
• PASCAL• PASCAL· PASCAL· PASCAi: PASCAL• PASC~
'L:PASCA~ PASCAL• PASCAL· PASCAL:
i CAI: PASCAL· PASCAL- PASCAL· PASCAL· PAS C
·PASCAL· PASCAL• PASCAL•PASCAL·PASCAL·P
:AL· PASCAL• PASCAL• PASCAL· PASCAL· PASC
)ASCAL• PASCAL• PASCAL• PASCAL·PASCAL·P
)CAL• PASCAL• PASCAL• PASCAL•PASCAL:PA
• P C L· PA AS C
~~ ~ •PA
)C L

p A
A L

·A SC
~s cPASCAL . AL
I PASCAL. PA SCA . • .. CAL· PASC
: AL· PASCAL• PASCAL- PASCAL· PASCAL!
:> A.SCAL• PASCAL· PASCAL• PASCAL~PA

• A

' by $49.95
BLAIR & MOSS For Apple II*

~SCAL ISK TILITY
A DISK UTILITY FOR EXAMINING, CHANGING, MODIFYING,

ASSEMBLING, OR DISASSEMBLING PASCAL

Copyr ight 1983 Datamost Inc.
*Apple is a trademark

of Apple Computer, Inc.

PDQ
DATAMOST PASCAL DISK UTILITY

by
Richard Blair and Perry Moss

Documentation by

Scott Knaster

Copyright 1983

~ DATAMosi;·

NOTICE

PDQ, the DATAMOST Pascal Disk Utility runs under the Apple Pascal
Language System. "Apple Computer Inc. and The Regents of the
University of California make no warranties either express or implied
regarding the enclosed computer software package, its merchantability
or its fitness for any particular purpose."

This manual and the software herein described are sold on an "as is"
basis. The entire risk as to its quality and performance lies with the
buyer.

This product is copyrighted and all rights are reserved. DATAMOST
INC. shall have no liability or responsibility to the purchaser or any
other entity with respect to any liability, loss or damage caused or
alleged to be caused directly or indirectly by this product, including but
not limited to any interruption of service, loss of business and
anticipatory profits or consequential damages resulting from the use of
this product. Copying for purposes of backup is authorized to the
purchaser and no other person or entity. Otherwise copying, duplicating
or distributing this product is strictly forbidden.

If the PDQ disk becomes defective, DATAMOST INC. will replace the
media on which it is supplied providing it is returned to a dealer within
30 days with proof of purchase. After 30 days return the disk with $5.00
for post-warranty replacement. The above warranty does not apply if
the disk is defective due to abuse, neglect, or mishandling.

Apple is a registered trademark of APPLE COMPUTER INC.

COPYRIGHT © 1983 by DATAMOST INC.

This manual is published and copyrighted by DATAMOST INC. Copying, duplicating,
selling or otherwise distributing this product is hereby expressly forbidden except by
prior written consent of DATAMOST INC.

PDQ-DATAMOST PASCAL DISK UTILITY

CHAPTER

Introduction: Who Should Use PDQ?

1. What Is PDQ?
How to Use the Documentation
Warning about Backups

How to Use PDQ

2. The Editor: Patching Things Up
Introduction to Concepts
How to Begin
Command Keys

3. The Mapper: Stalking the Wild Codefile
Introduction to Concepts
How to Use

4. The Disassembler: A Clearer Picture
Introduction to Concepts
How to Use
Example

5. The P-code Assembler: For Pseudo-Programmers
Introduction to Concepts
How to Use
Pseudo-ops

6. The Transcend Unit: A Better Mousetrap
Introduction to Concepts
How to Use

Setting the Prefix

PAGE

1

2

5

9

11

15

18

Appendices

A: Apple Pascal diskette directory structure

B: Pascal device numbers

C: Using the Editor with DOS and SOS diskettes

D: Case jumps and OTHERWISE how to do it

E: P-code standard procedures

F: Operating system calls

G: A 6502 code application as a detailed example

H: .INCLUDE Example

19

21

22

23

27

28

29

31

Introduction:

Who Should Use PDQ?

PDQ is intended to be used by anyone who has an interest in the
intricacies of a sophisticated computer language and operating system;
by anyone who has been programming in Pascal and would like to know
more about how it all works; by a Pascal programmer who needs
additional development tools; by anyone who is learning to program in
Pascal and would like a fuller understanding than the standard
documentation provides; or by anyone who has caught the personal
computer programming bug and is looking for new and better ways to
explore the deep, dark secrets of his or her Apple.

Requirements: What you should have

Hardware: Apple II or Apple II Plus,
each with 48K
Disk II (at least one)
Video monitor (of course)
Apple Language Card (or equivalent)
Apple Pascal (semi-optional)
80 character video card (optional)

Sup'r'Term
Videoterm
Smarterm etc.

printer (optional)

Brainware: knowledge of Apple Pascal or desire to learn
knowledge of programming in general
knowledge of assembly language

(only occasionally)

It would also be very useful to obtain a copy of Randy Hyde's P-source,
published by DataMost.

