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Preface

This manual is intended to be a guide to the internal operation of the Apple
Pascal System. It describes the operation of the Apple Pascal p-Machine,
the operating system, and various systems utilities such as the SYS-
TEM.ATTACH program. It explains how to patch the system for improved
performance as well as additional utility. It describes how to hook up non-
standard peripheral devices (such as a clock card or arithmetic processing
unit) to the Apple Pascal System. Finally, it will attempt to provide a partial
“road map” to the system explaining how memory is used and what it is
used for. In short, it is intended to provide a strong “p-SOURCE” of
information for the advanced Apple Pascal user.

The manual is divided into three main sections: Pascal program examples,
a “road map” to the p-code interpreter, and a designer guide for peripheral
manufacturers and assembly language programmers. The first section pro-
vides information on hints and various “tricks” available to the Apple Pascal
programmer. The road map details how memory is used by various portions
of the Apple Pascal p-code interpreter. The last section describes how to
interface peripherals and machine language programs to the Apple Pascal
System.






Section One

Programming Techniques
in Apple Pascal

.

E—







Shared Allocation in Apple Pascal

Introduction

This section will not show you how to become a better Apple Pascal pro-
grammer. On the contrary, it will teach you bad programming practices,
poor programming style and non-portable techniques. While some of you
may call these techniques abhorrent and label any program using them as
poorly written, a simple fact remains: a poorly written program that works
is much better than a well written program that does not.

This first section of p-Source discusses three main topics: the use of shared
allocation in Apple Pascal (allowing you to implement the famous PEEK
and POKE instructions as well as perform “bit-tweaking™); optimizing
compiler generated code by rearranging declarations and program state-
ments; and an easy method for debugging your Pascal programs using
facilities built into the Apple Pascal compiler.

This manual assumes that you are a competent and experienced Apple Pascal
programmer. The optimization hints and techniques described herein should
not be utilized by the novice, nor should they be incorporated into a program
from the outset. In most cases, a better algorithm or data structure will
completely remove the need to use the machine dependent techniques
described here. The optimization techniques presented make the program
less maintainable, machine-dependent and harder to understand. Therefore
they should only be used as a last resort to speed up or shrink your program.
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Overview

While Apple Pascal provides several useful data structures for representing
high-level objects, the need to access data in a low-level fashion is often
required. Low level manipulation of a data object is easily accomplished by
treating a memory location as one type of data under certain circumstances
and as another type of data under other circumstances. The traditional solu-
tion has been to resort to machine languagc subroutines in order to perform
these operations. Pcrformlng programming tricks in Pascal offers several
advantages over using machine language. Machine language is difficult to
learn and makes the program even less portable.

Apple Pascal provides variant records, a mechanism by which a record can
vary in composition depending upon the environment. For example, you
could have a record type PERSON that contains various fields depending
upon whether the person was married or not.

Example:

TYPE
MARITALSTATUS = (SINGLE +MARRIED)
CASE MARITALSTATUS OF

SINGLE: (NAME:STRING:
AGE: INTEGER
SDCSEC:STRING
SEX:BOOLEAN) 3§

MARRIED: (NAME:STRING}
SPOUSE:STRINGS
AGE: INTEGER}
SOCBEC:STRING) §

END 3

The purpose of a variant definition is to allow you to view a data structure
differently depending upon several external cases. In the example above, the
data types vary depending upon whether or not the person is married. The
single person has an extra SEX component while the married person has an
extra SPOUSE component.

16



Whenever a variant is defined, Apple Pascal allocates enough storage for the
largest variant present in the variant part of the record definition (see Fig-
ures 1-1 and 1-2). Since (by using the case variant form of the RECORD
definition) you have agreed to use fieldnames from only one variant in the
variant part, Apple Pascal will reuse the same memory space for single and
married people. That is to say, at one time the 248 bytes reserved for the
structure above are used to hold the information associated with the married
person; at a different time those same 248 bytes are used to hold the infor-
mation associated with the single person. You are not supposed to use the
fieldnames from the married variant field when dealing with a single person;
likewise you mustn’t use the fieldnames from the single person when dealing
with a married person.

MARITALSTATUS Record Space Utilization:

Case: Narried Case: Single
Name Name
(82 bytes) (82 bytes)

Age (2 bytes) —»
Spouse SOCSEC

(82 bytes) (82 BYTES)

Age (2 bytes) —w = Sex (2 bytes) — ez
SOCSEC

(82 BYTES)

Figure 1-1
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MARITALSTATUS Record Space Utilization:
(without Case Variant Records)

Case: Married

Name
(82 bytes)

Age (2 bytes) —» |

Spouse
(82 bytes)

SOCSEC
(82 BYTES)

Sex (2 bytes) —p NN

Figure 1-2
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You will notice that 82 bytes are wasted when dealing with a record con-
taining a single person. This, however, is much better than using the fol-
lowing record definition since this wastes space for both married and single

people:

PERSON = RECORD

NAME:STRINGS
AGE: INTEGER

SPOUSE:STRINGS
SOCCSEC:BTRING:

- e el e ?

SEX:BOOLEANS

END3

This discussion applies only to data structures which are defined as VARi-
ables. Dynamic variable allocation (via the NEW procedure) has provisions
for allocating the exact number of bytes required. If you declare PEOPLE
to be a pointer to the data type PERSON, you could allocate storage using
the command NEW(PEOPLE,SINGLE) that allocates only the number of
bytes required by the SINGLE variant. NEW(PEOPLE MARRIED) allo-
cates the same amount of storage as NEW(PEOPLE) since the MARRIED
variant requires the maximum amount of storage. In the discussion that
follows I assume that pointers and dynamic allocation are not being used.

Before describing the various “tricks” you can play with the case variant

part, a discussion of the case variant’s purpose may be helpful. A good

example where you would use a variant record is in a mailing list program.

Many mailing list programs keep track of the number of records in a file by

storing the record count as part of the file (usually in record number zero).

Without the case variant part you would have to use a separate file, or worse .
yet include the count field in every record. With the case variant only the

first record of the mailing list file need contain this information, e.g.,
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TYPE

RECTYPE = (REC®,ALLOTHERS)
MAILLIST= RECORD CASE RECTYPE OF

RECO: (NUMRECS: INTEGERLEB]) 3
ALLOTHERS:{ {Normal record data does herel} )i
END3

As you can see, the variant portion is actually #sefil on occasion.

Games People Play with the Case Variant

Now we come to the whole purpose of this discussion — by bending the
rules behind Pascal’s back we can perform some really neat tricks. Before
discussing these tricks a word of warning is in order: many of these tech-
niques are non-portable, which means they will work fine on an Apple II
but may not work on any other machine running Pascal (including the
Apple //).

The main idea behind all the neat and nifty tricks that follow is summed up
in a statement made earlier: the programmer should not access fields in dif-
ferent variants when operating on the same datum. Note that we said shouldn’t,
not can’t. The Pascal compiler has no way of knowing which variant the
program is using so it will allow you to use mixed fields without complain-
ing. After all, you agreed not to, if you do it’s your own fault (“With freedom
comes responsibility” — Pascal MT + Manual). You can pull some very
interesting tricks by breaking the rules and going ahead and accessing fields
from the different variant fields.

For the purpose of discussion consider the record:

UNDO = RECORD CASE BOOLEAN OF

FALSE: (I: INTEGER) }
TRUE :(B:PACKED ARRAY [0..1] DF ©..255)%

END 3
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Both variants require the same amount of memory, namely two bytes (see
Figure 1-3). If a variable (say A) is declared to be of type UNDO, you
could treat A. as an integer in a fashion as though you declared an integer
variable A.L. Likewise, you could treat A.B[0] and A.B[1] as the two ele-
ments of a packed array of 0..255 just like any other variable declared to be
a packed array of 0..255 with two elements. A problem (and, in our case,
the advantage to this scheme) occurs if you try to use A.I and A.B simul-
taneously. Consider the program segment:

A.I := 2353
A.BLO] := 03
WRITELNCA.I) 3

Shared Allocation Using the Case Variant Record Definition

When referenced as A.I When referenced as A.B
16-bit 2°s complenent A.B[0] A.B[1]
integer value

Single Physical
Memory Location

A.B[0] A.8[1]
A.8 [0] occupies the same space
J | | as the lower half of A.I and
A.B {1] occupies the same space
-16-bit-2°s. conplenent ¥ N upet Kalf of AT,
integer value

Figure 1-3
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If you run this code yow’ll probably be quite surprised, it prints zero instead
of 255 as the value for A.I! The reason zero is printed is that the variable
A.I and the array A.B share the same two bytes in memory storage (see
Figure 1-4). As a result, storing data into the array A.B modifies the contents
of A.I as well. In this case it assigned zero to the low-order byte of Al
which contained the only 1-bits of the integer 255.

This phenomenon is due to the fact that A.I and the array A.B share the
same physical memory locations. Storing a value in A.I affects the contents
of the array A.B and storing data into one of the elements of A.B affects
the integer A.I. Exactly how they interact provides the basis of this chapter.
A.B[07’s storage corresponds to the storage of the low order byte of the
integer A.I and A.B[1]’s storage corresponds to that for the high order byte
of A.I (see Figure 1-3). This means that it is possible to disassemble an
integer into its low-order and high-order components!

While this is mildly interesting, you’re probably thinking, “Big deal, of what
use is this?” Well, suppose you wanted to print the integer I as a four-digit
hexadecimal value. While it could be done from Pascal without using any
tricks (see Listing 1-1), the program in Listing 1-2 is much more compact
and executes faster than programs using standard methods.

The piece of incredibly opaque code found in listing 1-2 will print the
integer variable passed to it as a four-byte hexadecimal value. It starts by
copying the integer into the A.I variable so that I can be disassembled
nibble-by-nibble. The A.N array is a packed array of nibbles, each nibble
corresponding to four bits of the integer A.L. Starting with the most sig-
nificant nibble (there are four of them in A.N) the FOR loop converts each
successive nibble to a hexadecimal character and writes it.

This technique can even be used to access data at the bit level. Consider the
record definition:

GETBITS = RECORD CASE BOOLEAN OF

FALSE: (I:INTEGER)
TRUE :(B:PACKED ARRAYL®..151 DF BOOLEAN)];

END

22



Accessing two cases in a varlant record simultaneously:

Al A.B[0] occupies the same space as
SA[H.0. Byte T L.0. Byte [0) occup P
- the low order byte of A.I and

L 4.B[1] occupies the sane space as

/' the high order byte of A.I
A.B

1) "A.1 := 255" (note: $OOFF is hex equivalent of decimal 255)

A1
“SNA[H.0. Byte L0, Byte
w0 | W |

e

A.B [1] A.B [0]
$00 §FF

Since A.I and A.B occupy the same physical memory locations,
storing $00FF (255) into A.I also stores $00FF into A.B. In
this case the high order data byte {$00) is stored into A_B[1]}
and the low order data byte (§FF) is stored into A.B[0].

2) “A.B [0] := 0;"

A.I\ { —

A.B [1] A.B [0] H.0. Byte L.0. Byte
A.B /

. $o0 $00

$00

Since A.I and A.B occupy the same physical memory locations,
storing zero into A.B [0] also zeroes out the low order byte
of A.I. Since the high order byte of A.I already contained
rero, &.T now comtulng the value zeys. ‘ '

3) "WRITELN(A.I);"
Since both the low order and high order bytes of A.I contain zero, zers will be printed.

Figure 1-4
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In this example, a variable of type GETBITS (say A) has access to each of
the individual bits in the integer portion of the variable (see Figure 1-5).
For example, if you executed the code:

A1 1= 03
A.BLB] := TRUES
A.BL2]1 := TRUE}

and printed A.I you would get the value 5 displayed on your terminal. This
is due to the fact that you've set bits two and zero to one, which is the
binary value %0000000000000101 (decimal five). For sctting, resetting
and testing bits this method works great. For other logical operations (such
as AND and OR) there’s a better way. . .

Accessing Individual Bits of an Integer Using a Packed Boolean Array:

GETBITS data representation:

A.B [0] .. A.B [15)

1514131211109 8 7 6 5 43 2 1¢

\l_llllllll!llllll

——»

- -
|— —

The Boolean array "A.B" and the 16-bit integer A.I both

A.I Integer value occupy the same word of memory. Accessing elements of
the A.B array lets you menipulate individual bits in
the A.I integer value.

Figure 1-5
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The Apple Pascal language implements set types using bit arrays. If you
declare a variable to be of type “SET OF 0..15” Apple Pascal reserves a 16-
bit array with one bit corresponding to each integer value. Bit zero corre-
sponds to the value zero, bit one corresponds to the set element one, bit
two corresponds to the set element two, etc. If you were to declare the
variable A to be of type:

MAGICSET = CASE BOOLEAN OF

FALSE: (I:INTEGER) 3
TRUE :(S5:SET OF 0..15)3

END3

Then an assignment of the form “A.S := [15,10,7,3,1];” sets bits one,
three, seven, ten and fifteen to one and sets all other bits to zero (see Figure
1-6). This allows you to set multiple bit patterns with one assignment instead
of the several required by the Boolean array method.

Better yet, the set construct allows you to selectively set or clear any partic-
ular bit(s) without affecting other bits. By using the Pascal set union and
intersection operators you can emulate the logical AND and OR functions.
The set union operator lets you emulate the logical OR function. Assuming
you have three variables A, B and C of type MAGICSET, you could store
the logical OR of A.I and B.I into C.I using the code:

C+8 = A,S + B,5}

To perform the logical AND operation you would use the set intersection
operator. To place the logical AND of A.I and B.I into C.I you would use
the code:

CsS = A.8 #* B.53%

25



Apple Pascal Set Type Data Representation

Assuming you have a variable “S" cefined by the
statement:

S: SET OF 0..15;

The elements of S are represented using the bit array:

Bit *: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

|
This bit is set if
the set contains 0

This bit is set if
the set contains 1

This bit is set if
the set contains 2

—

This bit is set if This bit is set if
s bit is set i I -
' the set contains 3
| the set contains 15 e ta

For exanple, the assignment =S := [0,5,10.14.15):" yields the value:
Bit #: 15 14 13 12 11 10 9 ] 7 6 5 4 3 2 1 0

-= Bit Set = Bit Clear

Figure 1-6

The set difference, (in)equality, set inclusion and set membership operators
may also prove helpful every now and then.

Sometimes it’s handy to treat a bit string as an element of a set; sometimes
it’s better to treat it as an element of a packed array of Boolean. In these
situations use the type definition:
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TRINARY = 0,.23
BITSTRING = RECORD CASE TRINARY OF

P: (I:INTEGER)
1: (B:PACKED ARRAY [0.,.151 OF BOOLEAN) 5
2:(S:SET OF 0..15)3

END§

This allows you to reference A in three modes (A.L, A.Band A.S) yet operate
on the same data without having to make spurious assignments (see Figur
1-7).

Referencing a Memory word Using Three Different Formats:

BITSTRING Record Definition:

BITSTRING = RECORD CASE TRINARY OF

0:(I: INTECER);
1:(B:PACKED ARRAY f0..15] oF BOOLEAN);
2:(S:3E7 OF 0..15);

8o;

srrsnum.s—b‘ B s e s S v Sl S S S S Bt S e
BITSTRING.B ——»|

BITSTRIMG.I/'* v ‘ v * * * *

BITSTRING.I, BITSTRING.B and BITSTRING.S

SITSTRING. I 4all occupy the same word of memory.
Therefore. storing a value in one of these
varisbles affi other . This

BITSTRING.B ariables affects the wo. Thi

allows you to set or reset bits in an

. - integer vMlte (5Ihg the et type and
BITSTRING.S test to see if a bit is set using the
Boolean data type.

Figure 1-7
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An Overview of the p-System Run-Time Environment

Before continuing, I must digress and discuss Apple Pascal’s memory allo-
cation scheme. Additional information concerning the Apple Pascal run-
time environment can be found in the Appendix.

Figure 1-8 provides a schematic of what the system is like during the exe-
cution of a typical program. Since the Apple’s architecture and 6502 raicro-
processor chip force certain constraints on the software, you will notice
certain similarities between PascaP’s memory map and BASIC’s memory
map. Like BASIC (or DOS), the lower memory locations (in this case
locations $0 through roughly $1000) are reserved for the system software,
the video screen, the hardware stack and for other purposes requiring data
in a fixed location. Just like BASIC, the p-System’s interpreter sits in the
16K language card freeing up space in main memory for the operating
system and user programs and data. By placing part of the operating system
into the 16K card, almost 40K of space is available for user programs and
data.

In order to use space as efficiently as possible, the Appie Pascai system
dynamically allocates storage on two stacks while the user program executes.
The program stack starts at the top of memory (just below the operating
system) and grows downward. Whenever you eX)ecute a program from the
Apple Pascal command level, space is allocated on this stack for the program
code and for any variables you declare in your program. When a program
is invoked, first the code is loaded onto the program stack then any room
required for permanent variables is allocated just below the program code.

Figure 1-9 gives you an idea of what the stack looks like during the execution
of a specific program.

With the exception of Apple Pascal's SEGMENT PROCEDURESs, the
amount of memory required for program code remains constant throughout
the execution of the program. SEGMENT PROCEDUREs are only loaded
into memory when they are called. For bulky initialization code and other
rarely called procedures, using Apple Pascal’s SEGMENT PROCEDURE
feature can save some space at the expense of greater execution time. Figure
1-10 demonstrates memory utilization during the execution of a SEG-
MENT PROCEDURE. You can see that the code for the SEGMENT
PROCEDURE gets loaded onto the stack below the variables allocated by
the calling code.
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Apple Pascal Memory Map

FFFF

p-Code Interpreter

and 1/2 of Pascal Operating System

Apple 1/0 Space

1/2 of Pascal Operating System
2 A00O

User Memory Space

Heap and 1/0 Drivers

Reserved for 0/S and video

Figure 1-8
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Mermory Allocation During the Execution
of a Typical User Program

