
Extended Pascal

ISO 10206:1990

This online copy of the Extended Pascal standard is provided only as an aid to standardization.
In the case of di�erences between this online version and the printed version, the printed version
takes precedence.

Do not modify this document. Do not include this document in another software product. You
may print this document for personal use only. Do not sell this document.

Use this information only for good; never for evil. Do not expose to �re. Do not operate
heavy equipment after reading, may cause drowsiness. Do not read under the inuence of
alcohol (although there have been several uncon�rmed reports that alcohol actually improves
the readability). The standard is written in English. If you have trouble understanding a
particular section, read it again and again and again... Sit up straight. Eat your vegatables. Do
not mumble.

cISO/IEC 1991

ISO/IEC 10206:1990(E)

ii

ISO/IEC 10206:1990(E)

Acknowledgements

The e�orts are acknowledged of all those who contributed to the work of WG2, and in particular:

Brian Wichmann
Convener

David Bustard Harris Hall John Reagan
Barry Byrne Carsten Hammer Paula Schwartz
Klaus Daessler Tony Hetherington Steven Siegfried
Norman Diamond Steve Hobbs Manfred Stadel
Bob Dietrich David Joslin Tom Turba
Ken Edwards Jim Miner Willem Wakker

The e�orts are acknowledged of all those who contributed to the work of JPC, and in particular:

Thomas N. Turba Michael Patrick Hagerty John R. Reagan
Chairman X3J9 Chairman IEEE P770 Secretary

Steve Adamczyk Steven Hobbs David L. Presberg
Je�rey Allen Albert A Ho�man William C. Price
Edward Barkmeyer Michael A. Houghtaling Bruce Ravenely
Beth Benoit Robert C. Hutchins David L. Reese
W. Ashby Boaz Rosa C. Hwang Mike Renfro
Jack Boudreaux Scott Jameson David C. Robbins
Jerry R. Brookshire Janis Johnson Richard H. Rosenbaum
A. Winsor Brown Jay K Joiner Lynne Rosenthal
Tom Bucken David T. Jones Thomas Rudkin
Thomas M. Burger David Joslin Steve Russell
David S. Cargo Mel Kanner Paula Schwartz
Joe Cointment Leslie Klein Evelyn Scott
Roger Cox Dennis A. Kodimer Wayne Sewell
Jean Danver Ronald E. Kole Steve Siegfried
Debra Deutsch Bill Kraynek Nancy Simmons
Bob Dietrich Robert G. Lange Dave Skinner
Jane Donaho Charles Linett Carol Sledgez
Kenneth K. Edwards David Lyman Barry Smith
John Flores Pat Mayekawa Peter Steinfeld
Victor A. Folwarczny Rainer F. McCown Michael C. Stinson
Dennis Foster Jim Miner Prescott K. Turner
Thomas Giventer Eugene N. Miya Robert Tuttle
Hellmut Golde Mark Molloy Richard C. Vile, Jr
David N. Gray Wes Munsil Larry B. Weber
Paul Gregory David Neal David Weil
Ann Grossman William Neuhauser Brian Wichmann x
Harris Hall Dennis Nicholson Thomas R. Wilcox
Christopher J. Henrich Mark Overgaard Harvey Wohlwend
Tony Hetherington Ted C. Park Thomas Wolfe
Steven Hiebert Donald D. Peckham Kenneth M. Zemrowskiz
Ruth M. Higgins David E. Peercy

iii

ISO/IEC 10206:1990(E)

Charles R. Hill Robert C. B. Poon

y Past Chairman IEEE P770
z Past Chairman X3J9

iv

ISO/IEC 10206:1990(E)

Introduction

This International Standard provides an unambiguous and machine independent de�nition of
the programming language Extended Pascal. Its purpose is to facilitate portability of Extended
Pascal programs for use on a wide variety of data processing systems.

Language history

The computer programming language Pascal was designed by Professor Niklaus Wirth to satisfy
two principal aims

a) to make available a language suitable for teaching programming as a systematic discipline
based on certain fundamental concepts clearly and naturally reected by the language;

b) to de�ne a language whose implementations could be reliable and e�cient on then-available
computers.

However, it has become apparent that Pascal has attributes that go far beyond those original
goals. It is now being increasingly used commercially in the writing of system and application
software. With this increased use, there has been an increased demand for and availability
of extensions to ISO 7185:1983, Programming languages - PASCAL. Programs using such
extensions attain the bene�ts of the extended features at the cost of portability with standard
Pascal and with other processors supporting di�erent sets of extensions. In the absence of a
standard for an extended language, these processors have become increasingly incompatible.
This International Standard is primarily a consequence of the growing commercial interest in
Pascal and the need to promote the portability of Pascal programs between data processing
systems.

Project history

In 1977, a working group was formed within the British Standards Institution (BSI) to produce
a standard for the programming language Pascal. This group produced several working drafts,
the �rst draft for public comment being widely published early in 1979. In 1978, BSI's proposal
that Pascal be added to ISO's programme of work was accepted, and the ISO Pascal Working
Group (then designated ISO/TC97/SC5/WG4) was formed in 1979. The Pascal standard was to
be published by BSI on behalf of ISO, and this British Standard referenced by the International
Standard.

In the USA, in the fall of 1978, application was made to the IEEE Standards Board by the IEEE
Computer Society to authorize project 770 (Pascal). After approval, the �rst meeting was held
in January 1979.

In December 1978, X3J9 convened as a result of a SPARC (Standards Planning and Requirements
Committee) resolution to form a US TAG (Technical Advisory Group) for the ISO Pascal
standardization e�ort initiated by the UK. These e�orts were performed under X3 project 317.

In agreement with IEEE representatives, in February 1979, an X3 resolution combined the X3J9
and P770 committees into a single committee called the Joint X3J9/IEEE P770 Pascal Standards
Committee. (Throughout, the term JPC refers to this committee.) The �rst meeting as JPC
was held in April 1979.

The resolution to form JPC clari�ed the dual function of the single joint committee to produce

v

ISO/IEC 10206:1990(E)

a dpANS and a proposed IEEE Pascal standard, identical in content.

ANSI/IEEE770X3.97-1983, American National Standard Pascal Computer Programming
Language, was approved by the IEEE Standards Board on September 17, 1981, and by the
American National Standards Institute on December 16, 1982. British Standard BS6192,
Speci�cation for Computer programming language Pascal, was published in 1982, and
International Standard 7185 (incorporating BS6192 by reference) was approved by ISO on
December 1, 1983. Di�erences between the ANSI and ISO standards are detailed in the Foreword
of ANSI/IEEE770X3.97-1983. (BS6192/ISO7185 was revised and corrected during 1988/89; it
is expected that ANSI/IEEE770X3.97-1983 will be replaced by the revised ISO 7185.)

Following the decision that the �rst publication of a standard for the programming language
Pascal would not contain extensions to the language, JPC prepared a project proposal to SPARC
for an Extended Pascal Standard. When approved by X3 in November 1980, this proposal formed
the charter for Project 345.

JPC immediately formed the Extension Task Group to receive all proposals for extensions to
the Pascal language, developed the content of proposals so that they were in a form suitable for
review by JPC, fairly and equitably reviewed all proposals in light of published JPC policy, and
provided a liaison with the public in all matters concerning proposed extensions to the Pascal
language.

X3 issued a press release on behalf of JPC in January 1980 to solicit extension proposals
or suggestions from the general public. At this time, JPC had already prepared a list
of priority extensions; public comment served to validate and supplement the priority list.
Criteria for evaluating extensions were established and included machine independence, upward
compatibility, conceptual integrity, rigorous de�nition, and existing practice as prime objectives.
Extension proposals submitted by the public and by the JPC membership were developed and
re�ned. JPC procedures guaranteed that proposals would be considered over at least two
meetings, a�ording adequate time for review of the technical merits of each proposal.

By June of 1983, twelve extensions had been designated by JPC as candidate extensions and were
published as a Candidate Extension Library. Ongoing work was described in Work in Progress,
published with the Candidate Extension Library. This e�ort served as an interim milestone and
an opportunity for the public to review the e�ort to date.

In 1984, BSI also started work on extensions to Pascal, with an initial aim of providing
extensions in a few areas only. In 1985, the ISO Pascal Working Group (then designated
ISO/TC97/SC22/WG2, now ISO/IEC JTC1/SC22/WG2) was reconvened after a long break
to consider proposals from both ANSI and BSI in an international forum. Thereafter WG2 met
at regular intervals to reconcile the national standardization activities in ANSI and BSI and to
consider issues raised by the other experts participating in WG2.

The Work in Progress, along with other proposals subsequently received, continued its
development until June 1986. The process of reconciling individual candidate extensions among
themselves was begun in September 1984 and continued until June 1986. During this phase,
conicts between changes were resolved and each change was reconsidered. Working drafts of
the full standard were circulated within JPC and WG2 to incorporate changes from each meeting.

The candidate extensions were then integrated into a draft standard that was issued for
public review. The Public Comment Task Group (PCTG) was formed to respond to the
public comments and recommend changes to the draft. To promote a uni�ed response on
each comment issue, PCTG included members from both WG2 and JPC. All responses and

vi

ISO/IEC 10206:1990(E)

recommended changes required �nal approval by JPC and WG2. PCTG recommended several
substantive changes that were subsequently approved as changes to the draft. These changes
were incorporated and a new draft was produced for a second public review.

Project charter

The goal of JPC's Project 345 was to de�ne an implementable, internationally acceptable
Extended Pascal Standard.

This International Standard was to encompass those extensions found to be

a) compatible with ANSI/IEEE770X3.97-1983, American National Standard Programming
Language Pascal, and

b) bene�cial with respect to cost.

JPC's approved program of work included:

a) solicitation of proposals for extended language features;

b) the critical review of such proposals;

c) synthesis of those features found to be acceptable individually and which are mutually
consistent into a working draft proposed standard;

d) interface with all interested standards bodies, both domestic and international;

e) submission of the working draft to ISO/TC97/SC22/WG2;

f) synthesis and submission of a draft proposed ANS consistent with any international
standard developed;

g) review and correction of the dpANS in light of any comment received during Public
Comment and/or Trial Use periods.

Technical development

Extended Pascal incorporates the features from ANSI/IEEE770X3.97-1983 and the following
new features:

a) Modularity and Separate Compilation. Modularity provides for separately-
compilable program components, while maintaining type security.

|Each module exports one or more interfaces containing entities (values, types,
schemata, variables, procedures, and functions) from that module, thereby controlling
visibility into the module.

|A variable may be protected on export, so that an importer may use it but not alter
its value. A type may be restricted, so that its structure is not visible.

|The form of a module clearly separates its interfaces from its internal details.

|Any block may import one or more interfaces. Each interface may be used in whole
or in part.

|Entities may be accessed with or without interface-name quali�cation.

vii

ISO/IEC 10206:1990(E)

|Entities may be renamed on export or import.

|Initialization and �nalization actions may be speci�ed for each module.

|Modules provide a framework for implementation of libraries and non-Pascal program
components.

b) Schemata. A schema determines a collection of similar types. Types may be selected
statically or dynamically from schemata.

|Statically selected types are used as any other types are used.

|Dynamically selected types subsume all the functionality of, and provide functional
capability beyond, conformant arrays.

|The allocation procedure new may dynamically select the type (and thus the size) of
the allocated variable.

|A schematic formal-parameter adjusts to the bounds of its actual-parameters.

|The declaration of a local variable may dynamically select the type (and thus the
size) of the variable.

|The with-statement is extended to work with schemata.

|Formal schema discriminants can be used as variant selectors.

c) String Capabilities. The comprehensive string facilities unify �xed-length strings and
character values with variable-length strings.

|All string and character values are compatible.

|The concatenation operator (+) combines all string and character values.

|Variable-length strings have programmer-speci�ed maximum lengths.

|Strings may be compared using blank padding via the relational operators or using
no padding via the functions EQ, LT, GT, NE, LE, and GE.

|The functions length, index, substr, and trim provide information about, or
manipulate, strings.

|The substring-variable notation makes accessible, as a variable, a �xed-length portion
of a string variable.

|The transfer procedures readstr and writestr process strings in the same manner
that read and write process text�les.

|The procedure read has been extended to read strings from text�les.

d) Binding of Variables.

|A variable may optionally be declared to be bindable. Bindable variables may be
bound to external entities (�le storage, real-time clock, command lines, etc.). Only
bindable variables may be so bound.

|The procedures bind and unbind, together with the related type BindingType,
provide capabilities for connection and disconnection of bindable internal (�le and
non-�le) variables to external entities.

viii

ISO/IEC 10206:1990(E)

|The function binding returns current or default binding information.

e) Direct Access File Handling.

|The declaration of a direct-access �le indicates an index by which individual �le
elements may be accessed.

|The procedures SeekRead, SeekWrite, and SeekUpdate position the �le.

|The functions position, LastPosition, and empty report the current position and
size of the �le.

|The update �le mode and its associated procedure update provide in-place
modi�cation.

f) File Extend Procedure. The procedure extend prepares an existing �le for writing at
its end.

g) Constant Expressions. A constant expression may occur in any context needing a
constant value.

h) Structured Value Constructors. An expression may represent the value of an array,
record, or set in terms of its components. This is particularly valuable for de�ning
structured constants.

i) Generalized Function Results. The result of a function may have any assignable type.
A function result variable may be speci�ed, which is especially useful for functions returning
structures.

j) Initial Variable State. The initial state speci�er of a type can specify the value with
which variables are to be created.

k) Relaxation of Ordering of Declarations. There may be any number of declaration
parts (labels, constants, types, variables, procedures, and functions) in any order. The
prohibition of forward references in declarations is retained.

l) Type Inquiry. A variable or parameter may be declared to have the type of another
parameter or another variable.

m) Implementation Characteristics. The constant maxchar is the largest value of type
char. The constants minreal, maxreal, and epsreal describe the range of magnitude
and the precision of real arithmetic.

n) Case-Statement and Variant Record Enhancements. Each case-constant-list may
contain ranges of values. An otherwise clause represents all values not listed in the
case-constant-lists.

o) Set Extensions.

|An operator (><) computes the set symmetric di�erence.

|The function card yields the number of members in a set.

|A form of the for-statement iterates through the members of a set.

p) Date and Time. The procedure GetTimeStamp and the functions date and time,
together with the related typeTimeStamp, provide numeric representations of the current

ix

ISO/IEC 10206:1990(E)

date and time and convert the numeric representations to strings.

q) Inverse Ord. A generalization of succ and pred provides an inverse ord capability.

r) Standard Numeric Input. The de�nition of acceptable character sequences read from
a text�le includes all standard numeric representations de�ned by ISO 6093.

s) Nondecimal Representation of Numbers. Integer numeric constants may be
expressed using bases two through thirty-six.

t) Underscore in Identi�ers. The underscore character () may occur within identi�ers
and is signi�cant to their spelling.

u) Zero Field Widths. The total �eld width and fraction digits expressions in write
parameters may be zero.

v) Halt. The procedure halt causes termination of the program.

w) Complex Numbers.

|The simple-type complex allows complex numbers to be expressed in either Cartesian
or polar notation.

|The monadic operators + and - and dyadic operators +, �, *, /, =, <> operate on
complex values.

|The functions cmplx, polar, re, im, and arg construct or provide information about
complex values.

|The functions abs, sqr, sqrt, exp, ln, sin, cos, arctan operate on complex values.

x) Short Circuit Boolean Evaluation. The operators and then and or else are logically
equivalent to and and or, except that evaluation order is de�ned as left-to-right, and the
right operand is not evaluated if the value of the expression can be determined solely from
the value of the left operand.

y) Protected Parameters. A parameter of a procedure or a function can be protected from
modi�cation within the procedure or function.

z) Exponentiation. The operators ** and pow provide exponentiation of integer, real, and
complex numbers to real and integer powers.

A) Subrange Bounds. A general expression can be used to specify the value of either bound
in a subrange.

B) Tag Fields of Dynamic Variables. Any tag �eld speci�ed by a parameter to the
procedure new is given the speci�ed value.

Extended Pascal incorporates the following feature at level 1 of this standard:

Conformant Arrays. Conformant arrays provide upward compatibility with level 1 of ISO
7185, Programming languages - PASCAL.

Technical reports

During the development of this International Standard, various proposals were considered but
not incorporated due to consideration of time and other factors. Selected proposals may be

x

ISO/IEC 10206:1990(E)

published as Technical Reports.

xi

ISO/IEC 10206:1990(E)

xii

INTERNATIONAL STANDARD ISO/IEC 10206:1990(E)

Information technology | Programming

languages { Extended Pascal

1 Scope

1.1

This International Standard speci�es the semantics and syntax of the computer programming
language Extended Pascal by specifying requirements for a processor and for a conforming
program. Two levels of compliance are de�ned for both processors and programs.

1.2

This International Standard does not specify

a) the size or complexity of a program and its data that will exceed the capacity of any
speci�c data processing system or the capacity of a particular processor, nor the actions
to be taken when the corresponding limits are exceeded;

b) the minimal requirements of a data processing system that is capable of supporting an
implementation of a processor for Extended Pascal;

c) the method of activating the program-block or the set of commands used to control the
environment in which an Extended Pascal program is transformed and executed;

d) the mechanism by which programs written in Extended Pascal are transformed for use by
a data processing system;

e) the method for reporting errors or warnings;

f) the typographical representation of a program published for human reading.

2 Normative reference

The following standard contains provisions which, through reference in this text, constitute
provisions of this International Standard. At the time of publication, the edition indicated
was valid. All standards are subject to revision, and parties to agreements based on this
International Standard are encouraged to investigate the possibility of applying the most recent
edition of the standard listed below. Members of IEC and ISO maintain registers of currently
valid International Standards.

ISO 646:1983, Information processing | ISO 7-bit coded character set for information interchange.

1

ISO/IEC 10206:1990(E)

3 De�nitions

For the purposes of this International Standard, the following de�nitions apply.

NOTE | To draw attention to language concepts, some terms are printed in italics on their �rst mention
or at their de�ning occurrence(s) in this International Standard.

3.1 Dynamic-violation

A violation by a program of the requirements of this International Standard that a processor is
permitted to leave undetected up to, but not beyond, execution of the declaration, de�nition, or
statement that exhibits (see clause 6) the dynamic-violation.

3.2 Error

A violation by a program of the requirements of this International Standard that a processor is
permitted to leave undetected.

NOTES

1 If it is possible to construct a program in which the violation or non-violation of this standard
requires knowledge of the data read by the program or the implementation de�nition of implementation-
de�ned features, then violation of that requirement is classi�ed as either a dynamic-violation or an error.
Processors may report on such violations of the requirement without such knowledge, but there always
remain some cases that require execution, simulated execution, or proof procedures with the required
knowledge. Requirements that can be veri�ed without such knowledge are not classi�ed as dynamic-
violations or errors.

2 Processors should attempt the detection of as many errors as possible, and to as complete a degree as
possible. Permission to omit detection is provided for implementations in which the detection would be
an excessive burden.

3.3 Extension

A modi�cation to clause 6 of the requirements of this International Standard that does not
invalidate any program complying with this International Standard, as de�ned by 5.2, except
by prohibiting the use of one or more particular spellings of identi�ers.

3.4 Implementation-de�ned

Possibly di�ering between processors, but de�ned for any particular processor.

3.5 Implementation-dependent

Possibly di�ering between processors and not necessarily de�ned for any particular processor.

3.6 Processor

A system or mechanism that accepts a program as input, prepares it for execution, and executes
the process so de�ned with data to produce results.

2

ISO/IEC 10206:1990(E)

Table 1 | Metalanguage symbols
Metasymbol Meaning
= Shall be de�ned to be
> Shall have as an alternative de�nition
| Alternatively
. End of de�nition
[x] 0 or 1 instance of x
{ x } 0 or more instances of x
(x | y) Grouping: either of x or y
`xyz' The terminal symbol xyz
meta-identi�er A nonterminal symbol

NOTE | A processor may consist of an interpreter, a compiler and run-time system, or another
mechanism, together with an associated host computing machine and operating system, or another
mechanism for achieving the same e�ect. A compiler in itself, for example, does not constitute a
processor.

4 De�nitional conventions

The metalanguage used in this International Standard to specify the syntax of the constructs is
based on Backus-Naur Form. The notation has been modi�ed from the original to permit greater
convenience of description and to allow for iterative productions to replace recursive ones. Table 1
lists the meanings of the various metasymbols. Further speci�cation of the constructs is given
by prose and, in some cases, by equivalent program fragments. Any identi�er that is de�ned in
clause 6 as a required identi�er shall denote the corresponding required entity by its occurrence
in such a program fragment. In all other respects, any such program fragment is bound by any
pertinent requirement of this International Standard.

A meta-identi�er shall be a sequence of letters and hyphens beginning with a letter.

A sequence of terminal and nonterminal symbols in a production implies the concatenation of the
text that they ultimately represent. Within 6.1 this concatenation is direct; no characters shall
intervene. In all other parts of this International Standard the concatenation is in accordance
with the rules set out in 6.1.

The characters required to form Extended Pascal programs shall be those implicitly required to
form the tokens and separators de�ned in 6.1.

Use of the words of, in, containing, and closest-containing, when expressing a relationship
between terminal or nonterminal symbols, shall have the following meanings

|the x of a y: refers to the x occurring directly in a production de�ning y;

|the x in a y: is synonymous with `the x of a y';

|a y containing an x: refers to any y from which an x is directly or indirectly derived;

|the y closest-containing an x: that y containing an x and not containing another y containing
that x;

|the y1, y2,..., or yn closest-containing an x: that yi for some i in [1..n], closest-containing

3

ISO/IEC 10206:1990(E)

an x such that for all j in ([1..n]-[i]) if a yj closest-contains that x then that yj contains
that yi.

These syntactic conventions are used in clause 6 to specify certain syntactic requirements and
also the contexts within which certain semantic speci�cations apply.

In addition to the normal English rules for hyphenation, hyphenation is used in this International
Standard to form compound words that represent meta-identi�ers, semantic terms, or both. All
meta-identi�ers that contain more than one word are written as a unit with hyphens joining
the parts. Semantic terms ending in \type" and \variable" are also written as one hyphenated
unit. Semantic terms representing compound ideas are likewise written as hyphenated units,
e.g., digit-value, activation-point, assignment-compatible, and identifying-value.

NOTES are included in this International Standard only for purposes of clari�cation, and aid
in the use of the standard. NOTES are informative only and are not a part of the International
Standard.

Examples in this International Standard are equivalent to NOTES.

NOTE | Some language constructs or concepts are not de�ned completely in a single subclause, but
collectively in more than one subclause.

5 Compliance

There are two levels of compliance, level 0 and level 1. Level 0 does not include conformant-
array-parameters. Level 1 does include conformant-array-parameters.

5.1 Processors

A processor complying with the requirements of this International Standard shall

a) if it complies at level 0, accept all the features of the language speci�ed in clause 6, except
for 6.7.3.6 e), 6.7.3.7, and 6.7.3.8, with the meanings de�ned in clause 6;

b) if it complies at level 1, accept all the features of the language speci�ed in clause 6 with
the meanings de�ned in clause 6;

c) not require the inclusion of substitute or additional language elements in a program in
order to accomplish a feature of the language that is speci�ed in clause 6;

d) be accompanied by a document that provides a de�nition of all implementation-de�ned
features;

e) be able to determine whether or not the program violates any requirements of this International
Standard, where such a violation is not designated an error or dynamic-violation, report
the result of this determination to the user of the processor before the activation of the
program-block, if any, and shall prevent activation of the program-block, if any;

f) treat each violation that is designated a dynamic-violation in at least one of the following
ways

1) the processor shall report the dynamic-violation or the possibility of the dynamic-
violation during preparation of the program for execution and in the event of such a

4

ISO/IEC 10206:1990(E)

report shall be able to continue further processing and shall be able to refuse execution
of the program-block;

2) the processor shall report the dynamic-violation during execution of the program;

and if a dynamic-violation is reported during execution of the program, the processor
shall terminate execution; if a dynamic-violation occurs within a declaration, de�nition,
or statement, the execution of that declaration, de�nition, or statement shall not be
completed;

NOTE | 1 Dynamic-violations, like all violations except errors, must be detected.

g) treat each violation that is designated an error as either:

1) a dynamic-violation; or

2) there shall be a statement in an accompanying document that the error is not reported,
and a note referencing each such treatment shall appear in a separate section of the
accompanying document;

and if an error is reported during execution of the program, the processor shall terminate
execution; if an error occurs within a declaration, de�nition, or statement, the execution
of that declaration, de�nition, or statement shall not be completed;

NOTE | 2 This means that processing will continue up to or beyond execution of the program
at the option of the user.

h) be accompanied by a document that separately describes any features accepted by the
processor that are prohibited or not speci�ed in clause 6: such extensions shall be described
as being `extensions to Extended Pascal as speci�ed by ISO/IEC 10206';

i) be able to process, in a manner similar to that speci�ed for errors, any use of any such
extension; and

j) be able to process, in a manner similar to that speci�ed for errors, any use of an implementation-
dependent feature.

NOTE | 3 The phrase `be able to' is used in 5.1 to permit the implementation of a switch with which
the user may control the reporting.

A processor that purports to comply, wholly or partially, with the requirements of this International
Standard shall do so only in the following terms. A compliance statement shall be produced by
the processor as a consequence of using the processor or shall be included in accompanying
documentation. If the processor complies in all respects with the requirements of this standard,
the compliance statement shall be:

hThis processori complies with the requirements of level hnumberi of ISO/IEC 10206.

If the processor complies with some but not all of the requirements of this International Standard
then it shall not use the above statement, but shall instead use the following compliance
statement

hThis processori complies with the requirements of level hnumberi of ISO/IEC 10206 with the
following exceptions: hfollowed by a reference to, or a complete list of, the requirements of the
standard with which the processor does not complyi.

5

ISO/IEC 10206:1990(E)

In both cases the text hThis processori shall be replaced by an unambiguous name identifying
the processor, and the text hnumberi shall be replaced by the appropriate level number'

NOTE | 4 Processors that do not comply fully with the requirements of the International Standard are
not required to give full details of their failures to comply in the compliance statement; a brief reference
to accompanying documentation that contains a complete list in su�cient detail to identify the defects
is su�cient.

5.2 Programs

A program conforming with the requirements of this International Standard shall

a) if it conforms at level 0, use only those features of the language speci�ed in clause 6, except
for 6.7.3.6 e), 6.7.3.7, and 6.7.3.8;

b) if it conforms at level 1, use only those features of the language speci�ed in clause 6; and

c) not rely on any particular interpretation of implementation-dependent features.

NOTES

1 A program that conforms with the requirements of this International Standard may rely on particular
implementation-de�ned values or features.

2 The requirements for conforming programs and compliant processors do not require that the results
produced by a conforming program are always the same when processed by a compliant processor. They
may be the same, or they may di�er, depending on the program. A simple program to illustrate this is:

program x(output); begin writeln(maxint) end.

6 Requirements

6.1 Lexical tokens

NOTE | The syntax given in this subclause describes the formation of lexical tokens from characters
and the separation of these tokens and therefore does not adhere to the same rules as the syntax in the
rest of this International Standard.

6.1.1 General

The lexical tokens used to construct Extended Pascal programs are classi�ed into special-
symbols, identi�ers, remote-directives, interface-directives, implementation-directives, unsigned-
numbers, extended-numbers, labels, and character-strings. The representation of any character
(upper case or lower case, di�erences of font, etc.) occurring anywhere outside of a character-
string (see 6.1.9) shall be insigni�cant in that occurrence to the meaning of the program.

letter = `a' j `b' j `c' j `d' j `e' j `f' j `g' j `h' j `i' j `j'
j `k' j `l' j `m' j `n' j `o' j `p' j `q' j `r' j `s'
j `t' j `u' j `v' j `w' j `x' j `y' j `z' .

digit = `0' j `1' j `2' j `3' j `4' j `5' j `6' j `7' j `8' j `9' .

6

ISO/IEC 10206:1990(E)

6.1.2 Special-symbols

The special-symbols are tokens having special meanings and are used to delimit the syntactic
units of the language.

special-symbol = `+' j `�' j `*' j `/' j `=' j `<' j `>' j `[' j `]'
j `.' j `,' j `:' j `;' j `"' j `(' j `)' j `**'
j `<>' j `<=' j `>=' j `:=' j `..' j `><' j `=>'
j word-symbol .

word-symbol = `and' j `and then' j `array' j `begin' j `bindable' j `case'
j `const' j `div' j `do' j `downto' j `else' j `end' j `export'
j `�le' j `for' j `function' j `goto' j `if' j `import'
j `in' j `label' j `mod' j `module' j `nil' j `not' j `of'
j `only' j `or' j `or else' j `otherwise' j `packed' j `pow'
j `procedure' j `program' j `protected' j `quali�ed'
j `record' j `repeat' j `restricted' j `set' j `then' j `to'
j `type' j `until' j `value' j `var' j `while' j `with' .

6.1.3 Identi�ers

Identi�ers can be of any length. The spelling of an identi�er shall be composed from all its
constituent characters taken in textual order, without regard for the case of letters. No identi�er
shall have the same spelling as any word-symbol. Identi�ers that are speci�ed to be required
shall have special signi�cance (see 6.2.2.10 and 6.12).

identi�er = letter f [underscore] (letter j digit) g .

underscore = ` ' .

NOTE | An identi�er cannot begin or end with an underscore, nor can two underscores be adjacent.

Examples:
X

time

readinteger

WG2

AlterHeatSetting

GInqWsTran

DeviceDriverIdentificationHeader

DeviceDriverIdentificationBody

Trondheim Hammer Dance

6.1.4 Remote-directives

A remote-directive shall only occur in a procedure-declaration or a function-declaration. The
remote-directive shall be the required remote-directive forward (see 6.7.1 and 6.7.2).

remote-directive = directive .

directive = letter f [underscore] (letter j digit) g .

7

ISO/IEC 10206:1990(E)

NOTE | Many processors provide, as an extension, the remote-directive external, which is used to
specify that the procedure-block or function-block corresponding to that procedure-heading or function-
heading is external to the program-block. Usually it is in a library in a form to be input to, or that
has been produced by, the processor. When providing such an extension, a processor should enforce the
rules of Extended Pascal pertaining to type compatibility.

6.1.5 Interface-directives

An interface-directive shall only occur in a module-heading of a module-declaration. The interface-
directive shall be the required interface-directive interface (see 6.11.1).

interface-directive = directive .

NOTE | A processor may provide, as an extension, the interface-directive external, which is used to
specify that the module-block corresponding to the module-heading containing the interface-directive
is in some form other than an Extended Pascal module-block (e.g., it is implemented in some other
language). When providing such an extension, a processor should enforce the rules of Extended Pascal
pertaining to type compatibility.

6.1.6 Implementation-directives

An implementation-directive shall only occur in a module-identi�cation of a module-declaration.
The implementation-directive shall be the required implementation-directive implementation
(see 6.11.1).

implementation-directive = directive .

6.1.7 Numbers

An unsigned-integer shall denote in decimal notation a value of integer-type (see 6.4.2.2). An
unsigned-real shall denote in decimal notation a value of real-type (see 6.4.2.2). The letter
`e' preceding a scale-factor shall mean times ten to the power of. The value denoted by an
unsigned-integer shall be in the closed interval 0 to maxint (see 6.4.2.2).

signed-number = signed-integer j signed-real .

signed-real = [sign] unsigned-real .

signed-integer = [sign] unsigned-integer .

unsigned-number = unsigned-integer j unsigned-real .

sign = `+' j `�' .

unsigned-real = digit-sequence `.' fractional-part [`e' scale-factor]
j digit-sequence `e' scale-factor .

unsigned-integer = digit-sequence .

fractional-part = digit-sequence .

scale-factor = [sign] digit-sequence .

digit-sequence = digit f digit g .

8

ISO/IEC 10206:1990(E)

number = signed-number
j [sign] (digit-sequence `.' j `.' fractional-part) [`e' scale-factor] .

NOTE | 1 The meta-identi�er number is only used in 6.10.1 d).

