
HEWLETT-PACKARD

UCSD p-System™
Version IV .1
FORTRAN

Reference Manual

O
rig

in
al

 d
oc

um
en

t c
ou

rt
es

y
o

f
S

te
ve

 G
ra

dy
 (

S
yd

ne
y,

 A
us

tr
al

ia
) .

S
ca

nn
ed

 o
n

8
-A

u
g

-2
0

1
6

 b
y

B
re

tt
 H

al
/e

n
(S

yd
ne

y,
 A

us
tr

al
ia

).

Printed in U.S.A.

F//dl HEWLETT
~e..I PACKARD

UCSD p-System™
Version IV.1

FORTRAN
Reference Manual

August 1982

Reorder Number
00087-90389

©Hewlett-Packard Company 1982

UCSD, UCSD Pascal, and UCSD p-System are all trademarks of the Regents of the
University of California. Use thereof in conjunction with any goods or services is
authorized by specific license only, and any unauthorized use is contrary to the
laws of the State of California.

Copyright © 1980 by Silicon Valley Software, lnc.
Revisions copyright @1980, 1981 by SofTech Microsystems, lnc.

DISCLAIMER:
This document and the software it describes are subject to change without
notice. No warranty expressed or implied covers their use. Neither the
manufacturer nor the seller is responsible or liable for any consequences of
their use.

TABLE OF CONTENTS

Introduction - Overview of this Manual and Notational Conventions

0.1. Manual Overview •..
0.2. Notational Conventions.

Chapter 1 - How to use FORTRAN 77

1.1. How to Compile and Execute a FORTRAN Program ..
1.1.l. Compiling a FORTRAN program.
1.1.2. Providing Runtime Support.
1.1.3. Executing a FORTRAN program.

1.2. Form of Input Programs .•••••
1.2.1. $INCLUDE Statement.

1.3. Compiler Listing.
1.4. Code File •.••••

Chapter 2 - Basic Structure of a FORTRAN Program

2.1. Character Set.
2.2. Lines. • •
2.3. Columns
2.4. Blanks .•...•
2.5. Compiler Directive Lines.

2.6.
2.7.

2.8.

2.5.1 $INCLUDE
2.5.2 $USES .
2.5.3 $XREF
2.5.4 $EXT .•

Comment Lines ..
Statements, Initial Lines, Continuation Lines, and

Labels .•.•....
2. 7.1. Labels
2.7.2. Initial Lines •••••
2. 7.3. Continuation Lines ..••.•
2.7.4. Statements •..•.

Main Program and Subprogram Units and Ordering of
Statements within Program Units.•.
2.8.l. Program Units - Main Program and Subprogram

Program Uni ts.
2.8.2. Statement Ordering Within a Program Unit. •
2.8.3. The Final Statement of a Source Program.

Chapter 3 - Data Types

3.1. The Integer Type .•
3.2. The Real Type ...

ii

l
l
l
2
2
2
3
5

7
7
8
8
8
8
9
9
9
9

10
10
10
10
11

11

11
11
12

15
15

3.3. The Logical Type.
3.4. The Character Type.

Chapter 4 - FORTRAN Names

4.1. Scope of FORTRAN Names ..•
4.2. Undeclared FORTRAN Names.

Chapter 5 - Specification Statements

16
16

19
20

5.1. IMPLICIT Statement. 21
5.2. DIMENSION Statement. 22

5.2.l. Dimension Declarators. 22
5.2.2. Array Element Name.. 23

5.3. Type Statements. • . 23
5.3.1. INTEGER, REAL, and L_OGICAL Type Statements. 23
5.3.2. CHARACTER Type Statement. 24

5.4. COMMON Statement.. . 24
5.5. EXTERNAL Statement.. 25
5.6. INTRINSIC Statement. . 2 5
5. 7. SA VE Statement. 26
5.8. EQUIVALENCE Statement.. 26

5.8.l. Restrictions on EQUIVALENCE Statements. 27

Chapter 6 - DAT A Statement • 29

Chapter 7 - Expressions

7 .1. Arithmetic Expressions. . • . . • . . . • • .
7.1.l. Integer Division•.
7.1.2. Type Conversions and Result Types ot

Arithmetic Operators •.
7.2. Character Expressions.
7.3. Relational Expressions ...
7.4. Logical Expressions.
7 .5. Precedence of Operators.
7.6. Evaluation Rules and Restrictions for Expressions.

Chapter 8 - Assignment Statements

8.1. Computational Assignment Statements .•
8.2. Label Assignment Statement.

Chapter 9 - Control Statements

9.1. Unconditional GOTO.
9.2. Computed GOTO.
9.3. Assigned GOTO •••••

31
32

32
33
33
34
35
35

37
38

39
39
40

9.4. Arithmetic IF 40
41
41
43
43
44
44
44
46
46
46
47

9.5. Logical IF
9.6. Block if then else.

9.6.1. Block IF •.
9.6.2. ELSEIF .•.
9.6.3. ELSE ..
9.6.4. ENDlF.

9.7. DO
9.8. CONTINUE.
9.9. STOP. •
9.10. PAUSE.
9.11. ENO. .

Chapter 10 - 1/0 System

10.1. 1/0 System Oyerview. . 49
10.1.l. Records. . . . 49
10.l.2. Files.. • • • • 50
10.l.3. File Properties. 50

10.1.3.l. File Name. 50
10.1.3.2. File Position. 51
10.1.3.3. Formatted and Unformatted Files. 51
10.1.3.4. Sequential and Direct Access

Proper ti es. • 51
10.1.4. Internal Files. 52

10.1.4.1. Special Properties of Internal Files. 52
10.1.5. Units. . . . • 52

10.2. General Discussion of I/O System Concepts and
Limitations. . • . • • . . • • • . . . • • • • . • . • 53
10.2.1. General Discussion of FORTRAN 1/0 System.. . 53
10.2.2. Example Program Illustrating Most Common I/O

Operations.. . . . • 53
10.2.3. Use of Less Common File Operations. . • 54
10.2.4. Limitations of the FORTRAN 1/0 System. 55

10.2.4.l. Direct Files must be Associated with
Blocked Devices. 55

10.2.4.2. BACKSPACE only Applies to Files
Associated with Blocked Devices. 55

10.2.4.3. BACKSPACE may not be Used on
Unformatted Sequential Files. 55

10.2.4.4. Side Effects of Functions Called
in I/O Statements. 56

10.3. I/O Statements. • . 56
10.3.1. Elements of 1/0 Statements. • . . . 56

10.3.1.1. The Unit Specifier ('u'), • 56
10.3.1.2. The Format Specifier (T). 57
10.3.l.3. The Input-Output List ('iolist'), 57

10.3.l.3.l. Input Entities. . 57
10.3.1.3.2. Output Entities. 57
10.3.1.3.3. Implied DO lists. 58

10.3.2. 1/0 Statements. • . . . • 58
10.3.2.l. OPEN Statement. . . 58
10.3.2.2. CLOSE Statement. 60

10.3.3.

10.3.2.3. READ Statement. .•...
10.3.2.4. WRITE Statement.
10.3.2.5. BACKSPACE Statement. •
10.3.2.6. ENDFILE Statement. •
10.3.2. 7. REWIND Statement. •

Restriction on I/O Side Effects of Functions .•.

61
62
63
63
63
63

Chapter 11 - Formatted I/O and the FORMAT Statement

11.1. Format Specifications and the FORMAT Statement.. 65
11.2. Interaction between Format Specification and I/O List.. 66
11.3. Edit Descriptors.. • • . . • 67

11.3.1. Nonrepeatabie Edit Descriptors.. • . . • . 68
11.3.1.1. 'xxxx' (Apostrophe Editing). . 68
11.3.1.2. H (Hollerith Editing). . . 68
11.3.1.3. X (Positional Editing). . . 68
11.3.1.4. I (Slash Editing). • . • . . 68
11.3.1.5. \ (Backslash Editing).. . . . 69
11.3.1.6. P (Scale Factor Editing). 69
11.3.1. 7. BN and BZ (Blank Interpretation). . 69

11.3.2. Repeatable Edit Descriptors. • 70
11.3.2.1. I, F, and E (Numeric Editing,

General Description). 70
11. 3.2.2. I (Integer Editing). . 70
11.3.2.3. F (Real Editing). • . . 71
11.3.2.4. E (Real Editing). • • • 71
11.3.2.5. L (Logical Editing).. . 72
11.3.2.6. A (Character Editing). 72

Chapter 12 - Programs, Subroutines and Functions

12.1. Main Program
12.2. Subroutines.

12.2.1. SUBROUTINE Statement.
12.2.2. CALL Statement. . .

12.3. Functions.
12.3.1. External Functions •.
12.3.2. Intrinsic .Functions
12.3.3. Statement Functions ..

12.4. RETURN Statement.
12.5. Parameters.

Chapter 13 - Compilation Units

13.1. Units, Segments, Partial Compilation, and FORTRAN.
13.2. The $USES Compiler Directive.

13.2.1. Separate Compilation.
13.3. Linking Pascal and FORTRAN •.
13.4. The $EXT Compiler Directive .•.

73
73
73
74
75
75
76
76
77
78

83
84
85
85
88

Appendix A Differences Between FORTRAN 77 and ANSI
Standard Subset FORTRAN 77

A.l. Unsupported Features ...
A.2. Full-Language Features ••
A.3. Extensions to Standard.

Appendix B - FORTRAN Error Messages

B.l. Compile-Time Error Messages. • ••••••••
B.2. Run-Ti me Error Messages. • • . • • •••

91
91
92

95
99

INTRODUCTION - Overview of this Manual and Notational Conventions

0.1. Manual Overview.

This manual in intended as a user reference manual for the FORTRAN 77 language
system. FORTRAN 77 is a dialect of FORTRAN which is closely related to the
ANSI Standard FORTRAN 77 Subset language defined in ANSI X3.9-1978. Readers
familiar with the ANSI standard will find a concise description of the
differences between FORTRAN 77 and the standard in Appendix A; in general,
this manual does not presume that the reader is familiar with the standard.

FORTRAN 77 runs on the UCSD P-machine architecture, which is available on a
variety of host machines as a language system integrated into the UCSD
Operating System. The reader is assumed to be somewhat familiar with the use
of the UCSD Operating System and Text Editor, although the specifics of how
to compile, link, and execute a FORTRAN program in the UCSD environment are
covered in this manual. Refer to the UCSD Pascal User's Manual for more
details.

This manual is intended primarily as a reference manual for the FORTRAN system,
and contains all of the information necessary to fully utilize it. The reader is
assumed to have some prior knowledge of some dialect of FORTRAN, although
someone familiar with another high level language should be able to learn
FORTRAN from this manual. The manual is not a tutorial in the sense that it
does not teach the reader, step by step, the concepts necessary to write
successively more complex programs in FORTRAN; rather, each section of the
manual fully explains one part of the FORTRAN language system.

The manual is organized as follows: Chapters O, 1, and 2 are general, and describe
the manual and basics necessary in order to successfully use FORTRAN in even a
trivial way. Chapters 3, 4, and 5 describe the data types available in the language
and how a program assigns a particular data type to an identifier or constant.
Chapter 6 deals with the DAT A statement, which is used for initialization of
memory. Chapters 7, B, 9, and 10 define the executable parts of programs and the
meanings associated with the various executable constructs. 1/0 statements are
presented in chapter 10, and the associated FORMAT statement and formatted 1/0
are described in Chapter 11. The subroutine structure of a FORTRAN compilation,
including parameter passing and intrinsic (system provided) functions, is the topic
of Chapter 12. Finally, Chapter 13 discusses the rather sophisticated means which
exist for compiling FORTRAN subroutines separately, overlaying, and linking in
subroutines which are written in other languages.

FORTRAN Reference Manual
Introduction

0.2. Notational Conventions.

These are the notational conventions used throughout this manual:

Upper Case and Special Characters - are written as they would be in a program.

Lower Case Letters and Words - indicate generalizations which must be replaced
by actual FORTRAN syntax in a program, as described in the text. The reader
may assume that once a lowercase entity is defined, it retains its meaning for the
entire context of discussion.

Example of Upper and Lower Case: The format which describes editing of integers
is denoted 'lw', where w is a nonzero, unsigned integer constant. Thus, in an
actual statement, a program might contain 13 or 144. The format which describes
editing of reals is 'Fw.d', where d is an unsigned integer constant. In an actual
statement, F7.4 or F22.0 are valid. Notice that the period, as a special character,
is taken literally.

Brackets - indicate op ti on al i terns.

Example of Brackets: 'A[w]' indicates that either A or Al2 are valid (as a means
of specifying a character format).

- is used to indicate ellipsis. That is, the optional item preceding the three
dots may appear one or more ti mes.

Example of ... : The computed GOTO statement is described by 'GOTO (s [, s] •.•)
[,] i' indicating that the syntactic item denoted by s may be repeated any number
of times with commas separating them.

Blanks normally have no significance in the description of FORTRAN statements.
The general rules for blanks, covered in chapter 2, govern the interpretation of
blanks in all contexts.

ii

CHAPTER l

How to use FORTRAN 77

This chapter describes how to use FORTRAN 77. It assumes that the reader
is familiar with the basic operation of the UCSD Pascal Operating System.
The mechanics of preparing, compiling, linking, and executing a FORTRAN
program are outlined, and an explanation of the Compiler listing file is
given.

1.1. How to Compile, Link, and Execute a FORTRAN Program.

1.1.l. Compiling a FOR TRAN program.

The FORTRAN 77 Compiler is invoked as the Pascal Compiler would be invoked:
by typing 'C' at the command level. The R(un command, which will compile
and execute a program, may also be used. If the file has already been
compiled, the R(un command will simply execute the code file. For these
commands to call FORTRAN, the FORTRAN Compiler must be named SYSTEM.COMPILER.
When your disk is shipped, the FORTRAN Compiler is named FORTRAN.CODE. To
make it SYSTEM.COMPILER, type 'F' to enter the Filer, C(hange SYSTEM.COMPILER
to PASCAL.CODE, and C(hange FORTRAN.CODE to SYSTEM.COMPILER. To start using
Pascal again, reverse the renaming process.

Typing 'C' or 'R' at the command level causes the compiler to use the workfiles
SYSTEM.WRK.TEXT and SYSTEM.WRK.CODE. lf no workfile is present, the
Operating System will prompt for the name of a .TEXT file to use.

The FORTRAN Compiler will prompt for a listing file. lf a <return> is typed, no
listing will be generated.

Once the prompts are all answered, the actual compilation begins. The progress
of the compilation will be shown on the console by a successive display of dots.
Each dot represents one line of source code.

Remember that anything which applies to the Pascal SYSTEM.COMPILER will now
apply to FORTRAN. The UCSD p-System Users' Manual should be referred to for
more information.

1.1.2. Providing Runtime Support.

To run any program on the UCSD p-System, some runtime support is needed. The
package of routines which do this for FORTRAN is distinct from the package
which does this for Pascal, and is originally shipped in the file RTUNIT.CODE.
When you change FORTRAN.CODE to SYSTEM.COMPILER, you must also change

FORTRAN Reference Manual
How to use FOR TRAN 77

SYSTEM.LIBRARY to PASCAL.LIBRARY (or some other name you will remember),
and RTUNIT.CODE to SYSTEM.LIBRARY. After this is done, you may run your
FORTRAN programs.

lt may be that you have placed programs of your own in SYSTEM.LIBRARY. ln
this case, you will be familiar with the use of the Librarian. RTUNIT.CODE should
be added to the SYSTEM.LIBRARY file. The library text file facility described in
Section 11.3.l of the Users' Manual is also available to FORTRAN programmers.

1.1.3. Executing a FORTRAN program.

A compiled, linked FORTRAN program is executed in the same manner as any
other user progam, i.e. by typing an 'X' at the command level, followed by the
name of the file containing the linked program.

1.2. Form of Input Programs.

All input source files read by FORTRAN must be UCSD .TEXT files. This allows
the Compiler to read large blocks of text from a disk file in a single operation,
increasi r1g the compile speed significantly. The simplest way to prepare .TEXT
files is to use the Screen Oriented Editor. For a more precise description of the
fields in a FORTRAN 77 source statement, see Chapter 2 which explains the basic
structure of a FORTRAN program.

1.2.l. $INCLUDE Statement.