BFFF

1 = A0OO

User Program Code Space

User Program Data Space

\ \\_\
\\\\
\\\\\\_\\

\\\ N \\.\\\

~~~~~

Free Memory

User Heap Space
~ 0C00..1000

I1/0 Drivers and
Reserved Memory

Figure 1-9
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Memory Utilization During the Execution
of a Segment Procedure.

BFFF
Pascal 0/s

=~ A00D
Non-segmented Program code

User Variable for
Non-segmented Section

RN

TRt
DO
R
20N
‘:\\:

™
§§‘\Q\\ Segment Procedure Code
\s‘l

3N
RN
"\\ o

R
S\\R\Q\\\X{ R
TNy
SR
variables Defined in
Segment Procedure
T T
Free Memory
] |

User Heap Space

T = 0c00. .1000

Reserved Space

N

N

h IR AN AN
SNUANS

\.\
e
PSRN

ANIIII LAY

Figure 1-10
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While the program stack is busy growing downwards, another stack is grow-
ing upwards. This second stack (referred to as the ‘HEAP’ in the Apple
Pascal literature) is where space for Pascal’s dynamic variables are allocated.
Dynamic variables in Pascal are allocated with the NEW procedure. To
allocate storage on the heap you must declare a pointer variable and then
execute the NEW procedure passing the pointer variable as a parameter. A
pointer variable requires two bytes of storage (enough to hold the 16-bit
address used by the Pascal system) and is allocated on the program stack
along with other variables. Whenever you execute the NEW procedure, the
HEAP pointer is copied into the specified pointer variable and then the
HEAP pointer is incremented to make room for the variable being allocated
on the HEAP. Figure 1-11 diagrams how this allocation takes place.

Once the space is allocated and the address is copied into the pointer vari-
able, the pointer variable can be treated almost like any other variable of the
specified type. The major advantage of using a pointer variable is that you
can completely change the data in a large record by simply changing the
address the pointer variable contains (see Figure 1-12).

A minor problem with dynamic variable allocation in Apple Pascal is that
pointers are always allocated automatically. The UCSD p-System was designed
to run on almost anyone’s hardware. In order to achieve this goal the system
was designed to prevent machine dependent constructs from creeping into
UCSD Pascal programs. While this situation is ideal when you're interested
in creating portable programs, it creates some problems when you’re inter-
ested in optimizing your programs by taking advantage of existing hardware
in your machine. For example, the Apple’s keyboard port is located at address
$C000 in the memory space. It would be nice if you could override Pascal’s
automatic initialization of dynamic variables and load $C000 directly into
the pointer. If you could do this, then you could access the Apple’s hardware
directly, without the need for special drivers and without the need for using
6502 assembly language. With this thought in mind I’ll end the digression
and return to the discussion of variant records (HINT: integers and pointers
both require two bytes of storage).
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Dynamic Memory Allocation Using NEW
“NEW(IP)“ (®here IP is a pointer to an integer)

Pascal 0S

User Program Code

xiIP Var Space i User Data Area

The Value
"XXXX" is
copied into
the IP
Varisble.

Free Memory

Addresses:

0002 ->[ ) | <~ New Heap Pointer value

¢ XXXk > <- 01d Heap Pointer Value
XXK%-2 ->

<- Previous Heap Data

Figure 1-11
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Manipulating Data by Changing a Pointer

Slow Vay:

LAAAAAAA

Fast Way:

fddress:

Copy Every Byte of a Multi-word
Structure Into Another Location

(] -

0ld
Data

01d Pointer
value

Address:

I REXK |'>

New Pointer
Value

Y| XXXX l"

Copy Two-byte Address Into Pointer variable

Figure 1-12
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Using the Case Variant with the Pointer Data Type

A pointer variable consists of a two-byte value that contains the address of
the desired data type. For example, a pointer to an integer contains not the
integer itself, but rather the address in memory where the integer can be
found. Normally Pascal initializes the pointer to point somewhere on the
heap whenever you execute the new procedure; you have no control over
the address in memory that the pointer points to. But consider the record
definition:

BYTE
TRIX

0..255%
RECORD CASE BOGLEAN OF

FALSE: (F:"INTEGER)
TRUE :(I:INTEGER)}

END

A variable (say A) declared to be of type TRIX will have exactly two bytes
reserved for it. When referenced as A.P these two bytes correspond to the
pointer to an integer (i.c., A.P); in the other case these two bytes can be an
integer value (i.e., A.I). You can use this form of the case variant record
definition to observe the actions of the Pascal NEW procedure using the
code:

FOR J := @ TO 99 DO BEGIN

NEW(A.P) 3
WRITELN(‘A.I= ‘A, 1)}

END

By running this program you can observe A.I being incremented by two
each time you pass through the loop, this demonstrates how Pascal allocates
sequential memory elements during dvnamic allocation.
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While this may seem instructive, but impractical, there is one interesting
use of this form of the case variant form: it can be used to tell you where a
free block of memory lies in the Apple memory space. By using this case
variant with the MEMAVAIL function you can determine the bounds of
memory in use by the Apple Pascal System. The MEMAVAIL function
returns the number of words (not bytes!) available to the system at any
given moment. This value is computed by subtracting the value in the heap
pointer from the value in the stack pointer and dividing by two. Since
executing the NEW command loads the current value of the heap pointer
into a pointer variable, this value plus two times the MEMAVAIL gives you
the stack pointer value (see Listing 1-3).

The real power you get from pointers and the case variant is not their ability
to determine the address a pointer contains, but rather you gain the ability
to modify the address contained within the pointer. This is accomplished
by writing to the integer instead of just reading from it. By writing to A.I
you overwrite the pointer value that was originally stored there. For exam-
ple, if you store -16384 into A.I and then use the pointer A.P you will
access location $C000 (the Apple keyboard) in the Apple’s memory space.
This function gives you a built-in PEEK and POKE command all rolled
into one! In fact, the BASIC PEEK and POKE commands could be easily
simulated with the Pascal routines:

FUNCTION PEEK(ADDRESS:INTEGER):BYTES
TYPE BYTE = PACKED ARRAY [0..1] OF @..255%
MAGIC = RECORD CASE BOOLEAN OF

FALSE: (I:INTEGER)}
TRUE :(P:"BYTE)}

ENDS
VAR A:MAGICH
BEGIN

A.1 := ADDRESS:
PEEK := A.P" [@1}

END3
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PROCEDURE PDKE(ADDRESS:INTEGER§ VALUE:BYTE)3:
TYPE BYTE = PACKED ARRAY [0..11 OF @,.255;
MAGIC = RECORD CASE BOOLEAN OF

FALBE: (I: INTEGER) i
TRUE :(P:"BYTE}]}

END
VAR A:MAGIC]S
BEGIN
Al = ADDRESS;
A.P° [@] := VALUES
END3

There is one very important difference between this Pascal version of PEEK
and POKE and BASIC’s PEEK and POKE: BASIC is limited to handling
data 8 bits at a time; the Pascal structure lets you PEEK and POKE any
data structure you wish. For example, if you wished to peck and poke inte-
gers instead of bytes you would change each occurrence of “BYTE” in the
previous programs to “INTEGER?”. In fact, to peek or poke any data type
(including arrays, sets and even pointers if you are so inclined) you need
only replace “BYTE” with the name of the data type you wish to peek or
poke. Listing 1-4 demonstrates how to read the Apple’s keyboard by access-
ing the hardware directly.

Overview of the Pascal Run-Time System, Part Two

The Apple Pascal compiler generates storage for variables in a linear fashion.
Starting with an offset of zero, variables are assigned an “address™ that
corresponds to the size (in words) of all the variables previously declared
in the current procedure. If you declare three variables; I, J and R; using
the declaration:

I:INTEGERS
R:REALS
J:INTEGERS
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then the address zero is assigned to I, the address one is assigned to R (since
I requires one word of storage) and the address three is assigned to J (I
requires one word of storage and R requires two words of storage — see
Figure 1-13). The exact amount of storage required for any Apple Pascal
variable except for PACKED ARRAYs and long integers is outlined in
Figure 1-14.

Pascal Variable Storage Memory Allocation

VAR [LINTEGER;
RREAL;
JINTEGER;

Yields:

Figure 1-13
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Storage Reguirements for Apple Pascal Data Types

Integer: One Word (Two Bytes)

Boolean: One Word (Two Bytes)

BTN . ow-or
ot Used\! CHAR: One Word (Only the Low-orcer
AR oM Ny Y 15 used)

e -

User-Defined Scalar: One Word

FTT T iy REAL: Two Words (Four Bytes)

/ STRING[n]: (n+2) DIV 2 Bytes

Figure 1-14
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There is one instance where the assignment of a run-time address does not
correspond to the appearance of a variable within a program. If you declare
several variables of the same type in a Pascal statement, i.c.:

I+JsK:INTEGERS

then storage for K is allocated first, then J and finally space for I is allocated.
If this declaration was the first to appear in a procedure then K would be
assigned the address zero, ] would be assigned the address one and I would
be assigned two. Whenever several variables are assigned the same type in
a single Pascal statement, backwards address allocation is performed. The
variable closest to the type identifier is allocated storage first. Arrays and
records are allocated space in an identical fashion except, of course, the
required number of words are reserved for the structure instead of simply
reserving one or two words. Figure 1-15 shows what a stack frame might
look like during the execution of a simple procedure.

If you are defining a procedure or function with parameters, then space is
allocated on the stack for the parameters before space is reserved for the
local variables. For example, the procedure:

PROCEDURE EXAMPLE(PARM1:INTEGER)
VAR R:REAL
I:INTEGER3

BEGIN
END

allocates word zero to PARM1, word one to R and word three to 1. For
additional information on variable allocation in Apple Pascal see Chapters
Two, Three and the Appendix.
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Stack Frame During the Execution of a Typical Procedure

Procedure Simple;

var I,J,K:Integer;
L:Integer;
R:zReal:
B:Boolean;

Begin

Program Code Space

Data Space for Global
Procedures

Procedure info for SIMPLE

L
b
hyiiylplhy
= e e e
b —
"yt
b~

K

SARARESASANNY \\\\\\\\‘ AENARAN
A ey AN
[L SR ARARARARANAN \\\\\\\\\\\\\
\\\\\\\\x\\x\\\ INSLARANR RN Y
ARTALRAB AR LA L 0 AR 8RR R AL Y

\‘\\.\.\\\\\\\‘\\
\"'\'\\\\\\\\\\\‘- L AN ARREREY

SaNh x‘\\\\\\\\\ "\
RAassLvas ALY
\\\\ h »\‘\.'\'\'\ -. ~

<~ Stack Pointer

Figure 1-15

41



Turning Off the Range Checking Option

Whenever you declare a variable that is not an array, the Apple Pascal com-
piler emits code to reference the memory location associated with that var-
iable. Whenever an array variable is referenced, the Pascal compiler must
perform several steps to access the array element you specify. First, the base
address of the array (the address of the first element of the array) is pushed
onto the evaluation stack. If the array is a multi-dimensional array then a
computation must be performed to convert the various indices into a single
index. If the array is a one dimensional array the single dimension’s value
is used as the index into the array. The index is then multiplied by the size
(in bytes) of an element of an array (i.e., multiplied by two for scalars, by
four for reals, or by some other value for arrays of sets, records and other
multi-word structures). Finally, the index is added to the base address to
obtain the address of the element you’re interested in accessing.

Before blindly accessing the memory location specified by this computation,
the Pascal run-time system checks the index to make sure that it is a valid
one. For example, consider the short little program:

PROGRAM JUNK
VAR X:ARRAY [@.,.5]1 OF INTEGER;
I: INTEGER

BEGIN

I := B%
¥ [I] = 203

END .

Since the X array doesn’t contain a sixth element this program makes little
sense. In practice, however, since variables are allocated sequentially in mem-
ory, storing data into the sixth element of X is the same thing as storing
data into I (see Figure 1-16). To prevent little disasters like this from occur-
ring, the Apple Pascal compiler emits a special CHK p-code instruction
whenever you access an array element to check the array index and make
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sure it is in the specified bounds. If you’ve ever gotten a “value range error”
then you've experienced this type of problem. While this range checking
does prevent some unexpected problems from arising, by turning the range
checking off and purposely accessing out of range array elements, you can
perform some useful tricks.

Luckily the range checking in Apple Pascal can be turned on or off at will
using the two compiler options “{$R +}* and “{$R-}”. The “{$R +}” option
(which is the default when you begin compiling a program) turns the range
checking on and the “{$R-}” option turns it off. By interspersing these two
options in a program, you can selectively turn the range checking off for a
few statements and then turn it back on after those statements.

The Effect of a Memory Bounds Violation

I:=6; Procedure and return adaress
x[e] := 20; information
E— "+ x 0] The address of the element of X
X [1] being accessed is computed by

*1 ADDRESS(X[0]) + INDEX. If the
.2 X [2] index is six, then the integer
s X (3] I is accessed.
.4 X [4]
.s X [5]
+ 6 '

Figure 1-16
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While the range checking is turned off, the Pascal run-time system will not
detect an array index that is out of bounds. We can use this feature to fiddle
around with memory locations adjacent to an array. Listing 1-5 demon-
strates the effects of turning off the range checking and accessing non-
existent array elements. Listing 1-6 performs the same demonstration, except
it shows you how to access parameter values by turning off the range checking.

One rather useful task that the {$R-} option can be put to is determining
the address of a structure in Apple Pascal. The ability to obtain the address
of an object and reference that object strictly with pointers is very powerful.
Any “C” programmer will immediately tell you one of Pascal’s greatest
shortcomings is its inability to obtain the address of some variable. By using
the “{$R-}” option, however, it is possible to obtain the address of any
structure in Pascal. Listings 1-7 and 1-8 present two possible alternatives
for accomplising just that. Both programs rely on the fact that the “Y”
parameter is passed to the ADDR function &y reference (i.c., a VAR param-
eter). Whenever a parameter is passed by reference, the address of the param-
eter, not the value of the parameter is passed to the function. Normally,
references within the function would take this into account and load the
value pointed at by “Y” instead of the value contained in Y. By turning off
the range checking and declaring an array of pointers immediately after the
Y’s declaration, you can obtain the address passed to ADDR by using an
index of -1 for the array “P”

If you’re wondering what this could possibly be used for, I suggest you
obtain a copy of a “C” language programming manual. The “C” program-
ming language relies heavily on the use of pointers and almost any “C”
programming tutorial will spend a lot of time discussing how to use point-
ers. There’s not enough space in this book to properly treat pointers so I
will bow out gracefully and leave this function to other authors.

VWhen Not to Pull Tricks

In this chapter I’'ve described various techniques for accomplishing certain
tricks by mis-using Apple Pascal. Nine times out of ten there will be a better
way to accomplish a given task than to use the tricks presented here. These
tricks were intended to be used that small 10% of the time when Pascal
doesn’t offer any alternatives. Program listing 1-9 demonstrates some alter-



natives to the tricks presented in this chapter. Mind you, the techniques in
listing 1.9 are still tricks and in many cases they are still somewhat imple-
mentation dependent, but in most cases they are much more portabie and
more acceptable to the programming community at large.

Any time you use a trick the program becomes that much harder to under-
stand. Maintaining programs using the programming techniques presented
in this chapter is much more difficult than maintaining programs using
standard Pascal constructs. If you know 6502 assembly language you’re
probably better off implementing many of the solutions presented here in
assembly language rather than using Pascal to implement them. At least
when reading an assembly language listing you’re prepared for program-
ming tricks. The problem with incorporating the tricks directly into Pascal
is that Pascal’s structure may hide the fact that you’re performing a trick.
Which brings up the last but most important issue: if you use a program-
ming trick in Pascal make sure that you comment it well. Always state that
tricky code follows (this puts out the red flag). Always explain exactly what’s
going on so that later you, or someone else, can figure out exactly what you
did. An undocumented program containing these programming tricks will
be hard to maintain later on.
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Listing 1-1

(********************i*************************************************)

(* *)
(* Program listing 1-1: Normal way to handle hex output routine. *)
(* *)

(**i*******************************************************************)

program TESTPRTHEX;

procedure PRTHEX(I:INTEGER);
var J: INTEGER;
WASNEG : BOCLEAN;
CHRS: packed array [0..3]1 of char;
HCR: packed array [0,.15] of char;

begin

HCR := '0123456789ABCDEF';

WASNEG := I < 0;

if WASNEG then I := I + 32767 + 1;
for J s= 3 downto 0 do begin

QRS [J] := HGR [ (I MOD 16) 1;

I :=1 DIV 16;

end;

if WASNEG then CHRS [0] := CHR( ORD(CHRS [01) + 8);

if CHRS [0] > '9' then CHRS [0] := CHR( ORD(CHRS [0]l) + 7);
write(chrs);

end; { PRTHEX }
begin {MAIN}

writeln;
prthex(25) ;
writeln;
prthex(255) ;
writeln;
prthex(-2);
writeln;
prthex(-1);
writeln;
prthex(-512) ;
writeln;
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Listing 1-2

(**********************************************************************)

(* *)
(* Program listing 1-2: Tricky form of hexadecimal output routine. *)
(* *)

(**********************************************************************)

program TESTPRTHEX;

type NIBBLE
TRICK

0..15;
record case BOOLEAN of

[ ]

FALSE: (I:INTEGER) ;
TRUE :(N:packed array [0..3] of NIBBLE);

END;
var HEXSTR: packed array [0..15] of char;

procedure PRTHEX(I:INTEGER);
var A:TRICK;
J: INTEGER;

begin
A.I := I; {Move I into special variable}

for J := 3 downto 0 do
WRITE( HEXASTR [ A.N (J] i7;

end; { PRTHEX 1}
begin {MAIN}

HEXSTR := '0123456789ABCDEF';
writeln;
prthex(25);
writeln;
prthex(255) ;
writeln;
prthex(-2);
writeln;
prthex(-1) ;
writeln;
prthex(-512) ;
writeln;

end,
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Listing 1-3

{(Frrkkdkkkkkkhikdikkdkrkhdrrhddhkddihhkkdkkkkkkdkhkdhhdkkkdihdkhkhkdhiikky)

(*
(*
(*
(*
(*
(*

*)
Listing 1.3: This short program demonstrates how you can de~ *)
termine the address of the heap pointer, the stack pointer, and *)
the amount of user space available. All values computed are in *)

words, so you must multiply by two to get byte addresses. *)
*)

(Fhkkkkdkkkkhkhhkkkddddddkkkdkddihhikkhhihkdikkkhkkikkikkikrkkhdiikikkkk)

PROGRAM MEMORY AVAILABLE;
TYPE TRIX = RECORD CASE BOCLEAN OF

TRUE : (I:INTEGER);
FALSE: (P: “INTEGER) ;

END:

VAR I:INTEGER;

X:TRIX;

BEGIN

I := MEMAVATL;

NEW(X.P) ;

WRITELN('HEAP POINTER: ',X.I);
WRITELN(*STACK POINTER: ',X,I+I);
WRITELN( 'MEMORY AVATLABLE: ',I);

END.
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Listing 1-4

(********************************************)
(* *)
(* Listing 1.4: This program reads the *)
(* Apple's keyboard directly by peeking *)
(* at location $C000 and poking at loc- *)
(* ation $C010. *)
(* *)
(********************************************)

program listing 1 4;
type chrdata = packed array [0..0] of 0..255;

magic record case boolean of
FALSE: ( data:"CHRDATA) ;
TRUE :( adrs:integer);
end;
var I :INTEGER ;

PAC :PACRED ARRAY [0..79] OF CHAR;
kbd magic;

kbdstrb:magic;

begin
kbd.adrs := ~16384; (* $C000 IN DECIMAL *)
KBDSTRB.ADRS := -16368; (* $C010 IN DECIMAL *)
I :=0;
FILICHAR(PAC,80,' "};
repeat

(* WATT UNTIL A KEY IS PRESSED *)
while (kbd.data” [0]1 < 128) do;
IF (I < 80) AND (KBD.DATA" {0] <> 141)
THEN PAC [I] := CHR(KBD.DATA" [C]);
I := IHl;
(* CLEAR THE KEYBCARD STROBE *)
kbdstrb.data” [0] := 0;
UNTIL KBD.DATA™ [0l = 13; (* RETURN *)
WRITELN( '"THE STRING WAS: ',PAC);

END.
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Listing 1-5

(******************************************)
(* *)
(* Listing 1.5: accessing different vars ¥*)
(* by turning the range checking off. *)
(* *)

(***********************i******************)
program test-R minus;

VAR y:integer;
X: array [0..0] of integer;

begin

y := 25;
writeln('Y, at point 1, contains ',y);

{$R-}

x [<]1] :=10;

{SR+}

writeln('Y, at point 2, contains ', ¥);
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‘Listing 1-6

(******'k***i***********************i*******)
(* *)
(* Listing 1.6: accessing different vars *)
{* by turning the range checking off, *)
(* *)
('l'**i******'k******'k*****'k***t*******'k******)

program tstparms;

procedure test_R minus;

VAR y:integer;
x: array [0..0] of integer;

begin

y := 25;
writeln('Y, at point 1, contains ',y):

{$R-}
x [-1] :=10;
{$R+}
writeln('¥, at point 2, contains ', ¥);
end;
begin
test R minus;
end.
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Listing 1-7

(**********************************************************************)

(* *)
(* LISTING 1.7: How to obtain the address of an array in Pascal. *)
(* *)
(* This program demonstrates the ADDR function, a function that *)
(* when passed and array returns the address in memory of that array *)
(* *)

(**********************************************************************)

PROGRAM TEST;

TYPE PACKED: ARRAY- OF CHARS
PAC:_POINTER
ARRAY. OF_ PACPTRS

PACKED ARRAY [0..7] OF CHAR;
“PACKED: ARRAY- OF CHARS;
ARRAY [0..0] OF PAC- POINTER:

VAR X:PACKED ARRAY-OF CHARS; (* Array that we wish to obtain the address of. *)
Z:PAC. POINTER; (* Pointer that will be set to the address of X *)
P:ARRAY OF PACPTRS: (* Dunmy required in the ADDR function list. *)

(******************************************************)
(* *)
(* ADDR must be passed two parameters, the array *)
(* that you're interested in finding the address of *)
(* and a dummy parameter that is an array [0..0] *)
(* of pointers. The second array's type must be a *)

(* pointer to the same type as the first array. *)
{* The function value must be a pointer to the same *)
(* type as the parameter. *}
(* *)

(******************************************************)

FUNCTION ADDR(VAR Y:PACKED. ARRAY- OF CHARS;
P:ARRAY- OF. PRCPTRS) : PAC- POINTER;
BEGIN

(*************************************************************)
(* *)
(* The following bizarre code turns off the compiler range *)
(* checking so that a programming trick can be performed. %)
(* By accessing array element P [-1] the function obtains *)
(* the word on the stack just prior to the P [0] element. *)

(* This corresponds to the address of the Y parameter *)
(* (since Y was passed by reference) hence the address of %)
(* the first paramenter is obtained in this fashion. *)
(* *)

(*************************************************************)

{$R-}
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Listing 1-7 (continued)

BEGIN
(* Initialize X to all blanks and print it *)
FILLCHAR(X,8,"' ');
WRITEIN('The X array should contain blanks: ''',X,'''");
(* Get the address of the X array and place it in Z *)
2 := ADDR(X,P);

(* Store stuff into the array pointed at by Z. Since Z points *)
(* at the X array, this stores data into X. *)

>

[o]
[1]
[2]
[31
14}
[5]
[6]
(71

IAI;
IBI;
ICI;
IDI;
lEl;
IFI;
IGI;
lH!;

>

>

>

>

“e se st au ws 05 es ee
Bomdon e N

NNNI\'I)NNNN

>

(* Print X to verify that storing data into the array pointed at by *)
(* Z stores data into X (since Z points at X)

WRITELN( 'Now the array contains: ''',X,'''");

END.
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Listing 1-8

(**********************************************************************)

(* *)
(* LISTING 1.8: How to obtain the address of an array in Pascal. *)
(* *)
(* This program demonstrates the ADDR function, a function that *)
(* when passed and array returns the address in memory of that array *)
(* *)

(***************************************************t******************)

PROGRAM TEST;

PACKED ARRAY [0,.7]1 OF CHAR;
“PACKED:- ARRAY-OF CHARS;
ARRAY [0..0]1 OF PAC- POINTER:

TYPE PACKED: ARRAY_ OF_CHARS
PAC- POINTER
ARRRY_ OF PACPTRS

VAR X:PACKED- ARRAY_OF CHARS; (* Array that we wish to obtain the address of., *)

Z:PAC: POINTER; (* Pointer that will be set to the address of X *)
(******************************************************)
(* *)
(* ADDR must be passed the array that you're inter- *)
(* ested in finding the address of. *)
(* The function value must be a pointer to the same *)
(* type as the parameter, *)
(* *)

(******************************************************)

FONCIION ADDR{VAR Y:PACKED ARRAY_OF_CHARS) : PAC_POINTER;
VAR P : ARRAY OF PACPIRS;

BEGIN

(*************************************************************)
(* *)
(* The following bizarre code turns off the compiler range *)
(* checking so that a programming trick can be performed. *)
(* By accessing array element P [-1] the function obtains %)
(* the word on the stack just prior to the P [0] element. *)

(* This corresponds to the address of the Y parameter *)
(* (since Y was passed by reference) hence the address of *)
(* the first paramenter is obtained in this fashion. *)
(* *)

(*************************************************************)
{$R~}

ADDR := P [-1];

_{$R+}

END;
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Listing 1-8 (continued)

BEGIN

END.

(*

Initialize X to all blanks and print it *)

FILLCHAR(X,8,' ");
WRITELN( 'The X array should contain blanks: ''?,X,'''');

(*

Z:

~ o~
* *

> > > 2 > > >

B BN BN NN NN

>

(*
(*

Get the address of the X array and place it in Z *)

= ADDR(X) ;

Store stuff into the array pointed at by Z. Since Z points *)

at the X array, this stores data into X. *)
[0] := 'A';
[1] := 'B';
[2]1 := 'C';
[3] := 'D';
[4] := 'E';
[5] = 'F';
[6] := 'G";
[7] := 'H';

Print X to verify that storing data into the array pointed at by *)
Z stores data into X (since Z points at X) *)

WRITELN("Now the array contains: ''',X,'''');
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Listing 1-9

(***************************************************)

(* : *)
(* PROGRAM LISTING 1.9: Alternate ways of per- *)
(* forming tricks in Apple Pascal. *)
(* *)

(***************************************************)

PROGRAM LISTING 1-9;
VAR I,J,K:INTEGER;

(************************************************)
(* *)
(* The XOR fincticn computes the logical ex—  *#)
(* clusive~or of the two integer parameters *)
(* passed to it. *)
* *)
(* Note: the other primitive logical operations*)
(* (AND, OR, and NOT) can be sythesized using *)
(* the AND, OR, and NOT operators. *)
(* *)
(************************************************)

FUNCTION XOR(A,B:INTEGER) :INTEGER;
BEGIN

(* The "odd" function is a type transfer function, it lets *)
{* you treat an integer value as a boolean value, The ord *)
(* function does just the opposite, it lets you treat any *)
(* scalar value as an integer. *)
XOR := ord( (NOT (odd(A) AND odd(B))) and (odd(A) OR odd(B)) );

END; (* XOR *)
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Listing 1-9 (continued)

begin
(* Demonstration of logical operations in Apple Pascal *)

(* Logically AND two integer values *)
(* The following code places the *)
(* logical AND of the two integers *)
(* J and K into the integer I. *)
(* The ODD function lets you treat *)
(* an integer value as though it *)
(* were a boolean value. A call *)
(* to the ODD function doesn't gen- *)
(* erate any code, it simply relaxes*)
(* the Apple Pascal compiler's type *)
(* checking momentarially. *)
(* The ORD function lets you treat *)
(* the resulting boolean value as *)
(* though it were integer. *)

I := ORD ( ODD(J) AND ODD(K) );

(* Logical OR function- see above *)
(* for details. *)
I := ORD ( ODD(J) OR ODD(K) );

(* Logical negation function *)
I := ORD ( NOT (ODD(J)) );

end.
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Improving the Performance
Programs of Apple Pascal

B “

Overview

Although Apple Pascal is a semi-compiled language there are times when it
could benefit from a boost in execution speed. And even though Apple
Pascal generates compact p-code, it is an axiom of computing that a program
will always take at least one more byte than is available to the programmer.
This section describes several techniques that can be used to increase per-
formance and shrink the size of a Pascal program.

Before attempting to improve the performance of a program it is imperative
that the operation of the Pascal p-machine is understood. Before reading
this section read pages 223-264 in the Apple Pascal Operating System’s
manual to familiarize yourself with the terms and mnemonics presented in
this section.

Before discussing how to improve the performance of an Apple Pascal pro-
gram it would be wise to point out exactly what needs improvement. Tra-
ditionally compiled program performance has been divided into two cate-
gories: the speed of the compiled package and the amount of code generated
for the compiled program. In general, a given program can be made to run
faster at the expense of a larger codefile and it can-be shrunk- somewat at
the expense of execution speed. Luckily, the structure of the Apple Pascal
system often allows us to speed up and shrink the program at the same time.
Obviously there are thousands of ways to optimize a program in one fashion
or another. Most techniques are based on using better algorithms. Such
techniques are beyond the scope of this section. Instead, this section will
concentrate mostly on mechanical optimizations which do not require much
information about the algorithms in use.
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General Information About the UCSD p-Machine

The UCSD p-Machine version I1.0 (upon which Apple Pascal is based) was
designed so that the p-code generated by compiling the Pascal operating
system was minimized. The rationale behind optimizing for the operating
system was that the operating system must always be in memory. By making
the operating system as small as possible the designers maximized the amount
of user memory. Furthermore, the opcratmg system contains the kind of
code often found in user programs so optimizing the system comldcnng
the operating system to be a typical program also provides optimization
for user programs (although this hypothesis is only partially true). In gen-
eral, everything that could be done to shrink the size of the operating system
in memory was done. (Historical note: Actually UCSD’s hands were tied
after the introduction of the Western Digital p-Machine chip set. Due to
an agreement with WD UCSD could not modify the p-machine, they had
to remain compatible with the hardware version of the p-machine, Later,
when Softech Microsystems took over the project, the p-machine was
optimized even further for version IV.0.) The whole key to optimizing a
user program is to make it “look” a lot like the Pascal operating system.
This doesn’t mean the program has to be an operating system, rather the
program should generate approximately the same frequency as the various
p-codes emitted for the operating system.

Tools Required for Optimization

If you are serious about shortening and speeding up your programs you
will need a couple of tools. The most important tool is 2 p-code disassem-
bler. Such a program is available from ABT in Saratoga, Ca. ABT’s Pascal
Tools II package contains five programs in addition to the p-code disassem-
bler. For our purposes, however, the p-code disassembler is well worth the
price of the package. More information on the Pascal Tools II package can
be obtained directly from ABT. The p-code disassembler (called DUMP-
CODE) is self prompting and extremely easy to use. All you provide is the
name of an output .TEXT file and the name of an input .CODE file. DUMP-
CODE reads the .CODE file, disassembles it, and outputs the disassembled
listing to the specified TEXT file.
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Also available is Datamost’s PDQ (Pascal Disk Qfility Program), which
offers a symbolic p-Code disassembler/assembler. With this package you can
disassemble a Pascal program into p-code assembly language, modify it,
and reassemble the program back into p-code machige code. For those
individuals who want to make modifications to existing programs, this may
be the only way to go.

The disassemblies listed in this manual were produced by Thomas Brennan’s
DECODE program. As this book goes to press I have no details on the
commercial availability of this product.

Optimizing for Compactness

Apple Pascal’s performance, much like that of Applesoft and Integer BASIC,
is affected by the placement of variable names within a program. Not only
does the placement of variable definitions affect the speed of an executing
program, it also affects the amount of p-code generated for the program.
In particular, the first 16 words reserved in a procedure or program are
treated differently from the remainder. Furthermore, the first 16 words of
variables defined in a program (the first 16 words of global variables) are
treated specially. By taking advantage of this fact you can both reduce the
amount of code generated for your program and speed it up.

To understand how the judicious placement of variables can affect the size
and speed of a program look at pages 230 and 231 of the Apple Pascal
Operating System’s Manual. These two pages describe the p-codes used for
loading and storing data. Loading and storing data (especially loading data)
are the most frequently used instructions in any program. With this in mind
the UCSD p-machine was designed with 32 one-byte instructions that allow
immediate access to the first 16 words of data in the currently activated
procedure. Access to the first 16 words of data in the main procedure is
also provided. Loading such data is accomphshcd with the SLDL (short
load local) and SLDO (short load global) instructions.

Since each scalar variable (i.e., INTEGER, CHAR, BOOLEAN, or enum-
erated) requires one word of storage you have room for exactly 16 scalar
variables within a procedure in order to take advantage of these special load
instructions. REAL type variables require two words of storage and array
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variables require even more. Therefore you should avoid declaring arrays
and REAL variables at the beginning of a procedure. Variables declared
within the same statement are allocated backwards. That is, if you have a
declaration of the form:

I1+JsK:INTEGER

space is first allocated for K, then J, then I (See Figure 2-1). When attempt-
ing to optimize a procedure by using the technique being described you
should never declare more than one variable per statement. This can cause
a few gotcha’s to sneak up on you if you’re not careful. Instead, declare each
variable in a separate statement, e.g.:

I:INTEGERS
J: INTEGER
K:INTEGERS

(high memory)

(low memory)

Note that space is first allocated for K, then J,
and finally I.

Figure 2-1
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In order to optimize a program to make it as compact as possible, you should
declare the most-used scalar variables within a procedure as the first 16
scalar variables. This will allow the Apple Pascal compiler to generate one-
byte opcodes to load these variables instead of the two or three-byte opcodes
normally required. It’s very easy to determine which variables are used the
most. Simply run the CROSSREF program found on the Apple3: diskette
and it will print out a table of all the variables used within a program and
the frequency of their use. To use the CROSSREF program you should
strip out all the comments (the CROSSREF program isn’t smart enough
to do this for you) and isolate the procedure or function you wish to optim-
ize. Do not run CROSSREF on an entire program as it will print every
occurrence of a variable found anywhere in a program. You don’t want to
print the occurrences of the variable I in the next procedure when optim-
izing the current procedure. Once you've isolated the procedure you wish
to optimize and have stripped out the comments, use CROSSREF to list
out the variables and their frequencies. With the exception of non-scalar
variables (i.e., REALs, SETs, RECORDs, and ARRAYs) you should declare
all (scalar) variables in order of decreasing frequency. At the top of the
procedure the most-used variable should be declared first, the second most-
used variable declared second, etc. . This will shorten the program up some-
what and even speed things up a little bit. If you have less than 16 scalar
variables they should all be declared before any non-scalar variables are
defined. REALS and other non-scalar variables cannot take advantage of
the SLDL and SLDO instructions so declaring them ahead of a scalar
variable won’t buy you anything and, in fact, it may hurt you.

Before concluding the discussion on the importance of the first 16 scalar
variables, it should be pointed out that the parameters to a function or
procedure count as elements of the first 16 words of storage. So when
optimizing for compactness you should avoid passing rarely used data in
the parameter list (use a global variable instead) and avoid passing non-
scalar variables. Furthermore, passing parameter data by reference causes a
lot of code to be generated for each occurence of the pass by reference
variable. If you must use the pass by reference technique, you should copy
the data into a local variable (hopefully one that occupies one of the first
16 words of storage), use the data, and then store the data kept in local
storage back into the pass by reference variable before exiting the procedure
or function. It should also be pointed out that parameters on the stack are
duplicated when a procedure is invoked. This means if you’re running out
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of memory at run-time (i.c., you keep getting stack overflows) you should
attempt to re-code the program using as few parameters as possible. This
is especially true if you are using recursive procedures and functions.

Apple Pascal emits two-byte opcodes for loads and stores of data whose
offset into the current procedure is in the range 0..127 words (with the
exception of loading one of the first 16 words as described above). A three-
byte opcode is required to access beyond the 127th word of storage. Since
scalars, REALS, SETS, and RECORD variables can all take advantage of
the two-byte opcodes, you should consult the cross-reference listing and
place the most-often used variables next in the declarations. Just remember,
ARRAY, RECORD, and SET variables eat up lots of memory and can
severely limit the number of variables so defined. An array variable may be
accessed twice as often as the nearest scalar or REAL variable, but if the
array is very large it won’t let you take advantage of the two-byte opcodes
for any other variables. And the SUM of the occurrences of all the other
variables may well be larger than the number of occurrences of the array
variable in question. To maximize the code usage you should use the
CROSSREF and DUMPPCODE programs considerably in order to “hone”
your program.

Accessing only the variables in the current procedure and in the outermost
procedure (i.e., the program) will produce the smallest possible code. Accessing
intermediate variables (global variables which are not defined in the main
program) is one of the most inefficient methods (both in terms of speed
and compactness) for accessing data in the Apple Pascal system. Accessing
intermediate variables always takes at least three bytes and may even take
four. Accessing intermediate variables should be avoided whenever possible.

Optimizing REAL Variable Accesses

REAL variables represent a real problem (pardon the pun). When assigning
a constant to a REAL variable there are three methods you can employ:

1: Standard assidgnments R 3 = 2.3}
Z: Inteder constant: R ¢ = 43%
3: Yariable assidgnments R 3 = RCONSTS
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(The last trick is probably employed by the seasoned Applesoft programmer
who thinks he can speed things up by storing often-used constants in a
variable and accessing the variable instead of the constant.) The first method
uses up ten bytes of storage and probably executes the fastest of the three.
The second method (using an integer constant) requires only six bytes, but
is, by far, the slowest of the three methods. The last method requires only
eight bytes and probably executes only a little slower than the first version.
Note that if you use the last version, you really don’t save any memory
unless you make at least six assignments using the RCONST variable.
Remember, you will have to use the first method to initialize the RCONST
variable which takes ten bytes. Since you only save two bytes using the third
method, it will take five accesses of RCONST in order to break even, six
accesses before you are saving anything. Since you rarely use the same con-
stant six times in any given procedure you should almost never use the third
method. If you wish to reduce the amount of code generated (and you are
storing an integer constant into a real varible) use the second method. If
you are optimizing for speed (or need to store a real value with a fractional
part) you should use the first method.

Optimizing String Accesses

The most important optimization you can make regarding a string is to
make sure you do not declare the string to be any longer than it needs to
be. The default length is 80 characters and this is almost always longer than
necessary. By careful research you can probably discover the maximum string
length required for a given variable. You’re only wasting memory if you
declare a string longer than it needs to be. On the other hand, do make sure
that the string is long enough to handle any requirements. If it isn’t, a run-
time error will occur. In general, if you are reading a string from the console
or some other device you should make sure that you have plenty of space
reserved in case the input is crazy. But if the string is only used internally
(which means you have control over the data stored in it) you needn’t
allocate any more space than is absolutely necessary.

One of the biggest string optimizations you can perform is to make sure
you do not duplicate a string constant anywhere. This problem occurs quite
frequently in WRITELN statements, e.g.:

WRITELN(‘The variable I has the valuez’sI)3
WRITELN('The variable J has the value:’J)3i
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These statements could be converted to:

THEVAR : ‘The variable ‘3%
HASVAL ‘Has the value:’s
WRITELN(THEVAR s 'I‘ sHASVAL »1)} 3
WHRITELN(THEVAR :"J’ sHASVAL +J) 3

Using this technique will save you quite a bit of code. Note that THEVAR
should be a string of maximum length 13 characters (since it will never be
longer than 13 characters) and the string HASVAL should be defined to
have a maximum length of 14 characters.

Optimizing Array and Subrange Accesses

One of the largest optimizations you can make to a large program is also
the easiest. It is also the most dangerous. The Apple Pascal compiler gen-
erates a lot of code every time an array element is accessed. In addition to
generating the code required to access the array element, Apple Pascal also
emits a considerable amount of code that checks the array index (at run-
time) to make sure it is within the range declared. The generation of this
extra code can be turned off using the (¥*$R-*) compiler option. This simple
statement can reduce a program’s code by as much as 20% and will increase
its speed noticably. This option, when placed at the front of a debugged
program, can drastically improve the memory/speed situation. However,
there’s no such thing as a free lunch . . .

When you turn the RANGECHECK option off, you are promising the
Pascal compiler that you will never access an array element that *just aint
there’. If you do, strange things will happen to the program, the best of em
being the vanablcs in your program start taking on mysterious values. At
worst the system will hang, or may arbitrarily start writing data to the disk.
If you turn off the RANGECHECK option, make sure that your program
is fully debugged and that you don’t get any “value range errors” because
now the system won’t be nice enough to report it.

One of the nice things about the RANGECHECK option is that it can be
turned on and off selectively with the (*$R +*) and (*$R —*) options
respectively. That means you can turn the range checking off for a section
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of code where you’re absolutely sure that no bounds errors occur and turn
it back on when you’re not sure a bounds error won’t occur. Incidently, the
bounds checking is used in several places in addition to array bounds check-
ing. For example, all string accesses use the RANGECHECK mechanism,
as does any usage of a user-defined scalar variable (such as a subrange). The
(*$R-*) option can speed these accesses up as well.

Optimizing I/O Instructions

After every call to an I/O routine the Apple Pascal compiler emits a call to
the IO _ ERROR routine that checks to see if an I/O error occurred (aborting
if one did). While this is a fairly important function for input and peripheral
/O, it is an absolute waste for output directed to the console device, since
an error will never be returned by such a device. Since the output statements
WRITE and WRITELN make up a large percentage of statements in a
Pascal program, eliminating the unnecessary calls to IO __ ERROR can
save an quite a bit of memory.

To turn the I/O checking off use the (*$I - *) compiler option. To turn the
/O checking back on use the (*$I+ *) option. These options are messages
to the compiler itself and no code is generated for them (the same is true
for the RANGECHECK options). In general, it is a wise idea to leave the
/O checking on when performing input or output to a file as you have no
contro] over the data being input and you can’t be sure that when you output
to some device an error won't be returned. Of course if you are sure, you
can save a few bytes by leaving the /O checking off; but an ounce of
prevention . . .

Optimizing IF and CASE Statements

As is often pointed out in literature on the Pascal language, a CASE state-
ment of the form:

CASE I OF

{VAL1>:8TMT1}
{VALZ2>:5TMT2:
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{YALNn>:STMTn

END

performs the same function as the statments:

IF I=<VAL1> THEN STMT1
ELSE IF I=<VALZ> THEN STMTZ

ELSE IF I=<{VALn> THEN STMTn}

Despite the fact that the action performed by these two statements is the
same, the code generated is completely different. As it turns out, if you wish
to compare a variable against several constants, the CASE statement is usu-
ally the faster of the two. Also, less code is generated for the case statement
providing there are more than four cases. Four cases is the break-even point
and if there are fewer than four cases the IF..ELSE IF statement generates
less code. The CASE statement executes faster than the IE.ELSE IF state-
ment except for the trivial case where only one comparison is made. Iit
general, if you want the code to run faster use the CASE statement. If you
want to save space, use the IF statement if there are fewer than four cases,
use the CASE statement if there are greater than (or equal to) four cases.

There is one problem associated with the use of the CASE statement. It is
only optimal if the case values are contiguous. If you have two case values
of one and 124, an enormous amount of code is generated. In fact, 124
bytes of table data is generated on top of the instructions required for the
CASE statement itself. As a general rule of thumb, the Apple Pascal compiler
takes the smallest case value and the largest case value and creates a table
whose length is equal to the difference of these two values. Obviously if
you have some entries that are spaced quite a bit apart you should use the
IF..THEN statement if you wish to save code. The CASE statement doesn’t
execute slower if the case values are spaced far apart, so if speed is your
primary goal you should still use the CASE statement.
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Using FILLCHAR to Initilize Arrays

FOR I := @ TO <ARYSIZE> DO ARY [I] := @i

This generates a lot of code and executes slowly. A much better approach is
to use the built-in procedure FILLCHAR to initialize the array to zero.
FILLCHAR was intended to be used with strings and packed arrays of
characters, but it doesn’t perform any type checking on its operands so it
can be used to set any data type structure to zero.

To zero out an integer array you would use the statement:

FILLCHAR(ARY ;SIZEOF(ARY) sCHR(®) )}

Note the CHR(0) parameter. FILLCHAR works only with characters so
you will need to convert the value zero to the null character (whose character
code value is zero) in order to use this procedure.

In theory, the FILLCHAR procedure can be used with any data type declar-
able in Apple Pascal (including arrays, sets, records, scalars, and combina-
tions of these extended types). However, FILLCHAR should only be used
with arrays of integers since storing zeros into sets, and records may produce
strange results. Zeroing out a user defined scalar variable sets that variable
to the value of the first element declared in that type (e.g., if COLORS =
(RED, GREEN, BLUE, YELLOW) then zeroing out a variable of type
COLORS sets it to RED). Zeroing out a set variable produces the empty
set. Zeroing out a REAL variable sets each REAL element to zero. Zeroing
out a record variable sets each element of the record to zero.. .

As mentioned previously, FILLCHAR operates much faster and produces
less code than the equivalent FOR loop.
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Optimizing for Speed

If you’ve got lots of room but your program doesn’t run fast enough, you’re
probably more interested in speeding up your program than in shrinking
it. Speeding a program up is, in many ways, much more difficult than
shrinking it. The techniques described in this section will help you improve
the performance of your programs. There is, however, no substitute for a
better algorithm. If you program is sorting data using the bubble sort don’t
expect the techniques presented here to noticeably improve the performance
of your system. Improving the speed of a program requires a lot of careful
thought and experimentation. The techniques presented here should be used
only after you feel you have exhausted alternate algorithms as a source of
performance improvement.

The techniques presented here for improving the performance of an Apple
Pascal program are quite similar to those used to shrink a program. In
general, the less p-code you have to interpret, the faster the program will
run. Since loads and stores are executed much more often than anything
else, you should concentrate on optimizing these first.

Dynamic vs. Static Optimization

When we optimized for compactness, a szatic frequency analysis was per-
formed to determine the number of times a variable ocurred within a given
procedure. A static frequency analysis is one in which the number of times
a variable appears is counted. By declaring the variables that occurred most
often early in the declaration list we were able to reduce the size of the code
produced by the Apple Pascal compiler. Access to variables declared as one
of the first 16 words of storage (and as one of the first 128 words of storage)
not only requires less space, but executes faster as well. So one of the first
things we can do to speed up a program is to make sure that the more
frequently used variables are declared first.

A simple static frequency analysis, like that done with the code optimization,
will not suffice for speed optimization. Consider the short code sequence:

433

X+25

X+Y 5
ZHAH(YRXI+AR(Z-2%X) §

< X
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B :
X :

K+Y+Z+ A DIV X3
K=B3

@ TO Zoed DO
2 TO 2009 DO M := 93

FOR I :
FOR J :

Although X, Y, Z, A, and B occur in the program much more often than I,
J, or M they are not accessed as many times. For example, X is accessed 11
times, Y is accessed four times, Z is accessed four times, and A and B are
accessed twice. On the other hand, although they appear in the program
only once, I is accessed 2001 times, and J and M are accessed a whopping
4,004,000 times, yet they are accessed only once! The amount of time you
would save by making sure that I, J, and M were declared as one of the first
16 variables (as opposed to variables declared after the first 128 words of
storage) would be measured in hours!

Analyzing variable usage, as opposed to variable occurence, is known as
dynamic frequency analysis. Obviously, dynamic frequency analysis is very
hard to perform. In addition to loops, you have to worry about CASE
statements, IF. THEN..ELSE statements, parameter values passed to pro-
cedures and functions, REPEAT..UNTIL and WHILE loops, and a whole
gamut of other statements that tend to obscure the number of times a
variable is accessed. To perform a dynamic frequency analysis, start with a
static frequency analysis. Chances are, if a variable is used quite often it is
also accessed the most during the execution of the program. So check out
the most-often used variables first.

Pay close attention to loops. In general, variable accesses that occur outside
of loops aren’t even worth worrying about. Improving the access time of
such variables may not be noticeable. Don’t forget, the FOR loop isn’t the
only loop construct available in Pascal—watch for REPEAT..UNTIL and
WHILE loops as well. Nested loops, especially ones with a large range, are
prime targets. Program segitients buried deep within nested loops should
be scruntinized to make sure that variables within them sure the short form
of the load and store instructions. Other forms of optimization (such as
using REAL constants instead of integer contants when initializing a REAL
variable) should be performed inside a loop as well. Hopefully you are smart
enough to realize that all one-time initialization should take place outside
the range of a loop since initializing the variable each time the loop executes
is a waste of time.

71






3

Using LST Files to Debug and
Optimize Pascal Programs

The Apple Pascal compiler supports a special compile-time option that allows
you to list a compiled program to a device along with other useful infor-
mation. The “(*$L <fileid>*)” option accomplishes this. This compiler
option sends a listing of the compiled program to the specified file. Although
any arbitrary disk file or device may be used, I recommend you send all
listings to the printer using the command:

(#*$L PRINTER:#*)

This option should only be used after all the syntax errors have been removed
from your program.

The list option writes a listing of the program to the printer device along
with five additional columns of information. The first column is the line
number of the current line; the second column contains the segment number
of the current procedure; the third column contains the procedure number;
the fourth column contains the lex level; and the fifth column contains the
current offset into the procedure. As it turns out this information is quite
valuable, especially the segment, routine, and offset values.

Program listing 3.1 is a example of a program compilation using the {$L
PRINTER:} option. The first column in the listing is the line number. This
information can be useful when editing a program within the editor. For
example, if you are at the beginning of the file, you need only type “n<rtn>”
to position the cursor at line number n+ 1. To jump to an arbitrary line
from any point in the program type “JBn<rtn>” and the cursor will be
positioned at the beginning of the desired line.
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The second column of numbers in listing 3.1 is the segment number. The
typical user program is assigned to segment number one. If you use any
SEGMENT PROCEDUREs or FUNCTIONs within your Pascal pro-
gram, each segment procedure will increase the segment number by one
starting at segment number 7. Segment numbers 0, and 2-6 are reserved
for use by the system. A maximum of seven segmented procedures (includ-
ing the main program body, segment one) is available to the user. This
means that segments one and 7 through 12 are available to the user.

The third column in the listing is the procedure number. The value varies
from one to a maximum of 127 (assuming you have 127 procedures declared
within the current segment) for each segment procedure defined. If you will
look at listing 3.1, lines 24-43, you will notice that procedure A has a
procedure number of one and its subordinate B has a procedure number of
two. Note that the main program also has a procedure number of one and
procedure D also has a procedure number of two. The difference is that A
and B are in segment seven while the main program and D are in segment
one. So the segment number and the procedure number are used to uniquely
identify any given procedure.

The fourth column contains the lex level value. For the purposes of this
discussion it is only important to realize that this column contains a “D” or
a digit. If a “D” appears in this column then the offset value (in the fifth
column) refers to a data offset. If a digit appears in this column then the
value in the fifth column is a code offset.

The fifth column contains a code or data offset value. This magic number
is the whole key to code optimization and debugging run-time errors in the
Apple Pascal system. Whenever column four contains a “D”, column five
contains a data offset. This occurs in the variable declaration portion of the
program. For example, if you look at lines 11 through 16 inlisting 3.1
you can see an example of data offsets in the listing. These values correspond
to words of data allocated by the Pascal compiler. For example, the “3”
appearing before the “I:INTEGER;” declaration tells you that I occupies
the third word of storage allocated in this block. Likewise the “5” before
the “R:REAL;” declaration tells you that the variable R occupies the fifth
word of storage allocated in this block. By looking at the next line you can
tell how many words of storage were allocated. For example, at line 14

(the line after the R declaration) the offset is seven. So R required two
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words of storage. This data offset information is important because this is
the easiest way to determine which variables lie in the first 16 words of
storage, which lie in the first 128 words of storage, and which lie beyond.
This, of course, is important information if you’re trying to optimize your
program via variable accesses as mentioned in the previous sections. Notice
that two words of storage are used up by the main program before any
variables are allocated at all. This is due to the fact that two words of param-
eter data is allocated for a main program (this corresponds to the
INPUT,OUTPUT parameters in a standard Pascal program). This pre-
allocation occurs only in the main program, normal procedures and func-
tions begin allocating storage at word one.

Although listing 3.1 doesn’t provide any examples, parameters declared in
a procedure or function are allocated before the local variables. So if you
have a procedure definition of the form:

PROCEDURE XXX(I,J:INTEGER)}
VAR M:N:INTEGER]}
BEGIN

END i

then I and J will be allocated storage before M and N are. For this reason,
you should be careful when defining procedures with lots of parameters if
you are attempting to optimize for code compactness. Another thing to
consider is that parameters actually occupy twice the allocated storage on
the stack. Parameter data is pushed onto the stack by the invoking routine
and then this data is copied above the activation record once the program
by value unless you have lots of room and don’t mind the delay associated
with copying the array data. In general, it would be better to pass the array
by reference and copy it into a local array using the MOVELEFT routine.
That way only one copy of the array would be maintained and the array
would only have to be copied once (when passed by value the array has to
be copied twice, once by the invoking routine when the array is pushed
onto the stack and once when the procedure being called copies the array
into its Jocal data area.
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When the value in the lex level column is a digit (as opposed to a “D”) then
the value in the offset column is a code offset instead of a data offset. The
code offset value is the number of bytes emitted for the current procedure
up to, but not including, the current line. This information has two practical
uses: it can be used to compare two different program constructs to see
which requires the least amount of memory, and it is quite useful when
debugging Pascal run-time errors.

To use the code offset when optimizing the object code produced is very
easy. Simply compile a program using the old and new algorithms. To
determine how much code a given line of Pascal generates simply subtract
the offset on the next line from the offset on the line in question. This gives
you the number of bytes generated by the line of Pascal source code. Obviously,
the algorithm that produces the least amount of code is the most optimal
in terms of code compactness.

Debugging Run-time Errors

Have you ever gotten one of those ugly run-time errors of the form:

{run-time messade’
S#n P#n Is#nn
{Ppress space to continue)

If you’re like most people you start inserting WRITELN statements in order
to pinpoint the line where the problem exists. There is a much easier solution
to the problem of discovering the line that contains the error. The S#n,
P#n, and I#nn values give the the segment number, procedure number and
code offset where the error occurred. By looking on the program listing
you can easily pinpoint the location of the infracting line.

As an example, refer to listing 3.2. This program contains four lines, all of
which have a run-time error on them. The first two lines have division by
zero errors, the third line has a floating point run-time error, and the fourth
line has a string overflow error. If you were to compile this program and
run it you would get the error:

Divide by Zero

S#1 Pl Is4
(Press space to continue)
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This tells you that the error took place in segment number one, procedure
number one, at code offset four. By looking at the listing at segment one,
procedure one, you find that the line which contains code offset four is line
number 19 (actually it begins at code offset zero and continues through
code offset six, therefore the desired location is contained on this line). By
looking at the line (“I : = I DIV 0”) you will notice that the reason we get
a division by zero error is because, sure enough, there is a division by zero.
If we correct this problem by dividing by one instead of zero we obtain the
program shown in listing 3.3. If this program was compiled and executed,
you would get the run-time error:

Divide by Zero
S#1 P#i Is20
Fress sPagce to continue

By looking at the program listing you can see that the statement:

Ri=R/ 2.03

is the one where the problem occurred. Obviously there is a division by
zero here, fixing it yields the program shown in listing 3.4.

Upon compiling and executing the corrected program you get the run-time

€rror message:

Floating Pt. Error
S#]1 Ps1 Is30
Press Reset

By consulting the program listings you will notice that this error is happen-
ing at fine #21; o o ' ) |
I ¢= TRUNC(3,3E5);

The cause of this error is the fact that 330000 is too large to be converted

to an integer. By fixing this problem we obtain the program shown in listing
3.5.
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When you compile and execute the program shown in listing 3.5 you get
the run-time error message:

String Overflow
Sa1 Ps#l1 I#B63
Press space to Continue

The problem here is the fact that the string “HELLO THERE HOW ARE
YOU? is much too large to fit in a string variable that may contain a max-

imum of ten characters. This is easily pinpointed by looking for code offset
63 which occurs at line 22.

Correcting this last problem by shortening the string yields the program
shown in listing 3.6. This program compiles and runs correctly.
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Listing 3-1

% 1 %'g % {$L PRINTER:}
3 i 1;D 1 (****************************************************)
4 1 1:D 1(* *)
5 1 1:D 1 (* LST file example: *)
6 1 1:D 1(* *)
7 l 1=D 1 (*************'k**************************************)
8 1 1:D 1
9 1 1:D 1 program SHOW_LST-FORMAT;
10 1 1:D 3
n 1 1:D 3 var I:integer;
12 1 1:D 4 J:integer;
13 1 1:D 5 R:real;
14 1 1:D 7 X:array {0..15] of integer;
15 1 1:D 2 M:integer;
16 1 1:D 24 S:string;
17 1 1:D 65
18 1 1:D 65
19 1 1:D 65
2 1 1:D 65
21 1 1:D 65 (* Segmented procedures follow,.... *)
22 1 1:D 65
23 1 1:D 65
24 7 1:D 1 segment procedure A;
25 7 1:D 1
2% 7 1:D 1 var I:integer;
27 7 1:D 2 R:real;
28 7 1:p 4
29 7 1:D 4
30 7 2:D 1 procedure B;
31 7 2:0 0 begin
32 7 2:0 0
33 7 2:1 0 I:=0;
34 7 2:1 4
35 7 2:0 4 end; {B}
36 7 2:0 16
37 7 2:0 16
38 7 1:0 0 begin {A}
39 7 1:0 0
40 7 1:1 0 B;
4a 7 1:1 2 R := 1.1;
2 7 1:1 12
43 7 1:0 12 end; {A}
44 7 1:0 24
45 7 1:0 24
46 7 1:0 24
47 8 1:D 1 segment procedure C;
48 8 1:0 0 begin
49 8 1:0 0 ]
s g IV (o] A;
51 8 1:1 3
52 8 1:0 3 end; {C}
53 8 1:0 16
54 8 1:0 16
55 8 1:0 16

79



Listing 3-1 (continued)

56 8 1:0 16 (* Standard procedures folloW..eeso *)
57 8 1:0 16

58 8 1:0 16

5 1 2:D 1 procedure D;

60 1 2:D 1

61 1 3:D 1 procedure E;
62 1 3:0 0 begin

63 1 3:0 0

64 1 3:1 0 I := 25;
65 1 3:1 3

66 1 3:0 3 end; {E}

67 1 3:0 16

68 1 2:0 0 begin {D}

69 1 2:0 0

70 1 2:1 0 E;

71 1 2:1 2 R := 2,6;

72 1 2:1 12

73 1 2:0 12 end; {D}

74 1 2:0 24

75 1 2:0 24

76 1 2:0 24

77 1 1:0 0 begin {main}

78 1 1:0 0

79 1 1:1 0 A;

8 1 1:1 5 C;

81 1 11 8 D;

e 1 1:1 10

865 1 1:0 10 end.

Listing 3-2

1 {SL PRINTER:}
1

1 (********************t*******************************)

1 1 1:D

2 1 1:D

3 1 1:D

4 1 1:D 1(* *)
5 1 1:D 1 (* Listing 3.2: Division by zero error #1. *)
6 1 1:p 1 (* *)
7 1 I:D 1 (*****************************i**********************)
8 1 1:D 1

9 1 1:D 1 program BAD- PROGRAM;

10 1 1:D 3

m 1 1:D 3 var I:integer;

12 1 1:D 4 R:real;

3 1 12 6 Sistring [10];

14 1 1:D 12

15 1 1:D 12

16 1 1:D 12

17 1 1:0 0 begin

18 1 1:0 0

19 1 1:1 0 I :=1div 0;

2 1 1:1 7 R := R/ 0.0;

2 1 1:1 23 I := trunc (3.3E5);

2 1 1:1 34 S := 'Hello there how are you?';

23 1 1:1 65

24 1 1:0 65 end.
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Listing 3-3

1 1 1:D 1 {SL PRINTER:}

g i i;g i (***********************'k*****************i**********)
4 1 1:D 1 (* *)
5 1 1:D 1 (* Listing 3.3: Division by zero error #2. *)
6 1 1:D 1(* *)
7 1 1:D 1 (****************************************************)
8 1 1:D 1

9 1 1:D 1 program BAD- PROGRAM;

10 1 1:D 3

11 1 1:D 3 var I:integer;

12 1 1:D 4 Rireal;

13 1 1:D 6 S:string [10];

4 1 1:D 12

15 1 1:D 12

l6 1 1:D 12

17 1 1:0 0 begin

18 1 1:0 0

19 1 1:1 0 I:=14div1;

20 1 1:1 7 R =R/ 0,0;

21 1 1:1 3 I := trunc (3,.3E5);

2 1 1:1 34 S := 'Hello there how are you?';

23 1 1:1 65

24 1 1:0 65 end,
Listing 3-4

1 1 1:D 1 {$L PRINTER:}

2 1 1:D 1

3 1 1:D 1 (****************************************************)
4 1 1:D 1 (* *)
5 1 1:D 1 (* Listing 3.4: Floating point error. *)
6 1 1:D 1(* *)
7 1 1=D l (****************************************************)
8 1 1:D 1

9 1 1:D 1 program BAD- PROGRAM;

10 1 1:D 3

11 1:D 3 var I:integer;

12 1 1:D 4 . Rsreal; . .

3 1 1:D 6 S:string [101;

14 1 1:D 12

15 1 1:D 12

16 1 1:D 12

17 1 1:0 0 begin