Examples:
1e10

1

+100

-0.1

5e-3

87.35E+8

An extended-digit that is a digit shall denote a digit-value which shall be the number of
predecessors of that digit in the syntactic de�nition of digit in 6.1.1. An extended-digit that is
a letter shall denote a digit-value which shall be greater by ten than the number of predecessors
of that letter in the syntactic de�nition of letter in 6.1.1. The unsigned-integer of an extended-
number shall denote the radix of the extended-number; the radix shall be in the closed interval
two through thirty-six. No extended-digit in an extended-number shall denote a digit-value
that equals or exceeds the radix of the extended-number. An extended-number shall denote, in
conventional positional notation with the speci�ed radix, a value of integer-type in the closed
interval 0 to maxint (see 6.4.2.2).

extended-digit = digit j letter .

extended-number = unsigned-integer `#' extended-digit f extended-digit g .

Examples:
16#ff

8#377

32#100

13#42 f the answer to the ultimate question of life,

the universe, and everything g

NOTE | 2 The character # is regarded as identical to corresponding currency symbols that appear in
some national variants of ISO 646.

6.1.8 Labels

Labels shall be digit-sequences and shall be distinguished by their apparent integral values and
shall be in the closed interval 0 to 9999. The spelling of a label shall be its apparent integral
value.

label = digit-sequence .

6.1.9 Character-strings

A character-string containing a single string-element shall denote a value of the char-type (see
6.4.2.2). A character-string containing other than a single string-element shall denote a value of
the canonical-string-type (see 6.4.3.3.1) with a length equal to the number of string-elements
contained in the character-string.

9

ISO/IEC 10206:1990(E)

There shall be an implementation-de�ned one-to-one correspondence between the set of alternatives
from which string-elements are drawn and a subset of the values of the required char-type.
The occurrence of a string-element in a character-string shall denote the occurrence of the
corresponding value of char-type.

character-string = `'' f string-element g `'' .

string-element = apostrophe-image j string-character .

apostrophe-image = `"' .

string-character = one-of-a-set-of-implementation-de�ned-characters .

NOTE | Conventionally, the apostrophe-image is regarded as a substitute for the apostrophe character,
which cannot be a string-character.

Examples:
'A'

';'

''''

'Extended Pascal'

'THIS IS A STRING'

'Don''t think this is two strings'

6.1.10 Token separators

Where a commentary shall be any sequence of characters and separations of lines, containing
neither g nor *), the construct

(`f' j `(*') commentary (`*)' j `g')

shall be a comment if neither the f nor the (* occurs within a character-string or within a
commentary.

NOTES

1 A comment may thus commence with { and end with *), or commence with (* and end with }.

2 The sequence (*) cannot occur in a commentary even though the sequence {) can.

The substitution of a space for a comment shall not alter the meaning of a program.

Comments, spaces (except in character-strings), and the separations of consecutive lines shall
be considered to be token separators. Zero or more token separators can occur between any two
consecutive tokens, before the �rst token of a program text, or after the last token of a program
text. There shall be at least one separator between any pair of consecutive tokens made up of
identi�ers, word-symbols, labels, extended-numbers, or unsigned-numbers. No separators shall
occur within tokens.

6.1.11 Lexical alternatives

The representation for lexical tokens and separators given in 6.1.1 to 6.1.10, except for the
character sequences (* and *), shall constitute a reference representation for these tokens and
separators.

10

ISO/IEC 10206:1990(E)

To facilitate the use of Extended Pascal on processors that do not support the reference representation,
the following alternatives have been de�ned. All processors that have the required characters in
their character set shall provide both the reference representations and the alternative representations,
and the corresponding tokens or separators shall not be distinguished. Provision of the reference
representations, and of the alternative token @, shall be implementation-de�ned.

The alternative representations for the tokens shall be

Reference token Alternative token
" @
[(.
] .)

NOTE | 1 The character " that appears in some national variants of ISO 646 is regarded as identical
to the character ^. In this International Standard, the character " has been used because of its greater
visibility.

The comment-delimiting characters f and g shall be the reference representations, and (* and
*) respectively shall be alternative representations (see 6.1.10).

NOTE | 2 See also 1.2 f).

6.2 Blocks, scopes, activations, and states

6.2.1 Blocks

A block closest-containing a label-declaration-part in which a label occurs shall closest-contain
exactly one statement in which that label occurs. The occurrence of a label in a label-declaration-
part of a block shall be its de�ning-point for the region that is the block. Each applied occurrence
of that label (see 6.2.2.8) shall be a label. Within an activation of the block, all applied
occurrences of that label shall denote the corresponding program-point in the algorithm of the
activation at that statement (see 6.2.3.2 b)).

block = import-part
f label-declaration-part
j constant-de�nition-part
j type-de�nition-part
j variable-declaration-part
j procedure-and-function-declaration-part g
statement-part .

import-part = [`import' import-speci�cation `;' f import-speci�cation `;' g] .

label-declaration-part = `label' label f `,' label g `;' .

constant-de�nition-part = `const' constant-de�nition `;' f constant-de�nition `;' g .

type-de�nition-part = `type' (type-de�nition j schema-de�nition) `;'
f (type-de�nition j schema-de�nition) `;' g .

variable-declaration-part = `var' variable-declaration `;' f variable-declaration `;' g .

11

ISO/IEC 10206:1990(E)

procedure-and-function-declaration-part = f (procedure-declaration
j function-declaration) `;' g .

A procedure-and-function-declaration-part shall not be immediately followed by another procedure-
and-function-declaration-part.

NOTE | A procedure-and-function-declaration-part thus consists of a maximal sequence of procedure-
declarations, function-declarations, and semicolons. See the discussion of the remote-directive forward
in 6.7.1 and 6.7.2.

The statement-part shall specify the algorithmic actions to be executed upon an activation of
the block.

statement-part = compound-statement .

6.2.2 Scopes

6.2.2.1

Each identi�er or label contained by the program-block shall have a de�ning-point, with the
exception of the identi�er of a program-heading (see 6.12).

6.2.2.2

Each de�ning-point shall have one or more regions that are parts of the program text, and a
scope that is part or all of those regions. The region that is an interface (see 6.11.2), however,
shall not be a part of the program text and shall be disjoint from every other interface.

6.2.2.3

The region(s) of each de�ning-point are de�ned elsewhere (see 6.2.1, 6.2.2.10, 6.2.2.12, 6.3,
6.4.1, 6.4.2.3, 6.4.3.4, 6.4.7, 6.5.1, 6.5.3.3, 6.7.1, 6.7.2, 6.7.3.1, 6.7.3.7.1, 6.8.4, 6.8.6.3,
6.8.7.3, 6.8.8.3, 6.9.3.10, 6.11.1, 6.11.2, 6.11.3, and 6.12).

6.2.2.4

The scope of each de�ning-point shall be its region(s) (including all regions enclosed by those
regions) subject to 6.2.2.5 and 6.2.2.6.

6.2.2.5

When an identi�er or label has a de�ning-point for region A and another identi�er or label
having the same spelling has a de�ning-point for some region B enclosed by A, then region B
and all regions enclosed by B shall be excluded from the scope of the de�ning-point for region
A.

6.2.2.6

The region that is the �eld-speci�er of a �eld-designator, the �eld-speci�er of a �eld-designated-
constant, the �eld-speci�er of a record-function-access, the discriminant-speci�er of a schema-
discriminant, a �eld-identi�er of a �eld-value, the �eld-identi�er of a tag-�eld-identi�er, the

12

ISO/IEC 10206:1990(E)

identi�er-list of the program-parameter-list, the identi�er-list of the module-parameter-list, or
the import-quali�er of an import-speci�cation shall be excluded from the enclosing scopes.
The region that is the constant-identi�er of a constant-name, the type-identi�er of a type-
name, the schema-identi�er of a schema-name, the variable-identi�er of a variable-name, the
procedure-identi�er of a procedure-name, or the function-identi�er of a function-name shall be
excluded from the enclosing scopes if the constant-name, type-name, schema-name, variable-
name, procedure-name, or function-name, respectively, contains an imported-interface-identi�er.

NOTE | Consider the variable-name i1.x (see 6.5.1) constructed from an interface-identi�er i1 and a
variable-identi�er x. The part of the program text occupied by this occurrence of x is the region that is
excluded from enclosing scopes. This region thus cannot be occupied by any other identi�er that would
be legal in a variable-identi�er position and that has a scope that otherwise would include the region
occupied by x.

For example in:

procedure a;

import i1 qualified only (x);

var y : integer;

begin

i1.x := ...

the construct i1.x is allowed but i1.y is disallowed.

6.2.2.7

When an identi�er or label has a de�ning-point for a region, another identi�er or label with the
same spelling shall not have a de�ning-point for that region unless both identi�ers are imported
identi�ers and denote the same value, variable, procedure, function, schema, or type. In the case
of imported type-identi�ers, both identi�ers shall also denote the same bindability and initial
state (see 6.11.3).

6.2.2.8

Within the scope of a de�ning-point of an identi�er or label, each occurrence of an identi�er or
label having the same spelling as the identi�er or label of the de�ning-point shall be designated
an applied occurrence of the identi�er or label of the de�ning-point, except for an occurrence that
constituted the de�ning-point; such an occurrence shall be designated a de�ning occurrence. No
occurrence outside that scope shall be an applied occurrence.

6.2.2.9

The de�ning-point of an identi�er or label shall precede all applied occurrences of that identi�er
or label contained by the program-block with two exceptions:

a) An identi�er can have an applied occurrence as a type-identi�er or schema-identi�er
contained by the domain-type of any new-pointer-types contained by the type-de�nition-
part containing the de�ning-point of the type-identi�er or schema-identi�er.

b) An identi�er can have an applied occurrence as a constant-identi�er, type-identi�er, schema-
identi�er, variable-identi�er, procedure-identi�er, or function-identi�er contained by an
export-list closest-contained by a module-heading containing the de�ning-point of the identi�er.

13

ISO/IEC 10206:1990(E)

6.2.2.10

Required identi�ers that denote the required values, types, schemata, procedures, and functions
shall be used as if their de�ning-points have a region enclosing the program (see 6.1.3, 6.4.2.2,
6.4.3.4, 6.4.3.6, 6.4.3.3.3, 6.7.5, 6.7.6, and 6.10).

NOTES

1 The required identi�ers input and output are not included, since these denote variables (see 6.11.4.2).

2 The required identi�ers StandardInput and StandardOutput are not included, since these denote
interfaces (see 6.11.4.2).

6.2.2.11

Whatever an identi�er or label denotes at its de�ning-point shall be denoted at all applied
occurrences of that identi�er or label.

NOTES

1 Within syntax de�nitions, an applied occurrence of an identi�er is quali�ed (e.g., type-identi�er)
whereas a de�ning occurrence is not quali�ed.

2 It is intended that such quali�cation indicates the nature of the entity denoted by the applied
occurrence: e.g., a constant-identi�er denotes a constant.

6.2.2.12

Each de�ning-point that has as a region a module-heading shall also have as a region the module-
block that is associated with that module-heading.

6.2.2.13

A module A shall be designated as supplying a module B if A supplies the module-heading
or module-block of B. A module A shall be designated as supplying a main-program-block if
the module supplies the block of the main-program-block. A module A shall be designated as
supplying a module-heading, module-block, or block, B, either if B contains an applied occurrence
of an interface-identi�er having a de�ning occurrence contained by the module-heading of A, or
if A supplies a module that supplies B.

No module shall supply its module-heading.

NOTE | A module-heading that exports an interface precedes any module-heading, module-block, or
block that imports the interface, and a module-heading precedes its module-block (see 6.2.2.9).

6.2.3 Activations

6.2.3.1

A variable-identi�er having a de�ning-point within a variable-declaration-part, for the region
that is a module-block (see also 6.2.2.12) or a block shall be designated local to the module
containing the module-block (see 6.11.1) or to the block, respectively.

A procedure-identi�er or function-identi�er having a de�ning-point within a procedure-and-
function-heading-part or a procedure-and-function-declaration-part, for a region that is a module-

14

ISO/IEC 10206:1990(E)

block or a block, shall be designated local to the module containing the module-block or to the
block, respectively.

6.2.3.2

Each activation of a block or module shall contain

a) for the statement-part of the block, an algorithm, the completion of which shall terminate
the activation (see also 6.9.2.4);

b) for each de�ning-point of a label in a label-declaration-part of the block, a corresponding
program-point (see 6.2.1);

c) for each new-type closest-contained by the module-heading of the module, the module-block
of the module, or the block, one or more corresponding types (see 6.4.1);

d) for each schema-de�nition containing a formal-discriminant-part and closest-contained by
the module-heading of the module, the module-block of the module, or the block, a
corresponding schema (see 6.4.7);

e) for each conformant-array-form closest-contained by the formal-parameter-list, if any, de�ning
the formal-parameters of the block, a corresponding type (see 6.7.3.7.1);

f) for each de�ning-point of a variable-identi�er local to the block or module, a corresponding
variable (see 6.5.1);

g) for each de�ning-point of a variable-identi�er that is a formal-parameter of the block,
occurring within a value-parameter-speci�cation or a value-conformant-array-speci�cation,
a corresponding variable (see 6.7.3.1, 6.7.3.2, 6.7.3.7.1, and 6.7.3.7.2);

h) for each de�ning-point of a variable-identi�er that is a formal-parameter of the block,
occurring within a variable-parameter-speci�cation or a variable-conformant-array-speci�cation,
a reference to the corresponding variable (see 6.7.3.1, 6.7.3.3, 6.7.3.7.1, and 6.7.3.7.3);

i) for each de�ning-point of a procedure-identi�er local to the block or module, a corresponding
procedure with the procedure-block corresponding to the procedure-identi�er, and the
formal-parameters of that procedure-block (see 6.7.1);

j) for each de�ning-point of a function-identi�er local to the block or module, a corresponding
function with the function-block corresponding to, and the type associated with, the
function-identi�er, and the formal-parameters of that function-block (see 6.7.2);

k) if the block is a function-block, a variable called the result of the activation, possessing
the type and initial state (see 6.7.2) associated with the block of the function-block, and
possessing the bindability that is nonbindable;

l) if the block is a main-program-block, each text�le required to be implicitly accessible (see
6.11.4.2) by any procedure-statement or function-designator contained by the program
containing the main-program-block;

m) a commencement (see 6.2.3.8);

n) for the module, an initialization, which shall be speci�ed by a statement: if an initialization-
part occurs in the module-block of the module, then the statement of the initialization-part;
otherwise, an empty-statement (see 6.11.1); and

15

ISO/IEC 10206:1990(E)

o) for the module, a �nalization, which shall be speci�ed by a statement: if a �nalization-
part occurs in the module-block of the module, then the statement of the �nalization-part;
otherwise, an empty-statement (see 6.11.1).

NOTE | Each activation contains its own algorithm, program-points, types, schemata, variables,
references, commencement, initialization, �nalization, procedures, and functions, distinct from those
of every other activation.

6.2.3.3

An activation of a procedure or a function shall be an activation of the block of the procedure-
block of the procedure or of the function-block of the function, respectively, and shall be
designated as within

a) the activation containing the procedure or function; and

b) all activations that that containing activation is within.

NOTE | An activation of a block B can only be within activations of blocks containing B. Thus, an
activation is not within another activation of the same block.

6.2.3.4

A procedure-statement or function-designator contained in the algorithm, initialization, or �nalization
of an activation and specifying an activation of a block shall be designated the activation-point
of the activation of the block.

6.2.3.5

Each variable contained by an activation of a block or module, unless it is a program-parameter
or module-parameter or it is a formal-parameter of the block, shall be created in its initial
state (see 6.2.3.2 k) and 6.5.1) within the commencement of the activation. Each variable
contained by an activation of a block or module, unless it is a program-parameter or module-
parameter, shall be created not bound to an external entity. The algorithm, program-points,
types, schemata, variables, references, �nalization, procedures, and functions, if any, contained
by an activation shall exist until the termination of the activation.

6.2.3.6

An activation of a program-block shall consist of an activation of the main-program-block
contained by the program-block and, for each module supplying (see 6.2.2.13) the main-program-
block, an activation of that module. The termination of the activations of both the main-
program-block and those modules shall constitute the termination of the activation of the
program-block.

The order of any two distinct commencements shall be implementation-dependent unless the
order is speci�ed by the following sentence. Within an activation of a program-block, for each
module or main-program-block A and for each module B other than A, if B supplies A and A does
not supply B, then the commencement of the activation of B shall precede the commencement
of the activation of A.

The completion of the �nalization of an activation of a module shall terminate the activation.

16

ISO/IEC 10206:1990(E)

The order of the action speci�ed by the �nalization of an activation and the termination of
a distinct activation shall be implementation-dependent unless the order is speci�ed by the
following sentence. Within an activation of a program-block, for each module or main-program-
block A and for each module B other than A, if B supplies A and A does not supply B, then the
termination of the activation of A shall precede the action speci�ed by the �nalization of the
activation of B.

6.2.3.7

An activation of the module-heading or module-block associated with a module shall be the
same activation of the module. An activation of a main-program-block shall be the activation
of the block of the main-program-block.

6.2.3.8

The commencement of an activation of either a module or a block shall contain the following
events

a) for each formal value parameter of the block, an attribution of a value to the variable
denoted within the activation by the formal-parameter (see 6.7.3.2), and for each formal
variable parameter of the block, an access to the actual-parameter (see 6.7.3.3);

b) for each actual-discriminant-part or subrange-bound not contained by a schema-de�nition
and closest-contained by the module-heading of the module, by the module-block of the
module, or by the block, the corresponding evaluation of the actual-discriminant-part or
subrange-bound, respectively (see 6.4.8);

c) for each de�ning occurrence of a variable-identi�er local to the module or the block,
the corresponding creation of the variable corresponding to the variable-identi�er (see
6.2.3.2 f) and 6.2.3.5); and

d) the action speci�ed by the initialization of the activation of the module.

Within the commencement of an activation, any events speci�ed by a) shall precede any events
speci�ed by b) and c), and the latter events shall precede any event speci�ed by d).

Within the commencement of an activation, the order of any events speci�ed by b) and c) shall
be the same as the textual order of their respectively-corresponding actual-discriminant-parts or
subrange-bounds and de�ning occurrences, with one exception: An event speci�ed by b) shall
precede an event speci�ed by c) if the respectively-corresponding actual-discriminant-part or
subrange-bound and de�ning occurrence are both contained by one variable-declaration.

NOTE | An evaluation speci�ed by b) can evaluate a local variable only if its initial state is value-
bearing.

The commencement of an activation of a block shall precede the algorithm of the activation.

The completion of the events speci�ed by a), b), c), and d) within a commencement shall
constitute completion of the commencement.

17

ISO/IEC 10206:1990(E)

6.2.4 States

A type determines a set of states, each of which shall be either a value-bearing state or a non-
value-bearing state, but not both. A value-bearing state determined by a type shall be said
to bear a value,and the values borne by two distinct value-bearing states shall be distinct. A
non-value-bearing state shall not bear a value. When describing a state, unde�ned shall be
synonymous with non-value-bearing.

The states determined by a structured-type shall have the structure of the structured-type.

The set of states determined by any type shall contain a special non-value-bearing state designated
totally-unde�ned.

For any type that is not an array-type, a record-type, or a �le-type, the set of states shall contain
only the totally-unde�ned state and, for each value determined by the type, a state bearing that
value.

NOTE | 1 The set of states determined by an array-type, a record-type, or a �le-type is speci�ed in
6.4.3.2, 6.4.3.4, and 6.4.3.6, respectively, together with 6.4.2.1.

For an array-type, a record-type, or a �le-type, each component of the totally-unde�ned state
shall be the totally-unde�ned state of the component-type, and each component of a value-
bearing state shall be a value-bearing state.

NOTES

2 For a structured-type, each unde�ned state shall have at least one component that is unde�ned.

3 For a pointer-type, the set of states is dynamic in that the states bearing identifying-values (see 6.4.4)
are created and destroyed by actions of the program. Every non-pointer type determines a static set of
values, i.e., a set that does not change during the existence of the type.

A variable declared to possess a type shall always have one of the states determined by the type;
the particular state of a variable that is not bound to an external entity at any point shall have
been determined by the actions speci�ed by the program.

A value borne by the state of a variable shall be said to be attributed to the variable; a variable
having a non-value-bearing state shall be said to have no value attributed to the variable and
shall also be designated unde�ned.

NOTE | 4 Each state of a variable when the variable does not have attributed to it a value speci�ed
by its type is unde�ned. If a variable possesses a structured-type, the state of the variable when every
component of the variable is totally-unde�ned is totally-unde�ned. Totally-unde�ned is synonymous
with unde�ned for a variable that does not possess a structured-type.

Causing a variable to have the state bearing a value shall be described as attributing the value
to the variable.

NOTE | 5 Subclauses that specify attribution (or de-attribution) of a value to a variable are: 6.5.3.3,
6.6, 6.7.3.2, 6.7.3.7.2, 6.7.5.2, 6.7.5.3, 6.7.5.4, 6.7.5.5, 6.7.5.6, 6.7.5.8, 6.7.6.7, 6.9.2.2, 6.9.3.9,
6.10, 6.11.4.2. In some of these subclauses the attribution is implicit.

The initial state denoted by a type-denoter shall be a state determined by the type denoted by
the type-denoter (see 6.6).

18

ISO/IEC 10206:1990(E)

6.3 Constants

6.3.1 General

A constant-de�nition shall introduce an identi�er to denote a value.

constant-de�nition = identi�er `=' constant-expression .

constant-identi�er = identi�er .

constant-name = [imported-interface-identi�er `.'] constant-identi�er .

A constant-name shall denote the value denoted by the constant-identi�er of the constant-name.

The occurrence of an imported-interface-identi�er in a constant-name shall be the de�ning-
point of each imported constant-identi�er associated with the imported-interface-identi�er for
the region that is the constant-identi�er of the constant-name.

The occurrence of an identi�er in a constant-de�nition of a constant-de�nition-part of a block, a
module-heading, or a module-block shall constitute its de�ning-point as a constant-identi�er for
the region that is the block, the module-heading, or the module-block, respectively. A constant-
expression in a constant-de�nition shall not contain an applied occurrence of the identi�er in the
constant-de�nition.

Each applied occurrence of the identi�er in the constant-de�nition shall be a constant-identi�er.
Within an activation of the block, the module-heading, or the module-block, all applied occurrences
of that identi�er shall denote the value denoted by the constant-expression of the constant-
de�nition. The required constant-identi�ers shall be as speci�ed in 6.4.2.2.

NOTE | Constants of pointer-types are allowed, but they can only denote the value NIL.

6.3.2 Example of a constant-de�nition-part

NOTE | The type-identi�ers sieve, vector, quiver, PunchedCard, and subpolar are de�ned in 6.4.10.

const

unity = 1.0;

third = unity/3.0; f see 6.8.2 g
SmallPrimes = sieve[2,3,5,7,11,13,17,19]; f see 6.8.7.4 g
limit = 43;

ZeroVector = vector[1..limit: 0.0]; f see 6.8.7.2 g
UnitVector = vector[1: unity otherwise 0];

ZeroQuiver = quiver[otherwise ZeroVector];

BlankCard = PunchedCard[1..80: ' '];

blank = ' ';

Unit = subpolar[r:1; theta:0.0]; f see 6.8.7.3 g
Unit Distance = Unit.r; f see 6.8.8.3 g
Origin = subpolar[r,theta:0.0];

thrust = 5.3; theta = -2.0; warp = subpolar[r:thrust;theta:theta];

column1 = BlankCard[1]; f see 6.8.8.2 g
MaxMatrix = 39;

pi = 4 * arctan(1);

hex string = '0123456789ABCDEF';

hex digits = hex string[1..10]; f see 6.8.8.4 g

19

ISO/IEC 10206:1990(E)

hex alpha = hex string[index(hex string,'A')..index(hex string,'F')];

mister = 'Mr.';

6.4 Types and schemata

6.4.1 Type-de�nitions

A type-de�nition shall introduce an identi�er to denote a type, bindability, and initial state
(see 6.6). Bindability, the quality of either being bindable or being nonbindable, but not both,
shall be possessed by every variable. Type shall be an attribute that is possessed by every
value and every variable. Within an activation of a block, module-heading, or module-block,
closest-containing a new-type, the new-type shall denote one corresponding type and initial state
if the new-type is not contained by a schema-de�nition (see 6.4.7) and shall denote one or more
mutually distinct corresponding types and initial states otherwise. Each type contained by an
activation and corresponding to a new-type shall be distinct both from any type contained by
any other activation, and from any type corresponding to any other new-type or conformant-
array-form (see 6.2.3.2).

type-de�nition = identi�er `=' type-denoter .

type-denoter = [`bindable'] (type-name j new-type
j type-inquiry j discriminated-schema)
[initial-state-speci�er] .

new-type = new-ordinal-type
j new-structured-type
j new-pointer-type
j restricted-type .

The occurrence of an identi�er in a type-de�nition of a type-de�nition-part of a block, a module-
heading, or a module-block shall constitute its de�ning-point for the region that is the block,
the module-heading, or the module-block. Each applied occurrence of that identi�er shall be a
type-identi�er. Within an activation of the block, the module-heading, or the module-block, all
applied occurrences of that identi�er shall denote the type, bindability, and initial state denoted
by the type-denoter of the type-de�nition. Except for applied occurrences in the domain-type
of a new-pointer-type, the type-denoter shall not contain an applied occurrence of the identi�er
in the type-de�nition.

If the symbol bindable occurs in a type-denoter, the type-denoter shall denote the bindability
that is bindable; otherwise, the type-denoter shall denote the bindability that is denoted by the
type-name, the new-type, the type-inquiry, or the discriminated-schema of the type-denoter. The
bindability denoted by a required type-identi�er shall be nonbindable. A type-denoter denoting
a restricted-type shall not contain the symbol bindable.

If an initial-state-speci�er occurs in a type-denoter, the type-denoter shall denote the initial
state that is denoted by the initial-state-speci�er (see 6.6); otherwise, the type-denoter shall
denote the initial state that is denoted by the type-name, the new-type, the type-inquiry, or
the discriminated-schema of the type-denoter. The initial state denoted by a required type-
identi�er shall be totally-unde�ned. A new-type shall denote the initial state denoted by the
new-ordinal-type, the new-structured-type, the new-pointer-type, or the restricted-type of the
new-type.

20

ISO/IEC 10206:1990(E)

Types shall be classi�ed as simple-types, restricted-types, structured-types, or pointer-types.
The required type-identi�ers and corresponding required types shall be as speci�ed in 6.4.2.2,
6.4.3.4, and 6.4.3.6. The required schema-identi�er and the corresponding required schema
shall be as speci�ed in 6.4.3.3.3.

simple-type-name = type-name .

structured-type-name = array-type-name
j record-type-name
j set-type-name
j �le-type-name .

array-type-name = type-name .

record-type-name = type-name .

set-type-name = type-name .

�le-type-name = type-name .

pointer-type-name = type-name .

type-identi�er = identi�er .

type-name = [imported-interface-identi�er `.'] type-identi�er .

A type-name shall denote the type, bindability, and initial state denoted by the type-identi�er
of the type-name.

The occurrence of an imported-interface-identi�er in a type-name shall be the de�ning-point of
each imported type-identi�er associated with the imported-interface-identi�er for the region that
is the type-identi�er of the type-name.

A type-name shall be considered a simple-type-name, an array-type-name, a record-type-name,
a set-type-name, a �le-type-name, or a pointer-type-name, according to the type that it denotes.

A type shall be designated protectable unless

a) the type is either a �le-type or a pointer-type, or

b) the type is a structured-type, and one or more of its component-type is not protectable.

NOTE | A �le-type is not protectable since most operations on a �le modify it in some way. A pointer-
type is not protectable since the value of a pointer-type variable can be copied into another variable
of the same type (possibly using type-inquiry), and then this value passed to the required procedure
dispose. The required procedure dispose unde�nes all pointer variables denoting that identifying-value.

A type shall be designated static unless

a) the type is denoted by a subrange-type, and one or both subrange-bounds in the subrange-
type denotes an expression that is not nonvarying, or

b) the type is produced from a schema, or

c) the type is denoted by an array-type or a �le-type containing an index-type that denotes a
type that is not static, or

21

ISO/IEC 10206:1990(E)

d) the type is denoted by a structured-type containing any component whose type-denoter or
selector-type denotes a type that is not static, or

e) the type is denoted by a set-type containing a base-type that denotes a type that is not
static.

6.4.2 Simple-types

6.4.2.1 General

Each ordinal-type and the real-type shall determine an ordered set of values. A value of an
ordinal-type shall have an integer ordinal number; the ordering relationship between any two
such values of one type shall be the same as that between their ordinal numbers. An ordinal-
type-name, real-type-name, or complex-type-name shall denote an ordinal-type, the real-type, or
the complex-type, respectively. A type-inquiry in an ordinal-type shall denote an ordinal-type.

simple-type = ordinal-type j real-type-name j complex-type-name .

ordinal-type = new-ordinal-type j ordinal-type-name
j type-inquiry j discriminated-schema .

new-ordinal-type = enumerated-type j subrange-type .

ordinal-type-name = type-name .

real-type-name = type-name .

complex-type-name = type-name .

The range-type of an ordinal-type that is a subrange-type shall be the host-type (see 6.4.2.4) of
the subrange-type. The range-type of an ordinal-type that is not a subrange-type shall be the
ordinal-type. A discriminated-schema in an ordinal-type shall denote an ordinal-type.

A new-ordinal-type shall denote the type, bindability, and initial state denoted by the subrange-
type or the enumerated-type of the new-ordinal-type. The initial state denoted by an enumerated-
type or a subrange-type shall be totally-unde�ned. The bindability denoted by an enumerated-
type or a subrange-type shall be nonbindable.

6.4.2.2 Required simple-types and associated constants

NOTE | 1 Operators applicable to the required simple-types are speci�ed in 6.8.3.

The following types shall exist

a) integer-type. The required type-identi�er integer shall denote the integer-type. The
integer-type shall be an ordinal-type. The values shall be a subset of the whole numbers,
denoted as speci�ed in 6.1.7 by signed-integer. The ordinal number of a value of integer-
type shall be the value itself.

The required constant-identi�er maxint shall denote an implementation-de�ned value of
integer-type. This value shall satisfy the following conditions.

1) All integral values in the closed interval from -maxint to +maxint shall be values of
the integer-type.

22

ISO/IEC 10206:1990(E)

2) Any monadic operation (see 6.8.3.2) performed on an integer value in this interval
shall be correctly performed according to the mathematical rules for integer arithmetic.

3) Any dyadic integer operation (see 6.8.3.2) on two integer values in this same interval
shall be correctly performed according to the mathematical rules for integer arithmetic,
provided that the result is also in this interval.

4) Any relational operation (see 6.8.3.5) on two integer values in this same interval shall
be correctly performed according to the mathematical rules for integer arithmetic.

It shall be an error if an integer operation or function is not performed according to the
mathematical rules for integer arithmetic.

b) real-type. The required type-identi�er real shall denote the real-type. The real-type
shall be a simple-type. The values shall be implementation-de�ned approximations to
an implementation-de�ned subset of the real numbers, denoted as speci�ed in 6.1.7 by
signed-real.

NOTE | 2 The nature of the internal representation of values of real-type is not speci�ed, and
hence could be �xed-point, oating-point, or something quite di�erent.

Each of the required constant-identi�ers minreal, maxreal, and epsreal shall denote an
implementation-de�ned positive value of real-type. The values of minreal and maxreal
shall be such that arithmetic in the set including the closed interval �maxreal to maxreal
but excluding the two open intervals �minreal to zero and zero to minreal can be expected
to work with reasonable approximations, but arithmetic outside this set cannot be expected
to work with reasonable approximations. The value of epsreal shall be the result of
subtracting 1.0 from the smallest value of real-type that is greater than 1.0.

The results of integer-to-real conversion (see 6.4.6), of the real arithmetic operators
(see 6.8.3.2), and of the required real functions (see 6.7.6), shall be approximations to
the corresponding mathematical results. The accuracy of this approximation shall be
implementation-de�ned.

c) Boolean-type. The required type-identi�er Boolean shall denote the Boolean-type. The
Boolean-type shall be an ordinal-type. The values shall be the enumeration of truth
values denoted by the required constant-identi�ers false and true, such that false is
the predecessor of true. The ordinal numbers of the truth values denoted by false and
true shall be the integer values 0 and 1 respectively.

d) char-type. The required type-identi�er char shall denote the char-type. The char-type
shall be an ordinal-type. The values shall be the enumeration of a set of implementation-
de�ned characters, some possibly without graphic representations. The ordinal numbers
of the character values shall be values of integer-type that are implementation-de�ned
and that are determined by mapping the character values on to consecutive non-negative
integer values starting at zero. The following relations shall hold.

