parameters cannot appear in
COMMON statements

Dummy parameters cannot appear in
EQUIVALENCE statements

Assumed-size array declarations can only be
used for dummy arrays

Adjustable-size array declarations can only
be used for dummy arrays

Assumed-size array dimension specifier
must be last dimension

Adjustable bound must be either parameter
or in COMMON prior to appearance

Adjustable bound must be simple integer
variable

Cannot have more than 1 main program

The size of a named COMMON must be the
same in all procedures

A-5

72

73

74

75

76

77

78

79

80
81

82

83

84

85

86

87

Dummy arguments cannot appear in DATA
statements

COMMUON variables cannotappearin DATA
statements

SUBROUTINE names, FUNCTION names,
INTRINSIC names, etc. cannot appear in
DATA statements

Subscript out of range in DATA statement
Repeat count must be > =1

Constant expected

Type conflict in DATA statement

Number of variables does not match number
of values in DATA statement list

Statement cannot have label

No such INTRINSIC function

Type declaration for INTRINSIC function
does not match actual type of INTRINSIC
function

Letter expected

Type of FUNCTION does not agree with a
previous call

This procedure has already appeared in this
compilation

This procedure has already been defined to
exist in another unit via a $§USES command

Error in type of argument to an INTRINSIC
FUNCTION

88

89
90
91

92

93

94

95

96

97

98

100
101
102
103

104

SUBROUTINE/FUNCTION was previously
used as a FUNCTION/SUBROUTINE

Unrecognizable statement
Functions cannot be of type CHARACTER
Missing END statement

A program unit cannot appear in a
$SEPARATE compilation

Fewer actual arguments than formal
arguments in FUNCTION/SUBROUTINE
call

More actual arguments than formal
arguments in FUNCTION/SUBROUTINE
call

Type of actual argument does not agree with
type of format argument

The following procedures were called but
not defined:

This procedure was already defined by a
$EXT directive

Maximum size of type CHARACTER is 255,
minimum is 1

Statement out of order
Unrecognizable statement
Illegal jump into block

Label already used for FORMAT

Label already defined

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

120

121
122

123

124

Jump to format label

DO statement forbidden in this context
DO label must follow DO statement
ENDIF forbidden in this context

No matching IF for this ENDIF
Improperly nested DO block in IF block
ELSEIF forbidden in this context

No matching IF for ELSEIF

Improperly nested DO or ELSE block

(" expected

")’ expected

THEN expected

Logical expression expected

ELSE statement forbidden in this context
No matching IF for ELSE

Unconditional GOTO forbidden in this
context

Assigned GOTO forbidden in this context
Block IF statement forbidden in this context

Logical IF statement forbidden in this
context

Arithmetic IF statement forbidden in this
context

125
126
127
128
129
131
132

133

134
135
136
137
138
139
140

141

142

143

144

’,” expected

Expression of wrong type
RETURN forbidden in this context
STOP forbidden in this context
END forbidden in this context
Label referenced but not defined
DO or IF block not terminated

FORMAT statement not permitted in this
context

FORMAT label already referenced
FORMAT must be labeled

Identifier expected

Integer variable expected

"TO’ expected

Integer expression expected

Assigned GOTO but no ASSIGN statements

Unrecognizable character constant as
option

Character constant expected as option

Integer expression expected for unit
designation

STATUS option expected after’,” in CLOSE
statement

A-10

145

146

147

148

149

150

151

152

153

154

155
156

157

158
159
160

161

Character expression as filename in OPEN

FILE= option must be present in OPEN
statement

RECL~= option specified twice in OPEN
statement

Integer expression expected for RECL=
option in OPEN statement

Unrecognizable option in OPEN statement

Direct access files must specify RECL= in
OPEN statement

Adjustable arrays not allowed as I/O list
elements

End of statement encountered in implied
DO, expressions beginning with ’(’ not
allowed as I/O list elements

Variable required as control for implied DO

Expressions not allowed as reading I/O list
elements

REC= option appears twice in statement

REC= expects integer expression

END= option only allowed in READ
statement

END-= option appears twice in statement
Unrecognizable I/O unit
Unrecognizable format in I/O statement

Options expected after’,” in I/O statement

162

163

164

165

166

167
200
201

202

203

204
205
206
207
208
209
210

211

Unrecognizable I/O list element

Label used as format but not defined in
format statement

Integer variable used as assigned format but
no ASSIGN statements

Label of an executable statement used as a
format

Integer variable expected for assigned
format

Label defined more than once as format
Error in reading $USES file
Syntax error in $USES file