18 1 1:0 0

19 1 1:1 0 I :=1div 1;

20 1 1:1 7 R :=R/ 0.1;

22 1 1:1 3 I := trunc (3.3E5);

2 1 1:1 34 S := 'Hello there how are you?';

23 1 1:1 65

24 1 1:0 65 end,
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Listing 3-5

% 1 %:D }. {$L PRINTER:}

3 }_ I;ID) 1 (*‘k*******'k*t****************************************)
4 1 1:D 1(* *)
5 1 1:D 1 (* Listing 3.5: String overflow, *)
6 1 1:DD 1 (* *)
7 1 1:D 1 (****************************************************)
8 1 1:D 1

9 1 1:D 1 program BAD_PROGRAM;

10 1 1:D

1 1 1:D 3 var I:integer;

12 1 1:D 4 R:real;

131 1:D 6 S:string [10]1;

14 1 1:D 12
15 1 1:D 12
16 1 1:D 12
17 1 1:0 0 begin
18 1 1:0 0
19 1 1:1 0 I :=1div]l];

20 1 1:1 7 R:==R/ 0.1;

21 1 1:1 23 I := trunc (3.3);

22 1 1:1 34 S := "Hello there how are you?';

3 1 1:1 65

24 1 1:0 65 end.
Listing 3-6

1 1 1:D 1 {S$L PRINTER:}

2 1 1:D 1

3 1 1:D 1 (******‘k********'k****************'k*******************)
4 1 1:D 1 (* *)
5 1 1:D 1 (* Listing 3.6: Working program, *)
6 1 1:D 1 (* *)
7 l 1:D 1 (**'k***‘k*‘k*******************'k***********************)
g8 1 1:D 1

3 1 1:D 1 program BAD- PROGRAM;

10 1 1:D 3

11 1 1:D 3 var I:integer;

12 1 1:D 4 R:real;

13 1 1:D 6 S:string [101;

14 1 1:D 12

15 1 1:D 12
16 1 1:D 12
17 1 1:0 0 begin
18 1 1:0 0

o 1 1:1 0 I:=1div 1;

2 1 1:1 7 Rs:=R/ 0,1;

21 1 1:1 23 I := trunc (3.3);

2 1 1:1 34 S := 'Hello ';

23 1 1:1 47

28 1 1:0 47 end,
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4

Examining Compiler-Generated Code

In the program listings that follow an attempt will be made to describe the
code generated by the Pascal compiler for certain code segments. While the
examples provided are certainly not all -inclusive (i.e., they do not list all
possible code generation sequences) they are fairly representative and careful
study may help you write better, shorter, and faster Pascal programs.

With the exception of listing 4.19, all of the disassembled listings were
produced with the DECODE p-code disassembler written by T. Brennan.
Listing 4.19 was produced by the DUMPPCODE utility found on ABT’s
Pascal Tools II diskette. Alas, DECODE contained a bug and couldn’t be
used for this particular listing.

Integer Variable Allocation

Listing 4.1 demonstrates the code generated for integer variable was declared
as one of the first 16 words (I), 127 words (J), and beyond (K) within the
Apple Pascal program. The two p-code instructions at locations 0002 and
0003 handie the assigrment “T: = SEDO-3 (short toad globat) toads the
value contained in I onto the top of the stack. Note that this instruction is
only one byte long since I was declared as one of the first 16 words of
storage in the system. The next instruction (SRO 3, store global) stores the
TOS into I. Unfortunately there is no short store global so this instruction
must be at least two bytes long. Since the address of I is less than 128, the
address following the SRO instruction is only one byte long and the entire
instruction is two bytes long.
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The p-code instructions at addresses 0005 and 0007 handle the assignment
“J: =] Note that both instructions are two bytes long since J was purposely
declared so that it was not one of the first 16 words of storage used. For
this reason, the LDO (load global) instead of SLDO instruction had to be
used to load ] onto the TOS.

The p-code instructions at locations 0009 and 000C handle the assignment
“K: =K In this case K is declared beyond the first 127 words of storage
so a three byte instruction must be used. For more information on how the
“BIG” parameter operates on the LDO and SRO instructions consult the
chapter on p-Code instructions. The RBP instruction returns control to the
Pascal operating system.

Real Variable Accesses

Listing 4.2 demonstrates the various loading and storing techniques employed
by Apple Pascal for real variables and constonts. The instructions at addresses
0002, 0004, and 000A are used to implement the Pascal statement “R=1.1;
The LAO instruction loads the address of R onto the stack. Later this
address will be used to store the data on TOS into the variable. The next
instruction (LDC) pushes the two-word constant 8C3FCDCC onto the
evaluation stack. In case you haven’t guessed, this is the floating point rep-
resenttion for the value 1.1 The third instruction in this sequence (STM 2)
stores the two words on the TOS into the variable pointed at by the address
on NOS. The effect of these three instructions is to load the constant 1.1
into the real variable R.

The next four instructions (at addresses 000C, 00CE,000F, and 001C)handle
the assignment “S: =4;”. The address of S is pushed onto the stack, the
integer constant “4” is pushed onto the stack and converted to a floating
point number, and finally the floating point value on TOS is stored in the
variable S.

The four instructions at addresses 0012, 0014, 0016, and 0018 load the
addresses of R and S onto the stack (respectively) and then load the two-
word datum contained within S and store the data in the real variable R.
This handles the assignment “R:=8§"
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The next four instructions handle the “R: = —1.1” assignment. Note tht
this sequence of instructions is identical to that for the statement “R:=1.1”
except for the addition of the NGR instruction that negates the value on
TOS after 1.1 is loaded. The RBP instruction at location 0025 returns
contol to the Pascal operating system.

Array Allocation

Listings 4.3 and 4.4 show the code generated for identical programs using
array accesses. Listing 4.3 shows the code generated with the {$R +} option
set (the default condition). Listing 4.4 shows the code generated with the
{$R -} option set. Since listing three is the more general case it will be
desdribed.

The instructions at locations 0002 and 0003 sstore “1” into the variable “J>
The LAO instruction at address 0005 loads the address of the first member
of the array “I” onto the stack. The SLDC instruction at address 0007 loads
the index into array I onto the stack. The instructions at addresses 0008,
0009, and 000A check this index to make sure that it is in the range 0..10.
The IXA instruction at address 000B adds TOS to NOS to compute the
address of the desired element in the I array.

The instructions at addresses 000F..001E handle the assignment “R[0]:=1.1"
The address of the first element of R is pushed onto the stack followed by
the desired index into the R array (zero). This index is checked to make
sure it lies in the range 0..10 and then a pointer to the array element is
computed by the execution of the IXA 2 instruction. The four-byte repre-
sentation of “1.1” is pushed on the stack and then this data is stored into
R[0] using the STM 2 instruction.

The instructions between 0020 and 0030 handle the assignment “R[J]: =1.1;”
except the value contained-in J is loaded onto the stack instead of zero as-
the index into the array.

The instructions at addresses 0032 through 003D handle the assignment
“IJ]: =J;> The LAO instruction loads the address of the first element of
the I array onto the stack. LDO 36 loads the value contained within ] onto
the stack and the following three instructions check to make sure that this
value is in the range 0..10. The IXA instruction adds TOS to NOS which
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creates a pointer to the array element in question. Finally, the value con-
tained in J is loaded onto the stack and stored into the specified array
element.

Listing four shows the same program with the {$R —} option set. Note that
considerably less code was generated since the two SLDC instructions and
CHK instructions were not emitted in the code stream after each array
access.
Note: The DECODE program uses PUSH instead of SLDC but
SLDC is the correct p-code convention.

Set Operations

Listings 4.5 and 4.6 show the type of code generated by the Apple Pascal
compiler whenever set operations are encountered. Listing 4.5 shows the
code generated when the sets being operated on fit into one word of storage.
Listing 4.6 shows the code generated when the sets need more than one
word of storage allocated to them. Since the latter case is the more general,

it will be described fully.

The set type SET OF LARGEI was declared so that it would exactly require
three words of storage (i.e., 48 bits). This short program shows three set
assignments, set union, set difference, set intersection, and set inclusion.
The instructions at addresses 0002..0007 handle the assignment “S: = ;.
The LAO instruction at address 0002 loads the address of S onto the stack.
The SLDC instruction at address 0004 loads the value for the empty set
onto the TOS. The AD]J instruction loads an additional two bytes of zero
onto TOS thus adjusting the data on TOS so that it occupies the same
amount of space as does the set variable S. The STM instruction at address
0007 stores the three words on TOS at the address previously pushed by
the LAO instruction. This stores the empty set on TOS (three words) into
the set variable S.

The instructions at addresses 0009..0011 handle the Pascal assignment
“S:=[8,11];> The LAO instruction loads the address of S onto the stack,
this address must be pushed for the STM instruction later on. The LDCI
instruction pushes the data for the set [8,11] onto the stack. The SLDC
instruction that follows pushes the number of words in the set of TOS (one)
onto the stack. The ADJ instruction looks at the one on TOS and adjusts
the set so that it occupies three words. This is accomplished by pushing two
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zeroes onto the TOS. Finally, the STM instruction at address 0011 stores
the three-word set on TOS into the set variable S. In a similar manner, the
instructions at addresses 0013..0019 store the set [0] into the set variable
R.

The mstructions in the range 001B..002A handle the Pascal assignment
“Q: =R +8§;” The LAO instruction at address 001B loads the address of Q
onto the stack so that the value of the set expression on the right hand side
of the assignment statement can be stored in Q. The LAO, LDM, and SLDC
instructions at addresses001D..00211o0ad the set variable R onto TOS along
with a length byte denoting the length of the set R. The instructions of
addresses 0022..0026 push the set variable S onto the stack. The UNI
instruction at address 0027 takes the set union of the two sets just pushed
onto the stack. Once the set union is taken, the ADJ instruction is executed
to make sure that the set on TOS is exactly three words long and then the
resulting set is stored into Q using the STM instruction at address 002A.

The instructions at 002C..003B perform exactly the same operation except
that the set difference is taken instead of the set union. As before the address
of Q is pushed onto the stack, R and $ are pushed onto the stack, the set
difference is taken, the set is adjusted to fit into three bytes, and the set on
TOS is stored into the variable Q.

The instructions in the range 003D..004C handle the Pascal assignment
“Q: =RX*S;” The code generated is identical to that generated for set union
and set difference except the INT instruction (set intersection) is emitted
in place of the UNI or DIF instructions.

The p-code instructions at addresses 004E..0058 handle the two Pascal
statements “I: =2;” and “B: =1 IN Q;” The SLDC 2 and SRO 13 instruc-
tions handle the assignment to I. Next I is pushed onto the stack with the
SLDO instruction. The LAO, LDM, and SLDC instruction sequence that
follows pushes the set Q onto the stack. The INN instruction at address
0057 checks to see if the scalar on NOS (1) is in the set on TOS (Q). The
SRO instruction stores the Boolean result of this operation in the Boolean
variable B.

87



Accessing Record Elements

Listings 4.7 and 4.8 show the code generated for record element accesses.
Listing 4.7 shows the code generated with the {$R +} option set and listing
4.8 shows the code generated with the {$R —} option set. The only differ-
ence between the two listings is the addition of several SLDC and CHK

instructions whenever an array element is accessed.

The instructions at addresses 0002..0019 handle the assignments to the
elements of the M record. This code is identical to the code that would have
been generated had each assignment been made to a separate variable.

The code at addresses 001A..001E handles the record assignment “N:=M;”.
The first LAO instruction loads the address of N onto the stack and the
second LAO instruction loads the address of M onto the stack. the MOV
instruction that follows moves eight words of data from the address on the
TOS (M) to the data pointed at by the address on NOS (M). This transfers
the data from the record M to the record N.

The p-code instructions in the range 0020..0027 handle the Pascal assign-
ment “L[0]: =M;” This section of code begins with a LAO instruction that
loads the address of L onto the stack. The next two instructions load the
index (zero) onto the stack, scale it appropriately, and add this index to the
base address on the TOS. The LAO instruction at address 0025 loads the
address of M onto the TOS and the MOV instruction at address 0027
copies the data in M into the L[0] array element. The code from address
0029 to 0030 performs essendally the same operation except that L[1] is
loaded instead of L[0].

Accessing String Variables

Listing 4.9 shows the code generated in response to some simple string
operations. The instructions in the range 0002..0012 handle the assignment
“S: =‘HELLO THERE’;”. The LAO instruction at address 0002 loads the
address of S onto the stack. The NOP at address 0004 is used to align the
string that follows on a word boundry. This is required by some 16-bit
processors (including the LSI-IT and 68000). The LSA instruction at address
0005 pushes a pointer to the string that follows the LSA instruction. Finally,
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the SAS instruction at address 0012 copies the string pointed at by the
address on TOS into S (whose address is on NOS).

The three instructions at addresses 0014, 0016, and 0018 handle the assign-
ment “T: = §” The first two instructions load the addresses of T and S onto
the stack and the SAS instruction that follows copies the data from the S
string to the T string.

The instructions at addresses 001A..001F handle the null string assignment
atline 17. Once again the interleaving NOP is there so that the string address
pushed on the stack by the LSA instruction is an even value. Other than
the fact that the string being assigned is empty, the code is identical to that
generated by the first string assignment in the code stream.

The instructions in the range 0021..0024 handle the character assignment
“T: ="A%". This code is quite a bit different from the assignments discussed
so far, instead of issuing an LSA instruction, a SLDA instruction pushes
65 (the ASCII code for an ‘A’) onto the stack. The SAS instruction looks

(pointers never have a high order byte of zero, character constants always
do) then a single character assignment is made to the destination address.
If the high order byte is not zero, then a normal string assignment is per-
formed as in the previous example.

Pointer Variable Usage

Listing 4.10 shows some simple pointer variable manipulations. The three
instructions at 0002..0004 handle the Pascal assignment “I:=P";” the
instructions at 0006..0008 handle the Pascal assignment “P*; = I, and the
instructions at 0009 and 000A handle the assignment “P: = Q;”

The SLDO instruction loads the contents of P onto the TOS. The SIND 0
instruction that follows loads the data pointed at by the value on TOS (i.e.
P) onto TOS, and then the SRO instruction stores this data into the variable
L. This effectively loads the data pointed at by P into the variable I.

The code for “P*: =1,” is equally simple. The SLDO instruction at address
0006 loads the value contained in P onto the stack, the SLDO instruction
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at address 0007 loads the value contained in I onto the stack, and the STO
instruction at address 0008 stores the data on TOS (I) at the address spec-
ified on NOS (P). This stores the data contained in I at the address specified
in the P variable.

The code for the Pascal statement “P: =Q;” is especially trivial. The value
contained in Q is loaded into P using the SRO instruction. This copies the
pointer value in Q to the P variable.

Code Generator for a FOR Loop

Listing 4.11 shows how the Apple Pascal compiler generates code for the
Pascal FOR loop. You will note one interesting feature to the code generated
in this simple program: the Apple Pascal compiler automatically reserves a
“phantom” variable for use by the FOR loop. In this program example,
word offset 132 is used to hold the phantom value. Apple Pascal reserves
one word of storage for every FOR loop encountered within a program, if
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this in mind.

The code for the FOR loop begins at address 0002. First, the variable I is
loaded with the value zero (the initial value for the loop) and the phantom
variable at offset 132 is loaded wih 127 (the final value of the loop). At
address 0009 the actual loop begins. I and the phantom variable are pushed
onto the stack and compared with the LEQI instruction at address 000D.
If I is less than or equal to the phantom variable then the FJP instruction
at address 000E is ignored, otherwise the loop terminates by jumping to
address O01E. If 1 is less than or equal to the phantom variable then control
drops through to location 0010. The instructions at addresses001C..0016
handle the Pascal assignment statement “A[I}:=I;" The instructions at
addresses 0017, 0018, 0019, and 001A push I onto the stack, add one to
it, and stores the incremented value back into I. The UJP instruction at
address 001C transfers control back to address 0009 so that the loop can
be repeated.
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While Loops

Listing 4.12 gives an example of the amount of code generated whenever
the WHILE loop is encountered. Note that the code generated for the
WHILE loop is shorter than that generated for a FOR loop performing
the same function. Under certain circumstances it also executes a little faster
(although under other circumstances it executes slower). Therefore you
should never substitute a FOR loop for a WHILE loop if the WHILE loop
is a more logical choice.

As with the FOR Ioop, the code for the WHILE loop begins with an
initialization section. The difference here, of course, is that the initialization
phase is handled by the explicit Pascal statement “I: = 0;” The code for this
initialization section is at addresses 0002 and 0003. The loop proper begins
at address 0005 where I is pushed onto the stack and compared wtih 127.
If I is greater than 127 the LEQI instruction at address 0007 aborts the
execution of the loop, otherwise control drops to the code at address 000A
that handles the assignment “A[I]:=1;> I is incremented at addresses
0011..0014 and the UJP instruction at address 0016 returns control to the
top of the loop at address 0005.

The REPEAT..UNTIL Loop

A Repeat..Until loop and the p-code generated for it is shown in listing
4.13. As is the case with the WHILE loop, the REPEAT..UNTIL loop
generates less code and may execute faster than an equivalent FOR loop.
So you should always use the REPEAT..UNTIL loop in a situation if it is
more appropriate.

Addresses 0002 and 0003 handle the initialization code “I: = 0;. The loop
begins at address 0005. Unlike the WHILE loop, the REPEAT..UNTIL
loop checks for loop termination at the end of the loop. Therefore the code
encountered at the beginning of the loop is the code for the assignment
“A[I]: =1 ;” At addresses 0011 through 0014 I is pushed onto the stack,
compared with 127, and program control is transferred to address 0005 if
I is less than or equal to 127.
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The IF..THEN..ELSE Statement

Listing 4.14 presents the code that the Apple Pascal compiler generates for
the IF THEN ELSE statement. There are six IF statements in this program,
the first one’s code occupies locations 0002..000E, the second uses
0010..0016, the third requires locations 0018..001F, the fourth’s code resides
at 0021.0027, the fifth is at 0029..002F, and the sixth IF statement’s code
is at 0031..003C. Since all of these differ only by the operation performed,
only two forms will be discussed, a version with the optional ELSE clause
and a version without.

The code beginning at address 0002 handles the Pascal statement:

IF I=@ THEN I:=-1
ELSE I := 03

The SLDO instruction at address 0002 pushes the variable I onto the stack,
the SLDC instruction at address 0003 pushes zero onto the stack, and the
EQUI instruction at address 0004 replaces these two items on the stack
with TRUE if I is equal to zero and FALSE if I is not equal to zero. The
FJP instruction at address 0005 jumps to location 000D if the value on
TOS is FALSE (i.e., I did not equal zero). If TOS is TRUE (I equaled
zero) then program control continues at address 0007 at which point the
value one is pushed onto the stack and this is negated and stored in L. At
address 000B an unconditional jump is taken to the first byte past the
IF..THEN..ELSE at address 0010. If I did not equal zero then the former
FJP instruction transfers control to the first instruction past the UJP instruc-
tion at address 000D. The two instructions that follow push zero onto the
stack and then store the TOS into the variable I.

The instructions from 0010..0016 handle an IF statement without the ELSE
clause. The only difference here is the fact that the FJP instruction jumps
to the end of the code for the IF statement and there is no UJP instruction
sandwiched in there.
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The CASE Statement

Listings 4.15 and 4.16 show how the Appie Pascal compiier generates code
for the CASE statement. The listings are identical except for an extra case
clement in listing 4.16. This single addition (case = 24) is solely responsible
for the 46 additional bytes generated in listing 4.16. Since the listings are
so similar, listing 4.16 will be discussed.

The code for the first CASE statement resides in the range 0002..0027. The
code sequence begins by pushing the value contained in I onto the stack.
Then an UJP to the case jump at location 0019 is taken. Appie Pascal
generates code for the individual cases of a case statement before the actual
case jump. So the code between 0005 and 0017 handles each of the cases
in the first case statement. 0005..0008 handles the case “0:1: = 1;”, 000A..000D
handles the case “1:I: = 0;”, 000F..0012 handles the case “2:1: =3;”, and
0014..0017 handles the case “3:1: =2;”

The XJP instruction at address 0019 handles all the work. It expects a case
value on the top of the stack which it compares to the minimum and max-
imum values which are contained within the case statement. If the value on
TOS is outside this range then a jump to location 0028 is taken. IF the
value on TOS is within this range, then a branch is taken to the address that
is found at the appropriate entry in the table following the XJP instruction.
In this case, if I=0 then control is transferred to location 0005, if I=1
control is transferred to location 000A, if I=2 then control is transferred
to location 000F, and if I =3 then control is transferred to location 0014.

The second CASE statement which appears in listing 4.16 generated con-
siderable more code because the case values are disjoint. This case statement
demonstrates two things: the entries in the case table when two.case values
are present before one statement; and the type of code that is generated if
the case values are widely separated (disjoint). Of interest here is the fact
that the addresses between the values four and twenty-four all point at
location 70. This points at a UJP instruction in the middle of the XJP
instruction that jumps to location 007A. If one of these values appears on
the TOS then control is transferred to the first statement past the CASE
statement without executing any of the cases.
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Expressions in Apple Pascal

Listings 4.17 and 4.18 show how Apple Pascal generates code for various
arithmetic expressions. Listing 4.17 demonstrates the code generated for
simple expressions. Listing 4.18 lists the code generated for a few somewhat
complex expressions. While these listings are certainly not all-encompassing,
they do demonstrate the code generated by the more popular functions and
operators.

The code from 0002..0006 in lisitng 4.17 handles the two asssignments
“I: =0;” and “J: =1;”. “J: =PRED(I);” is handled by the code at addresses
0008.000B. I is pushed onto the stack, one is subtracted from it, and the
result is stored into I. Likewise, the code from 000D..0010 handles the
assignment “J: = SUCC(I);” by pushing I, adding one to it, and storing the
result into J.

The arithmetic operations; addition, subtraction, multiplication, division,
and modulo; are shown between locations 0012..0029. In each example I
is pushed onto the stack, J is pushed onto the stack, the specific operation
is performed, and the result is stored into K. Arithmetic negation is handled
at addresses 002B..002D. Here I is pushed onto the stack, negated, and
stored into K.

The binary Boolean operators’ code appears between locations 002F and
005B. As is the case with the arithmetic operators the two operands are
pushed onto the stack the operation is performed, and the result is stored
into B. The set inclusion operation (IN) is performed at addresses 004D..0051.
It is a little different from the other binary operations in that three operands
are pushed onto the stack. First I is pushed onto the stack (SLDO 3), then
the value three is pushed onto the stack (the bit map corresponding to the
set [0,1]), and finally the value one is pushed onto the stack (the number
of words occupied by the set on TOS). The INN instruction performs the
set inclusion operation which leaves true or false on the top of the stack.
This value is stored into B by the SRO 6 instruction following the INN
instruction. Logical negation (NOT) is demonstrated by the code generated
for B: =NOT(C) at addresses 005D..005F.

ODD, ORD, and CHR are not true functions. This fact is demonstrated
by the code generated for ODD and ORD at addresses 0061..0065. ODD,
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ORD, and CHR are simply “compiler functions” that allows the compiler
to treat integer values as Boolean or character values and vice versa, As you
can see in the code generated, | is stored into B with no intervening p-codes
when B: =0ODD(J) is executed and likewise for I: = ORD(B).

Listing 4.18 shows the code generated for complex expressions. Anyone
familiar with an HP calculator will feel right at home with this type of code
(since it is all reverse polish notation). No attempt, however, will be made
to explain this code because even for the TI buffs, this code is fairly easy to
follow.

String Handling Functions

Listing 4.19 shows the p-code generated for some of the built-in string
functions in Apple Pascal. Note that this disassembly was produced with
ABT’s DUMPCODE disassembler instead of DECODE. DECODE con-
tained a small bug which prevented it from listing a few instructions at the
end of the listing. The most peculiar thing you should notice about this
listing is the fact that it does not begin with a pair of NOP instuctions.
Instead there is a jump instruction that branches to the end of the program
where 30 is pushed onto the stack, special procedure number twenty-one is
called, and then the program jumps back to location 0002. This short piece
of code at the end of the program is used to load an intrinsic unit off the
disk. In this case, the LONGINT intrinsic unit must be accessed because of
the call to the STR routine. Two bytes are reserved at the beginning of
every program for this jump in case the initialization code is required. The

jump is patched in (as in this case) if an intrinsic segment must be loaded
from disk.

As with all the programs presented thus far the actual program code begins
at address 0002. At location 0002 the address of S is pushed onto the stack.
The NOP that follows is used to align the string that follows on a word
boundry. The LSA instruction at address 0005 pushes the address of the
string “HELLO” onto the stack. Finally, the SAS instruction at address
000C is used to store “HELLO” into the string variable S. This code handles
the assignment S: = “HELLO”;.
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The code at address 000E..0012 handles the assignment I: = LENGTH(S);.
The code begins by pushing the address of S onto the stack. This address
points at the length byte of the string stored in S. Next an index into the
string that points at the length byte is pushed onto the stack. Since the
address of S is also the address of the length of the string, this value pushed
is zero. The LDB instruction at address 0011 adds TOS and TOS-1 and
pushes the byte pointed at by that sum. Since TOS contains zero and TOS-
1 contains the address of the length byte of S, the length byte of S (with a
higher order byte of zero) is pushed onto the stack. This length byte is
stored into the variable I by the SRO instruction at address 0012.

The Pascal instruction I: = POS(‘HE;S); is handled by the p-code in the
range 0014..0020. The NOP at address 0014 is used to align the string that
follows on a word boundry. The LSA instruction at address 0015 pushes
the address of the string ‘HE’ that follows the LSA instruction The LAO
instruction at address 0019 pushes the address of S onto the stack. Two
words of zero (parameters required by the POS routine) are pushed and
then the POS routine is called with the CXP instruction at address 001D.
Upon returning from the POS routine the position of the string ‘HE’ is left
on the top of the stack. This value is stored into I with the SRO instruction
at address 0020.

The assignment S: = CONCAT(S," THERE); is handled by the code in the
range 0022..0040. The code begins by pushing the address of S onto the
stack. This address will be used to store the concatenated string back into
S. The next two instructions store the value zero into the variable with word
offsct 49. The astute reader will notice that there was no 49th variable
defined in the VAR list. The variable at offset 49 is a “phantom” variable
much like those used by the FOR loops in Apple Pascal. The variable at
offset 49 is actually a string variable with a maximum length of 86 characters
(long enough to hold the concatenation of S and “HELLO”). By storing
zero into offset 49 the phantom stirng is initialized to the empty string.

The four instructions at addresses 0027..002C concatenate the phantom
string (currently empty) with the string S. The CSP 0,23 is responsible for
the concatenation. The concatenated string may have a maximum of 80
characters or an error will result. The five instructions at addresses 002F..003B
concatenate the phantom string withg “THERE”. The result is left in the
phantom string. An error results if the concatenated string is longer than
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86 characters. Finally, the phantom string is copied into S by the two
instructions at addresses 003E..0040 (remember, the address of S was pushed

onto the stack before all the concatenation operations were performed).

The assignment S: =COPY(S,1,5); is handled by the p-code at addresses
0042..004F. The address of S is pushed twice, once in order to provide a
storage address, once because S appears as a parameter to COPY. Next the
values one and five (also parameters to the COPY routine) are pushed and
the COPY function in the Pascal O/S is called via the CXP 0,25 instruction.
The string extracted from S was stored in the phantom string at offset 49.
This string is copied into S by the two instructions at addresses 004D and
004F.

The instructions at addresses 0051..0055 handle the Pascal statement
delete(S,1,2);. The address of S and the values one and two are pushed
onto the stack and then the Pascal O/S routine DELETE is called via the
CXP 0,26 instruction.

The insert command is handled by the code in ther ange 0058..0061. The
address of the string ‘HE’ is pushed onto the stack, the address of § is
pushed, a maximum length (80) is pushed, and the character position for

inscrtion (one) is pushed. Then the Pascal O/S insert procedure is called
via the CXP 0,24 instruction.

The code at addresses 0064..006E handle the procedure invocation STR(LS);.
Lis pushed onto the stack and converted to a BCD value (i.e., a long integer)
with the CXP 30,4 instruction. Then the address of S is pushed (along with
some parameters to STR) and this BCD value is converted to a string with
the CXP 30,4 instruction at address 00GE. The 18 pushed onto TOS before
executing CXP 30,4 instructs the LONG integer routines to perform the
STR function.

The SLDC 30 and CSP Routine No.22 (misnamed TRUNC in the listing,
this is actually a ULS [unload segment]) instructions undo what was done
by the CSP Routine No.21 at address 0077 when the program first began
running.
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Procedure Definitions and Calls

Listings 4.20, 4.21, and 4.22 demonstrate procedure and function calls.
Listing 4.20 demonstrates some non-segmented procedure calls including
nested and recursive procedure invocations. The CLP (call local procedure)
p-code is used to call a Jocal procedure (i.e., a procedure contained within
the currently executing procedure) and the OGP (call global procedure) p-
Code is used to call a procedure at the same or lower lex level. Beyond these
two comments, the code in listing 4.20 is fairly obvious. |

Listing 4.21 demonstrates some segmented procedure calls. The only oper-
ational difference between the program in listing 4.20 and the program in
listing 4.21 is the inclusion of SEGMENT PROCEDURE B. This routine
gets called by the CXP (call external procedure) p-Code at address 0004.
Note that the CXP instruction has two parameters. The first parameter (7)
is the segment number and the second parameter (1) is the procedure num-
ber within the segment.

Listing 4.22 demonstrates an Apple Pascal FUNCTION call. The two SDLC
(PUSH) instructions at addresses 0002 and 0003 push two words onto the
stack. The function value will be returned in the first word pushed, the
second word pushed is ignored unless the function happens to return a
REAL value. The CLP instruction (call local procedure) calls the II function
which stores zero into the first word pushed and pops the extra word off
of the top of the stack (by virtue of the RNP 1 instruction). Finally, the
value left on the top of stack after the function returns (in this case zero) is
stsored in variable I by the instruction at address 0006.

AndSoOn...

These examples of generated code area far from complete. If you're curious,
or if you want to be able to optimize your Apple Pascal code segments, you
should definitely purchase the PASCAL TOOLS II package from ABT or
the PDQ package from DATAMOST. Comparisons of these two programs
with the DECODE program are given in listings 4.23 through 4.26. All
three programs provide certain advantages and disadvantages when used to
disassemble Pascal programs. If you’re interested in disecting Pascal pro-
grams, and your budget allows it, I would recommend that you obtain all
of these packages. I found them all to be quite useful.
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Listing 4-1

1 1 1:D 1 {$1 PRINTER:}

2 1 l:D 1 (*****************************************************)
3 1 1:D 1(* *)
4 1 1:D 1 (* Listing 4.1: Variable allocation/access examples *)
5 1 1:D 1 (* *)
() 1 1:D l (**************************************t*t************)
7 1 1:D 1

8 1 1:D 1

9 1 1:D 1 program ALLOCATION- EXAMPLES;

10 1 1:D 3

11 1 1:D 3 var I:integer;

12 1 1:D 4 Azarray [0.,15] of integer;

13 1 1:D 20 J:integer;

14 1 1:D 21 B:array [0..127]1 of integer;

15 1 1:p 149 K:integer;

6 1 1:p 150

17 1 1:0 0 begin

18 1 1:0 0

19 1 1:1 0 I :=1; (* In these examples, note the *)
20 1 1:1 5 J = J; (* number of bytes required for *)
2 1 1:1 9 K :=K; (* load and storing each variable,*)
22 1 1:1 15

23 1 1:0 15 end.

SEGMENT: NAME : ALIOCATI SEG NM : 1
TOTAL PROCEDURES : 1 SEG_NUM INDEX : O

PROC # ROOLSEG LEX PAREMS DATA START OFFSET SIZE $START SEXIT
1 ALLOCATI 0 4 294 1 0 17 0200 020F
Offset ($): Mnemonic Parl Par2 Hexcode Opcode

0(0000): NOP D7 NOP

1(0001): NOP D7 NOP

2(0002): SLDO 3 EA Load Global Word

3(0003): SRO 3 AB03 Store Global Word

5(0005): LDO 20 2914 Load Global Word

7(0007):  SRO .20 .ABl4 Store Global.Word

90008 : Lpo 149 AS8095 Load Gliobal Word
12(000C): SRO 149 AB8095 Store Global Word
15(000F): RBP 0 Cl100 Return Base Procedure
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Listing 4-2
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(*

var R:real;
S:real;

begin
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:

(* Listing 4.2: Various forms of accessing REAL variables,
(*

program ALLOCATION- EXAMPLES- REAL;

1.1; (* Assigning a REAL constant
4; (* Assigning an INTEGER constant.
S; (* Assiyning a REAL variable.
-1.1; (* Assigning a negative REAL constant.

PROC # ROOT-SEG LEX PARAMS DATA START OFFSET SIZE  $START SEXIT

0

4 8 1

Mnemonic Parl Par2 Hexcode

1 ALLOCATI
Offset ($):
0(0000): NOP
1(0001): NOP
2(0002): LA
4(0004): LIC
lo(o00R): S™
12(000C): LAO
14(000E): PUSH
15(000F):  FLT
16(0010): S
18(0012): L2O
20(0014): LAD
22(0016): LDM
24(0018): s
26(0010): LNO
28(001C): LIC
34(0022): NGR
35(0023): S
37(0025): RBP

D7
D7
A503
16268 B3028C3F
-13107 e
BDO2
2503
04
8A
BDO2
A503
2505
BCO2
ED02
A503
B3028C3F
-13107 axc
92
BD02
C100

W

wroNnUwN B WY

N
[
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0 39 0200 0225
Opcode

=

NOP

NOP

Load Global Address
Load Multiple Constant

Store Multiple Word
Load Global Address
Load Constant

Float (TOS-1) Integer -> Real
Store Multiple Word
Load Global Address
Load Global Address
Load Multiple Word
Store Multiple Word
Load Global Address
Load Multiple Constant

Exponent Real
Store Multiple Word
Return Base Procedure

{$1 PRINTER:}
T T T e Lttt i o))

*)

*)

(*******i*t************i*****i**********************************)

*)
*)

*)



Listing 4-3

1 1 1:D 1 {$1 PRINTER:}
2 1 12 1 (Fhkdikdiddddkd kb kbR Rk R %)
3 1 1:D 1 (* *)
4 1 1:D 1 (* Listing 4.3: Array accesses. *)
5 1 1:D 1(* *)
6 1 I:D 1 (***************************************************************)
7 1 1:D 1
8 1 1:D 1
9 1 1:D 1 program ALLOCATION- EXAMPLES- ARRAYS;
0 1 1:D 3
n 1 1:D 3 var I:array [0..10] of integer;
12 1 1:D 14 R:array [0..10] of real;
1B 1 1:D 36 J:integer;
14 1 1:D 37
15 1 1:0 0 begin
16 1 1:0 0
17 1 1:1 0 J :=1;
18 1 1:1 5 I 1001 :=0;
19 1 1:1 15 R [0] :=1.1;
20 1 1:1 32 R [J] :=1.1;
21 1 1:1 50 IJ] :=J;
2 1 1:1 62
3 1 1:0 62 end,
SEGMENT-NAME : ALLOCATI SEG NOM : 1
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Listi ng 4-3 (continued)

PROC # ROOT-SEG LEX PARAMS DATA START OFFSET SIZE  $START $EXIT

1 ALLOCATI 0

Offset ($):

0(0000) :
1(0001) :
2(0002) :
3(0003)
5(0005) :
7(0007) =
8(0008) :
9(0009) :
10(000A) =
11(000B) ¢
13(000D) :
14(000E) 2
15(000F) ¢
17(0011) :
18{0012)
19(0013) :
20(0014) s
21(0015) =
23(0017) ¢

30(001E):
32(0020) =
34(0022) :
36(0024) :
37(0025) ¢
38(0026) :
39(0027) :
41(0029) :

48(0030) :
50(0032) :
52(0034) :
54(0036) :
55(0037) :
56(0038) :
57(0039) :
59(003B) :
61(003D) :
62(003E) :

Mnemonic

NOP
NOP
PUSH
SRO
LAO
POSH
PUsH
PUSH
CHK
IXa
PUSH
S10
Lo
PUsH
s
s
CHK
IXA
o

S™
LA
LDO
PUsH
PUSH
CHK
IXA
InC

S™
L
DO
PUsH
PUSH
CHK
IXa
DO
STO
RBP

4 68

Parl Par2

[ = w
OOos OH OOOWAK

=
N O

2 16268
-13107
2
14
36
0
10

2
2 16268
-13107

2

3

36

0

10

1
36

0

1
Hexcode

D7

D7

01

AB24

2503

00

00

oA

88

2401

00

92

AS0E

00

0o

0A

88

2402

B3028C3F
acC

BDO2

AS0E

2924

00

0A

88

2402

B3028C3F
acc

BDO2

A503

A924

00

0A

88

AMO1

7924

9

C100

102

0 64 0200 023E
Opcode

NOP

NOP

Load Constant

Store Global Word
Load Global Address
Load Constant

Load Constant

Load Constant

Range Check

Index Array

Load Constant

Store Indirect Word
Load Global Address
Load Constant

T e 3 MNmaa b avemde
LAXKIU \NAARLDWAL -

Load Constant

Range Check

Index Array

Load Multiple Constant

Store Multiple Word
Load Global Address
Load Global Word

Load Constant

Load Constant

Range Check

Index Array

Load Multiple Constant

Store Multiple Word
Load Global Address
Load Global Word
Load Constant

Load Constant

Range Check

Index Array

Load Global Word
Store Indirect Word
Return Base Procedure



Listing 4-4

1 1 1:D 1 {$1 PRINTER:}

2 1 1:D E S Stttk T e e,
3 1 1:D 1 (* *)
4 1 1:D 1 (* Listing 4.4: Array accesses with {$R-} option, *)
5 1 1:D 1(* *)
6 1 1:D 1 (*"‘""'"“”»--""-‘""""""“"*""*"""""‘”’”‘""’"‘"*"""")
7 1 1:D 1

8 1 1:D 1 {$rR-}

9 1 1:D 1 program ALLOCATION: EXAMPLES: ARRAYS;

10 1 1:D 3

i1 1 1:D 3 var I:array [0..10] of integer;

12 1 1:D 14 R:array [0.,10] of real;

13 1 1:D 36 J:integer;

14 1 1:D 7

15 1 1:0 0 begin

16 1 1:0 0

7 1 1:1 0 J:=1;

18 1 1:1 5 I[0] :=0;

19 1 1:1 12 R {0] :=1.1;

20 1 1:1 26 R [J] :=1.1;

21 1 1:1 40 I[J] :=J;

2 1 1:1 49

23 1 1:0 49 end,

SEGMENT: NAME : ALLOCATI SEG NUM : 1
TOTAL PROCEDURES : 1 SEG_NUM _INDEX : 0

103



Listing 4-4 (continued)

PROC # ROOT-SEG LEX PARAMS DATA START OFFSET SIZE $START S$EXIT

1 ALIOCATI 0

Offset ($):

0(0000) =
1(0001) ¢
2(0002) :
3(0003) :
5(0005) :
7(0007) =
8(0008) :
10 (000A) =
11(000B) &
12(000C) ¢
14(000E) :
15(000F) =
17(0011):

NAINNDTON &
LAV -
.
H

26 (001A)

28(001C) ¢
30(001E) ¢
32(0020) :

38(0026) :
40(0028) ¢
42(0028) :
44(0020) =
46 (002E) :
48(0030) :
49(0031) :

Mnemonic

NOP
NOP
PUSH
SRO
L0
PUsH
IXA
PUSH
STO

1 HHEE

v
:

BYEEEEY E¥EE

4 68
Parl Par2
1
36
3
0
1
0
14
0
2
2 16268
~-13107
2
14
36
2
2 16268
=13107
2
3
36
1
36
0

1

Hexcode

D7
D7
01
AB24
A503
00
MO01
00
9A
A50E
00
202

B3028C3F
(e300

BDO2
AS0E
2924

A402

BE3028C3F
cC

EDO2
2503
A924
MOl
924
9A

C100

104

0 51 0200 0231
Opcode

NOP

NOP

Load Constant

Store Global Word
Ioad Global Address
Load Constant

Index Array

Load Constant

Store Indirect Word
Load Global Address
Load Constant

Index Array

Load Multiple Constant

Store Multiple Word
Load Global Address
Load Global Word

Index Array

Load Multiple Constant

Store Multiple Word
Load Global Address
Load Global Word
Index Array

Load Global Word
Store Indirect Word
Return Base Procedure



Listing 4-5
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1 {$1 PRINTER:}

1 (***************************************************************)

(* *)
(* Listing 4.5: Small sets. *)
(* *)

( ***************************************************************)

program ALLOCATION: EXAMPLES- SETS;
type

SRLLI = 0.,11;

var S: set of SMALLI;
R: set of SMALLI;
Q: set of SMALLI:
B: boolean;
I: integer;

[1; (* Empty set *)
[0];

[0,1,2];

{0,1,2,31;
[4,5,6,71;
[8;9110'11];

[01;
R+

W WA
W OHNOLWIOO OO U WL W W b et o
‘g‘
=]

Rt annnu

&

6 26 00 28 68 90 4 a0 o8 e ex se e

BB

:

PROC # ROOT-SEG LEX PARAMS DATA START OFFSET SIZE  $START SEXIT

1 ALLOCATT

Offset ($):

0(0000) :
1(0001) :
2(0002) :
3(0003) ;
5(0005) :
7(0007) :
8(0008) :

0 4 10 1 0 9 0200 0259

Mnemcnic Parl Par2 Hexcode Opcode

nop
NOP
PusH
AnJ
SRO
PUSH
PUSH

D7 NOP
D7 NOP
0 00 Load Constant
1 A0O1 Adjust Set
3 BB03 Store Global Word
1 01 Load Constant
1 01 Load Constant
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Listi ng 4-5 (continued)

9(0009): ADJ 1 ADO1 Adjust Set
11(000B) : SRO 3 ABO3 Store Global Word
13(000D): PUSH 3 03 Load Constant
14(000E): PUSH 1 01 Load Constant
15(000F): ADJ 1 ADO1 Adjust Set
17(0011): SRO 3 BABO3 Store Global Word
19(0013): PUSH 7 07 Load Constant
20(0014) : PUSH 1 01 Load Constant
21(0015): ang 1 D01 Adjust Set
23(0017): SRO 3 ABO3 Store Global Word
25(0019): PUSH 15 OF Load Constant
26(0012): PUSH 1 01 Load Constant
27(001B): ADJ 1 A0O1 Adjust Set
29(001D): SRO 3 ABO3 Store Global Word
31(001F): LDCI 240 C7F000 Load Constant
34(0022): PUSH 1 01 Load Constant
35(0023): ADJ 1 AD01 Adjust Set
37(0025): SRO 3 ABO3 Store Global Word
39(0027): LDCI 3840 C7000F Load Constant
42(0022): PUSH 1 0l Load Constant
43(002B): ADJ 1 A0O1 Adjust Set
45(002D): SRO 3 AR03 Store Global Word
47(002F): PUSH 1 01 Load Constant
48{0030}: = 1 01 Load Constant
49(0031): 2ADJ 1 ADO1 Adjust Set
51(0033): SRO 4 ABO4 Store Global Word
53(0035): SLDO 4 BB Load Global Word
54(0036): PUSH 1 01 Load Constant
55(0037): SLDO 3 EA Load Global Word
56(0038): PUSH 1 01 Load Constant
57(0039): UNI 9C Compare Set Union (Or)
58(003A): ADJ 1 A001 Adjust Set
60(003C): SRD 5 ABOS Store Global Word
62(003E): SLDO 4 EB Load Global Word
63(003F): PUSH 1 01 Load Constant
64(0040) : SLDO 3 EA Load Global Word
65(0041): PUSH 1 01 Load Constant
66(0042): DIF 85 Compare Set (And Not)
67(0043): ADJ 1 A001 Adjust Set
69(0045): SRO 5 BAB0S Store Global Word
71{0047) : SLDO 4 EB Load Global Word
72(0048): PUSH 1 01 Load Constant
73(0049): SLDO 3 EA Load Global Word
74(004R): PUSH 1 01 Load Constant
75(004B):  INT 8C Campare Set Intersect (And)
76(004C): ADJ 1 A001 Adjust Set
78(004E): SRO 5 BABOS Store Global Word
80(0050): PUSH 2 02 Load Constant
81(0051) : SRO 7 ABQ7 Store Global Word
83(0053): SLDO 7 EE Load Global Word
84(0054) : SLDO 5 EC Load Global Word
85(0055): PUSH 1 01 Load Constant
86(0056): INN 8B Campare Set Membership
87(0057): SRO 6 AB06 Store Global Word
89(0059): RBP 0 Cl100 Return Base Procedure
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Listing 4-6

NN NI RO DS I bt et b b [t et e et
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1 {$1 PRINTER:}
1 (Fhdkdkddkkkddkkdkkkkkkkkkhkihhkkkikdrtkrridkiddkriddretkrtriiddt)

: (* *)
: (* Listing 4.6: Large sets. *)
: (* *)

(FhxEXXIRRREIEIEAIERTThTTITE AR TR AR T R IR XA RIS kddhkhhhdhhihhhikbk)

program ALLOCATION- EXAMPLES- SETS;

type
IARGEI = 0..47;

S: set of LARGEI
R: set of LARGEI
Q: set of LARGEI
+ boolean;

: integer;

Oy e N [y
BR el ENbvoocoRbRvawwwwrm b mE
~ e

#5 05 80 00 o8 €6 40 40 98 08 98 88 B4 89 40 U6 08 &0 8 08 0%

WHORO X NN

es oo aa ae en o se ve
U T T I T O 1}
o
+
@2

Bt b et et e e Bt B e bt b el et B et et el et e

8
2

SEGMENT- NAME : ALLOCATI SEG NUM : 1

TOTAL PROCEDURES

1 SBEG_NUM INDEX : 0

PROC # ROOT-SBG LEX PARAMS DATA START OFFSET SIZE  $START SEXIT

1 ALLOCATI 0 4 22 1 0 92 0200 025A
Offset ($): Mnemonic Parl Par2 Hexcode Opcode

0.00000): - NOP . ‘ D7 Mop

1(0001): NOP D7 NOP

2(0002): LAO 3 2503 Load Global Address
4(0004): PUSH 0 00 Load Constant
5(0005): ADJ 3 A003 Adjust Set
7(0007): S 3 BDO3 Store Multiple Word
9(0009): LA 3 A503 Load Global Address
11(000B): LDCI 2304 C70009 Load Constant
14(000E): PUSH 1 01 Load Constant
15(000F): ADJ 3 A003 Adjust Set
17(0011): Sm 3 EDO3 Store Multiple Word
19(0013): LAO 6 2506 Load Global Address
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Listing 4-6 (continued)

21(0015): PUSH 1 01 Load Constant
22(0016): PUSH 1 01 Load Constant
23(0017): ADJ 3 2003 Adjust Set

25(0019): S 3 BD03 Store Multiple Word
27(001B): L2O 9 A509 Load Global Address
29(001D): LAD 6 A506 Load Global Address
31(001F): LM 3 BCO3 Load Multiple Word
33(0021): PUSH 3 03 Load Constant
34(0022): 1A 3 B503 Load Global Address
36(0024): LM 3 BCO3 Load Multiple Word
38(0026): PUSH 3 03 Load Constant
39(0027): UNI 9C Campare Set Union (Or)
40(0028): ADJ 3 AD03 Adjust Set

42(0028): SM™ 3 BDO3 Store Multiple Word
44(002C): LIO 9 A509 Load Global Address
46(002E): LAO 6 2506 Load Global Address
48(0030): LM 3 BCO3 Load Multiple Word
50(0032): PUSH 3 03 Load Constant
51(0033): LAO 3 2503 Load Global Address
53(0035): LM 3 BCO3 Load Multiple Word
55(00837): PUSH 3 03 Load Constant
56(0038): DIF 85 Canpare Set (And Not)
57(0039): ADJ 3 A003 Adjust Set

52{(003B): o™ 3 i3 tore Multiple Word
61(003D): L&D 9 A509 Load Global Address
63(003F): L0 6 2506 Load Global Address
65(0041): LM 3 BCO3 Load Multiple Word
67(0043): PUSH 3 03 Load Constant
68(0044): LAO 3 A503 Load Global Address
70(0046): LM 3 BCO3 Load Multiple Word
72(0048): PUSH 3 03 Load Constant
73(0049): INT 8C Campare Set Intersect (And)
74(0048): ADJ 3 ADO3 Adjust Set

76(004C): S™ 3 BDO3 Store Multiple Word
78(004E): PUSH 2 02 Load Constant
79(004F): SRO 13 ABOD Store Global Word
81(0051): SLDO 13 F4 Load Global Word
82(0052): L0 9 A509 Load Global Address
84(0054): LM 3 BCO3 Load Multiple Word
86(0056): PUSH 3 03 Load Constant
87(0057): INN 8B Campare Set Membership
88(0058): SRO 12 ABOC Store Global Word
90(0052): RBP 0 Clo0 Return Base Procedure
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Listing 4-7

1 1 1:D 1 {$1 PRINTER:}

2 1 1:D NI G T L L T PP e e e e ey
3 1 1:0 1 (* *)
4 1 1:D 1 (* Listing 4.7: Records with {$R+} option. *)
5 1 10 1 (* *)
6 1 1:D N G L L R e e e e T 31
7 1 1:D 1

8 1 1:D 1 program ALLOCATION: EXAMPLES- RECORDS ;

9 1 12D 3 type

10 1 1:D 3 MYTYPE = record

1 1 1:p 3

12 1 1:D 3 I:integer;

13 1 1:D 3 R:real;

14 1 1:D 3 B:boolean;

15 1 1:D 3 Azarray [0..3] of char;

16 1 1:D 3

17 1 1:D 3 end;

18 1 1:D 3

19 1 1:D 3 var M: MYTYPE;

20 1 1:D 11 N: MYTYPE;

21 1 1:D 19 L: array [0..1] of MYTYPE;

2 1 1:D 35

3 1 1:D 35

24 12 1:0 0 begin

25 1 1:0 0

2% 1 1:1 0 M.I :=0;

27 1 1:1 5 M.R 3= 1.1;

28 1 1.1 16 M,B := TRUE;

29 1 1:1 19 M.A [0] := 'A';

30 1 1:1 29

31 1 1:1 29 N := M;

32 1 1:1 35

33 1 1:1 35 L [0] := M;

34 1 1:1 47 L {1} := N;

35 1 1:1 59

36 1 1:0 59 end.

SBGMENT- NAME : ALLOCATI SEG.NUM : 1
TOTAL PROCEDURES : 1 SEG NUM. INDEX : O
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Listi ng 4-7 (continued)

PROC # ROOT-SEG LEX PARAMS DATA START OFFSET SIZE  $START SEXIT

1 ALIOCATI 0

Offset ($):

0(0000) :
1(0001) :
2(0002) :
3(0003) :
5(0005) :
7(0007) ¢

14(000E) :
16(0010)
17(0011) ¢
19(0013) :
21(0015) ¢
22(0016) =
23(0017) s
24(0018) :
25(0019) :
27(001B) :
28(001C) ¢
29(001D) :
31(001F):
33(0021)
35(0023) :
37(0025) :
38(0026) :
39{(0027) :
40(0028) ;
41(0029) :
43(002B) :
45(002D) :
47 (002F) =
49(0031) :
50(0032) ¢
51(0033):
52(0034) =
53(0035) :
55(0037) ¢
57(0039) :
59(003B) :

Mnemonic

NOP
NOP
s
SRO
. 0]
nC

S™
PosH
SRO
LA
UsH
s
PUSH
CHK
IXA
PUSH
ST0
Lo
LA
MV
LAO
PUSH
POsH
PUSH
CHK
IXa
LAD
MV
L0
PUSH
PUsH
s
CHK
IXA
LAO
MWV
RBP

4

Parl Par2

WOO~N N N WO

(2]

[
HOOWVWOWH =

jun

=
O Wk HOKMYODWD

—

64

16268
-13107

1
Hexcode

D7

D7

00

ABO3
A504
B3028C3F

ED02
01

A507

00
03
88
MOl

9A
AS50B

AS08
513
00
00
01
88
A08
2503
AS08
513
o1
00
01
88
2408
A50B
2808
C100

110

0 61 0200 03B

Opcode

NOP

NOP

Load Constant

Store Global Word
Load Global Address
Load Multiple Constant

Store Multiple Word
Load Constant

Store Global Word
Load Global Address
Load Constant

Load Constant

Load Constant

Range Check

Store Indirect Word
Load Global Address
Load Global Address
Move Word Block
Load Global Address
Load Constant

Load Constant

Load Constant

Range Check

Index Array

Load Global Address
Move Word Block
Load Global Address
Load Constant

Load Constant

Load Constant

Range Check

Index Array

Load Global Address
Move Word Block
Return Base Procedure



Listing 4-8

1l 1 1:D 1 {$1 PRINTER:}
2 l 1:D l (*‘k*************************************************************)
3 1 1:D 1 (* *)
4 1 1:D 1 (* Listing 4.8: Records with {$R~} option. *)
5 1 1:D 1 (* *}
6 l 1=D l (***************************************************************)
7 1 1:D 1
8 1 1:D 1 {$R-}
9 1 1:D 1 program ALLOCATION: EXAMPLES RFECORDS;
10 1 1:D 3 type
1 1 1:p 3 MYTYPE = record
12 1 1:D 3
13 1 1:D 3 I:integer;
14 1 1:D 3 R:real;
15 1 1:D 3 B:boolean;
16 1 1:D 3 Azarray [0..3] of char;
17 1 1:D 3
18 1 1:D 3 end;
19 1 1:D 3
2 1 1:D 3 var M: MYTYPE;
21 1 1:D 11 N: MYTYPE;
22 1 1:D 19 L: array [0..1] of MYTYPE;
23 1 1:D 35
24 1 1:D 35
25 1 1:0 0 begin
26 1 1:0 0
27 1 1:1 0 M.I :=0;
28 1 1:1 5 M.R :=1.1;
29 1 1:1 16 M.B := TRUE;
36 1 1:1 19 M.A [0] := 'AY;
31 1 1:1 26
32 1 1:1 26 N := M;
33 1 1:1 32
34 1 1:1 32 L [0] :=M;
35 1 1:1 49 L [1] :=N;
3 1 1:1 50
37 1 1:0 50 end.

SEGMENT- NAME : ALIOCATI SEG_NUM : 1

TOTAL PROCEDURES : 1 SEG_NUM-_INDEX : O
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Listing 4-8 (continued)

PROC # ROOT SEG LEX PARAMS DATA START OFFSET SIZE  SSTART SEXIT

1 ALIOCATT

Offset ($):

0(0000) :
1(0001) :
2(0002) :
3(0003) :
5(0005) :
7(0007) =

14(000E) ¢
16(0010) =
17(0011) :
19(0013)
21(0015) ¢
22(0016) :
24(0018)
25(0019) :
26(0014) :
28(001C) ¢
30(001E) :
32(0020) ¢
34(0022) ¢
35(0023) ¢
37(0025) =
39(0027) «
41 (0029) :
43 (002B) :
44(002C) :
46 (002E) =
48(0030) =
50(0032) :

Mnemonic

NOP
NOP
PUSH
SRO
LAO
LDC

S™
PUsH
SRO
LAO
PUSH
IXA
PUsH
STO
LAO
LAO
MV
Lao
PUSH
IXa
LAO
MOV
Lo
PUSH
IXA
LA
MOV
RBP

0 4

N Wo

-5}
HONOHN

[
WoOWwWKWH ot

[

- —
S oW

64

Parl Par2

16268

-13107

1

Hexcode

D7
D7
00
ABO3
A504
E3028C3F
cnce

BDO2
01
2B06
BA507
00
01
41
9A
A50B
2503
2808
A513
00
n08
A503
ABO8
A513
01
MO8
A50B
AS08
C100

112

o 52 0200 0232
Opcode

NOP

NOP

Load Constant

Store Global Word
Load Global Address
Load Multiple Constant

Store Multiple Word
Load Constant

Store Global Word
Load Global Address
Load Constant

Index Array

Load Constant

Store Indirect Word
Load Global Address
Load Global Address
Move Word Block
Load Global Address
Load Constant

Index Array

Load Global Address
Move Word Block
Load Global Address
Load Constant

Index Array

Load Global Address
Move Word Block
Return Base Procedure



Listing 4-9

1 1 1:D 1 {$1 PRINTER:}
2 1l 1:D l (****************'k**********************************************)
3 1 1:D 1 (*
4 1 1:D 1 (* Listing 4.9: String accesses with the {$R+} option.
- *
2 i i;g % E********‘********************‘k**********************************)
7 1 1:D 1
8 1 1:D 1 program ALLOCATION: EXAMPLES - STRINGS;
9 1 1:D 3
10 1 1:D 3 var S:string;
11 1 1:D 44 T:string;
12 1 1:D 85
13 1 1:0 0 begin
14 1 1:0 o
15 1 1:1 0 S := 'Hello there';
16 1 1:1 20 T := S;
17 1 1:1 26 T 3= 1'';
18 1 1:1 33 T ¢= 'Af;
19 1 1:1 38
20 1 1:0 38 end.
SEGMENT-NAME : ALIOCATI SEG NUM : 1

TOTAL: PROCEDURES : 1

SEG NUM_INDEX : 0

PROC # ROOT-SBG LEX
1 ALLOCATT 0
Offset ($): Mnemonic

0(0000): NOP
1(0001): NOP

2(0002): LAO
4(0004): NOP
5(0005): Lsa

ig(o0i2): sAs
20(0014): L&D
22(0016): LAO
24(0018): SAS
26(001A): L&D
28(001C): NOP
29(001D): LSA
31(001F): SAS
33(0021): LAO
35(0023): PUSH
36(0024): SAS
38(0026): RBP

PARAMS DATA START OFFSET SIZE  $START SEXIT
4 164 1 0 40 0200 0226
Parl Par2 Hexcode Opcode

D7 NOP
D7 NOP
3 A503 Load Global Address
D7 NOP
11 A60B Load String Constant
Hello 48656C6C6F
ther 2074686572
80 AASC Assign String
44 A52C Load Global Address
3 A503 Load Global Address
80 AASQ Assign String
44 A52C Load Global Address
D7 NOP
0 2600 Load String Constant
80 AASO Assign String
44 A52C Load Global Address
65 41 Load Constant
80 AR50 Assign String
0 C100 Return Base Procedure
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Listing 4-10

1 1 1:D 1 {$1 PRINTER:}
2 1 I:D 1 (***************************************************************)
3 1 1:D 1 (* *)
4 1 1:D 1 (* Listing 4.10: Pointer usage. *)
5 1 1:D 1(* *)
6 ]l 1:D 1 (**********‘k****************************************************)
7 1 1:D 1
g 1 1:D 1 program ALLOCATION EXAMPLES POINTERS;
1 1:D 3
10 1 1:D 3 var P: “integer;
1 1 1:D 4 Q: “integer;
12 1 1:D 5 I: integer;
13 1 1:D 6
14 1 1:0 0 begin
15 1 1:0 0
6 1 1:1 0 I :=P";
17 1 1:1 6 P* = 1I;
18 1 1:1 9 P :=Q;
19 1 1:1 12
2 1 1:0 12 end.
SEGMENT-NAME : ALLOCATI SEG_NUM : 1

TOTAL PROCEDURES : 1

SEG_NUM:_INDEX : O

PROC # ROOT-SEG LEX PARAMS DATA START OFFSET SIZE

1 ALLOCATT 0

Offset ($): Mnemonic

0(0000): NOP
1(0001): NOP
2(0002):  SLDO
3(0003): SIND
4(0004): SRO
6(0006):  SLDO
7(0007):  SLDO
8(0008):  STO
9(0009):  SLDO
10(000A):  SRO
12(000C): RBP

4 6
Parl Par2
3
0
5
3
5
4
3
0

$START S$EXIT
1 0 14 0200 020C
Hexcode Opcode
D7 NOP
D7 NOP
EA Load Global Word
F8 Load Indexed Indirect Word
ABOS Store Global Word
EA Load Global Word
EC Load Global Word
9A Store Indirect Word
EB Load Global Word
ABO3 Store Global Word
Ccl100 Return Base Procedure
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Listing 4-11
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(*
(* Listing 4.11: For loops.
*

W 0D L ket b et e el
—~

{$R-}
program FOR_LOOP- EXAMPLE;
var I: integer;
A: array [0..127]1 of integer;
132
132
0 begin
0
0 for I ;=90 to0 127 do A [I] :=I;
30
30 end.

SEGMENT_NAME : FORLOOPE SEG NUM : 1

TOTAL PROCEDURES : 1

SBEG_NUM_INDEX : O

PROC # ROOT-SEG LEX PARAMS DATA START OFFSET SIZE $START S$EXIT

1 FORLOOPE
Offset ($):
0(0000): NOP
1(0001): NOP
2(0002): PUSH
3(0003): SRO
5(0005): PUSH
6(0006): SRO
9(0009): SLDO
10(000R): LDO
13(000D): LEQI
14(000E): FJP
1640030) 2 LAO -
18(0012): SLDO
19(0013): 1IXAa
21(0015): SLDO
22(0016): SO
23(0017): SLDO
24(0018): PUSH
25(0019): ADI
26(001A): SRO
28(001C): UuJP
30(001E): RBP

0 4 260 1 0 32 0200 021E

Mnemonic Parl Par2 Hexcode Opcode

D7 NOP
D7 NOP
0 00 Load Constant
3 ABQO3 Store Global Word
127 F Load Constant
132 AB8084 Store Global Word
3 EA Load Global Word
132 A98084 Load Global Word
C8 Compare
30 Al0E Jump If False
B - POl - - ‘hoad Global Address
3 EA Load Global Word
1 AMO1 Index Array
3 EA Load Global Word
9A Store Indirect Word
3 FA Load Global Word
1 01 Load Constant
82 Add
3 ABO3 Store Global Word
9 BOF6 Unconditional Jump
0 C100 Return Base Procedure
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Listing 4-12
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S

{$1 PRINTER:}
(***********************’k*************************i****t****iﬂ*)
* *)
(* Listing 4.12: While loops. *)
(* *)
(**i*******************************************t********i*******)
{$R=~}
program WHILE-LOOP- EXAMPLE;
var I: integer;
A: array [0..127] of integer;
begin
I:=0;
while (I <= 127) do begin
A [1I] :=1;
I:=1I+1;

PROC # ROOT-SEG LEX PARAMS DATA START OFFSET SIZE  $START S$EXIT

1 WHILELOO 0

Offset ($):

0(0000) :
1(0001) :
2(0002) :
3(0003) :
5(0005) :
6(0006) :
7(0007) 2
8(0008) :
10(000A) :
12(000C) =
13(000D) =
15(000F) :
16(0010) :
17(0011) :
18(0012) ¢
19(0013) :
20(0014) :
22(0016) :
24(0018) :

Mnemonic

NOP
NOP
PUSH
SRO
SLDO
PUsH
LEQI
FJP
LAO
SLDO
IXa
SLDO
ST0
SLDO
PUSH
ADI
SRO
UJP
RBP

4 258 1 0 26 0200 0218
Parl Par2 Hexcode Opcode
D7 NOP
D7 NOpP
0 00 Load Constant
3 ABO3 Store Global Word
3 EA Load Global Word
127 7F Load Constant
c8 Compare
24 AlOE Jump If False
4 A504 Load Global Address
3 EA Load Global Word
1 201 Index Array
3 EA Load Global Word
9A Store Indirect Word
3 A Load Global Word
1 01 Load Constant
82 Add
3 ABO3 Store Global Word
5 BOF6 Unconditional Jump
0 C100 Return Base Procedure
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Listing 4-13
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{$1 PRINTER:}
1 (edekdddddkkdkdddkdkkkkrkhhkikkiidihrihiihihikihkiatttihktrrhrihitr)

1(*

1 (* Listing 4.13: Repeat Until loops,

1(*

1 (FEdkkikkdkkkithhhhkthkhikihhihkkikhbkbbkkkbithkkdiikhkikhhkhikitl)

1

1 {$R-}

1 program REPEAT- I00OP-EXAMPLE;
3

I:
A:

3 var integer;
array [0..127]

132

O

repea

—

A [I] :
I:=1

~ we

I
1

+ 8

until (I > 127);

end,

of integer;

PROC # ROOT-SBEG LEX PARAMS DATA START OFFSET SIZE S$START S$EXIT
1 REPFATLO 0 4 258 1 0 24 0200 0216
Offset ($): Mpemonic Parl Par2 Hexcode Opcode
0(0000): NOP D7 NOP
1(0001): NOP D7 NOP
2(0002): PUSH 0 00 Load Constant
3(0003): SRO 3 ABO3 Store Global Word
5(0005): L&O 4 A504 Load Global Address
{0007+ -SEHDO 3 PR Toad Global Word -
8(0008): IXA 1l AMO1 Index Array
10(000A): SLDO 3 EA Load Global Word
11(000B}: STO 9A Store Indirect Word
12(000C): SLDO 3 EA Load Global Word
13(000D): PUSH 1 01 Load Constant
14(000E): ADI 82 Add
15(000F): SRO 3 ABO3 Store Global Word
17(0011): SLDO 3 EA Load Global Word
18(0012): PUSH 127 F Load Constant
19(0013): GIRI S Campare
20(0014): FJP 5 AlF6 Jump If False
22(0016): RBP 0 Cl00 Return Base Procedure
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Listing 4-14

{$]1 PRINTER:}

(**********************************************i**i*i***********)
(* *)
(* Listing 4.14: If,.then,.else statements. *)
(* *)

(***************t***********************************************)

{$R-}
program IF_STATEMENT;

var I: integer;
begin

if (I >=0) then I := -1;
if (I > 0) then I := 0;

B P b2 b b s et b e

BN N e R R O E Svovannwn
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24 if (T<=0) then I :=1;
25 49

26 49 if (1<0) thenI :=0
27 54 else I :=1;

28 62

29 62 end.

SEGMENT- NAME : IFSTATEM SEG NUM : 1

TOTAL PROCEDURES : 1 SEG NUM_INDEX : O
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Listing 4-14 (continued)

PROC # ROOT-SBEG LEX PARAMS DATA START OFFSET SIZE  $START S$EXIT
1 IFSTATEM 0 4 2 1 0 64 0200 O23E

Offset ($): Mnemonic Parl Par2 Hexcode Opcode

0(0000): NOP D7 NOP

1(0001): NOP D7 NOP

2(0002):  SLDO 3 FA Load Global Word

3(0003): PUSH 0 00 Load Constant

4(0004): EOQUI a Compare

5(0005): FJP 13 A106 Jump If False

7(0007): PUSH 1 01 Load Constant

8(0008): NGI 91 2-5 Complement

9(0009): SRO 3 ABO3 Store Global Word
11(000B): UJP 16 B903 Unconditional Jump
13(000D): PUSH 0 00 Load Constant
14(000E): SRO 3 ABO3 Store Global Word
16(0010): SLDO 3 EA Load Global Word
17(0011): PUSH 0 0o Load Constant
18(0012): NEQI CB Compare
19(0013): FJP 24 A103 Junp If False
21(0015): PUSH 0 00 Load Constant
22{(0016): SRO 3 ABO Store Global Word
24(0018): SLDO 3 EA Load Global Word
25(0019): PUSH 0 00 Load Constant
26(0012): GEQI c4 Campare
27(001B): FJP 33 Al04 Junp If False
29(001D): PUSH 1 01 Load Constant
30(001E): NGI 91 2-s Complement
31(001F): SRO 3 ABO3 Store Global Word
33(0021): SILDO 3 EA Load Global Word
34(0022): PUSH 0 00 Load Constant
35(0023): GIRI 5 Campare
36(0024): FJP 4] A103 Jump If False
38(0026): PUSH 0 00 Load Constant
39(0027): SRO 3 ABO3 Store Global Word
41(0029): SLDO 3 EA Load Global Word
42(0020): PUSH 0 00 Load Constant
43(002B): LEQI Cc8 Campare
44(002C): FJP 49 Al03 Jump If False
46(002E): PUSH 1 01 Load Constant
47(002F): SRO 3 BBO3 Store Global Word
49(0031): SLDO 3 EA Load Global Word
50(0032): PUSH 0 00 Load Constant

51.0033) s LESI Q... Compare. ... ..
52(0034): FJP 59 A105 Jump If False
54(0036) PUSH 0 00 Load Constant
55(0037): SRO 3 ABO3 Store Global Word
57(0039): UWJP 62 B9O3 Unconditional Jump
59(003B); PUSH 1 01 Load Constant
60(003C): SRO 3 ABO3 Store Global Word
62(003E): RBP 0 C100 Return Base Procedure
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Listing 4-15

1 1 1:D 1 {$1 PRINTER:}

2 1 l:D 1 (*******************************************************i****ﬁ*)
3 1 1:D 1 (> *)
4 1 1D 1 (* Listing 4.15: Case statement w/contiguous cases. *)
5 1 1:p 1 (* *)
6 l 1=D l (*********t****************************************i**i****”***)
7 1 1:D 1

8 1 1:D 1 {$R-}

9 1 1:D 1 program CASE- STATEMENT;

10 1 1:D 3

11 1 1:D 3 var I: integer;

12 1 1:D 4

13 1 1:0 0 begin

14 1 1:0 0

15 1 1:1 0 case I of

16 1 1:1 5

17 1 1:1 S 0: I:=1;

18 1 1:1 10 1: I :=0;

19 1 1:1 15 2: I :=3;

20 1 1:1 20 3: I :=2;

21 1 1:1 25

2 1 1:1 25 end;

23 1 1:1 40

24 1 1:1 40 case I of

25 1 1:1 43

26 1 1:1 43 0,1: I :=2;

27 1 1:1 48 2,3: 1 :=3;

28 1 1:1 53 4: I :=0;

29 1 1:1 58

30 1 1:1 58 end;

31 1 1:1 76

32 1 1:0 76 end.

SEGMENT. NAME : CASESTAT SEG_NUM : 1

TOTAL PROCEDURES : 1 SEG_NUM _INDEX : O
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Listing 4-15 (continued)

PROC # ROOL-SEG LEX PARAMS DATA START OFFSET SIZE S$START SEXIT
1 CASESTAT 0 4 2 1 0 78 0200 024C
Offset ($): Mnemonic Parl Par2 Hexcode Opcode

0(0000): NOP D7 NOP
1(0001): NOP D7 NOP
2(0002): SLDO 3 EA Load Global Word
3(0003): WP 25 B914 Unconditional Jump
5(0005): ©PUSH 1 01 Load Constant
6{(0006): SRO 3 AB03 Store Global Word
8(0008): WP 40 B91E Unconditional Jump
10(0008): PUSH 0 00 Load Constant
11(000B): SRO 3 ABO3 Store Global Word
13(000D): UJP 40 B919 Unconditional Jump
15(000F): PUSH 3 03 Load Constant
16(0010): SRO 3 ABO3 Store Global Word
18(0012): uwJP 40 B914 Unconditional Jump
20(0014): PUsH 2 02 Load Constant
21(0015): SRO 3 ABO3 Store Global Word
23(0017): uJyP 40 BIOF Unconditional Jump
25(0019): XJP 0 3 200000300 Case Jump
uJP 40 BS08
5 10 1B001800
15 20 15001200
40(0028): SLDO 3 EA Load Global Word
41(0029): UJP 58 BYOF Unconditional Jump
43(002B): PUSH 2 62 Load Constant
44(002C): SRO 3 ABO3 Store Global Word
46(002E): UwJP 76 Be1C Unconditional Jump
48(0030): PusH 3 03 Ioad Constant
49(0031): SRO 3 BBO03 Store Global Word
51(0033): UwJP 76 Bo17 Unconditional Jump
53(0035): PUSH 0 00 Load Constant
54(0036): SRO 3 BB03 Store Global Word
56(0038): wJIP 76 B912 Unconditional Jump
58(0032): XJP 0 4 AC00000400 Case Jump
UJP 76 BYOA
43 43 17001900
48 48 16001800
53 1500
76(004C): RBP 0 C100 Return Base Procedure
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Listing 4-16

1 1 1:D 1 {s1 s}
2 l 1=D l (**i************************************************************)
3 1 1:D 1 (* *)
4 1 1:D 1 (* Listing 4.16: Case statement w/non-contiguous cases. *)
5 1 1:D 1(* *)
6 1 1:D 1 (***************************************************************)
7 1 1:D 1
8 1 1:D 1 {$R-}
9 1 1:D 1 program CASE_STATEMENT;
10 1 1:D 3
11 1 1:D 3 var I: integer;
12 1 1:D 4
13 1 1:0 0 begin
14 1 1:0 0
15 1 1:1 0 case I of
16 1 1:1 5
17 1 1:1 5 0: I :=1;
18 1 1:1 10 1: I :=0;
19 1 1:1 15 2: I :=3;
20 1 1:1 20 3: 1 :=2;
21 1 1:1 25
2 1 1:1 25 end;
B 1 1:1 40
24 1 i:1 £ case I of
25 1 1:1 43
2% 1 1:1 43 0,1: I :=2;
27 1 1:1 48 2,3: 1 :=3;
28 1 1:1 53 4: T :=0;
29 1 1:1 58 24: I :=-2;
30 1 1:1 64
31 1 1:1 64 end;
32 1 1:1 122
33 1 1:0 122 end.
SBGMENT: NAME : CASESTAT SEG NUM : 1
TOTAL PROCEDURES : 1 SEG NUM: INDEX : 0
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Listing 4-16 (continued)

PROC # ROOT-SEG LEX PARAMS DATA START OFFSET SIZE SSTART SEXIT
1 CASESTAT 0 4 2 1 0 124 0200 027A
Offset (§): Mnemonic Parl Par2 Hexcode Cpcode

0(0000): MNOP D7 NOP
1(0001): NOP D7 NOP
2(0002): SLDO 3 EA Load Global Word
3(0003): uwJP 25 B914 Unconditional Jump
5(0005): PUSH 1 01 Ioad Constant
6(0006): SRO 3 ABO3 Store Global Word
8(0008): WIP 40 BO1E Unconditional Jump
l0¢0000): PUSH 0 00 Load Constant
11(000B): SRO 3 ABO3 Store Global Word
13(000D): ©JIP 40 19 Unconditional Jump
15(000F): PUSH 3 o] Load Constant
16(0010): SRO 3 AR03 Store Global Word
18(0012): WP 40 BOl4 Unconditional Jump
20(0014): PUSH 2 02 Load Constant
21(0015): SRO 3 ABO3 Store Global Word
23(0017): WP 40 B9OF Unconditional Jump
25(0019): XxJP 0 3 AC00000300 Case Jump
UJP 40 B908
g 1 1B0018C0
15 20 15001200
40(0028): SLDO 3 A Load Global Word
41(0029): WP 64 B15 Unconditional Jump
43(002B): PUSH 2 02 Load Constant
44(002C): SRO 3 ABO3 Store Global Word
46(002E): UWJP 122 B94A Unconditional Jump
48(0030): PUSH 3 03 Load Constant
49(0031): SRO 3 ABO3 Store Global Word
51(0033): WP 122 B945 Unconditional Jump
53(0035): PUsH 0 00 Load Constant
54(0036): SRO 3 AB03 Store Global Word
56(0038): WP 122 B940 Unconditional Jump
58(0032): PUsH 2 02 Load Constant
59(003B): NGI 91 2-s Complement
60(003C): SRO 3 AB03 Store Global Word
62(003E): UJP 122 R93A Unconditional Jump
64(0040): XJP 4] 24 AC00001800 Case Jump
UJpP 122 B932
43 43 1D0O01F00
48 48 1C001E00
5, 70 1B000C00.
70 70 0B001000
70 70 12001400
70 70 16001800
70 70 1A001.C00
70 70 18002000
70 70 22002400
70 70 26002800
70 70 2A002C00
70 70 2E003000
58 3800
122(0078): RBP 0 C100 Return Base Procedure

123



Listing 4-17

*)
*)
*)
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I: integer;
J: integer;

K: integer;

B: boolean;
C: boolean;
D: boolean;
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* Listing 4.17: Same simple aritmetic expressions.

$1 PRINTER:}
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1 program EXPRESSIONS;

103 end.
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SEG NUM : 1
SEG_NUM INDEX : O

: 1

-NAME : EXPRESSI

TOTAL PROCEDURES



Listing 4-17 (continued)

PROC # ROOT-SEG LEX PARAMS DATA START OFFSET SIZE  $START

1 EXPRESST 0

Offset ($):

0(0000) :

1(0001) :
2(0002) :

3(0003) :

5(0005) :

6(0006) :

8(0008) :
9(0009) :
10(000A) :
11(000B) :
13(000D) :
14(000E) :
15(000F) :
16(0010) :
18(0012) :
19(0013) :
20(0014) ;
21(0015) ¢
23(0017) ;
24(0018) :
25(0019) :
26 (001) :
28(0010) :
29(001D) :
30(00LE) :
31(001F) :
33(0021) :
34(0022) :
35(0023) :
36(0024) :
38(0026) :
39(0027) :
40(0028) :
41(0029) :
43(002B) :
44(002C) :
45(002D) :
47(002F) :
48(0030) :
49(0031) ;
50100327
52(0034) :
53(0035) :
54(0036) :
55(0037) :
57(0039) :
58(003A) :
59(003B) :
60(003C) :
62(003E) :
63 (003F) :
64(0040) :

Mnemonic

NOP
NOP
PUSH
SRO
SLDO
SRO
SLDO
PUSH
SBI
SRO
SLDO
PUSH
ADI
SRO
SLDO
SLDO
ADI
SRO
SLDO
SL.DO
SBI
SRO
SLDO
SLDO
MPI
SRO
SLDO
SLDO
DVI
SRO
SLDO
SLDO
MODI
SRO
SLDO
NGI
SRO
SLDO
SLDO

PQUT.
SRO

SLDO
SLDO
NEQI
SRO

SLDO
SLDO
GEQI
SRO

SLDO
SLDO
LEQI

4 12

Parl Par2

HWihWwWwWwo

& W & W i W o = W e

L VE N, WOy mww; w W W,

WO

1

Hexcode

D7
D7
00
ABO3
EA
ABO4
EA
01
95
ABO4
EA
01
82
ABC4
EA
EB
82
AB(S5
EA
EB
95
ABQS
EA
B

QEEEQEEEQEEEQEE
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0 105 0200
Opcode

NOP

NOP

Load Constant
Store Global Word
Load Global Word
Store Global Word
Load Global Word
Load Constant
Subtract

Store Global Word
Load Global Word
Load Constant

Add

Store Global Word
Load Global Word