1) The subset of character values representing the digits 0 to 9 shall be numerically
ordered and contiguous.

2) The subset of character values representing the upper case letters A to Z, if available,
shall be alphabetically ordered, but not necessarily contiguous.

3) The subset of character values representing the lower case letters a to z, if available,
shall be alphabetically ordered, but not necessarily contiguous.

23

ISO/IEC 10206:1990(E)

The required constant-identi�er maxchar shall denote an implementation-de�ned value
of char-type. The value of maxchar shall be the largest value of char-type.

NOTE | 3 Char-type values possess properties that allow them to be used identically to string-
type values of length 1. In particular, char-type values may be used to initialize a variable
possessing a string-type (see 6.6), used as the actual-parameter corresponding to a value parameter
possessing a string-type (see 6.7.3.2), used as the actual-parameter assigned to a conformant-
actual-variable possessing a �xed-string-type and conforming to a value-conformant-array-speci�cation
(see 6.7.3.7.2), assigned to a variable possessing a string-type (see 6.9.2.2), written to a text�le
(see 6.10.3.2), used with the relational-operators (see 6.8.3.5), and used with the string concatenation
operator (see 6.8.3.6). See also 6.4.5 and 6.4.6.

e) complex-type. The required type-identi�er complex shall denote the complex-type. The
complex-type shall be a simple-type. The values shall be implementation-de�ned approximations
to an implementation-de�ned subset of the complex numbers.

NOTE | 4 The nature of the internal representation of values of complex-type is not speci�ed,
and hence could be rectangular, polar, or something quite di�erent.

The results of integer-to-complex and real-to-complex conversions (see 6.4.6), of the complex
arithmetic operators (see 6.8.3.2), and of the required complex functions (see 6.7.6),
shall be approximations to the corresponding mathematical results. The accuracy of this
approximation shall be implementation-de�ned.

6.4.2.3 Enumerated-types

enumerated-type = `(' identi�er-list `)' .

identi�er-list = identi�er f `,' identi�er g .

The occurrence of an identi�er in the identi�er-list of an enumerated-type shall constitute
its de�ning-point for the region that is the block, module-heading, or module-block closest-
containing the enumerated-type. Each applied occurrence of the identi�er shall be a constant-
identi�er. Within an activation of the block, the module-heading, or the module-block, all
applied occurrences of that identi�er shall possess the type denoted by the enumerated-type and
shall denote the type's value whose ordinal number is the number of occurrences of identi�ers
preceding that identi�er in the identi�er-list. The identi�er shall be designated a principal
identi�er of the value so denoted.

NOTES

1 Enumerated type constants are ordered by the sequence in which they are de�ned, and they have
consecutive ordinal numbers starting at zero.

2 While several identi�ers may be known as principal identi�ers of a given value (see 6.11.2 and 6.11.3),
there is no ambiguity, because each is de�ned for a di�erent region, all have the same spelling, and all
denote the same value.

Examples:
(red, yellow, green, blue, tartan)

(club, diamond, heart, spade)

(married, divorced, widowed, single)

(scanning, found, notpresent)

(Busy, InterruptEnable, ParityError, OutOfPaper, LineBreak)

24

ISO/IEC 10206:1990(E)

6.4.2.4 Subrange-types

A subrange-type shall include identi�cation of the smallest and the largest value in the subrange.
The �rst subrange-bound of a subrange-type shall specify the smallest value. If both subrange-
bounds of the subrange-type denote expressions that are nonvarying and do not contain a
discriminant-identi�er, the smallest value shall be less than or equal to the largest value, which
shall be speci�ed by the second subrange-bound of the subrange-type; otherwise, it shall be
a dynamic-violation if the smallest value is not less than or equal to the largest value. The
subrange-bounds shall be of compatible ordinal-types, and the range-type (see 6.4.2.1) of the
ordinal-types shall be designated the host-type of the subrange-type. An evaluation of a subrange-
bound shall constitute evaluation of the expression of the subrange-bound (see 6.2.3.8). The set
of values determined by the subrange-type shall contain each value of the host-type not smaller
than the smallest value and not larger than the largest value.

subrange-type = subrange-bound `..' subrange-bound .

subrange-bound = expression .

Examples:
1..100

-10..+10

red..green

'0'..'9'

6.4.2.5 Restricted-types

A restricted-type shall denote a type whose set of states is associated one-to-one with the states
determined by another type, designated the underlying-type of the type denoted by the restricted-
type. A type denoted by a restricted-type shall be designated restricted.

restricted-type = `restricted' type-name .

The underlying-type of a restricted-type shall be the type denoted by the type-name of the
restricted-type. The underlying-type of a type that is not restricted shall be the type, and each
state shall be associated with itself. Attribution of a value of a type to a variable possessing
the underlying-type of the type shall constitute the attribution of the associated value of the
underlying-type. Attribution of a value of the underlying-type of a type to a variable possessing
the type shall constitute the attribution of the associated value of the type. The bindability
denoted by a restricted-type shall be nonbindable. The initial state denoted by a restricted-type
shall be the state associated with the initial state denoted by the type-name of the restricted-
type.

NOTE | A value of a restricted-type may be passed as a value parameter to a formal-parameter
possessing its underlying-type (see 6.7.3.2) or returned as the result of a function (see 6.9.2.2). A
variable of a restricted-type may be passed as a variable parameter to a formal-parameter possessing
the same type or its underlying-type (see 6.7.3.3). No other operations, such as accessing a component
of a restricted-type value or performing arithmetic, are possible.

Example:
module widget module;

export widgets = (widget, copy widget, increment widget, print widget);

25

ISO/IEC 10206:1990(E)

f Access to the underlying-type (real widget) of widget is

controlled by not exporting it, thereby maintaining the

privacy of widget. g

type

real widget = record

f1 : integer;

f2 : real

end

value [f1:0; f2:0.0];

widget = restricted real widget;

f widget can be thought of as having the same values

and initial state as real widget, but operations on

it are restricted. g

procedure copy widget(source: real widget; var target: real widget);

function increment widget(w : real widget) : widget;

procedure print widget(var f: text; w : real widget);

f The parameters of these routines may accept actual-

parameters that are of type widget or real widget, but since

real widget is not exported and no variables of type real widget

are exported for possible use in a type-inquiry, a user of the

interface can only pass actual-parameters of type widget. g
end;

function increment widget;

var mycopy : real widget;

begin

f Note that operations are performed on the underlying-type. g
mycopy.f1 := w.f1 + 1;

mycopy.f2 := w.f2 + 1.0;

f An assignment from an underlying-type to a restricted-type. g
increment widget := mycopy;

end;

procedure copy widget;

begin

target := source

end;

procedure print widget;

begin

f Within the implementation of this module, the components of the

actual-parameter are visible through its associated formal-

26

ISO/IEC 10206:1990(E)

parameter. The components of a variable of type widget are not

visible outside the module, however, since the underlying-type

is not exported. g

writeln(f,w.f1,w.f2);

end;

end.

program use widgets(output);

import widgets;

var

first, second: widget;

begin

write(output, 'First is initially '); print widget(output, first);

copy widget(increment widget(increment widget(first)), second);

write(output, 'Second is now '); print widget(output, second);

copy widget(second, first);

write(output, 'First is now '); print widget(output, first);

end.

6.4.3 Structured-types

6.4.3.1 General

A new-structured-type shall be classi�ed as an array-type, record-type, set-type, or �le-type
according to the unpacked-structured-type closest-contained by the new-structured-type. A
component of a value of a structured-type shall be a value. A component of a state of a
structured-type shall be a state.

structured-type = new-structured-type j structured-type-name .

new-structured-type = [`packed'] unpacked-structured-type .

unpacked-structured-type = array-type j record-type j set-type j �le-type .

The occurrence of the token packed in a new-structured-type shall designate the type denoted
thereby as packed. The designation of a structured-type as packed shall indicate to the processor
that data-storage of states should be economized, even if this causes operations on, or accesses
to components of, variables possessing the type to be less e�cient in terms of space or time.

The designation of a structured-type as packed shall a�ect the representation in data-storage of
that structured-type only; i.e., if a component is itself structured, the component's representation
in data-storage shall be packed only if the type of the component is designated packed.

NOTE | The ways in which the treatment of entities of a type is a�ected by whether or not the type
is designated packed are speci�ed in 6.4.3.2, 6.4.5, 6.7.3.3, 6.7.3.7.3, 6.7.5.4, and 6.8.1.

A new-structured-type shall denote the type, bindability, and initial state denoted by the
unpacked-structured-type of the new-structured-type. An unpacked-structured-type shall denote
the type and initial state denoted by the array-type, record-type, set-type, or �le-type of the

27

ISO/IEC 10206:1990(E)

unpacked-structured-type. The bindability denoted by an unpacked-structured-type shall be
nonbindable.

6.4.3.2 Array-types

An array-type shall be structured as a mapping from each value speci�ed by its index-type
to a distinct component. Each component shall have the type, bindability, and initial state
denoted by the type-denoter of the component-type of the array-type. The type-denoter of a
component-type shall not closest-contain an initial-state-speci�er (see 6.6).

array-type = `array' `[' index-type f `,' index-type g `]' `of' component-type .

index-type = ordinal-type .

component-type = type-denoter .

Examples:
array [1..100] of real

array [Boolean] of colour

An array-type that speci�es a sequence of two or more index-types shall be an abbreviated
notation for an array-type speci�ed to have as its index-type the �rst index-type in the sequence
and to have a component-type that is an array-type specifying the sequence of index-types
without the �rst index-type in the sequence and specifying the same component-type as the
original speci�cation. The component-type thus constructed shall be designated packed if and
only if the original array-type is designated packed. The abbreviated form and the full form
shall be equivalent.

NOTE | 1 Each of the following two examples thus contains di�erent ways of expressing its array-type.

Examples:
1) array [Boolean] of array [1..10] of array [size] of real

array [Boolean] of array [1..10, size] of real

array [Boolean, 1..10, size] of real

array [Boolean, 1..10] of array [size] of real

2) packed array [1..10, 1..8] of Boolean

packed array [1..10] of packed array [1..8] of Boolean

Let i denote a value of the index-type; let Vi denote a state of that component of the array-
type that corresponds to the value i by the structure of the array-type; let the smallest and
largest values speci�ed by the index-type be denoted by m and n, respectively; and let k =
(ord(n)-ord(m)+1) denote the number of values speci�ed by the index-type; then the states of
the array-type shall be the distinct k-tuples of the form

(Vm,...,Vn).

NOTE | 2 A state of an array-type is value-bearing if and only if each of its component states is value-
bearing. If the component-type has c values, then it follows that the cardinality of the set of values of
the array-type is c raised to the power k.

The ordinal-type of an index-type shall denote the bindability that is nonbindable.

28

ISO/IEC 10206:1990(E)

6.4.3.3 String-types

6.4.3.3.1 General

A string-type shall be a �xed-string-type or a variable-string-type or the required type designated
canonical-string-type. Each string-type value is a value of the canonical-string-type.

Each value of a string-type shall be structured as a one-to-one mapping from an index-domain
to a set of components possessing the char-type. The index-domain shall be a �nite set that is
empty or that contains successive integers starting with 1.

The length of a string-type value shall be the number of members in its index-domain. The
string-type value with length zero is designated the null-string.

The length of a char-type value shall be 1. The capacity of the char-type shall be 1.

The correspondence of character-strings to values of string-types is obtained by relating the
individual string-elements of the character-string, taken in textual order, to the components of
the values of the string-type in order of increasing index.

NOTE | String-types possess properties that allow accessing a substring (see 6.5.6) and reading from
a text�le (see 6.10.1). String-type values may be used as the actual-parameter corresponding to a value
parameter possessing a string-type (see 6.7.3.2), used as the actual-parameter assigned to a conformant-
actual-variable possessing a �xed-string-type and conforming to a value-conformant-array-speci�cation
(see 6.7.3.7.2), assigned to a variable possessing a string-type (see 6.9.2.2), written to a text�le (see
6.10.3.6), used with the relational-operators (see 6.8.3.5), and used with the string concatenation
operator (see 6.8.3.6). See also 6.4.5 and 6.4.6.

6.4.3.3.2 Fixed-string-types

A subrange-type shall be designated a �xed-string-index-type if and only if the expression in
the �rst subrange-bound in the subrange-type is nonvarying (see 6.8.2), does not contain a
discriminant-identi�er, and denotes the integer value 1. Any type designated packed and denoted
by an array-type having as its index-type a denotation of a �xed-string-index-type and having
as its component-type a denotation of the char-type, shall be designated a �xed-string-type.

The capacity of a �xed-string-type shall be the largest value of its index-type.

NOTES

1 A �xed-string-type possesses the properties of both an array-type and a string-type.

2 The length of all values of a particular �xed-string-type is equal to the capacity of the �xed-string-type.

Example:
packed array [1..5] of char f capacity 5, length 5 g

6.4.3.3.3 Variable-string-types

There shall be a schema (see 6.4.7) that is denoted by the required schema-identi�er string.
The schema string shall have one formal discriminant denoted by the required discriminant-
identi�er capacity, which shall possess the integer-type. Each type derived from the schema
string shall be designated a variable-string-type. Each tuple in the domain of the schema shall
have one component that is a value of integer-type greater than zero, and the component shall
be designated the capacity of the variable-string-type produced from the schema with the tuple.

29

ISO/IEC 10206:1990(E)

Each value of a variable-string-type shall be a string-type value with a length less than or equal
to the capacity of the variable-string-type.

Example:
string(6) f capacity 6 g

NOTES

1 A variable-string-type possesses the properties of a string-type. The individual components of a
variable-string-type can be obtained by indexing it as an array (see 6.5.3.2).

2 For additional information on the bindability and initial state of variable-string-types, see 6.4.8.

6.4.3.4 Record-types

The structure and states of a record-type shall be the structure and states of the �eld-list of the
record-type. The initial state denoted by a record-type shall be that denoted by the �eld-list of
the record-type.

record-type = `record' �eld-list `end' .

�eld-list = [(�xed-part [`;' variant-part] j variant-part) [`;']] .

�xed-part = record-section f `;' record-section g .

record-section = identi�er-list `:' type-denoter .

�eld-identi�er = identi�er .

variant-part = `case' variant-selector `of'
(variant-list-element f `;' variant-list-element g
[[`;'] variant-part-completer]

j variant-part-completer) .

variant-list-element = case-constant-list `:' variant-denoter .

variant-part-completer = `otherwise' variant-denoter .

variant-denoter = `(' �eld-list `)' .

variant-selector = [tag-�eld `:'] tag-type j discriminant-identi�er .

tag-�eld = identi�er .

tag-type = ordinal-type-name .

case-constant-list = case-range f `,' case-range g .

case-range = case-constant [`..' case-constant] .

case-constant = constant-expression .

A �eld-list containing neither a �xed-part nor a variant-part shall have no components, shall
determine a single value-bearing state bearing a null value, shall be designated empty, and shall
denote the totally-unde�ned initial state.

The occurrence of an identi�er in the identi�er-list of a record-section of a �xed-part of a �eld-

30

ISO/IEC 10206:1990(E)

list shall constitute its de�ning-point as a �eld-identi�er for the region that is the type-denoter
closest-containing the record-type closest-containing the �eld-list and shall associate the �eld-
identi�er with a distinct component, which shall be designated a �eld, of the record-type and of
the �eld-list. That component shall have the type, bindability, and initial state denoted by the
type-denoter of the record-section.

The �eld-list closest-containing a variant-part shall have a distinct component that shall have the
states and structure de�ned by the variant-part and shall have the initial state denoted by the
variant-part. A variant-denoter shall not contain a type-denoter denoting either a restricted-type
or the bindability that is bindable or denoting a structured-type having any component whose
type-denoter is not permissible as a type-denoter contained by a variant-denoter.

Let Vi denote the state of the i-th component of a non-empty �eld-list having m components;
then the states of the �eld-list shall be distinct m-tuples of the form

(V1, V2,..., Vm).

NOTE | 1 If the type of the i-th component has Fi values, then the cardinality of the set of values of
the �eld-list is (F1 * F2 * ... * Fm).

The variant-type of a variant-part closest-containing either a tag-type or a discriminant-identi�er
in the variant-selector of the variant-part shall be the type denoted by the ordinal-type-name
of the tag-type or the type possessed by the discriminant-identi�er, respectively, of the variant-
selector of the variant-part.

A case-constant shall denote the value denoted by the constant-expression of the case-constant.
A case-range shall denote the values denoted by the case-constants of the case-range and, if two
case-constants are speci�ed, the values, if any, between the values denoted by the case-constants.
If present, the second case-constant of the case-range shall denote a value greater than or equal
to the value denoted by the �rst case-constant of the case-range and shall have the same type
as the type of the �rst case-constant of the case-range.

The type of each case-constant of a case-range of the case-constant-list of a variant-list-element
of a variant-part shall be compatible with the variant-type of the variant-part, and the value
denoted by each such case-constant shall be a member of the set of values determined by that
type; no value shall be denoted by more than one case-range closest-contained by the variant-part.

Each variant-denoter closest-contained by a variant-part shall denote a distinct component of the
variant-part; the component shall have the structure, states, and initial state of the �eld-list of
the variant-denoter and shall be designated a variant of the variant-part.

Each value denoted by a case-range of the case-constant-list of a variant-list-element shall be
designated as corresponding to the variant denoted by the variant-denoter of the variant-list-
element. Each value, if any, of the variant-type of a variant-part that is not denoted by a case-
range of the case-constant-list of a variant-list-element of that variant-part shall be designated
as corresponding to the variant denoted by the variant-denoter of the variant-part-completer of
the variant-part. Each value possessed by the variant-type of a variant-part shall correspond to
one and only one variant of the variant-part.

With each variant-part shall be associated a type designated the selector-type possessed by
the variant-part. If the variant-selector of a variant-part contains a tag-�eld or discriminant-
identi�er, then the selector-type possessed by the variant-part shall be the variant-type, and
each variant of the variant-part shall be associated with exactly those values designated as
corresponding to the variant. Otherwise, the selector-type possessed by the variant-part shall

31

ISO/IEC 10206:1990(E)

be a new-ordinal-type that is constructed to possess exactly one value for each variant of the
variant-part, and no others, and each such variant shall be associated with a distinct value of
that type.

Each variant-part shall have a component which shall be designated the selector of the variant-
part, and which shall possess the selector-type of the variant-part. If the variant-selector of
the variant-part contains a tag-�eld, then the occurrence of an identi�er in the tag-�eld shall
constitute the de�ning-point of the identi�er as a �eld-identi�er for the region that is the type-
denoter closest-containing the record-type closest-containing the variant-part and shall associate
the �eld-identi�er with the selector of the variant-part. The selector shall be designated a �eld
of the record-type if and only if it is associated with a �eld-identi�er. The selector shall be
nonbindable.

The initial state possessed by the selector of a variant-part type shall be determined as follows.

a) If a discriminant-identi�er occurs in the variant-selector of the variant-part, the initial state
shall be the state bearing the value denoted by the discriminant-identi�er;

b) If the selector is a �eld, the initial state shall be the initial state denoted by the tag-type
of the variant-selector of the variant-part;

c) If the selector is not a �eld and the tag-type denotes an initial state that is not unde�ned,
the initial state shall be the state bearing a value of the selector-type; this value shall be
the value associated with the variant corresponding to the value borne by the initial state
denoted by the tag-type;

d) Otherwise, the initial state shall be totally-unde�ned.

The value of the selector of the variant-part shall cause the associated variant of the variant-part
to be designated active. In a record-type derived from a schema with a tuple, the value of the
selector of a variant-part closest-containing a variant-selector containing a discriminant-identi�er
shall be that value of the value corresponding to the discriminant-identi�er according to the
tuple; it shall be a dynamic-violation to attribute another value to such a selector (see 6.5.3.3).

The set of states determined by a variant-part shall contain, in addition to the totally-unde�ned
state (see 6.2.4), the states that are the distinct pairs

(k, Xk)

where k represents a value of the selector-type of the variant-part and Xk is a state of the �eld-
list of the active variant of the variant-part. The value-bearing states shall be those pairs where
Xk is a value-bearing state.

NOTES

2 If there are n values speci�ed by the selector-type, and if the �eld-list of the variant associated with
the i-th value has Ti values, then the cardinality of the set of values of the variant-part is (T1 + T2 +
... + Tn). There is no component of a value of a variant-part corresponding to any non-active variant
of the variant-part.

3 Restrictions placed on the use of �elds of a record-variable pertaining to variant-parts are speci�ed in
6.5.3.3, 6.7.3.3, and 6.7.5.3.

The bindability of each �eld of a required record-type shall be nonbindable. If the variant-selector
of the variant-part closest-contains an ordinal-type-name, the ordinal-type-name of the tag-type
of the variant-selector of the variant-part shall denote the bindability that is nonbindable.

32

ISO/IEC 10206:1990(E)

Examples:

1) record

year : 0..2000;

month : 1..12;

day : 1..31

end

2) record

name, firstname : namestring;

age : 0..969; f Age of Methuselah, see Genesis 5:27 g
case married : Boolean of

true : (Spousesname : namestring);

false : ()

end

3) record

x, y : real;

area : real;

case shape of

triangle : (side : real;

inclination,

angle1,

angle2 : angle);

rectangle : (side1,

side2 : real;

skew : angle);

circle : (diameter : real);

end

4) record

field1 : integer;

case tag : initially 42 of

1: (field2 : real value 0.0);

42: (field3 : integer value 13#42);

otherwise (field4 : Boolean value false);

end

There shall be a record-type designated packed and denoted by the required type-identi�er
TimeStamp. For each of the required �eld-identi�ers DateValid, TimeValid, year, month,
day, hour, minute, and second, there shall be an associated required �eld of the record-type,
and that �eld shall have a type denoted by the type-denoter Boolean, Boolean, integer, 1..12,
1..31, 0..23, 0..59, and 0..59, respectively.

NOTES

4 This is analogous to the Pascal record-type:

packed record

33

ISO/IEC 10206:1990(E)

DateValid,

TimeValid : Boolean;

year : integer;

month : 1..12;

day : 1..31;

hour : 0..23;

minute : 0..59;

second : 0..59;

end

5 A processor may provide additional �elds as an extension. These �elds might contain information
such as day of the week, fractions of seconds, leap seconds, time zone, or local time di�erential from
Universal Time.

6 The required type-identi�erTimeStamp is used by the time procedureGetTimeStamp (see 6.7.5.8)
and by the time functions date and time (see 6.7.6.9).

There shall be a record-type designated packed and denoted by the required type-identi�er
BindingType. For each of the required �eld-identi�ers name and bound, there shall be an
associated required �eld of the record-type, and that �eld shall have an implementation-de�ned
variable-string-type and a type denoted by the type-denoter Boolean, respectively. The values
of this record-type shall designate the status of binding to external entities.

NOTES

7 A processor may provide additional �elds as an extension.

8 The required type-identi�er BindingType is used by the binding procedure bind (see 6.7.5.6) and
the binding function binding (see 6.7.6.8).

6.4.3.5 Set-types

A set-type shall determine the set of values that is structured as the power set of the base-type
of the set-type. Thus, each value of a set-type shall be a set whose members shall be unique
values of the base-type.

set-type = `set' `of' base-type .

base-type = ordinal-type .

NOTE | 1 Operators applicable to values of set-types are speci�ed in 6.8.3.4.

Examples:
set of char

set of (club, diamond, heart, spade)

NOTE | 2 If the base-type of a set-type has b values, then the cardinality of the set of values is 2
raised to the power b.

For each ordinal-type T that is not a subrange-type, there shall exist both an unpacked set-type
designated the unpacked-canonical-set-of-T-type and a packed set-type designated the packed-
canonical-set-of-T-type. If S is any subrange-type and T is its range-type, then the set of values
determined by the type set of S shall be included in the sets of values determined by the unpacked-
canonical-set-of-T-type and by the packed-canonical-set-of-T-type (see 6.8.1).

A set-type shall denote an initial state that is totally-unde�ned.

34

ISO/IEC 10206:1990(E)

An ordinal-type contained by a set-type shall denote the bindability that is nonbindable.

6.4.3.6 File-types

NOTE | 1 A �le-type describes sequences of values of the speci�ed component-type, together with a
current position in each sequence and a mode that indicates whether the sequence is being inspected,
generated, or updated.

�le-type = `�le' [`[' index-type `]'] `of' component-type .

A type-denoter shall not be permissible as the component-type of a �le-type if it denotes a
�le-type, a structured-type having any component whose type-denoter is not permissible as the
component-type of a �le-type, a restricted-type, or the bindability that is bindable.

Examples:
file of real

file of vector

file [char] of 1..9999

A �le-type shall de�ne implicitly a type designated a sequence-type having exactly those values,
which shall be designated sequences, de�ned by the following six rules in items a) to f).

NOTE | 2 The notation x~y represents the concatenation of sequences x and y. The explicit representation
of sequences (e.g., S(c)); of concatenation of sequences; of the �rst, last, and rest selectors; and of
sequence equality is not part of the programming language Extended Pascal. These notations are used
to de�ne �le values, below, and the required �le operations elsewhere in clause 6.

a) S() shall be a value of the sequence-type S and shall be designated the empty sequence.
The empty sequence shall have no components.

b) Let c be a value of the speci�ed component-type and let x be a value of the sequence-type
S; then S(c) shall be a sequence of type S, consisting of the single component-value c, and
both S(c)~x and x~S(c) shall be sequences, distinct from S(), of type S.

c) Let c, S, and x be as in b), let y denote the sequence S(c)~x and let z denote the sequence
x~S(c); then the notation y.�rst shall denote c (i.e., the �rst component-value of y), y.rest
shall denote x (i.e., the sequence obtained from y by deleting the �rst component), and
z.last shall denote c (i.e., the last component-value of z).

d) Let x and y each be a non-empty sequence of type S; then x = y shall be true if and only
if both (x.�rst = y.�rst) and (x.rest = y.rest) are true. If x or y is the empty sequence,
then x = y shall be true if and only if both x and y are the empty sequence.

e) Let x, y, and z be sequences of type S; then x~(y~z) = (x~y)~z, S()~x = x, and x~S() =
x shall be true.

f) Let x be a sequence; then the notation length(x) is 0 if x = S(); otherwise length(x) is
1+length(x.rest).

A �le-type also shall de�ne implicitly a type designated a mode-type having exactly three values,
which are designated Inspection, Generation, and Update.

NOTE | 3 The explicit denotation of the values Inspection, Generation, and Update is not part of the
programming language Extended Pascal.

35

ISO/IEC 10206:1990(E)

A �le-type shall be structured as three components. Two of these components, designated f.L
and f.R, shall be of the implicit sequence-type. The third component, designated f.M, shall be
of the implicit mode-type.

Let f.L and f.R each be a single value of the sequence-type and let f.M be a single value of the
mode-type; then each value of the �le-type shall be a distinct triple of the form

(f.L, f.R, f.M).

The value, f, of the �le-type shall be designated empty if and only if f.L~f.R is the empty sequence.

NOTE | 4 The two components, f.L and f.R, of a value of the �le-type may be considered to represent
the single sequence f.L~f.R together with a current position in that sequence. If f.R is non-empty, then
f.R.�rst may be considered the current component as determined by the current position; otherwise, the
current position is the end-of-�le position.

If there is an index-type in a �le-type, then that �le-type shall be designated a direct-access
�le-type. If f is of a direct-access �le-type with index-type T, and a is the smallest value of type
T and b is the largest value of type T, then it shall be an error whenever f.L and f.R are de�ned
and length(f.L~f.R) > ord(b)-ord(a)+1.

If the �le-type is not a direct-access �le-type, then f.M shall not be Update.

There shall be a �le-type that is not a direct-access �le-type, and that type shall be denoted
by the required type-identi�er text. The structure of the type denoted by text shall de�ne
an additional sequence-type whose values shall be designated lines. A line shall be a sequence
cs~S(end-of-line), where cs is a sequence of components possessing the char-type, and end-of-line
shall represent a special component-value. Any assertion in clause 6 that the end-of-line value is
attributed to a variable other than a component of a sequence shall be construed as an assertion
that the variable has attributed to it the char-type value space. If l is a line, then no component
of l other than l.last shall be an end-of-line. There shall be an implementation-de�ned subset of
the set of char-type values, designated characters prohibited from text�les; the e�ect of causing
a character in that subset to be attributed to a component of either t.L or t.R for any text�le t
shall be implementation-dependent.

A line-sequence, ls, shall be either the empty sequence or the sequence l~ls' where l is a line and
ls' is a line-sequence.

Every value t of the type denoted by text shall satisfy the following two rules:

a) If t.M = Inspection, then t.L~t.R shall be a line-sequence.

b) If t.M = Generation, then t.L~t.R shall be ls~cs, where ls is a line-sequence and cs is a
sequence of components possessing the char-type.

NOTE | 5 In rule b), cs may be considered, especially if it is non-empty, to be a partial line that is
being generated. Such a partial line cannot occur during inspection of a �le. Also, cs does not correspond
to t.R, since t.R is the empty sequence if t.M = Generation.

A variable that possesses the type denoted by the required type-identi�er text shall be designated
a text�le.

NOTE | 6 All required procedures and functions applicable to a variable of type �le of char are
applicable to text�les. Additional required procedures and functions, applicable only to text�les, are
de�ned in 6.7.6.5 and 6.10.

36

ISO/IEC 10206:1990(E)

A �le-type shall denote an initial state that is totally-unde�ned.

6.4.4 Pointer-Types

The values of a pointer-type shall consist of a single nil-value and a set of identifying-values.
Each identifying-value shall identify a distinct variable possessing a type, bindability, and initial
state speci�ed by the domain-type of the new-pointer-type that denotes the pointer-type. The
domain-type shall either specify the type, bindability, and initial state denoted by the type-
name of the domain-type, or specify each type, bindability, and initial state produced from the
schema denoted by the schema-name of the domain-type. The set of identifying-values shall
be dynamic, in that the variables and the values identifying them shall be permitted to be
created and destroyed during the execution of the program. Identifying-values and the variables
identi�ed by them shall be created only by the required procedure new (see 6.7.5.3).

NOTE | 1 Since the nil-value is not an identifying-value, it does not identify a variable.

The token nil shall denote the nil-value in all pointer-types.

pointer-type = new-pointer-type j pointer-type-name .

new-pointer-type = `"' domain-type .

domain-type = type-name j schema-name .

NOTE | 2 The token nil does not have a single type, but assumes a suitable pointer-type to satisfy
the assignment-compatibility rules, or the compatibility rules for operators, if possible.

A new-pointer-type shall denote an initial state that is totally-unde�ned.

The bindability denoted by a new-pointer-type shall be nonbindable.

6.4.5 Compatible types

Types T1 and T2 shall be designated compatible if any of the following four statements is true:

a) T1 and T2 are the same type.

b) T1 and T2 are ordinal-types and have the same range-type (see 6.4.2.1).

c) T1 and T2 are set-types of compatible base-types, and either both T1 and T2 are designated
packed or neither T1 nor T2 is designated packed.

d) T1 is either a string-type (see 6.4.3.3) or the char-type and T2 is either a string-type or
the char-type.

6.4.6 Assignment-compatibility

A value of type T2 shall be designated assignment-compatible with a type T1 if any of the
following six statements is true:

a) T1 and T2 are the same type, and that type is permissible as the component-type of a
�le-type (see 6.4.3.6).

NOTE | Because T1 and T2 are types, rather than type-denoters, the restriction on the bindability
of component-types of �le-types does not apply here.

37

ISO/IEC 10206:1990(E)

b) T1 is the real-type and T2 is the integer-type.

c) T1 is the complex-type and T2 is either the integer-type or the real-type.

d) T1 and T2 are compatible ordinal-types, and the value of type T2 is in the closed interval
speci�ed by the type T1.

e) T1 and T2 are compatible set-types, and all the members of the value of type T2 are in
the closed interval speci�ed by the base-type of T1.

f) T1 and T2 are compatible, T1 is a string-type or the char-type, and the length of the value
of T2 is less than or equal to the capacity of T1 (see 6.4.3.3).

At any place where the rule of assignment-compatibility is used

a) it shall be an error if T1 and T2 are compatible ordinal-types and the value of type T2 is
not in the closed interval speci�ed by the type T1;

b) it shall be an error if T1 and T2 are compatible set-types and a member of the value of
type T2 is not in the closed interval speci�ed by the base-type of the type T1;

c) it shall be an error if T1 and T2 are compatible, T1 is a string-type or the char-type, and
the length of the value of T2 is greater than the capacity of T1;

d) it shall be a dynamic-violation if T1 and T2 are produced from the same schema, but not
with the same tuple (see 6.4.7).