To facilitate the manipui'ation of large programs, the SofTech Microsystems
Compiler has extended the FORTRAN 77 standard with an $INCLUDE Compiler
directive. The format of the di rec ti ve is:

$INCLUDE file.name

with the $ appearing in column l (see Section 2.5 for an explanation of Compiler
directives in general). The meaning is to compile the contents of the file
'file.name', and insert the code into the current code file, before continuing with
compilation of the current file. The incl-uded file may contain additional
$INCLUDE directives, up to a maximum of five levels of files (four levels of
$INCLUDE directives). lt is often useful to have the description of a COMMON
block kept in a single file and to include it in each subroutine that references that
COMMON area, rather than making and maintaining many copies of the same
source, one in each subroutine. There is no limit to the number of $INCLUDE
directives that can appear in a source file.

2

1.3. Compiler Listing.

FORTRAN Reference Manual
How to use FOR TRAN 77

The Compiler listing, if requested, contains various information that may be useful
to the FORTRAN programmer. The listing consists of the user's source code as
read, along with line numbers, symbol tables, error messages, and optional cross­
reference information.

The following is a sample listing:

3

FORTRAN Reference Manual
How to use FORTRAN 77

FORTRAN Compiler lV.O [0.0]
0. 0 c
l. 0 C -- Example Program 111234
2. 0 c
3. 0
4. 0 $XREF
5. 0
6. 0
7. 0
8. 0
9. 0

10. 0
11. 0
12. 6
13. 9 200

***** Error number:
14. 20

PROGRAM EX1234

INTEGER A(l0,10)
CHARACTER *4 C

CALL lNlT(A,C)
1 = l

A(l) = 1
57 in line: 13

1 = 1 + l
15. 26 IF (lABS(l0-1) .NE. 0) GOTO 200
16. 37
17. 37 END

A INTEGER 3 8 11
C CHAR* 4 103 9 11
EX1234 PROGRAM 6

INTEGER 105 1 2 13

14 15
lABS INTRINSIC 15
lNlT SUBROUTINE 2,FWD 11

18. 0 SUBROUTINE lNlT(B,D)
19. 0 INTEGER B(l0,10)
20. 0 CHARACTER*4 D
21. 0
22. 0 RETURN
23. 2 END

B INTEGER 2* 18 19
D CHAR* 4 l* 18 20
lNlT SUBROUTINE 2 18

EX1234 PROGRAM
lNlT SUBROUTINE 2,7

24 lines. 1 errors.

4

13

1 3 14

FORTRAN Reference Manual
How to use FOR TRAN 77

The first line indicates which version uf the Compiler was used for this
compilation. In the example it is version 0.0 for the UCSD Operating System
version IV.O. The leftr'1ost column uf numbers is the source-line number. The
next column indicates the procedure-relative instruction counter that the
corresponding line of source code occupies as object code. lt is only meaningful
for executable statements and data statements. To the right of the instruction
counter is the source statement.

Errors are indicated hy a row of rislerisks followed by the error number and line
number, as appears in the example between lines 13 and 14. ln this case it is
error number 57, "Too few subscripts", indicating that there are not enough
subscripts in the array reference A(!).

At the end of each routine (function, subroutine, or main program), a local symbol
table is printed. This table lists rill identifiers that were referenced in that
program unit, along with their definition. If the $XREF Compiler directive has
been given, a table of all lines containing an instance of that identifier rn the
current program unit is also printed. If the identifier is a variable, it is
accompanied by its type and location. lf the variable is a parameter, its location
is followed by an asterisk, such as the variables B and D in the SUBROUTINE
lNIT. lf the variable is in a corTirnon block, then the name of the block follows
enclosed by slashes. If the identifier is not a variable, it is described appropriately.
For subroutines zrnd functions, the unit-relative procedure number is given. lf it
resides in a different segment, then the segment number follows. If the Compiler
assumes that it will reside in the same segment, but has not appeared yet, it is
listed as a forward program unit by the notation 'FWD'.

At the end of the compilation, the global symbol table is printed. lt contains all
global FORTf'\AN symbols referenced in the compilation. No cross-reference is
g1 ven. The number of source lir1es compiled and the number of errors encountered
follows. lf there v;ere any errors, then no object file is produced.

1.4. The Codef ile.

The object codefile generated by the FOF\ n~\AN Compiler is compatible with the
UCSD Linker and Librarian. Indeed, it is hard to tell by examining a codefile
whether it was created by the FORTRAN Compiler or the Pasco! Compiler. For a
description of the binary format of a codefile, see the UCSD p-System Users'
Manual.

FORTRAN Reference Manual
How to use FORTRAN 77

6

CHAPTER 2

Basic Structure of a FORTRAN Program

ln the most fundamental sense, a FORTRAN program is a sequence of characters
which, when fed to the Compiler, are understood in various contexts as characters,
identifiers, labels, constants, lines, statements, or other (possibly overlapping)
syntactic substructure groupings of characters. The rules which the Compiler uses
to group the character stream into certain substructures, as well as various
constraints on how these substructures may be related to each other in the source
program character stream will be the topic of this chapter.

2.1. Character Set.

A FOR TRAN source program consists of a stream of characters, originating in a
.TEXT file, consisting of:

Letters - The 52 upper and lower case letters A through Z and a
through z.

Digits - O, 1, 2, 3, 4, 5, 6, 7, 8, and 9.

Special Characters - The remaining printable characters of the ASCll
character set.

The letters and digits, treated as a single group, are called the alphanumeric
characters. FORTRAN interprets lower case letters as upper case letters in all
contexts except in character constants and Hollerith fields. Thus, the following
user-defined names are all indistinguishable to the FORTRAN Compiler:

ABC DE abcde AbCdE aBcDe

ln addition to the above, actual source programs given to the FORTRAN Compiler
contain certain hidden (nonprintable) control characters inserted by the Text Editor
which are invisible to the user. FORTRAN uses these control characters in
exactly the same way as the Text Editor, and transforms them, using the rules of
UCSD • TEXT files, into the FOR TRAN character set.

The collating sequence for the FORTRAN character set is the ASCll sequence.

2.2. Lines.

A FOR TRAN source program may also be considered a sequence of lines,
corresponding to the normal notion of line in the Text Editor. Only the first 72
characters in a line are treated as significant by the Compiler, with any trailing
characters in a line ignored. Note that lines with fewer than 72 characters are
possible and, if shorter than 72 columns, the Compiler does treat as significant the

7

FORTRAN Reference Manual
Basic Structure of a FOR TRAN Program

length of a line (see Section 3.4, which describes character constants, for an
illustration of this).

2.3. Columns.

The characters in a given line fall into columns, with the first character being in
column 1, the second in column 2, etc. The column in which a character resides
is significant in FORTRAN, with columns l through 5 being reserved for statement
labels, column 6 for continuation indicators and other column conventions, columns
7 through 72 for actual statements.

2.4. Blanks.

The blank character, with the exceptions noted below, has no significance in a
FORTRAN source program and may be used for the purpose of improving the
readability of FORTRAN programs. The exceptions are:

Banks within string constants are significant

Blanks within Hollerith fields are significant

Blanks on Compiler directive lines are significant

A blank in column 6 is used in distinguishing initial lines from
continuation lines

Blanks count in the total number of characters the Compiler processes
per line and per statement

2.5. Compiler Directive Lines.

A line is treated as a ·compiler directive if the $ character appears in column J.
of an input line. Compiler directives are used to transmit various kinds of
information to the Compiler. A Compiler directive line may appear any place that
a comment line can appear, although certain directives are restricted to appear in
certain places. Blanks are significant on Compiler directive lines, and are used to
deliriit keywords and filenames. The set of directives is described below:

2 .5.1 $INCLUDE

$INCLUDE filename

8

FORTRAN Reference Manual
Basic Structure of a FORTRAN Program

Include textually the file 'filename' at this point in the source. Nested includes are
implemented to a depth of nesting of five files. Thus, for example, a program may
include various files with subprograms, each of which includes various files which
describe COMMON areas (which would be a depth of nesting of three files).

2.5.2 $USES

$USES ident
[IN filename]
[OVERLAY]

Similar to the USES command in the UCSD Pascal Compiler. The already
compiled FORTRAN subroutines or Pascal procedures contained in the .CODE file
'filename', (or in the file '*SYSTEM.LIBRARY' if no file name is present), become
callable from the currently compiling code. This directive must appear before the
initial non-comment input line. For more details, see Chapter 13.

2.5.3 $XREF

$XREF

Produce a cross-reference listing at the end of each procedure compiled.

2.5.4 $EXT

$EXT SUBROUTINE name f/params
or

$EXT [type] FUNCTION name f/params

The su brou tine or function called 'name' is an Assembly Language routine. The
routine has exactly '//params' reference parameters.

2.6. Comment Lines.

A line is treated as a comment if any one of the following conditions are met:

A 'C' (or 'c') in column 1.

A '*' in column 1.

Line contains all blanks.

SJ

FORTRAN Reference Manual
Basic Structure of a FORTRAN Program

Comment lines do not effect the execution of the FORTRAN program in any way.
Comment lines must be followed immediately by an initial line or another comment
line. They must not be followed by a continuation line. Note that extra blank
lines at the end of a FORTRAN program result in a compile time error since the
system interprets them as comment lines but they are not followed by an initial
line.

2. 7. Statements, Initial Lines, Continuation Lines, and Labels.

Sections 2.7.l through 2.7.4 define a FORTRAN statement in terms of the input
character stream. The Compiler recognizes certain groups of input characters as
complete statements according to the rules specified here. The remainder of this
manual will further define the specific statements and their properties. When it is
necessary to refer to specific kinds of statements here, they are simply referred to
by name.

2. 7 .1. Labels.

A statement label is a sequence of from one to five digits. At least one digit
must be nonzero. A label may be placed anywhere in columns l through 5 of an
initial line. Blanks and leading zeros are not significant.

2.7.2. Initial Lines.

An initial line is any line which is not a comment line or a Compiler directive line
and contains a blank or a 0 in column 6. The first five columns of the line must
either be all blank or contain a label. With the exception of the statement
following a logical IF, FORTRAN statements all begin with an initial line.

2. 7 .3. Continuation Lines.

A continuation line is any line which is not a comment line or a Compiler
directive line and contains any character in column 6 other than a blank or a 0.
The first five columns of a continuation line must be blanks. A continuation line
is used to increase the amount of room to write a given statement. 1f it will not
fit on a single initial line, it may be extended to include up to 9 continuation
lines.

10

2. 7 .4. Statements.

FORTRAN Reference Manual
Basic Structure of a FORTRAN Program

A FOR TRAN statement consists of an initial line, followed by up to 9 continuation
lines. The characters of the statement are the up to 660 characters found in
columns 7 through 72 of these lines. The END statement must be wholly written
on an initial line, and no other statement may have an initial line which appears
to be an END statement.

2.8. Main Program and Subprogram Units and Ordering of
Statements within Program Units.

The FOR TRAN language enforces a certain ordering among statements and lines
which make make up a FORTRAN compilation. ln general, a compilation consists
of some number of subprograms (possibly zero), and at most one main program (see
Sections on compilation units and subroutines). The various rules for ordering
statements appear below.

2.8.l. Program Units - Main Program and Subprogram Program Units.

A subprogram begins with either a SUBROUTINE or a FUNCTION statement and
ends with an END statement. A main program begins with a PROGRAM
statement, or any other than a SUBROUTINE or FUNCTION statement, and ends
with an END statement. A subprogram or the main program is referred to as a
program unit.

2.8.2. Statement Ordering Within a Program Unit.

Within a program unit, whether a main program or a subprogram, statements must
appear in an order consistent with the following rules:

A SUBROUTINE or FUNCTION statement, or PROGRAM statement, if
present, must 3ppear as the first statement of the program unit.

FORMAT statements may appear anywhere after the SUBROUTINE or
FUNCTION statement, or PROGRAM statement if present.

All specification statements must precede all DAT A statements,
statement function statements, and executable statements.

All DAT A statements must appear after the specification statements
and precede all statement function statements and executable
statements.

11

FORTRAN Reference Manual
Basic Structure of a FOR TRAN Program

All statement function statements must precede all executable
statements.

Within the specification statements, the llv1PL1ClT statement must
precede all other specification statements.

These rules are illustrated in the following chart:

PROGRAM, FUNCTION, or SUBROUTINE Statement

lMPLIClT Statements

Other Specification Statements
Comment FORMAT
Un es Statements DAT A Statements

Statement Function Statements

Executable Statements

END Statement

Table 2.1. Order of Statements within Program Units.

The chart is to be interpreted as follows:

Classes of lines or statements above or below other classes must
appear in the designated order.

Classes of lines or statements may be interspersed with other classes
which appear across from one another.

2 .8.3. The Final Statement of a Source Program.

l
I

I
·--

·-

When creating FORTRAN programs with the UCSD Editor, the final END statement
must be entered as a complete line. That is, there must be a "return" character
following the statement. Otherwise, the Compiler will not find the END statement
and will issue an error message. In addition, that "return" character must be the
final character in the program source file. Any further characters, even blanks,
might be considered part of a subsequent subprogram by the Compiler.

J 7,

CHAPTER 3

Data Types

There are four basic data types in SofTech Microsystems FORTRA~'1 77: inteqer,
re al, logical, and character. This chapter describes the properties of each type,
the range of values for each type, and the form of constants for each type.

3.1. The Integer Type.

The integer data type consists of a subset of the integers. An integer value is <'ln
exact representation of the corresponding integer. An integer variable occupies
one word (two bytes) of :=:torage and can contain any value in the range -32768 to
32767. Integer constants consist of a sequence of one or more decimal digits
preceeded by an optional arithmetic sign, + or -, and must be in range. A
decimal point is not allowed in an integer constant. The following are examples
of integer constants:

123 +123 -123 0 00000123 32767 -32768

3.2. The Real Type.

The real data type consists of a subset of the real numbers. A real value is
normally an approximation of the real number desired. A real variable occupies
two consecutive words (4 bytes) of storage. The range of real values is
approximately:

-l.7E+38 ... -5.BE-39 0.0 5.BE-39 ... l.7E+38 (LSl-11)

The actual range depends upon which computer is being used. The precision 1s
greater than 6 decimal digits.

A basic real constant consists of an optional sign followed by an integer part, a
decimal point, and a fraction part. The integer and fraction parts consist of l or
more decimal digits, and the decimal point is a period, ',', Either the integer part
or the fraction part may be omitted, but not both. Some sample basic real
constants follow:

-123.456
-12 3.
-.456

+123.456
+123.
+.456

123.456
12 3.
.456

An exponent part consists of the letter 'E' followed by an optionally signed integer
constant. An exponent indicates that the value preceding it is to be multiplied by
10 to the value of the exponent part's integer. Some sample exponent parts are:

El2 E-12 E+l2 ED

13

FOR TRAN Reference Manual
Data Types

A real constant is either a basic real constant, a basic real constant followed by
an exponent part, or an integer constant followed by an exponent part. For
example:

+l.OOOE-2
+0.01

l.E-2
100.0E-4

lE-2
.0001E+2

all represent the same real number, one one-hundredth.

3.3. The Logical Type.

The logical data type consists of the two logical values true and false. A logical
variable occupies one word (two bytes) of storage. There are only two logical
constants, .TRUE. and .FALSE., representing the two corresponding logical values.
The internal representation of .FALSE. is a word of all zeros, and the
representation of .TRUE. is a word of all zeros but a one in the least significant
bit. lf a logical variable contains any other bit values, its logical meaning is
undefined.

3.4. The Character Type.

The character data type consists of a sequence of ASCll characters. The length
of a character value is equal to the number of characters in the sequence. The
length of a particular constant or variable is fixed, and must be between 1 and
127 characters. A character variable occupies one word of storage for each two
characters in the sequence, plus one word if the length is odd. Character
variables are always aligned on word boundaries. The blank character is allowed in
a character value and is significant.

A character constant consists of a sequence of one or more characters enclosed by
a pair of apostrophes. Blank characters are allowed in character constants, and
count as one character each. An apostrophe within a character constant is
represented by two consecutive apostrophes with no blanks inbetween. The length
of a character constant is equal to the number of characters between the
apostrophes, with doubled apostrophes counting as a single apostrophe character.
Some sample character constants are:

'A' 'Help!' 'A very long CHARACTER constant'

Note the last example, that represents a single apostrophe, ',

FORTRAN allows source lines with up to 72 columns. Shorter lines are not
padded out to 72 columns, but left as input. When a character constant extends
across a line boundary, its value is as if the portion of the continuation line

14

FOR TRAN Ref ere nee Manual
Data Types

beginning with column 7 is juxtapositioned immediately after the last character on
the initial line. Thus, the FORTRAN source:

200 CH = 'ABC<cr>
X DEF'

(where the '<er)' indicates a carriage return, or the end of the source line) is
equivalent to:

200 CH = 'ABC DEF'

with the single space between the C and D being the equivalent to the space in
column 7 of the continuation line. Very long character constants can be
represented in this manner.