Load Global Word
Add

Store Global Word
Load Globhal Word
Load Global Word
Subtract

Store Global Word
Load Global Word
Load Global Word
Multiply

Store Global Word
Load Global Word
Load Global Word
Divide

Store Global Word
Load Global Word
Load Global Word
Mod

Store Global Word
Load Global Word
2-s Complement
Store Global Word
Load Global Word
Load Global Word
Compare, . ...
Store Global Wora
Load Global word
Load Global Word
Compare

Store Global Word
Load Global Word
Load Global Word
Compare

Store Global Word
Load Global Word
Load Global Word
Compare

$EXIT
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Listing 4-17 (continued)

65(0041): SRO 6 2B06 Store Global Word
67(0043): SLDO 3 EA Load Global Word
68(0044): SLDO 4 EB Load Global Word
69(0045): GIRI 5 Compare

70(0046): SRO 6 ABO6 Store Global Word
72(0048): SLDO 3 EA Load Global Word
73(0049): SLDO 4 EB Load Global Word
74(0048): LESI C9 Compare

75(004B): SRO 6 ABO6 Store Global Word
77(004D): SLDO 3 EA Load Global Word
78(004E): PUSH 3 03 Load Constant
79(004F): PUSH 1 01 Load Constant
80(0050): INN 8B Compare Set Membership
81(0051): SRO 6 ABO6 Store Global Word
83(0053): SLDO 7 EE Load Global Word
84(0054): SLDO 8 EF Load Global Word
85(0055): LAND 84 Compare

86(0056): SRO 6 BB06 Store Global Word
88(0058):  SLDO 7 EE Load Global Word
89(0059): SLDO 8 EF Load Global Word
90(005A): LOR 8D Campare (Or)
S91(005B): SRO 6 RB06 Store Global Word
93(005D): SLDO 7 EE Load Global Word
04(008E): LNOT 3 Camnpare (Wt
95(005F): SRO 6 AB06 Store Global Word
97(0061): SLDO 3 EA Load Global Word
98(0062): SRO 6 ABO6 Store Global Word
100(0064): SLDO 6 ED Load Global Word
101(0065): SRO 3 ABO3 Store Global Word
103(0067): RBP 0 C100 Return Base Procedure
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Listing 4-18

1 1 1:D 1 {$1 PRINTER:}

2 l l:D 1 (***************************************************************)
3 1 1:D 1 (* *)
4 1 1:D 1 (* Listing 4.18: Same complex aritmetic expressions, *)
5 1 1:D 1 (* *)
6 l I:D l (***************************************************************)
7 1 1:D 1

8 1 1:D 1 {$rR-}

9 1 1:D 1 program EXPRESSIONS;

1o 1 1:D 3

1 1 1:D 3 var I: integer;

12 1 1:D 4 J: integer;

13 1 1:D 5 K: integer;

14 1 1:D 6 R: real;

15 1 i:D 8 B: boolean;

16 1 1:D 9

17 1 1:0 0 begin

18 1 1:0 0

19 1 1:1 0 I:=1;

20 1 1:1 5 J = 2;

21 1 1:1 8 K= (I+D) * (J~I) + J div I;

2 1 1:1 21 R:=(I+J) / (I ~-R +J/ I;

23 1 1:1 43 B := (I=0) and (J=1) or (K >=0);

24 1 1:1 56

25 1 1:0 56 end.

SEGMENT -NAME : EXPRESSI SEG_NUM : 1

TOTAL PROCEDURES : 1 SBEG_NUM_INDEX : O
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Listing 4-18 (continued)

PROC # ROOL-SEG LEX PARAMS

1 EXPRESSI 0

Offset ($):

0(0000) =
1(0001) =
2(0002) =
3(0003) =
5(0005) =
6(0006) :
8(0008) :
9(0009) :
10(o00n) :
11(000B) :
12(000C) ¢
13(000D) ¢
14(000E) =
15(000F) :
16(0010) :

L e

17{0011):
18(0012):
19(0013) :
21(0015) =
23(0017) =
24(0018) :
25(0019) :
26 (001R) :
27(001B) :
29(001D) s
31(001F):
32(0020) :
33(0021) :
34(0022) :
35(0023) :
36(0024) ¢
37(0025) ¢
38(0026) :
39(0027) =
40(0028) =
41(0029) =
43(002B) :
44(002C) :
45(002D) =
46 (002E) «
47(002F) :
48(0030) :
49(0031) :
50(0032) ¢
51(0033):
52(0034) =
53(0035) =
54(0036) :
56 (0038) :

Mnemonic

NOP
NOP
PUSsH
SRO
PUSH
SRO
SLDO
SLDO
ADI
SLDO
SLDO
SBL
MPI
SLDO
SLDO
DVI
ADI
SRO
LAO
SLDO
SLDO
ADI
SLDO
LAO
LIM
FLO
SER
FLO
DVR
SLDO
SLDO
FLT
FIO
DVR
ADR
S™
SLDO
s
EQUT
SLDO
PUsH
EQUI
LAND
SLDO
PUH
GEQI
ICR
SRO
RBP

4

Parl Par2

W ok LR N R S

o i

[ S~ )

Ll - owwNn

owm

o w

DATA START OFFSET SIZE  $START SEXIT

12 1

D7
D7
01
ABO3
02
AB04
EA
EB
82
EB
EA
95
8F
EB
EA

Py

8o
82
ABOS
A506
EA
EB
82
EA
A506
BCO2
89
96
89
87
EB
EA
8A
89
87
83
EDO2
EA
00
foc}
BB
01
(oc)
84
BC
00
4
8D
ABO8
Cloo

Hexcode

0 58 0200 0238
Opcode

NOP

NOP

Load Constant

Store Global Word
Load Constant

Store Global Word
Load Global Word
Load Global Word

Add

Load Global Word
Load Global Word
Subtract

Multiply

Load Global Word
Load Global Word
Divige

Add

Store Global Word
Load Global Address
Load Global Word
Load Global Word

Add

Load Global Word
Load Global Address
Load Multiple Word
Float (TOS) Integer -> Real
Subtract Real

Float (TOS) Integer -> Real
Divide Real

Load Global Word
Load Global Word
Float (T0S-1) Integer -> Real
Float (TOS) Integer -> Real
Divide Real

Add Real

Store Multiple Word
Load Global Word

Load Constant
Compare

Load Global Word

Load Constant

Campare

Compare

Load Global Word

Load Constant

Compare

Compare (Or)

Store Global Word
Return Base Procedure



Listing 4-19

1 1 1:D 1 {$L PRINTER:}
2 1 1:D 1 {$R-}
3 1 1:D 1 PROGRAM BUILTINS;
4 1 1:D 3 VAR B:PACKED ARRAY [0..7] OF CHAR;
5 1 1:D 7 S:STRING;
6 1 1:D 48 I:INTEGER;
7 1 1:D 49
8 1 1:0 0 BEGIN
9 1 1:0 ]
10 1 1:1 0 S:= '"HELIO';
11 1 1:1 14 I:= LENGTH(S);
12 1 1:1 20 I:= POS('HE',S);
13 1 1:1 34 S:= QONCAT(S,' THERE');
14 1 1:1 66 S:= QOPY(S,1,5);
15 1 1:1 81 DELETE(S,1,2);
16 1 1:1 88  INSERT('HE',S,1);
17 1 1:1 100 SIR(I,S);
18 1 1:1 113
19 1 1:0 113 END.

DUMPCODE of file SYSTEM.WRK.CODE
Segment: No: Size: Addr: SegKind: Text:
BUILTINS 0 OO08E 0001 LINKED

Dump of Segment Tale for segment O
Sego =1 Num Procs = 1

1: 0088
Listing of disassembled code for segment 0
Begin Proc:
0000: B9 74 wp 0076
0002: A5 07 L2O 7
0004: D7 NOP
0005: A6 05 LsA 5, 'HELLO'
000C: AA 50 Sas 80
000E: &S5 07 20 7
0010: 00 S 0
0011l: BE LDB
0012: AB 30 SRO 48
0014: D7 NOP
0015: A6 02 ILSA 2,'HE'
0019: A5 07 0 7
001B: 00 SLC 0
001C: 00 [51F) ]
001ID: CD 00 1B cxXp 0,27
0020: AB 30 SRO 48
0024: @0 SIbC 0
0025: AB 31 SRO 49
0027: A5 31 LAO 49
0029: A5 07 Lo 7
002B: 50 SIDC 80
002C: CD 00 17 cxp 0,23
002F: A5 31 1O 49
0031: A6 06 Lsa 6,' THERE'
0039: D7 NOP
003a: 56 SIDC 86
003B: CD 00 17 cxXp 0,23
003E: AS 31 LAO 49
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Listing 4-19 (continued)

0040: AA 50 SAS 80
0042: A5 07 120 7
0044: A5 07 LAO 7
0046: A5 31 LAD 49
0048: 01 siDC 1
0049: 05 g 5
004a: CD 00 19 Xp 0,25
004D: A5 31 LA 49
004F: AA 50 SAS 80
0051: A5 07 LA 7
0053: 01 soc 1
0054: 02 sc 2
0055: CD 00 1A Xp 0,26
0058: D7 NOP

0059: A6 02 LSA 2,'HE'
005D: A5 07 LA 7
005F: 50 SLDC 80
0060: 01 s 1
0061: CD 00 18 P 0,24
0064: A9 30 1D0 48
0066: 12 supC 18
0067: CD 1E 04 xXp 30,4
006A: A5 07 LrO 7
006C: 50 SLDC 80
006D: 0C sIpC 12
006E: CD 1E 04 Xp 30,4
0071: 1E SIDC 30
0072: OE 16 csp TRUNC
0074: B9 05 892 007B
0076: 1E SIDC 30
0077: 9E 15 csp Routine No.2l
0079: B9 F6 wp -10
007B: C1 00 RBP 0

JTAB[-10] = 0002
Data Segment Size: 00B4

Parameter Size: 0004
Exit IC: 0071
Entry IC: 0000

Lex Level: 0, Procedure No.: 1
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Listing 4-20

1 1 1:D 1 {$§1 PRINTER:}
2 1 1:D 1 (*********************t*****************************************)
3 1 1:D 1 (* *)
4 1 1:D 1 (* Listing 4.20: Procedure definitions and calls. :;
. *
g i i;g i E*************************************************ﬂ*****i**tttt)
7 1 1:D 1
8 1 1:p 1 {$R-}
9 1 1:D 1 program CALLS- AND-PROCS;
10 1 1:D 3
n 1 2:D 1 procedure A;
12 1 2:0 0 begin end;
131 2:0 12
14 1 3:D 1 procedure B;
15 1 3:D 1
6 1 4:D 1 procedure C;
17 1 4:0 0 begin end;
18 1 4:0 12
15 1 3:0 0 begin {B}
20 1 3:0 0
21 1 3:1 0 B; { Recursive call }
2 1 3:1 2 C; { Call child procedure }
23 1 3:1 4 A; { Call procedure at same level }
248 1 3:1 6
25 1 3:0 6 end;
% 1 3:0 18
27 1 3:0 18
28 1 3:0 18
29 1 1:0 0 begin
30 1 1:0 0
31 1 1:1 0 A;
32 1 1:1 4 B;
33 1 1:1 6
34 1 1:0 6 end,

SBGMENT-NAME : CALLSAND SBEG_NUM : 1
TOTAL PROCEDURES : 4 SEG_NUM- INDEX : 0
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Listing 4-20 (continued)

PROC # ROOI-SEG IFEX PARAMS DATA START OFFSET SIZE  $START SEXIT
1 CALLSAND 0 4 0 1 42 8 0228 0230
Offset ($): Mnemonic Parl Par2 Hexcode Opcode

0(0000): NOP D7 NOP
1(0001): NOP D7 NOP
2{(0002): CLP 2 CEO2 Call Local Procedure
4(0004): CLP 3 CEO3 Call Local Procedure
6(0006): RBP 0 C100 Return Base Procedure

PROC # ROOT-SEG LEX PARAMS DATA START OFFSET SIZE  $START S$EXIT
2 CALLSAND 1 0 0 1 0 2 0200 0200

Offset ($): Mnemonic Parl Par2 Hexcode Opcode

0(0000): RNP o] ADOO Return Non-Base Procedure

PROC # ROOT-SEG LEX PARAMS DATA START OFFSET SIZE $START $EXIT
3 CALLSAND 1 o 0 1 24 8 0218 O21E

Offset ($): Mnemonic Parl Par2 Hexcode Opcode

0(0000): OGP 3 CF03 Call Global Procedure
2(0002): CLP 4 CED4 Call Local Procedure
4(0004): OGP 2 CF02 Call Global Procedure
6(0006): RNP 0 ADOO Return Non~Base Procedure

PROC # ROOT-SEG LEX PARAMS DATA START OFFSET SIZE SSTART SEXIT
4 CALLSAND 2 0 0 1 12 2 020C  020C
Offset ($): Mnemonic Parl Par2 Hexcode Opcode

0(0000): RNP o] ADOO Return Non-Base Procedure
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Listing 4-21

1 1 1:D 1 {$1 PRINTER:}
2 l 1:D 1 (***********************************************************t***)
3 1 1:p 1 (* *)
4 1 1:D 1 (* Listing 4.21: Segment procedure calls, *)
5 1 1:D 1 (* *)
6 1 l:D 1 (****'k**********************************************************) :
7 1 1:d 1
8 1 1:p 1 {$R-}
9 1 1:D 1 program CALLS: AND-PROCS;
10 1 1:D 3
i1 7 1:D 1 segment procedure B;
12 7 1:D 1
13 7 1:D 1
4 7 2:D 1 procedure C;
15 7 2:0 0 begin end;
6 7 2:0 12
77 1:0 0 begin end; {B}
18 7 1:0 12
19 1 2:D 1 procedure A;
20 1 2:0 0 begin end;
21 1 2:0 12
22 1 3:D 1 procedure D;
23 1 3:D 1
24 1 4:D 1 procedure E;
25 1 4:0 0 begin end;
% 1 4:0 12
27 1 3:0 0 begin {D}
2 1 3:0 o
29 1 3:1 0 E;
30 1 3:1 2 D;
31 1 3:1 4 A;
32 1 3:1 6
33 1 3:0 6 end;
34 1 3:0 18
35 1 3:0 18
36 1 1:0 0 begin
37 1 1:0 0
38 1 1:1 0 ;
39 1 1:1 4 B;
40 1 1:1 7
4 1 1:0 7 end,
SEGMENT-NAME : CALLSAND SEG_NUM : 1

TOTAL PROCEDURES : 4 SEG_NUM_INDEX : 0
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Listing 4-21 (continued)

PROC # ROOT SEG LEX PARAMS DATA START OFFSET SIZE  §START SEXIT
1 CALLSAND 0 4 0 2 42 E} 0422 0431

Offset ($): Mnemonic Parl Par2 Hexcode Opcode

0(0000): NOP D7 NOP

1(0001): NOP D7 NOP

2(0002): CLP 2 CR02 Call Local Procedure
4(0004): CXp 7 1 Cp0701 Call External Procedure
7(0007): RBP 0 C100 Return Base Procedure

PROC # ROOT-SEG LEX PARAMS DATA START OFFSET SIZE  $START $EXIT
2 CALLSAND 1 0 0 2 0 2 0400 0400
Offset ($): Mnemonic ©Parl Par2 Hexcode Opcode

0(0000): RNP v} ADOO Return Non—-Base Procedure

PROC # ROOT-SEG LEX PARAMS DATA START OFFSET SIZE  $START SEXIT
3 CALLSAND 1 0 0 2 24 8 0418 O41E

Offset ($): Mnemonic Parl Par2 Hexcode Opcode

0(0000): CLP 4 CED4 Call Local Procedure
2{(0002): OGP 3 Cro3 Call Global Procedure
4(0004): CGP 2 Cro2 Call Global Procedure
6(0006): RNP 0 ADOO Return Non-Base Procedure

PROC # ROOT-SEG LEX PARAMS DATA START OFFSET SIZE  $START SEXIT
4 CALLSAND 2 0 0 2 12 2 040C  040C

Offset ($): Mnemonic Parl Par2 Hexcode Opcode

0(0000): RNP 0 ADOO Return Non-Base Procedure
SEGMENT-NAME : B SEG NUM : 7
TOTAL PROCECURES : 2 SEG_NUM INDEX : 1
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Listing 4-21 {continued)

START OFFSET SIZE  $START S$EXIT
1 12 2 020C o020C

AD00 Return Non-Base Procedure

1 0 2 0200 0200

PROC # ROOTSEG LEX PARAMS DATA
1 B 1 0 0
Offset ($): Mnemonic Parl Par2 Hexcode Opcode
0(0000): RNP 0
FROC # ROOI-SEG LEX PARAMS DATA OFF
2 B 2 0 0
Offset ($): Mnemonic ©Parl Par?

0(0000): RNP 0

Hexcode Opcode

ADQO Return Non—-Base Procedure
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Listing 4-22

1 1 1:D 1 {$1 PRINTER:}
2 1 1:D 1 (**************************'k'k*************'k******************'k**)
3 1 1:D 1 (* *)
4 1 1:D 1 (* Listing 4.22: Function calls. *)
5 1 1:D 1 (* *)
6 1 1:D 1 (.........",.,...,...,...,.....,.....;.....,.,.....:....”.....,...n..,;:........,..".:.,...:.aﬁ
7 1 1:D 1
8 1 1:D 1 {$SR-}
9 1 1:D 1 program INVORING FUNCITIONS;
10 1 1:D
111 1:D 3 var I : integer;
12 1 1:D 4
13 1 2:D 3 function II:integer;
14 1 2:0 0 begin
15 1 2:0 0
6 1 2:1 0 II := 0;
17 1 2:1 3
18 1 2:0 3 end;
19 1 2:0 16
20 1 2:0 16
21 1 1:0 0 begin
22 1 1:0 0
23 1 1:1 0 I :=1I;
28 1 1:1 8
25 1 1:0 8 end.

SEGMENT- NAME : INVOKING SEG NOM : 1

TOTAL PROCEDURES : 2 SEG_NUM- INDEX : 0
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Listing 4-22 {continued)

PROC # ROOT-SEG LEX PARAMS DATA START OFFSET SIZE $START SEXIT
1 INVOKING 0 4 2 1 16 10 0210 0218
Offset ($): Mnemonic ©Parl Par2 Hexcode Opcode

0(0000): NOP D7 NOP

1(0001): NOP D7 NOP

2(0002): ©PUSH 0 00 Load Constant
3(0003): ©PUSH 0 00 Load Constant
4(0004): cCLP 2 CEO2 Call Tocal Procedure
6(0006): SRO 3 ABO3 Store Global Word
8(0008): RBP 0 C100 Return Base Procedure

PROC # ROOT-SEG LEX PARAMS DATA START OFFSET SIZE  $START S$EXIT
2 INVOKING 1 4 0 1 0 5 0200 0203
Offset ($): Mnemonic Parl Par2 Hexcode Opcode

0(0000) : PUsH ] 00 Load Constant
1(0001): STL 1 cCol Store Local Word
3(0003): RNP 1 ADO1 Return Non-Base Procedure

137




Listing 4-23 Pascal Program

PROGRAM TEST DISASSEMBLERS;
VAR I,J:INTEGER;

;SEr 1..15;

PROCEDURE TSTPROC; BEGIN END;
FUNCITON TSTFUNCT : INTEGER;
BEGIN TSTFUNCT := 0; END;

i d
E-

E;

H
N

[1'2 3,151;
T+Jd%55~(6.6/1);

FUDOWL
i i
:’1

IF (R<=I) THEN J := TRUNC(R);

UNTIL I <= 0;
FOR I := 0 T0 15 DO P [I] :=

;= TRUE;
= 'A';
{31 := RS.C;
= 1.1;
:= RS.A [3];

FALSE;
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Listing 4-24 Dump p-Code

DUMPOODE of file TEST.DIS.CODE

Segment: No: Size: Addr: SegKind: Text:
TESTDISA 0 0114 0001 LINKED

Dump of Segment Tale for segment 0
SegNo =1 Num Procs = 3
1: 010A 2;: 000A 3: 001A

Listing of disassembled code for segment 0

Begin Proc:

0000: AD 00 WP O
Data Segment Size: 0000
Parameter Size: 0000
Exit IC: 0000

Entry IC: 0000
Lex Level: 1, Procedure No.: 2

Begin Proc:
000C: 00 SocC 0
000D: ©C 01 STL 1l
000F: AD 01 RNP 1
Data Segment Size: 0000
Parameter Size: 0004
Exit IC: 000F
Entry IC: 000C
Lex Level: 1, Procedure No.: 3
in Proc:
001C: D7 NOP
001D: D7 NOP
001E: 00 SLIC
001F: AB 04 SRO
0021: EB SLDO
0022: AB O3 SRO
0024: 00 SIDC
0025: BAB 05 SRO
0027: 41 SLC
0028: AB 06 SRO
002&: A5 07 L
002C: B3 02 C
0032: BD 02 S™M
0034: C7 F2 7F LICI
0037: 91 NGI
0038: 01 SLDC
0039: A0 01 ADJ
003B: AB 09 SRO
L2O
SLDO
SLDO
e
FLO
MPR
FLO
ADR
c
SL.DO
FLT
DVR
SBR
S
L0

wn

MOV OWER O
-

w
0
3
ur
.

003D: A5 07
O003F:
0040:

of
s

PRI HES RSB HE

S8

s TZ,B0400000
0048:
0049:
004A:
004B:
004C:
0052:
0053:
0054:
0055
00562
0058:

8

2,D3403333
4
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Listing 4-24 (continued)

005A:
005C:
005D:
005E:
0060:
00622
0064:
00662
0068:
006A:
006B:
006C:
006D:
006F ¢
0070:
0071:
0072:
0074:
0076:
0077:
0079:
007A:
007C:
007D:
007F:
0080:
0082:
0084:
0086:
0088:
008E:
008F:
0091:
0092:
0093:
0094:
0096
0098:
0099:
009A:
0098:
009D:
009E:
009F:
00A0:
00A2:
00A3:
00A5:
0026
00AB:
0029:
00AB:
00AC:
00AE:
00B0:
[41):13
00R2:
00B3:
00B4:
00B7:
00B8:

B PSR SRS R BB R BB ARt R R E G S B ERPEE S BE SRR ERER

BI—‘OOOO o
SN oo N N

o
~1

mo
O

[« N3
S 8 ~1 ~J

28

(=]
e

F2
04
13
13

12
oA

10 01

&
>

ghwgwqow [ V)

2,233COAD7

W N

00Co
10

15

16,1
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Listing 4-24 (continued)

00B9: EB SIDO 4
00BA: 01 S 1
00BB: 82 ADI

00BC: AB 04 SRO 4
00BE: R9 FO wp =16
00C0: 00 S 0
00Cl: AB 0B SRO 11
00C3: A5 0C L20 12
00C5: 01 S 1
00C6: 00 garc 0
00C7: 01 s 1
00C8: BB STP

00C9: A5 0C L20 12
00CB: 08 S 8
00CC: 08 S 8
00CD: 41 SIDC 65
00CE: BB STP

00CF: A5 0D 20 13
0opl: 03 SLC 3
00D2: 00 SIDC O
00D3: 05 SIC 5
00D4: 88 CHK

00D5: A5 0C L0 12
00D7: 08 SnC 8
00D8: 08 SLC 8
00D9: BA Lop

00DA: BF STB

00DB: A5 11 LEO 17
00DD: B3 02 00 nc 2,8C3FCDCC
00E4: BD 02 S 2
00E6: A5 OD LAO 13
00E8: 03 SIC 3
00E9: 00 S 0
00EA: 05 S 5
00EB: 88 CHK

00EC: BE DB
00ED: AB 10 SRO 16
0CEF: CE 02 CcLp 2
00F1: 00 Sanc o0
00F2: 00 sLoC 0
00F3: CE 03 CLP 3
00FS5: AB 04 SRO 4
00F7: C1 00 RBP 0

JTAB[~16] = 00AS8

JIAB[-14] = 0098

JIAB[-12] = 007C

JTAB[-10] = 006A

Data Segment Size: 0022

Exit IC: 00F7

Entry IC: 001C

Lex Level: 0, Procedure No.: 1
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Listing 4-25 DECODE

SBEGMENT_NAME : TESTDISA SEG NOM : 1
TOTAL PROCEDURES 3 3 SBG_NUM_INDEX : 0

PROC # ROOT-SPG LEX PARAMS DATA START OFFSET SIZE  $START S$EXIT
1 TESTDISA 0 4 34 1 28 221 021C 02¥7
Offset ($): Mnemonic Parl Par2 Hexcode Opcode

0(0000): NOP D7 NOP
1(0001): NOP D7 NOP
2(0002): PUSH 0 00 Load Constant
3(0003): SRO 4 ABO4 Store Global Word
5(0005): SLDO 4 EB Load Global Word
6(0006): SRO 3 ABO3 Store Global Word
8(0008): PUSH 0 00 Load Constant
9(0009): SRO 5 ABOS Store Global Word
11(000B): PUSH 65 41 Load Constant
12(000C): SRO 6 AB06 Store Global Word
14(000E): LXO 7 AS07 Load Global Address
16(0010): IIC 2 16268 B3028C3F Load Multiple Constant
-13107 ance
22(0016): ©SM 2 BDO2 Store Multiple Word
24(0018): LDCI 32754 C7F27F Load Constant
27(001B): NGI 91 2-s Complement
28(001C): PUSH 1 0l Load Constant
29(001D): ADJ 1 ADOL Adjust Set
31(001F): SRO 9 AB09 Store Global Word
33{(0021): LAO 7 A507 Load Global Address
35(0023): SLDO 4 EB Load Global Word
36(0024): SLDO 3 EA Load Global Word
37(0025): LIC 2 16560 E302B040 Load Multiple Constant
0 0000
44(002C): FLO 89 Float (TOS) Integer —> Real
45(002D): MPR 90 Multiply Real
46(002E): FLO 89 Float (TOS) Integer —> Real
47(002F): ADR 83 Add Real
48(0030): LIC 2 16595 E302D340 Load Multiple Constant
13107 3333
54(0036): SLDO 4 EB Load Global Word
55(0037): FLT 8a Float (TOS-1) Integer -> Real
56(0038): DVR 87 Divide Real
57(0039): SBR 96 Subtract Real
58(003A): SM™ 2 BDO2 Store Multiple Word
60(003C): LAO 7 A507 Load Global Address
62(003E): LM 2 BC02 Load Multiple Word
64(0040): SLDO 4 EB Load Global Word
65(0041): FLT 8A Float (TOS-1) Integer -> Real
66(0042): LEQREAL 2 B402 Campare
68(0044): FJP 78 Al08 Jump If False
70(0046): LAO 7 A507 Load Global Address
72(0048): LM 2 BCO2 Load Multiple Word

142



Listi ng 4-25 (continued)

74(0042) ;
76(004C) ¢
78(004E) ¢
79(004F) ¢
80(0050) :
81(0051) :
83(0053) ¢
84(0054) :
85(0055) :
86(0056) :
88(0058) :
90 (0054) :
91 (005B) :
93(005D) »
94 (005E) =
96 (0060) =
7 (0061) :
99(0063) :
100(0064) :
102(0066) :
104(0068) :
106 (0062} :
108(006C) =

114(0072) :
115(0073) ;
117(0075) ¢
118(0076) :
119(0077) :
120(0078) =
122 (007A) ¢
124(007C) «
125(007D) =
126 (007E) ¢
127(007F) 2
129(0081) :
130(0082) :
131(0083) :
132(0084) ¢
134(0086) :
135(0087) :
137(0089) :
138(008a) ;
140(008C) ¢
141 (008D) :
143 (008F) :
144(0090) :
146(0092) :
14840094).z.
14540095} ¢
150(0096) :
151(0097) :
152(0098) :
155 (009B) =
156(009C) :
157(009D) =
158(009E) =
159(009F) :
160(00A0) :
162(00A2) ¢
164(0024) ¢

RND
SRO
SLDO
PUsH
LESI
FJP
SLDO
PUSH
ADI
SRO
UJP
PUSH
SRO
pUsH
SRO
SLDO
LDO
LEQI
FJP
LAO
LAD
LM

LDC

ADR
S™
SLDO
P
ADI
SRO
WP
SL.DO
PUsH
SBI
SRO
SLDO
PUSH
LEQT
FJP
PUSH
SRO
PUSH
SRO
SL.DO
LDO
LEQI
FJP
Lo

PUSH
PUSH
CHK
IXP
PUSH
STP
SLDO
PUsH
ADI
SRO
UJp
PUsH

N

9E17
ABO3
EB
0A
c9
A107
EB
01
82
ABO4
BIF6
00
ABO3
64
AB13
EA
A913
Cc8
Allé
A507
A507
BCO2
B302233C
0AD7

83

EDO2

8 ghb)

=

o ~J
VOwoome Ha

3

o
N~ o w

2 15395
-10486

[FERINY
B

01

e &w
8
&

=
N
(=W
&

[y
VELUNOS
=
g

164 All2
10 AS50A

0 00
15 OF
88
C01001
00
BB
EB
01
82
AB04
BOFQ
00

—
Qsah Ll
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Call Standard Procedure
Store Global Word
Load Global Word
Load Constant
Compare

Jump If False

Load Global Word
Load Constant

Add

Store Global Word
Unconditional Jump
Load Constant
Store Global Word

Trad Conctant
jEe -t

(O RS HIru=lgim

Store Global Word
Load Global Word

Load Global Word
Compare

Jump If False

Load Global Address
Load Global Address
Load Multiple Word
Load Multiple Constant

Add Real

Store Multiple Word
Load Global Word
Load Constant

Add

Store Global Word
Unconditional Jump
Load Global Word
Load Constant
Subtract

Store Global Word
Load Global Word
Load Constant
Compare

Jump If False

Load Constant
Store Global Word
Load Constant
Store Global Word
Load Global Word
Load Global Word
Compare

Jump If False

Load Global Address
Load Global Word
Load Constant

Load Constant
Range Check

Index Packed Array
Load Constant
Store Packed Field
Load Global Word
Load Constant

Add

Store Global Word
Unconditional Jump
Load Constant




Listing 4-25 (continued)

165(00A5) =
167 (00A7) :
169(00A9) =
170{00AA) :
171(C0AB) :
172(00AC) ¢
173 (00RD) :
175(00AF) :
176 (00B0) ¢
177(00B1) ¢
178(00B2) :
179(00B3) :
181(00B5) ¢
182{(00B6) :
183(00B7) :
184(00B8) :
185 (00B9) =
187(00BB) :
188(00BC) ¢
189(00ED) ¢
190 (00BE) =
191 (OO0BF) :
193(00C1) ¢

200(00C8) =
202(00CA) :
204(00CC) &
205 (00CD) =
206 (00CE) :
207 (00CF) ¢
208(00D0) :
209(00D1) :
211(00D3) :
213 (00D5) ¢
214(00D6) ¢
215(00D7) :
217(00D9) :
219(00DB) :

SRO
Lo
PUsH
PUSH
PUSH
STP
LAO
PUSH
s
s
STP
Lo
s
PUSH
PUSH
CHK
LXO
PUSH
PUsH
LoP
STB
Lo
c

S™
LD
PUSH
PUOSH
PUSH
CIK
1DB
SRO
CLp
PUsH
PUSH
cLp
SRO
RBP

OB WOoOOMMON

ABOB Store Global Word

R50C Load Global Address

01 Load Constant

00 Load Constant

0l Load Constant

BB Store Packed Field

A50C Load Global Address

08 Load Constant

08 Load Constant

41 Load Constant

BB Store Packed Field

AS0D Load Global Address

12} Load Constant

00 Load Constant

05 Load Constant

88 Range Check

AS0C Load Global Address

08 Load Constant

08 Load Constant

BA Load Packed Field

BF Store Byte

A511 Load Global Address

B3028C3F Load Multiple Constant
e

BDO2 Store Multiple Word

AS0D Load Global Address

m Load Constant

00 Load Constant

05 Load Constant

88 Range Check

BE Load Byte

AB10 Store Global Word

CEO2 Call Local Procedure

00 Load Constant

00 Load Constant

CEO3 Call Local Procedure

ABO4 Store Global Word

C100 Return Base Procedure

PROC # ROOT' SEG LEX PARAMS DATA START OFFSET SIZE  SSTART SEXIT
2 TESTDISA 1 0 0 1 0 2 0200 0200
Offset ($): Mnemonic Parl Par2 Hexcode Opcode
0(0000): RNP 0 ADOO Return Non-Base Procedure
PROC # ROOT SEG LEX PARAMS DATA START OFFSET SIZE  SSTART S$EXTIT
3 TESTDISA 1 4 0 1 12 5 020C  020F
Offset ($): Mnemonic Parl Par2 Hexcode  Opcode
0(0000): PUsH 0 00 Load Constant
1(0001): STIL 1 CCo1 Store Local Word
3(0003): RNP 1 ADO1 Return Non-Base Procedure
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Listing 4-26 Pascal Disk Utility (PDQ)

+PARMM 4

.DATA 34

JROC 1
00:D7 NOP
01:D7 NOP
02:00 SLoC 0
03:AB 04 SRO 4
05:EB SDO 4
06:AB 03 SRO 3
08:00 SLOC 0
09:AB 05 SRO 5
0B:41 SLDC 65
0C:AB 06 SRO 6
OE:A5 07 20 7
10:B3 02 LDC 2,
12: 8C 3F 16268
14: @ CC =13107
16:BD 02 SMM 2
18:C7 F2 7F LICI 32754
1B:91 NGI
1C:01 SLDC 1
1b:A0 01 ADJ 1
1F:AB 09 SRO 9
2i:a5 07 LA 7
23:E8 S0 4
24:EA SLDO 3
25:B3 02 1nc 2,
28: BO 40 16560
2a: 00 00 0
2C:89 FLO
2D:90 MPR
2E:89 F1O
2F:83 ADR
30:B3 02 IDC 2,
32: D3 4 16595
34: 33 33 13107
36:EB SLDO 4
37:8a FLT
38:87 DVR
39:96 SBR
3A:BD 02 S™M 2
3C:A5 07 LA 7
3E:BC 02 M 2
40:EB SLDO 4
41:8a FLT
44:A1 ** FJP Pl06
46:25 07 L0 7
48:BC 02 1M 2
4A:9E 17 TNC(P)
4C:AB 03 SRO 3
4E<EB P106 SLDO 4
4F:0A SLDC 10
50:C9 LESI
51:A1 ** FJP P118
53:EB SLDO 4
54:01 SIDC 1
55:82 ADI
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Listing 4-26 (continued)

56:AB 04
58:B9 F6
5A:00

5B:AB 03
5D:64

5E:AB 13
60:EA

61:A9 13
63:C8

64:A1 **
66:A5 07
68:A5 07
6A:BC 02
6C:B3 02

6E: 23 3C
70: OA D7

72:83
73:BD 02
T5:EA
76:01
77:82
78:AB 03
7A:B9 F4

7F:AB 04

83:C8
F2

.

BEEIEHESESE

04
13
13

*ok
0A

SeNS583EBIRE

WO WYY
U

98:C0 10

A0:AB 04
A2:B9 FO

0B
0C

01

P118

P24

P168

P192

STP

P106

100

P192

Pi68
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Listing 4-26 (continued)
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Section Two
Internal Operation of the p-Machine







T\
5

An Explanation of the
P-code Instructions

In this section the various p-codes will be described. Each p-code will be
discussed separately in a fashion not unlike that used by various manuals on
assembly language programming.

The Apple Pascal “p-Machine” (the hardware that the p-code interpreter
emulates) contains eight registers. These registers are:

SP:

IPC:

SEG:

JTAB:

Stack pointer. This is a pointer to the top of the evaluation stack. It
is used to pass parameters, return function values and as an operand
source for several of the p-Machine instructions. Data is pushed
onto the stack with the load instructions and popped off of the stack
with the store instructions. On the 6502 (and the Apple in partic-
ular) the 6502 stack pointer and the p-Machine stack pointer are
one and the same.

Interpreter program counter. This register points at the address of
the next p-Code instruction to be fetched. In the 6502, the IPC
register is maintained as a pair of zero page memory locations so
that p-codes and any data following the instructions is easily obtained
by using the indirect, post-indexed by Y addressing mode.

A pointer to the procedure dictionary of the segment to which the
currently executing procedure belongs. On the 6502 SEG is main-
tained as a pair of zero page memory locations.

A pointer to the jump table for the currently executing procedure.
This pointer is maintained as two zero page memory locations on
6502 versions of the p-Machine.

151



KP: Program stack pointer. This is a pointer to the top of the program
stack. Storage for variables, as well as space for any SEGMENT
PROCEDURES are allocated on the program stack. The program
stack starts in high memory and grows downward. On 6502 ver-
sions of the p-Machine, KP is maintained as a pair of zero page
memory locations.

MP: Markstack pointer. This is a pointer to the base of the activation
record for the currently executing procedure. Its value is always
greater than KP and the space between KP and MP is the number
of bytes allocated for local variables. On the 6502, MP is maintained

as a pair of zero page memory locations.

NP: New pointer. This is a pointer to the p-Machine heap. The p-Machine
heap starts in low memory and grows upward. The heap is where
all dynamic variables are maintained. Dynamic variables are allo-
cated with the NEW procedure and de-allocated with the RELEASE
procedure. The heap is also used to allocate storage for user hard-
ware drivers using the ATTACH.BIOS routines. On the Apple I,
NP is maintained as a pair of zero page memory locations.

BASE: This is a pointer to the activation record of the most recently invoked
base procedure. A base procedure is a main procedure such as the
main program in a program listing or the latest invokation of a
UNIT. Global variables are accessed by indexing off of the BASE
register. BASE is maintained as a pair of zero page memory locations
on the Apple II.

For a complete description of how these registers are used and how the p-
Machine operates you should consult Appendix B of the Apple Pascal Oper-
ating System Reference Manual. Be ye forewarned, this material is not easy
reading for someone who isn’t well-versed in compiler theory and in fact it
probably won’t make sense at all. An understanding of how the p-Machine
actually operates (in terms of variable allocation, procedure calls, et al.) is
not required to understand how the individual p-codes function, so a “human-
engineered” description of the operation of the p-Machine will not be pre-
sented here. That, alas, will be delegated to a future manual.

Instruction Formats
All of the p-code instructions consist of a one-byte opcode followed by zero,

one, two, or more bytes. In general, parameters to an instruction take one
of five forms. They are:
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SB:

DB:

Unsigned byte. This type of parameter is a single byte that contains
a value in the range 0..255.

Signed byte. This type of parameter is a single byte that is used to
represent values in the range —128..127. The value is stored in the
standard two’s complement format with bit #7 being used as the
sign bit.

Identical to UB except the value is always in the range 0..127.

Big parameter. This is a variable length parameter that is one byte
long if it is being used to represent values in the range 0..127 and
two bytes long if it is being used to represent values in the range
128..32767. If an instruction uses a parameter of this type the length
of the B parameter is determined by looking at the first byte. If bit
#7 1s clear, then this parameter is a single byte representing a value
in the range 0..127. If the high order bit (bit #7) is set, then the
parameter is two bytes long. The high order bit of the first byte is
cleared and this byte is used as the high order byte of the resulting
parameter. The second byte of the parameter is used as the low order
byte of the parameter value.

Examples:
$01  — treated as the value $01
$7F  — treated as the value $7F

$8100 — treated as the value $100
SFFFF — treated as the value $7FFF

Exceptions to these parameter types will be noted where applicable.

It will be assumed (as previously mentioned) that the reader is somewhat
familiar with the operation of a stack-architecture machine. In particular it
is assumed that the reader understands such terms as stack frames; activation
records; static and dynamic links; and local, global, and intermediate vari-
ables. The author apologizes for not attempting to describe these concepts,
but such a discussion would require more space than the rest of the manual
takes up!
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Constant (Immediate) Loads

Syntax: SLDC UB (UB is a constant in the range 0..127)
Opcode:  00-127 ($00-87F)
Operation: Push opcode onto stack

The SLDC instruction (Short LoaD Constant) is used to load values in the
range 0..127 onto the evaluation stack. The SLDC instruction is exactly
one byte long. The high order bit of the instruction is zero and the low
order seven bits contain the data to be pushed onto the p-Machine evalu-
ation stack. Since only 16-bit words may be pushed onto the evaluation
stack, this instruction pushes two bytes; the low order byte being pushed
is the opcode itself, the high order byte pushed is a zero.

The purpose of the SLDC instruction is to help reduce the size of the Pascal
operating system. By performing a static analysis of the system the folks at
UCSD determined that the constants used most often were in the range
0..127 (this also corresponds, strangely enough, to the ASCII character
set). Normal load immediate instructions require three bytes—one for the
opcode and two for the data to be pushed. By using this special form of the
load constant instruction, the Apple Pascal compiler is able to save two
bytes every time a constant in the range 0..127 is used. (Historical note:
As it turns out, the SLDC opcode has been severely restricted in the version
IV.0 of the UCSD Pascal system. The folks at Softech Microsystems have
completely redone the p-code interpreter and the new SLDC instruction
only loads the values in the range 0..31. The 96 opcodes freed up were used
to optimize other operations in the UCSD p-machine. This information,
however, only applies to the version IV.0 of the UCSD Pascal system, it
does not apply to the Apple Pascal system).
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SLDC UB OPERATION:

1. BEFORE
MP —
IPC — SLDC UB
SP —
CODE STACK ACTIVATION RECORD
2. ACTION
IPC— SLDC UB TP uB
CODE STACK
COPY OPCODE ONTO
TOP OF STACK
3. AFTER
MP —
SLDC UB
PC —
uB
SP —
|
CODE STACK ACTIVATION RECORD
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Syntax: LDCN
Opcode: 159 ($9F)
Operation: Push NIL (zero) onto the stack

LDCN (load constant nil) is a single byte instruction that pushes zero onto

the 6502 stack. This instruction is emitted by the Apple Pascal compiler
whenever you set a pointer to NIL.
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1. BEFORE

IPC -

LDCN

CODE

2. ACTION

3. AFTER

LDCN

PC —

CODE

LDCN OPERATION:

SP -
STACK
|
SP - i 00
STACK

MP —

ACTIVATION RECORD

PUSH A ZERO WORD ONTO THE STACK

00

SP —

STACK

157

MP —

ACTIVATION RECORD



Syntax: LDCI W (W is a value in the range —32768..32767)
Opcode: 199 ($C7)
Operation: Pushes the one-word value W onto the stack

LDCI (load constant immediate) pushes the one-word constant that follows
the opcode onto the stack. This instruction is used to load constants that
are greater than 127 onto the cvaluation stack. The LDCI instruction is
three bytes long — one byte for the opcode followed by two bytes of
immediate data.
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1. BEFORE

IPC — LDCI

CODE
2. ACTION

IPC — LDC

Rl

CODE
3. AFTER

LDC!

P W - -

IPC —

CODE

LDCI \/ OPERATION:

THREE
BYTES
STACK
W
STACK
w
SP —

STACK

159

<SP

ACTIVATION RECORD

COPY "W"” PARAMETER
ONTO THE TOP OF STACK

MP —

ACTIVATION RECORD



Local Loads and Stores

Syntax: SLDL n (n is in the range 1..16)
Opcode:  216..231 ($D8..$E7)
Operation: Loads a local variable onto the evaluation stack

The SLDL (Short LoaD Local) instruction is used to load a local variable
onto the stack. The SLDL 1 instruction loads the first word of local storage
onto the stack, the SLDL 2 instruction loads the second word of local
storage onto the stack, etc. The SLDL instruction is one byte long with
sixteen different opcodes being used for each local load instruction. The
SLDL instruction was designed to help reduce the amount of code gener-
ated by the Apple Pascal compiler. The first 16 (or so) variables in a pro-
cedure or function will be loaded from memory using this instruction, so
scalar variables you use often should be declared as one of the first 16 defined
variables.

How the SLDL Instruction Works

Whenever an SLDL instruction is executed the variable number (in the
range (1..16) is doubled and this value is subtracted from the MP register
to obtain the address of the variable to be loaded. The two bytes pointed
at by this address calculation are pushed onto the evaluation stack.
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1. BEFORE

IPC —

SIDL n

CODE

2. ACTION

IPC >

SLDL n

CODE

3. AFTER

SLDLn

IPC -

CODE

SLDL n OPERATION:

MP —

STACK ACTIVATION RECORD

MP —

f

COPY WORD FROM LOCATION
MP — (n*2) ONTO THE STACK

SP > NTH VARIABLE

STACK ACTIVATION RECORD

MP —

)

élST 16

)

STACK ACTIVATION RECORD

nTH VARIABLE

SP —
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Syntax: LDL B
Opcode: 202 ($CA)
Operation: Load a local variable onto the evaluation stack

Loads a local variable onto the evaluation stack. The LDL instruction is the
long form of the SLDL instruction. It pushes scalar variables onto the stack
that have an offset of 17..32767 words from the current activation record.

LDL is a variable-length instruction. If it is pushing a variable with a word
offset in the range 17..127 the LDL instruction is two bytes long with the
second byte containing the word offset. If the LDL instruction is being
used to push a variable with an offset in the range 128..32767 then the
instruction is three bytes long with the word offset occupying the second
two bytes (see the description of the “B” type parameter). Once the B
parameter is fetched, it is multiplied by two and this value is then subtracted
from the value in the MP register. The resulting difference is the address in
memory of the variable in question. The two bytes pointed at by this
address are pushed onto the evaluation stack.
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1. BEFORE

PC —

LOL

e — — B — - — —f

PC —

LDL

=== B ~ ==

3. AFTER

LDL

-————B————'

iPC —

CODE

LDL B OPERATION:

SP

SP

SP

MP —
e
STACK ACTIVATION RECORD
MP — /
) N — 4
\ \
MP — (B*2)
COPY WORD AT ADDRESS MP — (B*2) ONTO TOP OF STACK
MP —
VALUE
—
STACK ACTIVATION RECORD
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Syntax: LLAB
Opcode: 198 ($C6)
Operation: Loads the address of a local variable onto stack

LLA (Load Local Address) loads the address of a local variable (as opposed
to the actual data stored at that address) onto the evaluation stack. LLA s
used when assigning pointer variables and when you are passing parameters
by reference. Like the LDL instruction, LLA is a variable length instruction.
It is two bytes long if you are pushing the address of a scalar with offset
0..127 and three bytes long if you are pushing the address of a scalar with
word offset 128..32767.

The operation of the LLA instruction is similar to that of LDL—only
simpler. After fetching the instruction operand (one or two bytes, sce the
description of “B” type parameters) the LLA instruction subtracts the opet-
and value from the value contained in the MP register and pushes the
difference. This difference is the address of the desired local variable.
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1. BEFORE

IPC —

LLA

e = — =B == — -

CODE

2. ACTION

IPC —

LLA

g g

3. AFTER

!
|
i
i

PUSH THE VALUE (MP — (B*2) ONTO THE STACK

PC —

CODE

LLA B OPERATION:

SP

SP

SP

— '

—

STACK

MP - (B*2}

MP - (2*B)

i

STACK
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MP

MP

MP

-

ACTIVATION RECORD

ACTIVATION RECORD



Syntax: STL B
Opcode: 204 ($CC)
Operation: Store top-of-stack (TOS) into a local variable

This instruction is the inverse operation to the LDL instruction. It pops a
word off of the evaluation stack and stores it at the word offset specified in
the operand. As with any instruction having a “B” type parameter, the STL
instruction is a variable length instruction requiring two bytes when storing
into a variable with an offset of 0..127 and requiring two bytes when storing
in a variable with an offset in the range 128..32767.

The operand (which is a word-offset) is converted to a byte offset (by
multiplying it by two), this value is subtracted from the value in the MP
register and then the value on the top of the evaluation stack is stored at
the resultant address. Note that there is no “Short Store Local” instruction.
Loading data occurs much more frequently than does storing data so a
special case was made for the load local instruction. No such speciai case
was created for the store instruction.
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STL B OPERATION:

1. BEFORE
IPC — STL SP — VALUE MP —
bp—— - p - -~ Ve
//
’___/
am—
XK “"‘_\
CODE STACK ACTIVATION RECORD l
MP — (B*2]
2. ACTION
iPC — STL SP — VALUE \ MP —
— //
S |
—
VALUE }\
MP — (2*B)
POP TOP OF STACK AND STORE INTO LOCATION MP — (2*B) I
3. AFTER
SP —
S ‘ | MP —|  VAE |
IPC —
e
g
CODE STACK ACTIVATION RECORD

167



Global Loads and Stores

Syntax: SLDO n (n is in the range 1..16)
Opcode:  232..247 ($E8..$F7)
Operation: Loads a global variable with offset n onto the stack

The SLDO instruction is similar to SLDL instruction except that it loads
global variables instead of local variables onto the evaluation stack. Global
variables are those which were declared in the main program (or unit) of
the currently executing program.

The SLDO instruction extracts the offset n from the opcode, multiplies this
value by two, and subtracts the doubled offset from the BASE register to
obtain the address of the desired variable. The SLDO instruction is one
byte long. Hence there are 16 different SLDO instructions required to
provide access to the first 16 words of global storage.
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1. BEFORE

PC —

SIDOn

CODE

2. ACTION

IPC —

SLDO n

3. AFTER

PC —>

SIPON.

CODE

SLDO n OPERATION:

SP

SP

SP

—

-

TOS

STACK

TOS

VALUE

VALUE

STACK

169

BASE—»

ACTIVATION RECORD
OF BASE PROCEDURE

BASE—
BASE i
—(2*n) ¥ VALUE

= BASE
BASE PROCEDURE

ACTIVATION RECORD



Syntax: LDO B
Opcode: 169 ($A9)
Operation: Load a global word

LDO (Load global word) is the long version of the SLDO instruction. It
loads the word with the specified offset from the BASE register and pushes
it onto the stack.

The LDO instruction is two bytes long when loading one of the first 128
words of global storage; it is three bytes long if a variable located beyond
the 128th word of storage is loaded. As with any word offset, the “B”
parameter is multiplied by two to obtain a byte offset. This byte offset is
then subtracted from the BASE register to obtain the address of the word
to be loaded.
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1. BEFORE
PC — LDO
e — = B — — —
CODE
2. ACTION
IPC — DO
f——— = B == = =
3. AFTER
Lo
— . — B _—— = —
PC —
i CODE

LDO B OPERATION:

SP

SP

SP

-

—

TOS

STACK

708

VALUE

VALUE

STACK

171

BASE —

BASE PROCEDURE
ACTIVATION RECORD

BASE —

\ |

_—

VALUE

BASE—|

BASE PROCEDURE
ACTIVATION RECORD

BASE
— (2*B)



Syntax: LAOB
Opcode: 165 ($AS5)
Operation: Load Global address of variable specified

The LAO instruction pushes the address (as opposed to the data stored at
an address) of the global variable specified. Its operation is similar to the
LLA instruction except that the offset is subtracted from the BASE register
instead of the MP register. The LAO instruction is used when passing global
variables by reference to a procedure or function.
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1. BEFORE
IPC — LAO
..... |- pp—
CODE
2. ACTION
iPC — LAO
--—=B — — — -
3. AFTER
MO
L — - —— —
PC —
CODE

LAO B OPERATION:

SP

SP

SP

—

TOS

-

-

STACK

708

BASE — (2*B)

BASE - {2*B)

STACK
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BASE =

BASE PROCEDURE
ACTIVATION RECORD

BASE —

BASE PROCEDURE
ACTIVATION RECORD



Syntax: SRO B
Opcode: 171 ($AB)
Operation: Stores TOS (top-of-stack at specified global offset)

SRO (store global word) stores the data on the top of the evaluation stack
into the global variable whose offset is specified after the opcode. This
instruction is two bytes long if used to store data into a scalar variable with
an offset of 127 or less. It is three bytes long if it is used to store data into
a global variable with a word offset greater than 127.
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SRO B OPERATION:

1. BEFORE
IPC — SRO NOS BASE -
-~~~ B ~=-- SP - TOS
CODE STACK BASE PROCEDURE
ACTIVATION RECORD
2. ACTION
BASE —
v
IPC — SRO NOS _“ g
—— ¥ L
—
\\ o8 ‘_BASE
— (2*B)
3. AFTER
BASE -~
.~
SRO- SP — -NQS ‘ ‘ ,/
|
F=-—=-B=== /
IPC — /1
__BASE
TOS 28|
CODE STACK BASE PROCEDURE

ACTIVATION RECORD
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Intermediate Loads and Stores

Syntax: LOD DB,B
Opcode: 182 ($B6)
Operation: Load intermediate variable

The LOD instruction is used to load intermediate variables onto the top of
the stack. An intermediate variable is one that is global to the currently
executing procedure, but is not a global variable in the sense that it was
defined in the main program. For example, consider the Pascal program

segment:

PROGRAM MAIN}
VAR I:INTEGER{

PROCEDURE INTERMEDS
VAR J:INTEGER?

PROCEDURE LOCAL}
VAR K:INTEGER
BEGIN

WRITELNCI+* “9Jyf
END

BEGIN

+

END3;

BEGIN

+

+

END.

9K} §

Within the procedure LOCAL variable I would be accessed using the LDO
instruction, K would be accessed using the LDL instruction, and ] would

be accessed using the LOD instruction.

176



LOD is a little different from the local and global loads in that it requires
two parameters instead of just one. The DB operand is used to tell the p-
machine how many static links you must traverse in order to find the address
from which you apply the B offset. A static link is a pointer to the activation
record of the parent of the currently executing procedure. In the example
above the procedure LOCAL has a static link that points to the procedure
INTERMED and INTERMED has a static link that points to the activation
record for MAIN.

The LOD instruction can be used to access variables in as many as 128
nested procedures. The MP register points at the activation record of the
parent of the currently executing procedure. The address of this location is
used as the temporary MP value. DB is decremented by one. If the new
value of DB is zero, then the B operand is multiplied by two and subtracted
from the temporary MP value in order to obtain the address of the variable
in question. If DB is not zero, this process is repeated except the temporary
MP value is used instead of the value in the MP register to find the next
link.
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[Link 3 - 2%B] points here

N Lim3"—Llrk 2 points here
v
7

—— |_1NK 2
i 11101 | i 1 poiNtS heETE

pd

‘)"—"MP points here

Figure 5-1
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This is an example of how a LOD 3,2 instruction would be handled. Three
times a link is obtained and used to point at the activation record of the
parent procedure (the first time the link address is obtained from the MP
register). LINK3 points to the activation record of the procedure in which
we wish to access the second variable. B (in this case, 2) is multiplied by
two to obtain a byte offset which is then subtracted from LINK3 to obtain
the address of the low-order byte of the variable to be loaded onto the
evaluation stack. The high order byte of the variable (the next sequential
memory location after the low-order byte) is pushed onto the evaluation

stack and then the low-order byte is pushed onto the evaluation stack.
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Syntax: LDA DB,B
Opcode: 178 ($B2)
Operation: Loads the address of an intermediate variable

LDA (load intermediate address) is intermediate version of LLA and LAO.
It pushes the address of the intermediate variable, as opposed to the value
at that address, onto the evaluation stack. The address is calculated traversing
DB static links and subtracting 2*B from the address of the target activation
record.
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LDA DB,B OPERATION:

1. BEFORE A
b,
—
T
PC — LDA LINK P
DB SP — TOS
o cmn —— a B —— — ]
MP —
LINK =
CODE STACK ACTIVATION RECORD
2. ACTION |
THIS ADDRESS "
MINUS 2*B -
IPC — LDA IS PUSHED T'——/
DB 4
A P P | ADDRESS .4__]
MP — —l
CODE STACK ACTIVATION RECORD
3. AFTER
! DA ..
OB ADDRESS
SP —
MP —
bare ot — _B — —— —
IPC —
CODE | STACK ACTIVATION RECORD
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Syntax: STR DB,B
Opcode: 184 ($B8)
Operation: Store data into an intermediate variable

The value on the top of the evaluation stack is popped and stored at the

specified offset after traversing DB static links (see LOD for a discussion of
static traversals).
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STR DB,B OPERATION:

1. BEFORE
r— 1
—(2*B)
IPC — STR NOS Lo
DB VALUE "r[ LINKS
SP — +—
L - c= B === ==
MP —
CODE STACK ACTIVATION RECORD
1
2. ACTION ADDRESS -
- (2*B)
IPC — STR VALUE
DB NOS % I
_____ eo__ | P> VALUE /r
MP -
CODE STACK ACTIVATION RECORD
3. AFTER
VALUE
STR P —> NOS P s -
DB -
e = = B — ~ = -
IPC — ‘]
MP —
CODE STACK ACTIVATION RECORD
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Indirect Loads and Stores

Syntax: SIND n (n must be in the range 0..7)
Opcode: 248 +n ($F8+n)
Operation: Load word indirect, indexed

The SIND instructions assume that the top of stack (TOS) points to some
data structure. SINDO replaces TOS with the word pointed at by TOS.
SINDI1 replaces TOS with the word pointed at by (TOS +2). SIND2 replaces
TOS with the word pointed at by (TOS+4). Similarly, SINDn replaces
TOS with the word pointed at by (TOS+ 2*n).

The SINDn instruction is used to access elements of a multi-word structure
such as a record. SIND is the short form of the IND instruction to be
described next. By defining often-accessed fields of a record as one of the
first eight words of the record you can optimize record accesses since the
SINDn instruction wiil be used in piace of the longer and siower IND
instruction.

SINDO is a special case of the SINDn instruction. It is used to load a word
indirectly and finds many uses beyond that of the record element access.
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1. BEFORE
IPC — SIND n
CODE
2. ACTION
IPC — SIND n
CODE
3. AFTER
- SIND n
IPC —
: CODE

SIND n OPERATION:

TOS + 2*n
POINTS
HERE
SP — 105 =TT > VALUE
STACK MEMORY
TOS + 2n
POINTS
HERE
{
e VALUE
N T e
STACK MEMORY
, ; VALLE
SP — ;
i
|
STACK i MEMORY
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Syntax: IND B
Opcode: 163 ($A3)
Operation: Indirect indexed load

IND is the more general form of the SINDn instruction. The B operand is
multiplied by two and added to TOS. TOS is then replaced by the word
pointed at by TOS.

IND is used to access elements of a record beyond the seventh word of data

in the record. Note that B is a static index. That is, it cannot be changed
during the execution of a program.
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1. BEFORE
IPC — IND
—— - a— B —e e
CODE
2. ACTION
1PC -; IND
bo—-=B —— —o
CODE
3. AFTER
IND
e e B e ——ml
IPC —
CODE ‘

SP

SP

SP

IND B OPERATION:

|
|
TOS + (2*B)
L
/ VALUE
&S
©
ST 2
STACK MEMORY
TOS + (2*B)
\ A VALUE
VALUE
—?
STACK MEMORY
VALUE
N VALUE
STACK MEMORY
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Syntax: STO
Opcode: 154 ($9A)
Operation: Store data indirect

STO stores the data on TOS at the location specified by the word at NOS
(next-on-stack). TOS is popped and saved at the address pointed at by the
new TOS. Two words are popped off of the stack during the execution of
the STO instruction. STO is used for storing data into arrays, records,
parameters that were passed by reference, pointers, and other variables where
the actual location isn’t known at compile-time.
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1. BEFORE

IPC —

STO

CODE

2. ACTION

PC —

STO

CODE

3. AFTER

STO

IPC —

CODE

STO OPERATION:

NOS

TOS

SP —
STACK
NOS
P — TOS
STACK
SP —
NOS
TOS
' STACK

189

NOS
POINTS
HERE
’,V
MEMORY
NOS
POINTS
HERE
PP TOS
MEMORY
TOS
MEMORY




Extended Loads and Stores

Syntax: LDE UB,B
Opcode: 157 ($9D)
Operation: Load an extended word from intrinsic unit

LDE is used to load data from the global data segment of a segment pro-
cedure. UB is the data segment from which the data is to be loaded and B
is the offset into that data segment where the word to be loaded can be
found. The LDE instruction allows short, fast access to variables defined in
the outer shell of intrinsic units.
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LDE UB,B OPERATION:

1. BEFORE —> (SEG TBL ENTRY -2*B]
|
— | L. VALUE
IPC— LDE
uUB
T B =7 CEGMENT TABLE
SP — T0S
CODE STACK
MEMORY
2. ACTION (SEG TBL ENTRY — 2*B)
| I—N/j VALUE
/)
IPC— LDE /
UB SEGMENT TABLE /
- —==--- B - - 4’—]
TOS
P - VALUE /
CODE STACK MEMORY
3. AFTER
VALUE
SEGMENT TABLE
w . ADE L . ]
uB
P e - B - = -
VALUE
IPC— P —
CODE STACK MEMORY
|
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Syntax:  LAE UB,B
Opcode: 167 ($A7)
Operation: Pushes address of extended word onto stack

LAE is used to load the address of the word with offset B in global data
segment UB. As with the LDE instruction, LAE is used to access global
variables within an intrinsic unit.
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LAE UB,B OPERATION:

1. BEFORE
i VALUE
— (VALUE — 2*B)
IPC — LAE
uB
b —= B —— — SEGMENT TABLE
SP — TOS
CODE \ STACK
2. ACTION
VALUE ‘*—]
(VALUE — 2*B) —
iPC — LAE -
uB SEGMENT TABLE
hkeaoea B ===
TOS
SP —|  VALUE- (2*B) -
1
3. AFTER
SEGMENT TABLE
N _LAE
uB
L - B == - — < VALUE — (2*B)
_9
IPC —
CODE STACK
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Syntax: STE UB,B
Opcode: 209 ($D1)
Operation: Store extended word

STE is used to store data into a word in an intrisic unit’s global variable

area. UB is the data segment number, B is the word offset into the data
segment where the word is to be stored.
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STE UB,B OPERATION:

1. BEFORE (VALUE — 2*B})
e A |
PC — UB e VALUE b
— = = B = = =
SEGMENT TABLE
NOS
SP — TOS
CODE STACK MEMORY
(VALUE - 2*B|
2. ACTION L]
>y, TOS
VALUE //
IPC — STE SEGMENT TABLE |
us [
— - -8
NOS
CODE STACK MEMORY
3. AFTER
TOS
SEGMENT TABLE
STE ]
uB
poe = — =B — — 4
IPC — SP — NOS
TOS
CODE STACK MEMORY
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Multiple-Word Loads and Stores (Reals and Sets)

Syntax: LDC UB,<block>
Opcode: 179 ($B3)
Operation: Push <block> of words onto the stack

LDC is used to push a block of words (i.e., more than two) onto the
evaluation stack. It is used primarily to load real constants and set constants
onto the stack. UB is the number of words to push on the evaluation stack,
<block> is a block of UB words that follows the opcode. After the <block>
is pushed onto the stack the IPC is incremented past <block>.
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1. BEFORE

IPC—

LDC

uB

DATA

}

CODE

2. ACTION

IPC —>

LDC

uB

DATA

CODE

3. AFTER

LDC

UBL

DATA

IPC—

CODE

-

SP—

TOS

BLOCK OF
UB WORDS

STACK

TOS

DATA

—“
-
-

STACK

PREV. TOS

DATA

SP —

STACK

197

LY

)

LDC UB,<BLOCK> OPERATION:

COPY BLOCK
OF UB WORDS
ONTO STACK



Syntax: LDM UB
Opcode: 188 ($BC)
Operation: Load multiple words

LDM pushes a block of UB words where the address of the block is stored
on TOS. LDM is used to load real and set variables onto the evaluation
stack. Since the address of the variable must be on TOS, some calculations
must be performed in order to place the address of the variable on the TOS.
At the bare minimum, an LLA instruction (at least two bytes) must be
executed before LDM can be executed. So to load a real or set variable at
least four bytes are required. For this reason you should never declare a real
or set variable as one of the first 16 variables declared. The first 16 words
of storage should be reserved specifically for scalar variables since they can
take advantage of the shorter SLDO and SLDL load instructions.
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1. BEFORE

IPC — LDM

uB

2. ACTION

PC —

CODE
3. AFTER

MRALLT S

uB

IPC —

CODE

LDM UB OPERATION:

SP

SP

STRUCTURE

-

—

s
. /\k }%
QO
w
MEMORY
COPY UB WORDS
POINTED AT BY
TOS ONTO TOS
AN
p AN g
- T T = T -7 V\ 2
- 2
STACK MEMORY
e - - . ———
0%
0
(V]
| STACK MEMORY
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Syntax: STM UB
Opcode: 189 ($BD)
Operation: Store a block of words

STM is used to store a block of UB words. TOS is a block of UB words,
it is stored at the location specified on the stack after popping off all the
words to be stored. STM is used to store real and set values into their

corresponding variables.
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1. BEFORE
iPC — STM
;]
CODE
2. ACTION
IPC— STM
uB
CODE
3. AFTER
STM
UB
IPC—
CODE

STM UB OPERATION:

SpP

SP

-

-

POINTER | N
UB WORDS
STACK MEMORY
POINTER S
s WO
UB WORDS \3? 0>
9;-/ -7
STACK MEMORY
UB WORDS
STACK MEMORY
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Byte Array Handling

Syntax: LDB
Opcode: 190 ($BE)
Operation: Load byte

LDB is used to load data from a byte array (such as a packed array of
CHAR). TOS contains an index into the array (a byte index) and TOS -1
contains a pointer to the base address of the byte array. TOS is popped and
added to TOS — 1. The byte pointed at by this new pointer replaces TOS —1.
Since data pushed onto the stack must be 16 bits wide, the byte pushed is
zero extended to 16 bits before being pushed.

202



1. BEFORE
IPC — LDB
CODE
2. ACTION
IPC— LDB
CODE
3. AFTER
DB
IPC—
CODE

SP

SP

SP

—

_—*H

LDB OPERATION:

BASE
INDEX VALUE +—BASE
+
INDEX
STACK MEMORY
:
POINTER  F— VALUE __ |—BASE
INDEX ' +
INDEX
STACK MEMORY
VALUE
STACK | MEMORY
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Syntax: STB
Opcode: 191 ($BF)
Operation: Store TOS into a byte array

STB is used to store a byte into a byte array. STB stores the low-order byte
of TOS into the array pointed at by TOS —2 after adding the index at
TOS — 1. The high-order byte of TOS is ignored (although it is usually
zero). After the completion of this instruction the SP register is cut back
by six (for three words).
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1. BEFORE
IPC — STB
CODE
2. ACTION
IPC — STB
CODE
3. AFTER
STB
IPC —
CODE

SP

(%]
O

SP

STB OPERATION:

—

BASE

INDEX

VALUE

STACK

BASE

INDEX

VALUE

-

STACK

STACK
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MEMORY
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String Handling Instructions

Syntax: LSA UB,‘Chars’
Opcode: 166 ($A6)
Operation: Load string address

LSA is used to push the address of a string constant onto the evaluation
stack. UB is the number of characters in the string, it is followed by a block
of UB bytes. The LSA instruction pushes a pointer to the byte in memory
containing the UB. Since strings in Pascal consist of a length byte followed
by a group of characters, the data following the UB opcode is a valid Pascal
string. Once the pointer to the string is pushed, the value (UB +2) is added
to the IPC register so that execution continues with the next opcode after
the last character in the string.
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1. BEFORE

IPC—| 1A

us

STRING

CODE

2. ACTION

IPC—

us

STRING

CODE
3. AFTER

uB

STRING

IPC —

CODE

SP

(31A9 SIHL
40 ss3y¥yaav)

SP

-

STACK

ADRS

STACK

ADDRESS OF
UB BYTE

STACK
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ADRS:=IPC+1;



Syntax: SAS UB
Opcode: 170 ($AA)
Operation: String assignment

SAS is used to assign one string to another. TOS is either a pointer to the
source string or a single character. The differentiation is made by looking
at the high order byte. If it is zero, then a single character is to be stored
into the destination string. If the high-order byte of TOS is not zero, then
TOS is a pointer to the string to be copied into the destination string. String
pointers can never have a high order byte of zero since that would imply
that the string is stored in page zero; and that never happens on the Apple.

TOS — 1 is a pointer to the destination string. UB is the maximum declared
length of the destination string. If the string pointed at by TOS is larger
than UB characters a run-time execution error is given. If UB is greater
than or equal to the current size of the string pointed at by TOS, the string
pointed at by TOS is copied to the string pointed at by TOS—1. Since a

string cannot be declared with a length less than one, a single character on
TOS never generates an error.

After the execution of the SAS instruction the stack is popped by two words
removing the two pointers on the TOS.
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1. BEFORE
IPC—| SAS
UB
CODE

2a. ACTION IF A SINGLE CHARACTER

IPC—

SAS

uB

2b. ACTION IF A STRING POINTER

CODE

SAS UB OPERATION:

SP

SP

IPC— SAS
uB SP
CODE
3. AFTER \
SP
SAS
us
IPC—
CODE

DESTINATION o

' DESTINATION STRING

209

POINTER
POINTER OR CHAR ﬁ-*F‘
PO STRING
INTER
STACK MEMORY
POINTER
TO
DEST PTR STR > 1
CHAR o > CHAR
ﬁ
STACK MEMORY
l TON
ST\NA
DE\:"O\NTER L
DEST PTR o DESTINATION STRING
N SRCPTR & =
URCET SOURCE STRING
P Cr
O//VTE/?
STACK MEMORY
SOURCE STRING
IS COPIED TO
DESTINATION STRING
—_
DEST STRING “\
SRC  STRING ,/
STACK MEMORY




Syntax: IXS
Opcode: 155 ($9B)
Operation: Index string array

IXS is used to create a pointer to a byte within a string. TOS contains an
index into a string that is pointed at by TOS — 1. TOS is compared to the
byte pointed at by TOS — 1. If TOS is greater than the byte pointed at by
TOS (which is the current length of the string pointed at by TOS) then an
execution error 1s given. If TOS is less than or equal to the byte pointed at
by TOS—1 then IXS simply leaves everything on the stack.
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1. BEFORE

iPC—

IXS

CODE

2. ACTION

IPC—

XS

CODE

3. AFTER

IXS

IPC—

CODE

IXS OPERATION:

SP

SP

BASE
INDEX
—_
STACK
BASE - +__‘I

INDEX oI
STACK
BASE -

- e + I
INDEX TS
STACK

211




Record and Array Handling Instructions

Syntax: MOV B
Opcode: 168 ($A8)
Operation: Move a block of words

MOV transfers a block of B words pointed at by TOS to a similar block of
words pointed at by TOS — 1. MOV is used whenever a whole record or
array is assigned to a similar variable. After the execution of the MOV
instruction TOS and TOS —~ 1 are popped off of the stack.
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MOV B OPERATION.:

sadom 4

SQIOM g

|

1. BEFORE
¥ DESTINATION |}
BLOCK }
Peo wor N
SOURCE POINTER
b-- «B-=--=2 SP —
. SOURCE
* BLOCK
CODE STACK EORY
2. ACTION
DESTINATION
BLOCK
.
U 3
IPC— MOV DESTNATON | 5=
o<
SP —{ SOURCE POINTER |2y
- B-——- >URU
S5919
umQom
SOURCE
BLOCK
CODE STACK
3. AFTER
SP — DESTINATION
BLOCK
MOV
L — B - — —
IPC —
SOURCE
BLOCK
CODE STACK MEMORY
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Syntax: INCB
Opcode: 162 ($A2)
Operation: Increment field pointer

INC is used to form an index into a record. It is very similar to the IND
instruction described earlier except the address of the word is left on the
stack instead of the word at the specified address.

INC adds two times B to TOS and replaces TOS with this new value. INC
is used create a pointer to some field within a record variable.
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INC B OPERATION:

1. BEFORE
iPC— INC P — BASE
e = - - B - o oy
CODE STACK
2. ACTION
IPC— INC (2*B) + BASE
] y SR BASE
CODE STACK
3. AFTER
__IpC —
N P BASE + 2*B
e — —— B — —
IPC—
CODE STACK
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Syntax: IXAB
Opcode: 164 ($A4)
Operation: Index array

TOS is an index into the array whose base element is pointed at by TOS — 1.
Each element of the array is of size B (the operand to IXA). TOS is popped
and multiplied by B then added to TOS — 1 to obtain a pointer to the desired
eclement.

IXA is used for loading the address of an array element where the array’s
elements are two words or larger apiece (INC is used for one-word arrays).
For example, to obtain the address of the element of a REAL array, the B
operand is equal to two (since there are two words per array element). In
addition to arrays of REAL data, IXA is also used for obtaining the address
of an element of an array of RECORD, STRING, SET, and other multi-

element type.
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1. BEFORE
IPC— XA
e - — =B = — — —
CODE
2. ACTION
IPC— XA

I

IXA B OPERATION:

SP

-

BASE

INDEX

STACK

(BASE + (B*INDEX))

BASE

CODE
3. AFTER
XA
. - — B - — -
IPC—
CODE

+—

INDEX

2
_ _ _ - - g [BYNDEX|a T

i

STACK

| (BASE + (B*INDEX))

STACK
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Syntax: IXP UB1,UB2
Opcode: 192 ($C0)
Operation: Index Packed Array

IXP is used to push the address of an element of a packed array onto the
stack. TOS is the index into the array. TOS -1 is the base address of the
array. UBI is the number of elements per word (this must be greater than
one, if it is less than or equal to one you would use IXA or INC instead).
UB2 is the field width (in bits). A “packed field pointer” to the desired data
is computed and pushed onto TOS (after index and base address are popped,
of course).

A packed field pointer is three words long. The first word pushed (TOS - 2)
is a word pointer to the word the field is in. The second word pushed
(TOS—1) is the field width, in bits. The last word pushed (TOS) is the
right bit number of the field. This type of pointer is used by the LDP and
STP instructions (to be described).
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IXP UB1,UB2 OPERATION:

1. BEFORE
IPC— IXP
uBl p
uB2
CODE
2. ACTION
IPC — IXP
UB! SP
UB2
CODE
3. AFTER
IXP
uB1
uB2 SP
iPC—
CODE

—

-

—

BASE

INDEX

STACK

NEW TOS ~2

NEW TOS—1

NEW TOS

STACK

... POINTER. ...

NUM BITS

RIGHT BIT

STACK

219

CALCULATION:
NEW TOS-2: = ([INDEX DIV UB1)
+ BASE:
NEW TOS-1: = UB2;
NEW TOS O: = (INDEX MOD UB1};



Syntax: LPA UB,<bytes>
Opcode: 208 ($DO0)
Operation: Load packed array address

LPA is almost identical to the LSA instruction described earlier. The dif-
ference is that the pointer pushed onto the evaluation stack isn’t a pointer
to the UB operand, but rather a pointer to the byte immediately past the
UB parameter (the first byte of the block of bytes following the UB oper-
and). LPA is used to load the address of a packed array of characters onto
the stack. After LPA is executed the STM instruction might be executed in
order to copy the immediate string into a packed array.
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LPA UB,<BYTES> OPERATION:

1. BEFORE
IPC— LpA
— SP -
UB BYTES
CODE STACK
2. ACTION
LPA
UB _ POINTER
UB BYTES /
ADDRESS
OF FIRST
BYTE IS
PUSHED
CODE STACK
3. AFTER
LPA
5 p —>| PONTER
UB BYTES
IPC—
CODE STACK

221

POINTER: = IPC+2



Syntax:  LDP
Opcode: 186 ($BA)
Operation: Load a packed field

LDP is used to load an element from a packed field. TOS, TOS -1, and
TOS — 2 contain a “packed field pointer” (see IXP for details). Load the
field pointed at by this field pointer onto the TOS. Zero-fill any unused
high-order bits when loading the packed data. After the execution of the
LDP instruction TOS and TOS — 1 are popped and the packed data replaces
TOS —2 which becomes the new TOS.
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1. BEFORE
IPC— LDP
CODE
2. ACTION
IPC— LOP
CODE
3. AFTER
LDP.

IPC—

i CODE

SP

SP

SP

LDP OPERATION:

BASE
# OF BITS Brsocrre | BIT DATA
RIGHT BIT #
-ﬁ
STACK MEMORY
BASE
# OF BITS eyl 1_,
RIGHT BIT #
.—9
STACK MEMORY
o} BITDATA. oo, e BIT.DATA
—)
STACK MEMORY
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Syntax: STP
Opcode: 187 ($BB)
Operation: Store TOS into a packed field

TOS is a field of some packed array or record. Store it into the packed field
specified by the packed field pointer comprised of TOS —1, TOS -2, and
TOS — 3 (see IXP for details). After the exection of the STP instruction the
stack is cut back by four words.

Dynamic Variable Allocation
General

Dynamic variables (pointer variables) are allocated on the Apple Pascal “Heap”
The heap is a stack that starts at low memory and grows upwards towards
the program stack. Unlike the program and data stack, variables allocated
on the heap are not automatically de-allocated when a procedure terminates.
Variables allocated on the heap must be explicitly de-allocated using the
Pascal RELEASE command.

The Apple Pascal operating system uses the memory just above the heap to
store a copy of the current disk directory. The variable GDIRP in the SYS-
COM memory area contains a pointer to the 2K block used to store the
directory. As long as the heap is undisturbed the Pascal system will use this
copy of the directory. The instant you allocate or de-allocate data on the
stack, the GDIRP pointer is set to NIL and the next time the operating
system attempts to access the directory a new copy of the directory will have
to be read in off of the disk. In general, this process is completely transparent
to the user. However, if you are opening and closing files often you should
avoid allocating (or de-allocating) dynamic variables as this tends to hurt
the performance of the system since the directory will have to be unneces-
sarily read in several times.
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1. BEFORE
IPC— TP
CODE
2. ACTION
IPC— STP
CODE
3. AFTER
STP
IPC—>|
1 CODE

SP

SP

STP OPERATION:

-

BASE

# OF BITS

RIGHT BIT #

DATA

STACK

THESE THREE WORDS
FORM A POINTER

INTO MEMORY

BASE

# OF BITS

MEMORY

v

RIGHT BIT #

DATA

DATA

Lg

STACK

|

|
STORE DATA ON

TOS INTO BIT

FIELD DESCRIBED
BYSTOS—1, TOS-2,

AI\IID TOS— Z?

STACK
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Syntax: NEW
Opcode:  158,1 ($9E,$1)
Operation: Allocate space for a dynamic variable

NEW is used to allocate space for a dynamic variable whenever the Pascal
NEW command is issued. Note that NEW is quite a bit different from the
instructions seen so far in that the opcode is two bytes long. The 158 opcode
is actually the CSP (for Call Special Procedure) which is followed by the
procedure number of the function you wish to execute. There are several
different special procedures, NEW happens to be the first such procedure.

NEW expects two words on TOS. TOS is the number of words to allocate
to the dynamic variable and TOS — 1 is the address of the pointer variable.
A copy of the NP register is stored in the pointer variable whose address is
at TOS—1 then TOS is multiplied by two and added to NP. TOS and
TOS — 1 are both popped off of the evaluation stack.

After the dynamic variable is allocated, the p-machine checks GDIRP to see
if it is non-NIL. If GDIRP isn’t NIL it is set to NIL to prevent future
directory accesses from attempting to use the memory area just allocated as
a copy of the directory.
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NEW OPERATION:

i. BEFORE
(PC— csp POINTER NP=
T‘ NEW Sp— SIZE
CODE STACK HEAP MEMORY
2. ACTION
POINTER o~ > NP
| CSP SIZE
IPC-);__ s NP—
NEW :
) “SiZE” i
WORDS
OLD
NP—
CODE STACK HEAP MEMORY
3. AFTER
SP—
csp NP— NP
I TNew T
IPC—
CODE ' STACK HEAP : MEMORY !
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Syntax: MRK
Opcode: 158,31 ($9E,$1F)
Operation: Copy NP into a pointer variable

The MRK instruction is emitted whenever the Pascal MARK procedure is
encountered. MRK expects a single word on TOS. This is the address of
some pointer variable (by convention, INTEGER). NP is copied into this
variable. If GDIRP is non-NIL, it is set to NIL after the execution of this

program.

MRK and RLS (described next) allow the user to dynamically allocate and
de-allocate memory as necessary.
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IPC—

1. BEFORE
iPC— csp Sp—>
e - —NT!;K— —
CODE
2. ACTION
IPC— csp
T i
CODE
3. AFTER
SP—>
o
O
MRK
CODE

MRK OPERATION:

POINTER

NP—>

STACK HEAP MEMORY

] NP IS

POINTER | COPIED

NP= INTO THE

MEMORY
LOCATION

POINTED
AT BY

TOS
STACK HEAP MEMORY |

NP

NP—

STACK HEAP MEMORY
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Syntax: RLS
Opcode: 158,32 ($9E,$20)
Operation: Release storage allocated by MRK

RLS is the opposite of MRK. It is used to reset the value of NP to some
previous value. TOS contains the value which is to be loaded into NP. It is
popped and transferred to the NP register. After the execution of the RLS
instruction, GDIRP is set to NIL.