At any place where the rule of assignment-compatibility is used to require a value of integer-
type to be assignment-compatible with a real-type, an implicit integer-to-real conversion shall
be performed (see 6.4.2.2 b)).

At any place where the rule of assignment-compatibility is used to require a value of integer-type
or real-type to be assignment-compatible with a complex-type, an implicit integer-to-complex
conversion or real-to-complex conversion, respectively, shall be performed (see 6.4.2.2 e)).

At any place where the rule of assignment-compatibility is used to require a value of the char-
type to be assignment-compatible with a string-type, the char-type value shall be treated as
a value of the canonical-string-type with length 1 and with the component-value equal to the
char-type value.

At any place where the rule of assignment-compatibility is used to require a value of the canonical-
string-type to be assignment-compatible with a �xed-string-type or the char-type, the canonical-
string-type value shall be treated as a value of the �xed-string-type whose components in order of
increasing index shall be the components of the canonical-string-type value in order of increasing
index followed by zero or more spaces.

6.4.7 Schema-de�nitions

A schema shall be a one-to-one mapping from a domain consisting of discriminant tuples to a
set of types. Within an activation, a schema-de�nition containing a formal-discriminant-part
shall de�ne a new schema that is distinct both from the schema de�ned by the schema-de�nition
within any other activation and from any schema de�ned by any other schema-de�nition.

schema-de�nition = identi�er `=' schema-name
j identi�er formal-discriminant-part `=' type-denoter .

38

ISO/IEC 10206:1990(E)

formal-discriminant-part = `(' discriminant-speci�cation f `;' discriminant-speci�cation g `)' .

discriminant-speci�cation = identi�er-list `:' ordinal-type-name .

discriminant-identi�er = identi�er .

schema-identi�er = identi�er .

schema-name = [imported-interface-identi�er `.'] schema-identi�er .

A schema-name shall denote the schema denoted by the schema-identi�er of the schema-name.

The occurrence of an imported-interface-identi�er in a schema-name shall be the de�ning-point
of each imported schema-identi�er associated with the imported-interface-identi�er for the region
that is the schema-identi�er of the schema-name.

NOTE | 1 `Extra' formal discriminants that do not occur in the type-denoter of the schema-de�nition
can be used to create several distinct, but structurally-identical, types.

The occurrence of an identi�er in a schema-de�nition of a type-de�nition-part of a block, a
module-heading, or a module-block shall constitute its de�ning-point for the region that is the
block, the module-heading, or the module-block, respectively. Each applied occurrence of that
identi�er shall be a schema-identi�er. Within an activation of the block, the module-heading, or
the module-block, all applied occurrences of that identi�er shall denote either the schema denoted
by the schema-name of the schema-de�nition or the new schema contained by the activation and
corresponding to the schema-de�nition (see 6.2.3.2). Each schema contained by an activation
and corresponding to a schema-de�nition shall be distinct from any schema contained by any
other activation and from any schema corresponding to any other schema-de�nition. Except for
applied occurrences in the domain-type of a new-pointer-type, the schema-de�nition shall not
contain an applied occurrence of that identi�er.

The occurrence of an identi�er in the identi�er-list of a discriminant-speci�cation of a formal-
discriminant-part of a schema-de�nition shall constitute its de�ning-point as a discriminant-
identi�er for the region that is the formal-discriminant-part of the schema-de�nition and for
the region that is the type-denoter of the schema-de�nition; the discriminant-identi�er shall
possess the type denoted by the ordinal-type-name of the discriminant-speci�cation. Each such
discriminant-identi�er shall be a formal discriminant of the schema de�ned by the schema-
de�nition.

The type-denoter of a schema-de�nition shall contain a new-type.

A formal-discriminant-part that contains the de�ning-points for n discriminant-identi�ers, say
I1, I2,..., In, in order of occurrence of their de�ning-points, shall determine a set of allowed
discriminant tuples of the form

(V1, V2,..., Vn)

is a value belonging to the set of values determined by the type possessed by Ii. Vi and Ii shall
be said to correspond to each other according to the tuple. Two such tuples shall be designated
the same tuple if and only if they consist of the same number of values and they have equal
values in corresponding positions.

Within an activation, the domain of a schema contained by the activation and corresponding
to a schema-de�nition (see 6.2.3.2) shall be the maximal subset of the set of tuples allowed by

39

ISO/IEC 10206:1990(E)

the formal-discriminant-part of the schema-de�nition, such that the schema shall associate with
each tuple in its domain the type, bindability, and initial state denoted by the type-denoter of
the schema-de�nition, with each discriminant-identi�er contained by the type-denoter denoting
the value corresponding to the discriminant-identi�er according to the tuple. It shall be an error
if the domain is empty.

NOTE | 2 A tuple allowed by the formal-discriminant-part is not in the domain of the schema if,
after substitution of the tuple's constituent values for their corresponding discriminant-identi�ers, one
or more of the following is true within the schema-de�nition:

a) the �rst subrange-bound of a subrange-type is greater than the second subrange-bound (see
6.4.2.4).

b) a value denoted by a discriminant-value is outside the range of the corresponding formal discriminant
(see 6.4.8).

c) a case-constant-list within an array-value in an initial-state-speci�er speci�es an index value that
is outside the range of the corresponding index-type (see 6.8.7.2).

d) a value denoted by an actual-discriminant-value contained by the schema-de�nition and corresponding
to a discriminant-identi�er closest-contained by a variant-selector does not correspond to one and
only one variant of the variant-part.

Example:

type

subrange(l,u:integer) = l..u;

a subrange = subrange(expression1, expression2);

variant record(d : a subrange) =

record case d of

1: (f1 : integer);

2: (f2 : integer);

end;

The type to which a schema maps a tuple shall be said to be produced from the schema with the
tuple.

An expression contained by a schema-de�nition shall be nonvarying (see 6.8.2).

The ordinal-type-name of a discriminant-speci�cation shall denote the bindability that is nonbindable.

6.4.8 Discriminated-schemata

A type denoted by a discriminated-schema shall be produced from the schema denoted by the
schema-name of the discriminated-schema with the tuple denoted by the actual-discriminant-
part of the discriminated-schema. The bindability denoted by the discriminated-schema shall
be the bindability associated with the tuple by the schema. The initial state denoted by the
discriminated-schema shall be the initial state associated with the tuple by the schema. The
tuple shall consist of the values of the discriminant-values of the actual-discriminant-part taken
in textual order; the type of each such discriminant-value shall be compatible with the type of
the corresponding formal discriminant of the schema. It shall be a dynamic-violation if the tuple
is not in the domain of the schema. A type produced from a schema with a tuple shall be distinct
from a type produced from the schema with a distinct tuple and from all types produced from
a distinct schema with a tuple.

discriminated-schema = schema-name actual-discriminant-part .

actual-discriminant-part = `(' discriminant-value f `,' discriminant-value g `)' .

40

ISO/IEC 10206:1990(E)

discriminant-value = expression .

An evaluation of an actual-discriminant-part shall constitute the evaluation in implementation-
dependent order of the discriminant-values in the actual-discriminant-part. Within the commencement
of either an activation of a block, a module-heading, or a module-block, closest-containing a
discriminant-value, the discriminant-value shall denote the value denoted by the expression in
the discriminant-value. Evaluation of a discriminant-value shall constitute evaluation of the
expression in the discriminant-value.

A discriminated-schema that denotes a type produced from the required schema string shall
denote an initial state that is totally-unde�ned and the bindability that is nonbindable.

6.4.9 Type-inquiry

A type-inquiry shall denote a type, bindability, and initial state.

type-inquiry = `type' `of' type-inquiry-object .

type-inquiry-object = variable-name j parameter-identi�er .

The type denoted by a type-inquiry shall be the type possessed by the variable-identi�er or
parameter-identi�er contained by the type-inquiry. The bindability denoted by a type-inquiry
shall be the bindability possessed by the variable-identi�er or parameter-identi�er contained
by the type-inquiry. The initial state denoted by a type-inquiry shall be the initial state
possessed by the variable-identi�er or parameter-identi�er contained by the type-inquiry. A
parameter-identi�er in a type-inquiry-object shall have its de�ning-point in a value-parameter-
speci�cation or variable-parameter-speci�cation in the formal-parameter-list closest-containing
the type-inquiry-object.

Example:
procedure p(var a : VVector);

var b : type of a;

fparameter a and variable b will have the same typeg

6.4.10 Example of a type-de�nition-part

type

natural = 0..maxint;

count = integer value 1;

range = integer;

year = 1900..1999;

f Count, range, and integer denote the same type; range and

integer have the same initial state (undefined). The types denoted

by year and natural are compatible with, but not the same as,

the type denoted by range, count, and integer. g

colour = (red, yellow, green, blue);

sex = (male, female);

shape = (triangle, rectangle, circle);

punchedcard = array [1..80] of char;

41

ISO/IEC 10206:1990(E)

charsequence = file of char;

angle = real value 0.0;

subpolar = record

r : real;

theta : angle

end;

indextype = 1..limit;

vector = array [indextype] of real;

person = " persondetails value nil;

persondetails = record

name,

firstname : charsequence;

age : natural;

married : Boolean;

father,

child,

sibling : person;

case s : sex of

male : (enlisted,

bearded : Boolean);

female : (mother,

programmer : Boolean)

end;

initially 42 = integer value 42;

quiver = array [1..10] of vector;

sieve = set of 1..20;

FileOfInteger = file of integer;

VectorIndex = 1 .. maxint;

Bindable FOI = bindable FileOfInteger;

VVector(vlength: VectorIndex) =

array [1 .. vlength] of real;

Pixel = set of colour;

DeviceStatusType = (Busy, LineBreak, OutOfPaper, ParityError);

namestring = string(20);

SWidth = 0 .. 1023;

SHeight = 0 .. 2047;

Screen(width: SWidth; height: SHeight) =

array[0 .. height, 0 .. width] of Pixel;

Positive = 1..MaxMatrix;

Matrix(M,N : Positive) = array[1..M, 1..N] of real;

M = Matrix(5,10);

colour map(formal discriminant : colour) =

record

case formal discriminant of

red: (red field : integer value ord(red));

yellow: (yellow field : integer value ord(yellow));

green: (green field : integer value ord(green));

blue: (blue field : integer value ord(blue));

end;

42

ISO/IEC 10206:1990(E)

6.5 Declarations and denotations of variables

6.5.1 Variable-declarations

variable-declaration = identi�er-list `:' type-denoter .

variable-identi�er = identi�er .

The occurrence of an identi�er in the identi�er-list of a variable-declaration of the variable-
declaration-part of a block, a module-heading, or a module-block shall constitute its de�ning-
point for the region that is the block, the module-heading, or the module-block, respectively.
Each applied occurrence of that identi�er shall be a variable-identi�er. Within an activation of
the block, the module-heading, or the module-block, all applied occurrences of that identi�er
shall denote the same corresponding variable (see 6.2.3.2 g)) and shall possess the type and
initial state denoted by the type-denoter of the variable-declaration. The variable-identi�er
shall possess the bindability denoted by the type-denoter, unless the variable-identi�er is a
program-parameter or a module-parameter, in which case the variable-identi�er shall possess
the bindability that is bindable. If the variable-identi�er is a program-parameter or a module-
parameter, any corresponding variable shall be designated a program-parameter or a module-
parameter, respectively. The type-denoter shall not contain an applied occurrence of the identi�er.

The structure of a variable possessing a structured-type shall be the structure of the structured-
type.

variable-name = [imported-interface-identi�er `.'] variable-identi�er .

A variable-name shall denote the variable denoted by the variable-identi�er of the variable-name.

The occurrence of an imported-interface-identi�er in a variable-name shall be the de�ning-
point of each imported variable-identi�er associated with the imported-interface-identi�er for
the region that is the variable-identi�er of the variable-name.

A use of a variable-access shall be an access, at the time of the use, to the variable thereby
denoted. A variable-access, according to whether it is an entire-variable, a component-variable,
an identi�ed-variable, a bu�er-variable, a substring-variable, or a function-identi�ed-variable
shall denote a declared variable, a component of a variable, a variable that is identi�ed by
an identifying-value (see 6.4.4), a bu�er-variable, a substring-variable, or a function-identi�ed-
variable (see 6.8.6.4), respectively.

variable-access = entire-variable j component-variable
j identi�ed-variable j bu�er-variable
j substring-variable j function-identi�ed-variable .

No statement shall threaten (see 6.9.4) a variable-access closest-containing a protected variable-
identi�er (see 6.7.3.1, 6.7.3.7.1, and 6.11.3).

A variable possessing the bindability that is bindable shall be totally-unde�ned while the variable
is not bound to an external entity. It shall be an error to attribute a value to such a variable
while the variable is not bound to an external entity. A variable possessing the bindability that
is bindable shall possess the initial state that is totally-unde�ned.

The initial state of a variant of a variable possessing a variant-part type (see 6.4.3.4) shall be:

a) if the initial state of the selector of the variable bears a value associated with the variant,

43

ISO/IEC 10206:1990(E)

the initial state possessed by the �eld-list of the variant-denoter that denotes the variant;

b) otherwise, totally-unde�ned.

The execution of any action, operation, or function, de�ned within clause 6 to operate on a
variable, shall be an error if the variable is bindable and, as a result of the binding, the execution
cannot be completed as de�ned.

Example of a variable-declaration-part:
var

x, y, z, max : real;

i, j : integer;

k : 0..9;

p, q, r : Boolean;

operator : (plus, minus, times, divvy);

a : array [0..63] of real;

c : colour;

f : file of char;

hue1, hue2 : set of colour;

p1, p2 : person;

m, m1, m2 : array [1..10, 1..10] of real;

coordinate : subpolar value origin;

pooltape : array [1..4] of FileOfInteger;

Good thru: record

month : 1..12;

year : 0..99

end;

MyVector : VVector(57);

ShowScreen : Screen(759, 1023);

DeviceStatus : set of DeviceStatusType;

status : DeviceStatusType;

measure : complex value polar(exp(1.0), pi);

first name, last name, full name : namestring;

middle initial : char;

NOTE | Variables occurring in examples in the remainder of this International Standard should be
assumed to have been declared as in the above example.

6.5.2 Entire-variables

entire-variable = variable-name .

6.5.3 Component-variables

6.5.3.1 General

A component of a variable shall be a variable. A component-variable shall denote a component
of a variable. A reference or an access to a component of a variable shall constitute a reference
or an access, respectively, to the variable. The state of the component of a variable shall be the
same component of the state of the variable. The components of a variable possessing a string-
type shall have the bindability that is nonbindable. It shall be an error to access or reference a

44

ISO/IEC 10206:1990(E)

component of a variable that possesses the bindability that is bindable while the variable is not
bound to an external entity.

component-variable = indexed-variable j �eld-designator .

6.5.3.2 Indexed-variables

An indexed-variable shall denote a component of a variable possessing an array-type or a string-
type.

indexed-variable = array-variable `[' index-expression f `,' index-expression g `]'
j string-variable `[' index-expression `]' .

array-variable = variable-access .

string-variable = variable-access .

index-expression = expression .

An array-variable shall be a variable-access that denotes a variable possessing an array-type. A
string-variable shall be a variable-access that denotes a variable possessing a string-type. The
string-variable of an indexed-variable shall denote a variable possessing a variable-string-type.

NOTE | 1 Variables possessing a �xed-string-type are indexed using array-type properties.

For an array-variable in an indexed-variable closest-containing a single index-expression, the value
of the index-expression shall be assignment-compatible with the index-type of the array-type of
the array-variable.

For a string-variable in an indexed-variable, the index-expression of the indexed-variable shall
possess the integer-type, and it shall be an error if the value of the index-expression is not in the
index-domain of the value of the string-variable. It shall be an error to alter the length of the
value of a string-variable when a reference to a component of the string-variable exists. It shall
be an error to access an indexed-variable when the string-variable, if any, of the indexed-variable
is unde�ned.

The component denoted by the indexed-variable shall be the component that corresponds to the
value of the index-expression by the mapping of the type possessed by the array-variable (see
6.4.3.2) or string-variable (see 6.4.3.3).

Examples:
a[12]

a[i + j]

m[k]

If the array-variable or string-variable is itself an indexed-variable, an abbreviation shall be
permitted. In the abbreviated form, a single comma shall replace the sequence] [that occurs
in the full form. The abbreviated form and the full form shall be equivalent.

The order of both the evaluation of the index-expressions of, and the access to the array-variable
or string-variable of, an indexed-variable shall be implementation-dependent.

Examples:
m[k][1]

45

ISO/IEC 10206:1990(E)

m[k, 1]

NOTE | 2 These two examples denote the same component-variable.

6.5.3.3 Field-designators

A �eld-designator either shall denote that component of the record-variable of the �eld-designator
associated (see 6.4.3.4) with the �eld-identi�er of the �eld-speci�er of the �eld-designator or
shall denote the variable denoted by the �eld-designator-identi�er (see 6.9.3.10) of the �eld-
designator. A record-variable shall be a variable-access that denotes a variable possessing a
record-type.

The occurrence of a record-variable in a �eld-designator shall constitute the de�ning-point of the
�eld-identi�ers associated with components of the record-type possessed by the record-variable,
for the region that is the �eld-speci�er of the �eld-designator.

�eld-designator = record-variable `.' �eld-speci�er j �eld-designator-identi�er .

record-variable = variable-access .

�eld-speci�er = �eld-identi�er .

Examples:
p2".mother
Good thru.year

An access to a component of a variant of a variant-part, where the selector of the variant-part
is not a �eld, shall attribute to the selector the value associated (see 6.4.3.4) with the variant.

It shall be an error unless a variant of a record-variable is active for the entirety of each reference
and access to each component of the variant.

When a variant becomes non-active, all of its components shall become totally-unde�ned.

NOTES

1 If the selector of a variant-part is unde�ned, then no variant of the variant-part is active.

2 When a variant becomes active, it is not created and therefore its initial state does not apply.

6.5.4 Identi�ed-variables

An identi�ed-variable shall denote the variable, if any, identi�ed by the value of the pointer-
variable of the identi�ed-variable (see 6.4.4 and 6.7.5.3).

identi�ed-variable = pointer-variable `"' .

pointer-variable = variable-access .

A pointer-variable shall be a variable-access that denotes a variable possessing a pointer-type.
It shall be an error if the pointer-variable of an identi�ed-variable either denotes a nil-value
or is unde�ned. It shall be an error to remove from the set of values of the pointer-type the
identifying-value of an identi�ed-variable (see 6.7.5.3) when a reference to the identi�ed-variable
exists.

Examples:

46

ISO/IEC 10206:1990(E)

p1"
p1".father"
p1".sibling".father"

6.5.5 Bu�er-variables

A �le-variable shall be a variable-access that denotes a variable possessing a �le-type. A bu�er-
variable shall denote a variable associated with the variable denoted by the �le-variable of the
bu�er-variable. A bu�er-variable associated with a text�le shall possess the char-type; otherwise,
a bu�er-variable shall possess the component-type of the �le-type possessed by the �le-variable
of the bu�er-variable. The initial state possessed by a bu�er-variable shall be totally-unde�ned.
The bindability possessed by a bu�er-variable shall be nonbindable.

bu�er-variable = �le-variable `"' .

�le-variable = variable-access .

Examples:
input"
pooltape[2]"

It shall be an error to alter the value of a �le-variable f when a reference to the bu�er-variable
f" exists. A reference or an access to a bu�er-variable shall constitute a reference or an access,
respectively, to the associated �le-variable.

6.5.6 Substring-variables

A substring-variable shall denote a variable possessing a new �xed-string-type. The bindability
possessed by the substring-variable shall be nonbindable.

substring-variable = string-variable `[' index-expression `..' index-expression `]' .

The index-expressions in a substring-variable shall possess the integer-type. It shall be an error if
the string-variable of the substring-variable is unde�ned, or if the value of an index-expression in
a substring-variable is less than 1 or greater than the length of the value of the string-variable of
the substring-variable, or if the value of the �rst index-expression is greater than the value of the
second index-expression. The capacity of the �xed-string-type possessed by the variable denoted
by the substring-variable shall be equal to one plus the value of the second index-expression
minus the value of the �rst index-expression. The components of the variable denoted by the
substring-variable shall be, in order of increasing index, the contiguous components of the string-
variable from the component that corresponds to the value of the �rst index-expression through
the component that corresponds to the value of the second index-expression.

The order of both the evaluation of the index-expressions of, and the access to the string-variable
of, a substring-variable shall be implementation-dependent.

It shall be an error to alter the length of the value of a string-variable when a reference to a
substring of the string-variable exists. A reference or an access to a substring of a variable shall
constitute a reference or access, respectively, to the variable.

47

ISO/IEC 10206:1990(E)

6.6 Initial states

The initial state speci�ed by an initial-state-speci�er shall be the state bearing the value denoted
by the component-value of the initial-state-speci�er.

initial-state-speci�er = `value' component-value .

An expression contained by the component-value of an initial-state-speci�er shall be nonvarying
(see 6.8.2). The type of a component-value of an initial-state-speci�er of a type-denoter shall
be the type denoted by the type-denoter.

NOTES

1 Within an activation, the component-value of an initial-state-speci�er denotes one or more constant
values.

2 Each state of a variable that has no value attributed to it is unde�ned. The state of a variable that has
no value attributed to it, and whose components are totally-unde�ned, is totally-unde�ned. See 6.2.4.

3 When a type-denoter closest-contains a new-structured-type, the initial-state-speci�er is associated
with (and therefore must be compatible with) the entire structured-type, not with its component-type
or base-type (as appropriate). For example

type S = array [1..8] of char value [1..8: '*'];

is valid, and the initial state denoted by S is an array of eight stars; whereas

type S = array [1..8] of char value '*';

is a violation.

4 The component-value of an initial-state-speci�er consists of an assignment-compatible expression, an
array-value, or a record-value (see 6.8.7.1).

6.7 Procedure and function declarations

6.7.1 Procedure-declarations

procedure-declaration = procedure-heading `;' remote-directive
j procedure-identi�cation `;' procedure-block
j procedure-heading `;' procedure-block .

procedure-heading = `procedure' identi�er [formal-parameter-list] .

procedure-identi�cation = `procedure' procedure-identi�er .

procedure-identi�er = identi�er .

procedure-block = block .

procedure-name = [imported-interface-identi�er `.'] procedure-identi�er .

A procedure-name shall denote the procedure denoted by the procedure-identi�er of the procedure-
name.

The occurrence of an imported-interface-identi�er in a procedure-name shall be the de�ning-
point of each imported procedure-identi�er associated with the imported-interface-identi�er for
the region that is the procedure-identi�er of the procedure-name.

48

ISO/IEC 10206:1990(E)

The occurrence of an identi�er in the procedure-heading of a procedure-declaration shall constitute
its de�ning-point as a procedure-identi�er for the region that is the block or module-block closest-
containing the procedure-declaration. The occurrence of an identi�er in a procedure-heading of a
procedure-and-function-heading-part contained by a module-heading shall constitute its de�ning-
point as a procedure-identi�er for the region that is the module-heading. Within an activation of
that block, that module-heading, or that module-block, each applied occurrence of the identi�er
shall denote the corresponding procedure (see 6.2.3.2).

Each identi�er having a de�ning-point as a procedure-identi�er in a procedure-heading of a
procedure-declaration in which the remote-directive forward occurs shall have exactly one
of its applied occurrences in a procedure-identi�cation of a procedure-declaration, and this
applied occurrence shall be closest-contained by the procedure-and-function-declaration-part
closest-containing the procedure-heading.

Each identi�er having a de�ning-point as a procedure-identi�er in a procedure-heading of a
procedure-and-function-heading-part of a module-heading shall have exactly one of its applied
occurrences in a procedure-identi�cation of a procedure-declaration of a procedure-and-function-
declaration-part of the module-block that is associated with the module-heading (see 6.11.1).

The occurrence of a procedure-block in a procedure-declaration shall associate the procedure-
block with the identi�er in the procedure-heading, or with the procedure-identi�er in the procedure-
identi�cation, of the procedure-declaration. There shall be at most one procedure-block associated
with a procedure-identi�er.

The occurrence of a formal-parameter-list in a procedure-heading of a procedure-declaration
shall de�ne the formal-parameters of the procedure-block, if any, associated with the identi�er
of the procedure-heading to be those of the formal-parameter-list.

Examples of procedure-and-function-declaration-parts:

Example 1:

NOTE --- This example is not for level 0.

procedure AddVectors (var A, B, C : array [low..high : natural] of real);

var

i : natural;

begin

for i := low to high do A[i] := B[i] + C[i]

end f of AddVectors g;

Example 2:

procedure readinteger (var f : text; var x : integer);

var

i : natural;

begin

while f" = ' ' do get(f);

49

ISO/IEC 10206:1990(E)

fThe buffer-variable contains the first non-space charg
i := 0;

while f" in ['0'..'9'] do begin

i := (10 * i) + (ord(f") - ord('0'));

get(f)

end;

fThe buffer-variable contains a non-digitg
x := i

fOf course if there are no digits, x is zerog
end;

procedure bisect (function f(x : real) : real;

a, b : real;

var result : real);

fThis procedure attempts to find a zero of f(x) in (a,b) by

the method of bisection. It is assumed that the procedure is

called with suitable values of a and b such that

(f(a) < 0) and (f(b) >= 0)

The estimate is returned in the last parameter.g
const

eps = 10.0 * epsreal;

var

midpoint : real;

begin

fThe invariant P is true by calling assumptiong
midpoint := a;

while abs(a - b) > eps * abs(a) do begin

midpoint := (a + b) / 2;

if f(midpoint) < 0 then a := midpoint

else b := midpoint

fWhich re-establishes the invariant:

P = (f(a) < 0) and (f(b) >= 0)

and reduces the interval (a,b) provided that the

value of midpoint is distinct from both a and b.g
end;

fP together with the loop exit condition assures that a zero

is contained in a small subinterval. Return the midpoint as

the zero.g
result := midpoint

end;

procedure PrepareForAppending (var f : FileOfInteger);

f This procedure takes a file in any state suitable for reset and

places it in a condition for appending data to its end. Thus it has

the same effect as the required procedure extend (see 6.7.5.2).
Simpler conditioning is possible (without using extend) only if

additional assumptions are made about the initial state of the file.

g
var

LocalCopy : FileOfInteger;

50

ISO/IEC 10206:1990(E)

procedure CopyFiles (var from, into : FileOfInteger);

begin

reset(from); rewrite(into);

while not eof(from) do begin

into" := from";
put(into); get(from)

end

end f of CopyFiles g;

begin f of body of PrepareForAppending g
CopyFiles(f, LocalCopy);

CopyFiles(LocalCopy, f)

end f of PrepareForAppending g;

procedure SumVectors (var A, B, C : VVector);

var

i : VectorIndex;

begin

for i := 1 to A.vlength do A[i] := B[i] + C[i];

end f of SumVectors g;

6.7.2 Function-declarations

function-declaration = function-heading `;' remote-directive
j function-identi�cation `;' function-block
j function-heading `;' function-block .

function-heading = `function' identi�er [formal-parameter-list]
[result-variable-speci�cation] `:' result-type .

result-variable-speci�cation = `=' identi�er .

function-identi�cation = `function' function-identi�er .

function-identi�er = identi�er .

result-type = type-name .

function-block = block .

function-name = [imported-interface-identi�er `.'] function-identi�er .

A function-name shall denote the function denoted by the function-identi�er of the function-
name.

The occurrence of an imported-interface-identi�er in a function-name shall be the de�ning-
point of each imported function-identi�er associated with the imported-interface-identi�er for
the region that is the function-identi�er of the function-name.

The occurrence of the identi�er in a result-variable-speci�cation of a function-heading shall
constitute its de�ning-point as a function-result-identi�er for the region that is the formal-

51

ISO/IEC 10206:1990(E)

parameter-list, if any, of the function-heading and shall constitute its de�ning-point as a variable-
identi�er for the region that is the block of the function-block, if any, associated with the identi�er
of the function-heading; the variable-identi�er shall possess the type, initial state, and bindability
denoted by the type-name of the result-type of the function-heading, and within each activation
of the function-block, if any, shall denote the result of the activation (see 6.2.3.2 k)).

If there is a result-variable-speci�cation in the function-heading associated with a function-block,
the function-block shall contain no assignment-statement (see 6.9.2.2) such that the function-
identi�er of the assignment-statement is associated with the function-block, and the function-
block shall contain at least one statement threatening (see 6.9.4) a variable-access denoting
the result of each activation (see 6.2.3.2 k)) of the function-block; otherwise, the function-
block shall contain at least one assignment-statement such that the function-identi�er of the
assignment-statement is associated with the function-block.

The occurrence of an identi�er in the function-heading of a function-declaration shall constitute
its de�ning-point as a function-identi�er for the region that is the block or module-block closest-
containing the function-declaration. The type and initial state associated with the function-
identi�er shall be the type and initial state denoted by the result-type of the function-heading.
The occurrence of an identi�er in the function-heading of a procedure-and-function-heading-part
contained by a module-heading shall constitute its de�ning-point as a function-identi�er for the
region that is the module-heading. Within an activation of that block, that module-heading,
or that module-block, each applied occurrence of the identi�er shall denote the corresponding
function (see 6.2.3.2).

A type-name shall not be permissible as the type-name of a result-type if it denotes a �le-type,
a structured-type having any component whose type-denoter is not permissible as a component-
type of a �le-type, or the bindability that is bindable.

Each identi�er having a de�ning-point as a function-identi�er in the function-heading of a
function-declaration in which the remote-directive forward occurs shall have exactly one of
its applied occurrences in a function-identi�cation of a function-declaration, and this applied
occurrence shall be closest-contained by the procedure-and-function-declaration-part closest-containing
the function-heading.

NOTE | This prohibits using a forward-declared function in a discriminated-schema and then using
the type de�ned by that discriminated-schema inside the block of the function.

Each identi�er having a de�ning-point as a function-identi�er in a function-heading of a procedure-
and-function-heading-part of a module-heading shall have exactly one of its applied occurrences
in a function-identi�cation of a function-declaration of a procedure-and-function-declaration-part
of the module-block that is associated with the module-heading (see 6.11.1).

The occurrence of a function-block in a function-declaration shall associate the function-block
with the identi�er in the function-heading, or with the function-identi�er in the function-identi�cation,
of the function-declaration; the block of the function-block shall be associated with the type and
initial state that is associated with the identi�er or function-identi�er. There shall be at most
one function-block associated with a function-identi�er.

The occurrence of a formal-parameter-list in a function-heading of a function-declaration shall
de�ne the formal-parameters of the function-block, if any, associated with the identi�er of the
function-heading to be those of the formal-parameter-list.

Example of a procedure-and-function-declaration-part:

52

ISO/IEC 10206:1990(E)

function Sqrt (x : real) : real;

fThis function computes the square root of x (x > 0) using Newton's

method.g
const

eps = 10.0 * epsreal;

var

old, estimate : real;

begin

estimate := x;

repeat

old := estimate;

estimate := (old + x / old) * 0.5;

until abs(estimate - old) < eps * estimate;

Sqrt := estimate

end f of Sqrt g;

function max (a : vector) = largestsofar : real;

fThis function finds the largest component of the value of a.g
var

fence : indextype;

begin

largestsofar := a[1];

fEstablishes largestsofar = max(a[1])g
for fence := 2 to limit do begin

if largestsofar < a[fence] then largestsofar := a[fence]

fRe-establishing largestsofar = max(a[1], ... ,a[fence])g
end;

fSo now largestsofar = max(a[1], ... ,a[limit])g
end f of max g;

function GCD (m, n : natural) : natural;

begin

if n=0 then GCD := m else GCD := GCD(n, m mod n);

end;

fThe following two functions analyze a parenthesized expression and

convert it to an internal form. They are declared forward
since they are mutually recursive, i.e., they call each other.