15

FORTRAN Reference Manual
Data Types

16

CHAPTER 4

FORTRAN Names

A FORTRAN narne, or identifier, consists of an initial alphabetic character
followed by a sequence of 0 through 5 alphanumeric characters. Blanks may
appear within a FORTRAN name but have no significance. A name is used to
denote a user- or system-defined' variable, array, function, subroutine, etc. Any
valid sequence of characters may be used for any FORTRAN name. There are no
reserved names as in other languages. Sequences of alphabetic characters used as
keywords are not to be confused with FORTRAN names. The Compiler recognizes
keywords by their context and in no way restricts the use of user chosen names.
Thus, a program can have, for example, an array named IF, READ, or GOTO, with
no error indicated by the Compiler (as long as it conforms to the rules that all
arrays must obey). Using such names, however, is not a recommended practice.

4.1. Scope of FOR TRAN Names.

The scope of a name is the range of statements in which that name is known, or
can be referenced, within a FORTRAN program. ln general, the scope of a narne
is either global or local, although there are several exceptions. A name can only
be used in accordance with a single definition within its scope. The same narne,
however, can have different definitions in distinct scopes.

A name with global scope may be used in more than one program unit (a
subroutine, function, or the main program) and still refer to the same entity. ln
fact, names with global scope can only be used in a single, consistent manner
within the same program. All subroutine, function subprogram, and common
names, as well as the program name, have global scope. Therefore, there cannot be
a function subprogram that has the same name os a subroutine subprogram or as a
common data area. Similarly, no two function subprograms in the same program
can have the same name.

A name with local scope is only visible (known) within a single program unit. A
name with a local scope can be used in another program unit with a different
meaning, or with a similar meaning, but is in no way required to have similar
meanings in a different scope. The names of variables, arrays, parameters, and
statement functions all have local scope. A name with a local scope can be used
in the same compilation as another item with the same name but a global scope as
long as the global name is not referenced within the program unit containing the
local name. Thus, a function can be named FOO, and a local variable in another
program unit can be named FOO without error, as long as the program unit
containing the variable FOO does not call the function FOO. The Compiler
detects all scope errors, and issues an error message when they occur, so the user
need not worry about undetected scope errors causing bugs in programs.

One exception to the scoping rules is the name given to common data blocks. It
is possible to refer to a globally scoped common name in the same program unit
that an identical locally scoped name appears. This is allowed because common

17

FORTRAN Reference Manual
FOR TRAN Names

names are always enclosed in slashes, such as /NAME/, and are therefore always
distinguishable from ordinary names by the Compiler.

Another exception to the scoping rules is made for parameters to statement
functions. The scope of statement function parameters is limited to the single
statement forming that statement function. Any other use of those names within
that statement function is not allowed, and any other use outside that statement
function is allowed.

4.2. Undeclared FORTRAN Names.

When a user name that has not appeared before is encountered in an executable
statement, the Compiler infers from the context of its use how to classify that
name. If the name is used in the context of a variable, the Compiler creates an
entry into the symbol table for a variable of that name. Its type is inferred from
the first letter of its name. Normally, variables beginning with the letters I, J, K,
L, M, or N are considered integers, while all others are considered reals. These
defaults can be overridden by an IMPLICIT statement (see Chapter 5). If an
undeclared name is used in the context of a function call, a symbol table entry is
created for a function of that name, with its type being inferred in the same
manner as that of a variable. Similarly, a subroutine entry is created for a newly
encountered name that is used as the target of a CALL statement. If an entry
for such a subroutine or function name exists in the global symbol table, its
attributes are coordinated with those of the newly created symbol table entry. If
any inconsistencies are detected, such as a previously defined subroutine name
being used as a function name, an error message is issued.

ln general, one is encou~aged to declare all names used within a program unit,
since it helps to assure that the Compiler associates the proper definition with
that name. Allowing the Compiler to use a default meaning can sometimes result
in logical errors that are quite difficult to locate. Indeed, most modern
programming languages require the programmer to declare all names, to avoid any
such potential difficulties.

18

CHAPTER 5

Specification Statements

This chapter describes the specification statements in SofTech Microsystems
FORTRAN 77. Specification statements are non-executable. They are used to
define the attributes of user defined variable, array, and function names. There
are eight kinds of specification statements:

5.1. IMPLICIT
5.2. DIMENSION
5.3. Type Statements
5.4. COMMON
5.5. EXTERNAL
5.6. INTRINSIC
5.7. SAVE
5.8. EQUIVALENCE

Specification statements must precede all executable statements in a program unit.
lf present, any IMPLICIT statements must precede all other specification
statements in a program unit as well. Otherwise, the specification statements
may appear in any order within their own group.

5.1. IMPLICIT Statement.

An IMPLICIT statement is used to define the default type for user-declared names.
The form of an IMPLICIT statement is:

IMPLICIT type (a [,a] •..) [,type (a [,a] ...)] ..•

The 'type' is one of INTEGER, LOGICAL, REAL, or
CHARACTER[*nnn]

The 'a' is either a single letter or a range of letters. A range of
letters is indicated by the first and last letters in the range separated
by a minus sign. For a range, the letters must be in alphabetical
order.

The 'nnn' is the size of the character type that is to be associated
with that letter or letters. It must be an unsigned integer in the
range 1 to 127. lf *nnn is not specified, it is assumed to be *l.

An IM PLlClT statement defines the type and size for all user-defined names that
begin with the letter or letters that appear in the specification. An IMPLICIT
statement applies only to the program unit in which it appears. IMPLICIT
statements do not change the type of any intrinsic functions.

Implicit types can be overridden or confirmed for any specific user-name by the
appearance of that name in a subsequent type statement. An explicit type in a
FUNCTION statement also takes priority over an IMPLICIT statement. If the type

19

FORTRAN Reference Manual
Specification Statements

in question is a character type, the user-name's length ts also overridden by a
latter type definition.

The program unit can have more than one IMPLICIT statement, but all implicit
statements must precede all other specification statements in that program unit.
The same letter cannot be defined more than once in an IMPLICIT statement in
the same program unit.

5.2. DIMENSION Statement.

A DIMENSION statement is used to specify that a user-name is an array. The
form of a DlMENSlON statement is:

DlMENSlON var(dim) [,var(dim)] ...

where each 'var(dim)' is an array declarator. An array declarator is
of the form:

name(d [,d] ...)

'name is the user defined name of the array.

, d' 1s a dimension declarator.

5.2.1. Dimension Declarators.

The number of dimensions in the array is the number of dimension declarators in
the array declarator. The maximum number of dimensions is three. A dimension
declarator can be one of three forms:

,L'\n unsigned integer constant.

A user-name corresponding to a non-array integer formal argument.

An asterisk.

A dimension declarator specifies the upper bound of the dimension. The lower
bound is always one. lf a dimension declarator is an integer constant, then the
array has the corresponding number of elements in that dimension. An array has a
constant size if all of its dimensions are specified by integer constants. lf a
dimension declarator is an integer argument, then that dimension is defined to be
of a size equal to the initial value of the integer argument upon entry to the
subprogram unit at execution time. ln such a case the array is called an
adjustable-sized array. lf the dimension declarator is an asterisk, the array is an
assumed-sized array and the upper bound of that dimension is not specified.

20

FORTRAN Reference Manual
Specification Statements

All adjustable- and assumed-sized arrays must also be formal arguments to the
program unit in which they appear. Addi ti on ally, an assumed-size dimension
declarator may only appear as the last dimension in an array declarator.

The order of array elements in memory is column-major order. · That is to say,
the leftmost subscript changes most rapidly in a memory-sequential reference to all
array elements.

5.2.2. Array Element Name.

The form of an array element name 1s:

arr(sub [,sub] ...)

'arr' is the name of an array.

'sub' 1s a subscript expression.

A subscript expression is an integer expression used in selecting a specific element
of an array. The number of subscript expressions must match the number of
dimensions in the array declarator. The value of a subscript expression must be
between 1 and the upper bound for the dimension it represents.

5.3. Type Statements.

Type statements are used to specify the type of user- defined names. A type
statement may confirm or override the implicit type of a name. Type statements
may also specify dimension information.

A user-name for a variable, array, external function, or statement function may
appear in a type statement. Such an appearance defines the type of that name
for the entire program unit. Within a program unit, a name may not have its
type explicitly specified by a type statement more than once. A type statement
may confirm the type of an intrinsic function, but is not required. The name of a
subroutine or main program cannot appear in a type statement.

5.3.l. INTEGER, REAL, and LOGICAL Type Statements.

The form of an INTEGER, REAL, or LOGICAL type statement is:

type var [,var] ...

'type' is one of INTEGER, REAL, or LOGICAL.

21

FORTRAN Reference Manual
Specification Statements

var is a variable name, array name, function name, or an array
declarator. For a definition of an array declarator, see Section 5.2,
which describes the DIMENSION statement.

5.3.2. CHARACTER Type Statement.

The form of a CHARACTER type statement is:
CHARACTER [*nnn [,]] var [*nnn] [, var [*nnn]] .•.

var is a variable name, array name, or an array declarator. For a
definition of an array declarator, see 5.2. DIMENSION Statement.

nnn is the length in number of characters of a character variable
or character array element. It must be an unsigned integer in the
range l to 127.

The length nnn following the type name CHARACTER is the default length for any
name not having its own length specified. If not present, the default length is
assumed to be one. A length immediately following a variable or array overrides
the default length for that item only. For an array, the length specifies the
length of each element of that array.

5.4. COMMON Statement.

The COMMON statement provides a method of sharing storage between two or
more program units. Such program units can share the same data without passing
it as arguments. The form of the COMMON statement is:

COMMON [/ [cname] /] nlist [[,] I [cname] I nlist] ...

'cname' is a common block name. If a 'cname' is omitted, then the
blank common block is specified.

'nlist' is a comma seperated list of variable names, array names, and
array declarators. Formal argument names and function names cannot
appear in a COMMON statement.

In each COMMON statement, all variables and arrays appearing in each nlist
following a common block name cname are declared to be in that common block.
If the first cname is omitted, all elements appearing in the first nlist are specified
to be in the blank common block.

Any common block name can appear more than once in COMMON statements in

22

FORTRAN Reference Manual
Specification Statements

the same program unit. All elements in all nlists for the same common block are
allocated storage sequentially in that common storage area in the order that they
appear.

All elements in a single common area must be either all of type CHARACTER or
none of type character. Furthermore, if two program units reference the same
named common containing character data, association of character variables of
different length is not allowed. Two variables are said to be associated if they
refer to the same actual storage.

The size of a common block is equal to the number of bytes of storage required
to hold all elements in that common block. lf the same named common block is
referenced by several distinct program units, the size must be the same in all
pro gr am uni ts.

5.5. EXTERNAL Statement.

An EXTERNAL statement is used to identify a user-defined name as an external
subroutine or function. The form of an EXTERNAL statement is:

EXTERNAL name [,name] ...

'name' is the name of an external subroutine or function.

Appearance of a name in an EXTERNAL statement declares that name to be an
external procedure. Statement function names cannot appear in an EXTERNAL
statement. lf an intrinsic function name appears in an EXTERNAL statement,
then that name becomes the name of an external procedure, and the corresponding
intrinsic function can no longer be called from that program unit. A user-name
can only appear once in an EXTERNAL statement.

5.6. INTRINSIC Statement.

An lNTRlNSlC statement is used to declare that a user-name is an intrinsic
function. The form of an INTRINSIC statement is:

INTRINSIC name [,name] ...

'name' is an intrinsic function name.

Each user-name may only appear once in an INTRINSIC statement. lf a name
appears in an lNTRlNSlC statement, it cannot appear in an EXTERNAL statement.
All names used in an li'\JTRlNSlC statement must be system-defined INTRINSIC
functions. For a list of these functions, see Chapter 12.

23

FORTRAN Reference Manual
Specification Statements

5. 7. SA VE Statement.

A SA VE statement is used to retain the definition of a common block after the
return from a procedure that defines that common block. Within a subroutine or
function, a common block that has been specified in a SAVE statement does not
become undefined upon exit from the subroutine or function. The form of a SAVE
statement is:

SAVE /name/ [,/name/] .•.

where: 'name' is the name of a common block.

Note: ln SofTech Microsystems FORTRAN 77 all common blocks are statically
allocated, so the SAVE statement is not necessary. Common blocks are never
disposed on exiting a procedure. The SAVE statement is implemented here for
the sake of program portability.

5.8. EQUIVALENCE Statement.

An EQUIVALENCE statement is used to specify that two or more variables or
arrays are to share the same storage. lf the shared variables are of different
types, the EQUIVALENCE does not cause any kind of automatic type conversion.
The form of an EQUIVALENCE statement 1s:

EQUIVALENCE (nlist) [, (nlist)J ...

where: 'nlist' is a list of at least two variable names, array names, or
array element names. Argument names may not appear in an
EQUIVALENCE statement. Subscripts must be integer constants and
must be within the bounds of the array they index.

An EQUIVALENCE statement specifies that the storage sequences of the elements
that appear in the list nlist have the same first storage location. Two or more
variables are said to be associated if they refer to the same actual storage. Thus,
an EQUIVALENCE statement causes its list of variables to become associated. An
element of type character can only be associated with another element of type
character with the same length. lf an array name appears in an EQUIVALENCE
statement, it refers to the first element of the array.

24

l

FORTRAN Reference Manual
Specification Statements

5.8.l. Restrictions on EQUIVALENCE Statements.

An EQUIV AL ENCE statement cannot specify that the same storage location is to
appear more than once, such as:

REAL R,5(10)
EQUIVALENCE (R,5(1)),(R,5(5))

which forces the variable R to appear in two distinct memory locations.
Furthermore, an EQUIVALENCE statement cannot specify that consecutive array
elements are not stored in sequential order. For example:

REAL R(lO),S(lO)
EQUIVALENCE (R(l),S(l)),(R(5),5(6))

is not allowed.

When EQUIVALENCE statements and COMMON statements are used together,
several further restrictions apply. An EQUIVALENCE statement cannot cause
storage in two different common blocks to become equivalenced. An
EQUIVALENCE statement can extend a common block by adding storage elements
following the common block, but not preceding the common block. For example:

COMMON /ABC DE/ R(lO)
REAL 5(10)
EQUIVALENCE (R(l),5(10))

is not allowed because it extends the common block by adding storage preceding
the start of the block.

25

FORTRAN Reference Manual
Specification Statements

26

l

CHAPTER 6

DAT A Statement

The DATA statement is used to assign initial values to variables. A DATA
statement is a non-executable statement. lf present, it must appear after all
specification statements and prior to any statement function statements or
executable statements. The form of a DAT A statement is:

DAT A nlist I clist /[[,] nlist I clist /] ...

'nlist' is a list of variable, array element, or array names.

'clist' is a list of constants or constants preceded by an integer
constant repeat factor and an asterisk, such as:

5*3.14159 3*'Help' 100*0

A repeat factor followed by a constant is the equivalent of a list all
of constants of that constant's value repeated a number of times
equal to the repeat constant.

There must be the same number of values in each clist as there are variables or
array elements in the corresponding nlist. The appearance of an array in an nlist
is the equivalent to a list of all elements in that array in storage sequence order.
Array elements must be indexed only by constant subscripts.

The type of each non-character element in a clist must be the same as the type
of the corresponding variable or array element in the accompanying nlist. Each
character element in a clist must correspond to a character variable or array
element in the nlist, and must have a length that is less than or equal to the
length of that variable or array element. If the length of the constant is shorter,
it is extended to the length of the variable by adding blank characters to the
right. Note that a single character constant cannot be used to define more than
one variable or even more than one array element.

Only local variables and array elements can appear in a DATA statement. Formal
arguments, variables in common, and function names cannot be assigned initial
values with a DATA statement.