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1. BEFORE

IPC—

CODE

2. ACTION

IPC—

IPC—

csP
RLS

b = e e e o= o= amf

CODE

SP

SP

SP

NEW NP

STACK

NEW NP

STACK

STACK
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RLS OPERATION:

NP

OLD
NP—

NP —

HEAP

TOS IS COPIED
INTO NP
REGISTER

HEAP

HEAP



Top of Stack Arithmetic
General

The p-machine arithmetic and logical instructions take their operands from
the stack and leave any results on the stack. For example, the ADI (add
integers) instruction pops TOS and TOS — 1, adds them, and then pushes
the result back onto the stack. Unary operators (like ABI — Absolute value)
pop a single operand off of the stack, operate on it, and push the result back
onto the stack.

Integer Operations

Syntax: ABI
Opcode: 128 ($80)
Operation: Take the absolute value of the integer on TOS

ABI is a unary operator. It takes the absolute value of the integer on TOS.
If TOS 1s positive, TOS is left unmodified, if TOS is negative it is negated,
yielding the positive version of the number on TOS. Note that taking the
absolute value of — 32768 returns — 32768 since there is no +32768 in
the two’s complement number system.
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1. BEFORE

IPC— ABI
CODE

2. ACTION

IPC— ABI
CODE

3. AFTER
L ABI
IPC—

| CODE

SP

SP

SP

ABI OPERATION:

VALUE
—
STACK
. VALUE .__;Ass !‘\/ALUE)_]
i
STACK
= ABS [VALUE|
STACK
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Syntax: ADI
Opcode: 130 ($82)
Operation: Add integer TOS to TOS—1

ADI is a binary operator that expects two words on TOS. TOS is popped
and added to TOS — 1. The resulting sum replaces TOS — 1 as the new TOS.
Note that the p-Machine does not report an error if arithmetic overflow
occurs.
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ADI OPERATION:

1. BEFORE
IPC— ADI VALUE |
SP — VALUE 2
CODE STACK
2. ACTION
IPC— ADI VALUE | °————:1__
P — VALUEZ T
CODE STACK
3. AFTER
ADI p VALUE 1 + VALUE 2
IPC—
, CODE STACK
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Syntax: NGI
Opcode: 145 ($91)
Operation: Negate integer TOS

NGl is used to take the two’s complement of TOS. TOS is popped, negated,

and then pushed back onto the evaluation stack. Note that negating — 32768
returns — 32768 since, in the two’s complement system, there is no + 32768.
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NGI OPERATION:

1. BEFORE
IPC— NGl VALUE
CODE STACK
2. ACTION
IPC— NGl VALUE L > _VALUE—]
CODE STACK
3. AFTER
NGI ~VALUE
SP -
IPC—
CODE STACK
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Syntax: SBI
Opcode: 149 ($95)
Operation: Subtract TOS from TOS -1

SBI pops TOS, subtracts it from TOS — 1, and replaces TOS — 1 with the
difference obtained. The difference pushed becomes the new TOS.
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1. BEFORE

IPC—

SBI

CODE

2. ACTION

PC—

SB!

CODE

3. AFTER

IPC—

-

SBI OPERATION:

SP

SP

SP

VALUE 1

VALUE 2
—

STACK

VALUE 1

mwez.——i:
—

STACK

VALUE 1-VALUE 2

—_—
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Syntax: MPI
Opcode: 143 ($8F)
Operation: Multiply integers

MPI is used to multiply TOS by TOS — 1. The integer TOS and TOS -1
are popped, the product is pushed. Since the product of two 16-bit integers
may require 32 bits, this instruction may cause an overflow to occur if the
values being multiplied are too large. No run-time error is given if overflow
occurs; making sure the product fits within 16 bits is the responsibility of
the programmer.
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1. BEFORE

IPC—

MPL

CODE

2. ACTION

IPC >

MP

CODE

3. AFTER

IPC—

MPI

CODE

MPI OPERATION:

SP

sP

SP

VALUE 1

VALUE 2

-+

——|(VALUE 1 * VALUE 2

STACK
VALUE | o]
- VALUE2 o
STACK
VALUE 1 *VALUE 2
e o
STACK
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Syntax: SQI
Opcode: 152 ($98)
Operation: Square integer

SQI replaces TOS with the square of the value on TOS. If overflow occurs,
NO error 1Is given.
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SQI OPERATION:

1. BEFORE
IPC— = VALUE
P —
CODE STACK
2. ACTION
S = )
IPC—> Ql p o VALE e———AIUE *\/,‘\LUE)"—J
3. AFTER
o1 - VALUEYALUE
IPC— ”
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Syntax: DV1
Opcode: 134 (886)
Operation: Divide integers

DVI divides TOS — 1 by TOS and pushes the result. If a division by zero
occurs, a run-time error is given.
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1. BEFORE
IPC— DV}
CODE
2. ACTION
IPC—> ovi
CODE
3. AFTER
Dvi
IPC—
CODE

DVI OPERATION:

VALUE 1

SP — VALUE 2
STACK
VALUE 1 -
sp VALUE 2 ~I>(VALUE 1 DIV VALUE z)j
g -~
STACK
VALUE 1
SP — DIV VALUE 2
STACK
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Syntax: ~MODI
Opcode: 142 ($BE)
Operation: Compute the modulo of two integers

MODI divides TOS—1 by TOS and pushes the remainder. A division by
zero run-time error is given if TOS —1 is zero.
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MODI OPERATION:

1. BEFORE
IPC_.) MOQDI
CODE
2. ACTION
PC— MQDI
CODE
3. AFTER
MOD!
IPC—>
CODE

SP

SP

SP

-

-

-

VALUE 1

VALUE 2

STACK
VAWE 1 {VALUE 1 11
VALUE 2 ; MOD VALUE 2)
STACK
VALUE |
MOD VALUE 2
STACK

247



Syntax: CHK
Opcode: 136 ($88)
Operation: Check value to see if it is within a range

CHK expects three words on TOS. It performs the following comparison:
TOS -1 <= TOS -2 <= TOS. If this relation is true, CHK pops TOS
and TOS —1 (leaving TOS — 2 on the top of the stack) and returns to the
caller. If this relation does not hold a run-time error is given.

CHK is used to check to see if an array index is within bounds. It is also
used to make sure that a value being stored into a subrange is within that
subrange. You can prevent the emission of the CHK instruction by using
the (*$R —*) compiler option.
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CHK OPERATION:

1. BEFORE
CHK . . VALUE 1
IPC > VALUE 2
SP —> VALUE 3
CODE STACK
2. ACTION
ABORT
VALUE 1
CHK VALUE 2 iF NOT (VALUE 2<=
VALUE 1<=
IPC— SP - VALUE 3 VALUE 3]
3. AFTER
CHI; SP — VALUE 1
IPC—>
CODE STACK
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Integer Comparisons.
General

The integer comparisons compare TOS — 1 with TOS. If the specified com-
parison is true the value $0001 (true) is pushed onto the evaluation stack.
If the specified comparison does not hold, then $0000 (false) is pushed onto
the evaluation stack.

Syntax: EQUI NEQI LEQI
LESI GEQI GTRI
Opcode: 195 ($C3) 203 ($CB) 200 ($C8)

201 ($C9) 196 ($C4) 197 ($C5)
Operation: Compare two integers

EQUI compares TOS to TOS — 1. If they are equal, true is pushed; if they
are not equal, false is pushed.

NEQI compares TOS to TOS —1 to sce if they are not equal. If they are
not equal, true is pushed; if they are equali, false is pushed.

LEQI compares TOS — 1 to TOS. If TOS — 1 is less than or equal to TOS
then true is pushed, otherwise false is pushed.

LESI compares the integer TOS — 1 to the integer TOS. If TOS — 1 1s less
than TOS then true is pushed, otherwise false is pushed.

GEQI and GTRI compare TOS—1 to TOS to see if TOS—1 is greater
than or equal, or greater than TOS (respectively). If the relation holds, true
is pushed otherwise false is pushed.
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Non-Integer Comparisons

Syntax:  OPCODE:

EQU UB
NEQ UB
LEQ UB
LES UB

GEQ UB
GTR UB

Where UB is:

175
183
180
181
176
177

OPERATION:

Compare TOS to NOS and push true if equal
Push true if TOS <> NOS

Push true if NOS <= TOS

Push true if NOS < TOS

Push true if NOS > = TOS

Push true if NOS > TOS

2 if TOS, NOS are REAL.

4 if TOS, NOS
6 if TOS, NOS
NOS
NOS
NOS

8 if TOS,
10 if TOS,
12 if TOS,

arc
arc
arc
arc
arc

STRING:s.
BOOLEAN.
SETs.

byte arrays.
blocks of words.

Actual examples of these comparisons will be presented in the following

sections.
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REAL Operations

Syntax: FLT
Opcode: 138 ($8A)
Operation: Convert integer on TOS to a floating point number

FLT is a unary operator. It pops the two-byte integer value off of the stack,
converts it to the equivalent floating point number, and pushes the floating
point number back onto the stack. This opcode is emitted whenever an
expression contains both integers and floating point values such as:

Fal
where F is a floating point value and I is an integer value. Note that this

opcode is emitted whenever the compiler encounters an integer and has
already determined that the expression is a floating point expression.
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1. BEFORE
IPC—> FLT
CODE
2. ACTION
IPC— FLT
CODE
3. AFTER
#LT
IPC—
CODE

SP

SP

SP

-

—

-

FLT OPERATION:

INTEGER

STACK

INTEGER

=

{FLOAT (INTEGER)) _J

STACK

STACK
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Syntax: FLO
Opcode: 137 ($89)
Operation: Convert NOS to a floating point value

FLO 1s a unary operator that converts the integer NOS to a floating point
value. TOS is assumed to be a floating point value, it is popped and saved
in a temporary location while NOS is converted to a floating point value.
After NOS is converted to a floating point value, the saved TOS is pushed
back onto the stack.

FLO is used in situations where the compiler has determined that an expres-
sion is of type REAL but some integer values have already been pushed
onto the evaluation stack. For example, a statement of the form:

Fi=1+Fj

will cause the emission of the FLO opcode. If you can rearrange your expres-
sion so that the compiler realizes that the expression type is of type REAL
early in the evaluation you can avoid the emission of the FLO opcode. This
is highly desired as the FLO opcode executes a little slower than the FLT
opcode. The previous example is easily modified by swapping I and F in
the expression on the right hand side.
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FLO OPERATION:

1. BEFORE
INTEGER
IPC— FLO P> REAL
VALUE
CODE STACK
2. ACTION
IPC—> FLO teGer ————{FLOAT (INTEGER) —
___ a1 MOVEREAL
VALUE VALUE DOWN
‘ ONE WORD
CODE STACK
3. AFTER
FLO REAL
'PC““) SP—) - - T/A—LU—E— p—
REAL
VALUE
CODE STACK
J
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Syntax: TNC
Opcode: 158,22
Operation: Truncate REAL

TNC is a unary operator that takes the REAL on TOS, converts it to an
integer by truncating it, and pushes the integer result. Note that TNC has
a two-byte opcode. Opcode 158 is really the CSP (call special procedure)
opcode with 22 being the special procedure number for the truncate routine.
The TNC opcode is emitted anytime the Pascal TRUNC(—) function is
encountered within an expression.
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1. BEFORE

IPC— csP
CODE
2. ACTION
IPC—-) CSP
e
CODE
3. AFTER
CSP
TNC T
IPC—
CODE

TNC OPERATION:

N

SP

SP

—

-

STACK

- e = e

STACK

INTEGER

STACK
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Syntax: RND
Opcode: 158,23
Operation: Round REAL on TOS and truncate

RND is a unary operator that takes the REAL value on TOS, rounds it
using the formulae:

IF ¥»>=2 THEN ROUND := TRUNC(X+2.3)
ELSE ROUND := TRUNC{(X-0.3)3

Note that, like TNC, RND is a two-byte CSP instruction.

258



1. BEFORE
IPC — csP
- o=
CODE
2. ACTION
— CSP
T TRnD
CODE
3. AFTER
csp
IPC—
CODE

SP

SP

SP

RND OPERATION:

REAL
- VALUE
STACK
REAL
[ VA o
STACK
- INTEGER
STACK
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Syntax: ABR
Opcode: 129 ($81)
Operation: Take absolute value of REAL TOS

ABR is a unary operator that takes the REAL value on TOS and pushes its

absolute value. This opcode is emitted whenever the ABS function is
encountered within the program.
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1. BEFORE
IPC— ABR
CODE
2. ACTION
iPC— ABR
CODE
3. AFTER
IPC—> ABR
CODE

ABR OPERATION:

SP

SP

—_— Lo

- —-REAL VALUE- —

STACK

- ~REAL VALUE =— = o

o— ABS |VALUE}-

STACK

VALUE)

__ABS[REAL_ __

STACK
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Syntax: ADR
Opcode: 131 ($83)
Operation: Add reals

ADR adds the REAL TOS to the REAL NOS and leaves the resulting sum
on the TOS. If an overflow occurs, then an execution error results.
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1. BEFORE
IPC— ADR
CODE
2. ACTION
IPC— ADR
CODE
3. AFTER
ADR
IPC—
CODE

ADR OPERATION:

S

SP

SP

—

-~ - - VALUE | -—-

~ = = = VALUE 2-- -

STACK

=== VALUE | “'"\ !
/’+

~—- VALUE2 -=-

STACK

VALUE 1 +

VALUE 2

STACK
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Syntax: NGR
Opcode: 146 (892)
Operation: Negate REAL

NGR is a unary operation that negates the REAL value on TOS. If TOS
is negative, it becomes positive; if TOS is positive, it becomes negative.
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1. BEFORE
IPC— NGR

CODE
2. ACTION
IPC— NGR

CODE
3. AFTER

NGR

IPC—>

CODE

NGR OPERATION:

SP

SP

-

-

- = = VALUE = — o

STACK

il

— - - VALUE——

STACK

—ey

— — VALUE — —

STACK
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Syntax: SBR
Opcode: 150 ($96)
Operation: Subtract REALSs

SBR subtracts TOS from NOS and pushes the difference. If an underflow
occurs a run-time error is given.
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SBR OPERATION:

1. BEFORE
IPC— SBR
- = VALUE | — ——
Sp [ VAWE2 —-
CODE STACK
i
2. ACTION
IPC— SBR -
- — —VALUE 1 — — =
L — VALUE 2 —
SP — -l
CODE STACK
3. AFTER
IPC — SBR
L~ VALUE 1- VALUE 24
SP —
CODE

STACK
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Syntax: MPR

Opcode: 144 ($90)
Operation: Multiply REALs

TOS is multiplied by NOS and the resulting product is pushed. If an over-
flow occurs then a run-time error is reported.
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1. BEFORE
IPC— MPR

CODE
2. ACTION
IPC— MPR

CODE
3. AFTER

MPR
iPC—

CODE

MPR OPERATION:

SP

-

———— (VALUE 1 * VALUEZ)

- — —VALUE |=——
— ~ ~VALUE 2- — —
STACK
— — = VALUE 1———
—— - VALUE 2———
STACK

VALUE 1* VALUE 2

STACK

269

]



Syntax: SQR
Opcode: 153 ($99)
Operation: Square REAL TOS

TOS is multiplied by itself and the resulting product is pushed. This opcode
is emitted whenever the SQR function is encountered within a program. If
an overflow occurs during the execution of this program a run-time error
is given.
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SQR OPERATION:

1. BEFORE
IPC— SOR
SP _)-""VALU‘E —— o
CODE STACK
2. ACTION
IPC— SR —
=== VALUE — — — ' o
N s—— VALUE * VALUE—
CODE STACK
3. AFTER
SQR
IPC— Cp [~ VALUESVALUE —
CODE STACK
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Syntax: DVR

Opcode: 135 ($87)
Operation: Divide REALs

DVR divides the real NOS by the REAL TOS. The resulting quotient is
pushed. A run-time error is given if division by zero is attempted.
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IPC— Dvr
CODE

2. ACTION
IPC—> DVR
CODE

3. AFTER
DVA
IPC—

CODE

DVR OPERATION:

(%]
3
d

SP =

— = =VALUE 1= ="~

=~ — VALUE 2~ — ~

STACK

- ——VALUE 1 = —
e

- — VALUE 2 — —

STACK

VALUE 1/

VALUE 2

STACK
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Syntax: POT
Opcode: 158,35
Operation: Compute power of ten

POT expects an integer in the range 0..38 on the TOS. POT pushes the
value of 10 raised to the TOS power onto the stack. If TOS is not in the
range 0..38 an execution error is given. POT allows the rest of the system
to operate in an implementation independent fashion as well as speed up
certain floating point I/O processes.
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POT OPERATION:

1. BEFORE
1038
!037
IPC — csp 10"2
- "TooT "7 'SP —> | INTEGERVALUE -~ =y
10'°
102
10'
100
CODE STACK POWER OF
TEN TABLE
2. ACTION
IPC— csp - 4 gVALUE
——— e — ] -~ INTEGER VALUE —- -
POT P = |
CODE STACK POWER OF
TEN TABLE
3. AFTER
CsP
o = = e a - — — lovALUE-——-
POT SP —
IPC—
CODE STACK
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REAL Comparisons

The REAL comparisons are handled by the non-integer comparison oper-
ators previously described. The UB byte following the opcode is always two
for a REAL comparison.

The REAL comparisons compare the REAL TOS to the REAL NOS and
push true if the comparison is met. False is pushed otherwise.

STRING Comparisons

The STRING comparisons are also handled by the non-integer comparison
opcodes already described. The UB byte for a STRING comparison is always

four.

When comparing two strings TOS and NOS contain pointers to the strings
which are to be compared. These strings are compared and TRUE is pushed
if the comparison holds, FALSE is pushed otherwise.

Logical Operations

Syntax: LAND
Opcode: 132 ($84)
Operation: Peform logical AND operation

LAND logically ANDs TOS with NOS pushing the result back onto the
stack. Note that a complete 16-bit bit-by-bit AND is performed even though
only the low order bit is used in boolean operations. This knowledge lets
you write code that performs a bit-by-bit AND operation on two integers
using the ORD and ODD functions. For example, to AND the integer I
with $OF you would use the statement:

ANDED := ORD(ODD(I) AND GDD(15))]

which ANDs I with 15 ($0F) and places the result in ANDED. Note that
the functions ORD and ODD do not generate any code. They are simply
type transfer functions that let you treat integers as Boolean values and
Boolean values (or any other scalar) as integers.
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IPC— LAND
CODE
2. ACTION
IPC— LAND
CODE
3. AFTER
LAND
IPC—
CODE

LAND OEPRATION:

VALUE 1

P — VALUE 2

STACK

VALUE 1

[

SP - VALUE 2

L ——VALUE 1 AND VALUE 2)-—’

STACK

VALUE ! AND
SP — VALUE 2

STACK
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Syntax: LOR
Opcode: 141 ($8D)
Operation: Logical OR

LOR logically ORs the value on TOS with NOS. The resulting value is
pushed back onto the stack. This opcode is emitted whenever the OR oper-
ator is encountered within a logical expression. Although only bit zero is
used in a Boolean operation, all 16-bits of the two words on TOS are OR’d
together so this operation can be used to OR two integers together in the
same manner as described for the AND opcode.
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1. BEFORE

IPC—

LOR

CODE

2. ACTION

IPC—>

LOR

CODE

3. AFTER

IPC—

LOR

|

CODE

VALUE 1

LOR OPERATION:

VALUE 2

STACK

VALUE 1

<
-

[—

VALUE 2

:I_‘_:{VALUE 1 OR VALUE 2).J

e e e

STACK

VALUE 1
OR VALUE 2

STACK
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Syntax: LNOT
Opcode: 147 ($93)
Operation: Logical NOT

LNOT takes the one’s complement, or logical negation, of the value on
TOS. To rephrase the last statement, LNOT inverts all the bits of the word
on TOS. LNOT is a unary operator affecting only the value on TOS. As
with LAND and LOR, LNOT can be used to logically negate an integer
by using the ODD and ORD procedures as follows:

NEGATED := ORD(NOT ODD{(I)}i
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i. BEFORE
IPC— LNOT

CODE
2. ACTION
IPC— LNOT

CODE
3. AFTER

LNOT
IPC—>

CODE

LNOT OPERATION:

SP

SP

SP

-

-

-

VALUE

STACK

<

VALUE

| INOT VALUE)J

STACK

NOT VALUE

STACK
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Logical Comparisons

The logical comparisons use the non-integer comparison opcodes previ-
ously described. For logical comparisons the UB byte is always set to six.
A logical comparison always compares bit zero of NOS with bit zero of
TOS (i.c., NOS and TOS are AND’d with one before the comparisons are
made). TRUE is pushed if the comparison holds, FALSE is pushed otherwise.

Set Operations

Syntax: AD] UB
Opcode: 160 ($A0)
Operation: Set adjust

Whenever set operations are performed on the evaluation stack the size of
the set data is often modified. For example, if you have a set variabie COLOR
which is of type SET OF [RED,BLUE,...,GREEN] and you make the
assignment COLOR : = [BLUE]; the size of the set pushed onto the stack
is not necessarily the size of the destination variable. The AD] instruction
is used to adjust the set on TOS so that its size matches the size of the
variable that the set on TOS is to be stored into. This is accomplished by
adding zeroes to the high order bits of the set on TOS or by truncating the
high order bits of the set on TOS. UB is the number of words that the final
set on TOS must occupy.
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1. BEFORE

IPC—>

ADJ

us

CODE

2. ACTION

IPC—

ADJ

uB

CODE

3. AFTER

ADJ

uB

IPC—

CODE

ADJ OPERATION:

SP

SP

SP

— SET ON TCS
_,|  SIZEOFSET —
STACK
SIZE OF SET
-9
CRUNCH OR
EXPAND SET
STACK
— ADJUSTED SET
#
STACK
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Syntax: SGS
Opcode: 151 ($97)
Operation: Build a singleton set

TOS contains an integer in the range 0..511. A set is created with a single
element (the element whose element number is on TOS) set and all other
bits set to zero. If the integer on TOS is not in the range 0..511 then give
an execution €rror.
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SGS OPERATION:

1. BEFORE
IPC— SGS SP — VALUE
CODE STACK
2. ACTION
IPC— SGS SP — VALUE VALUE
CODE STACK SET CONTAINING
SINGLE ELEMENT
3. AFTER
SGS VALUE
- SET
PC—
SIZE OF SET
P — -
CODE STACK
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Syntax: SRS
Opcode: 148 ($94)
Operation: Build a subrange set

The two integers on TOS and NOS are checked to make sure they are in
the range 0..511. If either is out of this range then a run-time error results.
Otherwise the set [TOS —1..TOS] is pushed onto the evaluation stack. If
TOS—1 > TOS then the empty set ([]) is pushed.
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1. BEFO

IPC— |

<)
m

SRS

CODE

2. ACTION

IPC—

SRS

CODE

3. AFTER

IPC—

SRS

CODE

SRS

SP

SP

SP

-

-

OPERATION:

VALUE 1

VALUE 2

STACK

VALUE 1

VALUE 2

STACK

SIZE OF SET

VALUE 1

CREATE A SET
CONTAINING
ELEMENTS IN THE
RANGE VALUE 1 ..
VALUE 2

| SET CREATED
BY SRS

STACK
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Syntax: INN
Opcode: 139 ($8B)
Operation: Set membership

If the set on TOS contains the member whose bit number is specified by

NOS, then push true, otherwise push false. This instruction can be used to
see if a particular bit in a byte string is set.
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INN OPERATION:

i. BEFORE
VALUE
IPC— INN
— SET
—
CODE STACK
2. ACTION
VALUE
IPC— INN
CODE STACK CHECK VALUE™ BIT.
IF SET, PUSH TRUE:
OTHERWISE PUSH FALSE
3. AFTER
INN TRUE OR FALSE
IPC—
CODE STACK |
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Syntax: UNI
Opcode: 156 ($9C)
Operation: Set union

The union of the set on TOS and NOS is pushed onto the evaluation stack.
The set union is obtained by ORing the set on TOS with the set on NOS.
This instruction can be used to logically OR a byte string on TOS with a
byte string on NOS.

The size of the resulting set is the size of the larger of the two sets.
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1. BEFORE

IPC—

UNI

CODE

2. ACTION

IPC—

UNI

CODE

3. AFTER

UNI

IPC—

CODE

UNI OPERATION:

SP

\

SP

b— SET |

—

-

STACK

SET 1

1

—

SET 2

STACK

SET | OR SET 2

STACK
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Syntax: INT
Opcode: 140 ($8C)
Operation: Set intersection

The INT instruction performs the intersection of the set on TOS with the
set on NOS. This is accomplished by ANDing TOS with NOS. This instruc-
tion can be used to logically AND the byte string on TOS with the byte
string on NOS.

The size of the resulting set is the larger of the links of the two sets.
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INT OPERATION:

1. BEFORE
IPC— INT A
SP SET 2
CODE = STACK
2. ACTION
SET i
IPC— INT
s L SET 1 IS
— 1 |OGICALLY
AND'D WITH
SET 2
CODE Sl STACK
3. AFTER
AND
SET 2
INT P —
IPC—
CODE STACK
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Syntax: DIF
Opcode: 133 ($85)
Operation: Set difference.

The set difference of the sets on NOS and TOS is pushed onto the stack.
The set difference consists of NOS AND (NOT TOS).

Set Comparisons

The set comparisons use the non-integer comparisons previously described.
The UB byte of the non-integer comparison is always eight. Only the EQU,
NEQ, LEQ, and GEQ operations are supported. LEQ checks for a subset,

GEQ checks for a superset. TRUE or FALSE is pushed depending upon
the comparison.

Byte Array Comparisons

The byte array comparisons use the non-integer comparisons already described.
The UB byte is always set to ten for a byte array comparison. The byte array
comparisons have a second parameter (in addition to the UB byte) that
specifies the number of bytes that are to be compared. The LES, LEQ,
GTR, and GEQ opcodes perform a lexicographical comparison and should
be used with PACKED ARRAYs OF CHAR only.

Record and Word Arrays

Apple Pascal supports two instructions for comparing arrays and records:
EQUWORD and NEQWORD. These comparisons use the non-integer
comparison operators described earlier with the UB byte always set to twelve.
As with the byte array comparisons, a second parameter follows the UB
byte denoting the number of words which are to be compared. The word
structure on TOS is compared to the word structure on NOS and TRUE
or FALSE is pushed accordingly.
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{PC—» DIF
CODE
2. ACTION
|PC_> DIF
CODE
3. AFTER
DIF
IPC—
CODE

DIF OPERATION.:

SP

SP

SP

SET 1

SET 2

ﬁ
STACK
sETT v
SET 1 AND
L NOT SET 2
T2 L IS PUSHED —
_-)
STACK
SET 1
N AND NOT SET 2

STACK
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JUMPS

All jumps except the case jump are two bytes long. The first byte is the
opcode and the second byte is a signed byte containing an offset. If the
offset is positive (in the range 0..127) then this value is added to the IPC
(program counter) register. If the offset is negative, it is used as an index
into a “jump table” to determine the destination address to which the pro-
gram must be directed.

The jump table is a word-aligned table of self-relative pointers whose last
byte is pointed at by the p-Machine JTAB register. If the offset described
above is negative it is sign-extended to 16 bits and added with the JTAB
register to form an index into the jump table. The two bytes pointed at by
this addition form a self-relative pointer to the destination address which is
to be loaded into the IPC register. A self-relative pointer is a pointer whose
value must be added to the address of the pointer in order to obtain the

true effective "AA"CSS.

AL WAL Y W CANANAL

Syntax: UJP SB
Opcode: 185 ($B9)
Operation: Unconditional Jump

Control is transferred to the address specified in the SB parameter as described
above.
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UJP OPERATION:

i. BEFORE
iPC— uJp
B
JUMP TABLE
CODE
2. ACTION
IPC—» uip
}
sB
- OR - — +IPC
3. AFTER
uJp
- 8-
.
//
4
NEW IPC
VALUE—
CODE
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Syntax: FJP SB
Opcode: 161 ($A1)
Operation: False Jump

The TOS is popped. If it is false, control is transferred to the address spec-
ified in the SB parameter as per the discussion
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FJP OPERATION:

1. BEFORE
".DE) FJP SP— VALUE
3
CODE STACK
2. ACTION
IF VALUE = FALSE iIF VALUE = TRUE
JUMP TABLE
o —
IPC iPC \<<\‘\@
— FJP SP— VALUE N FIP
S8 I\ sB o &,
IPC = IPC+2
+IPC
CODE STACK J
3. AFTER
IF VALUE WAS FALSE IF VALUE WAS TRUE
FIP
FJP 58
IPC g —
-— //_—
SP— SP—
NEW IPC
VALUE—
CODE STACK CODE STACK
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Syntax: EF] SB
Opcode: 211 ($D3)
Operation: Equal False Jump

TOS 1s compared to NOS. If they are not equal then control is transferred
to the address specified by the SB parameter.

See discussion on jumps on page 296.
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1. BEFORE

”-)—(-:) EFJ

SB

CODE

2. ACTION

IPC
e EFJ

SB

CODE
3. AFTER

IF VALUE 1 = VALUE 2

EFJ OPERATION:

VALUE |

SP—

VALUE 2

SP—

STACK
———  COMPARE VALUE |

TO VALUE 2 AND
vALEZ BRANCH IF NOT EQUAL
STACK

IF VALUE 1 <> VALUE 2

EFJ

SP—

EFJ

//?ﬂ“

SB

IPC
—

CODE

SP—

PC
—>

CODE STACK
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Syntax: NFJ SB
Opcode: 212 ($D4)
Operation: Not Equal False Jump

Jumps to the specified location if the integer on TOS is equal to the integer
on NOS.
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iPC—

IPC—

IPC—

NFJ OPERATION:
1. BEFORE
NFJ VALUE 1
S8 SP— VALUE 2
CODE STACK
2. ACTION
NFJ VALWE|  e——BRANCH IF
SB SP— VALUE 2 VALUE 1 = VALUE 2
CODE STACK
3. AFTER
IF VALUE 1 <> VALUE 2 IF VALUE 1 = VALUE 2
NFJ
sB
NFJ /——ﬁ
B SP—4 s //— SP—>
NEW IPC
VALUE—
CODE STACK CODE STACK
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Syntax: XJP W1,W2,W3,<Case Table>
Opcode: 172 ($AC)
Operation: Case Jump

W1 is word aligned and is the minimum index of the case table (a NOP is
inserted in the code stream, if necessary, to insure that W1 is word-aligned).
W2 is the maximum index of the case table. W3 is an unconditional jump
instruction (UJP) to the location just past the case table. If the value on
TOS, which is the current index, is outside the range W1..W2 then execute
the jump instruction “W3”. If TOS is within the range W1..W2 then use
the value (TOS —W1) as an index into the case table and use the two bytes
pointed at by this index as a self-relative pointer to the destination location.

A self-relative pointer is a pointer whose value must be added to the address
of the pointer in order to obtain the true effective address.

Procedure and Function Calls

A description of how the procedure and function calls actually operate is
beyond the scope of this text. For more information concerning the pro-
cedure and function calls consult the Apple Pascal Operating System Man-
ual, Pages 240 through 264.
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XJP OPERATION:

1. BEFORE
IPC— XJP
Wi
W3
T SP — VALUE
‘CASE TABLE
: |

2a. ACTION IF (VALUE <W1) OR (VALUE >W2j

XJP

w1
w2 P —

IPC—> W3 e

CASE TABLE
+IPC

CODE STACK
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2b. ACTION OF (VALUE >=W1) OR (VALUE <=W2)

3. AFTER

VALUE

e

yd
XJP
wi
w2
+ IPC - W3
CASE TABLE o]
CODE
IPC —
CODE
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Inside the P-code Interpreter

) W

The following section is intended for machine language programmers who
would like some insight into the operation of the Apple Pascal P-code inter-
preter. This section provides a “road-map” to the p-code interpreter explain-
ing how verious sections work. With this information an assembly language
programmer can optimize the p-code interpreter, add new features, and take
advantage of existing code. The Apple Pascal p-code interpreter is actually
divided into three major sections: the p-code interpreter (proper), the Run-
time support package (RSP) and the Basic Input/Output System (BIOS).

The p-code interpreter resides in bank #1 of the $D000..SDFFF range and
in the $E000..$FFFF range. The RSP resides in the $E000..$FFFF range
(intermixed with portions of the p-code interpreter). The BIOS resides
mainly in bank #2 of the $D000.$DFFF range with a small portion appear-
ing in the $F800..$FFFF range. This section will ignore the RSP and BIOS
portions and will concentrate on the p-code interpreter for Apple Pascal
vl.1.

Zero Page Variables

The Apple Pascal p-code interpreter uses zero page extensively for tempo-
rary and permanent variable storage. Most importantly, zero page pointers
are used to implement the p-machine registers including IPC, NP, KP,
BASE, MP, JTAB, SEG, etc.

Some of the zero-page variables used by the version 1.1 p-code interpreter
include:
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$50,851 BASE: p-machine BASE register.

$52,853 MP: Markstack pointer (p-machine register).

$54,$55 JTAB: Jump table pointer (p-machine register).
$56,$57 SEG: Segment pointer (p-machine register).

$58,$59 IPC: Interpreter program counter (p-machine register).
$5A,$5B NP: New pointer (p-machine register).

$5C,$5D KP: Program stack pointer (p-machine register).
$5E,$5F Vars: Stachoice.

$5E, $5F BIG: used to hold “BIG” opcode parameters.

$60, $61 DIF: used during set and arithmetic operations.
$62,$63 PREVMP: used to hold MP register during static link traversal.
$64, $65 SUM: used during arithmetic operations.

$66, $67 SPTEMP: used to hold stack ptr.

$68, $69 SOURCE: used during block moves.

$6A,86B DEST: Used for block moves, etc.
$6C,$6D MASK: Used in masking operations (i.c., sets).

$6E..$70 JMP () instruction: used for transferring control to one of
the p-code routines.
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$71..873 JMP () instruction: used for transferring control to a CSP
routine.

$74..up Temporaries used by the p-machine.
NOTE: The 6502 stack pointer is used as the evaluation stack pointer.

The Apple Pascal p-code interpreter consists of a main loop that fetches a
p-code from memory and transfers control to a 6502 subroutine that emu-
lates the actions of the specified p-code. After the routine is executed IPC
is incremented by one, two, three or more (depending on the length of the
p-code instruction) and control is returned to the main loop.

At the beginning of the p-code interpreter (at address $D000) is a table,
256 bytes long, containing the addresses of the 128 active p-code instruc-
tions (i.e., all p-codes except the SLDC instructions). Each address is two
bytes long and points to the beginning of the routine used to handle the
specific p-code. The p-codes, the address of the routine, and the address of
the address of the routine appear in the following table.
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P-CODE (ADRS) TABLE |[P-CODE (ADRS) TABLE |P-CODE (ADRS) TABLE

ABI DEBE DOOQO
ABR ECBZ DOOZ [XJP DS9E DOS8 [NOP 24D DOAE
ADI DEDY DOO4 |RNP E33F DOSA |SLDLO D2A9 DOBO

ADR EACZ DOOB [CIP E253 DOSC | " 1 DZ2A9 DOB2
LAND DSBB DOO8 |[CEQL DDEB DOSE | " 2 D2AS DOB4
DIFP DBS57 DOOA |[CGEQ DDEO DOBO | " 3 D2AS DOBEB
DVI D838 DoOOC [CGTR DDDB DOB2 | " 4 DZAS DOBB
DUR EBSA DOOE [LDAP D3AD DOB4 |" S D2A9 DOBA
CHK D87E D010 |LDC D485 DOBGE | " B D2AS DOBC
FLO ED3F DO1Z \CLEQ DD34 DOBB |" 7 DZA9 DOBE
FLT EDBZ D014 |CLSS DDDC DOBA | " 8 DZA9 DOCO
INN DCS5 DO16 |LOD DE87 DOBC | " 9 D2AI DOC2
INT ppzo DO1B |[CNEG DDD4 DOBE |" A DZAS DOC4
LOR DS7E DOl1A |STR D3DB DO70 | " B D2AS DOCS6
MODI D866 DOIC |UJP Dze7 DO72 | " C DZA9 DOC8
MPI D742 DOl1lE |LDP DAIC DO74 | " D D2ZA8 DOCA
MPR EC55 DOZ0 [STP DA72 DO76 | " E D2AS DoOCC
NGI DEF1 DOZZ ILDM p4acgs Do78 |” F DZ2A9 DOCE

NGR ECCO DOZ4 |5TH D4dF6 DO7A |SLDOO D318 DODO

LNOT D391 DOZ6 |LDB D523 DoO7C | " 1 D318 DOD2
SRS DCCC DoOZB [STB DS3D DO7E | " 2 D318 DOD4
5B1 D703 DOZA [IXP Dap9 DoOBO | " 3 D318 DODB
SBR EBOS DOZC [RBP E32A DOB2 | " 4 D318 DODB
SGS DCBA DOZE |CBP E2FS DOB4 | " S5 D318 DODA
501 D789 DO30 EQUI DFBS DOBB |" & D318 DoODC
SOR EC7D DO3Z |GEQI DF37 DOBB |" 7 D318 DODE
STO pave DO34 |[GTRI DF2F DOBA | " 8 D318 DOEQ
IXS Dad48 DO36 |LLA D2D4 DOBC | " 9 D318 DOE2
UNI DB79 DO38B |LDCI DZ9D DOBE | " A& D318 DOE4
LDE p4o1 DO3A |LEQI DF33 D090 | " B D318 DOEG
CSP EB30 DO3C |LESI DFZB DOB2 |" C D318 DOESB
LDCN D296 DO3E |LDL D2B6 D094 | " D D318 DOEA
ADJ DBES D040 |NEQI DF3B D096 |”" E D318 DOEC
FJP D25F D042 |STL D2FA D098 | " F D318 DOEE
INCP D987 D044 [CXP E2D4 DO9A |SINDO D4B1 DOFO
IND D9GB DoO4e |CLP E2A1 DO9C |SIND1 D487 DOFZ
IXA D89A D048 |CGP E2BD DOSE | " 2 D4B7 DOF4
LAO D343 DoO4dA |LPA DBCD DOAO | " 3 D4B7 DOFB
LSA DBES Do04C |STE Daz6 DoOAZ | " 4 D467 DOFS8
LAE D448 DO4E |NOP D24D DOA4 | " 5 DUB?7 DOFA
Moy D557 DOS0O |- - - DIEF DOAB |” 6 D467 DOFC
LDO D325 DOS2 - DIEF DOAB | " 7 D4B7 DOFE

SAS Daoe7 DOS4 BPT E82ZB DOAA
SkO D368 DOSG [XIT DEAO DOAC

Table 6-1: Addresses of p-code routines
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Immediately following the p-code table comes a short table of addresses for
CSP routines. Whenever the CSP p-code is executed, the byte following
the CSP opcode is fetched, doubled, and used as an index into this table at
address $D100. The entries in this table are:

CcsP (ADRS) TABLE |CSP (ADRS) TABLE [CSP (ADRS) TABLE

10C EF04 D100 |[RSRVD DI11E [EXP DI1EF Di13C
NEM DB2F D102 [RSRVD 0000 D120 |SURT DIEF DI3E
MOVL EBAC D104 |RSRVUD 0000 D122 MRK DEEB D140
MOVR EBAO D10B |[RSRVD 0000 D124 [RLS DE8Z D142
EXIT E784 D108 [RSRVD 0000 D126 |IOR EEF9 D144
UREAD FOB2 DI10OA [RSRVD 0000 D128 UBUSY EFOF D148
UWRT FOBE D1oC |LDS EGIC Di12A |POT EDES D148
I1DS E6G3A DIOE |ULS EE26 D1ZC |UWAIT EFID D1dA
TRS EB40 D110 |TNC EDDO D12E UCLR EFAS D14C
TIME EB41 D11Z [RND EDBB D130 HLT EB33 D1l4E
FLCH EGBZ D114 |SIN DiEF D132 |MEMAV ESO4 D150
SCAN EBF7 D1lle |COS DIEF D134
USTAT EF27 D118 |LOG DiEF D136
RSRUD 0000 D11A IATAN DIEF D138
RSRVD 0000 D11C FN DIEF D13A

Table 6-2: Addresses of CSP routines

Note that some of the routines in the CSP table are reserved for future use.
Also, the transcendental and log routines are not implemented (D1EF is a
jump to the unimplemented opcode error).

Immediately following the CSP routine address table is the p-interpreter
startup location. The BIOS, after handling its own boot-up chores, jumps
to this location when the Pascal system is booted up. There’s a jump at this
location that transfers control to a routine at address $F275. The routine at
address-$F275 copies itself down to-address-$6800-and then jumps to- the
routine beginning at location $6827 (thereby skipping the code that per-
formed the transfer). The 1K of memory space freed by this transfer will
be used by the system later on. This initialization code sets up BIOS vari-
ables, initializes the p-machine, loads in SYSTEM.PASCAL, and then trans-
fers control to the main interpreter loop at address $D253. Following the
initial jump are several utility subroutines, the interpreter main loop, and
the p-code routines. These will be discussed on a routine-by-routine basis.
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D155-D170 GETBIG routine. This routine extracts a parameter from
the code stream. If the byte immediately after the current p-
code is positive then it is multiplied by two (to convert it
to a word pointer in the range 0..$FE). If this byte is neg-
ative then the next two bytes are fetched and used as a two-
byte word pointer.

D171—-D18F TRVSTAT routine. This routine traverses X static links
where X is passed in the 6502 X-register. This is accom-

plished by replacing MP with the two bytes pointed at by
MP “x” times.

D190~-D1AC CHKGDRP routine. Check to see if there is a pointer
to a directory block present on the heap. If so, de-allocate
the storage for it and return. Otherwise do nothing and
return. A pointer to the directory block (2K) is stored at
address SBDEG6 and $BDE?. If it is zero, no directory block
exists. If it is non-zero it is copied to the NP register (heap
pointer) and then set to zero.

D1AD —D1BS5 Interpreter relative relocation table. The first two bytes
contain the address of the next two bytes. The second two
bytes contain the address of the XEQERR routine, the third
address is the address of the BIOS jump table, the fourth
address is the address of the SYSCOM area, and the fifth
address is the address of the zero page workspace.

D1B7—-D22D XEQERR routine. This routine is called whenever an
execution error occurs. Location D1B7 is called if an invalid
index is detected (i.e., array out of bounds). Location D1BB
is called if an attempt 1s made to load a segment which isn’t
on the disk (no such segment). Location D1BF is jumped
to if an attempt to exit from an uncalled procedure is made.
Location D1C3 is called if a stack overflow occurs. Location
D1DB should be called in the event of an integer overflow,
but Apple Pascal doesn’t check for integer overflow so this
entry point is probably never jumped to. The p-code inter-
preter jumps to address D1DF if a division by zero is
attempted. The routine at D1E3 is called if the user break
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key is pressed. D1E7 is called if a system I/O error occurs
and D1EB is called if a user I/O error occurs. The p-code
interpreter transfers control to location D1EF if an unim-
plemented p-code is encountered. If a floating point error
occurs control is transferred to location $D1F3 and $D1F7
is called if a string too long error occurs.

After any of the above XEQERR routines are called control
is transferred to the general XEQERR routine at address
D1FB. At this point the stacks are reinitialized and the IPC

is pointed at a CXP 0,2 instruction (which reinitializes the

system) and control is transferred to the main interpreter
loop (thus causing execution of the CXP 0,2 instruction).

D22E -D239 UPIPC3: Up the IPC register by three. Adds three to the
IPC register and then transfers control to the main inter-
preter loop. Many three-byte p-code instructions jump here
after the execution in order to bump the IPC and execute
the next p-code.

D23B—D246 UPIPC2: Increments the IPC by two and jumps to the
interpreter’s main loop. This code is called by most two-
byte p-code instructions.

D248 ~D24C SLDC p-code routine. This short routine pushes the p-
code fetched onto the p-machine evaluation stack (which is
the 6502 hardware stack).

D24D-D251 UPIPC1: Increments the IPC by one. Most one-byte,
and many two- and three-byte instructions jump here to
return control to the interpreter main loop.

D253 — D25C Interpreter main loop: This short section of code fetches
a p-code from the location pointed at by the IPC. If the high
order bit of the p-code is zero, then control is transferred to
location D248 (SLDC). Otherwise the p-code is multiplied
by two and this value is used as an index into the table at
address $D000. Control is transferred to the routine pointed
at in this table.
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D25F—-D265 FJP p-code routine. This code emulates the p-machine
false jump instruction. A word (two bytes) is popped off of
the stack. If the low order bit of this word is equal to one
then the FJP routine jumps to UPIPC2. Otherwise (if the
low order bit of the word on TOS contained zero) control
drops through to the UJP instruction which follows.

D267 —D293 UJP p-code routine. This code emulates the p-machine
unconditional jump instruction. The byte immediately fol-
lowing the opcode is fetched. If it is positive then this value
is added to the IPC and control is transferred back to the
main loop. If the byte following the opcode is negative then
control is transferred to the INJTAB routine at location $D279
where the minus value is used as an index into the jump
table for the current procedure. The address in the jump
table is subtracted from the address of the jump table and
this value is placed in the IPC. Control is passed back to the
main interpreter loop.

D296~ D29A LDCN p-code routine. The code at this address pushes
the implementation-dependent value for NIL onto the stack.
Since, on the 6502, NIL is represented by the value zero
this routine pushes zero onto the evaluation (6502 hard-
ware) stack. Control is transferred to the UPIPCI location.

D29D —D2A6 LDCI p-code routine. This routine fetches the two bytes
that follow in the code stream and pushes them onto the
evaluation stack. The high order byte is pushed first, low

order byte is pushed last. This leaves the low order byte of
the value on the TOS.

D2A9-D2B3 SLDLX p-code routine. Upon entering this routine the
6502 accumulator contains the opcode shifted to the left
(multiplied by two). $A3 is subtracted from this value leav-
ing a value in the range $35..$44. The word at address
MP + Acc (where MP is the p-machine MP register and Acc
is the 6502 accumulator) is pushed onto the evaluation stack.
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D2B6—D2D3 LDL p-code routine. This routine loads a local variable
from the current activation record. It begins by fetching a
“big” parameter immediately after the opcode (the JSR D155
at address D2D6) which returns the byte offset into the
activation record. This byte offset is added with the MP
register and the word pointed at by this sum is pushed onto
the 6502 stack.

D2D4 - D2F9 LLA p-code routine. This routine is quite similar to the
LDL routine above, except that the address of a local word,
rather than the data at that address, is pushed onto the stack.
It calls “GETBIG” in order to fetch the one or two byte
parameter that follows the opcode. This value is returned in
BIG (zpage location $5E). This value is added to MP (zpage
location $52) and this sum is saved. Finally, the value 10 is
added to this sum (ten is the size of the activation record

minus two) and the result is pushed onto the stack.

D2FA -D317 STL p-code routine. This routine stores the data on the
evaluation stack into the local activation record area. It fetches
a “big” parameter with a call to “GETBIG”, calculates the
address of the data where TOS is to be stored (in the same
manner as that used for LDL and LLA) and then stores the
data on TOS at that location.

D318 -D324 SLDOX p-code routine. This routine loads one of the
first 16 words of global storage onto the stack. This is a
short (one-byte) instruction that allows quick access to any
of the first sixteen words of storage in the main procedure.
Upon entry the 6502 accumulator contains the SLDOX

- - opeode-times-two-MOD- 256 {whichr is-a vatwe 1 the range
$D0..$EF). $C4 is subtracted from this value (upon entry
the carry is cleared, so although the actual instruction is SBC
#3$C3, the true value subtracted is $C4) to obtain an index
in the range 12..28 which is used as an index off of BASE
to obtain a pointer to the word to be pushed. The word
pointed at by BASE plus this index is pushed onto the eval-
uation stack.
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D325 -D342 LDO p-code routine. This routine is used to load a global
variable onto the evaluation stack. It is virtually identical in
operation to the LDL p-code except that the indexing is
performed off of the BASE register instead of the MP register.

D343 —-D368 LAO p-code routine. This routine is used to load the
address of a global variable onto the evaluation stack. It is
identical to the LLA instruction except that indexing is per-
formed off the p-machine BASE register instead of the MP
register.

D369 —D386 SRO p-code routine. This routine stores the data on the
TOS into the global variable whose word offset follows the
opcode. This routine is identical to the STL instruction except
that indexing is performed off of the BASE register instead
of the MP register.

D387 —D3AC LOD p-code routine. This routine loads a word from an
intermediate level routine. It begins by fetching the number
of lex levels to descend and then it calls a routine to drop
down that many static links. Upon return the PREVMP
register contains a pointer to the activation record of the
procedure in mind. The “BIG” parameter immediately after
the static link parameter is fetched and is added to the value
in PREVMP. This value plus 10 is a pointer to the word
desired. The Y register is loaded with 11 (which points at
the high byte of the word to be pushed) and the two bytes
comprising the desired word are pushed onto the 6502 stack.

D3AD -D3DA LDA p-code routine. This routine loads the address of
some intermediate variable onto the stack. It begins, just like
the LOD routine by fetching the number of lex levels to
traverse and dropping down that many static levels (accom-
plished by calling the static link traversal routine). The offset
into this activation record (a “BIG” parameter) is fetched
and added to the value in the PREVMP register. Ten is added
to the sum (the width of the mark stack control word) and
the resulting sum (which is the address of the desired word)
is pushed.
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D3DB —-D400 STR p-code routine. The STR routine pops the data on
TOS and stores it into the intermediate variable whose lex
level and offset are specified after the opcode. This instruc-
tion operates identically to LOD except that the data is popped
off of the stack and stored into memory instead of vice versa.

D401 — D425 LDE (LoaD Extended) p-code routine. This routine loads
a word from the activation record of an intrinsic unit. The
byte immediately following the opcode is fetched at addresses
$D401..8D406 and is left in the X-register. This is the seg-
ment number from which the word is to be fetched. The
“BIG” parameter following the segment number is fetched
with a call to GETBIG at address $D408. Once the BIG
parameter is fetched it is added to the address of the desired
segment which is fetched from the SYSCOM area by index-
ing off of SEGTABLE with the value in the X-register (the
segment # times two). The word pointed at by this sum is
pushed onto the stack at addresses $D41A..§D422.

D426 — D44A STE (STtore Extended) p-code routine. This routine is
the exact converse of the LDE p-code described above. The
only difference between the two routines is the fact that STE
pops data off of the stack and stores it into main memory
instead of pushing data onto the stack. The code from
$D426..$D43E is virtually identical to the first 13 state-
ments of the LDE routine. From $D43F to $D446 STE
pops data off of the stack instead of pushing data onto the
stack.

D44B -D466 LAE (Load Address, Extended) p-code routine. This
routine calculates the address of a word within a different
segment (in an identical manner to. LDE and STE) and then.
pushes the address calculated onto the stack.

D467 —-D47A SINDx (Short INDex and load) p-code routine. This
routine handles the eight short indexed load routines
(SINDO..SIND7?). The opcodes for these routines (times
two and MOD 256) are in the range $F0..$FE. This value
is in the accumulator upon entry (and the carry is set). $FO
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is subtracted from the value in the accumulator to normalize
this to a value in the range $0..$E which is then transferred
to the Y-register. This value will be used as the index. The
word on TOS is popped off and stored into a zero page
memory location. Then the (Zpage),y addressing mode is
used to fetch the word specified by the SINDx instruction.
A special entry point is provided for SINDO because this
instruction is emitted quite often by the Pascal compiler.
This entry point at address $D46A assumes that the Y-reg-
ister contains zero on entry (which it does) and avoids the
SBC and TAY instructions at address $D467..$D469.

D47B — D494 STO (store indirect) p-code routine. This routine pops
two words off of the stack and stores them into a pair of
zero page memory locations ($74..8$77). The first word
popped off of the stack is stored at the memory location
pointed at by the second word popped off of the stack.

D495 -D4C7 LDC (load multiple word constant) p-code routine. The
UB parameter which follows the LDC instruction is fetched
and saved in the X-register. This value is also incremented
by one, multiplied by two, and then stored into memory
location $74. This is the total number of bytes required by
this instruction (n words at two bytes each plus the one byte
UB value and the one byte opcode). Next the IPC is incre-
mented by one If it is not on a word boundry. Certain 16-
bit processors (such as the 68000) require that all 16-bit
data be aligned on word boundries. Once this is accom-
plished, the next ‘UB’ words are read from the code stream
and pushed onto the stack. Finally, the value saved in loca-
tion $74 is added to the IPC and control is returned to the
main interpreter loop.

D4C8 —D4F5 LDM (load multiple words) p-code routine. This rou-
tine begins by fetching the UB parameter that follows the
opcode. This value (the number of words to push) is mul-
tiplied by two (to get the number of bytes to push) and then
copied into a temporary location. Then the stack is checked
to make sure that there is enough room on the stack to hold
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the data being pushed. If there is not, then a jump to the
stack overflow routine is made. Assuming there was enough
room on the stack, a pointer to the biock of data to be pushed
is popped off of the stack and saved into memory location
$68. Finally, the UB words pointed at by locations $68 and
$69 are pushed onto the 6502 hardware stack (p-machine
evaluation stack).

D4F6—D522 STM (store multiple words) p-code routine. This guy

checks the UB parameter that follows to find out how many
words are to be stored into memory. UB*2 is used as an
index into the stack to find the pointer to the memory area
where TOS is to be stored. The ‘UB’ words on TOS are
popped and stored into the memory locations described by
the above pointer. Finally, the pointer is removed from the
stack and control returns to the p-machine’s main loop.

D523 -D53C LDB (load byte) p-code routine. TOS contains an index

into a byte array. TOS~1 is a pointer to the base address
of a byte array. TOS is added to TOS — 1 and the sum forms
a pointer to the byte to be pushed. A zero (for the H.O.
byte) is pushed followed by the byte pointed at by the above
mentioned sum.

D53D - D556 MOV (move words) p-code routine. TOS (a pointer to

a block of B’ words) is popped and stored into locations
$68 and $69. TOS —1 (a pointer to a similar block of ‘B
words) is popped and stored into locations $6A and $6B.
Next, the ‘BIG’ parameter that follows the opcode is fetched
by calling the GETBIG subroutine. Finally, the data pointed
at by $68/$69 is moved to the block pointed at by $6A/ $6B
with a call to the block move routine. :

D56B —D57D LAND (logical and) p-code routine. Two words are

popped off of the stack, logically AND’ed with one another,
and pushed back onto the stack.

DS7E-D590 LOR (logical OR) p-code routine. The two words on

TOS are popped, logically OR’ed, and the result is pushed.
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D591 —-D59D LNOT (logical NOT) p-code routine. The word on
TOS is popped XOR’ed with $FF (inverted) and pushed
back onto the stack.

D59E —D62E XJP (case jump) p-code routine. The jump index (on
TOS) is popped and compared to the first word-aligned
word following the XJP opcode. If TOS is less than this
value, the IPC register is loaded with the address of the third
word-aligned word following the XJP opcode and control
is transferred to the main interpreter loop. If TOS is greater
than or equal to W1, then it is compared to the second word-
aligned word following the XJP instruction (W2). If TOS
is greater than this value then the IPC is pointed at W3 and
control is transferred to the interpreter main loop. Other-
wise, the value (TOS—W1)*2 is used as an index into the
table which immediately follows the W3 value. The table
entry pointed at by this value is subtracted from the address
of the table entry. This difference is loaded into the IPC and
control is returned to the interpreter main loop.

D62F -D66A NEW p-code routine. This routine handles the Pascal
NEW procedure. It begins by checking to see if space has
been reserved on the stack for a directory. If so, the directory
space is de-allocated. Next the NEW routine pops two words
off of the evaluation stack. The first word is the size (in
words) of the variable being allocated, the second word is
the address of the pointer to the new variable. The value in
NP (new pointer) is stored into the pointer variable and
then the size value is added to the NP register. Finally, the
NP and KP pseudo-registers are compared to make sure
stack overflow has not occurred.

D66B -D681 MRK (mark stack) p-code routine. This routine checks
to see if space was allocated on the top of the heap for the
directory. If so, it is de-allocated. Next a word pointer is
popped off of the stack and the NP register is copied into
the word pointed at by this value.
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D682 —D69F RLS (release stack) p-code routine. A word pointer is
popped off of the TOS. The two bytes pointed at by this
byte are ioaded into the NP register and the directory pointer
1s set to NIL.

D6A0—-D6BA XIT p-code routine. This opcode stores the 6502
instructions “LDA $C08A” and “JMP ($FFFC)” at loca-
tions $0..$5 and then executes this code. This turns off the
language card and simulates a reset.

D6BB —D6D8 ABI (absolute value, integer) p-code routine. This rou-
tine pops the value off of TOS. If it is positive, it gets pushed
back onto TOS. If it is negative then the two’s complement
is taken and the positive value is pushed back onto the stack.

D6D9 - D6F0 ADI (add integers) p-code routine. The two words on
TOS are popped, added, and the sum is pushed back onto
the stack.

D6F1 — D702 NGI (negate integer) p-code routine. The word on TOS
is popped, negated, and then pushed back onto the stack.

D703 —D71A SBI (subtract integers) p-code routine. The integer on
TOS is subtracted from the integer on TOS-1 and the dif-
ference is pushed back onto the stack.

D71B-D742 Multiply routine. The integers (signed) at addresses
$88..$8B are multiplied and the result is left in location $8C
and $8D.

D742 -D788 MPI (muitiply integers) p-code routine. Two integers
are popped off of the stack. If they are both positive, or if
they-are of different signs; then the routine at address- $D71B
is called and the resulting product is pushed. If the values
popped off of the stack are both negative then they are both
negated and treated as though they were both positive.

D789 — D794 SQI (square integer) p-code routine. This routine dupli-
cates the TOS and jumps the the MPI routine at address
$D742.
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D795 —-D838 DVIMOD routine. This routine takes the 16-bit value in
memory locations $88 and $89 and divides it by the signed
integer in locations $86 and $87. The remainder (MOD) is
left in locations $88 and $89, the quotient is left in locations
$8C and $8D. Note that no check for underflow or overflow
1s made.

D839 — D865 DVI (divide integers) p-code routine. This routine pops
two values off of the top of stack and calls the DVIMOD
routine to divide TOS-1 by TOS. Upon return from DVI-
MOD, DVI checks to see if both the divisor and dividend
were of the same sign. If they were not, then the positive
quotient is negated. Lastly, the quotient is pushed back onto
the stack and control is returned to the main interpreter
loop.

D87E —D8CC CHK (check subrange) p-code routine. This code pops
two words off of the stack and compares them to the new
TOS vajue. If (TOS—-1) <= TOS -2 <= TOS then con-
trol is transferred back to the main interpreter loop. Other-
wise a runtime error (bounds violation) is forced.

D866 —D87D MODI (modulo integers) p-code routine. This routine
is identical to DVT except the remainder is pushed back onto
the stack.

D8CD —~D8E4 LPA (load packed array pointer) p-code routine. This
routine pushes the contents of the IPC plus two onto the
evaluation stack. This pushes a pointer that points to the first
character of the string (just past the length byte) that follows
the LPA imstruction. Once this is accomplished, the length
byte (which immediately follows the LPA opcode) plus two
is added to the IPC so that it points at the first p-code imme-
diately following the string. Control is then returned to the
main interpreter loop.

D8ES5 —D906 LSA (load string address) p-code routine. This routine
operates identically to the LPA opcode except that the address
pushed onto the stack is the IPC value plus one. This pushes
a pointer to the string (at the length byte) which immedi-
ately follows the LSA opcode. The IPC is moved beyond
the string and control is returned to the main loop.
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D907 — D947 SAS (string assign) p-code routine. On the top of stack
are two words. The first is either a pointer to a source string
or a single character. (If the high order byte is zero, then it
is a single character, if it is non-zero then it is a pointer).
The word on TOS — 1 is a pointer to a destination string. If
TOS is a single character then the value one is stored at the
address pointed at by TOS — 1 and the character is stored in
the next consecutive address. If a string pointer is on TOS,
then the length of that string (which is pointed at by the
pointer) is compared to the UB value that follows the SAS
opcode. If the length of the string is greater than this UB

value a run-time bounds error occurs nfherwme the cfnng
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pointed at by the pointer on TOS is stored into the string
pointed at by TOS — 1. The IPC is incremented by two and
control is transferred to the main interpreter loop.

D948 —D96A IXS (index string array) p-code routine. TOS contains
an index into a string array. TOS — 1 is a pointer to a string.
If TOS is outside the range 1..255 then give an execution
error. If TOS is greater than the current length of the string
give an execution error. Otherwise return to the main loop
leaving TOS and TOS — 1 on the stack.

D96B —D986 IND (static index and load word) p-code subroutine.
TOS is a pointer to a word structure. It is popped and
added to the BIG’ parameter that follows the IND opcode.
The word pointed at by this sum is pushed onto the stack.

D987 — D999 INC (increment field pointer) p-code routine. The word
on TOS is popped, added to the ‘BIG’ parameter that fol-
lows the opcode, and the resulting sum is pushed.

D99A -D9D8 IXA (index array) p-code routine. TOS is an integer
- . index into an array.whose basc ¢lement-is-at TOS— 1. A
‘BIG’ parameter is fetched from the code stream, this is the
size of each element of the array. This ‘BIG’ value is checked
to see if it is two. If it is, the value on TOS is multiplied by
two (by shifting it to the left) and then added to the base
address. If the ‘BIG’ value is not two, then the value on TOS
is multiplied by ‘BIG’ and the product is added to the base
address. The sum is left on TOS.
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D9D9 - DAI1B IXP (index packed array) p-code routine. IXP is fol-
lowed by two unsigned byte parameters in the code stream
and there are two words of parameters on TOS. TOS is an
integer index and TOS — 1 is the array base pointer. To begin
with, the two UB values are fetched from the code stream
and saved in temporary zero page locations. The high order
bytes for these values are then zeroed. Next the integer index
is popped off the stack and saved into a pair of zero page
memory locations. Then DVIMOD is called to compute
“index div UB1” and “index mod UB1” The quotient is
shifted to the left to convert it from a word index to a byte
index. This byte offset is added to the array base address
(which is popped off of the stack). This sum points at the
byte containing the bit field we are interested in. This byte
pointer is pushed onto the stack. Next the field width, which
is the value “index mod UB1” is pushed onto the stack.
Finally the right bit number (computed by: rbn:=
UB2*(index mod UB1)) is pushed onto the stack.

DA1C-DA71 LDP (load packed field) p-code routine. LDP expects
a three byte packed field pointer on the top of the stack. The
byte on TOS is the right bit number, TOS -1 is the field
width, and the byte at TOS — 2 is a pointer to the byte where
the structure is located. These three bits are popped and
stored into zero page memory locations. The word pointed
at by the pointer is loaded into memory locations $7E and
$7F. If the right bit number is greater than eight, then loca-
tion $7F is stored into location $7E and eight is subtracted
from the right bit number (this performs a fast shift by
cight). Next, the bits in location $7E and $7F are shifted to
the right ‘right bit number’ times. This right justifies the
field into locations $7E and $7F. Finally, the field width is
multiplied by two and used as an index into a table of two-
byte masks. Locations $7E and $7F are AND’ed with these
two masks (to turn off the unnecessary high order bits). The
result is pushed onto the evaluation stack.
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DA72—DAFA STP (store into a packed field) p-code routine. This
instruction pops the word off the top of the stack and stores
it into the packed fieid pointer which occupies the three
words of storage immediately below the data on the stack.
This routine begins by popping the data, right bit number,
and field width pointer off of the stack. The data is then
masked so that only the pertinent bits are retained. Next,
the data is shifted so that dara is properly aligned. Then a
pointer to the word structure where this data is to be stored
is popped off of the stack and the two words pointed at by
this pointer are fetched. The bit positions where the data is
to be stored is zeroed out and the data is OR’ed into this
spot. Finally, the data is stored back into the memory word
described by the pointer popped off of the stack.

DAFB—DBI1D FIXSET routine. Most of the stack operations expect
two sets to appear on the top of the stack. The stacks have
the format:

¢ P

Figure 6-1
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where ‘size B’ is on the top of stack and is the number of
words in the set B (also on the stack). FIXSET pops size B
off of TOS and stores it into locations $7C and $7D ($7D
is always zero). Next a pointer to the ‘size A’ word is com-
puted and this value is loaded into the 6502 accumulator. A
pointer to the A set is stored into location $74 (only one
byte is stored since it is known that the set is always in page
one). Finally, the return address (which was popped and
stored into locations $8C and $8D) is incremented by one,
and control is returned to the calling procedure by jumping
indirect through locations $8C and $8D.

DB20—-DB56 INT (set intersection) p-code routine. Set intersection
is performed by AND’ing set B with set A. If the sets are
not the same size, then the high order ’n’ words of the resul-
tant set are set to zero. This routine AND’s the low order
bytes of A with the low order bytes of B and stores the result
back into A until ‘0’ words have been AND’ed together
(where ‘n’ is the minimum of size A and size B). Finally, ‘m’
words of zero are pushed, where ‘m’ is the absolute value of
the difference between size A and size B. Finally, the 6502
stack pointer is tweaked so that it points at the new set just
created.

DB57—DB78 DIF (Set difference) p-code routine. This routine logi-
cally negates set B and then AND?s it into set A. After FIXSET
is called, the X-register is loaded with the value min(size B,
size A) and then this many bytes are taken from set B, inverted,
and AND’ed with the corresponding byte in set A. If there
are more entries in set A than set B, the high order entries
are left untouched. Finally, the SP register is loaded with
the pointer to set A and control is returned to the main
loop.

DB79 —DBE4 UNI (set union) p-code routine. This routine compares
the size of A with the size of B. If size A is greater than or
equal to the size of B, then a short routine is executed which
simply pops the B set off of the stack and OR’s it with the
A set. Control is returned to the main interpreter loop with
the 6502 SP register pointing at the A set.
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If the size of A is less than the size of B then a separate
routine is called that OR’s set A into set B, and then moves
set B down over set A on the stack. If the size of B is zero,
then A is simply returned.

DBE5-DC54 ADJ (set adjust) p-code routine. A single UB-type

parameter is fetched from the code stream. This byte con-
tains the final size (in words) that the set on TOS must occupy.
If the size of the set on TOS is equal to this value, then the
AD] routine promptly returns control to the main loop. If
the size of the set on TOS is greater than this value, then
the UB words on TOS are moved down over the extra words
which are to be truncated.

Original
Set A

N

AARININRALINNN
AEERRLANRNANY
AXAARARLRANN

AR AR 4 ? h Uld ?

]

New SP
Set A
After ADJ
Instruction  FHRY
First "UB" words in set
Remaining words in set Figure 6-2

This is accomplished by the code at locations $DBFE..$DCI19.

First, the Y-register is loaded with a pointer to the last (high
order) byte of the set which is to be kept. Next, the X-
register is loaded with a pointer to the high order byte of
the current set. Finally, the UB bytes pointed at by Y are
transferred down to the set pointed at by the X-register and
control is returned to the main interpreter loop.
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If the size of the set on TOS is greater than UB, then control
is transferred to location $DCIC. Here, the size of the set
on TOS is checked to see if it is zero. If it is, this fact is
noted, the SP register is modified accordingly, and control
is transferred to the zero fill loop at location $DC47. If the
size of the set on TOS is not zero, then it is moved down-
wards in memory in order to expand the size of the set. The
area cleared out by this downward movement is zeroed out
by the code at location $DC47. In either case, control is
returned to the main interpreter loop at location $DC52.

DC55~DCB9 INN (set inclusion) p-code routine. This routine expects
the following data on TOS:

¢ sp

Size A

Set A

Figure 6-3

where size A is the size of the set A which immediately
follows on the stack and I is an integer. I is divided by eight
(by shifting) and I mod eight (by AND’ing) is also kept
around. The value I DIV “8” is used as an index into the
set A and the “I mod eighth” bit of this byte is checked. If