These function-declarations use the following identifiers that are not

defined by examples in this standard: formula, IsOpenParenthesis,

IsOperator, MakeFormula, nextsym, operation, ReadElement, ReadOperator,

and SkipSymbol. g

function ReadExpression : formula; forward;

function ReadOperand : formula; forward;

function ReadExpression; fSee forward declaration of heading.g
var

this : formula;

53

ISO/IEC 10206:1990(E)

op : operation;

begin

this := ReadOperand;

while IsOperator(nextsym) do

begin

op := ReadOperator;

this := MakeFormula(this, op, ReadOperand);

end;

ReadExpression := this

end;

function ReadOperand; fSee forward declaration of heading.g
begin

if IsOpenParenthesis(nextsym) then

begin

SkipSymbol;

ReadOperand := ReadExpression;

fnextsym should be a close-parenthesisg
SkipSymbol

end

else ReadOperand := ReadElement

end;

function start of day for(protected targ time : TimeStamp)

= midnight : TimeStamp;

begin

midnight := targ time;

with midnight do begin

hours := 0;

minutes := 0;

seconds := 0;

end;

end;

6.7.3 Parameters

6.7.3.1 General

The identi�er-list in a value-parameter-speci�cation shall be a list of value parameters. The
identi�er-list in a variable-parameter-speci�cation shall be a list of variable parameters.

formal-parameter-list = `(' formal-parameter-section f `;' formal-parameter-section g `)' .

formal-parameter-section > value-parameter-speci�cation
j variable-parameter-speci�cation
j procedural-parameter-speci�cation
j functional-parameter-speci�cation .

NOTE | 1 There is also a syntax rule for formal-parameter-section in 6.7.3.7.1.

54

ISO/IEC 10206:1990(E)

value-parameter-speci�cation = [`protected'] identi�er-list `:' parameter-form .

variable-parameter-speci�cation = [`protected'] `var' identi�er-list `:' parameter-form .

parameter-form = type-name j schema-name j type-inquiry .

parameter-identi�er = identi�er .

procedural-parameter-speci�cation = procedure-heading .

functional-parameter-speci�cation = function-heading .

An identi�er de�ned to be a parameter-identi�er for the region that is the formal-parameter-list
of a procedure-heading shall be designated a formal-parameter of the block of the procedure-
block, if any, associated with the identi�er of the procedure-heading. An identi�er de�ned to be
a parameter-identi�er for the region that is the formal-parameter-list of a function-heading shall
be designated a formal-parameter of the block of the function-block, if any, associated with the
identi�er of the function-heading.

The occurrence of an identi�er in the identi�er-list of a value-parameter-speci�cation or a
variable-parameter-speci�cation shall constitute its de�ning-point as a parameter-identi�er for
the region that is the formal-parameter-list closest-containing it, and its de�ning-point as the
associated variable-identi�er for the region that is the block, if any, of which it is a formal-
parameter. If either the value-parameter-speci�cation or the variable-parameter-speci�cation
contains protected, then every type possessed by the associated variable-identi�er shall be protectable,
and the associated variable-identi�er shall be designated protected (see 6.5.1). The parameter-
form of the value-parameter-speci�cation or variable-parameter-speci�cation shall not contain
an applied occurrence of the parameter-identi�er.

NOTE | 2 The state (or value, if any) of a protected formal variable parameter can change during an
activation due to changes made to the actual-parameter (e.g., aliasing), whereas the value of a protected
formal value parameter cannot change.

Example:
procedure illustrate(a : integer; f value param g

var b : integer; f variable param g
protected c : integer; f protected value param g
protected var d : integer); f protected variable param g

f Note: The presence of `protected' on a value parameter is not g
f redundant as it may seem. It indicates to the reader and the g
f processor that the value cannot change within the procedure. g

begin

a := 1; f modifies local copy of parameter g
b := 1; f modifies actual variable g
f c := 1; not legal g
f d := 1; not legal g
end;

The occurrence of the identi�er of a procedure-heading in a procedural-parameter-speci�cation
shall constitute its de�ning-point as a parameter-identi�er for the region that is the formal-

55

ISO/IEC 10206:1990(E)

parameter-list closest-containing it, and its de�ning-point as the associated procedure-identi�er
for the region that is the block, if any, of which it is a formal-parameter.

The occurrence of the identi�er of a function-heading in a functional-parameter-speci�cation
shall constitute its de�ning-point as a parameter-identi�er for the region that is the formal-
parameter-list closest-containing it, and its de�ning-point as the associated function-identi�er for
the region that is the block, if any, of which it is a formal-parameter.

NOTE | 3 If the formal-parameter-list is contained in a procedural-parameter-speci�cation or a functional-
parameter-speci�cation, there is no corresponding procedure-block or function-block.

6.7.3.2 Value parameters

An actual-parameter contained in the activation-point of an activation of a block and corresponding
to a formal value parameter of the block shall be an expression. Within the activation, the
formal-parameter and its associated variable-identi�er shall denote the variable contained by the
activation and corresponding to the variable-identi�er (see 6.2.3.2). Within the commencement
(see 6.2.3.8) of the activation, the value of the expression shall be attributed to the variable.
The type possessed by the formal-parameter shall be one permitted as the component-type of a
�le-type (see 6.4.3.6).

If the parameter-form of the value-parameter-speci�cation contains a schema-name that denotes
the schema denoted by the required schema-identi�er string, then each corresponding actual-
parameter contained by the activation-point of an activation shall possess a type having an
underlying-type that is a string-type or the char-type; it shall be an error if the values of these
underlying-types, associated with the values denoted by the actual-parameters, do not all have
the same length. Within the activation, each corresponding formal-parameter shall possess the
type produced from the schema string with the tuple having that length as its component. The
initial state of the formal-parameters shall be totally-unde�ned. The formal-parameters and
their associated variable-identi�ers shall possess the bindability that is nonbindable.

If the parameter-form of the value-parameter-speci�cation contains a schema-name that does
not denote the schema denoted by the required schema-identi�er string, each corresponding
actual-parameter contained by the activation-point of an activation shall possess a type having
the underlying-type produced from the schema denoted by the schema-name with a tuple, and
it shall be a dynamic-violation if these tuples are not the same. Within the activation, the
corresponding formal-parameter shall possess the type produced from the schema with that
tuple. The initial state of the formal-parameters shall be the initial state associated with the
tuple by the schema. The bindability of the formal-parameters and their associated variable-
identi�ers, and the bindability associated by the schema with each tuple in the schema's domain,
shall be nonbindable.

NOTE | If the types derived from such a schema are subrange-types or set-types then no actual-
parameter expression can satisfy these requirements since a primary of a subrange-type is treated as if
it were of the host-type and a primary of a set-type is treated as if it were of the appropriate unpacked-
canonical-set-of-T-type or packed-canonical-set-of-T-type.

If the parameter-form of the value-parameter-speci�cation contains a type-name or a type-
inquiry, each formal-parameter associated with an identi�er in the identi�er-list in that value-
parameter-speci�cation shall possess the type denoted by the type-name or type-inquiry, respectively.
The value in the underlying-type of the type of each corresponding actual-parameter, associated
with the value of the actual-parameter (see 6.4.2.5), shall be assignment-compatible with the

56

ISO/IEC 10206:1990(E)

type possessed by the formal-parameters. The initial state of the formal-parameters shall be the
initial state denoted by the type-name or type-inquiry. The bindability of the formal-parameters
and their associated variable-identi�ers, and the bindability denoted by the type-name or type-
inquiry, shall be nonbindable.

6.7.3.3 Variable parameters

An actual-parameter contained in the activation-point of an activation of a block and corresponding
to a formal variable parameter of the block shall be a variable-access. Within the commencement
(see 6.2.3.8) of the activation, the actual-parameter shall be accessed, and this access shall
establish a reference, contained by the activation (see 6.2.3.2), to the accessed variable. Within
the activation, the variable-identi�er associated with the formal-parameter shall denote the
corresponding referenced variable. The formal-parameter and its associated variable-identi�er
shall possess the bindability that is possessed by the actual-parameter.

NOTE | 1 The actual-parameter may possess any bindability if it possesses a �le-type, in which case
the bindability of the formal-parameter is determined dynamically by the actual-parameter.

If the parameter-form of the variable-parameter-speci�cation contains a schema-name, all of the
corresponding actual-parameters contained by the activation-point of an activation shall possess
the same underlying-type (see 6.4.2.5) that is produced from the schema denoted by the schema-
name with a tuple. Within the activation, each corresponding formal-parameter shall possess
that type. The initial state of the formal-parameter shall be the initial state associated with
the tuple by the schema. The formal-parameters and their associated variable-identi�ers shall
possess the bindability associated by the schema with each tuple in the schema's domain, unless
a type produced from the schema with such a tuple is a �le-type.

NOTE | 2 For an example of a procedure with a schema variable parameter, see program 4) in 6.12.

A type produced from a schema with a tuple shall be designated schematic. A type denoted
by a restricted-type shall be designated schematic if the underlying-type of the restricted-type
is schematic. Either both of the types of a formal-parameter and its corresponding actual-
parameter shall be schematic, or neither of the types shall be schematic.

If the parameter-form of a variable-parameter-speci�cation contains a type-name or a type-
inquiry and the underlying-type of the type denoted by the type-name or type-inquiry is not
schematic, either the types possessed by the formal-parameter and the actual-parameter shall be
the same type or the type possessed by one shall be the underlying-type of the type possessed by
the other. If the parameter-form of a variable-parameter-speci�cation contains a type-name or a
type-inquiry and the underlying-type of the type denoted by the type-name or type-inquiry
is schematic, either the types possessed by the formal-parameter and the actual-parameter
shall be produced from the same schema or the type possessed by one shall be produced from
the same schema as the underlying-type of the type possessed by the other, and it shall be a
dynamic-violation if underlying-types of the types possessed by the formal-parameter and actual-
parameter are produced from the same schema, but not with the same tuple. The initial state of
the formal-parameters shall be the initial state denoted by the type-name or type-inquiry. The
formal-parameters and their associated variable-identi�ers shall possess the bindability denoted
by the type-name or type-inquiry, unless the type-name or type-inquiry denotes a �le-type.

An actual variable parameter shall not denote a �eld that is the selector of a variant-part.
An actual variable parameter shall not denote a component of a variable where that variable

57

ISO/IEC 10206:1990(E)

possesses a type that is designated packed. An actual variable parameter shall not denote a
component of a string-type.

NOTE | 3 An actual variable parameter cannot denote a substring-variable because the type of a
substring-variable is a new �xed-string-type di�erent from every named type.

6.7.3.4 Procedural parameters

An actual-parameter contained in the activation-point of an activation of a block and corresponding
to a formal procedural parameter of the block shall be a procedure-name. Within the activation,
the formal-parameter and its associated procedure-identi�er shall denote the procedure denoted
by the actual-parameter. The procedure shall be one that is contained by an activation. The
formal-parameter-list, if any, closest-contained by the formal-parameter-section and the formal-
parameter-list, if any, that de�nes the formal-parameters of the procedure denoted by the actual-
parameter shall be congruous, or neither formal-parameter-list shall occur.

6.7.3.5 Functional parameters

An actual-parameter contained in the activation-point of an activation of a block and corresponding
to a formal functional parameter of the block shall be a function-name. Within the activation,
the formal-parameter and its associated function-identi�er shall denote the function denoted
by the actual-parameter. The function shall be one that is contained by an activation. The
formal-parameter-list, if any, closest-contained by the formal-parameter-section and the formal-
parameter-list, if any, that de�nes the formal-parameters of the function denoted by the actual-
parameter shall be congruous, or neither formal-parameter-list shall occur. If the result-type
closest-contained by the formal-parameter-section denotes a type not produced from a schema,
that result-type shall denote the same type as the type of the function; otherwise, the type
denoted by the result-type shall be produced from the same schema as the type of the function,
and it shall be a dynamic-violation if the type denoted by the result-type and the type of the
function are produced from the same schema, but not with the same tuple.

NOTES

1 Since required procedures and functions are not contained by an activation, they may not be used as
actual-parameters.

2 For examples of the use of procedural parameters and functional parameters, see examples 6 through
9 in 6.11.6 and example 3 in 6.12.

6.7.3.6 Parameter list congruity

Two formal-parameter-lists shall be congruous if they contain the same number of formal-
parameter-sections and if the formal-parameter-sections in corresponding positions match. Two
formal-parameter-sections shall match if all of the statements in at least one of the following
sections are true.

a) 1) They are both value-parameter-speci�cations containing the same number of
parameters.

2) Either both contain protected or neither contains protected.

3) All the parameters possess the same bindability.

58

ISO/IEC 10206:1990(E)

4) The schema-name in the parameter-form of each value-parameter-speci�cation
denotes the same schema, or the type-name in the parameter-form of each value-
parameter-speci�cation denotes the same type not produced from a schema, or the
type-name in the parameter-form of each value-parameter-speci�cation denotes a type
that is produced from the same schema, or the variable-name closest-contained by the
type-inquiry in the parameter-form of each value-parameter-speci�cation denotes the
same variable, or the parameter-identi�er closest-contained by the type-inquiry in the
parameter-form of each value-parameter-speci�cation denotes parameter-identi�ers
with their de�ning-points in corresponding positions in the formal-parameter-list
closest-contained by the formal-parameter-section and the formal-parameter-list that
de�nes the formal-parameters of the procedure or function denoted by the actual-
parameter. It shall be a dynamic-violation if the type-name in the parameter-form
of each value-parameter-speci�cation denotes a type produced from the same schema
but not with the same tuple.

b) 1) They are both variable-parameter-speci�cations containing the same number of
parameters.

2) Either both contain protected or neither contains protected.

3) Unless the parameters possess a �le-type, all the parameters possess the same
bindability.

4) The schema-name in the parameter-form of each variable-parameter-speci�cation
denotes the same schema, or the type-name in the parameter-form of each variable-
parameter-speci�cation denotes the same type not produced from a schema, or the
type-name in the parameter-form of each variable-parameter-speci�cation denotes
a type that is produced from the same schema, or the variable-name closest-
contained by the type-inquiry in the parameter-form of each variable-parameter-
speci�cation denotes the same variable, or the parameter-identi�er closest-contained
by the type-inquiry in the parameter-form of each variable-parameter-speci�cation
denotes parameter-identi�ers with their de�ning-points in corresponding positions in
the formal-parameter-list closest-contained by the formal-parameter-section and the
formal-parameter-list that de�nes the formal-parameters of the procedure or function
denoted by the actual-parameter. It shall be a dynamic-violation if the type-name in
the parameter-form of each variable-parameter-speci�cation denotes a type produced
from the same schema but not with the same tuple.

c) They are both procedural-parameter-speci�cations and the formal-parameter-lists of the
procedure-headings thereof are congruous.

d) They are both functional-parameter-speci�cations, the formal-parameter-lists of the
function-headings thereof are congruous, and the type-names of the result-types of the
function-headings thereof denote the same type.

e) They are either both value-conformant-array-speci�cations or both variable-conformant-
array-speci�cations; and in both cases the conformant-array-parameter-speci�cations
contain the same number of parameters and equivalent conformant-array-forms. Two
conformant-array-forms shall be equivalent if all of the following four statements are true
and either both contain protected or neither contains protected.

1) There is a single index-type-speci�cation in each conformant-array-form.

59

ISO/IEC 10206:1990(E)

2) The ordinal-type-name in each index-type-speci�cation denotes the same type.

3) Either the (component) conformant-array-forms of the conformant-array-forms are
equivalent or the type-names of the conformant-array-forms denote the same type
and bindability.

4) Either both conformant-array-forms are packed-conformant-array-forms or both are
unpacked-conformant-array-forms.

NOTES

1 The abbreviated conformant-array-form and its corresponding full form are equivalent (see 6.7.3.7).

2 For the status of item e) see 5.1 a), 5.1 b), 5.1 c), 5.2 a), and 5.2 b).

6.7.3.7 Conformant array parameters

NOTE | For the status of this subclause see 5.1 a), 5.1 b), 5.1 c), 5.2 a), and 5.2 b).

6.7.3.7.1 General

The occurrence of an identi�er in the identi�er-list contained by a conformant-array-parameter-
speci�cation shall constitute its de�ning-point as a parameter-identi�er for the region that is
the formal-parameter-list closest-containing it and its de�ning-point as the associated variable-
identi�er for the region that is the block, if any, of which it is a formal-parameter. A variable-
identi�er so de�ned shall be designated a conformant-array-parameter. If the conformant-
array-parameter-speci�cation contains protected, then the variable-identi�er shall be designated
protected (see 6.5.1).

The occurrence of an identi�er in an index-type-speci�cation shall constitute its de�ning-point
as a bound-identi�er for the region that is the formal-parameter-list closest-containing it and
for the region that is the block, if any, whose formal-parameters are speci�ed by that formal-
parameter-list.

formal-parameter-section > conformant-array-parameter-speci�cation .

conformant-array-parameter-speci�cation =
[`protected'](value-conformant-array-speci�cation

j variable-conformant-array-speci�cation) .

value-conformant-array-speci�cation = identi�er-list `:' conformant-array-form .

variable-conformant-array-speci�cation = `var' identi�er-list `:' conformant-array-form .

conformant-array-form = packed-conformant-array-form
j unpacked-conformant-array-form .

packed-conformant-array-form = `packed' `array' `[' index-type-speci�cation `]'
`of' type-name .

unpacked-conformant-array-form = `array' `[' index-type-speci�cation
f `;' index-type-speci�cation g `]'
`of' (type-name j conformant-array-form) .

index-type-speci�cation = identi�er `..' identi�er `:' ordinal-type-name .

60

ISO/IEC 10206:1990(E)

primary > bound-identi�er .

bound-identi�er = identi�er .

NOTE | 1 There are also syntax rules for formal-parameter-section in 6.7.3.1 and for primary in 6.8.1.

If a conformant-array-form closest-contains a conformant-array-form, an abbreviated form of
de�nition shall be permitted. In the abbreviated form, a single semicolon shall replace the
sequence] of array [that occurs in the full form. The abbreviated form and the full form shall
be equivalent.

Examples:
array [u..v : T1] of array [j..k : T2] of T3

array [u..v : T1; j..k : T2] of T3

Within the activation of the block, applied occurrences of the �rst identi�er of an index-type-
speci�cation shall denote the smallest value speci�ed by the corresponding index-type (see
6.7.3.8) possessed by the actual-parameter, and applied occurrences of the second identi�er
of the index-type-speci�cation shall denote the largest value speci�ed by that index-type.

NOTE | 2 The object denoted by a bound-identi�er is neither constant nor a variable.

The conformant-actual-variables (see 6.7.3.7.2) corresponding to formal-parameters that occur
in a single value-conformant-array-speci�cation and contained by one activation shall all possess
the same type or shall all possess �xed-string-types with the same capacity. The conformant-
actual-variables (see 6.7.3.7.3) corresponding to formal-parameters that occur in a single variable-
conformant-array-speci�cation and having references contained by one activation shall all possess
the same type. The type possessed by the conformant-actual-variables shall be conformable (see
6.7.3.8) with the conformant-array-form, and the formal-parameters shall possess an array-type
which shall be distinct from any other type and which shall have a component-type that shall
be the �xed-component-type of the conformant-array-parameters de�ned in the conformant-
array-parameter-speci�cation and that shall have the index-types of the type possessed by
the conformant-actual-variables that correspond (see 6.7.3.8) to the index-type-speci�cations
contained by the conformant-array-form contained by the conformant-array-parameter-speci�cation.
The type and initial state denoted by the type-name that is not contained by an index-type-
speci�cation and that is contained by a conformant-array-parameter-speci�cation shall be designated
the �xed-component-type and �xed-component-initial-state, respectively, of the conformant-array-
parameters de�ned by that conformant-array-parameter-speci�cation. The formal-parameters
shall possess the initial state of their type having as its component initial state the �xed-
component-initial-state. The formal-parameters shall possess the bindability that is nonbindable.

It shall be an error if the conformant-actual-variables corresponding to formal-parameters that
occur in a single value-conformant-array-speci�cationpossess �xed-string-types that have di�erent
capacities or that are not conformable with the conformant-array-form.

NOTE | 3 Although the type of an actual-parameter corresponding to a conformant-array-parameter-
speci�cation can be a string-type, the type possessed by the formal-parameter cannot be a �xed-string-
type (see 6.4.3.3.2) because the type of the formal-parameter is not denoted by the syntax of an
array-type.

61

ISO/IEC 10206:1990(E)

6.7.3.7.2 Value conformant arrays

The identi�er-list in a value-conformant-array-speci�cation shall be a list of value conformant
arrays. Each actual-parameter corresponding to a value formal-parameter shall be an expression.
Within the commencement of an activation, the expression of an actual-parameter corresponding
to a formal-parameter shall be evaluated, and the value thereof shall be attributed to the variable
contained by the activation and corresponding to the de�ning-point of the variable-identi�er
associated with the formal-parameter (see 6.2.3.2 g)). Within the activation, the formal-
parameter and its associated variable-identi�er shall denote the variable. The variable shall
be designated a conformant-actual-variable corresponding to the formal-parameter. If the type
possessed by the expression is the char-type or a string-type, then this variable shall possess a
�xed-string-type with a capacity equal to the length of the value of the expression; otherwise,
the type possessed by this variable shall be the same as that possessed by the expression. The
value of the expression shall be assignment-compatible with the type of this variable.

The �xed-component-type of a value conformant array shall be one that is permitted as the
component-type of a �le-type.

If the actual-parameter contains an occurrence of a conformant-array-parameter, then for each
occurrence of the conformant-array-parameter contained by the actual-parameter, either

a) the occurrence of the conformant-array-parameter shall be contained by a function-designator
contained by the actual-parameter; or

b) the occurrence of the conformant-array-parameter shall be contained by an indexed-variable
contained by the actual-parameter, such that the type possessed by that indexed-variable
is the �xed-component-type of the conformant-array-parameter.

6.7.3.7.3 Variable conformant arrays

The identi�er-list in a variable-conformant-array-speci�cation shall be a list of variable conformant
arrays. Each actual-parameter corresponding to a formal variable parameter shall be a variable-
access, and each variable it denotes shall be designated a conformant-actual-variable corresponding
to the formal-parameter. The variable denoted by the actual-parameter for an activation shall
be accessed within the commencement of the activation, and the reference contained by the
activation (see 6.2.3.2 h)) shall be to the accessed variable; within the activation, the corresponding
formal-parameter and its associated variable-identi�er shall denote the referenced variable.

An actual-parameter shall not denote a component of a variable where that variable possesses a
type that is designated packed.

6.7.3.8 Conformability

NOTE | 1 For the status of this subclause see 5.1 a), 5.1 b), 5.1 c), 5.2 a), and 5.2 b).

Given a type denoted by an array-type closest-containing a single index-type and a conformant-
array-form closest-containing a single index-type-speci�cation, then the index-type and the index-
type-speci�cation shall be designated as corresponding. Given two conformant-array-forms
closest-containing a single index-type-speci�cation, then the two index-type-speci�cations shall
be designated as corresponding. Let T1 be an array-type with a single index-type and let T2
be the type denoted by the ordinal-type-name of the index-type-speci�cation closest-contained
by a conformant-array-form closest-containing a single index-type-speci�cation; then T1 shall be

62

ISO/IEC 10206:1990(E)

conformable with the conformant-array-form if all the following �ve statements are true.

a) The index-type of T1 is compatible with T2.

b) The smallest and largest values speci�ed by the index-type of T1 lie within the closed
interval speci�ed by T2.

c) The component-type of T1 denotes the same type and bindability as that denoted by the
type-name of the packed-conformant-array-form or unpacked-conformant-array-form of the
conformant-array-form or is conformable to the conformant-array-form closest-contained by
the conformant-array-form.

d) Either T1 is not designated packed and the conformant-array-form is an unpacked-conformant-
array-form, or T1 is designated packed and the conformant-array-form is a packed-conformant-
array-form.

e) T1 denotes the bindability that is nonbindable.

NOTE | 2 The abbreviated and full forms of a conformant-array-form are equivalent (see 6.7.3.7).
The abbreviated and full forms of an array-type are equivalent (see 6.4.3.2).

At any place where the rule of conformability is used, it shall be an error if the smallest or largest
value speci�ed by the index-type of T1 lies outside the closed interval speci�ed by T2.

6.7.4 Required procedures and functions

The required procedure-identi�ers and function-identi�ers and the corresponding required procedures
and functions shall be those speci�ed in 6.7.5, 6.7.6, and 6.10.

NOTE | Required procedures and functions do not necessarily follow the rules given elsewhere for
procedures and functions.

6.7.5 Required procedures

6.7.5.1 General

The required procedures shall be �le handling procedures, dynamic allocation procedures, transfer
procedures, string procedures, binding procedures, control procedures, and time procedures.

6.7.5.2 File handling procedures

Except for the application of rewrite, extend, or reset to the required text�les input or
output (see 6.11.4.2), the e�ects of applying each of the �le handling procedures rewrite,
extend, put, update, reset, and get to a �le-variable f shall be de�ned by pre-assertions
and post-assertions about f, its components f.L, f.R, and f.M, and the associated bu�er-variable
f". The e�ects of applying each of the �le handling procedures SeekWrite, SeekRead, and
SeekUpdate to f and n, wherein f shall be a �le-variable that possesses a direct-access �le-type
with index-type T and n shall be an expression whose value is assignment-compatible with T,
shall be de�ned by pre-assertions and post-assertions about f, its components f.L, f.R, and f.M,
the associated bu�er-variable f", n, and the smallest value a of type T. The use of the variable f0
within an assertion shall be considered to represent the state or value, as appropriate, of f prior
to the operation, while f (within an assertion) shall denote the variable after the operation, and
similarly for f0" and f".

63

ISO/IEC 10206:1990(E)

It shall be an error if the stated pre-assertion does not hold immediately prior to any use of
the de�ned operation. It shall be an error if any variable explicitly denoted in an assertion of
equality is unde�ned. The post-assertion shall hold prior to the next subsequent access to the
�le, its components, or its associated bu�er-variable. The post-assertions imply corresponding
activities on the external entities, if any, to which the �le-variables are bound. These activities,
and the point at which they are actually performed, shall be implementation-de�ned.

NOTE | 1 In order to facilitate interactive terminal input and output, the procedure get (and other
input procedures) should be performed at the latest opportunity, and the procedure put (and other
output procedures) should be performed at the �rst opportunity. This technique has been called `lazy
I/O'.

rewrite(f)
pre-assertion: true.

post-assertion: (f.L = f.R = S()) and (f.M = Generation) and
(f" is totally-unde�ned).

extend(f)
pre-assertion: The components f0.L and f0.R are not unde�ned.

post-assertion: (f.M = Generation) and (f.L = f0.L~f0.R~ X) and (f.R = S()) and
(f" is totally-unde�ned),

where, if f possesses the type denoted by the required type-identi�er text and if f0.L~f0.R
is not empty and if (f0.L~f0.R).last is not an end-of-line, then X shall be a sequence having
an end-of-line component as its only component; otherwise, X = S().

put(f)
pre-assertion: (f0.M = Generation or f0.M = Update) and (neither f0.L nor f0.R is
unde�ned) and

(f0.R = S() or f is of a direct-access �le-type) and
(f0" is not unde�ned).

post-assertion: (f.M = f0.M) and (f.L = f0.L~ S(f0")) and (if f0.R = S()
then (f.R = S())
else (f.R = f0.R.rest)) and
(if (f.R = S()) or (f0.M = Generation)
then (f" is totally-unde�ned)
else (f" = f.R.�rst)).

update(f)
pre-assertion: (f0.M = Generation or f0.M = Update) and (neither f0.L nor f0.R is
unde�ned) and

(f is of a direct-access �le-type) and (f0" is not unde�ned).

post-assertion: (f.M = f0.M) and (f.L = f0.L) and
(if f0.R = S()
then (f.R = S(f0"))
else (f.R = S(f0")~f0.R.rest)) and
(f" = f0").

reset(f)
pre-assertion: The components f0.L and f0.R are not unde�ned.

64

ISO/IEC 10206:1990(E)

post-assertion: (f.L = S()) and (f.R = (f0.L~f0.R~X)) and
(f.M = Inspection) and
(if f.R = S()
then (f" is totally-unde�ned)
else (f" = f.R.�rst)),

where, if f possesses the type denoted by the required type-identi�er text and if f0.L~f0.R
is not empty and if (f0.L~f0.R).last is not an end-of-line, then X shall be a sequence having
an end-of-line component as its only component; otherwise, X = S().

get(f)
pre-assertion: (f0.M = Inspection or f0.M =Update) and (neither f0.L nor f0.R is unde�ned)
and

(f0.R <> S()).

post-assertion: (f.M = f0.M) and
(f.L = (f0.L~S(f0.R.�rst))) and
(f.R = f0.R.rest) and
(if f.R = S()
then (f" is totally-unde�ned)
else (f" = f.R.�rst)).

SeekWrite(f, n)
pre-assertion: (neither f0.L nor f0.R is unde�ned) and

(0 <= ord(n)-ord(a) <= length(f0.L~f0.R))

post-assertion: (f.M = Generation) and
(f.L~f.R = f0.L~f0.R) and
(length(f.L) = ord(n)-ord(a)) and
(f"is totally-unde�ned).

SeekRead(f, n)
pre-assertion: (neither f0.L nor f0.R is unde�ned) and

(0 <= ord(n)-ord(a) <= length(f0.L~f0.R)).

post-assertion: (f.M = Inspection) and
(f.L~f.R = f0.L~f0.R) and
(if length(f0.L~f0.R) > ord(n)-ord(a)
then
((length(f.L) = ord(n)-ord(a)) and
(f"= f.R.�rst))
else
((f.R = S()) and
(f"is totally-unde�ned))).

SeekUpdate(f, n)
pre-assertion: (neither f0.L nor f0.R is unde�ned) and

(0 <= ord(n)-ord(a) <= length(f0.L~f0.R))

post-assertion: (f.M = Update) and
(f.L~f.R = f0.L~f0.R) and
(if (length(f0.L~f0.R) > ord(n)-ord(a)

65

ISO/IEC 10206:1990(E)

then
((length(f.L) = ord(n) - ord(a)) and
(f"= f.R.�rst))
else
((f.R = S()) and
(f" is totally-unde�ned))).

When the �le-variable f possesses a type other than that denoted by text, the required procedures
read and write shall be de�ned as follows.

read
Let f denote a �le-variable and v1,...,vn denote variable-accesses (n>=2); then the procedure-
statement read(f,v1,...,vn) shall access the �le-variable and establish a reference to the
�le-variable for the remaining execution of the statement. The execution of the statement
shall be equivalent to

begin read(�,v1); read(�,v2,...,vn) end

where � denotes the referenced �le-variable.

Let f be a �le-variable and v be a variable-access; then the procedure-statement read(f,v)
shall access the �le-variable and establish a reference to that �le-variable for the remaining
execution of the statement. The execution of the statement shall be equivalent to

begin v := �"; get(�) end

where � denotes the referenced �le-variable.

NOTE | 2 The variable-access is not a variable parameter. Consequently, it may be a variant-
selector or a component of a packed structure, and the value of the bu�er-variable need only be
assignment-compatible with it.

write
Let f denote a �le-variable and e1,...,en denote expressions (n>=2); then the procedure-
statement write(f,e1,...,en) shall access the �le-variable and establish a reference to that
�le-variable for the remaining execution of the statement. The execution of the statement
shall be equivalent to

begin write(�,e1); write(�,e2,...,en) end

where � denotes the referenced �le-variable.

Let f be a �le-variable and e be an expression; then the procedure-statement write(f,e)
shall access the �le-variable and establish a reference to that �le-variable for the remaining
execution of the statement. The execution of the write statement shall be equivalent to

begin �" := e; put(�) end

where � denotes the referenced �le-variable.

NOTES

3 The required procedures read, write, readln, writeln, and page, as applied to text�les, are
described in 6.10.

4 Since the de�nitions of read and write include the use of get and put, the implementation-
de�ned aspects of their post-assertions also apply.

66

ISO/IEC 10206:1990(E)

5 A consequence of the de�nitions of read and write is that non-�le parameters are evaluated in
a left-to-right order.

6.7.5.3 Dynamic allocation procedures

new(p)
shall create a new variable that is in its initial state and not bound to an external entity;
shall create a new identifying-value of the pointer-type associated with p, that identi�es
the new variable; and shall attribute this identifying-value to the variable denoted by the
variable-access p.

The domain-type of the new-pointer-type denoting the type possessed by p shall contain
a type-identi�er, which shall denote the type, bindability, and initial state of the created
variable.

new(p,cl,...,cn)
shall create a new variable that is in its initial state and not bound to an external entity;
shall create a new identifying-value of the pointer-type associated with p, that identi�es
the new variable; and shall attribute this identifying-value to the variable denoted by the
variable-access p.