27

FORTRAN Reference Manual
Data Statement

28

CHAPTER 7

Expressions

This chapter describes the four classes of expressions found in the FORTRAN
language. They are:

7.1. Arithmetic Expressions.
7.2. Character Expressions.
7.3. Relational Expressions.
7.4. Logical Expressions.

7 .l. Arithmetic Expressions.

An arithmetic expression produces a value which is either of type integer or of
type real. The simplest forms of arithmetic expressions are:

Unsigned integer or real constant.
Integer or real variable reference.
Integer or real array element reference.
Integer or real function reference.

The value of a variable reference or array element reference must be defined for
it to appear in an arithmetic expression. Moreover, the value of an integer
variable must be defined with an arithmetic value, rather than a statement label
value previously set in an ASSIGN statement.

Other arithmetic expressions are built up from the above simple forms using
parentheses and these arithmetic operators:

Operator Representing Operation Precedence

** Exponentiation Highest

I Di vision
lntermedi ate

* Multiplication

- Subtraction or Negation
Lowest

+ Addition or Identity

Table 7.1. Arithmetic Operators.

All of the operators are binary operators, appearing between their arithmetic
expression operands. The + and - may also be unary, preceding their operand.

29

FORTRAN Reference Manual
Expressions

Operations of equal precedence ar8 left-associative except exponentiation which is
right- associative. Thus, A / B * C is the same as (A / B) * C and A ** B **
C is the same as A ** (B ** C). Arithmetic expressions may be formed in the
usual algebraic sense, as in most programming languages, except that FORTRAN
prohibits two operators from appearing consecutively. Thus, A ** -B is prohibited,
although A ** (-B) is permissible. Note that unary minus is also of lowest
precedence so that - A * B is interpreted as - (A * B). Parentheses may be used
in a program to control the associativity and the order of operator evaluation in
an expression.

7.1.1. Integer Division.

The di vision of two integers results in a value which is the quotient of the two
values, truncated toward 0. Thus, 7 / 3 evaluates to 2, (- 7) / 3 evaluates to -2, 9
/ 10 evaluates to 0 and 9 / (-10) evaluates to 0.

7.1.2. Type Conversions and Result Types of Arithmetic Operators.

Arithmetic expressions may involve operations between operands which are of
different type. The general rules for determining type conversions and the result
type for an arithmetic expression are:

An operation between two integers results in an expression of type
integer.

An operation between two reals results in an expression of type real.

For any operator except **, an operation between a real and an
integer converts the integer to type real and performs the operation,
resulting in an expression of type real.

For the operator **, a real raised to an integer power is computed
with out conversion of the integer, and results in an expression of type
real. An integer raised to a real power is converted to type real and
the operation results in an expression of type real. Note that for
integer 1 and negative integer J, 1 ** J is the same as l / (1 **
lABS(J)) which is subject to the rules of integer division so, for
example, 2 ** (-4) is l I 16 which is 0.

Unary operators result in the same result type as their operand type.

The type which results from the evaluation of an arithmetic operator is not
dependent on the context in which the operation is specified. For example,

30

FOR TRAN Reference Manual
Expressions

evaluation of an integer plus a real results in a real even if the value obtained 1s
to be immediately assigned into an integer variable.

7 .2. Character Expressions.

A character expression produces a value which is of type character. The forms of
character expressions are:

Character constant.
Character variable reference.
Character array element reference.
Any character expression enclosed in parenthesis.

There are no operators which result in character expressions.

7.3. Relational Expressions.

Relational expressions are used to compare the values of two arithmetic
expressions or two character expressions. lt is not allowed to compare an
arithmetic value with a character value. The result of a relational expression is
of type logical.

Relational expressions may use any of these operators to compare values:

Operator Representing Operation

.LT . Less than

. LE. Less than or equal to

.EQ. Equal to

.NE . Not equal to

. GT. Greater than

.GE. Greater than or equal to

Table 7.2. Relational Operators.

All of the operators are binary operators, appearing between their operands. There
is no relative precedence or associativity among the relational operands since an

31

FORTRAN Reference Manual
Expressions

expression of the form A .LT. B .NE. C violates the type rules for operands.
Relational expressions may only appear within logical expressions.

Relational expressions with arithmetic operands may have an operand of type
integer and one of type real. In this case, the integer operand is converted to
type real before the relational expression is evaluated.

Relational expressions with character operands compare the position of their
operands in the ASCll collating sequence. An operand is less than another if it
appears earlier in the collating sequence, etc. If operands of unequal length are
compared, the shorter operand is considered as if it were blank extended to the
length of the longer operand.

7.4. Logical Expressions.

A logical expression produces a value which is of type logical. The simplest forms
of logical expressions are:

Logical constant.
Logical variable reference.
Logical array element reference.
Logical function reference.
Relational expression.

Other logical expressions are built up from the above simple forms using
parentheses and these logical operators:

Operator R eprese nti ng Operation Precedence

.NOT. Negation Highest

.AND. Conjunction

.OR. lnclusi ve disjunction I_ ow est

Table 7.3. Logical Operators.

The .AND. and .OR. operators are binary operators, appearing between their logical
expression operands. The .NOT. operator is unary, preceding its operand.
Operations of equal precedence are left associative so, for example, A .AND. B
.AND. C is equivalent to (A .AND. B) .AND. C. As an example of the precedence
rules, .NOT. A .OR. B .AND. C is interpreted the same as (.NOT. A) .OR. (B
.AND. C). It is not permitted to have two .NOT. operators adjacent to each

32

FOR TRAN Reference Manual
Expressions

other, although A .AND .• NOT. B is an example of an allowable expression with
two operators being adjacent.

The meaning of the logical operators is their standard semantics, with .OR. being
"nonexclusive"; that is, . TRUE .. OR .. TRUE. evaluates to the value . TRUE ..

7 .5. Precedence of Operators.

When arithmetic, relational, and logical operators appear in the same expression,
their relative precedences are:

Operator Precedence

Arithmetic Highest

Relational

Logical Lowest

Table 7.4. Relative Precedence of Operator Classes.

7 .6. Evaluation Rules and Restrictions for Expressions.

Any variable, array element, or function referenced in an expression must be
defined at the time of the reference. Integer variables must be defined with an
arithmetic value, rather than a statement label value as set by an ASSIGN
statement.

Certain arithmetic operations are prohibited if they cannot be evaluated (e.g.,
di vi ding by zero). Other prohibited operations are raising a zero valued operand to
a zero or negative power and raising a negative valued operand to a power of type
real.

33

FORTRAN Reference Manual
Expressions

34

CHAPTER 8

Assignment Statements

An assignment statement is used to assign a value to a variable or an array
element. There are two basic kinds of assignment statements: computational
assignment statements, and label assignment statements.

8.1. Computational Assignment Statements.

The form of a computational assignment statement is:

var = expr

'var' is a variable or array element name, and

'expr' is an expression.

Execution of a computational assignment statement evaluates the expression and
assigns the resulting value to the variable or array element appearing on the left.
The type of the variable or array element and the expression must be compatible.
They must both be either numeric, logical, or character, in which case the
assignment statement is called an arithmetic, logical, or character assignment
statement.

lf the type of the elements of an arithmetic assignment statement are not
identical, automatic conversion of the value of the expression to the type of the
variable is done. The following table gives the conversion rules:

Type of Type of expression
variable or
array element integer real

integer ex pr lNT(expr)

real REAL(expr) ex pr

Table 8.1. Type conversion for arithmetic assignment statements.

lf the length of the expression does not match the size of the variable in a
character assignment statement, it is adjusted so that it does. lf the expression is
shorter, it is padded with enough blanks on the right to make the sizes equal
before the assignment takes place. If the expression is longer, characters on the
right are truncated to make the sizes the same.

35

FORTRAN Reference Manual
Assignment Statements

8.2. Label Assignment Statement.

The label assignment statement is used to assign the value of a format or
statement label to an integer variable. The form of the statement is:

ASSIGN label TO var

'label' is a format label or statement label, and

'var' is an integer variable.

Execution of an ASSIGN statement sets the integer variable to the value of the
label. The label can be either a format label or a statement label, and it must
appear in the same program unit as the ASSIGN statement. When used in an
assigned GOTO statement, a variable must currently have the value of a statement
label. When used as a format specifier in an I/O statement, a variable must have
the value of a format statement label. The ASSIGN statement is the only way to
assign the value of a label to a variable.

36

CHAPTER 9

Control Statements

Control statements are used to control the order of execution of statements in the
FORTRAN language. This chapter describes the following control statements:

9.1. Unconditional GOTO.
9.2. Computed GOTO.
9.3. Assigned GOTO.
9.4. Arithmetic lF.
9.5. Logical lF.
9.6. Block lF THEN ELSE.
9.6.l. Block lF.
9.6.2. ELSElF.
9.6.3. ELSE.
9.6.4. ENDlF.
9.7. DO.
9.8. CONTlNUE.
9.9. STOP.
9.10. PAUSE.
9.11. END.

The two remaining statements which control the order of execution of statements
are the CALL statement and the RETURN statement, both of which are described
in Chapter 12.

9.1. Unconditional GOTO.

The syntax for crn uncondi ti on al GOTO statement is:

GOTOs

where s is a statement label of an executable statement that is found in the same
program unit as the GOTO statement. The effect of executing a GOTO statement
is that the next statement executed is the statement labeled s. lt is not legal to
jump into a DO, IF, ELSElF, or ELSE block from outside the block (see the various
sections for an explanation of the kinds of blocks).

9.2. Computed GOTO.

The syntax for a computed GOTO statement is:

GOTO (s [, s] •..)[,] i

where i is an integer expression and each s is a statement label of an executable
statement that is found in the same program unit as the computed GOTO

37

FORTRAN Reference Manual
Control Stratements

statement. The same statement label may appear repeatedly in the list of labels.
The effect of the computed GOTO statement can be explained as follows: Suppose
that there are n labels in the list of labels. lf i < l or i > n then the computed
GOTO statement acts as if it were a CONTINUE statement, otherwise, the next
statement executed will be the statement labeled by the ith label in the list of
labels. 1 t is not allowed to jump into a DO, IF, EL SEIF, or ELSE block from
outside the block (see the various sections for an explanation of the kinds of
blocks).

NOTE: computed GOTOs are often used to implement a CASE construct.

9.3. Assigned GOTO.

The syntax for an assigned GOTO statement is:

GOTO i [[,] (s [, s] ...)]

where i is an integer variable name and each s is a statement label of an
executable statement that is found in the same program unit as the assigned GOTO
statement. The same statement label may appear repeatedly in the list of labels.
When the assigned GOTO statement is executed, i must have been assigned the
label of an executable statement that is found in the same program unit as the
assigned GOTO statement. The effect of the statement is that the next statement
executed will be the statement labelled by the label last assigned to i. lf the
optional list of labels is present, a runtime error is generated if the label last
assigned to i is not among those listed. lt is not legal to jump into a DO, lF,
ELSElF, or ELSE block from outside the block (see the various sections for an
explanation of the kinds of blocks).

9.4. Arithmetic IF.

The syntax for an arithmetic lF statement is:

lF (e) sl, s2, s3

where e is an integer or real expression and each of sl, s2, and s3 are statement
labels of executable statements found in the same program unit as the arithmetic
lF statement. The same statement label may appear more than once among the
three labels. The effect of the statement is to evaluate the expression and then
select a label based on the value of the expression. Label sl is selected if the
value of e is less than O, s2 is selected if the value of e equals O, and s3 is
selected if the value of e exceeds 0. The next statement executed will be the
statement labeled by the selected label. It is not legal to jump into a DO, lF,
ELSElF, or ELSE block from outside the block (see the various sections for an

38

explanation of the kinds of blocks).

9.5. Logical IF.

The syntax for a logical IF statement is:

IF (e) st

FOR TRAN Reference Manual
Control Stratements

where e is a logical expression and st is any executable statement except a DO,
block IF, ELSEIF, ELSE, ENDIF, END, or another logical IF statement. The
statement causes the logical expression to be evaluated and, if the value of that
expression is • TRUE., then the statement, st, is executed. Should the expression
evaluate to .FALSE., the statement st is not executed and the execution sequence
continues as if a CONTINUE statement had been encountered.

9.6. Block IF THEN ELSE.

Sections 9.6.1 through 9.6.4 describe the block IF statement and the various
statements associated with it. These statements are new to FORTRAN 77 and can
be used to dramatically improve the readability of FORTRAN programs and to cut
down the number of GOTOs of the various forms. As an overview of these
sections, the following three code skeletons illustrate the basic concepts:

Skeleton 1 - Simple Block IF which skips a group of statements if the expression 1s
false:

IF(l.L T .lO)THEN

Some statements executed only if l.L T.10

ENDlF

Skeleton 2 - Block IF with a series of ELSEIF statements:

IF(J.GT .lOOO)THEN

Some statements executed only if J.GT.1000

ELSEIF(J.GT .lOO)THEN

Some statements executed only if J.GT .100 and
J.LE.1000

39

FORTRAN Reference Manual
Control Stratements

ELSElF(J.GT .lO)THEN

ELSE

ENDlF

Some statements executed only if J.GT .10 and
J.LE.1000 and J.LE.100

Some statements executed only if none of above
conditions were true

Skeleton 3 - lllustrates that the constructs can be nested and that an ELSE
statement can follow a block lF without intervening ELSElF statements (indentation
solely to enhance readability):

lF(l.L T.lOO)THEN

Some statements executed only if I.L T.100

IF(J.L T .lO)THEN

Some statements executed only if l.L T.100
and J.L T .10

ENDlF

Some statements executed only if I.L T.100

ELSEIF(l.L T .lOOO)THEN

ENDlF

Some statements executed only if I.GE.100 and
I.LT .1000

lF(J.L T .lO)THEN

Some statements executed only if l.GE.100
and l.LT.1000 and J.LT.10

ENDlF

Some statements executed only if l.GE.100 and
I.LT .1000

In order to understand, in detail, the block IF and associated statements, the
concept of an IF -level is introduced. For any statement, its IF-level is

nl - n2

40

FORTRAN Reference Manual
Control Stratements

where nl is the number of block IF statements from the beginning of the program
unit that the statement is in, up to and including that statement, and n2 is is the
number of ENDIF statements from the beginning of the program unit up to, but
not including, that statement. The IF-level of every statement must be greater
than or equal to 0 and the IF-level of every block IF, ELSEIF, ELSE, and ENDlF
must be greater than 0. Finally, the IF-level of every END statement must be 0.
The IF -level will be used to define the nesting rules for the block IF and
associated statements and to define the extent of IF blocks, EL SEIF blocks, and
ELSE blocks.

9.6.l. Block IF.

The syntax for a block IF statement is:

lF (e) THEN

where e is a logical expression. The lF block associated with this block lF
statement consists of all of the executable statements, possibly none, that appear
following this statement up to, but not including, the next ELSEIF, ELSE, or
ENDIF statement that has the same IF-level as this block IF statement (the IF -
level defines the notion of "matching" ELSEIF, ELSE, or ENDlF). Executing the
block IF statement first causes the expression to be evaluated. lf it evaluates to
. TRUE. and there is at least one statement in the IF block, the next statement
executed is the first statement of the IF block. Following the execution of the
last statement in_ the IF block, the next statement to be executed will be the next
ENDIF statement at the same IF -level as this block IF statement. If the
expression in this block IF statement evaluates to .TRUE. and the IF block has no
executable statements, the next statement executed is the next ENDIF statement
at the same IF level as the block IF statement. lf the expression evaluates to
.FALSE., the next statement executed is the next ELSEIF, ELSE, or ENDlF
statement that has the same IF-level as the block IF statement. Note that transfer
of control into an IF block from outside that block is not allowed.

9.6.2. ELSEIF.

The syntax of an ELSEIF statement is:

ELSEIF (e) THEN

where e is a logical expression. The ELSEIF block associated with an ELSEIF
statement consists of all of the executable statements, possibly none, that follow
the ELSEIF statement up to, but not including, the next ELSEIF, ELSE, or ENDlF
statement that has the same IF-level as this ELSEIF statement. The execution of

41

FORTRAN Reference Manual
Control Stratements

an EL SEIF statement begins by evaluating the expression. If its value is • TRUE.
and there is at least one statement in the ELSElF block, the next statement
executed is the first statement of the ELSElF block. Following the execution of
the last statement in the ELSElF block, the next statement to be executed will be
the next ENDIF statement at the same IF-level as this ELSEIF statement. lf the
expression in this ELSElF statement evaluates to .TRUE. and the ELSElF block has
no executable statements, the next statement executed is the next ENDIF
statement at the same lF level as the ELSElF statement. If the expression
evaluates to .FALSE., the next statement executed is the next ELSEIF, ELSE, or
ENDlF statement that has the same IF -level as the ELSEIF statement. Note that
transfer of control into an ELSEIF block from outside that block is not allowed.