this bit is one, then TRUE is pushed onto the stack in place
of size A, so that generated by the first string assignment in
the code stream.
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DCBA-DCCB SGS (build singleton set) p-code routine. This code
copies TOS and falls through to the SRS routine below.

DCCC-DDD3 SRS (build subrange set) p-code routine. Two words
are popped off of the stack and stored into memory loca-
tions $7A..87D. Replace these two words with the set
[ (low_range). (hlgh__rangc)] First, check the low range
and make sure it is not negative, give an execution error if it
is. Next, make sure that the high range is less than 512. If
not, cause a run-time error. If the high range is less than the
low range, then push a null set onto the stack (which is ac-
complished by pushing two zeroes). Then the set consisting
of zero bits up to the “low rangeth” bit is pushed, then be-
tween low range and high range one bits are pushed, and
finally the size word is pushed onto the stack. The data from
$DD92 to $DDD3 is a table containing the bit masks.

DDD4 - DE10 Comparison lead-in routine. This p-code routine han-
dles the EQUxxx, NEQxxx, LEQxxx, LESxxx, GEQxxx, and
GTRxxx routines. The individual entry points load the 6502
accumulator with a three bit value according to the test being
made. The values in the accumulator are interpreted as:

BIT 0 = 1: TEST FOR EQUALITY
BIT 0 = 0: TEST FOR INEQUALITY

BIT 1 = 1: TEST FOR LESS THAN
BIT 1 = 0: TEST FOR NOT LESS THAN

BIT 2 = 1: TEST FOR GREATER THAN
BIT 2 = 0: TEST FOR NOT GREATER THAN

For example, the accumulator is loaded with one if the

CEQUskx instriction 1s exectted, four if thie GTRxxx instruc-
tion is to be executed, and three if testing for less than or
equal.

Once the accumulator is loaded with the appropriate value,
control is transferred to location $DDEA where this com-
parison flag is saved into zero page location $6C. At this
point, the second byte following the p-code is fetched. This
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byte determines whether a Boolean, string, set, or array
operation is to be performed. If this value is two, then two
REAL values are compared, if it is four, then two string
values are compared, if it is six then Boolean values are com-
pared, if eight then two sets are compared, if ten then two
word arrays are compared, otherwise two byte arrays are
compared.

DE12—-DESF Byte and word comparisons. The compare byte entry
point is at location $DE12, the compare word entry point
is at $DEIE. Both call the GETBIG routine to fetch the
one/two byte operand that follows in the code stream. The
compare byte entry then divides locations $5E and $5F by
two since the GETBIG routine multiplied them by two
(thinking they were a word offset). Then the compare byte
routine jumps into the compare word routine at location
$DE23. The code between locations $DE22 and $DESF
pops two array pointers off of the stack and compares the
arrays pointed at by these pointers. Upon determining that
the arrays are equal or not equal, control is transferred to
the code at location $DEC2 (if the arrays are equal), SDEC6
(if the array pointed at by TOS -1 is less than the array
pointed at by the pointer on TOS), or $DEBE (if the array
pointed at by TOS—1 is greater than the array pointed at
by TOS).

DE64 — DEBD String comparison routine. This routine compares two
strings whose pointers are found on TOS. It is somewhat
complicated by the fact that if the high order byte of the
pointer is zero then the string consists of a single character.
If a single character is detected (for either pointer on the
stack) then it is converted to a string by storing it into a zero
page location and prefacing it with a length byte of one. The
normal string pointer is set up to point at this zero page
location. Locations $74 and 875 point at the first string
(with locations $80 and $81 used for the single character
string) and locations $76 and $77 point at the second string
(with locations $7E and $7F used for a single character
string).
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Once the pointers to the strings are set up, the lengths of
these strings are compared and the minimum string length
is loaded into the X-register. Next the strings are compared
until it is determined that they are not equal, or are equal
through the length of the shortest string. If they are not
equal, then control is passed to location $DEBE if string
one is greater than string two, and to location $DECS if it
is less than string two. If the two strings are equal through
to the length of the shortest string, then the lengths are
compared. If the lengths are equal, so are the strings. If the
length of string one is greater than string two then control
is passed to location $DECS, if they are equal to location
$DEC2, otherwise to location $DEBE.

DEBE — DED9 Push Boolean routines. Location $DEBE is jumped to
if the comparison routine determines that item one is greater
than item two. This guy pushes TRUE onto the stack if a
GTRxxx, GEQxxx, or NEQuxx opcode was being processed,
false otherwise.

Location $DEC2 is jumped to if the comparison routine
determined that the two values being compared were equal.
TRUE is pushed if the EQLxx, GEQxxx, or LEQxxx was

being processed.

Location $DEC6 is jumped to if the comparison routine
determined that the first value being compared is less than
the second value being compared. TRUE is pushed if the

LESxxx, LEQxxx, or NEQxxx opcode was being processed.
False is pushed otherwise.

The code at tocatton $DECS..$DEDB is common to- alt
these routines. It is responsible for pushing TRUE or FALSE
and determining which opcode caused the current state of

affairs.
DEDC —-DF15 REAL comparisons. This code pops two real values off

of the stack and compares them. If the REAL value on
TOS —1 is less than the REAL value on TOS, then control
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is transferred to location $DEC6. If TOS — 1 is greater than
TOS then control is transferred to location $DEBE. If
TOS —1 is equal to TOS then control is transferred to loca-
tion $DEC2.

DF16 —DF2A Compare Boolean values. The word on TOS is popped,
AND’ed with one, and compared to TOS ~ 1 after it is popped
and AND’ed with one. If TOS -1 is greater than TOS,
control is transferred to location $DEBE; if they are equal,
$SDEC2; if TOS—1 is less than, then a branch to location
$DECS is made.

DEF2B - DF98 EQUIL, NEQI, LESI, LEQI, GTRI, and GEQI routines.
These routines compare the two words on TOS and push
true if the respective comparison holds, false otherwise. All
these comparisons except EQUI are handled in a fashion
similar to the comparisons above in that a three-bit value is
saved and a single comparison routine is jumped to in the
interest of saving code. The EQUI routine is handled sep-
arately, probably because it is called many more times than
any other comparison. The entry points for these routines
are:

LESI: $DF2B
GTRI: $DF2F
LEQI: $DF33
GEQI: $DF37
NEQI: $DF3B
EQUI: $DF65

DF9B —DFD4 Set comparison setup routine. This subroutine com-
putes certain pieces of useful data for use by the set com-
parison routines. It returns the size of the set on TOS (set
B) in locations $7C and $7D, the size of the set on TOS — 2
(set A) in locations $7A and $7B, the address of set B in
location $76 (only one byte is required since the set is always
in page one), the address of set A in location $74, the dif-
ference (size A — size B) in location $86, the minimum set
size (i.e. min(sizeA,sizeB)) in location $7E, and the new SP
value in location $80.
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DFD5 — DFF1 Check remainder of set to make sure it contains zeroes.
If the sets are of unequal length then this routine is called
to make sure that zeroes are present in the high order bytes
of the set. If set B is being checked, the entry point is location
$DFDS5. If set A is being checked, the entry point is location
$DFDE. The X register contains the first byte on the stack
to check for a zero.

DFF2 —E026 Set comparison routine. This subroutine is called to com-
pare the sets on TOS. If they are equal, the carry is returned

set. If rhey are not equal, the carry is returned cleared.

AL AW e B T A el O

E027—-EO03A Set compare jump table. It was determined that a set

comparison is to be made. This short segment of code checks
for SETEQL, SETNEQ, SETLEQ, or SETGEQ.

E03D —E042 Set equal routine. This routine calls the set comparison
routine, and then jumps to the code that pushes true if the
carry is set, false if the carry is clear.

E043 — EO4E Set not equal routine. This code calls the set compare rou-
tine, complements the carry, and then jumps to the code to
push TRUE or FALSE depending on the contents of the
carry flag.

EO04F — E069 Set less than or equal routine. This routine checks to see
if A is a subset of B. If so, TRUE is pushed, otherwise
FALSE is pushed.

EO6A —EO8A Set greater than or equal. This routine checks to see if B
is a subset of A. TRUE is pushed if it is, FALSE is pushed
- otherwise. EO8B — EO9E Sercompare exit poitit. Al setrou-
tines exit to this code. The normal entry point is $E08C. If
the carry is clear, FALSE is pushed. If the carry is set, TRUE
is pushed.

EOA1 -EOBB CXP (call external procedure) p-code utility subroutine.
This code fetches the segment number from the segment
table at address $BD9E and stores it into the ‘nextseg’ reg-
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ister at addresses $82 and $83. It then jumps to some com-
mon procedure code (shared with the Normal procedure
call subroutine) at address $SEOD2.

EOBC - EOD1 Normal procedure call utility subroutine. This routine
copies the current contents of the segment register into the
‘nextseg’ memory location. It also stores $FF into the seg-
ment number variable at address $86. This is used by the
common code to differentiate between an external proce-
dure and a normal procedure call.

EOD2 —-E252 Common procedure code for the CXP and Normal pro-
cedure call subroutines. This code pushes return addresses,
parameters, loads in segment procedures, etc. whenever a
procedure or function is invoked.

E02D —E10A Sets up a pointer to the procedure attribute table in loca-
tions $7C and $7D.

E10B — E14B Check for an assembly language subroutine and call it if
this is a 6502 machine code routine. Assembly language
routines are denoted by the fact that the procedure number
(pointed at by $7C and $7D) is zero. If this is an external
procedure, then decrement the value at location
($BDI1E + segnum*2). This value is used to determine if the
code is to be left in memory. If this is an assembly routine,
a return address is pushed onto the stack, the address of the
assembly routine is stored into locations $90 and $91. Finally,
a jump indirect through locations $90/$91 transfers control
to the assembly routine.

E14E —E252 Handle a p-code subroutine invocation.

E159—-E1AA Set up pseudo registers and check for stack overflow.
Jump to $E1AB if a stack overflow occurs.

E1B0 - E1B9 Push activation record onto program stack.
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E1BA —E1DD Pop “parmsize” parameters off of the 6502 hardware
stack and copy them onto the program stack. Then push
the current vaiue of the 6502 hardware stack pointer onto
the program stack.

E1DE —E1FA The address of the p-code subroutine is computed and
stored into the IPC register here. Addresses in the Apple
Pascal p-machine are always self-relative. So the address con-
tained in the procedure location entry in the procedure table
is subtracted from the address of the table entry. This dif-
ference is the absolute address of the p-code routine to be
executed.

E1FB—E250 Completion of p-code subroutine set up. This code ini-
tializes the JTAB register, the jump table, the MP register,
the program stack pomtcr (to set up for any local variables),
and copies the ‘nextseg’ value into the segment register.
Control is then returned to the calling 6502 program by
incrementing the return address (which was saved in loca-
tions $8E and $8F) and returning via a jump indirect
instruction.

E253—-E2A0 CIP (call intermediate) p-code routine (with special
entry point at $E25C for CXP calls). First the pro-
cedure call subroutine is called to set up the stack, then this
code looks into the procedure table to get at the dynamic
links and it traverses the stack looking for the proper lex
level to operate at. Once the dynamic links are properly set
up, control is returned to the main procedure at which point
the p-code subroutine begins execution.

E2A1-E2BC CLP (call local procedure) p-code routine. This code
fetches the’ proccdurc number from the code stream, calls
the procedure invocation subroutine, patches the stack, and
then returns control to the main interpreter loop for the
execution of the p-code subroutine.

E2BD —E2D3 CGP (call global procedure) p-code routine. Identical
to the CLP routine, except the BASE register is pushed onto
the stack in place of the normal dynamic link.
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E2D4 - E2F8 CXP (call external procedure) p-code routine. The CXP
p-code routine fetches two parameters from the code stream.
The first is the procedure numbser, the second is the segment
number. If the segment number is not zero (a special case)
then a subroutine is called to load the code from the disk
onto the program stack (LOADSEG). Then the special entry
point at $EOAL is called to set up the system for the pro-
cedure call. Finally, the lex level is checked to see if it is less
than or equal to zero. If it is, then this is a base external
procedure and control is transferred to location $E302,
otherwise this is an external intermediate procedure and
control is transferred to location $E25C.

E2F9—E329 CBP (call base procedure) p-code routine (special entry
point at address $E302 for call external base procedure).

This code fetches the procedure number and calls the pro-

cedure set-up routine (just like all the other calls) and then

it pushes a copy of the BASE register on to the 6502 hard-

ware stack. Then it patches all the links in the activation

record so that the static and dynamic links point at the proper

place. Finally, the stack pointer is copied into the BASE

register and control is returned to the main interpreter loop.

E32A —E33E RBP (return from base procedure) p-code routine entry
point. Get the pointer to the stack frame (6502 hardware)
and load the 6502 SP register with this value. Next, pop the
BASE value off of the stack and load this into the BASE
register and the temporary BASE register. Then a jump to
common code at location $E345 is made.

E33F - E344 RNP (return from normal procedure) p-code routine.
This code reloads the 6502 stack pointer with the proper
value and falls through to the common return code ar $E445.

E445 — E3C5 Return from p-code procedure common code. This code
is common to the RNP and RBP p-codes. First, the old
value of the program stack pointer (KP) register is fetched
off of the stack. Then the code from $E53D to $E371 fetches
any function return value from the program stack and pushes
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it onto the evaluation stack. Finally, the code from location
$E371 to $E3C5 reloads the SEGMENT, JTAB, IPC, MP,
and other registers with their original values.

E3C6—E3D6 This code computes an address by subtracting the data in
location $90 and $91 from the word pointed at by these
two locations. The address computed is stored into the pro-
cedure location variable at addresses $7C and $7D.

E3D7—E416 Relocation subroutine. The value contained in the loca-
tion pointed at by the procedure pointer ($7C) is fetched.
This is the number of items to be relocated. Next, two is
subtracted from the procedure pointer and this data is used
as a self relative pointer to the relocation table. For each item
to be relocated, the data pointed at by the self-relative pointer
at location $7C (procedure pointer) is relocated by adding
the relocation value (in locations $88 and $89) to the value
already there. This process is repeated until the table entries
are exhausted. Every assembly language program loaded into
the system is relocated by this routine at run-time.

E417 —~E4A4 Read segment routine. This code reads in the external
segment whose segment number is passed in the 6502 accu-
mulator register. The segment directory is checked to find
the drive and block numbers for this routine. First the unit
is checked to make sure it is on line. If so, then the BIOS
DISKREAD routine is called to read the code in from the
disk.

E4A5 —E5F6 Load segment subroutine. This subroutine is called (if
necessary) to load in a segment procedure. The segment
number is passed in the 6502 accumulator. To begin with,
arrexrermal procedure counter 15 checked o see if it Is zero.
If it is zero, then the segment procedure must be loaded
from the disk. If it is not zero, then this is a (possibly indi-
rect) recursive procedure call and the procedure is alreadv
in memory. If the segment procedure count is not zero, then
it is incremented by one and the subroutine returns. The
segment procedure count array is at location $BD1E.
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The code from SE4BE to $SE4DE checks to see if a p-code
segment or a data segment is to be loaded from the disk.
The code at locations $E4DF through $E4FD load the data
segment, and the code from $E4FE to $E5F6 loads a code

segment.

ESF7 —E61B Unload a segment subroutine. This code de-allocates the

space used by a segment procedure. Then the procedure
counter is checked to make sure it is zero. If it is not, then
some recursive invocation of this routine is outstanding and
the code cannot be removed from memory. Otherwise
(assuming the segment procedure counter is zero) the stack
is fixed up to de-allocate the space occupied by the external
procedure.

E61C—E625 LDS (load segment) p-code routine. This guy pops the

segment number off of the stack, gets it into the 6502 accu-
multor, and then calls the load segment subroutine. Upon
return from load segment, control is returned to the main
interpreter loop.

E626 —E62F ULS (unload segment) p-code routine. This routine pops

the segment number off of the stack, calls the unload seg-
ment subroutine, and then returns control to the main inter-
preter loop.

E630—E639 CSP (call special procedure) p-code driver routine. This

code fetches the next byte in the code stream (the special
routine opcode) multiplies it by two, and uses this as an
index into the CSP table. This code is identical to the main
interpreter loop except the indirect jump is at locations
$71..873.

E63A —EG3F IDS (ID search) special driver routine. This code is a

simple jump instruction to the actual IDS code at location
$FF3F.
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E640—-E6B1

TRS (tree search) p-code routine. This code searches
through a binary tree for an eight byte token. It is used by
the compiler and other system routines for symbol table
Jookups and other general look-up schema. This function
pops three words off of the TOS. The first word popped is a
pointer to an eight byte target token. This is the character
string TRS searches for in the tree. The second word popped
is a pointer to a pointer variable. On return, the pointer is
loaded with the address of the last node visted if a match
was not found (this is required so that the right and left links

of the binary tree can be modified by the cal'ung routine).

The third word popped off of the stack 1s a pointer to the
root node of the tree structure. The tree always has the
following structure:

Eight-byte token

I Left Link [tugm Link 1
NONNSI
Of fset 11 10 9 8 7 0
Sp Root PTR
Last PIR P Pointer Variable
Source PTR
Eight Byte Array

—{ [T I11T]

Figure 6-4
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E6B2—-E6F6 FLC (fill character) p-code routine. The fill character
routine expects the following data on the 6502 hardware
stack:

Character

Number of
Chars to
fill
Index into
Array

Pointer to
Array Base
Element

Figure 6-5

The character to be copied is popped off of the stack. Then
the number of bytes to be filled is popped. If this number is
negative, fill char immediately terminates (and removes the
other parameters from the stack. If the number of bytes to
be filled is positive, then the index and array base pointer
are popped and added. Next, the X-register is loaded with
the number of pages to be filled with the character and the
program enters a loop that fills X’ pages with the character.
Finally, when the page count is zero, the remaining bytes
are filled by loading the X-register with the low order byte
of the count value and entering a second loop that fills less
than 256 bytes.

E6F7—~E783 SCN (scan) p-code routine. The address and index of the
source array are popped and added, the character is fetched,
a Boolean flag (0="“=", 1 =“<>") is popped, and the num-
ber of characters to check is popped. Next, the absolute value
of the number of characters to search through is taken and
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this number is stored in locations $5E and $5F. Finally, the
array is searched (for the specified number of characters) for
the character specified. If it is found, the position in the array
is returned. Otherwise, the original value is returned on the
stack.

E784 —E82A EXIT (procedure EXIT) p-code routine. This p-code is
executed whenever the Pascal EXIT statement is executed.
It pops a procedure and segment number off of the stack. If
this causes an exit from the operatmg system, then a ]ump
to the XIT p-code routine is made. Otherwise for each iex
level you are exiting, this code computes pointers to the
activation record for each statically nested procedure and
readjusts the stack to remove the activation record for the

procedure(s) being exited.

E82B — E832 BPT (break point) p-code routine. This code gets a big
parameter from the code stream and then returns to the main
interpreter loop (i.e., itis a NODP).

E833 —E840 HLT (HALT) p-code routine. This code increments the
program counter by two and jumps to the user-invoked exe-
cution error entry point.

E841—E85C TIME p-code routine. Two pointers are passed on the
6502 hardware stack. TIME stores zeroes into the words
pointed at by these pointers.

E85D —E89F MVR (move right) p-code routine. This routine per-
forms a block move of bytes using decrementing pointers.
“This routine ts jumped to from location $SESDB-whenever
the MOVERIGHT Pascal statement is executed.

E8A0—-ES8DE Block move routine. This code is common to the MVR
and MVL routines. It pops the required parameters off of
the stack and stores them into zero page locations and then
decodes the second opcode byte to determine whether a
moveleft or moveright should be performed.
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E8DD —~E903 MVL (move left) p-code routine. This code performs a
block move using incrementing pointers. The block move
routine above drops through to this routine if it is deter-
mined that a moveleft is to be performed.

E904 — E928 MEMAVAIL p-code routine. If there is a valid directory
pointer (at location $BDE6/$BDE?) then push the value
MP —-DIRP ($5C/D —$BDE6/7) Otherwise push the value
MP — NP ($5C/D - $5A/B).

E929 —E956 Floating point pop routine. This utility subroutine pops
a floating point number off of the stack and unpacks it. The
X-register points at one of three floating point accumulators.
The floating point work area is:

$74..$79: FP work area #1
$7A.$7F: FP work area #2
$80..$85: FP work area #3

Within each work area the first byte is reserved for the sign
(bit 7 is zero for positive numbers, one for negative num-
bers), the second byte holds the exponent in bias 128 form,
and the last four bytes in each work area form the exponent.
All floating point calculations are carried out in this special
“unpacked” form. When data is stored into memory, it is
converted to a more compact “packed” form. The format of
a packed floating point data element is:

Byte Bits Description

0 31..24 Sign (bit 7) and H.O. bits of
exponent.

1 23..16 L.O. bit of exponent, and H.O.

bits of mantissa

Middle bits of mantissa.

15..8
7.0 L.O. bits of mantissa.

w
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15 7 0

- Sign Bit
Exponent
l______, Nantissa Flg ure 6-6

Since the packed floating point numbers are always normal-
ized the H.O. bit of the mantissa is always one. Since this
bit is always one (unless the value is zero) this bit is not kept
around. It is used to hold the leftover bit of the exponent
in the packed form. When the data is unpacked, the unpack-
ing routine sets the H.O. bit of the mantissa.

The floating point pop routine pops a packed floating point
value off of the evaluation stack, unpacks it, and stores the
unpacked data into the floating point work area pointed at
by the X-register.

E957 —E979 Floating point push routine. This routine performs the
opposite function of the pop routine. It takes the floating
point work area pointed at by the X-register, packs it, and
pushes the packed result onto the evaluation stack.

E97A —E999 Bump exponent routine. This routine is called within the
REAL addition and multiplication routines. If the carry is
set; therr the-rmamber s shifted to the right and the exponent:
1s bumped up by one.

E99A — E9B9 FP Normalize routine. After any floating point operation
the floating point value must be normalized. This is accom-
plished by shifting the mantissa to the left until a one appears
in the H.O. bit. Each time the mantissa is shifted the expo-
nent is decremented by one.

343



E9BA —E9D7 Round routine. This code rounds the floating point value
in the third floating point work area. If a number lies exactly
between two representable values, then it is rounded to the
value with the least significant bit of zero.

E9D8 —EA12 FP Adjust routine. When adding or subtracting two float-
ing point values the exponents must be the same. This rou-
tine scales the values in floating point work areas one and
two so that they have the same exponent. This is accom-
plished by shifting the smaller value to the right and incre-
menting its exponent.

EA13 —-EA38 FP addition subroutine. This routine aligns the values in
FP work areas one and two, adds the mantissas, normalizes
the result, rounds the result, and finally re-normalizes the
result.

EA39—EA71 FP Subtraction subroutine. This routine aligns, sub-
tracts, normalizes, and rounds two floating point numbers.

EA72—-EA9D FP compare and swap routine. Compares the absolute
values of the floating point numbers in the FP work area
one (FPWA #1) and FP work area two (FPWA #2). If
FPWA #1 is greater than FPWA #2, they are swapped and
the carry is cleared. Otherwise the carry is returned set.

EAC2—-EB08 ADR (add REAL) p-code routine. Pops two floating
point numbers off of the stack and adds them. If the signs

are different, then the floating point subtraction routine is
called instead.

EB09 - EB59 SBR (subtract REAL) p-code routine. Two floating point
numbers are popped off of the stack and the FP subtract
routine is called. If the signs are different then the FP add
routine is called instead.

EB5A —EBES DVR (Divide REAL) p-code routine. This routine pops
two floating point values off of the stack and stores them in
the FP work area. Then it checks the first value popped off
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to see if it is zero. If it is, then a division by zero execution
error is forced. If the first number was zero then zero is
pushed onto the evaluation stack and DVR returns to the
main interpreter loop. If neither number was zero the two
exponents are subtracted to determine the exponent of the
result. If an underflow occurs, a floating point error is forced,
otherwise the FPWA#2 is divided by the FPWA #1 and
the result is returned on the evaluation stack.

EBE6—EC54 FP multiplication subroutine. This routine multiplies
FPWA#1 by FPWA#2 and leaves the REAL result in

EPWA#3. I

EC55—EC7C MPR (multiply REA Ls) p-code routine. This code pops
two floating point values off of the stack, calls the FP mul-
tiplication subroutine, and then pushes FPWA#3 onto the
evaluation stack.

EC7D —-ECBI1 SQR (square REALs) p-code routine. This code checks
the REAL number on TOS to see if it is zero. If it is, then
zero is returned. Otherwise the data on TOS is duplicated
in FPWA#1 and FPWA#2, the FP multiply routine is called,
and FPWA#3 is pushed onto the evaluation stack.

ECB2—-ECBF ABR (absolute value of a REAL number) p-code rou-
tine. This routine clears the H.O. bit of the exponent byte
by shifting it to the left and then shifting it to the right.

ECCO—-ECDF NGR (Negate REAL) p-code routine. This routine
inverts the sign bit in the exponent byte.

ECEO-ED3E Float integer value. An mteger vatue s on TOS: This
routine pops it and converts it to a floating point value. The
resultant floating point value is left in FPWA#3.

ED3F —-ED61 FLO (float integer) p-code routine. This routine floats
the integer value on TOS — 1. It accomplishes this by pop-
ping four bytes off of the TOS (there is always a real on
TOS) and saving it in FPWA#1. Then a call to the float
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routine is made to float the integer left on TOS. Finally, the
floating point value saved in FPWA#1 is pushed back onto
the stack and this routine returns control to the main inter-
preter loop.

ED62~ED6C FLT (float TOS) p-code routine. This routine simply
calls the float routine and pushes the floating point value left
in FPWA#3.

ED6D — EDBA Truncation/round routine. If location $86 contains zero,
then the floating point number in FPWA#1 is truncated,
otherwise it is rounded.

EDBB —~EDCF RND (round REAL) p-code routine. The floating point
number on TOS is converted to an integer and the result is
pushed.

EDDO—-EDE4 TNC (truncate REAL) p-code routine. The floating
point number on TOS is converted to an integer by trun-
cation and the integer result is pushed.

EDES5 — EEOD POT (power of ten) p-code routine. TOS contains an
integer. If it is greater than 38, zero (four bytes) is pushed
onto the stack. Otherwise this value is used as an index into
a table containing the floating point representations for the
various powers of ten. The appropriate value is pushed.

EEOE-EECC Power of ten table. This table is an array [0.38] of REAL
used by the POT p-code routine.

EECD - EEF8 Unit on-line check subroutine. This routine is passed a
unit number in the 6502 accumulator and X-register. The
unit specified is checked to make sure that it is valid and on-
line. First, the value is checked to see if the H.O. bit is set.
If it is not, then the unit number is checked to make sure it
is in the range 1..12. If it is, this routine immediately returns
to the calling procedure. Otherwise a run-time error (bad
unit number) is forced.
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If a user-defined unit number is specified (user-defined unit
numbers are always in the range $80..$8F) then the unit
table at address $FE82 is checked to see if the desired user-
defined unit has been attached to the system. If so, this sub-
routine simply returns. If the unit is not in the system (denoted
by a zero entry in the unit table) then a run-time error is
forced by jumping to location $EEEF.

EEF9 —EF03 IOR (IORESULT) p-code routine. This p-code function
pushes the value of IORESULT onto the stack. The IORE-

SULT value is contained in memorv locations $RDDE and

L a2 L\«AAAV‘. ANSRRAANSL LT WAIA I A Ry CUAAGL

EF04 - EFOE 10C (IOCHECK) p-code routine. This routine checks
IORESULT. If it is not zero a run-time error is caused.

EFOF —EF1C UBUSY (unitbusy) p-code routine. Since all I/O on the
Apple 11 is synchronous, this routine does very little. It does
check to make sure the specified unit is on-line and then
pushes false onto the evaluation stack (since the unit will
never be busy).

EF1D —EF26 UWAIT (unit wait) p-code routine. Since all I/O is syn-
chronous, this routine does nothing more than pop the unit
number off of the stack, make sure the unit is on-line, and
return control to the main interpreter loop.

EF27—EFA4 USTATUS (unit status) p-code routine. 'This code begins
by popping unnecessary data off of the stack, massaging the
stack so that it is in the format expected by the BIOS STA-
TUS routines, and thcn transfers control to the approprlatc

EFAS5 —F035 UCLEAR (unit clear) p-code routine. This code initial-
izes the device specified by the word on TOS. The code at
location $EFB4 handles user defined devices. The code
between $SEFBD and $EFC4 converts unit number seven
to unit number eight (REMIN: is converted to REMOUT:)
and the code at location $EFC5 determines whether a char-
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acter oriented device or a block structured device is being
accessed. Block structured devices are initialized by the code
at $EFDO..$SEFE1. The console is handled by the code at
locations $EFEA..$F005. The printer initialization is han-
dled by the code at addresses $F006..$F013. The remote
units are initialized by the code at addresses $F014..$F01D.
And the graphics unit is initialized by the code at address
$FO1E.

F036 —F068 Disk I/O subroutine. This code handles block structured
I/0 requests.

F069 — FO6D UREAD (unit read) input entry point. This code loads
the accumulator with zero and jumps to the unit I/O code
at address $F070.

FO6E — FO6F UWRITE (unit write). This routine loads the accumulator
with one and drops through to the unit I/O code at address
$F070.

F070—F210 UNIT I/O. This code handles the unitread and unitwrite
functions of the Pascal operating system. This code modifies
the parameters on the stack and dispatches the I/0 request
to the appropriate BIOS subroutine.

F213-FFFF Pascal O/S, BIOS hooks, and boot-time transient area.
During the boot of the Pascal system this area contains the
initialization code. Once initialization is complete, the
Pascal reserved word table, ID search routine, and other
various routines are loaded into this area.

DO00-DFFF (second BANK). BIOS, IDS p-code routine and reserved
word table.

This short description of the Apple Pascal p-code interpreter is far from
perfect, nor is it quite complete. No attempt to describe the BIOS routines
was made since these routines are the most likely to change in the event

changes are made to the system. For more information on the BIOS, consult
the chapter on the ATTACH-BIOS code.

348



7 TN

I Section Three
Modifying Apple Pascal







Modifying the Apple Pascal
P-code Interpreter

The Apple Pascal P-code interpreter is written in 6502 machine code to
insure that programs run fairly fast. As it turns out, the students who orig-
inally wrote the 6502 p-code interpreter were fairly inexperienced on the
6502 microprocessor chip. As a result of this inexperience, the p-code inter-
preter is not as optimal as it could be. If the 6502 interpreter were com-
pletely rewritten using better coding techniques an overall increase of 15-
20% could be realized. That’s almost as good as the 6809! While rewriting
the Apple Pascal p-code interpreter you can also modify the interpreter to
take advantage of special hardware like a clock/calendar board or possibly
even a hardware floating point board like the CCS 9511 Arithmetic pro-
cessor card, the DTACK Grounded 68000 board, or Lazer’s 16032 board.
While I cannot present a completely rewritten 6502 interpreter here, several
examples will be presented (which actually work) that can be used as a
template for rewriting additional portions of the interpreter.

There are several ways to rewrite the Apple Pascal p-code interpreter, you
can patch the interpreter on the disk so that the modifications are loaded
into memory every time the master disk is booted; you can patch the inter-
preter in memory by running a program that overlays the interpreter; or
you can use a feature found in Apple Pascal 1.1 to attach drivers to the Pascal
BIOS. P've used the latter method because it’s the easiest to implement. The
code I’ve written allows the use of the CCS Arithmetic card and the Moun-
tain Computer Apple Clock in the Pascal system to provide additional fea-
tures and performance improvement.
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The program begins with four equates to define the status of the optional
hardware. HASAPU should be equated to one if you have a CCS Arithmetic
card in your system, it should be set to zero if you don’t have such a device.
APUSLOT defines the slot number where the CCS Arithmetic card can be
found. This label should be equated to address $C080 + $n0 where “n” is
the slot number of the APU. The next two equates, HASCLK and CLKSLOT,
define the presence and slot number of the Mountain Computer Apple
Clock. If you do not have a clock in your system you should set HASCLK
to zero. One final note on the Apple Clock code: it only works with the
Mountain Computer Apple Clock, it does not work with Mountain’s CPS
card or anybody else’s clock card for that matter.

Following the special hardware equates come the p-machine register equates.
The Apple Pascal p-machine’s registers are emulated in zero page RAM at
these locations. This locations will be used extensively by the interpreter
patch code. Twelve temporary locations are also used by this code, they
immediately follow the p-machine register equates.

Several locations within the interpreter itself are also of great importance.
At location $D000 (in bank zero of the language card) the interpreter jump
table can be found. This table consists of 128 addresses that point to routines
for each of the 128 p-codes (excluding the SLDC p-codes). The easiest way
to patch the interpreter is to simply overlay the address in the interpreter
address table with a new address pointing at your replacement routine. The
JMPTBL equate in the program listing provides the base address of the
interpreter table so that certain addresses can be easily patched with the
address of the replacement routine.

Once a p-routine has executed the necessary code to emulate its respective
p-code, control is returned to the main interpreter loop by jumping to
location $D23B or location $D24D. The code at location $D23B incre-
ments the IPC (interpreter program counter) by two and then fetches the
next p-code from the opcode stream. The code at location $D24D incre-
ments the IPC by one and falls through to the opcode fetch section. There’s
also an entry point which increments the IPC by three and falls through,
but it is not required by this code.

EXECERR and RANGERR are entry points into the interpreter which
this code jumps to if an execution error or a range error occurs during the
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execution of the p-code. In particular, the RANGERR entry point is branched
to if the CHK p-code detects data which is out of range. HNDLJTAB is
an entry point into the middle of the interpreter which is taken in certain
cases depending on the target address of a branch instruction. GBPARM
is a subroutine which is called to fetch a variable-length address operand

from the code stream.

Immediately following the equates is the initialization entry point for the
interpreter patch routine. This code follows the “ATTACH-BIOS” speci-
fications found in the manual distributed by the International Apple Core
and reprinted in the appendix. This manual is also available from your local
Apple club (assuming it is a member of the IAC), the Call — A.P.P.L.E club,
or directly from the IAC. For additional info on the ATTACH-BIOS rou-
tines you should consult this manual or the appropriate chapter in p-Source.

The entry point for the initialization code checks the X-register to make
sure it contains three. If the X-register contains a value other than three
then the programmer/user is attempting to do some sort of I/O to this
“device”. Since these BIOS patches are not an I/O device driver, an IORE-
SULT of nine (unit off-line) is returned to the user. If the x-register contains
three then the p-system is performing an initialization call. Since this “device”
is usually initialized at boot-time, the initialization entry condition is perfect
for patching the p-code interpreter.

In order to patch the interpreter the RAM card must be write-enabled. This
is accomplished by writing to location $C089 twice in succession. Once the
RAM card is write-enabled the data from ADRSTBL is used to patch-the
interpreter address table. Each entry in the table contains four bytes. The
first two bytes contain the address of the p-routine jump address in the
interpreter jump table. The next two bytes contain the new jump address
that points to a replacement routine. The jump table is terminated with a
- -pair of-zero bvtes. - -

The first two routines P’ve enhanced are the p-machine ABI and NGI (inte-
ger absolute value and negate p-code) instructions. The original Apple Pas-
cal code is shown in comments to give you an idea of how much improve-
ment can be made to the p-code interpreter’s code. The original authors of
the 6502 p-code interpreter used the textbook method for taking the two’s
complement of a number: invert all the bits and add one. On the 6502,
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taking the two’s complement of a sixteen bit value using this method is very
inefficient. It’s much quicker to simply subtract the value you wish to negate
from zero (See “Signed Arithmetic on the 6502” in the May, 1983, issue
of MICRO or “Using 6502 Assembly Language”). By reorganizing the
code it was also possible to save a considerable amount of space by com-
bining the ABI and NGI p-routines.

The next p-code routine Ive included is a replacement for the ADI (add
integers) opcode. The original Apple Pascal code (included in the com-
ments) performs a lot of unecessary operations to add two integers. Not
only does the new routine require less space but it also executes quite a bit
faster. Like the ABI and NGI p-codes, ADI jumps to INCIPC to return
control to the Apple Pascal p-code interpreter.

The code for the subtract p-code, SBI, is a little different than that for the
ADI p-code. Unlike addition, which is commutative, the SBI routine must
subtract the item on TOS-1 from the item on TOS. Therefore the code for
SBI must be a little bigger, slower, and more complex than the ADI p-code
routine.

The logical OR and logical AND instructions (LAND and LOR) p-rou-
tines follow. They are essentially identical to the ADI routine except, of
course, the logical operation is performed instead of an addition.

The CHK p-code is emitted whenever you access an array element, use a
value with range limitations, or perform any string operations. Essentially
it performs two signed comparisons and causes an execution error if a value
is out of range. The authors of the 6502 p-code interpreter used a rather
bizzare method to compare signed values on the 6502. Ive substituted a
standard signed comparison routine which speeds up the operation of the
CHK p-code. Speeding up the CHK p-code is important because it is
frequently executed. The signed comparison comes straight out of “Using
6502 Assembly Language” (also see the May, 1983, issue of MICRO).

The Apple Pascal p-code interpreter uses a set of common subroutines for
the p-codes GTRI, LEQI, GEQI, LESI, and NEQI. Combined with their
non-standard method of comparing two’s complement numbers these rou-
tines are very slow. The code in the program listing from address
$012A..801FC is a set of replacement routines for these integer compari-
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sons. These routines were sped up by using individual routines for each
comparison (instead of passing parameters to and from a common subrou-
tine) and using the improved signed comparison routines. Unlike the other
routines in this package which are shorter as well as faster, these routines
are much longer than the equivalent routines in the p-code interpreter since
the Apple Pascal p-routines use a common subroutine for most of the
comparisons.

The next two routines in the interpreter patch package (MPI and DVI)
require a CCS Arithmetic Processor card for proper operation. These rou-
tines replace the integer muitiply and divide routines in the p-code inter-
preter with the hardware functions provided by the CCS card. Most readers
will ask why I didn’t include routines for the floating point operations as
well as the integer operations. As it turns out, the Apple Pascal floating
point format is a bit different from the AMD9511 format so a conversion
routine 1s necessary. When I first wrote these routines I included a format
conversion subroutine. Unfortunately, the dynamic range of the 9511 chip
is limited to — 10E — 19 to + 10E19 while the Apple Pascal system regularly
uses values in the range —10E28 to +10E28 (especially during floating
point I/O conversion) so the range limitation can cause some real problem:s.
One last fix I tried was to call the software routines if there was a range
problem and use the 9511 if the calculations fell within the precision of the
9511. The extra calculations required more time than the 9511 saved. There-
fore I didn’t include floating point routines in the p-code interpreter patch
program listing.

The last routine included in the p-code interpreter patch program is the
TIME routine. UCSD Pascal includes a special built-in TIME function that
returns the current time in 60ths of a second. The TIME routine reads the
Mountain Computer Apple Clock, converts the time value to 60ths of a
-second;- andretmthemmﬁrcl’asm{symm By settmg the “HAS-

CLOCK?” Boolean variable to true in the SETUP program you will be able
to write programs that can read the clock and take different actions depend-
ing upon the current time. Furthermore, with the TIME routine included
in the interpreter the Apple Pascal compiler will report how slow it is run-
ning (usually around 330 lines/minute). Since there is no TIME routine

provided in the current interpreter, comparing my version to Apple’s is
impossible.
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In order to actually patch the interpreter using this routine you must as-
semble the program using the UCSD 6502 assembler (without using
the “.ABSOLUTE” option) and change the codefile’s name to
“ATTACH.DRIVERS” Next you must put a copy of the “SYS-
TEM.ATTACH?” program (provided by the IAC and available from your
local Apple club or directly from the IAC) on the disk. Finally, you must
create an “ATTACH.DATA?” file using the program “ATTACHUD.CODE”
(also provided by the IAC). Follow the directions supplied in the docu-
mentation for these programs (or see the chapter on the Apple Pascal BIOS
in P-SOURCE) to create the “ATTACH.DATA” file. When it asks you what
device number you want to attach your driver to you should respond “140”
(unless you have attached some other user-defined device to this device
number). When the ATTACHUD.CODE program asks you if you want
the driver to be initialized at boot time you should answer “YES” This
boot-time initialization performs the patch to the mterpreter for you.

While only a few of the p-code routines were optimized here, most of the
p-routines in the p-code interpreter can be improved somewhat. In partic-
ular the load and store operations should be optimized as much as possible
since they’re executed considerably more often than any other single opcode.
Such experimentation will be left to the reader.
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Listing 7-1

PAGE - 1 INTERP FILE:INT,1.TEXT

00001 PROC  INTERP

Current memory available: 8644

00001 H

00001 H

00001 ; Apple Pascal interpreter Patches.

00001 ;

00001 : (c) Copyright 1982, Lazer MicroSystems, InC.

00001 H All rights reserved.

00001 :

0000! : Conceived and written by Randall Hyde.

00061 H Date:s 8/25/22

00001 ;

0000! 0001 HASAPU QU 1 ;Zero if no CCS card installed.
00001 COFO APUSLOT «EQU OCOF0  ;Slot # of CCS APU card
00001 0001 HASCLK QU 1 :%ero if no Mountain Clock card.
0000! CODO CLKSLOT B0 0CODO  ;SLOT # of Mountain Clock card.
00001 ;

00001 H

00001 : Interpreter variables

00001 :

00001 0050 BASE §20.1} 50 :p—code BASE register

0000! 0052 MP +EQU 52 :Mark stack pointer

00001 0054 JTAB «EQU 54 sJump table pointer

00001 0056 SEG «BQU 56 ;Segment register

00001 0058 IPC <EQU 58 ;p-code program counter
0000! 005A NP .BQU 5a ;Heap pointer

00001 005C kP QU 5C sProgram stack pointer
0000! O0SE BIGPARM .BQU S5E sValue returned by GBPARM
0000 H

00001 0088 MJLTOP1 QU 88 ;Operands used by multiply.
00001 008A MOLTOF2 U 8a

00001 008C MULTOP3 <EQU 8C

00001 ;

00001 :

00001 ; Temporary locations used by this code.

00001 :

000010000 PIR | .EQU 0

0000{ 0002 OPOODE QU 2

00001 0004 TEMPL «BQU 4

00001 0006 TEMP2 «EQU 6

00001 0008 TEMP3 QU 8

00001 0002 TEMP4 B0 0A

00001 :

00001 :

00001 : Interpreter locations.

,Ww, o H e e . v

00001 0100 STACK .U 00100

00001 DOOO JMPTEL LU 0D000 ;p—code address table
00001 D23B INCIPC2 U O0D23B  ;Increment IPC by 2 and return.
00001 D24D INCIPC <BQU 0D24D ;Increment IPC and return.
0000| DIFB EXECERR U ODIFB  ;Execution error.

00001 D1B7 RANGERR Mool 00187  :Range error.

00001 D279 HENDLJTAB +BEQU 0D279 ;Handle a jump in jump table.
gggg: D155 GBPARM QU 0D155 ;Gets a big parameter

357



Listing 7-1 (continued)

PAGE - 2 INTERP FILE:INT.].TEXT

00001 :

00001 H

00001 ;

00001 ¢ The following entry point corresponds to the protocol
00001 ; described in the ATTACH-BIOS Pamphlet distributed by the
00001 ; International Apple Core.

00001 ; The Read, Write, and Status entry points fix the stack and
00001 ; return.

00001 # The initialization code patches these routines into the
ogoo: i Apple Pascal p-code interpreter.

0000 H

00001 EO 00 ENTRY CPx 10 ;READ?

0002 FO** BEQ RS

00041 £O 01 CPX 1

00061 FO** BEQ s

00081 E0 04 CPX #4

000A| DO** BNE INITCODE

000C! :

000C! ; User program attempted to Read, Write, or check the status
000C| i of this device. Return a wnit off-line error,

000C| :

0006* 04

0002* 08

000C| A2 09 RWS LDX 9

000E! 60 RIS

00O0F | :

000F | ;

000F | ; INITOODE patches the Apple Pascal p-code interpreter to jump
000F | 7 to these routines instead of the code in the language card.
000F | H

600a* 03

000F| AD 89C0 INITCODE oA 0C089 ;Write enable RAM card
00121 ap 89co oa 0co89 ;by accessing $C089.
00151 H

00151 : Patch the interpreter p-code address table with pointers
00151 7 to the routines in this source file,

00151 7 The address table below consists of two word-pointer pairs.
00151 ¢ The first word is the address of the entry in the p-code
00151 ; intepreter address table, the next two bytes are the address
gOlg: 7 of the corresponding routine in this source file.

01 :

00151 A2 00 DX #0

0017 BD ***% MOVEADRS IDA ADRSTBL, X ;Get the address of the
001A] 85 00 STA PIR sentry in the p-code
001C| BD *#%* ma ADRSTBIA+] ,X ;address table,

001F| 85 01 STA PIR+]1

00211 05 00 CRA PIR ;Done if zero,

0023 | FO** BEQ ALIDONE

00251 H

00251 ; If the pointer address is not zero, transfer the next two
00251 i bytes to the address specified by the pointer saved in PIR,
00251 H

00251 A0 00 DY #0

0027 BD **%* A ADRSTBIA+2 ,X

002a1 91 00 STA (PIR) ,Y
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Listing 7-1 (continued)

PAGE ~ 3 INTERP FILE:INT.1.TEXT

002C!| C8 INY

002D| BD **** DA ADRSTRIA3 , X

0030} 91 00 STA (PTR},Y

00321 H

00321 ; Increment the index to the next pointer pair and repeat.
0032} :

00321 E8 INX

0033{ E8 X

0034) E8 INX

0035] E8 INX

00361 4C 1700 JMP MCVEADRS

0039] :

0039/ H

0039i ; Once the patches are made, renable the RAM card and return
00391 ; control to the p—code interpreter/ SYSTEM.ATTACH programs.
00391 :

0023* 1

00391 AD 80CO ALLDONE Lba 0C080 :Read enable RAM card.
003C! 60 RIS

003D} :

003D| :

003D! ; The following address table consists of several two-address
003D! ; pairs. The first address of each pair is the address of
003D1 ; of the table entry in the p-code interpreter. The second
003D{ ; address is the address of the p-code routine that is

003D| ; replacing the stock Apple routine.

003D] :

002E* 4000

0028* 3F00

001D* 3E00

0018* 3D00

003D| ADRSTBL

003D O0DQ **** ABIADR +WORD JMPFTBL,ABI ;ABS(n) function.
0041] 04D0 **** ADTADR .WORD  JMPTBIA+4,ADI ;ADD integers.

0045] 2aDQ **** SBIADR LWORD  JMPTBL+2A,SBI  ;Subtract integers.
00491 22D0Q #**** NGIADR JWCRD  JMPTBLA22,NGI sNegate integer on TOS.
004D| 08DQ **** LANDADR . ~HORD.... JMPTBI408,LAND. ..;Logical AND TOS, .. ... oo
0051 ] 1ADQ **** LORADR JWORD JMPTBI+1A,IOR  ;Logical OR TOS.
0055 10DQ **** CHRADR .WORD JMPTBI+10,CHK  ;CHK subrange bounds.
0059 88DQ ***x GEQIADR WORD JMPTBL+88,GEQI ;Test for integer >=.
005D| 8ADQ **** GIRIADR +.WORD  JMPTBI+8A,GIRI ;Test for integer >.
00611 90D0 ***% LEQIADR JWORD  JMPTBIA+90,LEQI ;Test for <=.

00651 92DQ *k** LESIADR JWORD JMPTBL+92,LESI ;Test for <.

00691 96D0 **** NEQIADR WORD JMPTBIA96,NEQI ;Test for <.

006D1 42D0 **** FJPADR JWORD JMPIBI+42,FJP ;False jump.
00714.-72D0Q. **kk BIPADR - 7 VHORD - IMPTBI#T72700P -~ yUncorditionzl Jump, ~
00751

00751 IF HASAPU=1

00751

0075| 1EDQ ***% MPIADR +JWORD JMPIBL+1E,MPI  ;Integer multiply.
00791 OCDO **** DVIADR sWORD JMPTRIHOC,DVI  ;Integer division.
007D1

007D «ENDC

007D|

007D1 JIF HASCLR=1
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Listing 7-1 (continued)

PAGE -~ 4 INTERP FILE:INT.]1 ,TEXT

007D!

007D| 12D1 #**** TIMEADR JWORD  JMPTEL+112,TIME
00811

00811 .ENDC

oo81|

00811 0000 JORD O

00831
00831
00831
0083 |
0083 |
00831
00831
oos3 |
00831
0083 1
00831
0083 |
00831
0083}
00831
ooss|
00831
oos3!
00831
00831
00831
o083 |
00831
0083 |
o083l
00831
0083 1
0083 |
o083 |
0083 |
00831
oos3 |
00831
00831
00831
0083 |
00831
0083 |
00831
00831
0083 |
00831
0083 |
0083 1|
0083 |
oos3|
003F* 8300
00831 BA
00841 BD 0201 DA STACK+2,X

Code to replace the Apple Pascal ABI and NGI instructions.
Original Apple Pascal code:

ABI PLA

BMI $0

NGI
#0FF
#1

XOR #0FF

INCIPC

The improved code is:

N WME NS B ND e %S NS M WE Me WE ME NS NG WE NI e M@ WS WS W NG MV WE NS WE e Ve NE WE e s N W W WE WP WE N e Ne N e e N

5
g

:Get the integer
son TOS,

360



Listing 7-1 (continued)

PAGE - 5 INTERP FILE:INT.1,.TEXT

00871 10** BPL ABIXIT :Is it positive?
00891
004B* 8900
0089] BA NGI TSX ;Negate integer
008a1 38 SEC ;by subtracting it
00881 A9 00 IDA #0 sfram zero.

008D!| FD 0101 SBC STACK+1 ,X

0090} 9D 0101 STA STACK+] X

00931 A9 00 LDA #0

00951 FD 0201 SBC STACK+2,X
00og! an 0201 ara STACK+2 . X

CUSS e vava aail SIEATL A

0087* 12
009B1 4C 4DD2
009E}
009E]
009E|
009E!
003E|
009E|
009E|
009E|
00SE|
009E|
009E|
009E|
009E|
009E!
009E|
003E|
009E!
009EI
009E|
009E|
009E|
009E]
009EI
009E|
009EI|
009E|
009E|
009E|
009EI
009E|
009E|
009E|
OQ9EL. .
009E|
00SEt
009E]
009E|
009E|
009E]
009E|
009EI
009EI

INCIPC

3
E
3

ADT- A4d twe integers on TOS.

ADI adds the integer at T0S-1 to the integer at TOS.
Both items are popped and the sum is then pushed onto the
p-machine evaluation stack. The stack frame for this
operation looks something like:

Before ADI:

“valuel + value2 |

|
rest of stack |
i

Since addition is commitative TOS can be popped and
added to TOS-1 on the stack. The original Apple (UCSD)
code fails to take advantage of the fact that data on
the stack can be accessed usinhg the X index register.
Apple's code pops TOS and stores it into some temporary
zero page location, pops T0S-1, adds them, and pushes
the result.

Original Apple Pascal code:

ADI PLA
STA TEMP

WE NE NG NP NS NS NS e WO P NP Ve NS UG N N NG NE M NE NG NE Me NE NG NE NP ME A NS NE WE NP MK N We W W Wy s g
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009E| : PLA

009EI H STA TEMP+1

009E! : PLA

009E| H TAY

009E| H PLA

009E| H TAX

009E| : TYA

009E| H C1LC

Q09E! H ADC TEMP

009E| ; TAY

009E| ; TXA

009EI H ADC TEMP+1

009E! : PHA

009EI H TYA

009E| ; PHA

009EI H JMP INCIPC

009E| H

009E| s Improved code:

009E] H

0043* 9E00

Q09E! BA ant TSX

009F! 18 CLC

00aD1 68 PLA :Add TOS to
00A11 7D 0301 ADC STACK+3 X ;TOS-1 and leave
00241 9D 0301 STA STACE+3 X sresult on TOS,
00”71 68 PLA

00281 7D 0401 ADC STACK+H4,X

00AB| 9D 0401 STA STACK+H4,X

00AE| 4C 4DD2 JMP INCIPC

00R1| ;

O0RLI :

00Rl1 | ; SBI- Subtract integer on TOS-1 from integer on TOS.
00BL | :

00Bl 1 H

O0RL | s Before:

Q0BLI ;

OORL | H

00R1 | H TOS |

00Bl| ;| I

00BL | ;| TOS-1 I

00Bl1 ; |——

00ELI : | rest of stack |

00BL | :

00BLI :

00RL | ; After:

OOEL | ;

00B1 | ;

00RL | ;| (TOS-1) - T0s |

00BLI ;| —

00BL1 ; | rest of stack |

00B1 ] ;

00B11 H

00Bl | ; Subtraction is a little more complicated than addition
00R1 1| ; because subtraction is not commutative. The data on TOS
OORLI : must be subtracted from the data on T0OS-1, This means
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00RL | ; the data on TOS cannot be popped off of the stack until
00B1 | ; the subtraction operation is complete.

00Rl1 | H

00B1 | :

00BL | : Original Apple code:

00B11 ;

00B11 : SBI PLA

0081 | H STA TEMP

00R1 | : PLA

OOREL | H STA TEMP+1

00B1 | H PLA

00E1 | ; TAY

00B1 1 ; PLA

00R1! : TAX

00B1 | : TYA

OOR11 H SEC

00R1 ! : SBC TEMP

OORL | : TAY

00RL! H TXA

00RB1| ; SBC TEMP+1

00B11I : PHA

00B1 ! : TYA

00BL | : PHA

OO0BLI ; JMP INCIFC

00R1 | :

00RL| ; Improved code:

00B1 1 H

00B1 | H

0047* B10O

00Bl| BA SBI TSX

00R2} 38 SEC

00E3| BD 0301 DA STACK+3 ,X ;Get TOS and
00B6! FD 0101 SBC STACK+1,X ssubtract it from
00B9! 9D 0301 STA STACK+3 ,X ;the value on TOS-1
00BC| BD 0401 LDA STACK+4,X ;The result is left
00BF| FD 0201 SBC STACK+2 X ;on TOS-1
00C21 9D 0401 STA STACK+4 ,X

00C61 68 PLA $T0S-1 becomes TOS.
00C7| 4C 4DD2 JVP INCIPC

Q0CA| H

00CAl ;

00CA| ; LAND- Logical AND.

00CA| :

00CA! ; The logical AND operation IS commutative, therefore
oocal ; the new code is very similar to that for the ADI
00CA| "+ pcode routifie. " T ‘ '
00CA |l :

00CA| : Original Apple code:

gocal :

00CA| H LAND PLA

00CA | H STA TEMP

00CA| : PLA

00CA| H STA TEMP+1

00CA| : PLA
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00CA| : TAX

0ocai H PLA

oocal H AND TEMP+1
oocal H PHA

00Cal : TXA

00CA| ; AND TEMP
00CA| H PHA

00CA| : JMp INCIPC
00CA| ;

oocal ; Improved code:

00CA | :

004F* CADO

00CA| BA LAND TSX

00CBI! 68 PLA

00CCi 3D 0301 AND STACK+3 ,X
00CF| 9D 0301 STA STACK+3 ,X
00D2| 68 PLA

00D3| 3D 0401 AND STACK+4,X
00D61 9D 0401 STA STACK+4,X
00D91 4C 4DD2 JMP INCIPC
00DC| :

80T ; LOR~ Logical (R.

00DC 1 :

00DC | ;

oonC | : Logical (R is also commutative, therefore it's
00DC | ¢ easy to perform the LOR operation.
00DC i ;

0aDC | ; Original Apple code:

00DC | ;

00DC | :

00DC | H LOR PLA

00DC | : STA TEMP
00DCl ; PLA

00DCl ; STA TEMP+1
(00)0 of ] H PLA

coDC | ; TAX

0QaDC H PLA

00DCl H CRA TEMP+1
00DC| : PHA

00DC| H TXA

oorncCi H ORA TEMP
00DC| : PHA

00DC | : JMP INCIPC
00DCH :

00DC 1 ; Improved code:

ooncC | ;

0053* DCOO

00DC| BA LOR TSX

00DDI 68 PLA

O0GDE| 1D 0301 ORA STACK+3 ,X
00Eli 9D 0301 STA STACK+3 ,X
00E4] 68 PLA

00E51 1D 0401 ORA STACK+4 ,X
00E8! 9D 0401 STA STACK+4,X
00EBi 4C 4DD2 JMP INCIPC
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OCEE|

00EEI

00EE| « INCLUDE INT.2

O0EE| H

OQEE] H

0CEE| H - bounds checking routine.

O0EE| H

COEE| ; The CHR p-code routine checks to make sure
OO0EE| ; that (TOS-1) <= (TOS-2) <= (10S). (T0S) and
Q0EEI| ; (T0S-1) are popped, (T05-2) is left on the stack.
Q0EE! : Since these three values are are signed 2's
00EE! ; compliment integers, a signed comparison must be
00EE| ; used. Apple's code does perform a signed comparison,
00EEl ; but the method used is quite bizarre. The code replacing
OOEE| ; the CHK p-code routine uses the standard method for
QOEE| ; signed comparisons (see "Using 6502 Assembly Language®
OCQEE! : by Randall Hyde, Chapter Six).

00EE!| :

00EE| :

O0EE| : Original Apple code:

00EE| :

00EE! H CHK PLA

00EE] : STA TEMP1

00EE| H PLA

00EEI| H STA TEMP1+1

00EE| ; PLA

OOEE! H STA TEMP2

00EEH ] PLA

O0EE| : STA TEMP2+1

00EE| ; TSX

00EE| H LDA STACK+1 ,X

O0EE| H STA TEMP3

00EE| H DA STACR+2 ,X

00EE| H STA TEMP3+1

00EE| : BOR TEMP2+1

00EE| H BMI $0

0QEE| : DA TEMP2+1

00EE| ; MP TEMP3+1

OOEE| : BCC $2

00EEI H BNE DORNGERR

O0EE!| : DA TEMP3

OOEEI : CMP TEMF2

OOEE| : BCS $2

00EE| H BCC DORNGERR

00EEI :

-QOEE}.. 2 $0 DA TEMP3+1

00EE| : BMI TORNGERR

00EEl :

O00EE| H $1 LDA TEMP1+1

OOEE| : EOR TEMP3+1

OOEE| : BMI $2

O0EE! H 1DA TEMP3+1

OOEE| ; ar TEMP1+1

OOEE| ; BCC $3

OOEE| H BNE DORNGERR
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00EEI H LDA TEMP
00EE| : (14 TEMP3
00EE]| : BCS $3
QOEEI ; BCC DORNGERR
00EE| H

OOEE| ; $2 DA TEMP141
00EEI H BPL DORNGERR
OGEEI H $3 JMP INCIPC
00EE! H DORNGERR  JMP RANGERR
00EE| :

00EE| ; The improved code is:

00EE| :

0057* EEOO

00EE| 68 CHK PLA

O00EF| 85 04 STA TEMP1
00Fl! 68 PLA

00F2| 85 05 STA TEMP1+1
00F4| 68 PLA

00F51 85 06 STA TEMP2
00F7! 68 A

00F8| 8 07 ST TEMD2+1
OOFA| BA TSX

00FB| ED 0101 DA STACK+1 ,X
OOFE| 8 08 STA TEMP3
01001 BD 0201 IDA STACK+2,X
0103| 8 09 STA TEMP3+1
0105] :

0105} : Check to see if TOS >= TOS-2
01051 ;

0105] a5 04 A TEMP1
01071 ¢5 08 MP TEMP3
01091 a5 05 #3571 TEMP1+1
010B! E5 09 SBC TEMP3+1
010D| 30*+ BMI CHK1
010F! 50%* BWC CHR2
01111 4C B/D1 ERROR] JMP RANGERR
0114} ;

010D* 05

01141 50FB CHK1 BVC ERRORL
01161 :

0116t # Now check to make sure than TOS-2 >= TOS-1
01161 H

010F* 05

01161 A5 08 CHK2 oA TEMP3
01181 C5 06 P TEMF2
011A] A5 09 F»". TEMP3+1
011C| E5 07 SBC TEMP2+1
011E| 30%* BMI CHK3
0120] 70EF BVS ERROR1
0122 4C 4DD2 ITSGOMD Jvp INCIPC
01251 :

011E* 05

01251 50EA CHK3 BWC ERRORL
01271 4C 4DD2 JMP INCIPC
012al H
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012a| H

0123l : Integer comparisons.

012a| H

012A1 : 'The integer camparisons which follow compare the signed
012A] ; integer on (T0S-1) with the signed integer on (T0S). TRUE
012A| ; (which is the value $01) is pushed if the comparison

012a] ; operation holds, FALSE is pushed otherwise. In either
012A] ; case, the two operands on TOS are popped before TRUE or
012al : FALSE gets pushed,

012al H

012al ; This code offers two optimizations over Ample’s code.
012Al ; First of all, standard signed comparisons were used instead SHHRR
012A1 ; of Apple's funny method for performing signed comparisons.,
012Al ; Second, individual routines were used instead of one routine
012al ; with a lot of extra tests. This helped increase the

012A1 : execution time of the individual routines at the expense of
012al ; a larger piece of code. The code for EQUI is not included
012al ; here since the routine in the Apple p-code interpreter is
012a] 3 fairly optimal.

012al H

012a] :

012a| : Note: after a sixteen bit compare of the form:

012al H

012aAl ; LDA VALUEL

012al : o1 VALUE2

012a] : LDA VALUE1+1

012al : SBC VALUE2+1

012A] H

012a] ; 'The V flag is equal to the N flag if VALUEL >= VALUE2
012a| H TherlagisnotequaltotheNflagifVAwm<VALUE2
012A1 H

012al ; Assuming that VALUEl and VALUE2 are signed, 16-bit,

012Aa] : 2's compliment numbers.

012a] H

012Al H

012al ;

OlZA: _1.GIRI- compares TOS-1 to TOS and push TRUE if T0S-1 > TOS,
012a : T
012A1 :

012al ; Note: this routine actually checks to see if TOS < T0S-1
012al H which is functionally the same comparison.

01221 H

005F* 2201

012a| BA GIRI TSX

012B| 68 LA

-032C4+ -DD- 0301 Co o STACE+3 X

012F| 68 PLA

01301 FD 0401 SBC STACK+4,X

0133] 30%* BMI GIRIO

0135 50** BWC PSHFLS0

01371 ;

01371 ; At this point N © V so T0S < T0S-1 (which means

01371 ; that (TOS-1) > TOS.

01371 H

01371 A9 00 PSHTRUO LDA $0
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01391 9D 0401 STA STACK+4 ,X
013C| a9 01 #0°- #1

013E! 9D 0301 STA STACR+3,X
01411 4C 4DD2 JMP INCIPC

01441 ;

0133* OF

01441 50F1 GTRIO BWC PSHTRUQ
01461 H

01461 ; At this point N = V so T0S >= T0s-1.
01461 ;

0135* QF

01461 a9 00 PSHFLS) DA 10

01481 9D 0301 STA STACK+3 ,X
014B| 9D 0401 STA STACK+4 ,X
014E! 4C 4DD2 JMP INCIPC

01511 :

01511 :

01511 :

01511 H

01511 ; LEQI~ Push true if TOS-1 <= 1TOS.
01511 .

01511 ; Note: This code actually checks to see if TOS >= TOS-1
01511 : which is functionally the same comparison.
01511 :

0063* 5101

01511 BA LEQI TSX

01521 68 PLA

01531 Db 0301 (01 STACK+3 ,X
01561 68 PLA

01571 FD 0401 SBC STACK+4,X
015A| 30** BMT LEQIO

015C| 50** BVC PSHTRU2
015El :

015E| 7 At this point N © V so T0S >= T0S-1
015EI :

015Ei1 29 00 PSHFLS2 DA 0

01601 9D 0301 STA STACK+3 ,X
01631 9D 0401 STA STACK+4 X
01661 4C 4DD2 JMP INCIPC

01691 H

015Aa* 0D

0169 50F3 LEQIO BWC PSHFLS2
016BI :

016BI ; At this point N = V so 105 >= TOS~1
016BI H

015C* 0D

016B! A9 01 PSHTRU2 DA $l

016D! 9D 0301 STA STACK+3 ,X
01701 A9 00 DA 0

01721 9D 0401 STA STACK+4,X
01751 4C 4DD2 JMP INCIPC

0178! ;

01781 :

0178l ;

0178l 7 GEQI Checks to see if TOS-1 >= TOS.
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0178l ;

005B* 7801

0178] BA GEQI TSX

01791 BD (301 IDA STACK+3,X
017C| DD 0101 P STACK+1 ,X
Q17F| BD 0401 1DA STACK+4,X
0182].FD 0201 SBC STACK+2,X
01851 30%* BMI GEQIO
01871 50%* BWC PSHTRUL
01891 H

01851 68 PSAFLSL PLA

0182l 68 PLA

018BI A9 00 DA #0

018D1 9D 0301 STA STACK+3 ,X
0190] 9D 0401 STA STACK+4 ,X
0193 4C 4pD2 JMP INCIPC
0196 | i

0185* OF

0196 S0F1 GEQIO BWC PSHFLS1
0187* OF

01981 68 PSHTRU1 PLA

01991 68 PLA

019a1 A9 01 DA 31

019C| 9D 0301 STA STACK+3 X
019F| A9 00 DA $0

01A1} 9D 0401 STA STACK+4,X
0124 4C 4pD2 Jp INCIPC
01a71

01A71 H

01A71 ; LESI- Pushes TRUE if TOS-1 < TOS.
01A71 :

0067* A701

0l1A71 BA LESI TSX

01A8| BD 0301 DA STACK+3 ,X
012B| DD 0101 (012 STACK+1 X
0lAE| BD 0401 IDA STACK+4,X
01R1] FD 0201 SBC . STACK+2 /X
01B4| 30** BMI LESIO
01B61 50%* BWC PSHFLS3
01B8I :

01B81 68 PSHTRU3 PLA

01R9| 68 PLA

01BA| A9 01 LDA #1

01BC! 9D (301 STA STACK+3 ,X
01BFI| 29 00 DA #0
61C1{-8D 0401 ‘ S Shh STACK+4 X
01C41 4C 4pDD2 JMP INCIPC
01C71 :

01B4* 11

01C71 S0EF LESIO BVC PSHTRU3
01C9!l ;

01B6* 11

01C91 68 PSHFLS3 PLA

01CA| 68 PLA

01CB! A9 00 1DA $0
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01CDI 9D 0301 STA STACK+3 ,X
01D0! 9D 0401 STA STACK+4,X
01D31 4C 4DD2 JMP INCIEC
01D6 | :

01D6 | ;

01D6| ; NEQI- Pushes TRUE if TOS-1 <> TOS.
01D6 | ;

006B* D601

0l1D6!| BA NEQI TSX

01D71 68 PLA

01D8! DD 0301 up STACK+3 X
01DB| DO** BNE PSHTRU4
01DD1I 68 PLA

O01DE| DD 0401 (0,13 STACK+4,X
OlEl| DO** BNE PSHTRUS
01E31 :

OlE3| A9 00 PSHFLS4 1DA #0

01ES| 9D 0301 SsTA STACE+3 ,X
01E8| 9D 0401 STA STACK+4 ,X
01EB| 4C 4DD2 JMP INCIPC
01EE! :

01DB* 11

OlEE| 68 PSHTRU4 PLA

OlE1* OC

01EF| A9 01 DPSHTRIS pa #1

01F11 9D 0301 STA STACK+3,X
01F4i 29 00 na 10

01F6! 9D 0401 STA STACK+4 ,X
01F91 4C 4DD2 JMP INCIPC
O01FCi :

01FCI :

01FCI H

O01FC| - :

01FCI ; The FJP and WP instructions are another couple of p-codes
01FCI ; that can benefit from a little optimization.
01FCI :

006F* FCO1

O1FC! 68 FJP PLA

01FDI 4A LSR A

01FE| 68 PLA

01FF| BO** BCS JMPIPC2
02011 H

0073* 0102

02011 C8 uJp INY ;Set Y-reg to one.
02021 18 cc

02031 Bl 58 DA (IPC) ,Y
0205] 30%* BMI JMPJTAB
02071 65 58 ADC IPC

02091 85 58 STA IPC

020B1 90** BCC JMPIPC2
020D] E6 59 INC IPC+l
020F| H

020B* 02

O01FF* QE

020F| 4C 3BD2 JMPIPC2 JMP INCIPC2
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02121
0205* 0B
02121 4C 79D2 JMRITAB
02151

02151

02151

02151

02151

02151

02151

02151

02151

0215}

02151

02151

02151

02151

0215]

02151

02151

02151

0077* 1502
02151 2C F1C0
0218 30FB
021Al

021A] 68
02181 8D FOCO
021E}| 68
02iF| 8D FOCO
0222| 68
02231 8D FOCO
0226 68
0227]| 8D FOCO
022A] A9 6E
022Ct 8D F1CO
022F |
022F| 2C F1C0 0
02321 30FB

02341 AD FOCO

0237! 48

02381 AD FOCO

023B| 48

023C| 4C 4DD2

023F!

023F |

w8 Ne 9o we N ~

e e We Ne Ne we W8 N

8

-

kg_
~e s we ~e

023Fi

007B* 3F02
023F! 2C F1CO
0242 30FB
0244| 68
0245! A8
02461 68
02471 aa
0248! 68

3

JMP

.LIST
JIF

APU functions.,

BIT
BML

PLA
STA
PLA
STA
PLA
STA
PLA
STA
LDA
STA

BIT

371

HNDLJTAB

These quys are only implemented if the HASAPU label is
equated to one., If order for this code to function
properly you must have a CCS arithmetic

card installed in the slot defined by APUSLOT.

Do the integer stuff first:

MPI- Multiply the two integers on TOS.

APUSLOT+1 sWait 'til FPU ready.
MPI

APUSLOT

APUSLOT

APUSLOT

APUSLOT

#6E ;9511 MUL opcode
APUSLOT¥1

APUSLOT+1

50

APUSLOT
APUSLOT

INCIEC

DVI- Divide integer on TOS-1 by integer. on TOS.

APUSLOT+1
DVI
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02491
024C!
024D!
02501
02531
02561
02581
025BI
025E|
02601
02631
02641
02671
02681
026B|
026B/
026B|
026BI
026BI
026BI
007F*
026B1
026E|
02701}
02711
02731
02741
02761
02771
02771
02771
02771
027a1
027CH
027E1
0280 |
02831
0285 |
02871
028al
o28cit
028E|
029114
02931
02951
02971
02971
02971
02971
02971
02971
02971
02991
029B!
029D1

8D FOCO
68

8D FOCO
8C FOCO
8E FOCO
A9 6F
8D FICO
2C F1C0
30FB
AD FOCO
48

AD FOCO
48

4C 4DD2

RRAVERRERRERRBE
83%5?8%8858285

e w0

-

. o w8

. WS %R N e s

16 INTERP FILE:INT

+ENDC
JIF

APUSLOT

APUSLOT
APUSLOT

#6F :Divide integers opcode
APUSLOT+1
APUSLOTH1

APUSLOT
APUSLOT

INCIFC

CLESLOT+3 :Get 10ths of a second