SUBROUTINE/FUNCTION name in
$USES file has already been declared

FUNCTIONS cannot return values of type
CHARACTER

Unable to open $USES file

Too many $USES statements

No .TEXT info for this unit in $USES file
Illegal segment kind in $USES file

There is no such unit in this $USES file
Missing UNIT name in $USES statement
Extra characters at end of $USES directive

Intrinsic units cannot be overlayed

A-11

A-12

212 Syntax error in $EXT directive
213 A SUBROUTINE cannot have a type

214 SUBROUTINE/FUNCTION name in $EXT
directive has already been defined

400 Code file write error
401 Too many entries in JTAB

402 Too many SUBROUTINES/FUNCTIONS in
segment

403 Procedure too large (code buffer too small)

404 Insufficient room for scratch file on system
disk

405 Read error on scratch file

Runtime Error Messages

FORTRAN runtime errors occur during program
execution. An error message is displayed on the
console and the program is terminated. The
following is an example of a runtime error message:

**** FORTRAN Runtime Error #603 ****
Segment TEST Proc 2 Offset 20

This indicates that a digit was expected to be input
(error 603 below) in Segment TEST, Procedure 2,
byte offset 20.

The following error messages correspond to the
FORTRAN runtime error numbers:

600 Format missing final ’)’

601 Sign not expected in input

602
603
604
605
606
607

608

609
610
611
612

613

614

615

616
617
618
619

620

Sign not followed by digit in input

Digit expected in input

Missing N or Z after B in format
Unexpected character in format

Zero repetition factor in format not allowed
Integer expected for w field in format

Positive integer required for w field in
format

’.” expected in format

Integer expected for d field in format
Integer expected for e field in format
Positive integer required fore field in format

Positive integer required for w field in A
format

Hollerith field in format must notappear for
reading

Hollerith field in format requires repetition
factor

X field in format requires repetition factor
P field in format requires repetition factor
Integer appears before '+ or’-’ in format
Integer expected after '+ or’-’ in format

P format expected after signed repetition
factor in format

A-13

A-14

621

622
623
624

625

626

627
628

629

630

631

632
633
634
635
636
637

639

Maximum nesting level for formats
exceeded

’Y’ has repetition factor in format
Integer followed by’,” illegal in format
>’ is illegal format control character

Character constant must not appear in
format for reading

Character constant in format must not be
repeated

’/’ in format must not be repeated
P
b

’ in format must not be repeated

BN or BZ format control must not be
repeated

Attempt to perform I/O on unknown unit
number

Formatted I/O attempted on file opened as
unformatted

Format fails to begin with °(’

I format expected for integer read

F or E format expected for real read
Two ’.’ characters in formatted real read
Digit expected in formatted real read

L format expected for logical read

T or F expected in logical read

643

645
646

647

649

650

651
652

653

654

655

656

A format expected for character read
I format expected for integer write

w field in F format not greater than
d field +1

Scale factor out of range of d field in E format
E or F format expected for real write

L format expected for logical write

A format expected for character write

Attempted to do unformatted I/O to a unit
opened as formatted

Unable to write blocked output, possible no
room on device for file

Unable to read blocked input

Error in formatted textfile, no <cr> in last
512 bytes

Integer overflow on input

Too many bytes read out of direct access unit
record

Incorrect number of bytes read from a direct
access unit record

Attempt to open direct access unit on
unblocked device

Attempt to do external I/O on a unit beyond
end of file record

Attempt to position a unit for direct access
on a nonpositive record number

A-15

657

658

659

660

661

662

663

664

665

666

667

697

698

699

Attempt to do direct access to a unit opened
as sequential

Attempt to position direct access unit on
unblocked device

Attempt to position direct access unit
beyond end of file for reading

Attempt to backspace unit connected to
unblocked device

Attempt to backspace sequential,
unformatted unit

Argument to ASIN or ACOS out of bounds
(ABS(X) .GT. 1.0)

Argument to SIN or COS too large
(ABS(X) .GT. 10E6)