9.6.3. ELSE.

The syntax of an ELSE statement is:

ELSE

The ELSE block associated with an ELSE statement consists of all of the
executable statements, (possibly none), that follow the ELSE statement up to, but
not including, the next ENDIF statement that has the same IF-level as this ELSE
statement. The "matching" ENDIF statement must appear before any intervening
ELSE or ELSEIF statements of the same IF-level. Note that transfer of control
into an ELSE block from outside that block is not allowed.

9.6.4. END IF.

The syntax of an ENDIF statement is:

ENDIF

There is no effect of executing an ENDIF statement. An ENDIF statement is
required to "match" every block IF statement in a program unit in order to specify
which statements are in a particular block IF statement.

9.7. DO.

The syntax of an DO statement is:

DO s [,] i=el, e2 [, e3]

where s is a statement label of an executable statement. The label must follow
this DO statement and be contained in the same program unit. In the DO

42

FOR TRAN Reference Manual
Control Stratements

statement, i is an integer variable, and el, e2, and e2 are integer expressions.
The statement labeled by s is called the terminal statement of the DO loop. It
must not be an unconditional GOTO, assigned GOTO, arithmetic IF, block IF,
ELSEIF, ELSE, ENDlF, RETURN, STOP, END, or DO statement. If the terminal
statement is a logical IF, it may contain any executable statement except those
not permitted inside a logical IF statement.

A DO loop is said to have a "range", beginning with the statement which follows
the DO statement and ending with (and including) the terminal statement of the
DO loop .. If a DO statement appears in the range of another DO loop, its range
must be entirely contained within the range of the enclosing DO loop, although the
loops may share a terminal statement (not recommended). If a DO statement
appears within an IF block, ELSEIF block, or ELSE block, the range of the
associated DO loop must be entirely contained in the particular block. If a block
IF statement appears within the range of a DO loop, its associated ENDlF
statement must also appear within the range of that DO loop. The DO variable, i,
may not be set by the program within the range of the DO loop associated with
it. It is not allowed to jump into the range of a DO loop from outside its range.

The execution of a DO statement causes the following steps to happen in order:

The expressions el, e2, and e3 are evaluated. If e3 is not present,
e3 defaults to l (e3 must not evaluate to 0).

The DO variable, i, is set to the value of el.

The iteration count for the loop is computed to be MAXO(((e2 - el +
e3)/e3),0) which may be zero (Note: unlike FORTRAN 66) if either el
> e2 and e3 > O, or el < e2 and e3 < O.

The iteration count is tested, and if it exceeds zero, the statements
in the range of the DO loop are executed.

Following the execution of the terminal statement of a DO loop, the following
steps occur in order:

The value of the DO variable, i, is incremented by the value of e3
which was computed when the DO statement was executed.

The iteration count is decremented by one.

The iteration count is tested, and if it exceeds zero, the statements
in the range of the DO loop are executed again.

The value of the DO variable is well-defined after execution of the loop,
regardless of whether the DO loop exits as a result of the iteration count
becoming zero, as the result of a transfer of control out of the DO loop, or as

43

FORTRAN Reference Manual
Control Stratements

the result of a RETURN statement.

Example of the final value of a DO variable:

C This program fragment prints the number l to 11 on
C the CONSOLE:

DO 200 l=l,10
200 WRITE(* ,'(15)')I
WR1TE(*,'(15)')I

9.8. CONTINUE.

The syntax of a CONTINUE statement is:

CONTINUE

There is no effect associated with execution of a CONTINUE statement. The
primary use for the CONTINUE statement is a convenient statement to label,
particularly as the terminal statement in a DO loop.

9.9. STOP.

The syntax of an STOP statement is:

STOP [n]

where n is either a character constant or a string of not more than 5 digits. The
ef feet of executing a STOP statement is to cause the program to terminate. The
argument, n, if present, is displayed on CONSOLE: upon termination.

9.10. PAUSE.

The syntax of an PAUSE statement is:

PAUSE [n]

where n is either a character constant or a string of not more than 5 digits. The
effect of executing a PAUSE statement is to cause the program to be suspended
pending an indication from the CONSOLE: that it is to continue. The argument,
n, if present, is displayed on the CONSOLE: as part of the prompt requesting input
from the CONSOLE:. If the indication from the CONSOLE: is received to
continue execution of the program, execution resumes as if a CONTINUE statement
had been executed.

44

9.11. END.

The syntax of an END statement is:

END

FORTRAN Reference Manual
Control Stratements

Unlike other statements, an END statement must wholly appear on an initial line
and contain no continuation lines. No other FORTRAN statement, such as the
ENDlF statement, may have an initial line which appears to be an END statement.
The effect of executing the END statement in a subprogram is the same as
execution of a RETURN statement and the effect in the main program is to
terminate execution of the program. The END statement must appear as the last
statement in every program unit.

45

FORTRAN Reference Manual
Control Stratements

46

CHAPTER 10

1/0 System

Chapters 10 and 11 of this manual describe the FORTRAN 1/0 System. Chapter
10 describes the basic FORTRAN 1/0 concepts and statements and Chapter 11
describes the FORMAT statement. The four major Sections of these chapters are:

10.l. 1/0 System Overview - Provides an overview of the FORTRAN
file System. Defines the basic concepts of 1/0 records, 1/0 units,
and the various kinds of file access available under the System.

10.2. General Discussion of 1/0 System Concepts and Limitations -
The definitions made in Section 10.l are related to how to
accomplish various simple, as well as complex, tasks using the 1/0
System. There is a general discussion of 1/0 System limitations.

10.3. 1/0 Statements - The statements of the 1/0 System are
presented with the exception of the FORMAT statement.

11. Formatted 1/0 and the FORMAT Statement - The FORMAT
statement and formats in general are described.

NOTE: the reader is directed to Section 10.2 for a brief discussion of the most
commonly used forms of files and 1/0 statements, and a complete sample program
illustrating the most commonly used forms of 1/0.

10.1. 1/0 System Overview.

ln order to fully understand the 1/0 statements, it is necessary to be familiar with
a variety of terms and concepts related to the structure of the FORTRAN 1/0
System. Most 1/0 tasks can be accomplished without a complete understanding of
this material and the reader is encouraged to skip to Section 10.2 on first reading
and subsequently use 10.1 primarily for reference.

10.1.1. Records.

The building block of the FORTRAN file system is the Record. A Record is a
sequence of characters or a sequence of values. There are three kinds of
records:

Formatted.
Unformatted.
Endfile.

A formatted record is a sequence of characters terminated by the character value
which corresponds to the "return" key on a terminal (character value 13).

47

FORTRAN Reference Manual
1/0 System

Formatted records are processed on input consistent with the way that the
Operating System and Text Editor process characters. Thus, reading characters
from formatted records in FORTRAN is identical to reading characters in other
System programs and other languages on the System. Formatted files are normally
transportable between different UCSD interpreters.

An unformatted record is a sequence of values, with no System alteration or
processing; no physical representation for the end of record exists. Unformatted
files generated on different processors are not generally interchangable, since the
internal representations of integers and reals differ among the various UCSD
interpreters.

The System makes it appear as though an endfile record exists after the last
record in a file, although no physical endfile mark ever exists.

10.1.2. Files.

A FORTRAN file is a sequence of records. FORTRAN files are one of two kinds:

External.
Internal.

An external FORTRAN file is a file on a device, or the device itself. An internal
FOR TRAN file is a character variable which serves as the source or destination of
some 1/0 action. From this point on, both FORTRAN files and the notion of a file
as known to the Operating System and the Editor will be referred to simply as
files, with the context determining which meaning is intended. (The OPEN
statement provides the linkage between the two notions of files, and in most cases
the ambiguity disappears, since after a file has been opened, the two notions are
one and the same.)

l 0.1.3. File Properties.

A file which is being acted upon by a FOR TRAN program has a variety of
properties. These properties are described in Sections 10.l.3.l through 10.1.3.4.

l 0.1.3.l. File Name.

A file may have a name. lf present, a name is a character string identical to the
name by which it is known to the UCSD File System. There may be more than
one name for the same file, such as SYS:A. TEXT and 114:A. TEXT.

48

10.1.3.2. File Position.

FOR TRAN Reference Manual
1/0 System

A file has a position property which is usually set by the previous 1/0 operation.
There is a notion of the initial point in the file, the terminal point in the file, the
current record, the preceding record, and the next record of the file. lt is
possible to be between records in a file, in which case the next record is the
successor to the previous record and there is no current record. The file position
after sequential writes is at the end of file, but not beyond the endfile record.
Execution of the ENDFlLE statement positions the file beyond the endfile record,
as does a read statement executed at the end of file (but not beyond the endfile
record). Reading an endfile record may be trapped by the user using the END=
option in a READ statement.

l 0.1.3.3. Formatted and Unformatted Files.

An external file is opened as either formatted or unformatted. All internal files
are formatted. Files which are formatted consist entirely of formatted records
and files which are unformatted consist entirely of unformatted records. Files
which are formatted obey all the structural rules of .TEXT files, so that they are
fully compatible with the System Text Editor.

10.1.3.4. Sequential and Direct Access Properties.

An external file is opened as either sequential or direct. Sequential files contain
records with an order property determined by the order in which the records were
written (the normal sequential order). These files must not be read or written
using the REC= option which specifies a position for direct access 1/0. The
System will attempt to extend sequential access files if a record is written beyond
the old terminating boundary of the file, but the success of this depends on the
existence of room on the physical device at the appropriate location.

Direct access files may be read or written in any order (they are random access
files). Records in a direct access file are numbered sequentially, with the first
record numbered one. All records in a direct access file have the same length,
which is specified at the time the file is opened. Each record in the file is
uniquely identified by its record number, which was specified when the record was
written. lt is entirely possible to write the records out of order, including, for
example, writing record 9, 5, and 11 in that order without the records in between.
It is not possible to delete a record once written, but it is possible to overwrite a
record with a new value. lt is an error to read a record from a direct access file
which has not been written, but the System will not detect this error unless the
record which is being read is beyond the last record written in the file (a non­
written record before the end-of-file contains garbage). Direct access files must

49

FORTRAN Reference Manual
1/0 System

reside on block-structured peripheral devices such as the diskette, so that it is
meaningful to specify a position in the file and reference it. The System will
at tempt to extend direct access files if an attempt is made to write to a position
beyond the previous terminating boundary of the file, but the success of this
depends on the existence of room on the physical device at the appropriate
location.

10.1.4. Internal Files.

Internal files provide a mechanism for using the formatting capabilities of the 1/0
System to convert values to and from their external character representations,
within the FOR TRAN internal storage structures. That is, reading a character
variable converts the character values into numeric, logical, or character values
and writing into a character variable allows values to be converted into their
(external) character representation.

10.l.4.l. Special Properties of Internal Files.

An internal file is a character variable or character array element. The file has
exactly one record, which has the same length as the character variable or
character array element. Should less than the entire record be written by a WRITE
statement, the remaining portion of the record is filled with blanks. The file
position is always at the beginning of the file prior to I/O statement execution.
Only formatted, sequential I/O is permitted with internal files, and only the I/O
statements READ and WRITE may specify an internal file.

10.l.5. Units.

A unit is a means of referring to a file. A unit specified in an 1/0 statement is
one of:

External unit specifier.
Internal file specifier.

External unit specifiers are either integer expressions which evaluate to non­
negative values, or the character *, which stands for the CONSOLE: device. In
most cases, external unit specifier values are bound to physical devices (or files
resident on those devices) by name (using the OPEN statement). Once this binding
of value to System file name occurs, FORTRAN I/O statements refer to the unit
number as a means of referring to the appropriate external entity. Once opened,
the external unit specifier value is uniquely associated with a particular external
entity until an explicit CLOSE occurs or until the program terminates. The only
exception to the above binding rules is that the unit value 0 is initially associated

50

FOR TRAN Reference Manual
1/0 System

with the CONSOLE: device for reading and writing and no explicit OPEN ts
necessary. The character * is interpreted by the System as specifying unit O.

An internal file specifier is a character variable or character array element which
directly specifies an internal file.

l 0.2. General Discussion of 1/0 System Concepts and Limitations.

10.2.l. General Discussion of FORTRAN 1/0 System.

FORTRAN provides a rich combination of possible file structures. Choosing from
among these many structures may at first seem somewhat confusing. However,
two kinds of files will suffice for most applications.

* - CONSOLE:, a sequential, formatted file, also known as unit 0 -
This particular unit has the special property that an entire line
terminated by the return key, must be entered when reading from it,
and the various backspace and line delete keys familiar to the System
user serve their normal functions. Note that a READ from any other
unit will not have these properties, even if that unit is bound to
CONSOLE: by an explicit OPEN statement.

Explicitly opened external, sequential, formatted files - These files are
bound to a System file by name in an OPEN statement. They can be
read and written in the System Text Editor compatible format.

10.2.2. Example Program Illustrating Most Common 1/0 Operations.

Here is a sample program which uses the kinds of files discussed in Section 10.2.l
for reading and for writing. The various 1/0 statements are explained in detail in
Section 10.3.

C Copy a file with three columns of integers, each 7
C columns wide, from a file whose name is input by the
C user to another file named OUT.TEXT, reversing the
C positions of the first and second column.

PROGRAM COLSWP
CHARACTER*23 FNAME

C Prompt to the CONSOLE: by writing to *
WRITE(* ,900)

900 FORM A T('lnput file name - '\)
C Read the file name from the CONSOLE: by reading from *

READ(*,910) FNAME
910 FOR MA T(A)

51

FORTRAN Reference Manual
1/0 System

C Use unit 3 for input, any unit number except 0 will do
OPEN(3,FlLE=FNAME)

C Use unit 4 for output, any unit number except 0 and 3
C will do

OPEN(4,F1LE='OUT. TEXT',ST A TUS='NEW')
C Read and write until end of file
100 READ(3,920,END=200)1,J,K

WR1TE(4,920)J,l,K
920 FORMAT(317)

GOTO 100
200 WRITE(* ,910)'Done'

END

10.2.3. Use of Less Common File Operations.

The less commonly used file structures are appropriate for certain classes of
applications. A very general indication of the intended usages for them are as
fallows: if the 1/0 is to be random access, such as in maintaining a database,
direct access files are probably necessary. 1 f the data is to be written by
FORTRAN and reread by FORTRAN (on the same brand of processor), unformatted
files are more efficient both in file space and in 1/0 overhead. The combination
of direct and unformatted is ideal for a database to be created, maintained, and
accessed exclusively by FORTRAN. lf the data must be transferred without any
System interference, especially if all 256 possible bytes will be transferred,
unformatted 1/0 will be necessary, since .TEXT files are constrained to contain
on! y the printable character set as data. An example of a usage of unformatted
1/0 would be in the control of a device which has a single byte, binary interface.
Formatted 1/0 would, in this example, interpret certain characters, such as the
ASCII representation for carriage return, and fail to pass them through to the
program unaltered. Internal files are not 1/0 in the conventional sense but rather
provide certain character string operations and conversions within a standard
mechanism.

Use of formatted direct files requires special caution. FORTRAN formatted files
attempt to comply with the Operating System rules for .TEXT files (for a
discussion of . TEXT files, see the Users' Manual). FORTRAN 1/0 is able to
enforce these rules for sequential files, but it cannot always enforce them for
direct files. Direct files are not necessarily legal .TEXT files, since any unwritten
records contain undefined values which do not follow .TEXT file constraints.
Direct files do, of course, obey FORTRAN 1/0 rules.