1

Chapter 1

What Is PDQ?
Computer software can be a very complex beast. One of the most
important factors in this complexity is the number of levels that
software must traverse in order to be executed. As a high-level
language programmer (or a prospective one), you probably see only
Pascal source text most of the time. However, the path that this
software must follow when it is executed is somewhat reminiscent of the
mazes in "Adventure": the source text becomes p-code, the p-code is
run through a p-machine and interpreted as machine language, and
purists out there would point out that even machine language is not the
final step, since it is converted, within the tiny world of the
microprocessor itself, into microcode instructions. Whew! But, we're
getting a little ahead of ourselves.

PDQ is a tool to help you see what goes on in the Apple Pascal
Operating System and programs running under the control of that
operating system. Specifically, PDQ consists of these tools: a disk/
memory editor, a codefile mapper, a disassembler, and a p-code
assembler. In addition, there is an improved version of the Apple Pascal
unit called transcend, which performs several transcendental functions
(hence the clever name). Here's a little about each part:

The Editor

The Editor lets you examine and change, byte by byte, any part of a
diskette by file name or block number. In addition, you can look at and
modify the Apple II's main memory. Yes, you can skip happily through
your disk files, cheerfully turning them into useless garbage if you
really want to (see Warning about Backups below).

The Mapper

This tool will show you in detail a lot about a codefile, including a
segment dictionary giving each segment's number, name, kind, code
type, and more, plus information about each procedure within each
segment, more than enough information to put you on a first-name
basis with your codefiles.

2

The Disassembler

The Disassembler takes p-code instructions produced by the compiler or
the p-code assembler and emits (a technical term meaning "spits out")
p-code mnemonics and pseudo-ops. This lets you take a look at how the
compiler implements Pascal statements. Using this information, you can
learn how to make your Pascal programs more efficient. In short, the
Disassembler turns raw p-machine language into "p-assembly
language", and 6502 stuff into its assembly language.

The P-code Assembler

The P-code Assembler, faithful companion to the Disassembler, gives
you a rare opportunity to flail away at the p-machine at a level below
the compiler. Once you become familiar with the operation of the p
machine, you will be aching to try some p-code programming yourself.
The P-code Assembler lets you write your own p-code programs.

For those of you out there who felt a little (or a lot) lost during the
preceding discussion, a word of reassurance is in order. Almost
everything you need to know is contained in (1) this manual, (2) Apple's
excellent manuals, or (3) PDQ itself. After all, one of the purposes of
this software is to help you learn about the Apple Pascal system. So, if
you think a p-machine is a device for processing vegetables, don't
worry.

How to Use the Documentation

This manual is your guide to the successful use of PDQ . However, in
order to get the maximum use out of the system, we will periodically
refer you to the Apple Pascal Operating System Reference Manual for
discussion on various topics. Each chapter contains a section called
Introduction to Concepts. This section will explain the concepts used in
that chapter and tell you where to go for further information.

Warning about Backups

PDQ contains some superb tools. In particular, the Editor is a lot like a
surgeon's knife: it can do wonderful work, but if you're not careful (and

3

sometimes, even if you are) you can cause a fatal wound to your
diskette. Unlike the surgeon, however, the programmer can protect
her(him)self. Before using the Editor, make a backup copy of the
diskette you'll be working on! Just to be safe, back up the PDQ
diskette, too.

-A public service message.-

4

Chapter 2

The Editor: Patching Things Up
The Editor lets you read, examine, and change information on diskette
or in memory. You can view the information in hexadecimal or ASCII
character formats. You can select a block at an absolute location on a
physical unit, within a file, or in memory. You can move freely through
the block as you edit it. You can search through the information for an
occurrence of a given value.

Introduction to Concepts

The fundamental concept used in the Editor is the block. A block is a
chunk of 512 bytes read either from a physical device (normally a
diskette) or from the Apple's memory. An Apple Pascal diskette
contains 280 of these chunks, numbered astutely from 0 to 279. The
more mathematically inclined among you will note that 280 blocks of 512
bytes each gives 143,360 bytes or 140K, the capacity of a 16-sector
Apple diskette. It's nice to know that these things all work out, isn't it?

Note that when editing the Apple's main memory, 512 bytes is equal to
two pages, a page being 256 (hex 100) bytes.

How to Begin

To enter the Editor, select E from the menu. As you enter the Editor,
you will be asked for a filename. If you want to edit a diskette file ,
enter its name, preceded, if necessary, by a unit name or volume
number, e.g. "#5:ROGER". If you want to edit the Apple's memory,
enter a dollar sign instead of a file name. If you want to edit an absolute
block number on the diskette, press return without typing anything and
the prompt line will change and ask you for a unit number instead of a
file name. In the Pascal operating system, the disk drives are, in order,
units 4, 5, 9, 10, 11, and, if you're one of those many people who have 6
drives, 12. Enter the unit number of the drive you want to read from. If
you press return without typing a unit number, the Editor will give up
on you and return to the menu.

No matter which option you choose, the editor will next display the 512
bytes of block 0 in the chosen file, unit, or in memory. If you're using

5

the Apple's standard 40 column display, note that you can only see the
first 13 112 bytes of each line. To see the rest of the picture, press
ConTRoL-A, but then if you've been using Pascal with a 40 column
screen, you already know that.