$OF ;and convert them to
A ;60ths of a secord by
TEMP3 smultiplying by 6.

TEMP3 +CIC from ASL above
;Save 10ths of a second.

and multiply it by 60.

CLRSLO™M3
$0F0
TEMP1
TEMP3
CLKSLOT42
TEMP1+1
TEMP3+1
CLRSLOT+1
TEMP2
TEMP4
CLRSLOT40
#1F
TEMP2+1
TEMP4+1

At this point locations TEMP3,.TEMP4+1 contain the time

multiplied by 16.
Make it times 32.
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029F | H

029F | : Add in the time multiplied by 16, 8, and 4 to create
029F | ; the value TIME*60.

029F | i

029F| A2 03 DX 3
02211 46 07 DIVDLOOP LSR TEMP2+1
02A31 66 06 ROR TEMP2
02A5] 66 05 ROR TEMP1+1
02a71 66 04 ROR TEMP1
02A9] 18 CIC

02AAl A5 04 Ina TEMP1
022C| 65 08 ADC TEMP3
022E| 85 08 STA TEMP3
02801 A5 05 DA TEMP1+1
02B21 65 09 ADC TEMP3+1
02841 85 09 STA TEMP3+1
02861 A5 06 DA TEMF2
02B8| 65 0A ADC TEMP4
02BA! 8 OA STA TEMP4
02BC| A5 07 1DA TEMP2+1
02BE} 65 0B ADC TEMP4+1
02C0! 8 0B STA TEMP4+1
02c2i ca DEX

02C31 DODC BNE DIVDLOOP
02C51 H

02C51 + Get the 10ths of a second value and add it in.
02C51 H

02C51 18 ac

02C6| 68 PLA

02C71 65 08 ADC TEMP3
02C9| 8 08 STA TEMP3
02CB| 90** BCC $0
02Cn| B6 09 INC TEMP3+1
02CF| DO** BNE $0
02D1] E6 OA INC TEMP4
02D3) DO** BNE $0
02051 B6 OB INC TEMP4+1
02D71 : '
02071 : Now store the time in the locations pointed at by
02071 ; TOS and TOS-1.

02071 :

02D3* 02

02CF* 06

02CB* OA

02071 68 $0 PLA

02D8|. 85 04, STA TEMP1
02Dai 68 PLA

02DBi 85 05 STA TEMP1+1
02DDI 68 PLA

02DEl 85 06 STA TEME2
020! 68 PLA

02E1! 65 07 STA TEMP2+1
02E3| AD 00 1DY #0
02E5] A5 08 LDA TEMP3
02E7! 91 04 STA (TEMP1) ,Y
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02E9| A5 0A i TEMP4
02EB| 91 06 STA (TEMF2) ,Y
02ED! C8 INY

02EEl A5 09 DA TEMP3+1
02F01 91 04 STA (TEMP1) ,Y
02F21 A5 OB na TEMP4+1
02F4! 91 06 STA (TEMF2) ,Y
02F6! 4C 3BD2 JMP INCIPC2
02FSI

02r91 ENDC

02F91 :

02F91 H

02F91 END
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Attaching Your Own Devices
to the Pascal BIOS

Modifying the Apple Pascal BIOS

When Apple Pascal was first released, many Apple owners were shocked to
learn that Apple Pascal only supported devices that were manufactured by
Apple or were completely hardware compatible with Apple’s device (which
was quite rare). After numerous complaints, Apple modified the operating
system in version 1.1 to allow foreign peripheral cards to operate with the
Pascal system.

The official document describing how to interface “foreign” devices to the
Apple Pascal system is:

ATTACH-BIOS for Apple II Pascal 1.1

written by Barry-Haynes.-It is reprinted-in the-appendix. This-manual pro- -

vides enough information that the advanced user can write his own drivers
for the Pascal system. I will use several concrete examples here to help
solidify the use of the AT TACH-BIOS routines and the FIRMWARE pro-
tocol for attaching devices to the Apple Pascal system version 1.1
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I/0 Overview

The Apple Pascal system supports four levels of I/O. These 1/O levels are
grouped into a hierarchy as follows:

Pascal High Level I/O (including READLN,
WRITELN, GET, and PUT|.

These routines are written in Pascal and are the

]
l
!
I
1
: main reason /O is so slow in the Pascal CS.

I
o
IVI
Pascal low-level I/0O. Includes the BLOCKREAD,

BLOCKWRITE, UNITREAD, UNITWRITE,
UNITCLEAR, and UNITSTATUS routines.

BLOCKREAD and BLOCKWRITE are written in
Pascal, so they tend to run quite slowly. The
UNITxxx calls all have their own p-codes so

they run fairly fast.
o
ly!

RSP (Run time support package). These routines,
written in 6502 assembly language, are called
by the interpreter code for the UNITxxx routines.
The RSP checks the legality of the parameters
passed by the UNITxxx routines, reformats the
calls for the BIOS routines, and performs certain
code translations (like expanding the DLE
{blank compression| characters, adding
linefeeds to carriage returns, check for EOF,
etc.).

[

I

ly!
BIOS level. This is the lowest level of I/O. This is :
[
|

the point that you attach your drivers to.

Figure 8-1
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There are two standard methods used to attach a driver to the Pascal system.
You can use the “SYSTEM.ATTACH” method to load your driver into
RAM at boot time, or you can use a special “FIRMWARE” protocol on
the interface card ROM on your peripheral device.

The “SYSTEM.ATTACH” method has the advantage that it is easy to
reconfigure the system at will. Since the drivers are in RAM bugs can be
fixed easily simply by updating a disk. Furthermore, you aren’t restricted to
256 bytes to 2K of code for your driver. Theoretically a driver using the
“SYSTEM.ATTACH” method could be up to 32K long. There are three
principie disadvantages to the “SYSTEM.ATTACH?” method. First, every
byte of RAM utilized by the driver is subtracted from the user’s available
RAM. So although you can write drivers 32K long, doing so would severely
limit the amount of memory left for running application programs. Second,
the “SYSTEM.ATTACH” method slows the boot process down by several
seconds. This is a minor annoyance, but the average Pascal user will certainly
notice it at boot time. Finally, if the driver is rather large, or the user loads
a bunch of drivers into memory at once, an eight kilobyte block of memory
from locations $2000 to $3FFF must be left unused in the event the user
needs to use HIRES graphics. To prevent memory contention the person
attaching a driver to the system must allow for the HIRES page or serious
trouble may develop if an attempt to use HIRES graphics is made. This 8K
is totally wasted if the user never uses HIRES graphics. Luckily, most drivers
are rather small and the user rarely loads in more than one driver, so this
problem shouldn’t occur very often.

The “FIRMWARE?” protocol has the advantage that it is instantly recog-
nized at boot time, doesn’t use up any user RAM, and doesn’t create any
memory contention problems (unless it’s poorly written). The firmware
protocol suffers from two main disadvantages: it requires ROM (and the
associated support circuitry) which is certainly more expensive than a disk-
ette,-and-# a-bug is found in the software, updates-are very costly. A fiat
(and possibly fatal) disadvantage is that you are limited to a maximum of 2
1/4 kilobytes of space for the driver without resorting to exotic bank switch-
ing techniques.
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Creating Drivers Using the 'SYSTEM.ATTACH’’ Method

To use the “SYSTEM.ATTACH” method you must obtain a copy of the
ATTACH-BIOS disk from your local Apple club, the Call — A.PPL.E user’s
group, or the International Apple Core (IAC). This diskette includes the
ATTACH-BIOS documentation mentioned previous in addition to the
SYSTEM.ATTACH and ATTACHUD.CODE programs required to use
the SYSTEM.ATTACH method to attach user devices to the Pascal system.

To use the SYSTEM.ATTACH method you must include three files on your
boot diskette: the “SYSTEM.ATTACH” program provided on the ATTACH-
BIOS disk, an ATTACH.DRIVERS file containing the 6502 assembly lan-
guage drivers for your device, and the ATTACH.DATA file that holds cer-
tain information for the user defined device drivers. The ATTACH.DATA
file is created using the ATTACHUD.CODE (attach user device) program
found on the ATTACH-BIOS disk. During the boot process the SYS-

TEM.ATTACH program is the first program executed {even before SYS-

TEM.STARTUP). This program reads the ATTACH.DRIVERS and
ATTACH.DATA files and patches the user device drivers into the operating
system.

User defined device drivers must be written in 6502 assembly language
using the Pascal Assembler. They cannot use the “.ABSOLUTE” option
since they are relocated as they are loaded into the system at boot time. All
drivers must be assembled separately (if you are attaching more than one
driver to the system) and may not contain any external references. The driver
must be completely self-contained. If you need to create an
ATTACH.DRIVERS file with more than one driver you must assemble the
files separately and link them together using the Pascal librarian program.
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Each driver uses the following organization:

Initial entry point > AN

— » Code to decipher call type.

Code for Unitread —» ——
Code for Unit write ——» ——

Code for Unit clear —»

Code for Unit status—»

Figure 8-2
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Whenever a user-defined I/O device is referenced the RSP JSR’s to the initial
entry point in the user device driver. The initial entry point must figure out
what type of I/O operation is being requested based on the contents of the
X-register. Upon entry into the user device driver the X-register is decoded
as follows:

0 — Read operation

1 — Write operation

2 — Initialization call (UNITCLEAR)

3 — Status call.

A code segment to handle this decision making process might be:

s vErEm S ™ . ox ba 4
LT ARCUW S & L+ musev ke 1?

ENTRY CPX 80
BEQ USERREAD
CPX #2
BCC USRWRITE 3If XREG < 2 it must be 1.
BEQ USERINIT 3iIf XREG = 2

i

H

5 At this point vou must be performing a UNITSTATUS
y operation.

Additional parameters to these routines are passed on the 6502 hardware
stack. The number and meaning of the parameters passed on the stack depends
upon the type of call being made (read, write, init, or status) and whether
this is a driver replacing the CONSOLE:, REMIN:, REMOUT:, PRINTER:,
a disk drive, or one of the user defined devices (unit numbers 128..143).

Replacing the CONSOLE: Driver

The CONSOLE: driver requires considerable care in its implementation.
First of all, a special entry point must be made for the console check routine
that handles the type ahead buffer. Second, due to the interaction between
the Apple’s keyboard and the rest of the system there are special initialization
steps which must be taken.
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For the CONSOLE: driver, the Accumulator is used to pass the character
read or written to the console device, the Y-register contains the UNIT
number (usually unit numbers one and two are attached to the console
driver, but you can hook the PRINTER : and REMxxx: devices to this driver
as well. The Y-register will let you decode which device is requesting I/O),
and the X-register contains the operation desired. On exit the Accumulator
passes the data (if this is a read operation) back to the calling routine and
the X-register contains the IORESULT (zero if no error).

The entfy points for the CONSOLE: driver should look something like:

CONCHK JMP CONSCHK
ENTRY CPX #0
BEQ CONREAD
CPX L 4
sCC CONWRITE
BEW CONINIT

CONSTATUS does here

- s v e

The CONSCHK routine should check the console input device and see if
a character is available. If it is, then the character should be read and buffered
up in the type ahead buffer. The normal entry point for the CONSOLE:
driver is located three bytes after the start of the driver routine. Therefore,
there’s just enough space-at the beginning of the driver for a single JMP
instruction to the console check routine. The normal driver code should
immediately follow the JMP to the console check subroutine.

CONSOLE: read and write calls only have the return address sitting on the
hardware-stack. -All- data- passed-to-and-from the- routines-is passed-in the -
6502 registers. Init and status pass parameters to the driver routine on the
stack (as well as in the registers). If the X-register contains two then the call

is an initialization call and the data passed on the stack is:
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SP

Return

Address

SYSCOM

Pointer

BREAK

Pointer

Il

Figure 8-3

As usual, the 6502 return address is sitting on the top of the hardware stack.
This return address must be popped off of the stack and saved in a couple
of temporary locations. The next two bytes on the stack form a pointer to
the system’s communication area (SYSCOM). It 1s the responsibility of the
CONSOLE: init routine to pop this pointer off of the stack and save it in
locations $F8 and $F9. Immediately above the SYSCOM pointer lies the
pointer to the break vector. The console routine must jump to this location
whenever the break key is pressed (currently shift-control-P on the Apple
IT; shift-control-2 on the Apple //e). This address should be popped and
stored into locations $BF16 and $BF17. Once the break and syscom vectors
have been popped and stored the init routine should push the return address
back onto the stack, load the X-register with zero (no error), and execute
an RTS instruction. A typical CONSOLE: status routine might look some-
thing like:
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CONINITPLA

5TA TEMP
PLA

874 TEMP+1
PLA

STA oF8
PLA

8TaA @Fg
PLA

87TaA @BF18
PLA

5TA eBF17
LDaA TEMP+1
PHA

LDA TEMP
PHA

LDX ®2

RTS

Note that the low order byte is popped off of the stack before the high
order byte is popped.

The CONSOLE: status routine, just like the CONSOLE: init routine, expects
to find three words of data sitting on the stack. The word on the top of
stack s the 6502 return address (which must be popped and saved). Imme-
diately above the return address is the “control word” The control word
uses the following format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bit-# = 1 for Unitcontrol
Bits reserved for user Bit #1 = 0 for Unitstatus

Bits reserved for the system Bit #0 = 1 for input
Bit #0 = 0 for output

Figure8-4

If bit number zero is one then the status of the CONSOLE: input is being
checked. If bit number zero is zero then the output status is being checked.
Bit number one is used to determine the type of call. If bit number one is
zero, then a unitstatus call is being made. If bit number one is one, then a
unitcontrol call is being made. Bits two through twelve are reserved for use
by the system and bits thirteen through fifteen are reserved for the user.
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The next byte on the stack is a pointer to the status record. If a unitstatus
call is being made, then the CONSOLE: status routine should return the
number of characters buffered in the direction specified. For example, if this
is an input status request you should return the number of characters cur-
rently buffered in the typeahead buffer in the word pointed at by the third
word on the stack. If you have not implemented a type-ahead buffer then
you should return one if a console character is ready and zero if no character
is ready. If an output request is being made you should return the number
of characters being buffered in the output direction. If you haven’t imple-
ment a “printer” buffer on the CONSOLE: output you should store zero
in the word pointed at by the status record pointer. An example of a CON-
SOLE: status routine is:

CONSTAT PLA
STA TEMP
PLA
STA TEMP+1
PLA
STA CNTRLWRD
PLA
S5TA CNTRLWRD+1
PLA
STA STATREC
PLA
STA STATREC+1
4]
LDA CNTRLHWRD
AND #2
iCheck for UNITCONTROL
BNE UCNTRL

Unit status here.

e an v

LDA CNTRLHWRD
LSR
iCheck L.0, bit
BCC OUTSTAT
LDY #0
LDA NUMINBUF
iGet # of chars in buffer
STa (STATREC) Y
INY
LLDA #Q
STA (STATREC) +Y
JMP KITSTAT
3
OUTSTAT LDY ®Q
TYA
STA (STATREC) »¥
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iNo output buffer

INY

STa {(STATREC) ¥
L
KITSTAT LDA TEMP+1

PHA

LDA TEMP

PHA

LDX #0
iNo errors

RTS

é MOTE: Unit contrel is totally defined by the user.

Input data received from the console device must be returned with the H.O.
bit cleared since Pascal uses the seven-bit ASCII code. Output data may
contain bytes which have their high order bits set. Your output routine
should interpret this data and act accordingly. If your output device requires
seven bit ASCII data then you should strip the H.O. bit. If your output
device responds to certain codes in the range $80..$FF then you should
pass the data unchanged.

The RSP (run-time support package) will send both upper and lower case
to the console output device. If it cannot handle lower case your driver must
map lower case to upper case. This is accomplished using the code:

LCZ2uUC CMP #'"a"
sCC %0
AND #ADF
$0

The CONSOLE: output routines must recognize, and respond, to certain

characters in a predefined fashion. The requirements are:

a) CR (HEX OD) A carriage return should move the cursor to the begin-
ning of the current line. It must not move the cursor down a line.

b) LF (HEX 0A) A line feed should move the cursor to the next line but
it should not change the horizontal position. If the cursor is on the last
line of the screen when the LF is transmitted, the screen should scroll
up one line and the bottom line should be cleared.
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<)

BELL (HEX 07) If possible, a sound should be made (preferably a beep)
when this character is received. If a sound cannot be made the BELL
character should be ignored.

d) SP (HEX 20) A space character should move the cursor one position to

e)

f)

the right, overwriting the data the cursor is currently on top of. If the
cursor is in the last column of the current line then the CONSOLE:
driver should leave the cursor in its current position after placing a space
at the cursor position. If the cursor is in the last column of the last line
on the screen then the screen should not scroll and the cursor should be
left in the last column as above. These are the most desirable actions. In
reality, any attempt to write beyond the last column on the display is
undefined and almost anything is allowed. Keep in mind, however, that
user programs often attempt to write beyond the last column so your
driver should be rather robust about handling this situation.

NULL (HEX 00) When a null character is sent to the screen it should
be ignored. If possible, you should delay the amount of time required
to print a normal character on the screen.

All printable characters (HEX 20..7F) should be treated exactly like the
SP character.

g) The Apple Pascal Operating System Reference manual contains a dis-

cussion of the special characters and how they must be treated on pages
199-216. You should consult this manual for additional details.

Additional CONSOLE: input requirements:

2)

The RSP handles echoing characters to the console. The characters typed
at the keyboard should not be echoed to the screen by your driver.

b) The start/stop character (usually control-S, but it is redefinable) must be

detected and processed by CONCK. The program should loop in CONCK
until either the start/stop character is received again or the break character
is received. Locations $F8 and $F9 in zero page point at the SYSCOM
area. The start/stop character is located at this location plus 85. To access
the start/stop character you would use the code:

LDY #85
LDA ($FB) .Y
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The start/stop character should never be returned to the RSP.

¢) The flush character (offset 83 from the beginning of SYSCOM) will stop
all echoing to the console until a second flush character is received.
CONCK must detect the flush character and set a flag to tell the console
output routine to ignore characters while the flag is set. If a system reset
occurs or the break key is encountered, the flush flag should be reset.
Flush should only stop output to the console, other processing should

continue. The flush character, like the start/stop character, must not be -~

returned to the RSP.

d) The break character should cause CONCK to jump to the location whose
address is stored in locations $BF16 and $BF17. This location is stored
in locations $BF16 and $BF17 by the console init routine. Offset from
syscom for the break character is 84.

e¢) The type-ahead buffer must be maintained by the CONCK routine.
Every time the CONCK routine is called it should check the Apple’s
keyboard to see if a character is available. If a key has been pressed it
should be stored into the type-ahead buffer. When the console read
routine is called characters should be taken from the type ahead buffer
and returned to the RSP.

For more information on the requirements of the CONSOLE: driver con-
sult pages 199—-216 of the Apple Pascal v1.1 Operating System Reference
Manual.

Replacing the PRINTER: Device (Unit 6)

The Apple Pascal operating system supports a listing device called PRINTER:.

e Thrsmmrsmcrvcd“forafmrdtopyhsmgdcmcﬁ)rnscmhsmngpmgrmw“

and for data output from within programs. The PRINTER: device is auto-
matically attached to the system during the boot sequence if the BIOS
determines that an Apple Parallel interface, communications card, or “firm-
ware” card is present in slot number one. If you do not have one of the
Pascal-compatible cards in slot one, or you wish to run your printer out of
another slot, you will need to re-write the printer driver and attach it to unit
number six.
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The PRINTER: driver follows standard driver protocols, the first byte(s)
of the driver routine must contain the first instruction of the initial entry
code. Upon entry into the PRINTER: driver your code must check the X-
register to determine what type of call (read, write, init, or status) the current
invocation happens to be.

If a write operation is being performed the character to be written to the
PRINTER: device is passed in the 6502 accumulator. Therefore care must
be taken in the initial entry code to preserve the 6502 accumulator in the
event this is a write operation. The interpreter and RSP filter out and trans-
form certain character like the blank compression codes and the EOF char-
acter. The RSP also adds line feeds to carriage returns automatically for you.
If your printer must have an entire line of data transmitted at once, your
driver must buffer the data up and transmit it once a CR-LF sequence is
received.

The Pascal system assumcs that the printer responds to three ASCII char-
acters: CR, LF, and FF (carriage return, line feed, and form feed). The CR
character should simply move the printhead to the beginning of the current
line. It must not perform an automatic line feed. If your printer forces a
CR-LF sequence whenever a CR is encountered you should filter out the
LF that follows the CR character (or use the line feed program found on
APPLE 3:). The FF (form feed) character should advance the printer to
the top of the next page and position the print head at column one of the
first line on the new page. If your printer hardware doesn’t support the FF
character you should attempt to emulate this feature in software by counting
output lines. If this isn’t feasible, print a CR followed by one or two LF
characters upon receipt of a form feed character.

The PRINTER: init entry point should perform any necessary hardware
initialization, clear any characters buffered up (if you have a buffered printer
interface for example), and output a CR-LF sequence to the printer. As
with all driver routines, the IORESULT code should be returned in the X-

register.

The input entry point for the PRINTER: driver should normally return
with a completion code of three in the X-register. If your PRINTER: device
can be read, then the character should be returned in the 6502 accumulator
with the X-register containing zero if an I/O error didn’t occur.
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The PRINTER: status call pushes two words onto the stack before trans-
ferring control to the PRINTER: driver. The stack setup is identical to the
CONSOLE: stack set up. Your PRINTER: status routine should return
the number of bytes buffered in the first word of the status record. Make
sure you check the direction of this request (especially if your printer driver
is output only) in the control word before returning any value. If you cannot
determine this value then return zeroes in the first word of the status record.
Don’t forget to push the return address back onto the stack and load the X-
register with-the 1/0O completion call before executing an RTS instruction.

Replacing the REMOUT: and REMIN: Drivers
(Units 7 & 8)

The REMOTE: unit was originally intended for data communication pur-
poses via an RS-232 interface device. However any device, be it modem,
speech synthesizer, or whatever you’ve got, can be attached to the REMIN:
and REMOUT: drivers. The only restriction is that the REMOTE: device
should be capable of handling ASCII data (as opposed to pure binary data)
since the RSP massages the data sent to the REMOTE: device. Blank
compression codes are expanded, EOF is handled by the system, and line
feeds are appended to carriage returns. If your device cannot handle line
feeds after a carriage return then your driver must strip any line feed which
immediately follows a return out of the output stream.

Parameters are passed to the REMOTE: driver in a fashion identical to that
for the PRINTER: driver. Data is passed to REMOUT: in the 6502 accu-
mulator, data is returned from REMIN: in the accumulator, init requires
no parameters (except IORESULT in the X-register upon return), and the
remote status call passes its data on the stack and is handled in a fashion
identical to that of the PRINTER: and CONSOLE: drivers.
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Attaching Drivers to Block Structured Devices
(Units 4,5,9..12)

The block devices (units 4, 5, 9, 10, 11, and 12) are typically reserved for
disk or similar devices. The UCSD/Apple Pascal system assumes the disk
device is a zero-based consecutive array of 512-byte logical blocks. All Apple
Pascal disks must conform to this logical structure regardless of their actual
physical structure. The driver must convert this Pascal block number to the
track/sector values required by the specific hardware. This scheme allows a
wide variety of devices to be attached as a disk driver to the Pascal system.

The attached driver, due to the way the system operates, cannot be the boot
device. You must continue to boot off of the Apple’s 5 1/4” floppy disk.
Vendors or users who want to boot off of some device other than an Apple
drive should contact Apple vendor support for additional instructions.

The Apple Pascal system accesses the disk using the UNITREAD and UNIT-
WRITE routines. When accessing a block structured device five parameters
are passed to the block device driver: a unit number, a control word, a buffer
address, a byte count, and a block number. For read and write calls the stack
looks something like:

(High memory)

TOS — =»

Figure 8-5
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As usual the return address must be popped and saved while the other
parameters are popped and saved. The unit number is passed in the 6502

accumulator. The drive number found on the stack 1s a drive number for
Apple’s 5 ¥4" floppy disk drives and should be ignored.

The disk init routine has no parameters other than the unit number in the
6502 accumulator. Any hardware/software initialization required should be
performed during this call. _

The stack setup for the status entry is identical to that for CONSOLE..

Status requests should return the following in the status 1.
Status requests siowa rCturi Ui 1ouowing i uic status récora:

Wordl: Number of bytes buffered
in the direction asked for.
Return zero if you have no
way of

checking.
Word2: Number of bytes per sector.
Word3: Number of sectors per track.
Word4: Number of tracks per disk.

When a unitwrite is performed to the disk drive with a byte count that is
not an even multiple of 512 bytes, you are allowed to write out a full block
of 512 bytes if that is convenient. However, if a unitread is being performed
you are not allowed to read a full block into the memory buffer if the byte
count is less than 512. Attempting to do so may wipe out variables and
code on the Pascal stack. If the byte count MOD 512 is not equal to zero
you will have to bulfer the Tast sector read into a local data area and move
the last portion of data into the buffer using a 6502 move routine.
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Attaching User Defined Devices to the BIOS
(Units 128-143)

Units 128-143 are reserved totally for user-defined applications. Their usage
is totally user-defined except that parameters are passed to the user device
exactly like the block structured devices. This allows you to connect a disk
drive or similar device to the system. Examples of several device drivers
appear in the listings.

Attaching Your Drivers to the System

Apple Pascal v1.1 supports a special boot-up protocol to handle attaching
user defined devices to the BIOS. As you probably recall, Apple Pascal
executes the “SYSTEM.STARTUP” program before control is returned to
the user at the system level. This allows the programmer to create a “turnkey”
system that automaticaily executes a program when the system is booted.
Attaching drivers to the system is handled in a similar fashion. A special
program, “SYSTEM.ATTACH?”, is executed when the system is booted
(even before “SYSTEM.STARTUP” is executed). SYSTEM.ATTACH reads
two files on the disk, “ATTACH.DATA” and “ATTACH.DRIVERS?” and
then patches the operating system with the user defined drivers kept in
ATTACH.DRIVERS. The ATTACH.DATA file contains information used
by SYSTEM.ATTACH to determine which drivers are to be patched. The
previous sections in this chapter described how write the device driver;
organizing these drivers on the boot diskette is all that remains to be done
in order to make your driver functional.

The first step to place the SYSTEM.ATTACH program on your boot disk-
ette. SYSTEM.ATTACH is found on the ATTACH-BIOS diskette distrib-
uted by the International Apple Core. You must obtain a copy of this
diskette in order to attach your own drivers to the system. When SYS-
TEM.ATTACH executes it reads the two files ATTACH.DRIVERS and
ATTACH.DATA.

ATTACH.DRIVERS contains the 6502 code for your driver programs. If
you wish to attach more than one driver to the system you must assemble
the files separately and combine them into a single file using the LIBRARY
program found on the Apple3: diskette. Typically you would copy your first
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driver into slot #0 of the ATTACH.DRIVERS file, your second driver
would be copied into slot #1, etc.. This facility lets you attach drivers written
by other vendors to your drivers as well as combine drivers written by

different vendors into a single ATTACH.DRIVERS file.

The ATTACH.DATA file is read by the SYSTEM.ATTACH program to
determine what drivers must be patched into the system. ATTACH.DATA
is created by executing the ATTACHUD.CODE (attach user device) pro-

gram found on the disk distributed by the International Apple Core. After

X)ecuting ATTACHUD.CODE you will be given the prompt:

Aprle Pascal Attachud [1.11
Enter name of attach data file:

You should respond with the name of the output file followed by return.
Unless you already have an ATTACH.DATA file on the disk and you don’t
want to delete it you should enter ATTACH.DATA to this prompt. This
will cause the ATTACHUD.CODE program to write the data out to the
ATTACH.DATA file for you. If you make some sort of error while entering
data into the ATTACHUD program ATTACHUD will prompt you to re-
enter the data.

The next two prompts will ask you if your driver can reside in the HIRES
graphics pages. First you will be asked if your driver(s) will ever use the
$2000..$3FFF (page one) HIRES page. If you answer no then SYS-
TEM.ATTACH will assume that the driver can be loaded into the HIRES
graphics page. The second question asks you if if the driver will ever be
used with the HIRES page two memory buffer. Answering no will inform
the SYSTEM.ATTACH program that your driver can be loaded into the
- -$4000.:$7FFF memory range. ,

Answering no to cither of these questions will allow the SYS-
TEM.ATTACH program to load your drivers into the HIRES graphics
memory buffers. This can produce disastrous results if the user attempts to
use HIRES graphics while your drivers are in memory. On the other hand,
if you answer yes to these questions and HIRES graphics are never used,
eight to sixteen kilobytes of user memory will be removed from the system.
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This is a considerable chunk of memory to lose to an already-starved system.
Careful thought must go into the answer of this question. Perhaps you
should create two systems: one for an execute-only environment where you
will be executing programs using the Turtle Graphics package; and one for
systems which will not be using the graphics system. It should be pointed
out that most drivers are quite small and will never be big enough to encroach
on the HIRES memory space anyway. But keep in mind that if you attach
several drivers, especially drivers from different vendors, your drivers may
go beyond the (approx.) four kilobyte limit.

The next question you will be asked is the name of the driver. The name
you should enter is the name of the assembly language program. This is the
name following the .PROC pseudo opcode at the beginning of your driver
program. If you hit return at this point the ATTACHUD program will
terminate without creating the ATTACH.DATA file. After you enter the
driver name you will be asked which unit numbers should refer to the
specified device driver. Valid unit numbers are 1,2, 4..12, and 128..143.
Entering a number outside this range will produce an error message.
Attempting to attach a character oriented unit (1,2,6,7,0r8) to ato the
same driver a block oriented device is attached to also produces an error
message.

The next question ATTACHUD asks you is if you would like the unit to
be initialized at boot time. If you answer yes, the init entry point will be
called by the SYSTEM.ATTACH program. If you answer no then the call
to UNITCLEAR (which calls then init entry point) will not be made.

After answering yes or no to the initialization question you will be asked if
you want another unit number to refer to this device driver. This allows you
to connect two units to the same device driver. For example, if your software
makes considerable use of the PRINTER: unit and you wish to install your
software on a system without a printer you could attach unit number six
(the printer) to the CONSOLE: unit so that all output goes to the screen
instead of the printer (which would cause a unit offline error). If you answer
yes to this question you will be asked the number and whether or not you
want it initialized. If you already told the system to initialize the driver
there’s no sense in having it re-initialized here.
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When you answer no to the “another unit number” question you will be
asked if you want the driver to start on a certain byte boundry. If your driver
needs to be byte-aligned you should answer yes, normally you should simply
answer no.

Finally you will be asked if you want to attach another driver to the system.
If you answer yes the program will be repeated, otherwise the program will
terminate saving your data file to diskette. Each driver you attach must be
preseit in the ATTACH.DRIVERS file. The individual drivers must be
linked together using the LIBRARY program as previously mentioned.
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Appendix

ATTACH-BIOS Document
for Apple Il Pascal 1.1

By Barry Haynes
Jan 12, 1980

This document is intended for Apple II Pascal internal applications writers,
Vendors and Users who need to attach their own drivers to the system or
who need more detailed information about the 1.1 BIOS. It is divided into
two sections, one explaining how to use the ATTACH utility available
through technical support and the other giving general information about
the BIOS. It is a good idea to read this whole document before assuming
something is missing or hasn’t been completely explained. This document
is intended for more advanced users who already know a fair amount about
I/O devices and how to write device drivers. It is not intended to be a simple
step by step description of how to write your first device driver, nor does
it claim to be a complete description of all there is to know about the Pascal
BIOS.

The Apple Pascal UCSD system has various levels of /O that are each
responsible for different types of actions. It was divided at UCSD into these
levels to make it easy to bring up the system on various processors and also
vitious eonfigirations of the same processor and yet tave things fook the
same to the Pascal level regardless of what was below that level. The levels
are:
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LEVEL

Pascal

RSP (Runtime Support Package)

BIOS (Basic I/O Subsystem)

TYPES OF 10 ACTIONS

READ & WRITE

BLOCKREAD & BLOCKWRITE
UNITREAD & UNITWRITE
UNITCLEAR

UNITSTATUS

This is part of the interpreter and is
the middle man between the above
types of I/O and the below types of
I/O. All the above types are translated
by the compiler and operating system
into UNITREAD, UNITWRITE,
UNITCLEAR and UNITSTATUS if
they are not already in that form in
the Pascal program. The RSP checks
the legality of the parameters passed
and reformats these calls into calls to
the BIOS routines below. The RSP
also expands DLE (blank suppres-
sion) characters, adds line feeds to car-
riage returns, checks for end of file
(CTRL C from CONSOLE:), mon-
itors UNITRW control word com-
mands, makes calls to attached devices
if present, echoes to the CONSOLE:.

This is the lowest level device driver
routines. This is the level at which you
can attach new drivers to replace or
work with the regular system drivers
and also attach drivers for devices that
will be completely defined by you.
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I. RECONFIGURING THE BIOS TO ADD YOUR OWN
DRIVERS USING THE ATTACH UTILITY

INTRODUCTION

With the Apple Pascal 1.1 System (both regular and runtime 1.1), there is
an automatic method for you to configure your own drivers into the system.

This method requires you to write the drivers following certain rules and
to use the programs ATTACHUD.CODE and SYSTEM.ATTACH pro-

vided through Apple Technical Support. At boot time, the initialization

part of SYSTEM.PASCAL looks for the program SYSTEM.ATTACH on
the boot drive. If it finds SYSTEM.ATTACH, it Xecutes it before Xecut-
ing SYSTEM.STARTUP. SYSTEM.ATTACH will use the files
ATTACH.DATA and ATTACH.DRIVERS which must also be on the
boot disk. ATTACH.DATA is a file the developer will make using the pro-
gram ATTACHUD. It tells SYSTEM.ATTACH the needed information
about the drivers it will be attaching. ATTACH.DRIVERS is a file con-
taining all the drivers to be attached and is constructed by the developer
using the standard LIBRARY program. The drivers are put on the Pascal
Heap below the point that a regular program can access it. They do take
away Stack-Heap (= to the size of the drivers attached) space from that
available to Pascal code files but this should not be a problem unless the
drivers are very large or the code files very hungry in their use of memory.
Since these drivers are configured into the system after the operating system
starts to run, this method will not work for configuring drivers for devices
that the system must cold boot from. Some of supporting code in the RSP,
boot and Bios may make the task of bringing up boot drivers easier though.
The advantages to this kind of setup are:

1. Software Vendors can use the ATTACHUD program to put their
own drivers into the system at boot time. This will be invisible to the
uscr. L

2. There can be no problems losing drivers due to improper heap man-
agement since the drivers are put on the heap by the operating system
and before any user program can allocate heap space.

3. This method does not freeze parts of the system to special memory
locations since it enforces the clean methodology of using relocatable
drivers.
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USING ATTACHUD

ATTACHUD.CODE will ask you questions about the drivers you want to
attach to the system. It makes a file called ATTACH.DATA which tells
SYSTEM.ATTACH which drivers to attach to the system, what unit num-

bers to attach them to and other information. The options covered by
ATTACHUD are:

1. A driver can be attached to one of the system devices, then all I/O to
this device (PRINTER: for example) will go to this new driver. In
the case of a new driver for a disk device the user will have to specify
which of the 6 standard disk units will 80 to this new driver. This will
allow replacement of standard drivers with custom ones without hav-
ing to restrict the I/O interface to UNITREAD and UNITWRITE
as is the case with option 2.

2. A driver can be attached to one of 16 userdevices. I/0 to these will
be done with UNITREAD and UNITWRITE to device numbers
128-143.

3. A method will be included to allow the attached driver to start on an
N byte boundry. The driver writer will be responsible for aligning his
code from that point.

4. More than one unit can be attached to the same driver. This way only
one copy of the driver resides in memory and I/O to all the attached
units goes to this one driver. It is up to the driver to decide which
unit’s /O it is doing. How this is done is explained below.

5. The initialize routine for any attached driver can be called by SYS-
TEM.ATTACH after it has attached the driver and before any pro-
grams can be Xecuted.

6. In case any of your programs use the Hires Ppages, you can specify in
ATTACHUD that drivers must not be put on the heap over these
areas. Your drivers would have to be quite large before they could
possibly overlap the Hires pages.
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Follow through this example of a session with ATTACHUD where the
options available are completely described. First Xecute ATTACHUD:

You will be given the prompt:

Apple Pascal Attachud [1.1]
Enter name of attach data file:

This is_asking for what you want the output file from this session with
ATTACHUD to be called. You could call it ATTACH.DATA or some other
name and then rename it to ATTACH.DATA when vou put it on the boot
disk with SYSTEM.ATTACH.

If you ever get a message of the form:

ERROR => some error
Try again (RETURN to exit program): }

then just retype what was requested on the previous prompt after deciding
what mistake you made while typing it the first time.

The next prompt is:

These next questions will determine if attached drivers can reside in
the hires pages. It will be assumed they can for the page in question
if you answer no to the prompt for that page.

Will you ever use the (2000.3FFF hex) hires page?

Followed by:
Will you ever use the (4000.5FFF hex) hires page?

You should answer yes to the question for a particular Hires page if you
will ever be running a program that uses that Hires page while the drivers
are Attached. You don’t want the possibility of your driver residing in the
Hires page if that page will be clobbered by one of your programs. After
answering the Hires questions you will be ‘asked the following questions
once for each driver you will be attaching:
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What is the name of this driver? This must be the .PROC name in its
assembly source (RETURN to exit program):

This must be the name of one of the drivers in the ATTACH.DRIVERS
that will be used with this ATTACH.DATA. The length of this name must
not be more than 8 characters. After entering the name you will be asked:
Which unit numbers should refer to this device driver?
Unit number (RETURN to abort program):
You must enter a unit number in the range 1,2,4..12,128..143 or will be
given an error message. You cannot attach a character unit (CONSOLE:,
PRINTER: or REMOTE:) to the same driver as a block structured unit
and if you try you will be given the message:

You can’t attach a character unit and a block unit to the same driver. I
will remove the last unit# you entered. Type RETURN to continue:

If you don’t get the above error, you will be asked:

Do you want this unit to be initialized at boot time?
A yes response will put the unit number just entered on a list of units that
SYSTEM.ATTACH will call UNITCLEAR on after attaching all the driv-
ers. This gives you a way to have the system make an initialize call on your
attached unit at boot time. A no response will mean that no boot time init
call will be made on this unit to the driver you just attached.
You will be eventually asked:

Do you want another unit number to refer to this device driver?:

A yes response will get you to the Unit number prompt again and a no
response will get you to the prompt:

Do you want this driver to start on a certain byte boundary?
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A yes here will give you more prompts:

The boundry can be between 0 and 256.
0= >Driver can start anywhere.(default)
8 = >Driver starts on 8 byte boundary.
N = >Driver starts on N byte boundary.
256 = >Driver starts on 256 byte PAGE boundary.
Enter boundary (RETURN to exit program):

And the last line of the prompt will repeat until you enter a boundary in
the correct range. The boundary refers to the memory location where the
first byte of the driver is loaded. If your driver needs to be aligned on some
N byte boundary you can assure it will be using this mechanism. if you
know how the driver’s origin is aligned, You can align internal parts of your
driver however you want. Finally you will get to the prompt:

Do you want to attach another driver?

And if you answer Yes to this you will return to the "What is the name of
this driver’ prompt and answering No will end the program, saving the data
file you have made.

THE DRIVER

Drivers must be written in assembly using the Pascal Assembler. They must
not use the . ABSOLUTE option, so the drivers can be relocated as they are
brought in by the system. Each driver must be assembled separately with
no external references. When all drivers are assembled, use the LIBRARY
program (in the same way you would use it to put units into a library) to
put all the drivers in one file. Name this file SYSTEM. DRIVERS Sce
Turther explanation of making SYSTEM.DRIVERS betow. o

Considerations for all drivers:

1. Study the examples below as certain information is only documented
there.
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2. Refer to the Apple II Pascal memory map below and you will see
that parts of the interpreter and BIOS reside in the same address
range and are bank-switched. The system automatically folds in the
BIOS for drivers added using ATTACH. Most of these drivers will
have to make calls to CONCK if they want type ahead to continue
to work properly. CONCK is the BIOS routine that monitors the
keyboard. See the example drivers below to be sure you are doing
this correctly. You cannot call CONCK through the CONCK vector
at BFOA (see BIOS part of this document) because this call would
go through the same mechanism used to get to your driver and the
return address to Pascal would be lost.

3. All attached drivers must be written with one common entry point
for read, write, init and status. The driver will use the Xreg contents
to decide which type of I/O call this is and jump to the appropriate
place within it’s code. The Xreg is decoded as follows:

0 -->read (no bits set)

1 -->write (bit O set)

2 -->init (bit 1 set) { The Pascal statement
UNITCLEAR(UNITNUMBER ); makes an init call
for unit UNITNUMBER }

4 -->status (bit 2 set)

4. The drivers must also pop a return address off the stack, save it and
later push it to do a RTS when the driver is finished. All other
parameters must be removed from the stack by the driver. For all
calls, the return address will be the top word on the stack.

5. SYSTEM.ATTACH will make a copy of the normal system jump vector
(the vector after the fold) and put this on the heap. There will be a
pointer to this vector at 0E2. Your drivers can use this vector to get to
the normal system drivers for device numbers 1..12. See example below.

6. All drivers must pass back a completion code in the X register corre-

sponding to the table on page 280 of the 1.1 “Apple IT Apple Pascal
Operating System Reference Manual”,
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7. In references below to parameters passed on the stack, all parameters

are one word parameters so they require two bytes to be popped from
the stack by the driver.

8. Control word format for Unitread & Unitwrite

bits

15.13 12..6 5 4 3 2 1..0
user reserved  type B type A nocrlf nospec reserved

defined for future chars chars for future
functions expansion expansion
type B =0 = =>System will check for CTRL S & F from
CONSOLE: during the time of this Uni-
tio call.
=1 = =>System will not check for CTRL S & F
during this Unitio.

type A =0 = =>If using Apple Keyboard, system will
check for CTRL A, Z, K, W & E from
CONSOLE: during the period of this
Unitio.
=1 = =>System will not check for the chars dur-
ing this Unitio.
nocrlf =0 = =>line feeds are added to carriage returns by

the Interpreter.
=1 = =>no line feeds are added ...
nospec =0 = =>DLE’s (blank suppression code) are
expanded on output and the EOF char-
acter is detected on input.
=1 = =>nothing special is done to DLE’s on out-

put and EOF on input.

default setting for all control word bits = 0.

9. Control word format for UNITSTATUS

bits

15..13 12.2 1 0
user reserved for direction
defined for future purpose
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direction =0 = =>Status of output channel is requested
=1 = =>§tatus of input ...

purpose =0 = =>Call is for unit status
=1 = =>Call is for unit control

10. These are the new vectors and routines added to the BIOS to make

UbJMPVEC

DISKNUM

attach work. The RSP, bootstrap, and readseg were also modified to
allow for attaches.

iJump vector for user devices: offset=0Q =) unattached
jdevice. The correct addresses are initialized by
JSYSTEM.ATTACH ., See locations section af BIDS eart below
ifor pointers to this vector.

JMP @ 3sUnit 128

JMP 2 iUnit 129

+

JMP @ iUnit 143

iIf hidh byte=FF then

AER ASE MR B GIE NS B AN AR N

device is not a disk drive

else

if hidh bvyte=0 then

device is a redular disk drive and low bryte=drive #

else

driver for this disk drive has been attached by
SYSTEM.ATTACH and the driver address is stored in this
word, (Driver address has to be the address-1 for RTS in
PSUBDR to work correctly: remember this for ATTACH.
PSUBDR is listed below,)

iSee locations section of BIOS part below for Pointers to
this vector.

+WORD @FFFF iUnit #1

+WORD OFFFF 3Unit %2 (ATTACH would modify the words
+HORD OFFFF iUnit #3 for units 4:5:9.,,12 if a

+WORD 0 fUnit #4 different disk driver were
+HWORD 1 iUnit #5 attached to any of them)

«WORD OFFFF iUnit #6

+WORD OFFFF fUnit %7

+WORD @FFFF iUnit 28

+WORD 4 iUnit =9
+WDRD 5 iUnit =10
+WORD 2 iUnit =11
+WORD 3 iUnit #12
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UDRMWIS

PSUBDR

iRoutine
JAssume u
iSee the
fjset to t
STA
AND
STA
ASL
cLC
ADC
ADC
5TA
LDA..
ADC

STA
LDA
JMP

iRoutine
iWe
joff
isub
iSee

to det to an attached driver through UDJMPVEC

nit#® in Ared & operation to be performed in Xresd.

Jump vector in the BIOS sections to see how vou
is routine.

TT1

#7F iClear tor bit of unit#

TT2 $Make address in UDJMPVEC table

A iAddress=Areg*#3 + base of table

TTZ2 3iNow we have (Aredg#*3),

#JVUECTRS §Add in low byte of base of table having

TTZ ino carry Problem with anly 16 UD’s,

#0 e e et et et e oo e

JUECTRE+1 FJVECTRS is a word Pointing to the base
iof UDJMPVEC.

T72+1

TT1

BTT2

to et to an attached driver throush DISKNUM
assume on entrys Areg=unit#*; Yred=DISKNUM
set & Xred=the command to be performed by the
stituted disk driver.,

the Jjump vector in the BIDS sections to see how

ivyou get to this routine.

STA
LDA
PHA
LDA
PHA
RTS

TT1 §Save units,
DISKNUM-1:Y iStore MSB of driver address.

DISKNUM-2:Y iStore LSB of driver address.
LDA TT1 iRestore unit# to Ared.

fdump to substituted driver, This assumes
jthe driver address in DISKNUM =

i (ADDRESS OF DRIVER)-1 for the RTS to work
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Special Considerations when Attaching
Drivers for the System Devices,
Unitnumbers 1..12.

A. Character Oriented Devices (Pass the character to be read-written in the
A-register and make Bios calls one character at a time from RSP level.
On entry, the unit number will be in the Y register in case you wanted
to attach all character oriented devices to the same driver). If you attach
REMOTE: & or PRINTER: to the same driver as CONSOLE:, all

will have their jump vectors pointing to the start of the driver + 3 bytes.
See further discussion on this below.

Units 1 & 2 (CONSOLE: and SYSTERM:)
1. These must both go to the same driver.

2. The system CONCK routine will be patched to jump to the start of
the driver. The CONCK routine gets characters entered at the key-

board and fills the type ahead buffer. See the example CONSOLE:
driver below.

3. Because of item 2, the entry point for normal calls (not CONCK

calls) to the attached driver will be 3 bytes beyond the start of the
driver.

4. The interpreter takes care of expanding blank suppression codes
(DLE’s), echo to the screen, EOF (the end of file character), and

adding line feeds to every carriage return. Your driver doesn’t need
to do this.

5. CONSOLE: read and write have only the return address on the
stack. The stack for CONSOLE: init looks like:

POINTER TO BREAK VECTOR (This should be stored

at location BF16..BF17
by CONSOLE: init.)
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POINTER TO SYSCOM (This should be stored
at location F8..F9 by
CONSOLE: init.)
(Also at init time, the
Flush and Start/Stop
conditions should be set
to normal and the type-
ahead queue should be

RETURN ADDRESS <--TOS (top of stack)

The stack for CONSOLE: status looks like:

POINTER TO STATUS RECORD
CONTROL WORD
RETURN ADDRESS <--TOS

6. A status request should return, in the first word of the status record,
the number of characters currently queued in the direction asked for.
This is the number of characters in the type-ahead buffer. If no type-
ahead is being used then output status should always return a 0 and
input status a 1 if a char is waiting to be read, otherwise a 0.

7. Since we are using 7 bit ASCII codes, the CONSOLE: read routine
should zero the high order bit of all characters it reads from the
keyboard and passes back to Pascal ( to the RSP ). The CONSOLE:
write routine should transfer all 8 bits as received from the RSP since
many devices use 8 bit control codes.

8. The RSP will send both upper and lower case chars to the CON-

~ SOLE: write routime: The write rouritie should map the lower to

upper if the device cannot handle lower case.
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9. CONSOLE: Output Requirements:

A. CR (0D hex) A carriage return should move the cursor to the
beginning of the current line.

B. LF (0A hex) A line feed should move the cursor to the next line
but not change the column position. If the cursor is on the last

line on the screen when a line feed is sent, the rest of the screen
should scroll up one line and the bottom line be cleared.

C. BELL (07 hex) A sound should be made if possible when the
CONSOLE: gets 07. If making a sound is not possible then
ignore the 07.

D. SP (20 hex) Place a space at the current cursor position over-
writing whatever is there. Move the cursor to the next column.
If the cursor is on the last column of a line, it is best if the cursor
stays where it is after the space fills that position. If the cursor is
on the last column of the last line on the screen, it is also best if
the cursor remains in that position and the screen does not scroll.
These are the prefered actions of the cursor at end of line & end
of screen; in the strict sense, the actions of the cursor in these
circumstances are undefined.

E. NUL (00 hex) When a Null is sent to the CONSOLE: from the
RSP, the CONSOLE: should delay for the ammount of time
required to write one character but the state of the screen should
not change.

F. All printable characters should be written to the screen and the
cursor should move in the same way it does for SP.

G. See the discussion on pages 199-215 in the 1.1 Operating System
Reference Manual for further requirements and information.
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10. CONSOLE: Input Requirements:

A. The RSP takes care of echoing characters to the screen typed
from the CONSOLE: keyboard. (below items optional The Start/
Stop, Flush & Break chars are redefinable; see 9G above for more
info.)

B. The Start/Stop character is detected by CONCK and is used to
stop all processing until the character is recetved a-second time. -

When the character is received (see 9G above for more info) one

should loop in CONCK continuing to process other characters
untl:

1. the S/S char is received again
2. the Break char is received

In case 1, the suspended processing should continue as it was
before the first $/S was typed. Action needed for the Break char
is described below. The S/S char is never returned to the RSP
and CONSOLE: type-ahead, if implemented, should continue
during the suspended state. Offset from SYSCOM to this char
is 85 decimal. (This and the next 2 chars are redefinable by the
Setup program and SYSCOM is the system area that keeps track
of this info. The pointer to the start of SYSCOM is passed to
the CONSOLE: init routine and is stored at F8..F9 hex.)

C. The Flush character will stop all output and echoing to the CON-
SOLE: until it’s second occurEnce (see 9G above). CONCK
detects this and must set a flag to tell the CONSOLE: output
routine to ignore characters while the flag is set. If the CON-
SOLE.: is re-initialized or a Break char is received, the flush state
should be turned off. Flush is never returned to the RSP. Flush

only stops CONSOLE: output, other processing continues. Off-

set from SYSCOM to this char is 83 decimal.

D. The Break char should cause CONCK to jump to the location
stored at BF16. This location is also passed to the CONSOLE:
init routine which stores it at BF16. The break char is never
returned to the RSP and it should remove the system from Stop
or Flush mode if it is in either mode. Offset from SYSCOM to
this char is 84 decimal.
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E. Type-ahead should be implemented in CONCK by storing char-
acters typed at the keyboard in a queue until they are requested
by a CONSOLE: read from Pascal. When the queue fills, further
characters should be ignored and a bell sounded when they are
typed. The length of the queue should be at least 20 characters.

11. For more information on CONSOLE: requirements, see pages 199—

216 of the 1.1 Operating System Reference Manual.

Unit 6 (the PRINTER:)

1.

5.

The interpreter takes care of expanding blank suppression codes (DLE’s),
EOF (the end of file character), and adding line feeds to every carriage
return.

PRINTER: read,write and init have only the return address on the

stack. PRINTER: status has the same items on the stack as CON-
SOLE: status. PRINTER: init should cause the PRINTER: to do a
carriage return and a line feed and throw away any characters buffered

to be printed. No form feed should be done.

. For status, return in the first word of the status record the number of

bytes buffered in the direction asked for; if this cannot be determined
by your PRINTER:, return a 0.

The PRINTER: write routine must buffer a line and send it all at
once if your PRINTER: can only receive data that way.

Line Delimiter characters:

A. CR (hex OD) A carriage return should cause the PRINTER: to print

the current line and return the carriage to the first column. An auto-
matic line feed should not be done by the PRINTER: driver when
it reads a CR.

. LF (hex 0A) The RSP will send line feeds to the PRINTER: driver

after each carriage return. This should cause the PRINTER: to advance
to the next line. If the PRINTER: must also do a carriage return
when it is given a line feed, then this is O.K.
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C. FF (hex 0C) This should cause the PRINTER: to move the paper

to top of form and do a carriage return. If top of form is not possible
on your PRINTER:, do a carriage return followed by a line feed.

6. It is assumed that input cannot be received from the PRINTER:. See
the BIOS section for a discussion of how to get input from the PRINTER.:.
Normally, trying to get input from the PRINTER: should return com-
pletion error code #3.

Units 7 {REMOTE: in} & 8 [REMOTE: out|

1.

2.

These must both go to the same driver.

The interpreter takes care of expanding blank suppression codes (DLE’s),
EOF and adding line feeds to every carriage return.

Same stack setup as the PRINTER.
Status should return in first word of status vector the number of bytes

buffered for the direction specified in the control word, 0 if you have
no way to check.

. This unit is supposed to be an RS-232 serial line for many different

applications so it is necessary that it transfer the data without modi-
fying it in any way. The transfer rate default is 9600 baud.

It would be nice if the input to REMOTE: could be buffered in the
same way input to the CONSOLE: is but this is not an absolute
requirement.

- REMOTE: init should set up the REMOTE: device so it is ready

to read and write.
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B. Block Structured Devices
Units 4 (the boot unit),5,9,10,11,12.

1. These units are assumed to be block structured devices, the drivers
for these units must do their own Pascal Block to Track-Sector
conversions.

The UCSD system assumes the disk device is a 0-based consecutive
array of 512 byte logical blocks. All UCSD Pascal disks must have
this logical structure no matter what their actual physical structure or
size are. The physical allocation schemes for information on different

s of disks are arranged with sectors that are of various sizes that
depend on the hardware of the particular disk device used. The driver
must convert the Pascal block # to the appropriate track & sector #
of where that block is stored on it’s disk device. This could be a floppy
or hard disk o somic other type of device. It doesn’t really matter, so
long as your driver maps the Pascal Block to the correct place and
continues to do so for the length (byte count) required for the UnitIO
operation.

The Pascal system uses logical blocks 0 & 1 for its bootstrap code.
These logical blocks should not be used for anything else and should
therefore only be available to Pascal through direct UNITREAD &
UNITWRITE operations and not accessable by the system through
any other means. This document will not attempt to describe the boot
sequence & does not attempt to give you enough information to attach
another driver or device to unit #4: so you can cold boot from that
unit. When a UNITWRITE is done to disk where the byte count
MOD 512 is not equal to 0 ( this means the last block included in
the write would be partially written to according to the byte count),
it is undefined whether garbage is written into the remaining part of
this last block. So you may write a whole block anyhow if that is more
efficient and the Pascal system will not suffer any bad consequences.

When a UNITREAD is done from a disk you are not allowed to
overwrite into the unused part of the last block (if there is an unused
part due to byte count MOD 512 <> 0). You must only send the
number of bytes asked for because you could clobber memory having
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some other valid use if you wrote extra bytes. You will have to buffer
the last sector inside your disk read routine then transfer exactly the
number of bytes from this last sector needed to add up to the total
bytes requested.

2. The unit number will always be in the A register.
3. The stack setup for read and write is:

CONTROL WORD (The MODE parameter mentioned in the
1.1 Language Ref Manuai on page 41)

DRIVE NUMBER

BUFFER ADDRESS

BYTE COUNT

BLOCK NUMBER

RETURN ADDRESS <--TOS

For init there is only the return address on the stack and for status the
setup is the same as for the CONSOLE..

4. Status requests should return the following in the status record:

word]l:Number of bytes buffered in the direction asked
for in the control word. Return 0 if you have no
way of checking.

word2:Number of bytes per sector.

word3:Number of sectors per track.

word4:Number of tracks per disk.

C. Other

1. This unit has no meaning for the Apple II system except that UNIT-
CLEAR on this unit sets text mode.

Considerations when attaching drivers for user defined devices numbers
128-143.
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These unit numbers are provided for you to do whatever you want with
them. you can define what they do except for the following protocols.

1. Follow the considerations for all drivers listed above.
2. The unit number will always be in the A register.
3. The stack setup for read and write is:

CONTROL WORD

DRIVE NUMBER

BUFFER ADDRESS

BYTE COUNT

BLOCK NUMBER

RETURN ADDRESS <--TOS

For init there is only the return address on the stack and for status the
setup is the same as for the CONSOLE..

This is a sample driver for a user defined device

CONCKADR

ilocations @..,35 hex may be used as Pure temps. One
ishould never assume these locations won’t be clobbered
iif vyou leave the environment of the driver itself.
i("leaving" includes calls to CONCK).

+EQU 82

i0nly one ,PROC may occur in a drivers each driver to be
iATTACHED must be assembled separately usind the Pascal
iassembler and can have no external references.

+PRCC U1ZBDR

STA TEMP1 3iS5ave Ared contents {unit#)

PLA

STA RETURN

PLA

STA RETURN+1

TXA iUse the X red to tell vyou what Kind of
icall this is,

CMP =2

BEQ INIT

CHMP 24

BEQ STATUS

CMP %0

BEQ PMS

CHMP =1

BEQ PMS

iCould have error code here
JMP RET
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PMS PLA iGet the Parameters
STA BLKNUM
PLA
STA BLKNUM+1
FLA
STA BYTECNT
PLA
STA BYTECNT+1
PLA
STA BUFADR
PLA
STA BUFADR+1
PLA
TSTAUNITNUM " §ATso in TEMP1
PLA
STA UUNITNUM+1 iShould alwavs be @
FLA
STA CONTROL
PLA
STA CONTROL+1
TXA
BNE WRITE

READ JSR GOTOCK
iYour driver’s code for a read
i{If more than one unit were attached to this driver:
ithis code could Jump to various places derendind on the
jcontents of the Ared stored in TEMPL)
JMP RET

WRITE JSR GOTOCK
iYour driver’s code for a write
JMP RET

$If vyou wanted to call CONCK whenever vour device did a
jread for writes Yyou would use this routine:
CKR .WORD CONCKRTN-1
GOTOCK LDY #35, i0ffset to address of CONCK
LDA BOEZ.Y
STA CONCKADR
INY
LDA BOEZ,Y
STA CONCKADR+1
LDA CKR+1 3Set it up so vou return to CONCKRTN after
PHA ithe CONCK call,
LLDA CKR
PRI <o e e s e+
JMP BCONCKADR 3Jump to CONCK
CONCKRTN RTS jReturn to caller,
INIT jYour driver’s code for init
JMP RET

STATUS PLA

STA CONTROL
PLA
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STA CONTROL+1

PLA

STA BUFADR iAddress of status record.
PLA

STA BUFADR+1

iYour driver’s code for status

RET LDA RETURN+1
PHA
LDA RETURN
PHA
LDA TEMP1
RTS

RETURN .WORD @ iCan‘t use @ pPade for these since we leave
TEMP1 ,WORD @ jour environment when doing to CONCK.
CONTROL .WORD @

UNITNUM .WORD @

BUFADR .WORD @

BYTECNT .WORD 0

BLKNUM .WORD @

+END

This is a sample driver for a CONSOLE: driver
replacement

ROUTINE .EQU @2
TEMP1 .EQU @4

«PROC CKATCH

JMP CONCKHDL 3SYSTEM.ATTACH will patch the start of CONCK
ito Jump here when vou attach a driver to
ithe CONSOLE:.

jble are not PopPPingd the return address from
jthe stack cause we’ll return from the
isystem routine we call from this driver.
STA TEMP1 3Al1l the read writesinit and stat calls will
jjump here (the startingd address of ryour
jCONSOLE: driver+3).

STY TEMP1+1

TXA
iThis exameple shows ryou how to have vour
jown code for the CONSOLE: as well as using
jthe srstem CONSOLE: routines:. If vyou want
ito rerlace the system routines completely:
ivou need to pull the return address here.
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BE®Q
CHP
BEQ
CMP
BEQ
CMP
BEG

READ
#1
WRITE
#2
INIT
wd
STATUS

tError code here

READ iYour driver’s code for a read

LDY

#1 joffset to address of CONSOLE: read in
ithe cory of the Jmp vector made by
iSYSTEM.ATTACH. See the Jump wvectors in the
;BIDS secticn below tc see how we get the
ioffsets.,

BNE GET

iYou would have a JMP RET here {(see example for user
defined

idevice) if rou were not usingd the system CONSOLE:

rout
jas

WRITE $Your d
LDY
BNE

ines
well.

river‘’s code for a write
#4
GET

INIT 3Your driver’s code for init

LDY
BNE

STATUS iYour
LDY

GET LDA BOEZ.,

STA
INY
LDA
STA
LDY
LDA
JIMP

*7
GET

driver‘s code for status
#43,

Y $At E2 is a pointer to the copy of the
iJump vector made by SYSTEM.ATTACH before
it was modified to attach vour drivers.

ROUTINE

@PEZ Y

ROUTINE+1

TEMP1+1 iRestore redisters

TEMPL ‘ 7

BROUYINE §0o0 to the origina. CONSOLE: driver for
this
3I1/0 command. You will return from therei
the
iBIOS is already folded in cue to the way
vour

idriver was attached by SYSTEM.ATTACH.
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CONCKHDL PHP 3Durlicate the 1st three instructions of CONCK