A file opened in FORTRAN is either "old" or "new", but there is no concept of
"opened for reading" as distinguished from "opened for writing". Therefore, you may
open "old" (existing) files and write to them, with the effect of modifying existing
files. Similarly, you may alternately write and read to the same file (providing

52

FORTRAN Reference Manual
1/0 System

that one avoids reading beyond end of file, or reading unwritten records in a direct
files). A write to a sequential file effectively deletes any records which had
existed beyond the freshly written record. Normally, when a device is opened as a
file (such as CONSOLE: or PRINTER:) it makes no difference whether the file is
opened as "old" or "new". With diskette files, opening "new" creates a new
temporary file. If that file is closed using the "keep" option, or if the program is
terminated without doing a CLOSE on that file, a permanent file is created with
the name given when the file was opened. If a previous file existed with the
same name, it is deleted. If closed using the "delete" option, the newly created
temporary file is deleted, and any previous file of the same name is left intact.
Opening a diskette file as "old" will generate a run time error if the file does not
exist and alter the existing file if written.

10.2.4. Limitations of the FORTRAN 1/0 System.

10.2.4.1. Direct Files must be Associated with Blocked Devices.

The Operating System uses two kinds of devices: block- structured and sequential.
Sequential files may be thought of as streams of characters, with no explicit
motion allowed except reading and/or writing. CONSOLE: and PRINTER: are
examples of sequential devices. Block-structured devices, such as diskette files,
allow the additional operation of seeking a specific location. They can be accessed
either sequentially or randomly and thus can support direct files. Since there is
no notion of seeking a position on a file which is not block- structured, FORTRAN
1/0 does not allow direct file access to sequential devices.

10.2.4.2. BACKSPACE only Applies to Files Associated with
Blocked Devices.

Sequential devices can not be backspaced meaningfully under the UCSD Operating
System, so FORTRAN I/O disallows backspacing a file on a sequential device (see
10.2.2.1).

10.2.4.3. BACKSPACE may not be Used on Unformatted Sequential
Files.

lt is not possible to implement BACKSPACE on unformatted sequential files since
there is no indication in the file itself of the record boundaries. lt would be
possible to append end of record marks to unformatted sequential files, but this
would interfere with the notion of an unformatted file being a "pure" sequence of
values, and would interfere with the most common usage for such files, such as
the direct control of an external device. Direct files contain records of fixed and

53

FORTRAN Reference Manual
1/0 System

specified length, so it 1s possible to backspace direct unformatted files.

10.2.4.4. Side Effects of Functions Called in 1/0 Statements.

During the course of executing any 1/0 statement, the evaluation of an expression
may cause a function to be called. That function call must not cause any 1/0
statement to be executed.

10.3. 1/0 Statements.

This Section describes these l/O statements which are available from FORTRAN:

10.3.2.l. OPEN
10.3.2.2. CLOSE
10.3.2.3. READ
10.3.2.4. WRITE
10.3.2.5. BACKSPACE
10.3.2.6. ENDFlLE
10.3.2. 7. REWIND

ln addition, there is an 1/0 intrinsic function EOF, presented
in Chapter 12, which returns a logical value indicating whether the file associated
with the unit specifier passed to it is at end-of-file. A familiarity with the
FORTRAN file system, units, records, and access methods as described in the
previous Sections is assumed.

10.3.1. Elements of 1/0 Statements.

The various 1/0 statements take certain parameters and
arguments which specify sources and destinations of data transfer, as well as other
facets of the 1/0 operation. The abbreviations are used throughout Section 10.3
are defined in Sections 10.3.1.1 through 10.3.1.3.

10.3.1.1. The Unit Specifier ('u').

The unit specifier, 'u', can take one of these forms in an 1/0 statement:

* - refers to the CONSOLE:.

integer expression - refers to external file with unit number equal to
the value of the expression (* is unit number 0).

name of a character variable or character array element - refers to

54

FORTRAN Reference Manual
1/0 System

the internal file which is the character datum.

10.3.1.2. The Format Specifier ('f').

The format specifier, 'f', can take one of these forms in an 1/0 statement:

statement label - refers to the FORMAT statement labeled by that
label.

integer variable name - refers to the FORMAT label which that
integer variable has been assigned to using the ASSIGN statement.

character expression - the format which is specified is the current
value of the character expression provided as the format specifier.

10.3.1.3. The Input-Output List ('iolist').

The input-output list, 'iolist', specifies the entities whose values are transferred by
READ and WRITE statements. An iolist is a possibly empty list, separated by
commas, of items which consist of:

Input or Output entities - see 10.3.l.3.l and 10.3.1.3.2.

Implied DO lists - see 10.3.1.3.3.

l 0.3.1.3.1. Input Entities.

An input entity may be specified in the iolist of a READ statement and is of one
of these forms:

Variable name.

Array element name.

Array name - this is a means of specifying all of the elements of the
array in storage sequence order.

10.3.1.3.2. Output Entities.

An output entity may be specified in the iolist of a WRITE statement, and is of
one of these forms:

55

FORTRAN Reference Manual
1/0 System

Variable name;

Array element name;

Array name - this is a means of specifying all of the elements of the
array in storage sequence order;

Any other expression not beginning with the character '(' - to
distinguish implied DO lists from expressions.

l 0.3.1.3.3. Implied DO lists.

Imp! i ed DO lists may be specified as items in the 1/0 list of READ and WRITE
statements, and are of the form:

(io!ist, i = el, e2 [, e3])

where the iolist is as above (including nested implied DO lists) and i, el, e2 and
the optional e3 are as defined for the DO statement. That is, i is an integer
variable and el, e2, and e3 are integer expressions. In a READ statement, the DO
variable i (or an associated entity) must not appear as an input list item in the
embedded iolist, but may have been read in the same READ statement outside of
the implied DO list. The embedded iolist is effectively repeated for each iteration
of i with appropriate substitution of values for the DO variable i.

10.3.2. 1/0 Statements.

The following 1/0 statements are supported by FORTRAN. The possible form for
each statement is specified first, with an explanation of the meanings for the
forms following. Certain items are specified as required if they must appear in
the statement, and are specified as optional if they need not appear. Typically,
optional items have defaults. Examples are provided.

10.3.2.l. OPEN Statement.

OPEN(

u,

Required, must appear as the first argument. Must not be internal
unit specifier.

56

FlLE=fname,

FOR TRAN Reference Manual
l/O System

The file name, 'fname', is a character expression. This argument to
OPEN is required and must appear as the second argument.

The following arguments are all optional, and may appear in any
order. The options are character constants with optional trailing
blanks (except RECL=). Defaults are indicated.

STA TUS='OLD'

Default, for reading or writing existing files.

ST A TUS='NEW'

For writing new files.

ACCESS='SEQUENTlAL' (Default)

ACCESS='DIRECT'

FORM=TDRMATTED' (Default)

FORM='UNFORMA TTED'

RECL=rl)

The record length, 'rl' is an integer expression. This argument to
OPEN is for DIRECT access files only, for which it is required.

The OPEN statement binds a unit number with an external device or file on an
external device by specifying its file name. If the file is to be direct, the
RECL=rl option specifies the length of the records in that file.

Example program fragment 1:

C Prompt user for a file name
WRITE(* ,'(A\)') 'Specify output file name -

C Presume that FNAME is specified to be CHARACTER*23
C Read the file name from the CONSOLE:

57

FORTRAN Reference Manual
1/0 System

READ(-)(- ,'(A)') FNAME
C Open the file as formatted sequential as unit 7, note
C that the ACCESS specified need not have appeared since
C it is the default.

OPEN(7 ,FILE=FNAME,ACCESS='SEQUENTlAL' ,ST A TUS='NEW');

Example program fragment 2:

C Open an existing file created by the editor called
C DAT A3.TEXT as unit 3

OPEN(3,FILE='DA T A3. TEXT')

10.3.2.2. CLOSE Statement.

CLOSE(

u,

Required, must appear as the first argument. Must not be internal
unit specifier.

ST ATUS='KEEP'
ST A TUS='DELETE'

Optional argument which applies
is KEEP. The option is character

only to files opened NEW, default
constant.

CLOSE disconnects the unit specified and prevents subsequent 1/0 from being
directed to that unit (unless the same unit number is reopened, possibly bound to a
different file or device). Files opened NEW are temporaries and discarded if
STATUS='DELETE' is specified. Normal termination of a FORTRAN program
automatically closes all open files as if CLOSE with STATUS='KEEP' had been
specified.

Example program fragment:

C Close the file opened in OPEN example, discarding the file
CLCJSE(7 ,ST/.\ TUS='DELETE')

58

10.3.2.3. READ Statement.

READ(

u,

Required, must be first argument.

f,

FOR TRAN Reference Manual
1/0 System

Required for formatted read as second argument, must not appear for
unformatted read.

REC=rn

For direct access only, otherwise error. Positions to record number rn,
where rn is a positive integer expression. lf omitted for direct
access file, reading continues from the current position in the file.

END=s)

Op ti on al, statement label. lf not present, reading end of file results
in a run time error. lf present, encountering an end of file condition
results in the transfer to the executable statement labeled s which
must be in the same program unit as the READ statement.

iolist

The READ statement sets the items in iolist (assuming that no end of file or error
condition occurs). lf the read is internal, the character variable or character
array element specified is the source of the input, otherwise the external unit is
the source.

Example program fragment:

C Need a two dimensional array for the example
DIMENSION lA(l0,20)

C Read in bounds for array off first line, hopefully less
C than 10 and 20. Then read in the array in nested

59

FORTRAN Reference Manual
1/0 System

C implied DO lists with input format of 8 columns of width
C 5 each.

READ(3, 990)1,J,((lA (l,J),J=l ,J),l =1,1, l)
990 FORMA T(215/ ,(815))

10.3.2.4. WRITE Statement.

Wf~ITE(

u,

Required, must be first argument.

f,

r~equired for formatted write as second argument, must not appear for
unformatted write.

REC=rn)

For direct access only, otherwise error. Positions to record number rn,
where rn is a positive integer expression. If omitted for direct
access file, writing continues at the current position in the file.

i olist

The WRITE statement transfers the iolist items to the unit specified. If the write
is internal, the character variable or character array element specified is the
destination of the output,· otherwise the external unit is the destination.

Example program fragment:

C Place message: "One = 1, Two = 2, Three = 3" on the
C CONSOLE:, not doing things in the simplest way!

WRITE(*,98D)'One =',l,l+l,'ee = ',+(l+l+l)
980 FORMAT(A,12,', Two =',lX,11,', Thr',A,11)

GO

10.3.2.5. BACKSPACE Statement.

BACKSPACE u

FORTRAN Reference Manual
1/0 System

Unit is not internal unit specifier. Can only be issued on units which
are bound to blocked devices. Can only be issued on units which are
direct or sequential formatted (i.e., not on sequential unformatted).

BACKSPACE causes the file connected to the specified unit to be positioned
before the preceding record. lf there is no preceding record, the file position is
not changed. Note that if the preceding record is the endfile record, the file
becomes positioned before the end file record.

10.3.2.6. ENDFILE Statement.

ENDFlLE u

Unit 1s not an internal unit specifier.

ENDFlLE "writes" an end of file record as the next record of the file connected
to the specified unit. The file is then positioned after the end of file record, so
further sequential data transfer is prohibited until either a BACKSPACE or
REWlND is executed. An ENDFlLE on a direct access file makes all records
written beyond the position of the new end of file disappear.

10.3.2. 7. REWIND Statement.

REWIND u

Unit 1s not an internal unit specifier.

Execution of a REWlND statement causes the file associated with the specified
unit to be positioned at its initial point.

10.3.3. Restriction on 1/0 Side Effects of Functions.

Any function referenced in an expression within any 1/0 statement must not cause
any 1/0 statement to be executed.

61

FORTRAN Reference Manual
1/0 System

62

CHAPTER 11

Formatted 1/0 and the FORMAT Statement

This chapter describes formatted 1/0 and the FORMAT statement. A familiarity
with the FORTr~AN file system, units, records, access methods, and 1/0 statements
as described in the previous chapters is assumed.

11.1. Format Specifications and the FORMAT Statement.

lf a READ or WRITE statement specifies a format, it is considered a formatted,
rather than an unformatted 1/0 statement. Such a format may be specified in one
of three ways, as explained in the previous chapter. Two ways refer to
FORMAT statements and one is an immediate format in the form of a character
expression containing the format itself. The following are all valid and equivalent
means of specifying a format:

WRITE(* ,990)1,J,K
990 FOR MA T(215,13)

ASSIGN 990 TO lFMT
990 FORMAT(215,13)

WRITE(* ,lFMT)l,J,K

WRITE(* ,'(215,13)')1,J,K

CHARACTER*B FMTCH
FMTCH = '(215,13)'
WRITE(* ,FMTCH)l,J,K

The format specification itself must begin with "(",
possibly following initial blank characters, and end with a matching ")".
Characters beyond the matching ")" are ignored.

FORMAT statements must be labelled, and like all nonexecutable statements, may
not be the target of a branching operation.

Between the initial "(" and terminating ")" is a list of items, separated by commas,
each of which is one of:

[r J ed - repeatable edit descriptors

ned - nonrepeatable edit descripors

[r] fs - a nested format specification. At most 3 levels of nested
parenthesis are permitted within the outermost level.

where r is an optionally present, nonzero, unsigned, integer constant called a

63

FORTRAN Reference Manual
Formatted I/O and the FORMAT Statement

repeat specification. The comma separating two list items may be omitted if the
resulting format specification is still unambiguous, such as after a P edit descriptor
or before or after the / edit descriptor.

The repeatable edit descriptors, explained in detail below, are:

lw
Fw.d
Ew.d
Ew.dEe
Lw
A
Aw

where I, F, E, L, and A indicate the manner of editing and, w and e
are nonzero, unsigned, integer constants, and d is an unsigned integer
constant.

The nonrepeatable edit descriptors, which are also explained in detail
below, are:

'xxxx' - character constants of any length, see special rules below

nHxxxx - another means of specifying character constants, see rules
below

nX
I
\
kP
BN
BZ

where apostrophe, H, X, slash, backslash, P, BN, and BZ indicate the
manner of editing and, x is any ascii character, n is a nonzero,
unsigned, integer constant, and k is an optionally signed integer
constant.

11.2. Interaction between Format Specification and 1/0 List.

Before describing in greater detail the manner of editing specified by each of the
above edit descriptors, it must be explained how the format specification interacts
with the input/output list (io!ist) in a given READ or WRITE statement.

If an i olist contains at least one item, at least one repeatable edit descriptor

64

FORTRAN Reference Manual
Formatted 1/0 and the FORMAT Statement

must exist in the format specification. ln particular, the empty edit specification,
(), may be used only if no items are specified in the iolist (in which case the
only action caused by the 1/0 statement is the implicit record skipping action
associated with formats). Each item in the iolist will become associated with a
repeatable edit descriptor during the 1/0 statement execution in turn. ln contrast
to this, the other format control items interact directly with the record and do
not become associated with items in the iolist.

The items in a format specification are interpreted from left to right. Repeatable
edit descriptors act as if they were present r times (omitted r is treated as a
repeat factor of 1). Similarly, a nested format specification is treated as if its
items appeared r times.

The formatted 1/0 process proceeds as follows: The "format controller" scans the
format items in the order indicated above. When a repeatable edit descriptor is
encountered, either

a corresponding item appears in the iolist in which case the item and
the edit descriptor become associated and 1/0 of that item proceeds
under format control of the edit descriptor, or

the "format controller" terminates 1/0.

lf the format controller encounters the matching final) of the format specification
and there are no further items in the iolist, the "format controller" terminates 1/0.
lf, however, there are further items in the iolist, the file is positioned at the
beginning of the next record and the "format controller" continues by rescanning
the format starting at the beginning of the format specification terminated by the
last preceding right parenthesis. lf there is no such preceding right parenthesis,
the "format controller" will rescan the format from the beginning. Within the
portion of the format rescanned, there must be at least one repeatable edit
descriptor. Should the rescan of the format specification begin with a repeated
nested format specification, the repeat factor is used to indicate the number of
ti mes to repeat that nested format specification. The rescan does not change the
previously set scale factor or BN or BZ blank control in effect. When the "format
controller" terminates, the remaining characters or an input record are skipped or
an end of record is written on output, except as noted under the \ edit descriptor.

11.3. Edit Descriptors.

Here are the detailed explanations of the various format specification descriptors,
beginning with the nonrepeatable edit descriptors:

65

FORTRAN Reference Manual
Formatted 1/0 and the FORMAT Statement

11.3.l. Nonrepeatable Edit Descriptors.

11.3.l.l. 'xxxx' (Apostrophe Editing).

The apostrophe edit descriptor has the form of a character constant. Embedded
blanks are significant and double " are interpreted as a single '. Apostrophe
editing may not be used in a READ statement. It causes the character constant
to be transmitted to the output unit.