Attempt to do unformatted I/O to internal
unit

Attempt to put more than one record into
internal unit

Attempt to write more characters to internal
unit than its length

EOF called on unknown unit

Integer variable not currently assigned a
format label

End of file encountered on read with no
END-= option

Integer variable not ASSIGNed a label used
in assigned GOTO

1000+ Compiler debug error messages - should

A-16

never appear in correct programs

Appendix B. UCSD p-System
FORTRAN 77 and
ANSI Standard Subset
FORTRAN 77
Differences

This appendix is directed at the reader who is
familiar with the ANSI Standard FORTRAN 77
Subset language as defined in ANSI X3.9-1978. It
concisely describes how the UCSD p-System
FORTRAN 77 differs from the standard language.
The differences fall into three general categories:

1) Unsupported Features
2) Full-Language Features

3) Extensions to Standard

Unsupported Features

There are two significant places where UCSD
p-System FORTRAN 77 does not comply with the
standard. One is that procedures cannotbe passed as
parameters and the other is that INTEGER and
REAL data types do not occupy the same amount of
storage. Both differences are due to limitations of
the UCSD P-machine architecture.

Parametric procedures are not supported simply
because there is no practical way to do so in the
UCSD P-machine. The instruction setdoes notallow
the loading of a procedure’s address onto the stack,
and more significantly, does not provide for the
calling of a procedure whose address is on the stack.

REAL variables require 4 bytes of storage while
INTEGER and LOGICAL variables only require 2

B-1

B-2

bytes. This is due to the fact that the UCSD
P-machine supported operations on those types are
implemented in those sizes.

Full-Language Features

There are several features from the full language that
have been included in this implementation for a
variety of reasons. Some were done at either minimal
or zero cost, such as allowing arbitrary expressions
in subscript calculations. Others were included
because it was felt that they would significantly
increase the utility of the implementation, especially
in an engineering or laboratory application. An
example is the generalized I/O that allows easier
control of peripherals. In all cases, a program which
is written to comply with the subset restrictions will
compile and execute properly, since the full
language properly includes the subset constructs. A
short description of full language features included
in the implementation follows.

Subscript Expressions — The subset does not allow
function calls or array element references in
subscript expressions, but the full language and this
implementation do.

DO Variable Expressions — The subset restricts
expressions that define the limits of a DO statement,
but the full language does not. UCSD p-System
FORTRAN 77 also allows full integer expressions in
DO statement limit computations. Similarly,
arbitrary integer expressions are allowed in implied
DO loops associated with READ and WRITE
statements.

Unit I/O Number — FORTRAN 77 allows an I/O
unit to be specified by an integer expression as does
the full language.

Expressions in I/O list — The subset does not allow
expressions to appear in an I/O list whereas the full
language does allow expressions in the I/O list of a
WRITE statement. FORTRAN 77 allows
expressions in the I/O list of a WRITE statement,
providing that they do not begin with an initial left
parenthesis.

Note: The expression (A+B)*(C+D) can be
specified in an output list as +(A+B)*(C+D)
which incidently, does not generate any extra
code to evaluate the leading +.

Expression in computed GOTO — FORTRAN 77
allows an expression for the value of a computed
GOTO, consistent with the full language rather than
the subset language.

Generalized I/O — FORTRAN 77 allows both
sequential and direct access files to be either
formatted or unformatted. The subset language
restricts direct access files to be unformatted, and
sequential files to be formatted. FORTRAN 77 also
contains an augmented OPEN statement which
takes additional parameters that are not included in
the subset. There is also a form of the CLOSE
statement, which is not included at all in the subset.
I/O isdescribed in more detail in Chapters 10 and 11.

Extensions to Standard

The language implemented has several minor
extensions to the full language standard. These are
briefly described below:

Compiler Directives — Compiler directives have
been added to allow the programmer to
communicate certain information to the Compiler.
An additional kind of line, called a Compiler
directive line, hasbeenadded. Itis characterized by a
dollar sign $ appearing in column 1. A Compiler

B-3

B-4

directive line may appear any place that a comment
line can appear, although certain directives are
restricted to appear in certain places. A Compiler
directive line is used to convey certain compile-time
information to the System about the nature of the
current compilation. The set of directives is briefly
listed below:

$INCLUDE filename

Include textually the file filename at this point in the
source. Nested includes are implemented to a depth
of nesting of five files. Thus, for example, a program
may include various files with subprograms, each of
which includes various files which describe common
areas (which would be a depth of nesting of three
files).