The domain-type of the new-pointer-type denoting the type possessed by p shall contain a
type-identi�er, which shall denote the record-type, the bindability, and except as otherwise
noted below, the initial state of the created variable.

The case-constant c1 shall correspond to the variant-part of the �eld-list of the record-type.
For 1 < i <= n, ci shall correspond to the variant-part of the �eld-list of the variant-denoter
denoting the variant speci�ed by ci-1. For 1 <= i <= n, the variant-part corresponding to
ci shall closest-contain a tag-type. For 1 <= i <= n, the initial state of the selector of the
variant corresponding (see above) with the case-constant ci shall be the state bearing the
value associated (see 6.4.3.4) with the variant corresponding (see 6.4.3.4) to the value
denoted by ci.

It shall be an error if a variant of a variant-part within the new variable is active and a
di�erent variant of the variant-part is one of the speci�ed variants.

NOTE | 1 Since the initial state of each selector is determined by the corresponding case-
constant, any corresponding tag-�eld is also attributed the value of the case-constant (see 6.4.3.4).

new(p,d1,...,ds)
shall create a new variable that is in its initial state and not bound to an external entity;
shall create a new identifying-value of the pointer-type associated with p, that identi�es
the new variable; and shall attribute this identifying-value to the variable denoted by the
variable-access p.

The domain-type of the new-pointer-type denoting the type possessed by p shall contain a
schema-identi�er. The created variable shall possess the type, bindability, and initial state
associated by the schema denoted by the schema-identi�er with the tuple consisting of the
values of the expressions d1,...,ds taken in textual order; the type of each such expression
shall be compatible with the type of the corresponding formal discriminant of the schema.
The order of evaluation of the expressions shall be implementation-dependent.

It shall be a dynamic-violation if the tuple is not in the domain of the schema.

67

ISO/IEC 10206:1990(E)

NOTES

2 If the schema is the required schema string, then s = 1, and the created variable possesses a
new variable-string-type with capacity equal to the value of d1, a positive integer.

3 The variable-access p is not a variable parameter. Consequently, it may be a variant-selector or
a component of a packed structure.

A variable created by the required procedure new shall exist until the termination of the
activation of the program-block or until the value identifying the variable is removed from the
set of values of its pointer-type.

NOTE | 4 A complying program can access an identi�ed-variable only when the identifying-value is
attributed to a variable (possibly a function activation result).

dispose(q)
shall remove the identifying-value denoted by the expression q from the pointer-type of q.
It shall be an error if the identifying-value had been created using the form new(p,cl,...,cn).

dispose(q,kl,...,km)
shall remove the identifying-value denoted by the expression q from the pointer-type of q.
The case-constants kl,...,km shall be listed in order of increasing nesting of the variant-
parts, each closest-containing a tag-type. It shall be an error unless the variable had been
created using the form new(p,cl,...,cn) and m is equal to n. It shall be an error if the variants
in the variable identi�ed by the pointer value of q are di�erent from those speci�ed by the
values denoted by the case-constants k1,...,km.

NOTE | 5 The removal of an identifying-value from the pointer-type to which it belongs renders the
identi�ed-variable inaccessible (see 6.5.4) and makes unde�ned all variables and functions that have
that value attributed (see 6.7.3.2 and 6.9.2.2).

It shall be an error if q has a nil-value or is unde�ned.

It shall be an error if a variable-access in a primary, in an assignment-statement, or in an actual-
parameter closest-contains an identi�ed-variable that denotes a variable created using the form
new(p, cl,...,cn).

6.7.5.4 Transfer procedures

In the statement pack(a,i,z) and in the statement unpack(z,a,i) the following shall hold: a and
z shall be variable-accesses; a shall possess an array-type not designated packed; z shall possess
an array-type designated packed; the component-types of the types of a and z shall be the same;
and the value of the expression i shall be assignment-compatible with the index-type of the type
of a.

Let j and k denote auxiliary variables that the program does not otherwise contain and that
have the type that is the index-type of the type of z and a, respectively. Let u and v denote the
smallest and largest values of the index-type of the type of z. Each of the statements pack(a,i,z)
and unpack(z,a,i) shall establish references to the variables denoted by a and z for the remaining
execution of the statements; let aa and zz, respectively, denote the referenced variables within
the following sentence. Then statement pack(a,i,z) shall be equivalent to

begin
k := i;

68

ISO/IEC 10206:1990(E)

for j := u to v do
begin
zz[j] := aa[k];
if j <> v then k := succ(k)
end

end

and the statement unpack(z,a,i) shall be equivalent to

begin
k := i;
for j := u to v do
begin
aa[k] := zz[j];
if j <> v then k := succ(k)
end

end

NOTE | Errors will arise if the references cannot be established, if one or more of the values attributed
to j is not assignment-compatible with the index-type of the type of a, or if an evaluated array component
is unde�ned.

6.7.5.5 String procedures

readstr(e,v1,...,vn)
The syntax of the parameter list of readstr shall be

readstr-parameter-list = `(' string-expression `,' variable-access f `,' variable-access g `)' .

string-expression = expression .

The expression of a string-expression shall possess char-type or canonical-string-type.

Apart from the restrictions imposed by requirements given in this clause, the execution
of readstr(e,v1,...,vn) where e denotes a string-expression and v1,...,vn denote variable-
accesses possessing the char-type (or a subrange of char-type), the integer-type (or a
subrange of integer-type), the real-type, a �xed-string-type, or a variable-string-type, shall
be equivalent to

begin
rewrite(f);
writeln(f, e);
reset(f);
read(f, v1,...,vn)

end

where f denotes an auxiliary variable that the program does not otherwise contain, which
possesses the required type text. (See 6.10.1 b), 6.10.1 c), 6.10.1 d), 6.10.1 e), and
6.10.1 f).) It shall be an error if the equivalent of eof(f) is true upon completion.

NOTE | 1 The value of the string-expression must contain a representation of a value for each
variable-access. It may contain other representations after these, but they are not `read'.

Example:

69

ISO/IEC 10206:1990(E)

E := '0.0-4';

readstr (E, R, C, I);

NOTE | 2 The above example, where E, R, C, and I possess a variable-string-type having a
capacity of at least 5, the real-type, the char-type, and the integer-type, respectively, yields:

R = 0.0,

C = '-', and

I = 4.

writestr(s,p1,...,pn)
The syntax of the parameter list of writestr shall be

writestr-parameter-list = `(' string-variable `,' write-parameter f `,' write-parameter g `)' .

NOTE | 3 Write-parameter is de�ned in 6.10.3.

Writestr(s,p1,...,pn) shall access the string-variable s, which shall possess a �xed-string-type
or a variable-string-type, and establish a reference to that string-variable for the remaining
execution of the statement. The execution of the statement shall be equivalent to

begin
rewrite(f);
writeln(f,pl,...,pn);
reset(f);
read(f,ss)

end

where ss denotes the referenced string-variable corresponding to s, and f denotes an
auxiliary variable that the program does not otherwise contain, which possesses the required
type text. It shall be an error if any of the write-parameters accesses the referenced string-
variable. It shall be an error if the equivalent of eoln(f) is false upon completion.

NOTE | 4 The capacity of the string-type possessed by the string-variable must be great enough
to receive the concatenation of the representations of the values speci�ed by the write-parameters.

Example:
writestr(S, 0.168:5:2, 6:3);

NOTE | 5 The above example, where S possesses a string-type having a capacity of at least 8,
might yield (assuming that type real is su�ciently precise):

S = ' 0.17 6'.

6.7.5.6 Binding procedures

bind(f,b)
For the variable-access f, and the expression b that shall possess the type denoted by
the required type-identi�er BindingType (see 6.4.3.4), the statement bind(f,b) shall
access the variable denoted by f and shall attempt to bind the accessed variable to an
entity that is external to the program and that is designated by b. The binding shall be
implementation-de�ned. It shall be a dynamic-violation if the variable is already bound
to an external entity. If the variable-access f possesses a �le-type, it shall be a dynamic-
violation if the variable does not possess the bindability that is bindable; otherwise, the
variable shall possess the bindability that is bindable.

70

ISO/IEC 10206:1990(E)

NOTES

1 The procedure bindmay change the state of the variable that is to be bound in an implementation-
de�ned way.

2 The function binding (see 6.7.6.8) can be used to obtain an initial value of type BindingType
and to test the success of binding a variable to an external entity.

3 The value of b.bound is ignored by bind(f,b). In particular, b.bound is not required to be false
(although it is an error if f is already bound to an external entity); and b.bound being false does
not make bind(f,b) equivalent to unbind(f).

4 In bind(f,b), b may be any expression of type BindingType; but even if b is a variable, the
value of b is not altered by bind(f,b). In particular, bind(f,b) does not set b.bound to true or
false to reect the success of the binding. The only time b.bound is guaranteed to be the binding
status of f is immediately after a statement such as b:=binding(f) (see 6.7.6.8).

5 After bind(f,b), the value of b is altered only by program action. Bind(f,b) binds f to the external
entity described by b; it does not set up any dynamic association between the binding and b.

6 An example is found in 6.7.6.8.

unbind(f)
For a variable-access f, the statement unbind(f) shall access the variable denoted by f and
shall attempt to unbind the accessed variable from the entity external to the program to
which it is bound, if any. If the attempt is successful, the variable shall become totally-
unde�ned. The e�ect on the binding, if any, of any bindable variable contained by the
accessed variable shall be implementation-dependent. If the variable-access f possesses a
�le-type, it shall be a dynamic-violation if the variable does not possess the bindability
that is bindable; otherwise, the variable shall possess the bindability that is bindable.

NOTE | 7 Unbind(f) is permitted even if f is not bound to an external entity and is permitted
even if f is totally-unde�ned.

6.7.5.7 Control procedures

halt
Following execution of the control procedure halt within an activation of a program, no
further processing (see 3.6) of the activation of the program shall occur.

6.7.5.8 Time procedures

GetTimeStamp(t)
The variable-access t shall possess the type denoted by the required type-identi�erTimeStamp
(see 6.4.3.4).

The procedure shall attribute to the variable denoted by the variable-access t either a value
whose �eld DateValid represents the value true and whose �elds day, month, and year
represent the current date under the Gregorian calendar as appropriate to the names of
the �elds, or a value whose �eld DateValid represents the value false and whose �elds
day, month, and year represent the date `January 1, 1'. The �eld month shall have
values such that the value for the month January is 1, the value for the month February
is 2, and so forth, so that the value for the month December is 12.

Furthermore, the value attributed shall either have �eld TimeValid representing the value

71

ISO/IEC 10206:1990(E)

true, in which case �elds hour, minute, and second shall represent the current time as
appropriate to the names of the �elds, or have �eld TimeValid representing the value
false, in which case �elds hour, minute, and second shall represent the time `midnight'
(0 hours, 0 minutes, 0 seconds).

The meaning of `current date' and `current time' shall be implementation-de�ned.

6.7.6 Required functions

6.7.6.1 General

The required functions shall be arithmetic functions, transfer functions, ordinal functions, Boolean
functions, direct-access position functions, string functions, binding functions, and time functions.

6.7.6.2 Arithmetic functions

The types of operands and results for the required arithmetic functions shall be as shown in
table 2. In all cases, x denotes the value of an expression, which is the operand referred to in
table 2.

Table 2 | Arithmetic functions

Function Result value Type of Type of Restriction
operand result

abs(x) Absolute value (magnitude) of x (1) (5)
sqr(x) Square of x (1) (2) (a)
sin(x) Sine of x, x in radians (1) (3)
cos(x) Cosine of x, x in radians (1) (3)
exp(x) Base of natural logarithms raised to the power x (1) (3)
ln(x) Principal value of the natural logarithm of x (1) (3) (b)
sqrt(x) Principal value of the square root of x (1) (3) (c)
arctan(x) Principal value, in radians, of the arctangent of x (1) (3)
arg(x) Principal value, in radians, of the argument of x (4) Real-type
re(x) Real part of x (4) Real-type
im(x) Imaginary part of x (4) Real-type

(1) Integer-type, real-type, or complex-type
(2) The type of the result is the same type as that possessed by x
(3) If the type possessed by the operand is integer-type, the type of the result is real-type;

otherwise, the type of the result is the same type as that possessed by x
(4) Complex-type
(5) If the type possessed by the operand is integer-type, the type of the result is integer-type;

otherwise, the type of the result is real-type
(a) It shall be an error if no such value exists
(b) For x of integer-type or real-type, it shall be an error if x <= 0.0

For x of complex-type, it shall be an error if x = 0.0
(c) For x of integer-type or real-type, it shall be an error if x < 0.0

NOTE | The principal value of the argument of x is greater than -pi and is less than or equal to pi

(radians). The principal value of the natural logarithm of x has as its real part the natural logarithm of
the absolute value of x, and as its imaginary part the principal value, in radians, of the argument of x.

72

ISO/IEC 10206:1990(E)

The principal value of the square root of x is the base of natural logarithms raised to the power one-half
the principal value of the natural logarithm of x. Its argument is greater than -pi/2 and is less than or
equal to pi/2 (radians); thus, its real part is non-negative. The principal value of the arctangent of x
is (-i/2) times the principal value of the natural logarithm of (1+i*x)/(1-i*x), where i is the principal
value of the square root of -1.

6.7.6.3 Transfer functions

trunc(x)
From the expression x that shall be of real-type, this function shall return a result of integer-
type. The value of trunc(x) shall be such that if x is positive or zero, then 0�x�trunc(x)<1;
otherwise, �1<x�trunc(x)�0. It shall be an error if such a value does not exist.

Examples:
trunc(3.5) fyields 3g
trunc(-3.5) fyields -3g

round(x)
From the expression x that shall be of real-type, this function shall return a result of integer-
type. If x is positive or zero, round(x) shall be equivalent to trunc(x+0.5); otherwise,
round(x) shall be equivalent to trunc(x�0.5). It shall be an error if such a value does not
exist.

Examples:
round(3.5) fyields 4g
round(-3.5) fyields -4g

card(x)
From the expression x that shall be of an unpacked-canonical-set-of-T-type or a packed-
canonical-set-of-T-type, this function shall return a result of integer-type that shall equal
the number of members of the value of the expression x. It shall be an error if no such
value of integer-type exists.

cmplx(x,y)
From the expressions x and y that shall be of real-type, this function shall yield a result of
complex-type. Cmplx(x,y) shall compute a complex value whose real part is an approximation
to the value of x and whose imaginary part is an approximation to the value of y.

polar(r,t)
From the expressions r and t that shall be of real-type, this function shall yield a result of
complex-type. Polar(r,t) shall compute a complex value whose magnitude is an approximation
to the value of r and whose argument, in radians, is an approximation to the value of t.

6.7.6.4 Ordinal functions

ord(x)
From the expression x that shall be of an ordinal-type, this function shall return a result
of integer-type that shall be the ordinal number (see 6.4.2.2 and 6.4.2.3) of the value of
the expression x.

chr(x)
From the expression x that shall be of integer-type, this function shall return a result
of char-type that shall be the value whose ordinal number is equal to the value of the

73

ISO/IEC 10206:1990(E)

expression x, if such a character value exists. It shall be an error if such a character value
does not exist. For any value, ch, of char-type, it shall be true that

chr(ord(ch)) = ch

succ(x,k)
From the expression x that shall be of an ordinal-type and the expression k that shall be
of integer-type, this function shall return a result that shall be of the ordinal-type. The
function shall yield a value whose ordinal number is ord(x) + k, if such a value exists. It
shall be an error if such a value does not exist.

succ(x)
Shall be equivalent to succ(x,1).

pred(x,k)
Shall be equivalent to succ(x,-(k)).

pred(x)
Shall be equivalent to succ(x,-1).

Examples:
f The types shape and colour are de�ned in 6.4.10g
succ(yellow, -1) f yields redg
succ(triangle, 0) f yields triangleg
succ(yellow) f yields greeng
succ(yellow, 2) f yields blueg
pred(red, -1) f yields yellowg
pred(triangle, 0) f yields triangleg
pred(green) f yields yellowg
pred(blue, 2) f yields yellowg

6.7.6.5 Boolean functions

odd(x)
From the expression x that shall be of integer-type, this function shall be equivalent to the
expression:

(abs(x) mod 2 = 1).

eof(f)
The parameter f shall be a �le-variable; if the actual-parameter-list is omitted, the function
shall be applied to the required text�le input, which shall be implicitly accessible (see
6.11.4.2) by the function-designator. When eof(f) is activated, it shall be an error if f is
unde�ned; otherwise, the function shall yield the value true if f.R is the empty sequence
(see 6.4.3.6); otherwise, false.

eoln(f)
The parameter f shall be a text�le; if the actual-parameter-list is omitted, the function
shall be applied to the required text�le input, which shall be implicitly accessible (see
6.11.4.2) by the function-designator. When eoln(f) is activated, it shall be an error if f is
unde�ned or if eof(f) is true; otherwise, the function shall yield the value true if f.R.�rst
is an end-of-line component (see 6.4.3.6); otherwise, false.

74

ISO/IEC 10206:1990(E)

empty(f)
The parameter f shall be a �le-variable that possesses a direct-access �le-type. When
empty(f) is activated, it shall be an error if f is unde�ned; otherwise, the function shall
yield the value true if f.L~f.R is the empty sequence (see 6.4.3.6); otherwise, false.

6.7.6.6 Direct-access position functions

position(f)
The parameter f shall be a �le-variable that possesses a direct-access �le-type with index-
type T. Let a be the smallest value of type T. When position(f) is activated, it shall be
an error if f is unde�ned; otherwise, the function shall return a result of type T such that
position(f) = succ(a, length(f.L)). It shall be an error if no such value exists.

LastPosition(f)
The parameter f shall be a �le-variable that possesses a direct-access �le-type with index-
type T. Let a be the smallest value of type T. When LastPosition(f) is activated, it shall be
an error if f is unde�ned; otherwise, the function shall return a result of type T such that
LastPosition(f) = succ(a, length(f.L~f.R)-1). It shall be an error if no such value exists.

6.7.6.7 String functions

length(s)
From the expression s that shall be of char-type or a string-type, this function shall return
a result of integer-type. The function shall yield the length of the value of s.

index(s1, s2)
From the expressions s1 and s2 that shall each be of char-type or a string-type, this function
shall return a result of integer-type. If the value of s2 is the null-string, then the function
shall yield 1; if the value of s1 is the null-string and the value of s2 is not the null-string,
then the function shall yield 0; otherwise, letting s1v denote an auxiliary variable that
the program does not otherwise contain and that possesses a variable-string-type with a
capacity equal to the length of the value of s1 and letting the value attributed to s1v be
the value of s1, the function shall yield the least i such that s1v[i..i+length(s2)-1] = s2, if
such an i exists; otherwise, the function shall yield 0.

NOTE | 1 Index(s1,s2) determines whether string s1 contains string s2 as a substring. If s1 does
not contain s2, then the value of index(s1,s2) is zero; otherwise, the value of index(s1,s2) is the
index position of the �rst character position in s1 where a copy of s2 is located. The null-string
is a substring of every string value located at index position 1.

substr(s, i, j)
From the expression s that shall be of char-type or a string-type and from the expressions
i and j that shall be of integer-type, this function shall return a result of the canonical-
string-type. It shall be an error if the value of i is less than or equal to 0. It shall be an
error if the value of j is less than 0. It shall be an error if the value of (i)+(j)-1 is greater
than the length of the value of s. Let sv denote an auxiliary variable that the program
does not otherwise contain and that possesses a variable-string-type with a capacity equal
to the greater of 1 and the length of the value of s. Let the value attributed to sv be the
value of s. If the value of j equals 0, the function shall yield the null-string; otherwise, the
function shall yield the value of sv[i..(i)+(j)-1].

75

ISO/IEC 10206:1990(E)

NOTE | 2 Substr(s,i,j) computes the substring of string s beginning at position i and extending
for length j.

substr(s, i)
Let sv denote an auxiliary variable that the program does not otherwise contain and that
possesses a variable-string-type with a capacity equal to the greater of 1 and the length of
the value of s. Let the value attributed to sv be the value of s. Let iv denote an auxiliary
variable that the program does not otherwise contain and that possesses the integer-type.
Let the value attributed to iv be the value of i. The function shall be equivalent to the
expression substr(sv,iv,length(sv)-(iv)+1).

trim(s)
From the expression s that shall be of char-type or a string-type, this function shall return
a result of the canonical-string-type. Let n be the length of the value of s. Let sv denote
an auxiliary variable that the program does not otherwise contain and that possesses a
variable-string-type with a capacity equal to the greater of 1 and n. Let the value attributed
to sv be the value of s. If n equals 0, the function shall yield the null-string; if the value
of sv[n] is not equal to the char-type value space, the function shall yield the value of sv;
otherwise, the function shall yield the value of substr(sv,1,p-1), where p is the least value
in the closed interval 1..n such that each component of sv[p..n] is the char-type value space.

For the following string comparison functions, the expressions s1 and s2 shall each be of char-
type or the canonical-string-type. Let n1 be the length of the value of s1 and n2 be the length
of the value of s2. Let s1v denote an auxiliary variable that the program does not otherwise
contain and that possesses a variable-string-type with a capacity equal to the greater of 1 and
n1. Let the value attributed to s1v be the value of s1. Let s2v denote an auxiliary variable
that the program does not otherwise contain and that possesses a variable-string-type with a
capacity equal to the greater of 1 and n2. Let the value attributed to s2v be the value of s2.

The result of each of the following string comparison functions shall be of Boolean-type.

EQ(s1,s2)
This function shall be equivalent to the expression

((s1v = s2v) and (n1 = n2)).

LT(s1,s2)
If n1 < n2, this function shall be equivalent to the expression

(s1v <= substr(s2v, 1, n1));

otherwise, this function shall be equivalent to the expression

(substr(s1v, 1, n2) < s2v) .

GT(s1,s2)
This function shall be equivalent to the expression

(not LT(s1v, s2v) and not EQ(s1v, s2v)) .

NE(s1,s2)
This function shall be equivalent to the expression

(not EQ(s1v, s2v)).

76

ISO/IEC 10206:1990(E)

LE(s1,s2)
This function shall be equivalent to the expression

(LT(s1v, s2v) or EQ(s1v,s2v)) .

GE(s1,s2)
This function shall be equivalent to the expression

(not LT(s1v, s2v)).

NOTE | 3 It is possible for any of these functions to yield di�erent results from their corresponding
operators; for example, LT(a,b) could be false and a<b true.

6.7.6.8 Binding functions

binding(f)
The parameter f shall be a variable-access. The function shall access the variable denoted
by f and shall return an implementation-de�ned value of the type denoted by the required
type-identi�er BindingType (see 6.4.3.4). If the variable is bound to an external entity,
the value of binding(f).bound shall be true; otherwise, the value of binding(f).bound shall
be false. The value of binding(f) shall designate the status of the binding of the variable
to an external entity. If the variable-access f possesses a �le-type, it shall be a dynamic-
violation if the variable does not possess the bindability that is bindable; otherwise, the
variable shall possess the bindability that is bindable.

NOTES

1 Binding(f) is permitted even if f is totally-unde�ned.

2 Because the nature of external entities that might be bound to variables varies from processor to
processor, the BindingType record-type may contain implementation-de�ned �elds. The binding
function allows a processor to provide initial values of type BindingType to a program without the
program containing references to any of the implementation-de�ned �elds. The bound �eld of the
BindingType value returned by binding could be used by a program to test the success of an activation
of the bind or unbind procedure. The BindingType value returned by binding can also be used to
determine the result of any binding of program-parameters prior to activation of the main program (see
6.12). The following example illustrates how the binding function may be used in this way.

Example:

procedure bindfile(var f : text);

var

b : BindingType;

begin

unbind(f);

b := binding(f);

repeat

writeln('Enter file name:');

readln(b.name);

bind(f, b);

b := binding(f);

if not b.bound

then

writeln('File not bound--try again.');

until b.bound;

end;

77

ISO/IEC 10206:1990(E)

6.7.6.9 Time functions

date(t)
From the expression t that shall be of the type denoted by the required type-identi�er
TimeStamp, this function shall return a result of the canonical-string-type with an
implementation-de�ned length. The function shall yield a value that is an implementation-
de�ned representation of the calendar date denoted by the value of t. It shall be an error
if the �elds day, month, and year of t do not represent a valid calendar date.

time(t)
From the expression t that shall be of the type denoted by the required type-identi�er
TimeStamp, this function shall return a result of the canonical-string-type with an
implementation-de�ned length. The function shall yield a value that is an implementation-
de�ned representation of the time denoted by the value of t.

6.8 Expressions

6.8.1 General

An expression not contained by a schema-de�nition shall denote a value; an expression contained
by a schema-de�nition shall denote a value for each tuple allowed by the actual-discriminant-
part of the schema-de�nition. The use of a variable-access as a primary shall denote the value,
if any, attributed to the variable accessed thereby. When a primary is used, it shall be an error
if the variable denoted by a variable-access of the primary is unde�ned. Operator precedences
shall be according to �ve classes of operators as follows. The operator not shall have the highest
precedence, followed by the exponentiating-operators, followed by the multiplying-operators,
the adding-operators and signs, and �nally, with the lowest precedence, the relational-operators.
Sequences of two or more operators of the same precedence shall be left associative.

expression = simple-expression [relational-operator simple-expression] .

simple-expression = [sign] term f adding-operator term g .

term = factor f multiplying-operator factor g .

factor = primary [exponentiating-operator primary] .

primary > variable-access j unsigned-constant j set-constructor
j function-access j `(' expression `)' j `not' primary
j constant-access j schema-discriminant
j structured-value-constructor j discriminant-identi�er .

NOTE | 1 There is also a syntax rule for primary in 6.7.3.7.1.

unsigned-constant = unsigned-number j character-string j `nil' j extended-number .

set-constructor = `[' [member-designator f `,' member-designator g] `]' .

member-designator = expression [`..' expression] .

Any primary whose type is S, where S is a subrange of T, shall be treated as if it were of type
T. Similarly, any primary whose type is set of S shall be treated as if it were of the unpacked-
canonical-set-of-T-type, and any primary whose type is packed set of S shall be treated as of the

78

ISO/IEC 10206:1990(E)

packed-canonical-set-of-T-type. Any primary whose type is a string-type shall be treated as if
it were of the canonical-string-type.

A set-constructor shall denote a value of a set-type. The set-constructor [] shall denote the
value in every set-type that contains no members. A set-constructor containing one or more
member-designators shall denote either a value of the unpacked-canonical-set-of-T-type or, if the
context so requires, the packed-canonical-set-of-T-type, where T is the type of every expression
of each member-designator of the set-constructor. The type T shall be an ordinal-type. The
value denoted by the set-constructor shall contain zero or more members, each of which shall be
denoted by at least one member-designator of the set-constructor.

The member-designator x, where x is an expression, shall denote the member that shall be the
value of x. The member-designator x..y, where x and y are expressions, shall denote zero or
more members that shall be the values of the base-type in the closed interval from the value
of x to the value of y. The order of evaluation of the expressions of a member-designator
shall be implementation-dependent. The order of evaluation of the member-designators of a
set-constructor shall be implementation-dependent.

NOTES

2 The member-designator x..y denotes no members if the value of x is greater than the value of y.

3 The set-constructor [] does not have a single type, but assumes a suitable type to satisfy the
assignment-compatibility rules, or the compatibility rules for operators, if possible.

Examples:
a) Primaries:

x

15

(x + y + z)

sin(x + y)

[red, c, green]

[1, 5, 10..19, 23]

not p

pixel [red, c, green]

b) Factors:

x pow (-k)

x**y

c) Terms:

x * y

i / (1 - i)

(x <= y) and (y < z)

x*y**z

(x <> nil) and then (x".field = 5)

d) Simple Expressions:

p or q

x + y

-x

hue1 + hue2

i * j + 1

79

ISO/IEC 10206:1990(E)

x pow 3 + y pow 3 + z pow 3

(x = 0) or else (a = (b/x))

e) Expressions:

x = 1.5

p <= q

p = q and r

(i < j) = (j < k)

c in hue1

x pow k > y pow k - z pow k

6.8.2 Constant-expressions

A constant-expression shall denote the value denoted by the expression of the constant-expression.

constant-expression = expression .

The expression of a constant-expression shall be nonvarying and shall not contain a discriminant-
identi�er.

An expression shall be designated nonvarying if it does not contain the following

a) an applied occurrence of an identi�er as a variable-identi�er, a schema-discriminant, a
bound-identi�er, or a �eld-designator-identi�er; or

b) an applied occurrence of an identi�er as a type-name that denotes a type that is not static;
or

c) an applied occurrence of an identi�er as a function-identi�er that has a de�ning-point
contained by the program-block or that denotes one of the required functions eof or eoln.

NOTES

1 By the above, it is implied that variable-accesses are excluded from constant-expressions. Similarly,
the functions empty, position, and LastPosition cannot appear in constant-expressions because these
functions require a variable as a parameter.

2 Since the accuracy of mathematical results of the real-type and of the complex-type are implementation-
de�ned (see 6.4.2.2), an implementation is required to specify the accuracy of constant-expressions.

3 See 6.3.2 for examples of the use of nonvarying expressions.

6.8.3 Operators

6.8.3.1 General

exponentiating-operator = `**' j `pow' .

multiplying-operator = `*' j `/' j `div' j `mod' j `and' j `and then' .

adding-operator = `+' j `�' j `><' j `or' j `or else' .

relational-operator = `=' j `<>' j `<' j `>' j `<=' j `>=' j `in' .

A primary, a factor, a term, or a simple-expression shall be designated an operand. Except for
the and then and or else operators, the order of evaluation of the operands of a dyadic operator

80

ISO/IEC 10206:1990(E)

shall be implementation-dependent.

NOTE | This means, for example, that the operands may be evaluated in textual order, or in reverse
order, or in parallel, or they may not both be evaluated.

6.8.3.2 Arithmetic operators

The types of operands and results for dyadic and monadic operations shall be as shown in tables 3
and 4 respectively.

Table 3 | Dyadic arithmetic operations
Operator Operation Type of operands Type of result
+ Addition (1) (2)
- Subtraction (1) (2)
* Multiplication (1) (2)
/ Division (1) (3)
div Division with truncation Integer-type Integer-type
mod Modulo Integer-type Integer-type
** Exponentiation to real power (4) (5)
pow Exponentiation to integer power (6) Same as left operand

(1) Integer-type, real-type, or complex-type
(2) If at least one operand is of complex-type,

the type of the result is complex-type;
otherwise, if at least one operand is of real-type,
the type of the result is real-type;
otherwise, the type of the result is integer-type

(3) If at least one operand is of complex-type,
the type of the result is complex-type;
otherwise, the type of the result is real-type

(4) Left operand: integer-type, real-type, or complex-type;
right operand: integer-type or real-type;
in each case, if the operand is of integer-type, a real-type
approximation to its value is used

(5) If the left operand is of complex-type, the type of the result
is complex-type; otherwise, the type of the result is real-type

(6) Left operand: integer-type, real-type, or complex-type;
right operand: integer-type

Table 4 | Monadic arithmetic operations
Operator Operation Type of operand Type of result
+ Identity (1) Same as operand
- Sign-inversion (1) Same as operand

(1) Integer-type, real-type, or complex-type

NOTE | 1 The symbols +, �, and * are also used as set operators (see 6.8.3.4), and the symbol + is
also used as a string operator (see 6.8.3.6).

A term of the form x/y shall be an error if y is zero; otherwise, the value of x/y shall be the
result of dividing x by y.

81

ISO/IEC 10206:1990(E)

A term of the form i div j shall be an error if j is zero; otherwise, the value of i div j shall be
such that

abs(i) - abs(j) < abs((i div j) * j) <= abs(i)

where the value shall be zero if abs(i) < abs(j); otherwise, the sign of the value shall be positive
if i and j have the same sign and negative if i and j have di�erent signs.

A term of the form i mod j shall be an error if j is zero or negative; otherwise, the value of i mod
j shall be that value of (i-(k*j)) for integral k such that 0 <= i mod j < j.

NOTES

2 Only for i >= 0 and j > 0 does the relation (i div j) * j + i mod j = i hold.

3 See 6.4.2.2 for conditions under which the arithmetic operations are correctly performed.

A factor of the form x**y shall be an error if x is zero and y is less than or equal to zero.