The Information Lines

At the top of the screen you will see some information about the block
being edited. First, of course, is the name of the file or unit number
that you typed in when you started. At the end of the first line is the
current block number being edited. This starts out at 0, but can change
as you move to other places on the disk or in memory. On the second
line is the current location within the block of the cursor, which should
be down there blinking away even as you read this. Following the byte
number is a message which tells you if characters you type will be
interpreted in upper or lower case. The next message, window, tells you
the blocks which the Editor has already read and will not require a
further disk access for. The Editor, being a very intelligent creature,
will always try to stay a step ahead and minimize disk access by reading
blocks surrounding the one you're editing. The last information line has
a carat pointing either left or right. This indicates the direction of the
search when you search for values in the block. The value after
"target:" (initially blank) is the value to be searched for.

If you're looking at the hexadecimal display, you can change the value
that the cursor is on by entering a new byte with the numbers or A
through F. If you have the ASCII display, you can enter any ASCII
character. Note that control characters are displayed in inverse.

And now that you know that, we'll explain how to use it all.

Command Keys

Control characters

B Pressing ConTRoL-B lets you select the block number
to be edited. If you are editing a file, the block number
will be relative within the file. If you are editing a unit
or memory, the block will be absolute. See also the
warning under the ConTRol-N option which applies
here as well.

6

G ConTRoL-G sends you to the byte number on the
information line. You can then enter a byte number
from 0 to 511 and the cursor will move to the location
you specify. If you enter a byte number greater than
511, you will be rudely ignored.

I ConTRoL-I acts like a tab key and moves the cursor
five bytes forward.

L ConTRoL-L acts like it does in the Apple Pascal editor
by moving the cursor down one line.

N Pressing ConTRoL-N, which stands for new file, moves
you to the filename prompt on the first line and lets you
select something new to be edited.

Warning: if you've made any changes to the current
block, you'll see the disk light come on (if you're editing
a disk file) and know that the changes are now
permanent. If you were editing at an absolute block
number you will be given one last chance to change
your mind. The message "<space to write>" will be
displayed which allows you to press space to apply the
changes or any other key (such as ESCape) to save your
file from total annihilation. The various safety options
such as !ABORT and <space to write> may cause you
some confusion as to what really is on the disk. To find
out what the current block actually looks like on the
disk you may use ConTRol-N to re-access the file (or
move outside the window then back again) and so force
the editor to reread the block.

Moral: what is in the window buffer may not be what is
in the file.

0 As in the Apple Pascal editor, moves the cursor up 1
line.

P If you have a printer plugged in to slot 1 (unit #6) and
it's turned on, loaded with paper, and ready to go, the
current screen (80 bytes, remember) will be sent to the
printer.

7

Q Pressing ConTRoL-Q while you're looking at the ASCII
screen lets you enter a character which would normally
be interpreted as an editor command, such as
ConTRoL-G.

V Pressing ConTRoL-V lets you toggle the case of
characters being typed between upper and lower.

Y ConTRoL-Y switches the display between its two
modes: hexadecimal and ASCII.

Special keys

ESCape Lets you exit from the Editor and return to the menu.

Causes the shocking word ABORT to appear on line 4.
This means that the block you're editing will not be
updated. Note that ABORT goes off if you make any
more changes.

< > These keys set the direction for the search command.
(see below)

Search command. You are prompted for a target string
to search for. Enter an ASCII string and press return.
The Editor will search for the string within the current
window, starting at the cursor position and proceeding
in the direction set by < or >. If the pattern exists, the
cursor will stop at the character in front of the pattern.
Note that a response of $ to the target prompt will
repeat the previous target.

+ Displays the next block.

Displays the preceding block.

---> Moves the cursor one splice forward.

<--- Moves the cursor one space back.

RETURN Moves the cursor to the beginning of the next line.

8

Chapter 3

The Mapper: Stalking the Wild Codefile
(some parts are executable)

The Apple Pascal codefile is a very complex thing. Due to some of the
fancy things that can be done with Apple Pascal, the codefile has to
carry a lot of information around with it. This information includes code
type, whether the code needs other codefiles such as libraries before it
can be executed, entry points for procedures, and more. The Mapper
lets you examine all this information in your (and other people's)
codefiles.

Introduction to Concepts

The format of an Apple Pascal codefile is described in great and
wondrous depths by the Apple Pascal Operating System Reference
Manual on pages 266 through 270. It is highly recommended that you
read that section as many times as necessary before using and
while using the Mapper. The Mapper is basically a tool for extracting
this information from a codefile.

How to Use the Mapper

To enter the Mapper, select M from the menu. After the hilarious
greeting message appears, you will be asked to enter the name of your
codefile. If you respond by pressing return without typing anything,
the Mapper will assume you don't want to be here and will return you
promptly to the menu. After the Mapper determines that your file
exists, you will be prompted for an output file name. Just pressing
return here will cause the output to go to the console.

The output will begin by telling you the segment number and name of
the first segment in the codefile. Following the segment name is the
segment kind, which is one of the following:

Linked: fully executable, with no unresolved external references.

Hostseg: The outer block of a Pascal program with external
references.

Unitseg: A regular unit.

9

Seprtseg: A separately compiled procedure, such as an assembly
language codefile.

Unlinked_intrins: An intrinsic unit with unresolved external
references.

Linked_intrins: A ready-to-use intrinsic unit

Dataseg: An intrinsic unit's data segment

Next, the Mapper will give you the code type contained in this
segment. The possible values are:

Unidentified or unknown type
P-code
6502 Machine language

along with a version number.