$USES ident
[IN filename]
[OVERLAY]

Similar to a USES command in the UCSD Pascal
Compiler. The already compiled FORTRAN
subroutines or Pascal procedures contained in the
.CODE file filename, or in the file
*SYSTEM.LIBRARY (if no file name is present),
become callable from the currently compiling code.
This directive must appear before the initial
non-comment input line. For more details, see
Chapter 13.

$XREF

Produce a cross-reference listing at the end of each
procedure compiled.

$EXT SUBroutine name #parms
or

$EXT [type] FUNCTION name #params

The subroutine or function named name is either an
assembly language routine or a routine in a
$SEPARATE unit (either FORTRAN or Pascal).
The routine has exactly #params reference
parameters.

Backslash Edit Control — The edit control character

can be used in formats to inhibit the normal
advancement to the next record which is associated
with the completion of a READ or a WRITE
statement. This is particularly useful when
prompting to an interactive device, such as
CONSOLE;, so that a response can be on the same
line as the prompt.

End of File Intrinsic Function — An intrinsic
function, EOF, has been provided. The function
accepts a unit specifier as an argument and returns a
logical value which indicates whether the specified
unit is at its end of file.

Lower Case Input — Upper and lowercase source
input is allowed. In most contexts, lowercase
charactersare treated asindistinguishable from their
uppercase counterparts. Lower case is significant in
character constants and Hollerith fields.

B-5

B-6

Appendix C. American Standard

VDIV WN+O

000
001
002
003
004

006
007
010
011
012
013
014
015
016
017
020
021
022
023
024
025
026
027
030
031

033
034
035
036
037

62232 2BHRBR=8AASNABRRZETFEE

040
041
042
043
044

Code for Information

Interchange
20 SP 64 100 40 @
21 ! 65 101 41 A
22 " 66 102 42 B
23 # 67 103 43 C
26 $ 68 104 44 D
25 % 69 105 45 E
26 & 70 106 46 F
27 71 107 47 G
28 (72 110 48 H
29) 73 111 49 1
A * 74 112 A D
B+ 75 113 48 K
T , 76 114 4C L
D - 77 115 4D M
26 . 78 116 4E N
r |/ 79 117 &F O
30 0 80 120 50 P
31 1 81 121 51 Q
32 2 82 122 52 R
33 3 83 123 53 S
34 4 84 124 54 T
35 S 85 125 55 U
36 6 86 126 56 V
37 7 87 127 57 W
38 8 88 130 58 X
39 9 89 131 59 Y
A s 90 132 5A Z
B 91 133 B [
3 < 92 134 5C \
D = 93 135 D]
3E > 94 136 5E °
F o2 95 137 SF

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

140
141
142
143
144
145
146
147
150
151
152
153
154
155
156
157
160
161
162
163
164
165
166

170
171
172
173
174
175
176
177

B l—~—— N X E<CArn 90V O0II —X——TQ -h0QOTD -

INDEX

A

ANSI standard,

differences B-1
apostrophe editing 11-7
arithmetic expressions 7-3
arithmetic IF statement 9-7
arithmetic type

conversion 7-5
array element name 5-8
ASCII C-1
assigned GOTO

statement 9-6
assignment statements 8-3

B

backslash editing 11-8
BACKSPACE
statement 10-26
blank interpretation
(BN,BZ) 11-9
blanks 2-11

C

CALL statement 12-6
character editing 11-13
character expressions 7-6
character set 2-10, C-1
CHARACTER

statement 5-11

character type 3-4
CLOSE statement 10-21
compilation units 13-4
compile-time errors A-1
compiling FORTRAN
programs 2-3
computational assignment
statements 8-3
computed GOTO
statement 9-5
COMMON statement 5-12
codefile 2-9
columns 2-11
comment lines 2-17
compiler directives 2-12
compiler listing 2-6
compiling 2-3
console 10-16
continuation lines 2-17
CONTINUE statement 9-20

D

DATA statement 6-2
data types 3-2
DIMENSION
declarators 5-6
DIMENSION
statement 5-6
dollar sign ($) 2-12
DO statement 9-17

E

edit descriptors 11-7
ELSEIF statement 9-14
ELSE statement 9-15
ENDIF statement 9-16
END statement 9-23
ENDFILE statement 10-27
EQUIVALENCE

statement 5-17
errors 2-8, A-1
executing programs 2-5
$EXT 2-16, 13-13
external functions 12-9
EXTERNAL

statement 5-14

F

f, format specifier 10-16
file name 10-6

file position 10-6

files 10-5

FORMAT statement 11-3
formatted files 10-6
FORTRAN.CODE 2-4
FORTRAN names 4-3
functions 12-8