PHA jas they were patched by SYSTEM.ATTACH to Jump
iTXA below the Ist instruction of this driver.

jHere vou can pPut the code for vour own part of CONCKi{vou
imay want to checK some additional device like a Kervpador
isomething or vou may want to rerlace the system CONCK
iroutine alltodether, If vou do thiss vou must save therest
iof the machine state and return it when vou are finished.
5See example below.

TYA 3S5ave Yred contents for a second,
PHA

iThis code dets us to the system CONCK routine.
CLC

LDY #55. j0ffset to the address of system CONCK in the
jcopy of the oridinal JmP vector.

LDA BQEZ2,Y

ADC #3 jAdd 3 so vou enter right after the three
iinstructions vou durlicated at CONCKHDL.

STA ROUTINE

INY

LDA BOEZ.Y

ADC =0

STA ROUTINE+1

PLA iRestore Yred,

TAY

TXA iLast of CONCK instructions SYSTEM.ATTACH
fjoverwrote with the Jmp to the start of
jthis driver,

JMP @ROUTINE 3Goto system CONCK and return from there,

+END
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Here is another alternative for the CONCKHDL part of
the above program

CKRTN .WORD CONCKRTN-1

CONCKHDL

i 1.1f vrou don’t care about tvyre-ahead: this could be
simply the followinsg code {assuming vour CONSOLE:
read dets a character directly from vour CONSOLE:
device whenever it is called) :

PHP

INC RANDL SRANDL is a Permanent word at BF13 used in
fthe built in random funciion.

BNE #1

INC RANDH iRANDH

$1 PLP

RTS

2+1f vou want trepe-aheads this code should check to
seeif there is a character available and stuff it into
a trrpe-ahead buffer.,

3.If vou are using this with the regular CONCK {extra
iKerpad to check forstatistics for example)s» then vou can
ydo it this way.

L LT T Ty

PHP jSave state of machine
PHA
TXA
PHA
TYA
PHA

iPut vour driver‘s part of CONCK here {dives vour driver
ipriority)

LDA CKRTN+1 $Set up things to return from red CONCK
PHA

LDA CKRTN

PHA

PHA $Push garbade to account for other Pushes done

PHA Aie Li-rst thrres brytes of CONCK

CLC 3Setur to call CONCK
LDY #5535, 30ffset to the address of system CONCK in the
icopy of the original Jmp vector.

LDA BOEZ,Y

ADC #3 5Add 3 so vou enter right after the three
iinstructions vou durlicated at CONCKHDL.

STA ROUTINE

INY
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1.

2.

LDA BOEZ,Y

ADC =0

STA ROUTINE+1
$In this example we don‘t have to worry about
jthe machine state here as we are restoring
jit after we call CONCK

JMP BROUTINE 3Goto svstem CONCK and return to CONCKRTN

CONCKRTN PLA Restore state of machine
TAY
PLA
TAX
PLA
PLP
RTS 3SReturn to the duy who called CONCK.

(]

The output code file should be ATTACH.DRIVERS or could be
named somethine else and renamed ATTACH.DRIVERS when you
put it on the boot disk.

For the Link code file use the code file of your first driver.

Copy its slot #1 into slot #0 of ATTACH.DRIVERS.

. As long as you have more drivers to add, use N(EW to get another

Link code file and copy it’s slot #1 into slots #2,3,..15 of
ATTACH.DRIVERS.

When done, type ‘Q’ then ‘N’ followed by a RETURN for the notice.

See the 1.1 Operating System Reference Manual for further info on
the LIBRARY program.
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The Workings of SYSTEM.ATTACH

If it is on the boot disk, SYSTEM.ATTACH is Xecuted by the operating
system (both regular 1.1 and runtime 1.1) before SYSTEM.STARTUP.
The 1.1 runtime system will use a runtime version of SYSTEM.ATTACH.

The error messages that can be generated by SYSTEM.ATTACH are:

ERROR =>No records in ATTACH.DATA DR
ERROR =>Reading segment dictionary of ATTACH.DRIVERS3
ERROR = >reading driver

ERROR = >A needed driver is not in ATTACH.DRIVERS
ERROR =>ATTACH.DATA needed by SYSTEM.ATTACH
ERROR =>ATTACH.DRIVERS needed by SYSTEM.ATTACH

O ULk N

If all goes well attaching drivers, SYSTEM.ATTACH will display nothing
unusual in the regular boot sequence except for extra disk accesses and
anything done in the init calls to any of the attached devices.

I.BIOS

This section explains things in the BIOS area that are extensions and mod-
ifications that were added to Apple Pascal version 1.1 that were different or
not there at all in Apple Pascal version 1.0 (UCSD version I1.1).

1. The disk routines have been modified to handle interrupts (So inter-
rupt driven devices could be attached to 1.1 Pascal) if they are being
used. To use interrupts, one would have to attach an interrupt driver,
then patch the IRQ vector (FFFE hex) to point to this driver. The
Pascal system is defined to come up with interrupts turned off so,

- —once-the driver-1s-brought in-and the TRQ patched; interrupts-must
be turned on. The driver’s init call could patch the IRQ and turn on
interrupts. The disk routines save the current state of the system and
turn interrupts off only during crucial time periods, the state of the
system is returned during non crucial time periods so interrupts can
be handled. This has not been tested at this time, so there is no data
concerning the maximum interrupt response time delay.
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2. The control word parameter in UNITREAD and UNITWRITE
was not passed on to the BIOS level routines from the RSP level.
This has been done in 1.1 to allow the changes to the control word
listed below under special character checking and also so user defined
units or attached Pascal units can use the user defined bits of the
control word.

3. IORESULTS 128-255 are available for user definition on user defined
devices.

4. UNITSTATUS has been implemented in the Apple II Pascal 1.1
system. This works for the Pascal system units as described in the
ATTACH part of this document. For user defined units, Unitstatus
can be used for whatever necessary.

Unitstatus is a procedure that can be called from the Pascal level in
the same way Unitread can. It has three parameters:

1. unit#.

2. pointer to a buffer. (any size buffer you want of type
Packed Array of Char)

3. control word.

When you make a Unitstatus call from Pascal, the call should look like:
UNITSTATUS(UNITNUM,PAC,CONTROL);

Where UNITNUM & CONTROL are integers and PAC is a Packed
Array of CHAR or a STRING and may be subscripted to indicate
a starting position to transfer data to or from. See further informa-

tion on what Unitstatus is defined to do for the various devices in
the ATTACH part of this document.

The control word will tell the status procedure for a particular unit
what information about the unit you want. Bit 0 of this word should
equal 1 for input status and 0 for output status. Unitstatus is imple-
mented with bit 1 of the control word 1 meaning the call is for unit
control. When this bit =0 the call is for unitstatus. In all cases bits
2-12 are reserved for system use and bits 13-15 are available for user
defined funtions.
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An entry in the jump vector has been made for each of the sys-
tem Unitstatus calls, ie. CONSOLESTAT,PRINTERSTAT,
REMOTESTAT, etc.. Unitstatus calls to a user defined device (128-
143) will all go through the same jump vector location.

. The handling of CTRL-C by the Apple bios was non standard in
1.0. The UCSD BIOS definition specifies that a CTRL-C coming
from REMOTE: or the PRINTER: should be placed in the input

buffer and then no more charactérs should be received: Our biosdid
ill the buffer with mulls including the place where the CTRL-C was
to go. Apple Pascal’s BIOS now conforms to the standard definition,
where the null filling of the buffer is done only when CTRL-C comes
from the CONSOLE: (#1:).

_ The unitio routines can be accessed from assembly procedures by
pushing the correct parameters on the stack and using the jump
vector to get to the BIOS routine. A seperate document needs to be
written describing how this is done and pointing out the problems
doing it in the case of the CONSOLE:,SYSTERM: ,PRINTER: &
REMOTE: units. These problems are concerned with the special
character handling done in the RSP for these units. The assembly
procedures calling the pascal drivers for these units would either have
to repeat portions of the RSP code themselves or not get the special
character handling provided by the RSP. Calling the CONSOLE:
init routine requires pointers to syscom and the break routine to be
passed on the stack. These pointers are nOw stored in a fixed location
so assembly routines wanting to call coninit can get at them. See the
locations section.

. Suppression of Special Character Checking.

- Spectal characters in the Pascal system are of three types:

A. Chars used to control the 40 character screen. These are ctrl-
AZWE & K.

B. Pascal system control chars for general CONSOLE: use. These
are ctrl-S & F.
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C. Types A & B are checked for by the CONCK funtion in the bios.
There are other special chars checked for in the RSP These are
ctrl-C, DLE, and CR (line feeds are automatically appended to
CR). With UNITREAD and UNITWRITE the automatic han-
dling done by the Pascal system of these characters can be turned
off. To turn off DLE expansion and EOF checking give bit 2 of
the control word a value of 1. The automatic adding of line feeds
to carriage returns can be suppressed by setting bit 3 of the
control word to 1.

A way was needed to suppress special handling for types ‘A’&B>
This can now be done in two ways. First, the control word of
UNITR/W will turn off checking for type ‘A’ control chars if bit
4 1s set and will turn off checking for type ‘B’ chars if bit 5 is set.
In this mode, the special char handling will only be turned off
during that particular unitio. This will be be done for you in the
RSP by setting bits in a byte ‘SPCHAR’ at location BF1C. The
CONCK routine will look at bit 0 of SPCHAR and if set will
not look for the type ‘A’ chars; if bit 1 is set, it will not look for
the type ‘B’ chars. If you set these bits in the SPCHAR yourself
instead of letting the RSP do it through the unitio control word,
then the associated special character checking will be turned off
until you reboot or reset the bits again. When special char check-
ing is turned off, the chars are passed back to the Pascal level like
all other chars would be. You can use these added features to
redefine the system special chars in a particular application pro-
gram or to just disable them.

8. The EOF char (ctrl-C) causes a lot of problems in the Pascal system.
The cause of the problems s that the editor looks for this character
to end many of it’s editing modes. The editor has jt’s own getchar
routine which reads each character the user enters from SYSTERM..
When reading from SYSTERM: instead of the CONSOLE:, the
EOF char is passed back as any other character but it still ends the
current call to unitread. The editor echoes each char to the CON-
SOLE: itself until it comes to ctrl-C. The operating system and the
filer both use the getchar routine in the operating system. This rou-
tine is defined to re-init the system if it gets a ctrl-C from the CON-
SOLE: and it reads from the CONSOLE:, not SYSTERM:. You
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10.

must be sure not to end responses with control-C except for the cases
(in the editor only) that are supposed to end with control-C. See the
1.1 Operating System Reference Manual.

The bios card recognizing section has been enhanced to recognize a
new FIRMWARE’ type card. This card will allow OEM’s to have
their drivers in their own firmware on the card. Routines have been
added to allow for init,read,write & status calls to this new type card.

This protocol has been documented and is attached as an appendix

to this document.

As you can see, the Pascal system memory usage is scattered all over
the 64k space. The Apple II was not designed with a stack machine,
like the Pascal P-machine, in mind. We don’t need any more con-
straints fixing certain pieces of the system to certain EXACT places.
To make the best use of the space we have, we must have the ability
to move things around. To achieve this goal, we intend the following:

A. To stop people from writing things that peck here and poke there
and expect things to stay exactly where they were for future
versions.

B. Various people need space for patch areas and other purposes.
All programs have to be written so this space does not have to
be in a permanent fixed location if this is at all possible. The areas
reserved for system use are filling up fast, we need to avoid using
them. You can get space dynamically using NEW but you must
be careful that this space stays around for the whole time you
need it. If you are attaching a driver, you can get buffer space in
the driver by using .WORD or .BLOCK in the Assembler. This
space can be accessed from outside the driver if you know the

offset to the start of this space from the start of the driver. This- -

method could even be used to get space below the heap by attach-
ing a driver to one of the user defined devices that is a large
.BLOCK and is only used as a buffer. You can get the address
of this buffer (of a driver) from the jump vector that has a pointer
to the driver. Pointers to all the jump vectors are in zero page,
see the locations section below.
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C. The jump vector will have a fixed order for version 1.1 and future
versions. The order is the same as in the old version 1.0 with the
new entrys added to the bottom. The setup for the jump vector
and getting into the BIOS is different than the old 1.0 system.
Here is how the new system is set up with the fixed order for
the jump vector: :

MAIN BIOS JUMP TABLE CALLED FRDM INTERPRETER
(FOLLOWED BY REAL JUMP TABLE AT FIXED OFFSET)
RSP CALLS COME TO THIS JUMP VECTOR

B S8 AN WE R SR

BIOS JSR SAVERET JCONSOLE READ $Jump vector before fold,

JER SAVERET 3FCONSOLE WRITE

JSR BAVERET S3SCONSOLE INIT

JSR SAVERET 3iPRINTER WRITE

JSR SAVERET iPRINTER INIT

JSR SAVERET 3SDISK WRITE

JSR SAVERET 3iDISK READ

JSR SAVERET 3iDISK INIT

JSR SAVERET iREMOTE READ

JSR SAVERET SREMOTE WRITE

JSR SAVERET j3REMOTE INIT

JSR SAVERET FGRAFIC WRITE

JBR SAVERET S3SGRAFIC INIT

JE8R SAVERET iPRINTER READ

JSR SAVERET J3JCONSDLE STAT

JS8R SAVERET iPRINTER STAT

JSR SAVERET iDISK STAT

JSR BAVERET fREMOTE STAT

KCONCK JSR SAVERET §To det to CONCK from CONCKVEC

JSR SAVERET JUSER READ For UDRWIS
JUSER MWRITE
SUSER INIT
JUSER STAT

JSR SAVERET $For PSUBDR

JSR SAVERET FIDSEARCH

THIS JUMP TABLE MUST BE OFFSET

FROM BIOSTBL BY EXACTLY $5C.
SYSTEM.ATTACH MODIFYS THIS JUMP
VECTOR TO POINT TO ATTACHED DRIVERS
FOR THE STANDARD SYSTEM UNITS.

L T R Y R L T 1

428



BIOSAF JMP CREAD iJump vector after fold.

JMP CHWRITE

JMP CINIT

JUP PHRITE

JMP PINIT

JMP DWRITE

JMP DREAD

JMP DINIT

JMP RREAD

JMP RUWRITE

JMP RINIT

JMP IORTS Do nothing for GRAFWRITE.

“JMP GRAFINIT

JMP IORTS Do nothingd for PRINTER: read.

JMP CSTAT

4HMP ZERGSTAT 5For PRINTER: stat» PoP Params & store @

iin 1st buffer word.
JMP DSTATT
JMP ZEROSTAT iFor REMOTE: stat: PoF Params & store @
fin 1st buffer word.,

JMP CONCK

JMP UDRMWIS jRoutine to get to user defined devices: see
SATTACH part of document for
idescription of
fthis routine.

JMP PSUBDR jiRoutine to det to drivers that are
isubstituted
ifor the standard Pascal disk
fjunits 4,5,9,.,12,
iSee ATTACH part of document for
idescriPtion of
ithis routine.

STRIP LOCAL RETURN ADDR:

STRIP PASCAL ADDR AND SAVE IN RETLRETH
PLACE "GDBACK" ON RETURN STACK

THEN RESTORE LOCAL RET ADDR & RETURN
MEANWHILE UNFOLD BIOS INTO DXXX

NN S WS ue We e e e

SAVERET STA TT1 3$SAVE A REG
PLA
ctC N SR o ‘
ADC =25A ADD OFFSET TO JUMP TABLE (BIDSAF)
STA TT2 iLOCAL RET ADDR
PLA
ADC =2
STA TT3
PLA
STA RETL SPRESERVE PASCAL RETURN
PLA
STA RETH
«IF RUNTIME=0
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¥ AR an ws B ame

LDA @C@83 SUNFOLD BIOS INTO DXXX
+ENDC

LDA TT1 IRESTORE A-REG

JSR SAVRETZ 3jPUTS "GOBACK" ON STACK

FOLD INTERP INTO DXXX
THEN RETURN TO PASCAL VIA
RETURN ADDR SAVED IN RETL:RETH

LDA RETH

PHA

LDA RETL

PHA

+IF RUNTIME=0 LDA @C@BB 3iFOLD INTERP INTO DXXX
+ENDC

LDA TT1

RTS SAND BACK TO PASCAL

SAVRETZ JMP

172

JUMP INTO JUMP TABLE (BIOSAF)

D. In zero page are two words pointing to the base of the two jump

vectors (before and after the fold). These are stored in PER-
MANENT locations that had a value of 0 in the old 1.0 release
and were not used by the system (see locations section). Appli-
cations needing to patch the jump vectors can store the offset
from the vector base in the Y reg and use indirect indexed
addressing to do the patch. The application will need to have the
vector base locations for the old release hardcoded in as the base
pointer for the old 1.0 release will be 0. If you want to write an
application that works with 1.0 and 1.1 and future versions, you
know if the zero page vector pointers are 0 it’s the 1.0 system
otherwise it’s 1.1 or a future version which will use the same
protocols as 1.1 as described in this document.

It is important that any application patching the jump vector
temporarily then returning it to its original value get the original
value from the vector itself before the patch and put it in a storage
location. When the vector needs to be restored to it’s original
state, use this storage location for it’s original value. The patches
should be done in this manner so the applications doing the
patches will always return the system to it’s original state no
matter what past, present or future Pascal version it is patching.
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11.

12.

E. For CONSOLE: init to be used from assembly routines the
locations of SYSCOM and the BREAK routine have to be avail-
able. The CONINIT routine requires these on the stack. Pointers
to SYSCOM and BREAK will be stored by the interpreter boot
in a PERMANENT location in the BFOO page (see locations
section).

F. Since the old 1.0 release, the code to jump to the CONCK
routine has beenset up-at location BFOA:-Anyone wishing to
get to the CONCK routine should do a JSR BF0A as this will

always get them there no matter wi here the CONCK routine

really is. The keypress function has been changed to conform to
this new convention but it will use the old convention if it is
working from within an old system. Do not try to get to CONCK
in this way from within an ATTACHED driver as you will loose
your return address to Pascal. See ATTACH part of this docu-
ment for how to get to CONCK from an attached driver.

G. There is now a version byte so one can tell which version (1.0,
1.1, etc.) of Apple Pascal he is working with. There is also a
flavor byte to tell one which flavor of this version he has (regular,
runtime, runtime without sets, etc.). (see locations section)

Whenever SYSTEM.ATTACH is used, it will make a copy of the
original BIOS jump vector (the after fold vector that has the actual
driver addresses in it) and put this below the heap with the drivers
that are attached. It will leave a pointer to this copy of the vector at
location 00E2. You can use this vector in you drivers to get to the
standard Apple drivers for any device. This way you can define a
driver that does something above and beyond the standard Apple
driver yet this new driver can still make use of the standard Apple
drivet: See the ATTACH part of this docarrent for more informuatior.

In the RSP are two vectors that tell the RSP what is legal (input &-
or output) for a particular character orientated device (CONSOLE:,
REMOTE: & PRINTER:). For example it tells the RSP that it is
illegal to read from the PRINTER:. If you wanted to ATTACH a
PRINTER: driver so you could read from the PRINTER:, you
would have to change this vector. 00E4 points to the READTBL
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vector and 00E6 to the WRITTBL vector. Let’s take the READTBL
for an example:

READTBL itable of routine addresses to be called when
jwriting to that unit (disk I/D does not use
ithis table).
ian entry=0 means that the orperation is illegal
ifor that unit.,

+WORD BIOS+CONREAD jsunit 1

+WORD BIOS+CONREAD junit 2

+WORD & jSunit 3

+WORD © 34 & 5 are diskK units
+WORD @

+WORD @ 38 is PRINTER:

+WORD BIOS+REMREAD junit 7

+WORD @ 38 is rem write which has
ian address in the WRITTBL

Here BIOS refers to the base of the jump vector before the fold and
CONREAD is the offset off the bace of that vectar to cat to tha

NSAAS WL ASAA WALV ASCAY HAGL YL AUL W ~L LU LN

jump to the CONSOLE: read routine (for CONSOLE: read the
offset is 0, for CONSOLE: write it’s 3, etc). The value for BIOS is
the pointer stored in location 00EC mentioned in the locations sec-
tion below.

Locations

These are the locations of new system permanents mentioned in this doc-
ument, all pointers are set up by the system and are stored low byte first.
Do not modify what is stored in these pointers (except for SPCHAR if you
want to suppress special character checking) since the system uses this infor-
mation too. These locations are defined to have the same function & remain
in the same place for future versions of Apple II Pascal.

BF1C SPCHAR (To control special chars}

BF1D IBREAK (Set by boot in intere for assembly calls to CONINIT)

BF1F ISYSCOM ( " » )

BF21 VERSION (1 byte Version # of system: =2 for the new release;s
O for the old 1.0 release)

BF22 FLAVOR (This bvyte tells which flavor [runtimesresular:,
etc.] of this VERSION vou are dealind with)
The encoding is:
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--»redular system runtime versions:
-->LC~-ALL (LC- means no langduade card)
-=>LC-ng s8ts
-->LC-no floating Point
-->LC-no sets or floatind Point
--2LC+ALL
-->LC+no sets
-->LC+no floating pPoint
-->LC+no sets or floating Point
his flavor bvyte is @ in the o0ld 1.0 release.

=W~ D WM -

BFCO-BFFF_BDEVBUF (Area_for non Arple boot devices; liKe the CORVUS)

POEZ ACJVAFLD {(Pointer to ATTACH copy of the oridginal Jump Vector
after the fold)

@PE4 RTPTR (Pointer to READTBLI

PQEE WTPTR (Pointer to WRITTBL)

Q0ES UDJVP (Pointer to user device Jump vector)

@OEA DISKNUMP (Pointer to disknum vector)

AQEC JUBFOLD (Pointer to Jump vector before fold)

@QEE JVAFOLD (Pointer to Jump vector after fold)

FFFB (Version word which = 1 for version 1.0 and

= @ for version 1.1
This version word should not be used at runtime
to tell which version vou have. For that use the
version byte mentioned above. This word should only
be used by software that wants to see which
SYSTEM.APPLE it is dealing with by looKingd at the
contents of this word in the SYSTEM.APPLE file
when it is not lopaded in memory)

FFFB (Start vector)

FFFA (NMI non maskable interrurt vector)
FFFC (RESET vector?

FFFE (IROQ interrupt request vector)

The locations and code in the 1.0 ‘PRELIMINARY APPLE PASCAL
GUIDE TO INTERFACING FOREIGN HARDWARE’ BIOS doc-
ument are not the same for Apple Pascal 1.1 and that document clearly
stated we would not commit ourselves to keeping them the same.
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Pascal 1.1 Firmware Card Protocol

One major problem with Apple Pascal 1.0 is the way it deals with peripheral
cards. It was set up to work with the four peripheral cards that Apple
supported at the time of its release (the disk,communciations,serial and
parallel cards) and had no mechanism for interfacing any other devices.
Since Apple as well as many other vendors continue to produce new periph-
crals for the Apple ][, 2 new protocol was designed and implemented in the
Pascal 1.1 BIOS which allows new peripheral cards to be introduced to the
system 1in a consistent and transparent fashion. The new protocol is called
the “firmware card” protocol since the BIOS deals with these cards by
making calls to their firmware at entry points defined by a branch table on
the card itself. The new protocol fully supports the Pascal typeahead func-
tion and KEYPRESS will work with firmware cards used as CONSOLE

devices. The following paragraphs describe the firmware card protocol in
full detail.

A firmware card may be uniquely identified by a four byte sequence in the
card’s SCNOO ROM space. Location $CNO5 must contain the value $38
and location $CNO7 must contain $18. Note that these are identical to the
Apple Serial Card. A firmware card is distinguished from a serial card by
the further requirement that location $CNOB must contain the value $01.
This value is called the “generic signature” since it is common to all firmware
cards. The value at the next sequential location, SCNOC, is called the “device
signature” since it uniquely identifies the device.

The device signature byte is encoded in a meaningful way. The high order
4 bits specify the class of the device while the low order four bits contain a
unique number to distinguish between specific devices of the same class.
The appendix to this document defines some device class numbsers; in any
case vendors should contact Apple Technical Support to make sure they use
a unique number for their device signature. Although the device signature
is ignored by the 1.1 BIOS, it may be used by applications programs to
identify specific devices.

Following the 2 signature bytes is a list of four entry point offsets starting
at address SCNOD. These four entry points must be supported by all firm-
ware cards. They are the initialization, read, write and status calls. The BIOS
takes care of disabling the $C800 ROM space of all other cards before calling
the firmware routines.
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The offset to the initialization routine is at location $CNOD. Thus, if SCNOD
contains XX, the BIOS will call $CNXX to initialize the card. On entry, the
X register contains $CN (where N is the slot number) and the Y register
contains $NO. On exit, the X register should contain an error code, which
should be 0 if there was no error. This error code is passed on to the higher
levels of the system in the global variable “IORESULT™. Registers do not
have to be preserved.

The offset to the read routine is at location $CNOE. On entry, the X register.
will contain $CN and the Y register will contain $NO. On exit, the A register
shouid contain the character that was read while the X register contains the

IORESULT error code. The A and Y registers do not have to be preserved.

The offset to the write routine is at location $CNOF. On entry, the A register
contains the character to be written while the X register contains $CN and
the Y register contains $NO. On exit the X register should contain the

IORESULT error code (which should be 0 for no error). The A and Y
registers do not have to be preserved.

The offset to the status routine is at location $CN10. On entry, the X register
contains $CN and the Y register contains $NO while the A register contains
a request code. If the A register contains 0, the request is “are you ready to
accept output?” If the A register contains 1, the request is “do you have
input ready for me?”. On exit, the driver returns the IORESULT error code
in the X register and the results of the status request in the carry bit. The
carry clear means “false” (i.e., no, I don’t have any input for you), while the
carry set means true. Note that the status call must preserve the Y register
but does not have to preserve the A register.

Thus, sample code for the first few bytes of a firmware card’s SCNOO space
should look something like:

BASICINIT BIT $FFS8 iset the v-flag

BUS BASICENTRY alwavs takKen
IENTRY SEC 3BASIC input entry point

DFB %90 (code for BCC
OENTRY CLC JBASIC output entry Point

CLv

BYC BASICENTRY jAlwars taken
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H
i Here is the Pascal 1.1 Firmware Card Protocol Table
H
DFB %01 iGeneric signature byte
DFB %41 j3Device signature bye
i
PASCALINIT DFB >PINIT 3 » means low order brte
PASCALREAD DFB »>PREAD joffset to read
PASCALMWRITE DFB >PWRITE joffset to write
PASCALSTATUS DFB >PSTATUS joffset to status routine

The above code fulfils all the requirements for both the BASIC and Pascal
1.1 I/O protocols. The routines PINIT, PREAD, etc, are probably jumps
into the card’s $C800 space which is already properly enabled by the BIOS.
The reason the $CNOO space was chosen for the protocol (as opposed to
the $C800 space) is that the BASIC protocol requires that all cards have
$CNOO ROM space while some smaller cards may not need any $C800
ROM space.

The firware card protocol includes 2 optional calls that do not have to be
implemented but would be kind of nice. The BIOS checks location $CN11
to determine if the optional calls are present; if that location contains a $00
then the BIOS thinks the calls are implemented. Thus if your card does not
implement the optional calls, you should ensure that $CN11 contains a
non-zero value. The two optional calls are a control call pointed to by
$CN12 and an interrupt handler call pointed to by $CN13.

The control call entry point is specified by the offset at $CN12. On entry,
the X register contains $CN, the Y register contains $NO and the A register
contains the control request code. Control requests are defined by the device.
On exit the X register should contain the IORESULT error code.

The interrupt poll entry point is specified by the offset at §CN13. On entry,
the X register contains $CN and the Y register contains $NO. The interrupt
poll routine should poll the card’s hardware to determine if it has a pending
interrupt; if it does not it should return with the carry clear. If it does, it
should handle the interrupt (including disabling it) and return with the
carry set. Also, the X register should contain the IORESULT error code
which should be 0 if there was no error. An interrupt polling routine must
be careful not to clobber any zero page or screen space temporaries.
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The control and interrupt requests are not implemented in the Pascal 1.1
BIOS but it would be nice to support them if possible as they may be
implemented in later versions of the Pascal BIOS as well as other forthcom-
ing operating system environments for the Apple ][.

Note that the firmware card signature is a superset of the Apple serial card
signature as recognized by the Pascal 1.0 BIOS. This allows a firmware card
to function with both Pascal 1.0 and Pascal 1.1. If a card wishes to work
with Pascal 1.0 as a “fake” seral card, it must provide an input entry point
at $C84D and an output entry point at $CIAA. Note that since Pascal 1.0
will think the card is a serial card, typeahead and KEYPRESS capabilities
will be lost.

Additional Notes

1. The Pascal RSP expects the high order bit of every ASCII character it
receives from the Console read routine to be clear. The RSP will not
do this for you; you must ensure the high bit of all text your card
passes to the RSP from the console read routine is clear.

2. Zero page locations $00 to $35 may be used as temporaries by your
firmware, as are the slot 0 screen space locations ($478,$4F8, etc.).
In general, peripheral card firmware should be as conservative as pos-
sible in their memory usage, preserving zero page contents whenever
possible. An interrupt polling routine must not destroy these or any
other memory locations.

3. Location $7F8 must be set up to contain the value $CN, where N is
the siot number, if your card utilizes the $C800 expansion ROM
space. The BIOS does not do this for you; his must be done if you
want-your card to-function in-an-interrupting environment.

4. The firmware card status routine should be as quick as possible, as it
may be called from within the I/O polling loops of many other periph-
erals if your card is being used as the console device. In no case should
the status routine take longer than 100 milliseconds.
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5. A firmware card in slot 1 is automatically recognized as the volume
“PRINTER:” A firmware card in slot 2 is automatically recognized
as the volumes “REMIN:” and “REMOUT:” A firmware card in slot

3 is automactically recognized as the volumes “CONSOLE:” and
“SYSTERM:™
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APPENDIX

The following numbers correspond to device classes used in the device
signature code. Make sure you contact Apple Technical Support to ensure
that you have a unique device signature code.

0 -- reserved

1 -- printer

2 -- joystick or other X-Y input device
3 -- /O serial or parallel card

4 -- modem
5 -- sound or speech device
6 -- clock

7 -- mass storage device
8 -- 80 column card
9 -- Network or bus interface
10 -- Special purpose (none of the above)

11 through 15 are reserved for future expansion

Additional Information

1. The type ahead buffer is located at $03B1 hex and is $4E hex in length.
It is implemented with a read pointer (RPTR at BF18 hex) and a
write pointer (WPTR at $BF19 hex). At CONSOLE: init time, these
should both be set to 0. When a character is detected by CONCK,
the WPTR is incremented then compared with $4E. If it is equal to
$4E, it is set to $0 (this is a circular buffer). Then the WPTR 1is
compared with RPTR and if they are equal the buffer is full. If the
buffer is not full, the character is stored at $03B1 + the value in WPTR.

When removing a character from the type ahead buffer, use the fol-
lowing sequence. Compare the RPTR with WPTR and if they are
equal, the buffer is empty and you must wait until a character is avail-
able from the keyboard. If they are not equal, increment the RPTR
and compair it to $4E. If it equals $4E, set it to $0. Now get the
character from location $03B1 + the value in RPTR.
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If you are implementing your own type ahead, you can do it however
you wish. This information is made available in case you want to check
for input from another device as well as the standard system CON-
SOLE: and have characters from that device be put in the system type
ahead buffer.

2. The example drivers in this document did not show the setting of the
IORESULT in the X register. This would be done in the code specific
to your driver and should allways be set to something (@ if there are
no errors). If there are errors, set it as described elsewhere in this
document and the Pascal Manuals.

3. For further information, see the newest edition of the Apple II Ref-
erence Manual.

4. These listings from the BIOS are included to show you how we imple-

4 : Ve moomsmmd swnler ~oe solon loo ol _C
mented certain system drivers. You cannot icly on the locations of

these to stay in the same place in the BIOS in future releases of Apple
II Pascal nor can you rely on the routines themselves staying the same.
They are only included as examples and to give you information that
may not be documented elsewhere. This is not a complete BIOS
listing so you may find references to routines or locations that are not
included in this listing. The only locations that will be sure to remain
the same for future releases are those mentioned in the LOCATIONS
section above. We are against you poking the BIOS yourself to change
or overwrite any of these routines. We did not include this information
so you could poke the BIOS. If you do modify the BIOS, it is com-
pletely at your own risk! We have provided the ATTACH utility so
you can add your own drivers the system without poking the BIOS
and this is the way it should be done! If you have special requirements
that are not solved by ATTACH, please contact Apple Technical

Support.

BASIL .EQU FIRST 3SCREEN 1 PTR
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BAS1H .EQU FIRST+1

BASZL .EQU FIRST+2 iSCREEN 2 PTR

BASZH .EQU FIRST+3

CH .EQU FIRST+4 $HORIZ CURSOR. 2..70

CY .EQU FIRST+5 iVERT CURSOR, 2..23

TEMPY .EQU FIRST+6E

TEMPZ .EQU FIRST+7

SYSCOM .EQU FIRST+8 32 BYTES PTR TO SYSCOM AREA
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CONCKVECTOR .EQU @BF@A 34 BYTES

SCRMODE .EQU OBFOE

LFFLAG .EQU OBFOF

NLEFT .EQU OBF11

ESCNT EQU ©9BF12

RANDL .EQU OBF13

RANDH .EQU 0BF14

CONFLGS .EQU @BF13

BREAK .EGQU OBF1E i2 BYTES

RPTR .EQU 9BF18 i1 BYTE

WPTR EQU #BF18 il BYTE

RETL .EQU OBF1A

RETH .EQU OBF1B

SPCHAR .EQU OBFIC 700 MEANS DO ALL SPECIAL CHARACTER CHECKING
101 MEANS DON’'T CHECK FOR APPLE SCREEN STUFF
1¢2 MEANS DON’T CHECK FOR OTHER SCREEN STUFF

IBREAK .EQU @BF1D 3INTERP STORES BREAK & SYSCOM ADR HERE FOR

ISYSCOM .EQU @BFIF 3jUSER ROUTINES TO GET AT

VERSION .EQU @BF21 3VERSION OF SYSTEM SET TO 2 FOR APPLE 1.1

FLAVOR .EQU @BF22 iSEE TABLE IN INTERP BOOT

SLTTYPS .EQU OBF27 3BF27..0BFZE

¥ITLOC .EQU @BF2F SINTERP INITS THIS TO LOCATION OF XIT

$FORTRAN PROTECTION USES BFSE..BF7F
$VENDOR BOOT DEVICES CAN USE BFCO..BFFF

-
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e e eemmmmmmemmmmmmmm—mmmmmm————— =
BUFFER .EQU 9200 FTEMP HSHIFT BUFFER (OVERLAPS DISK BUF)
CONBUF. ..EGQU..03B1 178 CHAR .TYPE-AHEAD BUF

CBUFLEN .EQU @4E 378 DECIMAL

NCTRLS .EQU 14, i# CTRL CHARS IN TABLE

SIGVALUE .EQU 1

BYTEPSEC .EQU 2568. iDISK INFO FOR DISKSTAT

SECPTRAK .EQU 16,

TRAKPDSK .EQU 35.

UDJVP .EQU @EB 30 PAGE JUMP VECTOR PODINTER LOCATIONS
DISKNUMP .EQU OEA

JUBFOLD .EQU @EC

JUAFOLD .EQU OEE
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HCMODE ,EQU @E1 3THESE TWO BYTES USED FOR HIRES STUFF
HSMODE .EQU OE®

JVECTRS .WORD UDJMPVEC
+HORD DISKNUM
+WORD BIOS
+HORD BIOSAF

START CLD 3iSET HEX MODE
SEI iMAKE SURE INTERRUPTS ARE OFF,

3
i CLEAR ALL MEMORY @ TO BFFF

i (RUN-TIME SYSTEM:® TO TOPMEM + BF PAGE) §
i

TAX
ZERLP STA (ZEROL).,Y IWRITE A BYTE OF @
INY $SBUMP POINTER
BNE ZERLP 5LOOP TILL NEXT PAGE
INC ZEROH 3$BUMP MSB POINTER
INX
+IF RUNTIME=1{
CPX #TOPMEM iDONE CLEARING MEM?
BNE %1
LDX #0BF iCLEAR BF PAGE
STX ZEROH
$1: CPX a0CO
BNE ZERLP
+ELSE
CPX #0CO SDONE CLEARING BFXX?
BNE ZERLP
+ENDC

CHECKSUM PROMS ON EACH SLOT
TO FIND OUT WHO‘S OUT THERE

SUM TWICE TO TELL IF CARD THERE
IF SUMS DONT MATCH THEN NO PROM IS THERE
IF M5 BYTE OF SUM=@ THEN NO PROM IS FRESENT

NEE AR WS SN AR RN R an e

442



LDY #0C7 SPOINT TO SLOT 7 PROM
NXTCRD STY CKPTRH §$(CKPTRL=0 FROM MEM CLEAR)

JSR CKPAGE 516 BIT SUM IN X:A

STA CHECKL

STX CHECKH 3iSAVE FOR MATCH

JSR CKPAGE iSUM AGAIN

CPX #8 iWAS MSB ZERO?

BEQ NOPROM SYES NO PROM ON CARD

CMP CHECKL iLSB MATCH?

BNE NOPROM 5SNO:; NO PROM ON CARD

CPX CHECKH

BNE NOPROM 3iMSB DIDNT MATCH

—BEQG-SKIPIORTS -1ALWAYS TAKEN

» e .am wam

CN@7BYTS .BYTE @3C.03B,018.848

NOW THAT WE KNOW A CARD IS THERE:
EXAMINE CNO5 AND CN@7 BYTE TO
DETERMINE WHICH CARD IT IS

SET CARDTYPE AS FOLLOMWS:

2=CKSUM NOT REPEATABLE OR MSB=0

1=CKSUM REPEATABLE.CARD NOT RECOGNIZED

2=DISK CARD (BYTE 07= 03(C)

3=COM CARD (BYTE 7= 038)

4=SERIAL (BYTE 07= 018)

S5=PRINTER (BYTE 07= 048)

6=FIRMWARE (BYTE @7= 048)

SKIPIORTS LDX #5 34 TYPES OF CARDS

NXTYP LDY =35 iCHECK BYTE CN@&5 OF CARD
LDA (CKPTRL) »Y
CMP CN@SBYTS-2:X IMATCH TABLE?
BNE TRYNXT 3iNO, TRY NEXT IN LIST
LDY =7
LDA (CKPTRL) .Y STEST CNO7 BYTE
CMP CNO7BYTS-2:X iMATCH TABLE®

v BEG -GTOR SB0TH -MATCHED » CARD--RECOGNIZED

TRYNXT DEX 3iBUMP TO NEXT IN LIST
CPX #2 STRY ALL TYPES IN LIST
BCS NXTYP §IF NOT IN LIST,FALL THRU WITH X=1

STOR CPX =4 5IS IT A SERIAL CARD?

BNE STORY

LDY =0B

LDA (CKPTRL) .Y

CMP #SIGVALUE

BNE STOR1

LDX s6

MEE WS B WEE A8 BT GBS EE AEE B B0 A B8 AN
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STOR1 LDY CKPTRH
TXA
STA ELTTYPS-0Ca.Y
NOPROM LDY CKPTRH
DEY 3SBUMP TD NEXT LOWER SLOT
CPY #0C® 3iSLOTS 7 DOWNTO 1 DONE?
BNE NXTCRD 5LO0OP TILL 7 SLOTS DONE
iLEAVE WITH Areg:=¢

BEQ $2 JALWAYS BRANCHES
$1 JS5R KCONCK JHERE ARE THE 2 INSTRUCTIONS TO BE TRANSFERRED
RTS
$2 LDY #3 STRANSFER 4 BYTES TO BFOA
$21 LDA $1,Y
STA CONCKVECTOR +Y
DEY
BPL $21

iSET UP JUMP VECTOR POINTERS IN @ PAGE
LDY =7
$3 LDA JVECTRS»Y
STA UDJYP Y
DEY
BPL %3
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LDA 8CO5S1 ISET TEXT MODE

LDA @C@52 iBET BOTTOM 4 GRAFIX

LDA @CO54 FSELECT PRIMARY PAGE

LDA @C6S7 FSELECT HIRES GRAFIX

LDA oCol1e iCLEAR KEYBOARD STROBE

JSR FORM jERASE SCREEN

JSR INVERT iPUT CURSOR ON SCREEN

JSR DRESET DO ONCE ONLY DISK INIT

LDA SLTTYPS5+3 SWHAT CARD IN SLOT 37

LDY #0380 iSLOT 3

JSR GENIT 5SET BAUD IF COM OR SER THERE

CPX =2 3SWAS AN EXTERNAL CONSOLE THERE?

BNE STARTUP iNO:USE APFLE SCREEN

LDA =4

5TA SCRMODE 3SET BIT 2 FOR EXT CON
STARTUP JMP JPASCAL JFOLD IN INTERP AND START PASCAL



SUB TO CHECKSUM ONE PAGE

) an wan e s

KPAGE LDA =0

TAX iCLEAR SUM

TAY 3CLEAR INDEX
CKNX CLC

ADC (CKPTRL},Y 3ADD BYTE

BCC NOCRY

INX $INC HI BYTE IF CARRY

NOCRY INY 3jBUMP INDEX |
BNE CKNX 3SUM 256 BYTES. _ .
RTS SRETURN SUM IN X:A AND Y=0
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CONSOLE CHECK FOR CHAR AVAIL
STATUS AND ALL REGS PRESERVED
IF CHAR AVAIL »PUT IN CONBUF AND INC WPTR.

WARNING...THIS ROUTINE ALSO CALLED FROM DISK ROUTINES

e BE W MR AR B B

CONCK PHP
PHA
TXA
PHA
TYA
PHA
RNDINC INC RANDL 3BUMFP 16 BIT RANDOM SEED
BNE RNDOK
INC RANDH
RNDOK LDA SLTTYPS5+3 iWHAT CARD IS IN SLOT 37
CMP #3 3IS IT A COM CARD?
BEQ COMCK JYES.GO CHECK IT
CMP #4 318 IT A SERIAL CARD?
BEQ JDONCK 3iYES,IT CANT BE TESTED
C."P .‘S TR . . w oa .
BEQ FIRMCK
TSTKBD LDA @C@0® STEST APPLE KEYBOARD
BPL JDONCK sNO CHAR AVAIL
STA 0Ce1@ CLEAR KEYBD STROBE
AND #@7F 3IMASK OFF TOP BIT
TAX 3See if checKind for arrle special chars is
LDA SPCHAR Sturned off.
ROR A
BCS NOTFOLPZ Sdume if so
TXA
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CMP #11, JCTRL-K?
BNE NOTK
LDA #05B iYES,REPLACE WITH LEFT SOR BRACKETT
NOTK CMP #1 CTRL-A?
BNE NTTAB
JSR HTAB JYES,»TAB NEXT MULT 40
LDA CONFLGS
AND #0FE
5TA CONFLGS jCLEAR AUTO-FODLLOW BIT
JMP DONECK
NTTAB CMP %26, iCTRL-Z?
BNE NOTFOL 3$NO:PUT CHAR IN BUFFER
LDA CONFLGS
ODRA #1
STA CONFLGS 3$SET AUTO-FOLLOMW BIT
BNE DONECK $BR ALKAYS

COMCK LDA DCOBE 3iCHAR AVAIL?
LSRE A
BCC DONECK 3iNO CHAR AVAIL
LDA QCOBF SGET CHAR FROM UART
GOTCHAR AND %*@7F iMASK OFF BIT 7
NOTFOL TAX
LDA SPCHAR 35ee i? console serecial char checking 1s
jturned off.
ROR A
NOTFOLPZ RODR A
BCS NFMI1 jJumep if so
TXA
LDY #@55
CMP (SYSCOM) .Y iSTOP CHAR®?
BNE NOTSTOP
LDA CONFLGS
EOR #0890
STA CONFLGS iYES,TOGGLE STOP BIT (BIT 7)
JDONCK JMP DONECK

FIRMCK LDA #1
LDY #0030
JSR FIRMSTATUS
BCC DONECK
JSR FREADI
JMP GOTCHAR

NOTSTOP DEY
CMP (8YSCOM) +Y
BNE NOTBRK
LDA CONFLGS
AND #03F
STA CONFLGS SCLEAR FLUSH&STOP BITS
+IF RUNTIME=9
JMP TOBREAK
+ELSE
JMP BBREAK 3iBREAK OUT
+ENDC



NOTBRK DEY CMP (SYS5COM) .Y SFLUSH?
BNE NOTFLUS
LOA CONFLGS
EOR =240
8TA CONFLGS STOGGLE FLUSH BIT (BIT B3
JMP DONECK

NFMI1 TXA
NOTFLUSH LDX MWPTR

JSR BUMP

CPX RPTR iBUFFER FULL?

BNE BUFOK

JSR-BELL

JHP DONECK 3BEEP&IGNORE CHAR
BUFOK STX WPTR
STA CDNBUF :X
CONFLGS 318 BT
BPL CKEXIT
JMP RNDINC iLOOP IF IN STOP MODE

iPUT CHAR IN BUFFER
DONECK BIT OF FLAG S5ETT

CKEXIT PLA
TAY
PLA
TAX
PLA
PLP
RTS {ELSE RESTORE STAT AND ALL REG AND RETURN
BUMP INX 3BUMP BUFFER POINTER WITH WRAP-AROUND
CPX #CBUFLEN
BNE BMPRTS
LDX %@
BMPRTS RTS
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CINIT PLA
STA TEMP1 $5AVE RETURN ADDR
PLA
STA TEMPZ
PLA
5TA SYSCOM 3iSAVE PTR TO SYSCOM ARE
Ay e s
STA SYSCOM+1
PLA
STA BREAK i5AVE BREAK ADDRESS
PLA
STA BREAK+1
LDA TEMPZ
PHA JRESTORE RETURN ADDR
LDA TEMP1
PHA
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LDA RPTR 3FLUSH TYPE-AHEAD BUFFER
STA WPTR
LDA CONFLGS
AND #03E
STA CONFLGS jCLEAR STOP:FLUSHAUTO-FOLLOMW BITS
JSR TAB3 iINO,HORIZ SHIFT FULL LEFT
CINITZ LDA #0 SCLEAR IORESULT
RTS 3SAND RETURN

i

i READ FROM CONSOLE:

i KEYBDARD.COM OR SERIAL CARD IN SLOT 3
H

LOY #9030 35L0T 3
LDA SLTTYPS+3 3iWHAT TYPE OF CARD?
CMP =4 3IS IT A SERIAL CARD?
BNE CREADZ §INO.CONTINUE
JSR RSER iYES: READ IT
AND #7F 3iMASK OFF TOP BIT
RTS
CREADZ JSR CONCK STEST CHAR
LDX RPTR
CPX WPTR
BEQ CREAD 5SLOOP TILL SOMETHING IN BUFFER
JSR BUMP
STX RPTR 3iBUMP READ POINTER
LDA CONBUF.X SGET CHAR FROM BUFFER
LDX =0 SCLEAR IORESULT
RTS JAND RETURN TO PASCAL

-

INITIALIZE PRINTER:
PRINTER IS ALWAYS IN SLOT 1
IT MAY BE A PRINTER.COM,OR SERIAL CARD

s we @ s an A

PINIT LDY #@1@ 3$SLOT 1 5 @10
LDA SLTTYPS+1 §WHAT CARD IN SLOT 17
CHMP #5 SPRINTER CARD?
BEQ CLRI®1 3FYES,ND INIT NEEDED
GENIT CMP =4 3SERIAL CARD?
BEQ ISER 3iYES: INIT SER CARD
CMP #3 3SCOM CARD?
BEQ ICOM SYES.»INIT COM CARD
CHMP =B
BEOQ FIRMINIT
LDX #3 SNONE OF ABOVE,OFFLINE
RTS

FIRMINIT PHA

JSR SER1
LDY =0D

448



FUEC1 LDA (TEMP1) .Y

B MEB ABE SN AE AN AN

STA
LDY
FLA

JMP ETEMP1

TEMP1
B6F8

INITIALIZE REMOTE:
REMOTE IS ALWAYS IN SLOT Z
IT MAY BE A COM OR SERIAL CARD

§ o e ————— ST TS ST T NS DT

TTYPS+Z IWHAT CARD IN SLOT 27

RINIT LDA SL

-t
=
—
-t
0
(=)
c 4
(%)
>
a
(=}
-
1]
[m)
=z
o

LDY
BNE

#0290
GENIT

$BR ALWAYS TAKENM

iMASTER INIT
STA OCOBE.Y 370 STATUS

1COM LDA %3

CLRIOL LDX %

.

LDA

#21.

STA OCOBE.Y iSET BAUD ETC
@ SCLEAR IORESULT
$AND RETURN

RTS

Ll
=z
L)
—
m
m
0
-
X
r
0
>
2
a
-
i}
=}
4
Q

ISER JSR SER

CLRIO3 LDX #

1 3$ASSORTED GARBAGE

JSR

oceeod

;SET UP SLOT DEPENDENTS

@ ICLEAR IORESULT
iAND RETURN

RTS

h =]
0]
m
=)
)
e |
m
oo
w
m
o
Ll
>
r
0
>
)
(=
w
m
—
i

[ o
o

SER1 STY O6F

8 iSTORE NO

TYA.

LER
LER
LSR
LSR
ORA
TAX
LDA
STA
STX
LDA

DD P

#*0C0O
iMAKE
*0
TEMP1
TEMPZ2
OCFFF

OCN IN X

;SET UP INDIRECT ADDRESS
$TURN OFF ALL C8 ROMS
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LDA (TEMP1),Y SELECT C8 BANK
RTS

HRITE TO CONSOLE:
VIDED SCREEN,COM OR SER CARD IN SLOT 3

WRITE JSR CONCK 3;CONSOLE CHAR AVAIL®?
BIT CONFLGS 315 FLUSH FLAG SET?
BUS CLRIO 3YES.DISCARD CHAR & RETURN
TAX 3SAVE CHAR IN X
LDY #0830 ;SLOT 33010
LDA SLTTYPS+3 jWHAT KIND OF CARD®
CMP #3 iCOM CARD?
BEQ WCOM 3YES WRITE TO COM CARD SLOT 3
CMP #4 jjSERIAL CARD?
BED WSER jYES,WRITE TO SER CARD SLOT 3
CMP =B
BEQ WFIRM
TXA SELSE RESTORE CHAR & SEND TO SCREEN
VIDOUT STA TEMP1 3}SAVE CHAR FOR LATER
JSR INVERT REMOVE CURSOR
LDY CH
JSR VOUTZ DO THE BUSINESS
JSR INVERT SRESTORE THE CURSOR
CLRIO LDX #¢ SCLR IORESULT
RTS SRETURN FROM VIDOUT

i
i
H
i
i
C

WFIRM TXA
PHA
LDA =@
JSR IDWAIT
JSR SER1
LDY =0F
JMP FVEC1

F o e .
WRITE TO SERIAL CARD, Y=0NO:CHAR IN ¥

i
i
i
et
WSER JSR CONCK ;CONSOLE CHAR?

TXA

PHA 3$SAVE CHAR ON STACK

JSR SER1 3ASSORTED GARBAGE

STA 85BB+X SET UP DATA BYTE

JSR OCOAA 3$SEND IT (SHOUT)
LDX =0
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RWRITE TAX 3SSAVE CHAR
LDA SLTTYPS+Z2 3IWHAT CARD IN SLOT 27
LDY #2290
BNE CENWZ iBR ALWAYS TAKEN

WPRN JSR CONCK 3;CONSOLE CHAR AVAIL?
LDA @CiCi FTEST PRINTER READY
“BMI -WRRN-;LOOP -TILL-READY-
STX ©C096 FSEND CHAR

CLRIOZ LDX =@
RTS

WCOM JSR CONCK 3iCONSOLE CHAR®?
LDA @Ceé8E .Y STEST UART STATUS
AND #2 SREADY?
BEQ WCOM 3INOSWAIT TILL READY
TXA
STA @CO8F Y SSEND CHAR
LDX =@
RTS

-

au A e
=
O
-
-
m
-
Q
o
P
—
=z
-
m
a
)
X
r
o
—
=
p

PURITE TAX 3SSAVE CHAR IN X
LDA LFFLAG §TEST LINE-FEED FLAG
BPL LFPASS iPABS IF BIT7=0
CPX #10., 3IS IT A LINE-FEED?
BEW CLRID SYES:IGNORE
LFPASS LDY #0190 §iSLOT 1
LDA SLTTYPS+1 iWHAT KIND OF CARD?
GENW CMP #5 SPRINTER CARD?
BEW WPRN 3FYES WRITE TO PRINTER CARD
GENMWZ CHMPL#*4 SSERIAL LARD? - - o
BEQ WSER 3JYES WRITE TO SER CARD
CMP #3 iCOM CARD?
BEQ WCOM SYES WRITE 7O COM CARD
CMP #B
BEQ WFIRM
OFFLINE LDX %8
RTS
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-

)
m
»
o
m
2
[=]
= 4
o
m
=
o
—
m

RREAD LDA SLTTYPS+2 iWHAT CARD IN SLOT 27
LDY %020

GENR CMP %4 3SERIAL CARD?
BEQ RSER 3iGET FROM SER CARD
CMP %3 3COM CARD?
BEQ RCOM SGET FROM COM CARD
CMP »B
BEQ RFIRM
BNE OFFLINE 3CARD NOT RECOG

i
i READ FROM COM CARD: Y=NO
i
i

RCOM JSR CONCK 3SCHECK FOR CONSOLE CHAR
LDA OCOBE,Y FTEST UART STATUS
LSR A FTEST BIT 0@
BCC RCOM 3 WAIT FOR CHAR
LDA 9CP8F:Y JGET CHAR
LDX =0
RTS

RFIRM LDA =1
JSR IOMWAIT
FREAD! ISR SER1
PHA
LDY =0E
JMP FVEC1

S waE waE naw

RSER JSR CONCK 3SCONSOLE CHAR AVAIL?
JSR SER1 3SASSORTED GARBAGE
JSR @C84D GET A BYTE (SHIFTIN)
LDA ©5B8:X SGET BYTE #678+SLOT
LDX %9
RTS
FIRMSTATUS PHA
JSR SER1
LDY =190
JMP FVEC1

IOWAIT JSR CONCK
PHA
JSR FIRMSTATUS
PLA
BCC IOWAIT
RTS8
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ABI p-code 232, 353

ABI p-code routine 321

ABR p-code 260

ABR p-code routine 345

Absolute value 232, 260

Accessing data at the bit level 22

Accessing elements of a multi-word
structure 184

Accessing elements of a record 186

Accessing fields in different variants 20

Accessing global variables within an
intrinsic unit 192

Accessing individual bits in an integer 24

Accessing intermediate variables 64

Accessing locations adjacent to
an array 44

Accessing parameters by turning off
range checking 44

Accessing real variables 84

Accessing record elements 88

Accessing string variables 88

Activation record 152, 177

Addition 94

ADDR function 44

Address of a parameter 44

ADI p-code 234, 354

ADI p-code routine 321

ADIJ p-code 86, 87, 282

ADJ p-code routine 327

ADR p-code 262

ADR p-code routine 344

Advantages of pointer variables 32

Index

Allocating space for a dynamic
variable 226

Allocating storage for permanent
variables 28

Allocating storage on the heap 32

AMDOI511 355

Apple keyboard port 32

Apple Pascal’s memory allocation
scheme 28

Arithmetic and logical instructions 232

Arithmetic negation 94

Arithmetic overflow 234, 240

Array allocation 85

Array index checking 66

Array storage allocation 41

Assigning one string to another 208

Assigning real constants 64

Assigning two data types to the
same physical location 22

Assigning values to a set variable 25

ATTACH-BIOS diskette 392

ATTACH.BIOS 152, 375

ATTACH.DATA 356, 392

ATTACH.DRIVERS 356, 392

Attaching drivers to block structured
devices 390

Attaching user drivers to the
system 392

ATTACHUD.CODE 356, 393

B 153
Backwards address allocation 41
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Backwards altocation 62

BASE 152, 307

Base procedure 152

BASE register 168, 170, 172

Bell character 386

Big parameter 153

Binary Boolean operators’ code 94

Binary operator 234

BIOS 311

BIOS hooks 348

Bit arrays 25

Bit correspondences within a set 25

Block move subroutine 341

Boosting Pascal’s execution speed 59

Boot-time transient area 348

BPT p-code routine 341

Break character 387

Break-even point on the case
statement 68

Building a singleton set 284

Building a subrange set 286

Bump exponent routine 343

Byte and word comparisons 330

Byte array comparisons 294

Byvte array handling 202

C

C Programming Language 44

Carriage return character 385

Case jump instruction 304

CASE statement 93

CBP p-code routine 336

CCS Arithmetic card 351, 355

CGP pcode 98

CGP p-code routine 335

Character assignments 89

Check for a 6502 subroutine 334

Check for a stack overflow 334

Checking a value to see if it is
within range 248

Checking an array index 248

Checking array indices 42

Checking for I/O errors 67

CHK p-code 42, 86, 88, 248, 354

CHK p-code routine 322

CHKGDIRP routine 312

Choosing the REPEAT UNTIL loop
over the FOR loop 91

Choosing the While loop over the
FOR loop 91

CHR 94

Clearing bits 24

CLP p-code 98

CLP p-code routine 335

Code generated by arithmetic operators 94

Code generated by functions and
operators 94

Code generated for complex
expressions 95

Code generated for expressions in
Apple Pascal 94

Code generated for set operations 86

Code generated for the CASE
statement 68, 93

Code generated for the
IF/THEN/ELSE statement 68

Code offset value 76

Code offsets 74

Commenting tricks 45

Comparison lead-in routine 329

Compiled program performance 59

Compiler functions 95

Compiler messages 67

Compiler range checking options 43

Completion of p-subroutine set up 335

Computing a power of ten 274

Computing the address of an
array element 85

CONCAT function 96

CONSCHK routine 381

CONSOLE driver requirements 385

CONSOLE init and status calls 381

CONSOLE read and routine calls 381

CONSOLE status routine 381

Constant loads 154

Contiguous case values 68

Converting a REAL value to an
integer value 256

Converting an integer to a floating
point value 252, 254

COPY function 97

Copying NP into a pointer variable 228

Creating a pointer to a field within
arecord 214

Creating portable programs 32

CROSSREF program 63

CSP p-code 96, 226, 256, 258
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CSP p-code routine 338

CXP and normal procedure routine,
common code 334

CXP p-code 96, 97, 98

CXP p-code routine 336

CXP parameters 98

CXP utility subroutine 333

D

Data offsets 74
Data or code offsets 74
DB 153
Debugged programs and the
RANGECHECK option 66
Debugging Pascal Programs 15
Debugging Pascal run-time errors 76
Debugging run-time errors 76
Declaring string sizes 65
Declaring variables in separate
statement 63
DECODE
disassembler 61, 83, 95, 98, 142
DELETE procedure 97
Determining the address of a
data structure 44
Determining the bounds of memory
in use 36
DIF p-code 87, 294
DIF p-code routine 326
Directly reading the Apple’s keyboard 37
Disassembling an integer into
four nibbles 22
Disassembling an integer into
hi- and low-order bytes 22
Disk directory 224
Disk I/O subroutine 348
Dividing two mtegers 244
Division -94-.. o
Don’t care byte 153
DUMPCODE disassembler 83, 95
Duplicating string constants 65
DVI p-code 244, 355
DVI p-code routine 322
DVIMOD routine 322
DVR p-code 272
DVR p-code routine 344
Dynamic frequency analysis 71

Dynamic memory allocation 35
Dynamic variable allocation 19, 224
Dynamic variables 152, 224
Dynamic vs. static optimization 70

€

Echoing characters 386
EFJ p-code 300
EQU p-code 251

‘Equal false jump instruction 300

EQUI p-code 92, 250

EQUI routine 332

Evaluation stack 151, 154
eX)ecuting a program 28
EXECERR 352

EXIT p-code routine 341
Extended loads and stores 190

£

False jump instruction 298

Field width 218

Finding free memory in Apple Pascal 36
FIRMWARE protocol 375, 377

First 127 words of variables 64

First 16 words of storage in a procedure 61
FIXSET routine 325

FJP p-code 90, 92, 298

FJP p-code routine 314

FLC p-code routine 340

FLO p-code 254

FLO p-code routine 345

Float integer value routine 345

Floating point addition routine 344
Floating point adjust routine 344
Floating point comparison routine 344
Floating point multiplication routine 345
Fleating peint normalize routine- 343 - -
Floating point pop routine 342

Floating point push routine 343
Floating point round routine 344
Floating point subtraction routine 344
FLT p-code 252

FLT p-code routine 346

Flush character 387

FOR loop “phantom” variables 90
FOR loop code generation 90
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Function calls 98
Function return values 98

G

GDIRP 224, 226, 228, 230
Generating one byte loads 63
GEQ p-code 251

GEQI p-code 250, 354
GEQI routine 332
GETBIG routine 312
Global loads and stores 168
Global variables 61, 152
GTR p-code 251

GTRI p-code 280, 354
GTRI routine 332

H

HEAP 32,152, 224
HIRES graphics 377, 393
HLT p-code routine 341

IDS p-code routine 338, 348

IF... THEN...ELSE code
generation 92

Immediate loads 154

INC p-code 214

INC p-code routine 323

Increasing the performance of Pascal

programs 59

Incrementing a field pointer 214

IND p-code 184, 186
IND p-code routine 323, 328
Index subscript checking 42

Indexing into a packed array 214
Indexing into a string array 210

Indexing into an array 216
Indirect loads and stores 184
Indirect, indexed loads 186
Information provided on a

compiled listing 73
Initializing an array to zero 69
INN p-code 87, 94, 288

INSERT procedure 97

Inside the p-code interpreter 307
Instruction formats 152
Instruction parameters 152
INT p-code 87, 292

INT p-code routine 325

Integer addition 234

Integer comparisons 250
Integer division 244

Integer modulo 246

Integer multiplication 240
Integer operations 232

Integer overflow 242

Integer subtraction 238
Intermediate loads and stores 176
Intermediate variables 176
Internally used strings 65
Interpreter jump table 352
Interpreter main loop 313
Interpreter program counter 151
Interpreter relative relocation table 312
Intrinsic segments 95

Intrinsic units 190

I0C p-code routine 347

IOR p-code routine 347
IORESULT 353

I0_ERROR routine 67

IPC 151, 307

IPC register 206, 296

IXA p-code 85, 216

IXA p-code routine 323

IXP p-code 218

IXP p-code routine 324

IXS p-code 210

IXS p-code routine 323

JTAB 151, 307
JTAB register 296
Jump table 151, 296
Jumps 296

KP 152, 307

LAE p-code 192
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LAE p-code routine 317
LAND p-code 276, 354
LAND p-code routine 319

LAO p-code 84, 85, 86, 87, 88,96, 172

LAO p-code routine 316

LDA p-code 180

LDA p-code routine 316

LDB p-code 96, 202

LDB p-code routine 319

LDC p-code 84, 196

 LDC p-code routine 318
LDCI p-code 86,158

LDCI p-code routine 314

LDCN 156

LDCN p-code routine 314

LDE p-code 190

LDE p-code routine 317

LDL p-code 162,176

LDL p-code routine 315

LDM p-code 87,198

LDM p-code routine 318

LDO p-code 84, 85,170,176

LDO p-code routine 316

LDP p-code 222

LDP p-code routine 324

LDS p-code 97

LDS p-code routine 338

LENGTH function 96

LEQ p-code 251

LEQI p-code 90, 91, 250, 354

LEQI routine 332

LES p-code 251

LESI p-code 250, 354

LESI routine 332

LIBRARY program 395

Line feed character 385

Line feed insertion after carriage

return 388

List option 73

-Listing-a-compiled program- 73

LLA p-code 164

LLA p-code routine 315

LNOT p-code 280

LNOT p-code routine 320

Load constant NIL 156

Load global word 170

Load intermediate address 180

Load intermediate variable 176

Load local address 164

Load segment routine 337

Loading a global variable onto
the stack 168

Loading a packed array address 220

Loading a string address onto
the stack 206

Loading a word from an intrinsic
unit 190

Loading an element from a
packed field 222

Loading and storing data 61

"Loading data from a byte array 202

Loading intrinsic units off the disk 95

Loading iocai variables onto the
evaluation stack 160

Loading real and set constants onto
the stack 196

Loading real and set variables onto
the stack 198

Loading the address of a local
variable onto the stack 164

Loading the address of an array
element onto the stack 216

Loading the address of an
intermediate variable 180

Loading values onto the evaluation
stack 154, 158

Local loads and stores 160

Local procedures 98

Local variables 152

LOD p-code 176, 177

LOD p-code routine 316

Logical AND and OR operations 354

Logical AND function 25

Logical AND operations 276

Logical comparisons 282

Logical negation 94, 280

Logical NOT operation 280

Logical operations 276

Logical OR operation 278

LONG integer routines 97

LONGINT intrinsic unit 95

LOR p-code 278, 354

LOR p-code routine 319

Low level data manipulation 16

LPA p-code 220

LPA p-code routine 322

LSA p-code 88, 95, 96, 206

457



LSA p-code routine 322
LSI-11 microprocessor 88

Maintaining programs 45

MARK procedure 228

Mark stack pointer 152

Maximizing code usage 64

MC68000 88, 351

MC6809 351

Mechanical optimizations 59

MEMAVAIL 36

MEMAVAIL p-code routine 342

Memory allocation 28

MODI p-code 246

Modifying the address contained
within a pointer 36

Modifying the Apple Pascal BIOS 375

Modifying the Apple Pascal p-code
Interpreter 351

Modulo 94

Mountain Computer Apple Clock 355

Mountain Computer Apple Clock
card 351

Mountain Computer CPS card 351

MOV p-code 88,212

MOV p-code routine 319

MOVELEFT 175

Moving a block of words 212

MP 152, 307

MP register 160, 164,172, 177

MPI p-code 240, 321, 355

MPR p-code 268

MPR p-code routine 345

MRK p-code 228

MRK p-code routine 320

Multiple word loads and stores 196

Multiplication 94

Multiply p-code routine 321

Multiply routine 321

MVL p-code routine 342

MVR p-code routine 341

Negating an integer 236

Negating real values 264
NEQ p-code 251

NEQI p-code 250, 354
NEQI routine 332

NEW 19, 32, 152

NEW p-code 226

NEW p-code routine 320
New pointer 152

NF]J p-code 302

NGI p-code 236, 353

NGI p-code routine 321

NGR p-code 85, 264

NGR p-code routine 345

NIL 156, 224, 226, 228, 230
Non-contiguous case values 68
Non-integer comparisons 251
Non-portable tricks 20
Non-segmented procedure calls 98
NOP p-code 88, 89, 95, 96
NOT 94

Not equal false jump instruction 302
NP 152, 307

NP register 228, 230 -
NS16032 351

Null character 386

o

Observing the action of the NEW
procedure 35

Obtaining the address of a REAL
array element 216

Obtaining the address of a SET
array element 216

Obtaining the address of a STRING
array element 216

Obtaining the Pascal stack pointer value 36

ODD 94

ODD function 276, 280

Offset into a procedure 73

One’s complement operation 280

One-byte instructions for loading
and storing data 61

One-time initialization 71

Optimization techniques 15

Optimizing parameter data 63

Optimizing a program to make
it compact 63
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Optimizing array and subrange
accesses 66
Optimizing compiler generated code 15
Optimizing for speed 70
Optimizing I/O instructions 67
Optimizing IF and CASE
statements 67
Optimizing loops 71
Optimizing real variable accesses 64
Optimizing string accesses 65
ORD function 94, 276, 280
Overriding the automatic
initialization of pointers 32
Overwriting pointer values 26

P

p-code assemblers 61

p-code disassemblers 60, 61

p-code subroutine call 334

p-machine 151

p-machine HEAP 152

p-machine registers 307

Packed field pointer 218, 222, 224

Parameter allocation 41

Pascal disk logical structure 390

Pascal Tools IT 60, 98

Passing an array by value 75

Passing global variables by reference 172

Passing parameters by reference 44

Patching the p-code interpreter 353

PDQ disk utility 98, 145

PDQ Pascal utilities 61

PEEK 15, 36

PEEKing and POKEing various
data structures 37

Performing input or output to a file 67

Phantom variables 96

Pinpointing the-loeation of a
run-time error 76

Placement of variables within a program 61

Pointer variable usage 89

Pointer variables 32

Pointers to integers 35

POKE 15, 36

Pop parameters off 6502 stack 335

Popping values off the evaluation
stack 166

POS function 96

Positioning the editor at a specific
line in a program 73

POT p-code 274

POT p-code routine 346

Power of ten table 346

PRED 94

Preventing the emission of the CHK
p-code 248

Printable characters 387

Printer init entry point. 388 .

Printer input entry point 388

Printer status entry point 389

Printer write operation 388

Printing an integer in hex format 22

Problems with pointer variables 32

Problems with the CASE statement 68

Procedure and function calls 304

Procedure call routine 334

Procedure calls 98

Procedure dictionary 151

Procedure lex level 73

Procedure number 73

Procedure segment number 73

Program stack 28

Program stack pointer 152

Push activation record 334

Push Boolean routine 331

Pushing a block of words onto
the stack 196

Pushing the address of a string
constant onto the stack 206

Pushing the address of an element
of a packed array 218

Pushing the address of an intrinsic
unit variable 192

RANGERR 352

RBP p-code 85

RBP p-code routine 336

Read segment routine 337
Real addition 262

REAL comparison routine 331
REAL comparisons 276

Real division 272

Real multiplication 268
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Real operations 252
Real subtraction 266
Record and array allocation 40
Record and array handling instructions 212
Record and word array comparisons 294
Reducing the size of, and speeding
up a program 61
Referencing array variables 42
Referencing variables as one of
three data types 27
Registers 151
RELEASE 152,224
Releasing storage allocated
by MRK 230
Relocation routine 337
REPEAT ... UNTIL code generation 91
Replacing the console driver 380
Replacing the PRINTER: driver 387
Replacing the REMIN and
REMOUT drivers 389
Reserved word table 348
Resetting bits 24
Re-using record fields 16, 17
Reverse Polish notation 95
Right bit number 218
RLS p-code 230
RLS p-code routine 321
RND p-code 256
RND p-code routine 346
RNP p-code routine 336
Round routine 346
Rounding a real value 258
RSP 385
Run time support package 142

S

SAS p-code 89, 95, 208
SAS p-code routine 323

SB 153

SBI p-code 238, 354

SBI p-code routine 321
SBR p-code 266

SBR p-code routine 344
Scalar variable allocation 61
SCN p-code routine 340
SEG 151, 307

Segment procedures 28, 98, 152

Segments reserved for the system 74
Selectively setting or clearing
bit patterns 25
Selectively turning the range
checking on or off 43, 66
Self relative pointers 296
Set adjust 282
Set assignments 86
Set compare jump table 333
Set comparison routine 333
Set comparison setup routine 332
Set comparisons 294
Set difference 86, 294
Set difference operator 26
Set equal routine 333
Set equality operator 26
Set greater than or equal routine 333
Set inclusion 94
Set inclusion operator 26
Set inclusions 86
Set inequality operator 26
Set intersection 86, 292
Set intersection operator 25
Set less than or equal routine 333
Set membership 288
Set membership operator 26
Set not equal routine 333
Set operations 86, 282
Set remainder check routine 333
Set type implementation 25
Set union 86, 290
Set union operator 25
Setting bits 24
Setting several bits with a single
assignment 25
SETUP program 355
SGS p-code 284
Shared allocation in Apple Pascal 15
Short load word indirect, indexed 184
Short store local 166
Shrinking Pascal programs 59
Signed byte 153
Similarities between Pascal
and BASIC 28
Simulating PEEK and POKE 36
SIND p-code 184
SIND p-code routine 317
Sixteen-bit microprocessors 88
Size of the CASE table 68
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SLDC p-code 85, 86, 87, 88,97, 154

SLDC p-code routine 313

SLDL p-code 63, 160

SLDL p-code instruction 61

SLDL p-code routine 314

SLDO p-code 63, 83, 89, 92, 94,168

SLDO p-code instruction 61

SLDO p-code routine 315

SP 151

SP register 204

Space available for user programs . 28

Space character 386

Speed of the CASE statement 68

Speeding up a program vs. shrinking it 70

SQI p-code 242

SQI p-code routine 321

SQR p-code 270

SQR p-code routine 345

Squaring an integer 242

Squaring real values 270

SRO p-code 83, 87, 89, 94, 174

SRO p-code routine 316

SRS p-code 286

Stack pointer 151

Start/stop character 386

Static analysis 154

Static frequency analysis 70

Static links 177

STB p-code 204

STE p-code 194

STE p-code routine 317

STL p-code 166

STL p-code routine 315

STM p-code 84, 85, 86, 200

STM p-code routine 319

STO p-code 90, 188

STO p-code routine 318

Storage requirements for Pascal
variables 38

‘Store a global word 174"

Store a word into an intrinsic unit 194

Store data indirect 188

Storing a block of words 200

Storing data into a byte array 204

Storing data into a packed field 224

Storing data into an intermediate
variable 182

Storing data into an intrinsic unit’s
global area 194

Storing often used constants in
a variable 64

Storing real and set values 200

Storing top of stack into a
local variable 166

STP p-code 224

STP p-code routine 325

STR p-code 182

STR p-code routine 317

STR procedure 95, 97

String address high order.byte..89.

String comparison routine 330
String comparisons 276

Siring handling functions 95
String handling instructions 206
String optimizations 65

Strings in Pascal 206
Subtraction 94

SUCC 94

SYSCOM 224, 382
SYSTEM.ATTACH 356, 377, 392
SYSTEM.STARTUP 392

T

Taking the absolute value of an integer 232

Testing bits 24

TIME 355

TIME p-code routine 341

TNC p-code 256

TNC p-code routine 346

Top of stack arithmetic 232

Transferring a block of words to a
similar structure 212

Treating a word as a set or a Boolean
array 26

Treating Boolean values as integers 276

Treating integers as Boolean values 276

Tricks with the cage variant 19 =" 7

TRS p-code routine 339

TRUNC function 256

Truncating a REAL value 256
Truncation routine 346

TRVSTAT routine 312

Turning off the range checking 66
Turning the I/O checking on or off 67
Turning the range checking off 43
Two’s complement 236
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Two-byte load and store instructions 64
Type ahead buffer 387
Type transfer functions 276

UB 153

UB values 208

UBUSY p-code routine 347

UCLEAR p-code routine 347

UCSD Pascal version IV.0 154

UJP p-code 90,91, 92, 93, 297

UJP p-code routine 314

ULS p-code routine 338

Unary operators 232, 258, 280

Unconditional jump instruction 297

Understanding the operation of the
p-machine 59

UNI p-code 87, 290

UNI p-code routine 326

Unimplemented opcode 311

Uniquely indentifying a procedure 74

UNIT 152

UNIT I/O routine 348

Unit on-line check routine 346

UNITCLEAR 394

UNITREAD 390

UNITWRITE 390

Unload segment routine 338

Unsigned byte 153

UPIPC1 313

UPIPC2 313

UPIPC3 313

UREAD input entry point 348

User hardware drivers 152

Using better algorithms 70

Using FILLCHAR to initialize arrays 69

Using two variant fields
simultaneously 21

USTATUS p-code routine 347

UWALIT p-code routine 347

UWRITE output entry point 348

v

Value Range error 43

Variable address assignment 37

Variable declaration order 63

Variable definitions and the size
of a program 61

Variable definitions and the speed
of a program 61

Variable length instructions 162

Variable storage 152

Variant records 16

Variant storage allocation 17
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Wasted space in Pascal records 19
When not to pull tricks 44
WHILE loop code generation 91
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XEQERR routine 312
XIT p-code routine 321
XJP p-code 93, 304
XIJP p-code routine 320
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Zeroing integer arrays 69
Zeroing real variables 69
Zeroing record variables 69
Zeroing set variables 69
Zeroing user defined scalars 69
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