11.3.1.2. H (Hollerith Editing).

The nH edit descriptor cause the following n characters, with blanks counted as
significant, to be transmitted to the output. Hollerith editing may not be used in
a READ.

Examples of Apostrophe and Hollerith editing:

C Each write outputs characters between the
C slashes: I ABC'DEF I

WRITE(* ,970)
970 FORMAT(' ABC"DEF')

WRITE(*,'(" ABC""DEF")')
WRITE(* ,'(7HABC"DEF)')
WRITE(* ,960)

960 FORM A T(7HABC'DEF)

11.3.1.3. X (Positional Editing).

On input (a READ), the nX edit descriptor causes the
file position to advance over n characters, thus the next n characters are skipped.
On output (a WRITE), the nX edit descriptor causes n blanks to be written,
providing that further writing to the record occurs, otherwise, the nX descriptor
results in no operation.

11.3.1.4. I (Slash Editing).

The slash indicates the end of data transfer on the current record. On input, the
file is positioned to the beginning of the next record. On output, an end of
record is written and the file is positioned to write on the beginning of the next
record.

66

11.3.1.5. \ (Backslash Editing).

FORTRAN Reference Manual
Formatted 1/0 and the FORMAT Statement

Normally when the "format controller" terminates, the end of data transmission on
the current record occurs. If the last edit descriptor encountered by the "format
controller" is the backslash, this automatic end of record is inhibited. This allows
subsequent I/O statements to continue reading (or writing) out of (or into) the
same record. The most common use for this mechanism is to prompt to the
CONSOLE: and read a response off the same line as in:

WRITE(* ,'(A\)') 'Input an integer ->
READ(* ,'(BN,I6)') I

The backslash edit descriptor does not inhibit the automatic end of record
generated when reading from the * unit. Input from the CONSOLE: must always
be terminated by the return key. This permits the backspace character and the
line delete key to function properly.

11.3.1.6. P (Scale Factor Editing).

The kP edit descriptor is used to set the scale factor for subsequent ~- and E edit
descriptors until another kP edit descriptor is encountered. At the start of each
I/O statement, the scale factor equals 0. The scale factor affects format editing
in the following ways:

On input, with F and E editing, providing that no explicit exponent exists in the
field, and F output editing, the externally represented number equals the internally
represented number mu! ti plied by lD**k.

On input, with F and E editing, the scale factor has no effect if there is an
explicit exponent in the input field.

On output, with E editing, the real part of the quantity is output multiplied by
lO**k and the exponent is reduced by k (effectively altering the column position of
the decimal point, but not the value that is output).

11.3.1. 7. BN and BZ (Blank Interpretation).

These edit descriptors specify the interpretation of blanks in numeric input fields.
The default, BZ, is set at the start of each 1/0 statement. This makes blanks,
other than leading blanks, identical to zeros. lf a BN edit descriptor is processed
by the "format controller", blanks in subsequent input fields will be ignored unless,
and until, a BZ edit descriptor is processed. The effect of ignoring blanks is to
take all the nonblank characters in the input field, and treat them as if they were

67

FORTRAN Reference Manual
Formatted 1/0 and the FORMAT Statement

right justified in the field with the number of leading blanks equal to the number
of ignored blanks. For instance, the following READ statement shown accepts the
characters shown between the slashes as the value 123 (where <er> indicates
hitting the return key):

READ(* ,100) 1
100 FORMA T(BN,16)

/123 <er>/,
/123 456<cr>/,
/l!Vcr>/, or
I lL5<cr>/.

The BN edit descriptor, in conjunction with the infinite blank paddinq at the end
of formatted records, rnakes interHrtive input very convenient.

11.3.2. Repeatable Edit Descriptors.

11.3.2.l. 1, F, and E (Numeric Editing, General Description).

The 1, F, and E edit descriptors are used for 1/0 of integer and real data. The
following general rules apply to all three of them:

On input, leading blanks are not significant. Other blanks are
interpreted differently depending on the BN or BZ flag in effect, but
all blank fields always become the value 0. Plus signs are optional.

On input, with F and E editing, an explicit decimal point appearing in
the input field overrides the edit descriptor specification of the
decimal point position.

On output, the characters generated are right justified in the field
with padding leading blanks if necessary.

On output, if the number of characters produced exceeds the field
width or the exponent exceeds is· specified width, the entire field is
filled with asterisks.

11.3.2.2. I (Integer Editing).

The edit descriptor lw must be associated with an iolist item which is of type
integer. The field width is w characters in length. On input, an optional sign
may appear in the field. The general rules of Section 11.3.2.l apply to the I edit
descriptor.

68

11.3.2.3. F (Real Editing).

FOR TRAN Ref ere nee Manual
Formatted 1/0 and the FORMAT Statement

The edit descriptor Fw.d must be associated with an iolist item which is of type
real. The width of the field is w positions, the fractional part of which consists
of d digits. The input field begins with an optional sign followed by a string of
digits optionally containing a decimal point. lf the decimal point is present, it
overrides the d specified in the edit descriptor, otherwise the rightmost d digits of
the string are interpreted as following the decimal point (with leading blanks
converted to zeros if necessary). Following this is an optional exponent which is
one of

plus or minus followed by an integer, or

E or D followed by zero or more blanks followed by an optional sign
followed by an integer (E and D are treated identically).

The output field occupies w digits, d of which fall beyond the decimal point, and
the value output is controlled both by the iolist item and the current scale factor.
The output value is rounded rather than truncated.

The general rules of Section 11.3.2.l apply to the F edit descriptor.

11.3.2.4. E (Real Editing).

An E edit descriptor either takes the form Ew.d or Ew.dEe. ln either case the
field width is w characters. The e has no effect on input. The input field for an
E edit descriptor is identical to that described by an F edit descriptor with the
same w and d. The form of the output field depends on the scale factor (set by
the P edit descriptor) which is in effect. For a scale factor of O, the output field
is a minus sign (if necessary), followed by a decimal point, followed by a string of
digits, followed by an exponent field for exponent, exp, of one of the following
forms:

Ew.d -99 <= exp <= 99
E followed by plus or minus followed by the two digit exponent.

Ew.d -999 <= exp <= 999
Plus or minus followed by three digit exponent.

Ew.dEe -((lO**e) - l) <= exp <= (lO**e) -1
E followed by plus or minus followed by e digits which are the
exponent with possible leading zeros.

69

FORTRAN Reference Manual
Formatted 1/0 and the FORMAT Statement

The form Ew.d must not be used if the absolute value of the exponent to be
printed exceeds 999.

The scale factor controls the decimal normalization of the printed E field. lf the
scale factor, k, is in the range -d < k <= 0 then the output field contains exactly
-k leading zeros after the decimal point and d + k significant digits after this. If
0 < k < d+2 then the output field contains exactly k significant digits to the left
of the decimal point and d - k - l places after the decimal point. Other values
of k are errors.

The general rules of Section 11.3.2.l apply to the E edit descriptor.

11.3.2.5. L (Logical Editing).

The edit descriptor is Lw, indicating that the field width is w characters. The
i olist element which becomes associated with an L edit descriptor must be of type
logical. On input, the field consists of optional blanks, followed by an optional
decimal point, followed by a T (for • TRUE.) or and F (for .FALSE.). Any further
characters in the field are ignored, but accepted on input, so that .TRUE. and
.FALSE. are valid inputs. On output, w - l blanks are followed by either T or F
as appropriate.

11.3.2.6. A (Character Editing).

The forms of the edit descriptor are A or Aw. If w is not present, the number of
characters in the iolist item with which it becomes associated determines the
length (an implicit w). The iolist item must be of character type if it is to be
associated with an A or Aw edit descriptor. On input, if w exceeds or equals the
number of characters in the iolist element, the rightmost characters of the input
field are used as the input characters, otherwise the input characters are left
justified in the input iolist item and trailing blanks are provided. On output, if w
should exceed the characters produced by the iolist item, leading blanks are
provided, otherwise, the leftmost w characters of the iolist item are output.

'70

CHAPTER 12

Programs, Subroutines and Functions

This chapter describes the format of program units. A program unit is either a
main program, a subroutine, or a function program unit. The term procedure is
used to refer to either a function or a subroutine. This chapter also describes the
CALL and RETURN statements as well as function calls.

12.1. Main Program.

A main program is any program unit that does not have a FUNCTION or
SUBROUTINE statement as its first statement. lt may have a PROGRAM
statement as its first statement. The execution of a program always begins with
the first executable statement in the main program. Consequently, there must be
precisely one main program in every executable program. The form of a
PROGRAM statement is:

PROGRAM pname

where: 'pname' 1s a user defined name that is the name of the main
program.

The name pname 1s a global name. Therefore, it cannot be the same as another
external procedure's name or a common block's name. lt is also a local name to
the main program, and must not conflict with any local name in the main program.
The PROGRAM statement may only appear as the first statement of a main
program.

12.2. Subroutines.

A subroutine is a program unit that can be called from other program units by a
CALL statement. When envoked, it performs the set of actions defined by its
executable statements, and then returns control to the statement immediately
following the statement that called it. A subroutine does not directly return a
value, although values can be passed back to the calling program unit via
parameters or common variables.

12.2.1. SUBROUTINE Statement.

A subroutine begins with a SUBROUTINE statement, and ends with the first
following END statement. lt may contain any kind of statement other than a
PROGRAM statement or a FUNCTION statement. The form of a SUBROUTINE
statement is:

71

FORTRAN Reference Manual
Programs, Subroutines and Functions

SUBROUTINE sname [([farg [, farg] •..])]

'sname' is the user defined name of the subroutine.

'farg' is a user defined name of a formal argument.

The name 'sname' is a global name, and it is also local to the subroutine it names.
The list of argument names defines the number and, with any subsequent IMPLICIT,
type, or DlMENSlON statements, the type of arguments to that subroutine.
Argument names cannot appear in COMMON, DAT A, EQUIVALENCE, or INTRINSIC
statements.

12.2.2. CALL Statement.

A subroutine is executed as a consequence of executing a CALL statement in
another program unit that references that subroutine. The form of a CALL
statement is:

CALL sname [([arg [,arg] ...])]

'sname is the name of a subroutine.

'arg is an actual argument.

,L\n actual argument may be either an expression or the name of an array. The
actual arguments in the CALL statement must agree in type and number with the
corresponding formal arguments specified in the SUBROUTINE statement of the
referenced subroutine. lf there are no arguments in the SUBROUTINE statement,
then a CALL statement referencing that subroutine must not have any actual
arguments, but may optionally have a matched pair of parentheses following the
name of the subroutine. Note that a formal argument may be used as an actual
argument in another subprogram call.

Execution of a CALL statement proceeds as follows: All arguments that are
expressions are evaluated. All actual arguments are associated with their
corresponding formal arguments, and the body of the specified subroutine is
executed. Control is returned to the statement following the CALL statement
upon exiting the subroutine, by executing either a RETURN statement or an END
statement in that subroutine.

A subroutine specified in any program unit may be called from any other program
unit within the same executable program. Recursive subroutine calls, however, are
not allowed in FORTRAN. That is, a subroutine cannot call itself directly, nor
can it call another subroutine that will result in the first subroutine being called

72

FORTRAN Reference Manual
Programs, Subroutines and Functions

again before it returns control to its caller.

12.3. Functions.

A function is referenced in an expression and returns
computation of that expression. There are three
functions, intrinsic functions, and statement functions.
three kinds of functions.

a value that is used in the
kinds of functions: external

This sec ti on describes the

A function reference may appear in an arithmetic expression. Execution of a
function reference causes the function to be evaluated, and the resulting value is
used as an operand in the containing expression. The form of a function
reference 1s:

fname ([arg [,arg] ••.])

'fname' is the name of an external, intrinsic, or statement function.

'arg' is an actual argument.

An actual argument may be an arithmetic expression or an array. The number of
actual arguments must be the same as in the definition of the function, and the
corresponding types must agree.

12.3.1. External Functions.

An external function is specified by a function program unit. It begins with a
FUNCTION statement and ends with an END statement. It may contain any kind
of statement other than a PROGRAM statement or a SUBROUTlNE statement.
The form of a FUNCTION statement is:

[type] FUNCTION fname ([farg [, farg] •..])

'type' is one of INTEGER, REAL, or LOGICAL.

'fname' is the user defined name of the function.

'farg' is a formal argument name.

The name 'fname' is a global name, and it is also local to the function it names.
lf no type is present in the FUNCTION statement, the function's type is
determined by default and any subsequent IMPLICIT or type statements that would
determine the type of an ordinary variable. lf a type is present, then the function
name cannot appear in any additional type statements. ln any case, an external

73

FORTRAN Reference Manual
Programs, Subroutines and Functions

function cannot be of type character. The list of argument names defines the
number and, with any subsequent lMPLlClT, type, or DIMENSION statements, the
type of arguments to that subroutine. Neither argument names nor 'fname' can
appear in COMMON, DAT A, EQUIVALENCE, or INTRINSIC statements.

The function name must appear as a variable in the program unit defining the
function. Every execution of that function must assign a value to that variable.
The final value of this variable, upon execution of a RETURN or of an END
statement, defines the value of the function. After being defined, the value of
this variable can be referenced in an expression, exactly like any other variable.
An external function may return values in addition to the value of the function by
assignment to one or more of its formal arguments.

12.3.2. Intrinsic Functions.

Intrinsic functions are functions that are predefined by the FORTRAN compiler and
are available for use in a FORTRAN program. Table 12.l gives the name,
definition, number of parameters, and type of the intrinsic functions available in
UCSD System FORTRAN 77. An IMPLICIT statement does not alter the type of
an intrinsic function. For those intrinsic functions that allow several types of
ar~Juments, all arguments in a single reference must be of the same type.

All intrinsic functions used in a program unit must appear in an INTRINSIC
statement.

An intrinsic function name may appear in an INTRINSIC statement, but only those
intrinsic functions listed in table 12.l may do so. An intrinsic function name also
may appear in a type statement, but only if the type is the same as the standard
type of that intrinsic function.

Arguments to certain intrinsic functions are limited by the definition of the
function begin computed. For example, the logarithm of a negative number is
undefined, and therefore not allowed.

12.3.3. Statement Functions.

A statement function is a function that is defined by a single statement. lt is
similar in form to an assignment statement. A statement function statement can
only appear after the specification statements and before any executable
statements in the program unit in which it appears. A statement function is not
an executable statement; since it is not executed in order as the first statement in
its particular program unit. Rather, the body of a statement function serves to
define the mea:1ing of the statement function. lt is executed, as any other
function, by the execution of a function reference. The form of a statement

74

function is:

f name ([arg [, arg] .••]) = ex pr

FORTRAN Reference Manual
Programs, Subroutines and Functions

'fname' is the name of the statement function.

'arg' is a formal argument name.

'expr' is an expression.

The type of the 'expr' must be assignment compatible with the type of the
statement function name. The list of formal argument names serves to define the
number and type of arguments to the statement function. The scope of formal
argument names is the statement function. Therefore, formal argument names
may be used as other user defined names in the rest of the program unit enclosing
the statement function definition. The name of the statement function, however,
is local to the enclosing program unit, and must not be used otherwise (except as
the name of a common block, or as the name of a formal argument to another
statement function). The type of all such uses, however, must be the same. If a
formal argument name is the same as another .local name, then a reference to that
name within the statement function defining it always refers to the formal
argument, never to the other usage.

Within the expression 'expr', references to variables, formal arguments, other
functions, array elements, and constants are allowed. Statement function
references, however, must refer to statement functions that have been defined
prior to the statement function in which they appear. Statement functions cannot
be recursively called, either directly or indirectly.

A statement function can only be referenced in the program unit in which it is
defined. The name of a statement function cannot appear in any specification
statement, except in a type statement which may not define that name as an
array, and in a COMMON statement as the name of a common block. A
statement function cannot be of type character.

12.4. RETURN Statement.

A RETURN statement causes return of control to the calling program unit. It
may only appear in a function or subroutine. The form of a RETURN statement
is:

RETURN

Execution of a RETURN statement terminates the execution of the enclosing
subroutine or function. If the RETURN statement is in a function, then the value

75

FORTRAN Reference Manual
Programs, Subroutines and Functions

of that function is equal to the current value of the variable with the same name
as the function. Execution of an END statement in a function or subroutine is
equivalent to execution of a RETURN statement.