The next item will tell you which intrinsic units are required by the
segment. Then, the Mapper will display the code block address and
byte length.

Following the segment information, the Mapper will display information
about each procedure in the segment, including its number, lexical
level, file offset, and enter IC.

You may wish to compare the information provided by the Mapper to
that produced by the Libmap program provided by Apple.

10

Chapter 4

The Disassembler: A Clearer Picture

The Disassembler takes as input the p-code produced by the compiler or
our P-code Assembler and produces an assembly-style mnemonic source
listing of the code. In addition, the Disassembler will automatically
start disassembling 6502 machine language if it encounters 6502 code.

Introduction to Concepts

The Apple Pascal pseudo-machine, called the p-machine by lazy
fingered documentors, is a software-simulated "machine" which has as
its machine language p-code, or pseudo-code. For an in-depth discussion
of the p-machine and its operation, consult appendix A in the Apple
Pascal Operating System Reference Manual.

How to Use the Disassembler

To enter the Disassembler, select D from the main menu. You will be
asked for the name of a file. As always, pressing return will take you
back to the menu. You can also disassemble memory by entering a
dollar sign. If you enter a file name, you will be asked, in turn, for a
codefile slot number, procedure numbers, whether to prepare an
assembler input file, and the name of the file to be listed to.
Responding to the slot number question by simply pressing return will
take you back to the menu. Responding to the other questions by just
pressing return causes a default value to be used: 0 for procedure
number, dump, and list to the console.

Once you have given the Disassembler all the requested information, it
will faithfully begin turning your codefile into p-code mnemonics. Also,
if any procedures are written in 6502 machine language, the
Disassembler will produce 6502 assembly language for that procedure.

For an in-depth discussion of the p-code instructions used in the Apple
Pascal p-machine, see appendix A in the Apple Pascal Operating
System Reference Manual.

In addition to the mnemonics produced by the Disassembler, certain
pseudo-ops are also generated. Curiously, these are some of the same

11

pseudo-ops which can be used by the p-code and 6502 assemblers (see
next chapter for details on p-code pseudos).

NOTE THAT THE DISASSEMBLER WILL ONLY PRODUCE
CORRECT RESULTS ON FULLY LINKED CODEFILES. IN
ADDITION THE DISASSEMBLER CAN ONLY WORK WITH
FILES THAT ARE NO BIGGER THAN ABOUT lOK.

6502 specifics

6502 procedures are always initiated with .PROC <label> ,0. This
shows that the disassembler does not really know how many words of
parameters are required so it assumes zero. It also assumes .PROC
instead of .FUNC since that information, like parameter size, is
resolved by the linker.

Labels: three kinds of labels are produced by the 6502 disassembler.
They are SEGMxxxx, PROCxxxx, and GLOBxxxx where the four x's
stand for segment relative addresses. These represent addresses known
to the whole SEGMent, just to the current PROCedure, and GLOBal
data segment references respectively. In other words the type of the
label tells you something about its scope . . REF and .DEF pseudos are
only generated for SEGMxxxx labels since they represent
communication between assembly (6502) procedures and functions.
Every procedure will have a .REF for all external labels whether it
actually contains a reference to that address or not. The xxxx addresses
are always relative to the beginning of the segment.

.BYTE: The disassembler generates a .BYTE when invalid instruction
codes are encountered, or when another instruction refers to the second
or a subsequent byte of an instruction. For example, the byte sequence
"A9 FF" would normally be interpreted as "LDA #FF"; but if another
instruction, such as a load, refers to the second (FF) byte, then the
following is produced instead:

.BYTE A9
<label> . BYTE FF

Another handy feature which the disassembler provides for you is
automatic display of relative branch destinations. After any branch

12

instruction is disassembled, the instruction which is the destination of
the branch will be displayed in the comment portion of the instruction.
If this destination is in turn another branch, its destination will be
displayed as well, and so on.

Note that "$" is not the location counter specifier as the Apple manual
states. Use an"*" instead. Hence .EQU *instead of .EQU $.

Note that the Disassembler will generate a text file that is about 8
times longer than the code file that is disassembled. Thus if you wish to
use the editor on a resulting text file it would be wise to disassemble
the code file procedure by procedure.

Example: SYSTEM.STARTUP

In order to get acquainted with the Disassembler, let's run through an
example together. Come on-don't be shy! Put in your PDQ disk and

· turn on the power. Press any key (just as it says) and you'll be looking
at the menu. Press D to disassemble a codefile.

After the screen clears, the Disassembler will start asking its questions
by wanting to know the name of the codefile to use. Just to be sure
we're all getting the same output, we'll use the "greeting" program,
SYSTEM.STARTUP. Type in SYSTEM.STARTUP and press return. If
you didn't do anything silly like take out your diskette or pour peanut
butter on the RAM, you should see that this codefile has only one
segment (number 0) and it's called STARTMEU. Since this is the only
segment we have to choose from, enter 0 and press return. Next, you're
asked which procedures you want to look at. Enter another 0 so that we
can look at all of them. Press 1 for a dump (sounds terrible, doesn't it?)
of the disassembly. Just press return when asked for the listing
filename. This will send the listing to the screen.