G

GOTO statement 9-3

H

hollerith editing 11-7

X-2

I

identifiers 4-3

IF statement 9-7

IF-THEN-ELSE 9-9

IMPLICIT statement 5-4

implied DO lists 10-17

$INCLUDE 2-6, 2-13

initial lines 2-17

integer division 7-5

integer editing 11-11

integers 3-2

INTEGER statement 5-10

internal files 10-8

intrinsic functions 12-11,
12-17

INTRINSIC statement 5-15

iolist 10-16

I/O statements 10-15,10-1¢

I/O system 10-3, 10-10

I/O system limitations 10-1C

L

label assighment
statements 8-5

labels 2-17

lines 2-12

linking Pascal and
FORTRAN 13-9

logical editing 11-13

logical expressions 7-8

LOGICAL IF statement 9-§

LOGICAL statement 5-10

logical type 3-3

M

main program 2-19, 12-3

N

notational conventions 1-4
numeric editing 11-10

0

OPEN statement 10-19

P

parameters 12-15

PAUSE statement 9-22
positional editing 11-8
precedence, all ops. 7-9
precedence, arith. ops. 7-4
precedence, logic. ops. 7-8
precedence, relat. ops. 7-7

R

READ statement 10-22
real editing 11-11

reals 3-2

REAL statement 5-10
records 10-4

relational expressions 7-6
RETURN statement 12-14
REWIND statement 10-28
RTUNIT.CODE 2-3
runtime errors A-12
runtime support 2-3

S

SAVE statement 5-16
scale factor editing 11-9
separate compilation 13-8
sequential files 10-7
specification statements 5-3
slash editing 11-8
statement functions 12-12
statements 2-18
statement ordering 2-19
STOP statement 9-21
subprogram units 2-19
SUBROUTINE

statement 12-5
SYSTEM.LIBRARY 2-3

T

type statements 5-9

U

undeclared identifiers 4-5
units 10-9, 13-4

u, unit specifier 10-16
$USES 2-14, 13-6

\%

WRITE statement 10-24

X

$XREF 2-15

Personal Computer
Computer Language Series

Product Comment Form

FORTRAN-77 6936518

Your comments assist us in improving our products. IBM
may use and distribute any of the information you supply
in anyway it believes appropriate without incurring any
obligation whatever. You may, of course, continue to use
the information you supply.

Comments:

If you wish a reply, provide your name and address in
this space.

Name
Address
City State
Zip Code

NO POSTAGE

NECESSARY

IF MAILED
IN THE

UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 123 BOCA RATON, FLORIDA 33432

POSTAGE WILL BE PAID BY ADDRESSEE

IBM PERSONAL COMPUTER
SALES & SERVICE

P.O. BOX 1328-C

BOCA RATON, FLORIDA 33432

...

13y p|od4

aidbIe 1AL AN aenan e

T === Personal Computer
Computer Language Series

Product Comment Form
FORTRAN-77 6936518

Your comments assist us in improving our products. IBM
may use and distribute any of the information you supply
in anyway it believes appropriate without incurring any
obligation whatever. You may, of course, continue to use
the information you supply.

Comments:

If you wish a reply, provide your name and address in
this space.

Name
Address
City State
Zip Code

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 123 BOCA RATON, FLORIDA 33432

POSTAGE WILL BE PAID BY ADDRESSEE

IBM PERSONAL COMPUTER
SALES & SERVICE

P.O. BOX 1328-C

BOCA RATON, FLORIDA 33432

...

a3y plod

ajdeis jou op aseajd ade]

Personal Computer
Computer Language Series

Product Comment Form

Your comments assist us in improving our products. IBM
may use and distribute any of the information you supply
in anyway it believes appropriate without incurring any
obligation whatever. You may, of course, continue to use
the information you supply.

Comments:

If you wish a reply, provide your name and address in
this space.