12.5. Parameters.

This section discusses the relationship between formal and actual arguments in a
function or subroutine call. A formal argument refers to the name by which the
argument is known within the function or subroutine, and an actual argument is the
specific variable, expression, array, etc., passed to the procedure in question at any
specific calling location.

Arguments are used to pass values into and out of procedures. Variables in
common can be used to perform this task as well. The number of actual
arguments must be the same as formal arguments, and the corresponding types
must agree.

On entry to a subroutine or function, the actual arguments become associated with
the formal arguments, much as an EQUIVALENCE statement associates two or
more arrays or variables, and COMMON statements in two or more program units
associate lists of variables. This association remains in effect until execution of
the subroutine or function is terminated. Thus, assigning a value to a formal
argument during execution of a subroutine or function may alter the value of the
corresponding actual argument. lf an actual argument is a constant, function
reference, or an expression other than a simple variable, assigning a value to the
corresponding formal argument is not allowed, and may have some strange side
effects. ln particular, assigning a value to a formal argument of type character,
when the actual argument is a literal, can be disastrous.

lf an actual argument is an expression, it is evaluated immediately prior to the
association of formal and actual arguments. lf an actual argument is an array
element, its subscript expression is evaluated just prior to the association, and
remains constant throughout the execution of the procedure, even if it contains
variables that are redefined during the execution of the procedure.

A formal argument that is a variable may be associated with an actual argument
that is a variable, an array element, or an expression.

A formal argument that is an array may be associated with an actual argument
that is an array or an array element. The number and size of dimensions in a
formal argument may be different than those of the actual argument, but any
reference to the formal array must be within the limits of the storage sequence in
the actual array. While a reference to an element outside these bounds is not
detected as an error in a running FORTRAN program, the results are
unpredictable.

76

Intrinsic
Function

Type Conversion

Truncation

Nearest Whole
Number

Nearest Integer

Absolute Value

Remaindering

Transfer of Sign

Positive
Difference

BASIC User Reference Manual
Programs, Subroutines and Functions

Table 12.1 Intrinsic Functions

I No. Type of ;

Definition Ar gs Name Argument Function

Conversion 1 INT Real Integer
to Integer IFlX Real Integer
int(a)
See Note 1

Conversion 1 REAL Integer Real
to Real FLOAT Integer Real
See Note 2

Conversion 1 ICHAR Character Integer
to Integer
See Note 3

Conversion 1 CHAR Integer Character
to Character

int(a) 1 AINT Real Real
See Note 1

int(a.5) a>=O 1 ANINT Real Real
int(a.5) a<O

int(a.5) a>=O l NINT Re;:iJ Integer
int(a.5) a<O

a 1 IABS Integer Integer
1 ABS Real Real

alint(al/a2)*a2 2 MOD Integer Integer
See Note 1 /\MOD Real Real

al if a2>=0 2 I SIGN Integer Integer
al if a2<0 SIGN Real Real

ala2 if al>a2 2 IDlM Integer Integer
Oif al<=a2 DIM Real Real

77

I

I

BASIC User Reference Manual
Programs, Subroutines and Functions

Intrinsic
Function Definition

Choosing Largest max(al,a2, ••.)
Value

Choosing Small min(al,a2, •••)
est Value

Square Root a**0.5

Exponential e**a

Natural Logarithm log(a)

Common Logarithm loglO(a)

Sine sin(a)

Cosine cos(a)

Tangent tan(a)

Arcsine arcsin(a)

Arccosine arccos(a)

Arctangent arctan(a)

arctan(al/a2)

Hyperbolic Sine sinh(a)

Hyperbolic Cosine cosh(a)

Hyperbolic tanh(a)
Tangent

Lexically Greater al >= a2
Than or Equal See Note 4

No. Type of
Ar gs Name Argument Function

>=2 MAXO Integer Integer
AMAXl Real Real

AMA XO Integer Real
MAXl Real Integer

>=2 MINO Integer Integer
AMINl Real Real

AMINO Integer Real
MINl Real Integer

1 SQRT Real Real

1 EXP Real Real

1 ALOG Real Real

1 ALOGlO Real Real

1 SIN Real Real

1 cos Real Real

1 TAN Real Real

l ASIN Real Real

1 ACOS Real Real

1 ATAN Real Real

2 AT ANZ Real Real

1 SINH Real Real

1 COSH Real Real

1 TANH Real Real

2 LGE Character Logical

78

Intrinsic
Function Definition

Lexically al > a2
Greater Than See Note 4

Lexically Less al <= a2
Than or Equal See Note 4

Lexically al < a2
Less Than See Note 4

End of File End Of File(a)
See -Note 5

Table 12.l Notes

No.
Args

2

2

2

1

BASIC User Reference Manual
Programs, Subroutines and Functions

Type of
Name Argument Function

LGT Character Logical

LLE Character Logical

LLT Character Logical

EOF Integer Logical

(1) For a of type real, if a >= 0 then int(a) is the largest integer not greater than
a, if a < 0 then int(a) is the most negative integer not less than a. lFlX(a) is the
same as INT(a).

(2) For a of type integer, REAL(a) is to the greatest possible prec1s1on. This
varies from processof to processor. FLOA T(a) ts the same as REAL(a).

(3) lCHAR converts a character value into an integer value. The integer value of
a character is the ASCH internal representation of that character, and is in the
range 0 to 127. For any two characters, cl and c2, (cl .LE. cl) is .TRUE. if and
only if (lCHAR(cl) .LE. 1CHAR(c2)) is .TRUE ..

(4) LGE(al,a2) returns the value .H~UE .. if al -= a2 or if al follows a2 in the
ASCll collating sequence. Otherwise it returns .FALSE..

LGT(al,a2) returns • TRUE. if al follows a2 in the ASCll collating sequence,
otherwise it returns .FALSE ..

LLE(al,a2) returns .TRUE. if al = a2 or if al precedes a2 in the ASCH collating
sequence, otherwise it returns .FALSE •.

LL T(al,a2) returns . TRUE. if al precedes a2 in the ASCll collating sequence,
otherwise it returns .FALSE ..

The operands or LGE, l_GT, LLE, and LL T must be of the same length.

(5) EOF(a) returns the value .TRUE. if the unit specified by its argument is at or

79

BASIC User Reference Manual
Programs, Subroutines and Functions

past the end of file record, otherwise it returns .FALSE.. The value of a must
correspond to an open file, or to zero (which indicates CONSOLE:).

(6) All angles are expressed in radians.

(7) All arguments in an intrinsic function reference must be of the same type.

80

CHAPTER 13

Compilation Units

This chapter des~ribes the relationship between FORTRAN and the UCSD Pascal
segment mechanism. In normal use, the user need not be aware of such
intricacies. However, if the user desires to interface FORTRAN with Pascal, to
create overlays, or to take advantage of separate compilation or libraries, the
details contained here are helpful. This chapter consists of the following sections:

13.1. Units, Segments, Partial Compilation, and FORTRAN.
13.2. The $USES Compiler Directive.
13.3. Linking Pascal and FORTRAN.
13.4. The $EXT Compiler Directive.

The first section discusses the general form of a FORTRAN program in terms of
the UCSD operating system object code structure. The next section describes the
$USES compiler directive. This directive provides access libraries or already
compiled procedures, and provides overlays in FORTRAN. The next settion
describes how one links FORTRAN with Pascal. The final section explains the
$EXT compiler directive.

13.l. Units, Segments, Partial Compilation, and FORTRAN.

lf a FORTRAN compilation contains no main procedure, then it is output as if it
were a Pascal unit compilation. The unit is given the name 'U' followed by the
name of its first procedure. For example:

C -- No PROGRAM statement present
SUBROUTINE X

END
SUBROUTlNE Y

END

SUBROUTINE Z

END

would be compiled into a single unit named 'UX'. (Assume for later examples
that the object code is output to file 'X.CODE'.) All procedures called from within
unit UX must be defined within unit UX, unless a $USES or a $EXT statement has
shown them to reside in another unit. Similarly, procedures in unit UX cannot be
called from other units unless the other units contain a $USES UX statement.
Thus, a typical main program that would call X might be:

81

FORTRAN Reference Manual
Compilation Units

c
C -- This is the main program BlGGlE
c

$USES UX lN X.CODE

PROGRAM BlGGlE

CALL X

END
SUBROUTlNt:: W

CALLY

END

lf the $USES statement were not present, the FORTRAN compiler would expect
subroutines X and Y to appear in the same compilation, somewhere after
subroutine W. Assume that the object code for this compilation is output to the
file 'BlGGlE.CODE'.

Thus, the user can create libraries of functions, partial compilations, etc., and save
compilation time and disk space, by a simple use of the $USES statement. For
more inforation on the $USES statement, see the section on the $USES statement.

13.2. The $USES Compiler Directive.

The $USES compiler directive provides several distinct functions to the user. lt
allows procedures and functions in separately compiled units, such as the system
library, to be called from FORTRAN. lt provides the user a relatively secure
form of separate compilation for FORTRAN compilations. lt allows the user to
call Pascal routines that have been compiled into Pascal units.

The format of the $USES control statement is:

$USES unitname [IN filename] [OVERLAY]

where: 'unitname' is the name of a unit.

'filename' is a valid UCSD file name.

As with all $ control statements, the $ must appear in column one. This compiler
directive directs the compiler to open the .CODE file 'filename', locate the unit

82

FORTRAN Reference Manual
Compilation Units

'unitname', and process the INTERFACE information associated with that unit,
generating a reasonable FORTRAN equivalent declaration for the FORTRAN
compilation in progress. All $USES commands must appear before any FORTRAN
statements, specification or executable, but they are allowed to follow comment
lines and other $ control lines. If the optional 'IN filename' is present, the name
'filename' is used as the file to process. lf it is not, the file '*SYSTEM.LIBRARY'
is used as a default. The optional field OVERl_AY has no effect on program
execution, and is included in version lV.O only for compatibility with version 11.0.

Warning: lf a FORTRAN main program $USES a Pascal unit, any global variables in
the INTERFACE part of that unit will not be accessible from FORTRAN. See
section 13.3 for further information.

13.2.1. Separate Compilation.

Separate compilation is accomplished by compiling a set of subroutines and
functions without any main program. Each such compilation creates a code file
containing a single UCSD unit. Then, when the main program is compiled, possibly
along with many subroutines or functions, it $USES the separately compiled units.
The routines compiled with the main program obtain the correct definition of each
externally compiled procedure through the $USES directive.

ln the simplest form, when no $USES statements appear in any of the separate
compilations, the user simply $USES all separately compiled FORTRAN units in the
main program. However, this limits the procedure calls in each of the separately
compiled units to procedures defined in the same unit. lf there are calls to
procedures in unit A from unit B, then unit B must contain a $USES A statement.
The main program must then contain a $USES A statement as its first $USES
statement, followed by a $USES B statement. This is necessary for the compiler
to get the unit numbers allocated consistently.

ln more complicated cases, the user must insure that all references to procedures
in outside units are preceded by the proper $USES statement in the same order,
and not missing any units. If unit B $USES unit A, and unit C $USES unit B, then
unit C must first $USES unit A. Likewise, if units D and E both $USES unit F,
they both must contain exactly the same $USES statements prior to the $USES F
statement.

13.3. Linking Pascal and FORTRAN.

In order to call Pascal routines form FORTRAN, the Pascal routines must first be
compiled into a Pascal unit. The FORTRAN program can then $USES that unit.
Unfortunately, the exceedingly rich type structure present in Pascal is not present
in FORTRAN. Also, the l/O systems of FORTRAN and Pascal are not compatible.

83

FORTRAN Reference Manual
Compilation Units

Therefore it is not possible to do everything one might desire. This section does,
however, help the user do what is possible in interfacing the two languages.

lt is not generally possible to do 1/0 from Pascal routines called from a main
program that is written in FORTRAN. Normal Pascal 1/0 to and from the
console, however, can always be done from Pascal routines providing that there is
no file name in the 1/0 statement. The Pascal routines RESET, REWRITE,
CLOSE, etc., should not be called from Pascal routines running under a FORTRAN
main program.

It is possible to do 1/0 from a FORTRAN procedure that is called from a Pascal
main program. In general, however, this practice should be avoided. This section
is provided to allow the user who absolutely must mix 1/0 operations from both
languages to do what is possible. While the following information is believed to be
correct, it is neither warranted to work nor guaranteed to remain valid in future
releases. Again, mixed 1/0 is not supported. lt is done at the user's risk.

There are several precautions that the user must take for FORTRAN 1/0 to work
from Pascal programs. The FORTRAN 1/0 procedures use the heap for the
allocation of file related storage, so the user should not force the deallocation of
heap memory via calls to MARK and/or RELEASE. Other restrictions may
apply in special cases. As stated above, one should avoid doing 1/0 from both
FORTRAN and Pascal in the same program as the two systems are not totaly
compatible.

Since there are Pascal types that have no FORTRAN equivalent, the way
FORTRAN looks at Pascal parameters is somewhat limited. FORTRAN does
recognize both reference and value parameters when calling Pascal subroutines.
The following table shows how FOR TRAN views Pascal declarations:

84

Pascal Declaration:

CONST anything •.•
TYPE anything ••• ;
VAR anything ••• ;
PROCEDURE X(arg-list);
FUNCTION X(arg-list): type;

type:
REAL
BOOLEAN
CHAR
STRING or
PACKED ARRAY ~ CHAR
any other identifier

arg-list:
(VAR I,J: type)

(I,J: type)

FORTRAN Reference Manual
Compilation Units

FORTRAN's View:

Ignored.
Ignored.
Ignored.
SUBROUTINE X(arg-list)
type FUNCTION X(arg-list)
Note: type must be INTEGER,
LOGICAL, or REAL.

REAL
LOGICAL
CHARACTER*l

CHARACTER*n l <= n <= 127
INTEGER

(I,J)
type I,J
*** There is no proper
FORTRAN equivalent to value
parameters, but the FOR TRAN
compiler does generate the
correct calling sequence for
Pascal routines with value
parameters.

Likewise, when the INTERFACE information for a FORTRAN program is output, it
must be mapped onto Pascal declarations. The following table gives the
corresponding declarations:

FORTRAN Declaration:

SUBROUTINE X(arg-list)
type FUNCTION X(arg-list)

type:
INTEGER
REAL
LOGICAL
CHARACTER*n

85

Pascal's View:

PROCEDURE X(arg-list);
FUNCTION X(arg-list): type;

INTEGER
REAL
BOOLEAN
CHAR
STRING or
of CHAR

n = l
PACKED ARRAY

2 <= n <= 127

FORTRAN Reference Manual
Compilation Units

arg-list:
(1)
type I

(VAR 1: type)

Note: When a Pascal compilation USES a FORTRAN unit, it is the responsibility of
the Pascal program to rnake sure that any needed type declarations for the ALF An
types are properly defined. This cannot consistently be done by FORTRAN as it
would lead to duplicate type definitions should a user use two FORTRAN units in
which each declares the same type. There is another point that must be made for
Pascal programs that call FORTRAN subroutines. If the subroutine has a REAL
parameter that is in actuality an array, the Pascal progrc;im must pass a scalar
instead of an array. This should not be a problem. Since the Pascal program can
pass the first element of the array, and all FORTRAN parameters are reference
parameters, the FORTRAN subroutine has access to the whole array. The user is
cautioned to remember that Pascal stores its arrays in row- major order, while
FORTRAN stores them in column-major order.

When a FORTRAN program $USES a Pascal unit, the interface section variables in
that Pascal unit are not accessible from FORTRAN.

13.4. The $EXT Compiler Directive.

The $EXT compiler directive is used when one desires to call assembly language
routines, or routines in $SEPARATE FORTRAN or Pascal units, from a FORTRAN
77 routine. The form of the $EXT directive ts:

$EXT
type] FUNCTION

SUBROUTINE l procname llparams

where: 'type' is either INTEGER, LOGICAL, or REAL,

'procname' is the. name of the subroutine or function, and

'/lparams' is an integer equal to the number of parameters that
this procedure requires.

This directive must appear before any FORTRAN statements, either specification
or executable, but may follow comment lines or other $ compiler directives. All
parameters are passed by reference (called VAR parameters if Pascal) to
procedures defined by the $EXT directive. lt is up to the user to follow this
convention, as the linker does not enforce it. The linker does, however, check the
number of parameters.

86

	Leere Seite
	Leere Seite
	Leere Seite