13

Now, when the Disassembler starts shooting lines to the screen, press
ConTRoL-S to freeze the display. Here 's what the first few lines look
like:

P2

EXIT

P22

UJP
CXP
LSA
NOP
CXP
SLDC
CSP
UJP
SLDC
CSP

.LEX 0

.PARAM4

.DATA 0

.PROC 1
P22
28,1
6,PEDUTI

28,2
28
22
P27
28
21

What does this mean? Well, first up are the pseudo-ops. The .LEX 0
tells us that this procedure takes place at lexical level 0. The .PARAM 4
tells us the number of words of parameters in the procedure. The
.DATA 0 says that there is no data space, and the .PROC 1 says that
this is the first procedure in the segment. Information on these items is
provided in the next chapter and also in appendix B of the good old
Apple Pascal Operating System Reference Manual.

The next 3 lines are simply p-machine "assembly language"
instructions. To discover their meaning, we refer to Apple's appendix
A, Operation of the P-Machine. The first instruction, UJP P22, means
"jump unconditionally to location P22." Note that in the actual p-code,
the destination of the jump is given as an offset from the current
location, but our friendly Disassembler has computed the destination
for us automatically. If you look farther down in the listing, you'll see
P22, the jump's destination. The next instruction, CXP 28,1, means
"call external procedure 1 in segment 28." In order to get a good idea of
how the Disassembler works, it's handy to write and compile some·
simple Pascal programs and then look at them with the Disassembler.
It's really fascinating to see how your Pascal programs are translated to
p-code!

14

Chapter 5

The P-code Assembler: For Pseudo-Programmers
The p-code Assembler turns the function of the Disassembler around. It
converts p-code mnemonics and pseudo-ops into p-code. It is not the
exact inverse of the Disassembler, however: remember that the
Disassembler also works with 6502 code. If you want to assemble 6502
code, Apple provides a very nice assembler with the Pascal system.

Introduction to Concepts

If you think that assembly language is the bizarre form of English that
tells you how to put together toys made in Taiwan, you had better hold
off on using the Assembler for a while. You may wish to get a good
book on assembly language, such as Datamost's Assembly Language
or Osborne/McGraw Hill's 6502 Assembly Language Programming.
No matter what you know, you should probably read appendices A and
Bon the p-machine in the Apple Pascal Operating System Reference
Manual. If you feel comfortable with assembly language in general,
read (thoroughly!) appendices A and B in the Apple Pascal Operating
System Reference Manual. These will describe how the p-machine
works and give you a good introduction to their use. As a programmer,
you should get some ideas for things to do with p-code after you read
the appendices.

This assembler will produce only two kinds of codefile. The first is a
fully linked segment, which resides in segment 1. The other kind of
code file that can be produced is a linked intrinsic (any segment #).

How to Use

The best teacher for using the Assembler is the Disassembler. After all,
what better way to learn about putting things together than by taking
them apart? Write a few simple Pascal programs, compile them, and
examine them with the Disassembler. After a while you may wish to try
writing some p-code yourself. To write a p-code program, use the Apple
Pascal editor. Instead of starting from scratch, you will often use the
Assembler to edit a file which you previously created with the
Disassembler. This is a handy procedure to use if you want to make
changes to a compiled program and you don't want to (or can't)
recompile the source text.

15

Pseudo-ops

The pseudo-ops which can be used with the Assembler are the same
ones produced by the Disassembler, but with a few extra ones for more
power. All operands are in decimal.

.LEX n The procedure's absolute lexical nesting level.
Optional, default is 0 .

. PARAM n The number of bytes of parameters passed.
Optional, default is 0 .

. DATA n The size of the data, in bytes. Optional, default is
0 .

. PROC n The procedure number within the segment. This
should be the LAST pseudo-op before P-code. This
is a REQUIRED Psuedo-op .

. INTRI n[,n] Lets you specify required Intrinsics in range 7-31.
Optional.

.SEGNUM n Specifies the desired segment number. Optional,
default is 1. Default for intrinsic unit is 25 .

. SEGNAM string Specifies the segment name (the string should not
be quoted). Optional, default is 'DEFAULT' .

. INTERFACE Indicates that the following text is to be used as
the interface section of a linked intrinsic unit. All
text up to and including the word
IMPLEMENTATION is copied directly into the
text portion of the code file . Optional, produces
intrinsic unit.

.END Specifies the end of the assembly. Place it at the
end of the file. Required .

. INCLUDE Lets you assemble from more than one file . Use it
in place of the .END at the end of each file . In
reality it chains the files together. Optional.

16

The above pseudo-ops should be placed at the beginning of each
procedure with the exception of .END and .INCLUDE which go at the
end of a file.

Although you may have any number of procedures, up to 149 per
segment, they MUST be numbered properly. For example if you have 4
procedures, they must be nurnbered 1-4; however order doesn't count
(e.g. 4,2,3,1).

CONVENTIONS

Comments begin with a '*'.

All standard procedure mnemonics have a '(P)' appended to them. This
notation is used to show that they are standard procedures and may
also be called by a CSP. Other mnemonics are as in the Operating
System Reference Manual.

Spaces are used as delimiters between the label, operator, and operand
fields .

Mnemonics that deal with strings (i.e. LSA,LPA n, <chars>) use the
next n characters as the string, going to the next line(s) if necessary.
The next n characters are taken from the text file no matter what they
are; i.e. part of a comment, the next instruction, or a pseudo-op.