Name
Address
City State
Zip Code

NO POSTAGE

NECESSARY

IF MAILED
IN THE

UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 123 BOCA RATON, FLORIDA 33432

POSTAGE WILL BE PAID BY ADDRESSEE

IBM PERSONAL COMPUTER
SALES & SERVICE

P.O0. BOX 1328-C

BOCA RATON, FLORIDA 33432

813y pjo4

a|deis 10u op aseald ade |

=== Personal Computer
Computer Language Series

Product Comment Form

FORTRAN-77 6936518

Your comments assist us in improving our products. IBM
may use and distribute any of the information you supply
in anyway it believes appropriate without incurring any
obligation whatever. You may, of course, continue to use
the information you supply.

Comments:

If you wish a reply, provide your name and address in
this space.

Name
Address
City State
Zip Code

NO POSTAGE

NECESSARY

IF MAILED
IN THE

UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 123 BOCA RATON, FLORIDA 33432

POSTAGE WILL BE PAID BY ADDRESSEE

IBM PERSONAL COMPUTER
SALES & SERVICE

P.O. BOX 1328-C

BOCA RATON, FLORIDA 33432

...

aiay pjod

ajdels jou op ases|d ade |

Continued from inside front cover

SOME STATES DO NOT ALLOW THE
EXCLUSION OF IMPLIED
WARRANTIES, SO THE ABOVE
EXCLUSION MAY NOT APPLY TO
YOU. THIS WARRANTY GIVES YOU
SPECIFIC LEGAL RIGHTS AND YOU
MAY ALSO HAVE OTHER RIGHTS
WHICH VARY FROM STATE TO
STATE.

IBM does not warrant that the functions
contained in the program will meet your
requirements or that the operation of the
program will be uninterrupted or error
free.

However, IBM warrants the diskette(s) or
cassette(s) on which the program is fur-
nished, to be free from defects in materials
and workmanship under normal use for a
period of ninety (90) days from the date of
delivery to you as evidenced by a copy of
your receipt.

LIMITATIONS OF REMEDIES

IBM’s entire liability and your exclusive
remedy shall be:

1. the replacement of any diskette(s) or
cassette(s) not meeting IBM’s “Limited
Warranty” and which is returned to
IBM or an authorized IBM PERSONAL
COMPUTER dealer with a copy of your
receipt, or

2. if IBM or the dealer is unable to delivera
replacement diskette(s) or cassette(s)
which 1s free of defects in materials or
workmanship, you may terminate this
Agreement by returning the program
and your money will be refunded.

IN NO EVENT WILL IBM BE LIABLE
TO YOU FOR ANY DAMAGES,
INCLUDING ANY LOST PROFITS,
LOST SAVINGS OR OTHER
INCIDENTAL OR CONSEQUENTIAL

DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE SUCH
PROGRAM EVEN IF IBM OR AN
AUTHORIZED IBM PERSONAL
COMPUTER DEALER HAS BEEN
ADVISED OF THE POSSIBLITY OF
SUCH DAMAGES, OR FOR ANY
CLAIM BY ANY OTHER PARTY.

SOME STATES DO NOT ALLOW THE
LIMITATION OR EXCLUSION OF
LIABILITY FOR INCIDENTAL OR
CONSEQUENTIAL DAMAGES SO
THE ABOVE LIMITATION OR
EXCLUSION MAY NOT APPLY TO
YOU.

GENERAL

You may not sublicense, assign or
transfer the license or the program
except as expressly provided in this
Agreement. Any attempt otherwise to
sublicense, assign or transfer any of the
rights, duties or obligations hereunder is
void.

This Agreement will be governed by the
laws of the State of Florida.

Should you have any questions
concerning this Agreement, you may
contact IBM by writing to IBM Personal
Computer, Sales and Service, P.O. Box
1328-W, Boca Raton, Florida 33432.

YOU ACKNOWLEDGE THAT YOU
HAVE READ THIS AGREEMENT,
UNDERSTAND IT AND AGREE TO
BE BOUND BY ITS TERMS AND
CONDITIONS. YOU FURTHER
AGREE THAT IT IS THE COMPLETE
AND EXCLUSIVE STATEMENT OF
THE AGREEMENT BETWEEN US
WHICH SUPERSEDES ANY
PROPOSAL OR PRIOR AGREEMENT,
ORAL OR WRITTEN, AND ANY
OTHER COMMUNICATIONS
BETWEEN US RELATING TO THE
SUBJECT MATTER OF THIS
AGREEMENT.

International Business Machines Corporation

P.O. Box 1328-W
Boca Raton, Florida 33432

6936518

Printed in United States of America