A factor of the form x**y, where x is of integer-type or real-type, shall be an error if x is negative;
otherwise, the value of x**y shall be zero if x is zero, else 1.0 if y is zero, else an approximation
to (though not necessarily calculated by) exp(y*ln(x)).

The value of a factor of the form x**y, where x is of complex-type, shall be zero if x is zero, else
1.0 if y is zero, else an approximation to (though not necessarily calculated by) exp(y*ln(x)).

A factor of the form x pow y shall be an error if x is zero and y is less than or equal to zero.

The value of a factor of the form x pow y, where x is of integer-type, shall be zero if x is zero,
else 1 if y is zero, else equal to x*(x pow (y-1)) if y is positive, else equal to (1 div x) pow (-y)
if y is negative.

The value of a factor of the form x pow y, where x is of real-type or complex-type, shall be zero
if x is zero, else 1.0 if y is zero, else an approximation to x*(x pow (y-1)) if y is positive, else an
approximation to (1/x) pow (-y) if y is negative.

6.8.3.3 Boolean operators

Operands and results for Boolean operations shall be of Boolean-type. The Boolean operators
or, or else, and, and then, and not shall denote respectively the logical operations of disjunction,
disjunction, conjunction, conjunction, and negation. In a term of the form A and then B, the
right operand shall be evaluated if and only if the left operand denotes the value true; the term
shall denote the value false if the left operand denotes the value false; otherwise, the term shall
denote the value denoted by the right operand. In a simple-expression of the form A or else B,
the right operand shall be evaluated if and only if the left operand denotes the value false; the
simple-expression shall denote the value true if the left operand denotes the value true; otherwise,
the simple-expression denotes the value denoted by the right operand.

In a term of the form A and then B, the right operand shall not be in error if the left operand
denotes the value false. In a simple-expression of the form A or else B, the right operand shall
not be in error if the left operand denotes the value true.

Boolean-expression = expression .

A Boolean-expression shall be an expression that denotes a value of Boolean-type.

82

ISO/IEC 10206:1990(E)

6.8.3.4 Set operators

The types of operands and results for set operations shall be as shown in table 5.

Table 5 | Set operations
Operator Operation Type of operands Type of result
+ Set union (1) Same as the operands
- Set di�erence (1) Same as the operands
* Set intersection (1) Same as the operands
>< Set symmetric di�erence (1) Same as the operands

(1) The same unpacked-canonical-set-of-T-type or
packed-canonical-set-of-T-type (see 6.8.1)

Where x denotes a value of the ordinal-type T and u and v are operands of an unpacked-
canonical-set-of-T-type or a packed-canonical-set-of-T-type, it shall be true for all x that

| x is a member of the value u+v if and only if it is a member of the value of u or a member
of the value of v;

| x is a member of the value u�v if and only if it is a member of the value of u and not a
member of the value of v;

| x is a member of the value u*v if and only if it is a member of the value of u and a
member of the value of v;

| x is a member of the value u >< v if and only if it is a member of the value of u and
not a member of the value of v or is a member of the value of v and not a member of the
value of u.

6.8.3.5 Relational operators

The types of operands and results for relational operations shall be as shown in table 6.

Table 6 | Relational operations
Operator Type of operands Type of result
= <> Any simple-type, pointer-type, string-type, Boolean-type

unpacked-canonical-set-of-T-type
or packed-canonical-set-of-T-type

< > Any string-type or any simple-type Boolean-type
except complex-type

<= >= Any string-type, Boolean-type
unpacked-canonical-set-of-T-type,
packed-canonical-set-of-T-type,
or any simple-type except complex-type

in Left operand: any ordinal-type T Boolean-type
right operand: the unpacked-canonical-set-of-T-type
or packed-canonical-set-of-T-type

The operands of =, <>, <, >, >=, and <= shall be of compatible types, or they shall be of the
same unpacked-canonical-set-of-T-type or packed-canonical-set-of-T-type, or one operand shall

83

ISO/IEC 10206:1990(E)

be of real-type and the other shall be of integer-type, or one operand shall be of complex-type
and the other shall be either of real-type or of integer-type.

The operators =, <>, <, and > shall stand for equal to, not equal to, less than, and greater
than, respectively.

Except when applied to sets, the operators <= and >= shall stand for less than or equal to and
greater than or equal to, respectively. Where u and v denote operands of a set-type, u <= v
shall denote the inclusion of u in v and u >= v shall denote the inclusion of v in u.

NOTE | 1 Since the Boolean-type is an ordinal-type with false less than true, then if p and q are
operands of Boolean-type, p = q denotes their equivalence and p <= q means p implies q.

When the relational-operators =, <>, <, >, <=, and >= are used to compare operands of
compatible string-types (see 6.4.5), they shall denote the lexicographic relations de�ned below.
This lexicographic ordering shall impose a total ordering on values of a string-type.

Let s1 and s2 be two values of compatible string-types where the length of s1 is less than or
equal to the length of s2, let n1 be the length of s1, and let n2 be the length of s2; then

s1 = s2 i� (for all i in [1..n1]: s1[i] = s2[i])
and (for all i in [n1+1..n2]: ' ' = s2[i])

s1 < s2 i� (there exists p in [1..n1]:
(for all i in [1..p-1]: s1[i] = s2[i])
and s1[p] < s2[p])

or
((for all i in [1..n1]: s1[i] = s2[i])
and (there exists p in [n1+1..n2]:

(for all i in [n1+1..p-1]: ' ' = s2[i])
and ' ' < s2[p]))

The de�nitions of operations >, <>, <=, and >= are derived from the de�nitions of = and <.

The de�nitions of the relational operators for the length of s1 greater than the length of s2 are
derived from the de�nitions of the operators for the length of s1 less than or equal to the length
of s2.

When comparing a char-type value with a string-type value, the char-type value shall be treated
as a value of the canonical-string-type with length 1 and with the component-value equal to the
char-type value.

NOTES

2 For comparison of values of compatible char-types or string-types, the relational-operators e�ectively
extend the shorter value with trailing spaces to the length of the longer value.

3 String-type ordering is de�ned in terms of the char-type ordering, in turn de�ned in table 6.

The operator in shall yield the value true if the value of the operand of ordinal-type is a member
of the value of the set-type; otherwise, it shall yield the value false.

6.8.3.6 String operator

The types of operands and results for the string operator shall be as shown in table 7.

84

ISO/IEC 10206:1990(E)

Table 7 | String operation
Operator Operation Type of operands Type of result
+ String Char-type or the Canonical-string-type

concatenation canonical-string-type

Where a and b denote operands possessing the char-type or the canonical-string-type, a + b shall
denote a value of the canonical-string-type whose length shall be equal to the sum of the length
of a and the length of b. The value of the components of a + b in order of increasing index shall
be the values of the components of a in order of increasing index or the char-type value of a,
followed by the values of the components of b in order of increasing index or the char-type value
of b.

6.8.4 Schema-discriminants

schema-discriminant = (variable-access j constant-access) `.' discriminant-speci�er
j schema-discriminant-identi�er .

discriminant-speci�er = discriminant-identi�er .

If a schema-discriminant closest-contains a variable-access or constant-access, the variable-access
or constant-access shall possess a type produced from a schema with a tuple, and the schema-
discriminant shall possess the type possessed by, and denote the value corresponding to, the
discriminant-identi�er of the discriminant-speci�er of the schema-discriminant according to the
tuple. If a schema-discriminant closest-contains a schema-discriminant-identi�er, the schema-
discriminant shall possess the type possessed by, and denote the value denoted by, the schema-
discriminant-identi�er. The occurrence of the variable-access or constant-access shall constitute
the de�ning-point of each of the discriminant-identi�ers that is a formal discriminant of the
schema for the region that is the discriminant-speci�er of the schema-discriminant.

Examples:
ShowScreen.height

ShowScreen.width

MyVector.vlength

6.8.5 Function-designators

A function-designator shall specify the activation of the block of the function-block of the function
(see 6.2.3.2 j)) denoted by the function-name of the function-designator and shall yield the value
of the result of the activation upon completion of the algorithm of the activation; it shall be an
error if the result is unde�ned upon completion of the algorithm.

NOTE | When a function activation is terminated by a goto-statement (see 6.9.2.4), the algorithm of
the activation does not complete (see 6.2.3.2 a)), and thus there is no error if the result of the activation
is unde�ned.

If the function has any formal-parameters, the function-designator shall contain actual-parameters
that shall be bound to their corresponding formal-parameters de�ned in the function-declaration.
The correspondence shall be established by the positions of the parameters in the lists of actual-
parameters and formal-parameters, respectively. The number of actual-parameters shall be equal
to the number of formal-parameters. The types of the actual-parameters shall correspond to the

85

ISO/IEC 10206:1990(E)

types of the formal-parameters as speci�ed by 6.7.3. The order of evaluation, accessing, and
binding of the actual-parameters shall be implementation-dependent.

function-designator = function-name [actual-parameter-list] .

actual-parameter-list = `(' actual-parameter f `,' actual-parameter g `)' .

actual-parameter = expression j variable-access
j procedure-name j function-name .

Examples:
sqrt(a)

GCD(147, k)

sin(x + y)

eof(f)

ord(f")

6.8.6 Function-accesses

6.8.6.1 General

A function-access, according to whether it is an entire-function-access, a component-function-
access, or a substring-function-access, shall denote the value of the result of an activation, a
component of the value of another function-access, or a substring of the value of another function-
access, respectively. The value and type of a function-access shall be the value and type,
respectively, either of the entire-function-access or substring-function-access of the function-
access, or of the indexed-function-access or record-function-access of the component-function-
access of the function-access.

function-access = entire-function-access
j component-function-access
j substring-function-access .

component-function-access = indexed-function-access
j record-function-access .

entire-function-access = function-designator .

An entire-function-access shall denote the value of the result of the activation of the block of the
function denoted by the function-name of the function-designator of the entire-function-access.

NOTE | A function-access is not equivalent to a variable-access. For example, a function-access may
not be used as an actual variable parameter or as the record-variable in a with-statement.

6.8.6.2 Indexed-function-accesses

An indexed-function-access shall denote a component of the value of a function-access possessing
an array-type or a string-type.

indexed-function-access = array-function `[' index-expression f `,' index-expression g `]'
j string-function `[' index-expression `]' .

array-function = function-access .

86

ISO/IEC 10206:1990(E)

string-function = function-access .

An array-function shall be a function-access possessing an array-type. A string-function shall
be a function-access possessing a string-type. The string-function of an indexed-function-access
shall be a function-access possessing a variable-string-type.

NOTE | Function-accesses possessing a �xed-string-type are indexed using array-type properties.

For an array-function in an indexed-function-access closest-containing a single index-expression,
the value of the index-expression shall be assignment-compatible with the index-type of the
array-type possessed by the array-function.

For a string-function in an indexed-function-access, the index-expression of the indexed-function-
access shall possess the integer-type, and it shall be an error if the value of the index-expression
is not in the index-domain of the value of the string-function.

The component denoted by the indexed-function-access shall be the component that corresponds
to the value of the index-expression by the mapping of the type possessed by the array-function
(see 6.4.3.2) or string-function (see 6.4.3.3).

If the array-function or string-function is itself an indexed-function-access, an abbreviation shall
be permitted. In the abbreviated form, a single comma shall replace the sequence] [that occurs
in the full form. The abbreviated form and the full form shall be equivalent.

The order of evaluation both of the index-expressions of, and of the array-function or string-
function of, an indexed-function-access shall be implementation-dependent.

6.8.6.3 Record-function-accesses

A record-function-access shall denote that component of the value of the record-function of the
record-function-access associated (see 6.4.3.4) with the �eld-identi�er of the �eld-speci�er of the
record-function-access. A record-function shall be a function-access possessing a record-type.

The occurrence of a record-function in a record-function-access shall constitute the de�ning-
point of the �eld-identi�ers associated with components of the record-type possessed by the
record-function for the region that is the �eld-speci�er of the record-function-access.

record-function-access = record-function `.' �eld-speci�er .

record-function = function-access .

It shall be an error to denote a component of a variant, unless the variant is active.

6.8.6.4 Function-identi�ed-variables

A function-identi�ed-variable shall denote the variable identi�ed by the value of the pointer-
function of the function-identi�ed-variable. A pointer-function shall be a function-access possessing
a pointer-type.

function-identi�ed-variable = pointer-function `"' .

pointer-function = function-access .

It shall be an error if the pointer-function of a function-identi�ed-variable denotes the nil-value.

87

ISO/IEC 10206:1990(E)

6.8.6.5 Substring-function-accesses

A substring-function-access shall denote a value of the canonical-string-type.

substring-function-access = string-function `[' index-expression `..' index-expression `]' .

The index-expressions in a substring-function-access shall possess the integer-type. It shall be an
error if the value of an index-expression in a substring-function-access is less than one or greater
than the length of the value of the string-function of the substring-function-access or if the value
of the �rst index-expression is greater than the value of the second index-expression. The length
of the string-type value of the substring-function-access shall be equal to one plus the value of
the second index-expression minus the value of the �rst index-expression. The components of
the value of the substring-function-access shall be, in order of increasing index, the contiguous
components of the value of the string-function from the component that corresponds to the value
of the �rst index-expression through the component that corresponds to the value of the second
index-expression.

The order of evaluation both of the index-expressions of, and of the string-function of, a
substring-function-access shall be implementation-dependent.

6.8.7 Structured-value-constructors

6.8.7.1 General

A structured-value-constructor shall denote a value of the type of the structured-value-constructor.
That type shall be a type that is permissible as the component-type of a �le-type (see 6.4.3.6).
The order of evaluation of the component-values contained by a structured-value-constructor
shall be implementation-dependent.

structured-value-constructor = array-type-name array-value
j record-type-name record-value
j set-type-name set-value .

component-value = expression j array-value j record-value .

The type of a structured-value-constructor shall be the type denoted by the array-type-name,
record-type-name, or set-type-name of the structured-value-constructor. The type of an array-
value, a record-value, or a set-value of either a structured-value-constructor or a component-value
shall be the type of the structured-value-constructor or the component-value, respectively. The
value denoted by an expression in a component-value shall be assignment-compatible with the
type of the component-value. The structure of a value possessing a structured-type shall be the
structure of the structured-type.

6.8.7.2 Array-values

The type of an array-value shall be an array-type, and the array-value shall denote a value of
that type.

array-value = `[' [array-value-element f `;' array-value-element g [`;']]
[array-value-completer [`;']] `]' .

array-value-element = case-constant-list `:' component-value .

88

ISO/IEC 10206:1990(E)

array-value-completer = `otherwise' component-value .

The type of a component-value of either an array-value-element or an array-value-completer of
an array-value shall be the component-type of the array-type of the array-value.

The values denoted by the case-ranges of the case-constant-lists of the array-value-elements of an
array-value shall be distinct and shall belong to the set of values determined by the index-type
of the array-type possessed by the array-value. Every component of an array-value shall be a
value, as speci�ed by one of the following two statements.

a) The component mapped to by each value denoted by a case-range of a case-constant-list
of an array-value-element of the array-value shall be the value denoted by the component-
value of the array-value-element.

b) Any component not mapped to by a value denoted by a case-range of a case-constant-list
of an array-value-element of the array-value shall be the value denoted by the component-
value of the array-value-completer of the array-value. If there is at least one such component,
there shall be an array-value-completer in the array-value.

NOTE | Consequently, every component of the array-value must be speci�ed.

6.8.7.3 Record-values

The type of a record-value shall be a record-type, and the record-value shall denote a value of
that type.

record-value = `[' �eld-list-value `]' .

�eld-list-value = [(�xed-part-value [`;' variant-part-value] j variant-part-value) [`;']] .

�xed-part-value = �eld-value f `;' �eld-value g .

�eld-value = �eld-identi�er f `,' �eld-identi�er g `:' component-value .

variant-part-value = `case' [tag-�eld-identi�er `:']
constant-tag-value `of' `[' �eld-list-value `]' .

constant-tag-value = constant-expression .

tag-�eld-identi�er = �eld-identi�er .

The occurrence of a record-value shall constitute the de�ning-point of each of the �eld-identi�ers
of the record-type of the record-value as �eld-identi�ers associated with the components of the
record-value for each region that is a �eld-identi�er closest-contained by the record-value. The
component associated with each �eld-identi�er in a �eld-value shall be the value denoted by
the component-value of that �eld-value. The type of the component-value of a �eld-value shall
be the type of each of the components that are components of the record-type of the record-
value closest-containing the �eld-value and that are associated with the �eld-identi�ers of the
�eld-value.

NOTE | 1 Consequently, all �eld-identi�ers in a �eld-value must have been declared to have the same
type.

Each �eld-identi�er in a �eld-value of a �xed-part-value of a �eld-list-value that corresponds to a

89

ISO/IEC 10206:1990(E)

�eld-list shall denote a �eld of the �eld-list. The �eld-list-value of a record-value shall correspond
to the �eld-list of the record-type possessed by the record-value. The �xed-part-value or variant-
part-value of a �eld-list-value shall correspond to the �xed-part or variant-part, respectively, of
the �eld-list corresponding to the �eld-list-value. The constant-expression of a constant-tag-
value of a variant-part-value shall denote a value belonging to the set of values determined
by the variant-type of the variant-part corresponding to the variant-part-value. The �eld-list-
value of a variant-part-value shall correspond to the �eld-list of the variant corresponding to the
value of the constant-expression of the constant-tag-value of the variant-part-value; the selector
component of the variant-part-value shall be a value that is associated with that variant. A
tag-�eld-identi�er in a variant-part-value shall be the �eld-identi�er associated with the selector
of the variant-part corresponding to the variant-part-value; the component of the variant-part-
value associated with the �eld-identi�er shall be the selector of the variant-part and shall be the
value denoted by the constant-tag-value of the variant-part-value. The �eld-identi�er, if any,
associated with the selector of a variant-part shall have an applied occurrence in the tag-�eld-
identi�er of each variant-part-value corresponding to the variant-part.

For each �eld-list-value that corresponds to a �eld-list, each �eld-identi�er associated with a
component of the �eld-list shall have exactly one applied occurrence as a �eld-identi�er closest-
contained by the �eld-list-value.

NOTE | 2 Consequently, every component of the record-value, including each active variant, must be
speci�ed as a value. Also, a �eld-identi�er cannot be speci�ed more than once in a record-value.

6.8.7.4 Set-values

The type of a set-value shall be a set-type, and the set-value shall denote a value of that type.

set-value = set-constructor .

The value of the set-constructor of a set-value shall be assignment-compatible with the type of
the set-value.

6.8.8 Constant-accesses

6.8.8.1 General

NOTE | Neither a constant-access nor a constant-access-component is necessarily a constant. For
example, given the following declarations

t = array [1..3] of integer;

const

c = t[1:1; 2:2; 3:3];

var

i: integer;

and the following code segment

for i := 1 to 3 do

writeln(c[i]);

the constant-access, c[i], denotes a di�erent value for each iteration of the loop.

A constant-access-component shall denote a component or a substring of a value.

constant-access = constant-access-component j constant-name .

90

ISO/IEC 10206:1990(E)

constant-access-component = indexed-constant
j �eld-designated-constant
j substring-constant .

The value and type of a constant-access shall be the value and type, respectively, either of the
constant-name of the constant-access or of the indexed-constant, �eld-designated-constant, or
substring-constant of the constant-access-component.

6.8.8.2 Indexed-constants

An indexed-constant shall denote a component of a value possessing an array-type or a string-
type.

indexed-constant = array-constant `[' index-expression f `,' index-expression g `]'
j string-constant `[' index-expression `]' .

array-constant = constant-access .

string-constant = constant-access .

An array-constant shall be a constant-access possessing an array-type. A string-constant shall
be a constant-access possessing a string-type. The string-constant of an indexed-constant shall
be a constant-access possessing a variable-string-type.

NOTE | Constant-accesses possessing a �xed-string-type are indexed using array-type properties.

For an array-constant in an indexed-constant closest-containing a single index-expression (see
6.5.3.2), the value of the index-expression of the indexed-constant shall be assignment-compatible
with the index-type of the array-type of the array-constant.

For a string-constant in an indexed-constant, the index-expression of the indexed-constant shall
possess the integer-type, and it shall be an error if the value of the index-expression is not in
the index-domain of the value of the string-constant.

The component denoted by the indexed-constant shall be the component that corresponds to
the value of the index-expression by the mapping of the type possessed by the array-constant
(see 6.4.3.2) or string-constant (see 6.4.3.3).

If the array-constant is itself an indexed-constant, an abbreviation shall be permitted. In the
abbreviated form, a single comma shall replace the sequence] [that occurs in the full form. The
abbreviated form and the full form shall be equivalent.

The order of evaluation of the index-expressions of an indexed-constant shall be implementation-
dependent.

Examples:
UnitVector[limit]

BlankCard[1]

6.8.8.3 Field-designated-constants

A �eld-designated-constant either shall denote that component of the value denoted by the
record-constant of the �eld-designated-constant associated (see 6.4.3.4) with the �eld-identi�er

91

ISO/IEC 10206:1990(E)

of the �eld-speci�er (see 6.5.3.3) of the �eld-designated-constant or shall denote the value
denoted by the constant-�eld-identi�er (see 6.9.3.10) of the �eld-designated-constant.

The occurrence of a record-constant in a �eld-designated-constant shall constitute the de�ning-
point of the �eld-identi�ers associated with components of the record-type possessed by the
record-constant, for the region that is the �eld-speci�er of the �eld-designated-constant.

�eld-designated-constant = record-constant `.' �eld-speci�er
j constant-�eld-identi�er .

record-constant = constant-access .

A record-constant shall be a constant-access possessing a record-type.

It shall be an error to denote a component of a variant, unless the variant is active.

Examples:
origin.r

origin.theta

unit.theta

6.8.8.4 Substring-constants

A substring-constant shall denote a value of the canonical-string-type.

substring-constant = string-constant `[' index-expression `..' index-expression `]' .

The index-expressions in a substring-constant shall possess the integer-type. It shall be an error
if the value of an index-expression in a substring-constant is less than 1 or greater than the
length of the value of the string-constant of the substring-constant or if the value of the �rst
index-expression is greater than the value of the second index-expression. The length of the
string-type value of the substring-constant shall be equal to one plus the value of the second
index-expression minus the value of the �rst index-expression. The components of the value of
the substring-constant shall be, in order of increasing index, the contiguous components of the
value of the string-constant from the component that corresponds to the value of the �rst index-
expression through the component that corresponds to the value of the second index-expression.

The order of evaluation of the index-expressions of a substring-constant shall be implementation-
dependent.

Example:
hex string[14..16]

6.9 Statements

6.9.1 General

Statements shall denote algorithmic actions and shall be executable.

NOTE | 1 A statement may be pre�xed by a label.

A label, if any, of a statement S shall be designated as pre�xing S. The label shall be permitted
to occur in a goto-statement G (see 6.9.2.4) if and only if any of the following three conditions
is satis�ed.

92

ISO/IEC 10206:1990(E)

a) S contains G.

b) S is a statement of a statement-sequence containing G.

c) S is a statement of the statement-sequence of the compound-statement of the statement-
part of a block containing G.

statement = [label `:'] (simple-statement j structured-statement) .

NOTE | 2 A goto-statement within a block may refer to a label in an enclosing block, provided that
the label pre�xes a statement at the outermost level of nesting of the block.

6.9.2 Simple-statements

6.9.2.1 General

A simple-statement shall be a statement not containing a statement. An empty-statement shall
contain no symbol and shall denote no action.

simple-statement = empty-statement j assignment-statement
j procedure-statement j goto-statement .

empty-statement = .

6.9.2.2 Assignment-statements

An assignment-statement shall attribute the value of the expression of the assignment-statement
to the variable that is denoted by the variable-access of the assignment-statement or that is the
result of the activation of the function denoted by the function-identi�er of the assignment-
statement. The value shall be assignment-compatible with the type of the variable denoted by
the variable-access, or the underlying-type (see 6.4.2.5) of the type of the variable that is the
result of the activation. The function-block associated (see 6.7.2) with the function-identi�er of
an assignment-statement shall contain the assignment-statement.

assignment-statement = (variable-access j function-identi�er) `:=' expression .

The variable-access shall establish a reference to the variable during the execution of the assignment-
statement. The order of establishing the reference to the variable and evaluating the expression
shall be implementation-dependent.

Examples:
x := y + z

p := (1 <= i) and (i < 100)

i := sqr(k) - (i * j)

hue1 := [blue, succ(c)]

p1".mother := true

full name := last name + ', ' + first name + ' ' + middle initial

+ '., ' + mister f'Grant, Ulysses S., Mr.'g

6.9.2.3 Procedure-statements

A procedure-statement shall specify the activation of the block of the procedure-block of the
procedure (see 6.2.3.2 i)) denoted by the procedure-name of the procedure-statement. If

93

ISO/IEC 10206:1990(E)

the procedure has any formal-parameters, the procedure-statement shall contain an actual-
parameter-list, which is the list of actual-parameters that shall be bound to their corresponding
formal-parameters de�ned in the procedure-declaration. The correspondence shall be established
by the positions of the parameters in the lists of actual-parameters and formal-parameters,
respectively. The number of actual-parameters shall be equal to the number of formal-parameters.
The types of the actual-parameters shall correspond to the types of the formal-parameters as
speci�ed by 6.7.3.

The order of evaluation, accessing, and binding of the actual-parameters shall be implementation-
dependent.

The procedure-name in a procedure-statement containing a read-parameter-list shall denote the
required procedure read; the procedure-name in a procedure-statement containing a readln-
parameter-list shall denote the required procedure readln; the procedure-name in a procedure-
statement containing a readstr-parameter-list shall denote the required procedure readstr; the
procedure-name in a procedure-statement containing a write-parameter-list shall denote the
required procedure write; the procedure-name in a procedure-statement containing a writeln-
parameter-list shall denote the required procedure writeln; the procedure-name in a procedure-
statement containing a writestr-parameter-list shall denote the required procedure writestr.

procedure-statement = procedure-name ([actual-parameter-list]
j read-parameter-list j readln-parameter-list j readstr-parameter-list
j write-parameter-list j writeln-parameter-list j writestr-parameter-list) .

Examples:
PrepareForAppending(f)

halt

6.9.2.4 Goto-statements

A goto-statement shall indicate that further processing is to continue at the program-point
denoted by the label in the goto-statement and shall cause the termination of all activations
except

a) the activation containing the program-point;

b) any activation containing the activation-point of an activation required by exceptions a)
or b) not to be terminated; and

c) each of the activations that comprise the activation of the program-block (see 6.2.3.6).

goto-statement = `goto' label .

It shall be a dynamic-violation if the commencement of the activation containing the program-
point has not completed (see 6.2.3.8).

6.9.3 Structured-statements

6.9.3.1 General

structured-statement = compound-statement j conditional-statement
j repetitive-statement j with-statement .

94

ISO/IEC 10206:1990(E)

statement-sequence = statement f `;' statement g .

The execution of a statement-sequence shall specify the execution of the statements of the
statement-sequence in textual order, except as modi�ed by execution of a goto-statement.

6.9.3.2 Compound-statements

A compound-statement shall specify execution of the statement-sequence of the compound-
statement.

compound-statement = `begin' statement-sequence `end' .

Example:
begin z := x; x := y; y := z end

6.9.3.3 Conditional-statements

conditional-statement = if-statement j case-statement .

6.9.3.4 If-statements

if-statement = `if' Boolean-expression `then' statement [else-part] .

else-part = `else' statement .

If the Boolean-expression of the if-statement yields the value true, the statement of the if-
statement shall be executed. If the Boolean-expression yields the value false, the statement
of the if-statement shall not be executed, and the statement of the else-part, if any, shall be
executed.

An if-statement without an else-part shall not be immediately followed by the token else.

NOTE | An else-part is thus paired with the nearest preceding otherwise unpaired then.

Examples:
if x < 1.5 then z := x + y else z := 1.5

if p1 <> nil then p1 := p1".father

if j = 0 then

if i = 0 then writeln('indefinite')

else writeln('infinite')

else writeln(i / j)

6.9.3.5 Case-statements

The case-index of a case-statement and each case-constant closest-contained by the case-constant-
list of a case-list-element of the case-statement shall all possess the same ordinal-type; no value
shall be denoted by more than one case-range closest-contained by the case-constant-list of any
case-list-elements of the case-statement. On execution of the case-statement, the case-index shall
be evaluated. If a case-range closest-contained by a case-constant-list of a case-list-element of
the case-statement denotes that value, the statement of the case-list-element shall be executed;

95

ISO/IEC 10206:1990(E)

otherwise, if a case-statement-completer occurs in the case-statement, the statement-sequence of
the case-statement-completer shall be executed; otherwise, it shall be a dynamic-violation.

NOTE | Case-constants are not the same as statement labels.

case-statement = `case' case-index `of'
(case-list-element f `;' case-list-element g
[[`;'] case-statement-completer] j case-statement-completer)
[`;'] `end' .

case-index = expression .

case-list-element = case-constant-list `:' statement .

case-statement-completer = `otherwise' statement-sequence .

Examples:
1) case operator of

plus: i := i + j;

minus: i := i - j;

times: i := i * j;

divvy: case j of

-maxint..-1, 1..maxint: i := i div j;

0 : begin

writeln('divide by zero!');

halt;

end

otherwise i := 0; writeln(' See 6.4.2.2 a).')
end

end

2) if limit >= 0

then

case i of

-maxint..(-limit-1): writeln('too small');

-limit..limit: writeln('just right');

(limit+1)..maxint: writeln('too big')

end

else

writeln('limit is less than 0');

6.9.3.6 Repetitive-statements

Repetitive-statements shall specify that certain statements are to be executed repeatedly.

repetitive-statement = repeat-statement j while-statement j for-statement .

6.9.3.7 Repeat-statements

repeat-statement = `repeat' statement-sequence `until' Boolean-expression .

The statement-sequence of the repeat-statement shall be repeatedly executed, except as modi�ed

96

ISO/IEC 10206:1990(E)

by the execution of a goto-statement, until the Boolean-expression of the repeat-statement
yields the value true on completion of the statement-sequence. The statement-sequence shall
be executed at least once, because the Boolean-expression is evaluated after execution of the
statement-sequence.

Example:
repeat

k := i mod j;

i := j;

j := k

until j = 0

6.9.3.8 While-statements

while-statement = `while' Boolean-expression `do' statement .

The while-statement

while b do body

shall be equivalent to

begin
if b then
repeat
body

until not (b)
end

Examples:
while i > 0 do

begin if odd(i) then z := z * x;

i := i div 2;

x := sqr(x)

end

while not eof(f) do

begin process(f"); get(f)

end

6.9.3.9 For-statements

6.9.3.9.1 General

The for-statement shall specify that the statement of the for-statement is to be repeatedly
executed while a progression of values is attributed to a variable denoted by the control-variable
of the for-statement.

for-statement = `for' control-variable iteration-clause `do' statement .

control-variable = entire-variable .

iteration-clause = sequence-iteration j set-member-iteration .

97

ISO/IEC 10206:1990(E)

The control-variable shall be an entire-variable whose identi�er is declared in a variable-declaration-
part of the block closest-containing the for-statement. The control-variable shall possess an
ordinal-type and shall be nonbindable. After a for-statement is executed, other than being left
by a goto-statement, the control-variable shall be unde�ned. Neither a for-statement nor any
procedure-and-function-declaration-part of the block that closest-contains a for-statement shall
contain a statement threatening (see 6.9.4) a variable-access denoting the variable denoted by
the control-variable of the for-statement.

6.9.3.9.2 Sequence-iteration

sequence-iteration = `:=' initial-value (`to' j `downto') �nal-value .

initial-value = expression .

�nal-value = expression .

The initial-value and the �nal-value of a sequence-iteration of an iteration-clause of a for-
statement shall be of a type compatible with the type of the control-variable of the for-statement.
The initial-value and the �nal-value shall be assignment-compatible with the type possessed by
the control-variable if the statement of the for-statement is executed.

Apart from the restrictions imposed by these requirements, the for-statement

for v := e1 to e2 do body

shall be equivalent to

begin
temp1 := e1;
temp2 := e2;
if temp1 <= temp2 then
begin
v := temp1;
body;
while v <> temp2 do
begin
v := succ(v);
body
end

end
end

and the for-statement

for v := e1 downto e2 do body

shall be equivalent to

begin
temp1 := e1;
temp2 := e2;
if temp1 >= temp2 then
begin
v := temp1;

98

ISO/IEC 10206:1990(E)

body;
while v <> temp2 do
begin
v := pred(v);
body
end

end
end

where temp1 and temp2 denote auxiliary variables that the program does not otherwise contain,
and that possess the range-type of the type possessed by the variable v.