XJP instructions may use either labels or self relative addresses (e. g.
$- 34) as jump table entries. See appendix D.

All labels MUST begin in column one.

The labels ENTER and EXIT have special meanings to the assembler.
They are used to specify the starting and termination points of the
procedure, respectively. EXIT is used by the p-machine to return from
a procedure or function via the exit(<proc>) standard procedure.
ENTER defaults to the first p-code instruction while EXIT is assumed
at the RBP or RNP return instruction if not explicitly used.

See appendices D,E,F for further information and examples.

17

Chapter 6

The Transcend Unit: A Better Mousetrap

Transcend is a Pascal unit which replaces the unit of the same name in
the SYSTEM LIBRARY supplied by Apple. It improves the system's
performance in executing certain transcendental functions by using the
ROM routines from Applesoft BASIC. If you have an Apple II Plus,
you have Applesoft in ROM in your Apple. Users of the Apple II will
not be able to utilize this unit (sorry).

Introduction to Concepts

DATAMOST's version of the Transcend unit is called Transwitch. It is
extremely simple to use, since all you have to do is install it in your
library file and (as they used to say on those oven commercials) it does
the rest. There are no other new concepts necessary (we thought we'd
wind up with an easy one).

How to Use

In order to use Transwitch, you must execute the Apple-supplied utility
program called LIBRARY. It's normally supplied on the APPLE3:
diskette that comes with Apple Pascal. The documentation for this
utility is in the omnipresent Apple Pascal Operating System Reference
Manual on pages 186 to 193. Take particular note of the example,
Installing a Unit or Routine into a Library, which starts on page 188.

Once you've installed the Transwitch unit in your library, your work is
done. From then on, any programs you write which use transcendental
functions will automatically use Transwitch.

Setting the Prefix

The prefix is simply a string of up to eight characters which is tacked
on to the beginning of any filename entry you make. It is initially set to
a colon so that the prefix volume of the system {set from the F(iler} is
used. You may change it from the main menu level of the PDQ. The
appearance of a colon in your file entry will cause the current PDQ
prefix to be ignored.

18

Appendix A

Apple Pascal diskette directory structure.

This is the Pascal declaration for the Apple II Pascal disk directory.
Note that the directory begins at block 2. This information can be very
handy for use with the Editor.

CONST
maxdir = 77;

(* maximum number of entries in directory *)
vidleng = 7;

(* number of characters in volume id *)
tidleng = 15;

(* number of characters in title id *)
fblksize = 512;

(* standard disk block length *)
dirblk = 2;

(* directory starts at this disk block address *)

TYPE
daterec = PACKED RECORD
month : 0 .. 12;

(* 0 implies meaningless date *)
day: 0 .. 31;
year : 0 .. 100;

(* 100 implies temporary file *)
END;

vid = string [vidleng]; (* volume id *)

dirrange = O .. maxdir;

tid = string [tidleng]; (* title id *)

filekind = (untypedfile, xdskfile, codefile,
textfile, infofile, datafile,
graffile, fotofile, securedir);

19

direntry = PACKED RECORD
(* this is the directory itself *)

dfirstblk : integer;
(* first physical disk address *)

dlastblk : integer;
(* block following last used block *)
CASE dfkind: filekind OF

END;
END;

securedir, untypedfile :
(fillerl : 0 .. 2048;
dvid: vid;
deovblk : integer;

(* number of blocks in volume *)
dnumfiles : dirrange;
(* number of files in dir *)

dloadtime : integer;
(* not used *)

dlastboot : daterec;)
(* most recent date *)

xdskfile, codefile, textfile,
infofile,datafile, graffile,
fotofile :(filler2 : 0 .. 1024;

status : boolean;
dtid: tid;

(* title of file *)
dlastbyt : l..fblksize;

(* no. of bytes in last block *)
daccess : daterec;)

(* date last modified *)

directory = ARRAY [dirrange] OF direntry;

Courtesy International Apple Core.

20

Appendix B

Pascal device numbers

Unit number

#1
#2
#4
#5
#6
#7
#8
#9

#10
#11
#12

name

CONSOLE:
SYSTERM:
(diskette in slot 6, drive 1)
(diskette in slot 6, drive 2)
PRINTER:
REMIN:
REMO UT:
(diskette in slot 4, drive 1)
(diskette in slot 4, drive 2)
(diskette in slot 5, drive 1)
(diskette in slot 5, drive 2)

Reprinted, with permission, from Apple Pascal Operating System
Reference Manual.

21

Appendix C

Using the Editor with DOS and SOS diskettes

Although the Editor (and the rest of PDQ) is written under the Apple
II Pascal Operating System, it can be used effectively to edit other
Apple 16 sector diskettes, namely Apple II DOS 3.3 and Apple/// SOS
diskettes. Although SOS diskettes have a completely different directory
structure than Apple II Pascal diskettes, the system of block
numbering is the same. This means that you can use the Editor with
SOS diskettes as long as you only use the unit read and write options,
and not the filename read and write (see chapter 2 for details).

Using DOS 3.3 diskettes is a little more complicated, since DOS does
not use the block method of partitioning a diskette. Instead of 280
blocks, DOS divides a diskette into 35 tracks of 16 sectors each, a total
of 560 sectors in all. Intuition tells us that since there are twice as many
sectors on a diskette as there are blocks, a sector must be half the size
of a block, or 256 bytes. Intuition is correct. Pascal blocks correspond
to DOS sectors in the following way: the first block on each track is
located in sectors 0 and 14. The next 6 blocks are, respectively, in
sectors 13-12, 11-10, 9-8, 7-6, 5-4, and 3-2. The last block on the track is
in sectors 1 and 15. Here's a Pascal procedure to convert block numbers.
to track/sector numbers for you:

procedure blocktosectors (block: 0 .. 279;
var track : 0 .. 34;
var sectorl, sector2 : 0 .. 15);

begin
track : = block div 8;
sector2 : = (7- (block mod 8)) * 2;
sectorl : = sector2 + 1;
if sector2 = 0 then sector2 : = 15;
if sectorl = 15

then sectorl : = O;
end;

22

Appendix D

Notes on the XJP instruction. Implementing an OTHERWISE for
CASE statements.

The best way to explain some of the idiosyncrasies of the XJP
instruction is by way of example. Listing D-1 is a Pascal program that
counts the occurrences of the vowels a,e,i, and the letter bin a text file.
The case jump will be explained and at the same time we will see how
to implement an 'OTHERWISE' for the case statement.

Refer to listing D-2 and the Apple Pascal Operating System Reference
Manual, pg. 240 during the following explanation.

The first parameter, Wl, of the case jump is a word aligned word and is
the minimum index of the table, in our case 65 which corresponds to 'N.
Note that since this parameter is word aligned, and a 'filler' byte may
have been inserted between the XJP instruction (172) and the
parameter, EXTREME care should be taken when making changes to
the code. If this warning is not heeded the self relative locations of the
jump table may become wrong. If in doubt simply replace the byte
offsets with labels, and add labels to the proper code locations prior to
reassembly.

The second parameter gives the maximum index of the table, in our
case a 73 which corresponds to 'I'.

The third parameter is an unconditional jump instruction which shows
up as a label on the disassembly. The Pascal compiler will alwa:y s make
this a jump past the the case table. In order to implement the
'OTHERWISE' simply change this label to one corresponding to one of
the cases. The case for 'B' was added for this reason. See listing D-3.

Following the third parameter is the case table. In listing D-3 the self
relative location for 'B' was changed to a label by way of example. In
most cases if the code is changed substantially this should be done to all
the locations in the jump table for reasons discussed earlier.

It is apparent from listing D-2 that sometimes the CASE statement is
not very efficient, especially if the difference between the minimum and
maximum index is large and there are only a few entries which
correspond to statements. The remainder of the table entries result in

23

jumps to the unconditional jump that is the third parameter. The
original draft of the program had a space as one of the cases, but this
resulted in a case table that was 64 words longer, only one of which
performed a meaningful action.

Listing D-1 and associated output

(*COUNTS VOWELS A,E,I IN TEXT FILE*)
PROGRAM VOWELCNT;
VAR INPFILNM:STRING[lO];

CH:CHAR;
A,E:INTEGER;
I,OTH:REAL; (*USED BY REASON OF EXAMPLE ONLY*)
OUT,INP:TEXT;

(*$I-*)

BEGIN
A:= O;E: = O;I: = O;OTH: = O;
REWRITE(OUT,'#6:');
REPEAT

WRITE('TEXT FILE? ');READLN(INPFILNM);
IF INPFILNM<>" THEN
RESET(INP, INPFILNM);

UNTIL (IO RESULT= 0) OR(INPFILNM = ");
IF INPFILNM<>" THEN
WHILE NOT EOF(INP) DO
BEGIN

READ (INP,CH);
IF CH<>'' THEN
CASE CH OF

'N: A:=A+l;
'E': E:=E+l;
'I': I:= I+ 1;
'B': OTH: = OTH + 1; (*WILL BE USED FOR OTHERWISE*)
END;(*CASE*)

END;(*WHILE*)
WRITELN(OUT,'
WRITELN(OUT,'

END.

','A E I
',A,E:7, I:9:1, OTH:9:1);

A E I
19 52 45.0

24

OTHERS');

OTHERS
5.0

Original Pascal program with output.

Listing D-2 .

P201

P226

P371

. LEXO

.PARAM4

.DATA 1230

.PROC 1

UJP
LAO
LAO
LDM
SLDC
FLT
ADR
STM
UJP
XJP

UJP

RBP

$-
$-
$-
$-
$-
$-
$-
$-
$-

0

P226
12
12
2
1

2
P226
65, 73,P226,
47 BYTES (SLDO
22 BYTES (LAO
6 BYTES (UJP
8 BYTES (UJP

48 BYTES (SLDO
12 BYTES (UJP
14 BYTES (UJP
16 BYTES (UJP
49 BYTES (LAO
P136

)
)
)
)
)
)
)
)
)

Disassembly of VOWELCNT showing the area of code to be modified.

25

Listing D-3 and associated output

OTHE

P201

P226

P371

.LEXO

.PARAM4

.DATA 1230

.PROC 1

UJP
LAO
LAO
LDM
SLDC
FLT
ADR
STM
UJP

P226
12
12
2
1

2
P226

XJP 65,73,0THE,

UJP

RBP

$- 47 BYTES (SLDO
OTHE
$- 6 BYTES (UJP
$- 8 BYTES (UJP
$- 48 BYTES (SLDO
$- 12 BYTES (UJP
$- 14 BYTES (UJP
$- 16 BYTES (UJP
$- 49 BYTES (LAO

P136

0

A E I OTHERS
434.0 19 52 45.0

Disassembly with modifications made for OTHERWISE . shown prior to
reassembly.

26

Appendix E

Standard Procedures
Some of the standard procedures as documented in the Apple Pascal
Operating System Reference Manual have incorrect procedure
numbers, the following is a correct list.

Table E-1

Standard procedures called by CSP# or Mnemonic if given.

Mnemonic Function

0 iocheck
1 NEW(P) new
2 MVL(P) moveleft
3 MVR(P) moveright
4 EXIT(P) exit
5 uni tread
6 unit write
7 IDS(P) idsearch
8 TRS(P) treesearch
9 TIM(P) time
10 FLC(P) fill char
11 SCN(P) scan
12 unitstatus

21 use
22 free
23 TNC(P) truncate
24 RND(P) round

32 MRK(P) mark
33 RLS(P) release
34 ioresult
35 unit busy
36 POT(P) pwroften
37 unitwait
38 unitclear

27

Appendix F

Pascal operating system procedures

The following is a partial list of useful Pascal operating system calls. All
are called by a CXP 0,#.

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Table F-1

Pascal built in's

function

execerror
initfile
RESET(f);
REWRITE/RESET(f,'filnm');
CLOSE
GET
PUT

EOF
EOLN
read integer
write integer

read char
write char
read string
write string

advance input to eoln
write eoln
CON CAT
INSERT
COPY
DELETE
POS
BLOCK READ/WRITE

The gaps in the table reflect deficiencies in the knowledge of this writer
rather than in the operating system design.

28

Appendix G

Sample Application of the 6502 dissassembler
The game paddle function is provided in the Applestuff unit and
documented in the Apple Pascal Operating System Reference Manual
on pages 143-4. You may "extract" this function and incorporate it into
your own Pascal host without having to Use the Applestuff unit.

The first order of business is to boot the PDQ diskette. After a few
moments of disk whirring you will see the title page appear on the
screen. Press the space bar (or any other key except RESET) and the
list of options will be displayed. Select "D(issassemble a codefile" by
pressing D. You will then be asked for the

Code file ($ for mem., <CR> quits):

In response to this you should enter System. Library and press
<return> . A numbered list will be produced which reads as follows:

0 LONGINTI
1 PASCALIO
2TRANSCEN
3 CHAINSTU
4APPLESTU

Slot number:

At this juncture you should reply with a 4 to specify Applestuff which is
in the fifth slot. Press <return> and you will get this cryptic message:

Procedure range#[- #] (0 for all):

The procedure number of the paddle function is 2 so enter it and
<return>. After the next prompt line specify assembler input (instead
of a combination hex-symbolic dump which of course is quite magical)
by punching 2 again. You don't want to <return> here since PDQ
knows that only one character is called for. When it asks for the

Listing filename:

you will need to type in a name--something like "paddle" to tell the
program where to send the dissassembly text. After an "N" reply to an
interface inclusion the dissassembly should be under way and a message

29

should come up which tells you that procedure two is being processed.
After some disk action interspersed with dramatic pauses the menu will
come up again.

At this point you should exit PDQ. It may be easiest to boot up your
regular Pascal Applel: or what have you since System.Editor and
System.Assembler are absent from the PDQ disk.

Enter the system's regular text editor and load your new Paddle text
file. Compare this source code with that of the original listing starting
on page 143 of the operating system manual. The only point where the
code actually produced is different is in the first line. The .Proc
SEGMxxxx,O should be replaced with .Fune PADDLE, I. The
dissassembler had no information to tell it how the procedure was to be
called so you must inform the assembler that you want a function with
one word of parameters. If there were any references to SEGMxxxx
inside the body of the function you would need to replace these with
PADDLE as well.

After the editing session you may proceed to assemble PADDLE and
merge it with a Pascal host. You might find it informative to produce an
assembly listing to compare the 6502 code values with the listing in the
OS manual mentioned above.

As a sample host the program given in the OS manual on page 149
would work if the sections which pertain to TTLOUT were removed.
The linking procedure would be the same with the appropriate filename
changes.

You now have a means of using the paddle function in a program
without having to load the entire Applestuff unit. This is a useful
method for conserving space when the original source text is
unavailable.

30

Appendix H
.INCLUDE example
The following shows how to organize multiple files for reassembly. Note
that the . TEXT should not be added to the file name .

. LEXO

.PARAM4

.DATAO

.PROC 1

EXIT RBP 0

< - -TEXTl. TEXT
first procedure

.INCLUDE TEXT2 < - - chains to second file

.LEXI

.PARAM4

.DATA6

.PROC 3

EXIT RNP 0
.INCLUDE TEXT 3

.LEX 1

.PARAM4

.DATA 100

.PROC 2

EXIT RNP 0
.END

< - - this is TEXT2. TEXT

< - - chains to third file

< - -TEXT3. TEXT

< - - end of input file

31

~ DATAMOSh™
8943 Fullbright Ave., Chatsworth, CA 91311. (213) 709-1202