Examples:
for i := 2 to 63 do

if a[i] > max then max := a[i]

for i := 1 to 10 do

for j := 1 to 10 do

begin

x := 0;

for k := 1 to 10 do

x := x + m1[i,k] * m2[k,j];

m[i,j] := x

end

for i := 1 to 10 do

for j := 1 to i - 1 do

m[i][j] := 0.0

for c := blue downto red do

q(c)

6.9.3.9.3 Set-member-iteration

set-member-iteration = `in' set-expression .

set-expression = expression .

The set-expression of a set-member-iteration of an iteration-clause of a for-statement shall
possess an unpacked-canonical-set-of-T-type or a packed-canonical-set-of-T-type. The type of
the control-variable of the for-statement shall be compatible with T. The set-expression shall be
evaluated prior to the �rst execution, if any, of the statement of the for-statement. Each value, if
any, that is a member of the value of the set-expression shall be assignment-compatible with the
type possessed by the control-variable. For each member of the value of the set-expression, the
value that is the member shall be attributed to the control-variable, and then the statement of the
for-statement shall be executed. The order in which members of the value of the set-expression
are selected shall be implementation-dependent.

Examples:
1) for c in hue1 do q(c)

99

ISO/IEC 10206:1990(E)

2) for status in DeviceStatus do

case status of

Busy:

f respond to Busy g;
ParityError:

f respond to ParityError g;
OutOfPaper:

f respond to OutOfPaper g;
LineBreak:

f respond to LineBreak g
end

6.9.3.10 With-statements

with-statement = `with' with-list `do' statement .

with-list = with-element f `,' with-element g .

with-element = variable-access j constant-access .

�eld-designator-identi�er = identi�er .

constant-�eld-identi�er = identi�er .

schema-discriminant-identi�er = identi�er .

A with-statement shall specify the execution of the statement of the with-statement. The
constant-access or variable-access of a with-element shall possess either a type produced from a
schema or a record-type. The occurrence of a variable-access or constant-access, that possesses
a record-type, in the only with-element in the with-list of a with-statement shall constitute
the de�ning-point of each of the �eld-identi�ers associated with components of the record-
type as a �eld-designator-identi�er or constant-�eld-identi�er, respectively, for the region that
is the statement of the with-statement; each applied occurrence of the �eld-designator-identi�er
or constant-�eld-identi�er shall denote that component, either of the variable denoted by the
variable-access or of the value denoted by the constant-access, respectively, that is associated
with the �eld-identi�er by the record-type.

An occurrence of a variable-access or constant-access, that possesses a type produced from a
schema with a tuple, in the only with-element in the with-list of a with-statement shall constitute
the de�ning-point of each discriminant-identi�er that is a formal discriminant of the schema as
a schema-discriminant-identi�er for the region that is the statement of the with-statement; each
applied occurrence of the schema-discriminant-identi�er shall possess the type possessed by the
discriminant-identi�er and shall denote the value corresponding to the discriminant-identi�er
according to the tuple.

The variable-access shall be accessed or the value of the constant-access shall be determined
before the statement of the with-statement is executed, and the access to the variable shall
establish a reference to the variable during the entire execution of the statement of the with-
statement.

The statement

with v1,v2,...,vn do s

100

ISO/IEC 10206:1990(E)

shall be equivalent to

with v1 do
with v2 do
...
with vn do s

Examples:
1) with Good thru do

if month = 12

then begin

month := 1;

year := year+1

end

else month := month+1;

f has the same effect on the variable Good thru as

if Good thru.month = 12

then begin

Good thru.month := 1;

Good thru.year := Good thru.year+1

end

else Good thru.month := Good thru.month+1; g

2) with ShowScreen do

if (width = 80) and (height = 24)

then f write full screen g
else f write line by line g

3) with unit do

begin

x := r;

coordinate.theta := theta

end;

NOTE | Month and year in Example 1) are �eld-designator-identi�ers, width and height in Example
2) are schema-discriminant-identi�ers, and r and theta in Example 3) are constant-�eld-identi�ers.

6.9.4 Threats

A statement S shall be designated as threatening a variable-access V if one or more of the
following statements is true.

a) S is an assignment-statement and V is in S.

b) S contains V in an actual-parameter that is an actual variable parameter corresponding to
a formal variable parameter that is not protected (see 6.7.3.1).

c) S is a procedure-statement that speci�es the activation of one of the required procedures
read, readln, or readstr, and V is either in an actual-parameter of an actual-parameter-
list of S or in a read-parameter-list, a readln-parameter-list, or a readstr-parameter-list of

101

ISO/IEC 10206:1990(E)

S, respectively.

d) S is a procedure-statement that speci�es activation of the required procedure writestr,
and V is in the string-variable accessed by the activation.

e) S is a procedure-statement that speci�es activation of the required procedure new, and V
is the variable-access p (see 6.7.5.3).

f) S is a procedure-statement that speci�es activation of the required procedureGetTimeStamp,
and V is the variable-access t (see 6.7.5.8).

g) S is a for-statement and V denotes the control-variable of S.

h) V is in an array-variable, record-variable, or string-variable, and S is threatening a variable-
access closest-containing V.

i) S is a with-statement, V is in a with-element in the with-list of S, and S contains a statement
threatening a variable-access closest-containing a �eld-designator-identi�er having V as a
de�ning-point.

j) S is a procedure-statement that speci�es the activation of the required procedure bind or
unbind, and V is the variable-access f (see 6.7.5.6).

NOTE | In 6.7.5.4, the execution of the required procedures pack and unpack is de�ned as equivalent
to a series of assignments of the components of the packed and unpacked arrays. These equivalent
assignments are subject to a) and i) above.

6.10 Input and output

6.10.1 The procedure read

The syntax of the parameter list of read when applied to a text�le shall be

read-parameter-list = `(' [�le-variable `,'] variable-access f `,' variable-access g `)' .

If the �le-variable is omitted, the procedure shall be applied to the required text�le input, which
shall be implicitly accessible (see 6.11.4.2) by the procedure-statement.

The following requirements of this subclause shall apply for the procedure read when applied to
a text�le; therein, f shall denote the text�le. The e�ects of applying read(f,v) to the text�le f shall
be de�ned by pre-assertions and post-assertions within the requirements of 6.7.5.2. The pre-
assertion of read(f,v) shall be the pre-assertion of get(f). Let t denote a sequence of components
having the char-type; let r, s, and u each denote a value of the sequence-type de�ned by the
structure of the type denoted by text; if u = S(), then let t = S(); otherwise, let u.�rst =
end-of-line; let w = f0" or w = f0.R.�rst, where the decision as to which shall be implementation-
dependent; and let r~s~t ~u = w ~f0.R.rest. The post-assertion of read(f,v) shall be

(f.M = f0.M) and (f.L~f.R = f0.L~f0.R) and (f.R = t~u) and
(if f.R = S() then (f" is totally-unde�ned) else (f" = f.R.�rst)).

NOTES

1 The variable-access is not a variable parameter. Consequently, it may be a variant-selector or a
component of a packed structure, and the value of the bu�er-variable need only be assignment-compatible
with it.

102

ISO/IEC 10206:1990(E)

2 The sequence r represents the initial spaces and end-of-lines skipped during reading; s represents the
quantity read; t~u represents text remaining to be read; and t represents the largest pre�x of t~u that
does not contain an end-of-line.

a) For n>=1, read(f,v1,...,vn) shall access the text�le and establish a reference to that text�le
for the remaining execution of the statement; v1,...,vn shall be variable-accesses, each of which
shall possess a type that is the real-type, is a string-type, or is compatible with the char-type or
with the integer-type. For n>=2, the execution of read(f,v1,...,vn) shall be equivalent to

begin read(�,v1); read(�,v2,...,vn) end

where � denotes the referenced text�le.

b) If v is a variable-access possessing the char-type (or subrange thereof), the execution of
read(f,v) shall be equivalent to

begin v := �"; get(�) end

where � denotes the referenced text�le.

NOTE | 3 To satisfy the post-assertions of get and of read(f,v) requires r = S() and length(s) = 1.

c) If v is a variable-access possessing the integer-type (or subrange thereof), read(f,v) shall satisfy
the following requirements. No component of s shall equal end-of-line. The components of r, if
any, shall each, and (s ~t ~u).�rst shall not, equal either the char-type value space or end-of-line.
Either s shall be empty or s shall, and s ~S((t~u).�rst) shall not, form a signed-integer according
to the syntax of 6.1.7. It shall be an error if s is empty. The value of the signed-integer thus
formed shall be assignment-compatible with the type possessed by v and shall be attributed to
v.

NOTE | 4 The sequence r represents any spaces and end-of-lines to be skipped, and the sequence s
represents the signed-integer to be read.

d) If v is a variable-access possessing the real-type, read(f,v) shall satisfy the following requirements.
No component of s shall equal end-of-line. The components of r, if any, shall each, and (s ~t
~u).�rst shall not, equal either the char-type value space or end-of-line. Either s shall be empty
or s shall, and s ~S((t~u).�rst) shall not, form a number according to the syntax of 6.1.7. It
shall be an error if s is empty. The value denoted by the number thus formed shall be attributed
to the variable v.

NOTE | 5 The sequence r represents any spaces and end-of-lines to be skipped, and the sequence s
represents the number to be read.

e) If v is a variable-access possessing a �xed-string-type of capacity c, read(f,v) shall satisfy the
following requirements. Length(r) shall equal 0, no component of s shall equal end-of-line, and
the remaining execution of the statement shall cause a value to be attributed to v. That value
shall be the value of the �xed-string-type whose components in order of increasing index consist
of the components of s, in order, followed by zero or more spaces. If c exceeds length(s~t),
length(t) shall equal 0; otherwise, length(s) shall equal c.

NOTE | 6 If eoln(f) is initially true, then no characters are read, and the value of each component of
v is a space.

f) If v is a variable-access possessing a variable-string-type of capacity c, read(f,v) shall satisfy
the following requirements. Length(r) shall equal 0, no component of s shall equal end-of-line,

103

ISO/IEC 10206:1990(E)

and the remaining execution of the statement shall cause a value to be attributed to v. That
value shall be the value of the variable-string-type whose components in order of increasing
index consist of the components of s, in order. If c exceeds length(s~t), length(t) shall equal 0;
otherwise, length(s) shall equal c.

NOTE | 7 If eoln(f) is initially true, then no characters are read, and the value of v is the null-string.

6.10.2 The procedure readln

The syntax of the parameter list of readln shall be

readln-parameter-list = [`(' (�le-variable j variable-access) f `,' variable-access g `)'] .

Readln shall only be applied to text�les. If the �le-variable or the entire readln-parameter-list is
omitted, the procedure shall be applied to the required text�le input, which shall be implicitly
accessible (see 6.11.4.2) by the procedure-statement.

Readln(f,v1,...,vn) shall access the text�le and establish a reference to that text�le for the
remaining execution of the statement. The execution of the statement shall be equivalent to

begin read(�,v1,...,vn); readln(�) end

where � denotes the referenced text�le.

Readln(f) shall access the text�le and establish a reference to that text�le for the remaining
execution of the statement. The execution of the statement shall be equivalent to

begin while not eoln(�) do get(�); get(�) end

where � denotes the referenced text�le.

NOTES

1 The e�ect of readln is to place the current �le position just past the end of the current line in the
text�le. Unless this is the end-of-�le position, the current �le position is therefore at the start of the
next line.

2 Because the de�nition of readln makes use of get, the implementation-de�ned aspects of the post-
assertion of get also apply (see 6.7.5.2).

6.10.3 The procedure write

The syntax of the parameter list of write when applied to a text�le shall be

write-parameter-list = `(' [�le-variable `,'] write-parameter f `,' write-parameter g `)' .

write-parameter = expression [`:' expression [`:' expression]] .

If the �le-variable is omitted, the procedure shall be applied to the required text�le output,
which shall be implicitly accessible (see 6.11.4.2) by the procedure-statement. When write is
applied to a text�le f, it shall be an error if f is unde�ned or f.M = Inspection (see 6.4.3.6).

For n>=1, write(f,p1,...,pn) shall access the text�le and establish a reference to that text�le for
the remaining execution of the statement. For n>=2, the execution of the statement shall be
equivalent to

begin write(�,p1); write(�,p2,...,pn) end

104

ISO/IEC 10206:1990(E)

where � denotes the referenced text�le.

Write(f,p), where f denotes a text�le and p is a write-parameter, shall write a sequence of zero
or more characters on the text�le f; for each character c in the sequence, the equivalent of

begin �" := c; put(�) end

where � denotes the referenced text�le, shall be applied to the text�le f. The sequence of
characters written shall be a representation of the value of the �rst expression in the write-
parameter p, as speci�ed in the remainder of this subclause.

NOTE | Because the de�nition of write includes the use of put, the implementation-de�ned aspects
of the post-assertion of put also apply (see 6.7.5.2).

6.10.3.1 Write-parameters

A write-parameter shall have one of the following forms

e : TotalWidth : FracDigits
e : TotalWidth
e

where e shall be an expression whose value is to be written on the �le f and shall be of integer-
type, real-type, char-type, Boolean-type, or a string-type, and where TotalWidth and FracDigits
shall be expressions of integer-type whose values shall be designated the �eld-width parameters.
The value of TotalWidth shall be greater than or equal to zero; it shall be an error if the value
is less than zero. The value of FracDigits shall be greater than or equal to zero; it shall be an
error if the value is less than zero.

Write(f,e) shall be equivalent to the form write(f,e : TotalWidth), using a default value for
TotalWidth that depends on the type of e; for integer-type, real-type, and Boolean-type, the
default values shall be implementation-de�ned.

Write(f,e : TotalWidth : FracDigits) shall be applicable only if e is of real-type (see 6.10.3.4.2).

6.10.3.2 Char-type

If e is of char-type, the default value of TotalWidth shall be one. The representation written on
the �le f shall be

if TotalWidth > 0,
(TotalWidth � 1) spaces, the character value of e;

if TotalWidth=0,
no characters.

6.10.3.3 Integer-type

If e is of integer-type, the decimal representation of the value of e shall be written on the �le f.
Assume a function

function IntegerSize (x : integer) : integer ;
f returns the number of digits, z, such that
10 pow (z�1) � abs(x) < 10 pow z g

105

ISO/IEC 10206:1990(E)

and let IntDigits be the positive integer de�ned by

if e = 0
then IntDigits := 1
else IntDigits := IntegerSize(e);

then the representation shall consist of

a) if TotalWidth >= IntDigits + 1:
(TotalWidth � IntDigits � 1) spaces,
the sign character: `-' if e < 0, otherwise a space,
IntDigits digit-characters of the decimal representation of abs(e).

b) if TotalWidth < IntDigits + 1:
if e < 0 the sign character `�',
IntDigits digit-characters of the decimal representation of abs(e).

6.10.3.4 Real-type

If e is of real-type, a decimal representation of the value of e, rounded to the speci�ed number
of signi�cant �gures or decimal places, shall be written on the �le f.

6.10.3.4.1 The oating-point representation

Write(f,e : TotalWidth) shall cause a oating-point representation of the value of e to be written.
Assume functions

function RealSize (y : real) : integer ;
f Returns the value, z, such that 10.0 pow (z�1) <= abs(y) < 10.0 pow z g

function Truncate (y : real ; DecPlaces : integer) : real ;
f Returns the value of y after truncation to DecPlaces decimal places g

let ExpDigits be an implementation-de�ned value representing the number of digit-characters
written in an exponent;

let ActWidth be the positive integer de�ned by

if TotalWidth >= ExpDigits + 6
then ActWidth := TotalWidth
else ActWidth := ExpDigits + 6;

and let the non-negative number eWritten, the positive integer DecPlaces, and the integer
ExpValue be de�ned by

DecPlaces := ActWidth � ExpDigits � 5;
if e = 0.0
then begin eWritten := 0.0; ExpValue := 0 end
else
begin
eWritten := abs(e);
ExpValue := RealSize (eWritten) � 1;
eWritten := eWritten / 10.0 pow ExpValue;

106

ISO/IEC 10206:1990(E)

eWritten := eWritten + 0.5 * 10.0 pow(�DecPlaces);
if eWritten >= 10.0
then
begin
eWritten := eWritten / 10.0;
ExpValue := ExpValue + 1

end;
eWritten := Truncate (eWritten, DecPlaces)

end;

then the oating-point representation of the value of e shall consist of

the sign character
(`�' if (e < 0.0) and (eWritten > 0.0), otherwise a space),

the leading digit-character of the decimal representation of eWritten,
the character `.' ,
the next DecPlaces digit-characters of the decimal representation of

eWritten,
an implementation-de�ned exponent character

(either `e' or `E'),
the sign of ExpValue

(`�' if ExpValue < 0, otherwise `+'),
the ExpDigits digit-characters of the decimal representation of

ExpValue (with leading zeros if the value requires them).

6.10.3.4.2 The �xed-point representation

Write(f,e : TotalWidth : FracDigits) shall cause a �xed-point representation of the value of e to
be written. Assume the functions RealSize and Truncate described in 6.10.3.4.1;

let eWritten be the non-negative number de�ned by

if e = 0.0
then eWritten := 0.0
else
begin
eWritten := abs(e);
eWritten := eWritten + 0.5 * 10.0 pow(�FracDigits);
eWritten := Truncate (eWritten, FracDigits)

end;

let IntDigits be the positive integer de�ned by

if eWritten < 1
then IntDigits := 1
else IntDigits := RealSize (eWritten);

and let MinNumChars be the positive integer de�ned by

MinNumChars := IntDigits + FracDigits + 1;
if (e < 0.0) and (eWritten > 0.0)
then MinNumChars := MinNumChars + 1; f`�' requiredg

107

ISO/IEC 10206:1990(E)

then the �xed-point representation of the value of e shall consist of

if TotalWidth >= MinNumChars,
(TotalWidth � MinNumChars) spaces,

the character `�' if (e < 0.0) and (eWritten > 0.0),
the �rst IntDigits digit-characters of the decimal representation of

the value of eWritten,
the character `.',
the next FracDigits digit-characters of the decimal representation of

the value of eWritten.

NOTE | At least MinNumChars characters are written. If TotalWidth is less than this value, no initial
spaces are written.

6.10.3.5 Boolean-type

If e is of Boolean-type, a representation of the word true or the word false (as appropriate to
the value of e) shall be written on the �le f. This shall be equivalent to writing the appropriate
character-string 'True' or 'False' (see 6.10.3.6), where the case of each letter is implementation-
de�ned, with a �eld-width parameter of TotalWidth.

6.10.3.6 String-types

If the value of e is a string-type value with a length of n, the default value of TotalWidth shall
be n. The representation shall consist of

if TotalWidth > n,
(TotalWidth � n) spaces,

if n > 0,
the �rst through n-th characters of the value of e in that order.

if 1 <= TotalWidth <= n,
the �rst through TotalWidth-th characters in that order.

if TotalWidth = 0,
no characters.

6.10.4 The procedure writeln

The syntax of the parameter list of writeln shall be

writeln-parameter-list = [`(' (�le-variable j write-parameter) f `,' write-parameter g `)'] .

Writeln shall only be applied to text�les. If the �le-variable or the writeln-parameter-list is
omitted, the procedure shall be applied to the required text�le output, which shall be implicitly
accessible (see 6.11.4.2) by the procedure-statement.

Writeln(f,p1,...,pn) shall access the text�le and establish a reference to that text�le for the
remaining execution of the statement. The execution of the statement shall be equivalent to

begin write(�,p1,...,pn); writeln(�) end

where � denotes the referenced text�le.

Writeln shall be de�ned by a pre-assertion and a post-assertion using the notation of 6.7.5.2.

108

ISO/IEC 10206:1990(E)

pre-assertion: (f0 is not unde�ned) and (f0.M = Generation) and (f0.R = S()).

post-assertion: (f.L = (f0.L~S(end-of-line))) and (f" is totally-unde�ned) and (f.R = S()) and
(f.M = Generation), where S(end-of-line) is the sequence consisting solely of the end-of-line
component de�ned in 6.4.3.6.

NOTE | Writeln(f) terminates the partial line, if any, that is being generated. By the conventions of
6.7.5.2 it is an error if the pre-assertion is not true prior to writeln(f).

6.10.5 The procedure page

It shall be an error if the pre-assertion required for writeln(f) (see 6.10.4) does not hold prior
to the activation of page(f). If the actual-parameter-list is omitted, the procedure shall be
applied to the required text�le output, which shall be implicitly accessible (see 6.11.4.2) by
the procedure-statement. Page(f) shall cause an implementation-de�ned e�ect on the text�le f,
such that subsequent text written to f will be on a new page if the text�le is printed on a suitable
device, shall perform an implicit writeln(f) if f.L is not empty and if f.L.last is not the end-of-line
component (see 6.4.3.6), and shall cause the bu�er-variable f"to become totally-unde�ned. The
e�ect of inspecting a text�le to which the page procedure was applied during generation shall
be implementation-dependent.

6.11 Modules

6.11.1 Module-declarations

module-declaration = module-heading [`;' module-block]
j module-identi�cation `;' module-block .

module-heading = `module' identi�er [interface-directive]
[`(' module-parameter-list `)'] `;'
interface-speci�cation-part
import-part
f constant-de�nition-part
j type-de�nition-part
j variable-declaration-part
j procedure-and-function-heading-part g
`end' .

module-parameter-list = identi�er-list .

procedure-and-function-heading-part = (procedure-heading j function-heading) `;' .

module-identi�cation = `module' module-identi�er implementation-directive .

module-identi�er = identi�er .

109

ISO/IEC 10206:1990(E)

module-block = import-part
f constant-de�nition-part
j type-de�nition-part
j variable-declaration-part
j procedure-and-function-declaration-part g
[initialization-part]
[�nalization-part]
`end' .

initialization-part = `to' `begin' `do' statement `;' .

�nalization-part = `to' `end' `do' statement `;' .

The occurrence of an identi�er in the module-heading of a module-declaration shall constitute
its de�ning-point as a module-identi�er for each region that is either the identi�er of a module-
heading contained by the program or the module-identi�er of a module-identi�cation contained
by the program.

NOTE | 1 The module-identi�er has meaning only in places where a module-identi�er is either de�ned
or referenced. A module-identi�er does not otherwise a�ect the program.

The occurrence of a module-block in a module-declaration that contains a module-heading shall
associate that module-block with that module-heading. The occurrence of a module-block in
a module-declaration that contains a module-identi�cation shall associate that module-block
with the module-heading containing the de�ning-point of the module-identi�er of that module-
identi�cation. There shall be exactly one module-block associated with a module-heading. A
module-block together with its associated module-heading shall constitute a module, and each
shall be said to be associated with that module.

An interface-directive shall occur in a module-heading of a module-declaration if and only if a
module-block does not occur in the module-declaration.

Each identi�er having a de�ning-point as a module-identi�er in a module-heading of a module-
declaration containing the interface-directive interface shall have exactly one of its applied occurrences
in a module-identi�cation of a module-declaration containing the implementation-directive implementation.
These two module-declarations shall both be program-components of the program-block (see
6.13).

For any two distinct modules A and B such that A supplies B and B supplies A, neither the
module-block of A nor the module-block of B shall contain an initialization-part; neither module-
block shall contain a �nalization-part; and an expression contained by the module-heading of
either A or B shall be nonvarying (see 6.8.2).

NOTES

2 This can happen, for example, when the module-heading of A exports an interface that is imported by
the module-block, but not the module-heading, of B; and the module-heading of B exports an interface
that is imported by the module-heading or module-block of A.

3 Modules may directly or indirectly supply each other. For example, if A supplies B and B supplies C
and C supplies A, then none of the three modules can have an initialization-part or a �nalization-part,
and any discriminant-values and subrange-bounds in their module-headings must be nonvarying.

The identi�ers contained by the module-parameter-list of a module-heading shall have distinct

110

ISO/IEC 10206:1990(E)

spellings, and for each such identi�er there shall be a de�ning-point as a variable-identi�er with
the same spelling for the region that is the module-heading. If the spelling is neither input
nor output, the variable-identi�er either shall be local to the module or shall be an imported
variable-identi�er that is a module-parameter. If the spelling is input or output, the occurrence
of the identi�er contained by the module-parameter-list shall constitute a de�ning-point for the
region that is the module-heading as a variable-identi�er denoting the required text�le input
or output, respectively. If the variable-identi�er is local to the module or has the spelling
input or output, both the variable-identi�er and any variable it denotes shall be designated a
module-parameter. The binding of a variable that is a module-parameter to entities external to
the program shall be implementation-de�ned.

NOTES

4 The external representation of external entities bound to module-parameters is not de�ned by this
International Standard.

5 Furthermore, two di�erent modules may specify that two di�erent variables whose variable-identi�ers
have the same spelling are to be bound to external entities | this International Standard does not
specify whether such variables are to be bound to the same external entity or to di�erent external
entities.

6 Variables that are module-parameters are not necessarily bound when the module is activated.

6.11.2 Export-part

An export-part shall introduce an identi�er to denote an interface. An export-list shall introduce
one or more constituent-identi�ers.

interface-speci�cation-part = `export' export-part `;' f export-part `;' g .

export-part = identi�er `=' `(' export-list `)' .

export-list = (export-clause j export-range) f `,' (export-clause j export-range) g .

export-clause = exportable-name j export-renaming-clause .

export-renaming-clause = exportable-name `=>' identi�er .

exportable-name = constant-name
j type-name
j schema-name
j [`protected'] variable-name
j procedure-name
j function-name .

export-range = �rst-constant-name `..' last-constant-name .

�rst-constant-name = constant-name .

last-constant-name = constant-name .

constituent-identi�er = identi�er .

interface-identi�er = identi�er .

The occurrence of an identi�er in an export-part shall constitute its de�ning-point as an interface-
identi�er for each region that is either the identi�er of an export-part contained by the program-

111

ISO/IEC 10206:1990(E)

block or the interface-identi�er of an import-speci�cation contained by the program-block.

The occurrence of an exportable-name in an export-clause shall constitute the de�ning-point
of the identi�er of the constant-identi�er, type-identi�er, schema-identi�er, variable-identi�er,
procedure-identi�er, or function-identi�er contained by the exportable-name as a constituent-
identi�er for the region that is the interface denoted by the identi�er of the export-part that
contains the export-clause. The occurrence of an identi�er in an export-renaming-clause of an
export-clause shall constitute the de�ning-point of that identi�er as a constituent-identi�er for
the region that is the interface denoted by the identi�er of the export-part that contains the
export-clause.

A constituent-identi�er so de�ned shall denote: the value denoted by the constant-name; the
type, bindability, and initial state denoted by the type-name; the schema denoted by the schema-
name; the variable denoted by the variable-name; the procedure denoted by the procedure-
name; or the function denoted by the function-name; that is contained by the export-clause.
That constituent-identi�er shall be designated protected (see 6.5.1) if the export-clause contains
either protected or a protected variable-identi�er. The type possessed by a protected constituent-
identi�er shall be protectable. The constituent-identi�er shall be designated a module-parameter
if and only if the export-clause contains a variable-identi�er that is a module-parameter. If the
constituent-identi�er denotes a value, it shall be designated a principal identi�er (see 6.4.2.3)
of that value if the constant-identi�er contained by the export-clause is a principal identi�er of
the value and the export-clause does not contain an export-renaming-clause.

NOTE | 1 A principal identi�er of a value is exported as a principal identi�er only if it is not renamed.
Renaming a principal identi�er exports a new identi�er for the value, but the new identi�er is not a
principal identi�er.

The constant-names of the �rst-constant-name and of the last-constant-name of an export-range
shall denote values of the same type, which shall be an enumerated-type; these values and type
shall be designated the least-value, greatest-value, and type of the export-range, respectively. The
least-value shall not exceed the greatest-value.

For each value of the type of an export-range not smaller than the least-value of the export-range
and not larger than the greatest-value of the export-range

a) the export-range shall be within the scope of a de�ning-point of an identi�er that is a
principal identi�er of the value;

b) the occurrence of the export-range shall constitute the de�ning-point of that identi�er as
a constituent-identi�er for the region that is the interface denoted by the identi�er of the
export-part that contains the export-range; and

c) the constituent-identi�er so de�ned shall denote that value and shall be designated a
principal identi�er of that value.

NOTES

2 Only the identi�ers speci�ed in an export-list are exported. In particular, the constant-identi�ers of
an enumerated-type are not exported by exporting the type-identi�er.

3 Although the �eld-identi�ers of a record-type cannot be exported, they are available in any block that
can access a variable, constant, or function result possessing the record-type.

4 Although the discriminant-identi�ers of a schema cannot be exported, they are available in any block
that can access a variable or constant possessing a type produced from the schema.

112

ISO/IEC 10206:1990(E)

5 Protected variable-names excepted, a constant-name, type-name, schema-name, variable-name, procedure-
name, or function-name that is passed through an interface by a constituent-identi�er behaves the same
as a constant-name, type-name, schema-name, variable-name, procedure-name, or function-name that
does not pass through an interface.

6 An export-range serves to export only the principal identi�ers of the values within the speci�ed range;
it is essentially a shorthand notation for listing the principal identi�ers for each value. The names that
are speci�ed in the export-range serve only to denote the least and greatest values and are not themselves
exported unless they happen to be the principal identi�ers of those values.

The required interface-identi�ers and required constituent-identi�ers shall be as speci�ed in
6.11.4.2.

6.11.3 Import-speci�cations

An import-speci�cation shall introduce an identi�er to denote an interface and zero or more
identi�ers, each of which shall be designated imported.

import-speci�cation = interface-identi�er [access-quali�er] [import-quali�er] .

access-quali�er = `quali�ed' .

import-quali�er = [selective-import-option] `(' import-list `)' .

selective-import-option = `only' .

import-list = import-clause f `,' import-clause g .

import-clause = constituent-identi�er j import-renaming-clause .

import-renaming-clause = constituent-identi�er `=>' identi�er .

imported-interface-identi�er = identi�er .

Each imported identi�er shall be said to correspond to a constituent-identi�er of the interface.

For each constituent-identi�er having a de�ning-point for the region that is the interface denoted
by the interface-identi�er of an import-speci�cation

a) the occurrence of that interface-identi�er shall constitute the de�ning-point of that constituent-
identi�er for each region that is a constituent-identi�er contained by the import-speci�cation.

b) for each applied occurrence of the constituent-identi�er in an import-clause contained by
the import-speci�cation, a distinct imported identi�er shall be introduced with the import-
clause as its de�ning-point and with the spelling of the constituent-identi�er. If that
constituent-identi�er is a principal identi�er of a value, the imported identi�er shall be
designated a principal identi�er of that value.

c) for each applied occurrence of the constituent-identi�er in an import-renaming-clause of
an import-clause contained by the import-speci�cation, a distinct imported identi�er shall
be introduced with the import-clause as its de�ning-point and with the spelling of the
identi�er of the import-renaming-clause.

d) if the import-speci�cation does not contain a selective-import-option, then for each constituent-
identi�er that does not have an applied occurrence contained by the import-speci�cation, a
distinct imported identi�er shall be introduced with the import-speci�cation as its de�ning-

113

ISO/IEC 10206:1990(E)

point and with the spelling of the constituent-identi�er. If that constituent-identi�er is
a principal identi�er of a value, the imported identi�er shall be designated a principal
identi�er of that value.

NOTE | 1 A principal identi�er of a value is imported as a principal identi�er only if it is not renamed.
Renaming a principal identi�er imports a new identi�er for the value, but the new identi�er is not a
principal identi�er.

An imported identi�er corresponding to a constituent-identi�er shall be: a constant-identi�er
that denotes the value; a type-identi�er that denotes the type, bindability, and initial state;
a schema-identi�er that denotes the schema; a variable-identi�er that denotes the variable;
a procedure-identi�er that denotes the procedure; or a function-identi�er that denotes the
function; denoted by the constituent-identi�er. An imported variable-identi�er corresponding to
a protected constituent-identi�er shall be designated protected. An imported variable-identi�er
shall be designated a module-parameter if and only if it corresponds to a constituent-identi�er
that is a module-parameter.

The occurrence of an interface-identi�er in an import-speci�cation shall constitute the de�ning-
point of the identi�er of the interface-identi�er as an imported-interface-identi�er for the region
that is the block, module-heading, or module-block closest-containing the import-speci�cation.
Each imported identi�er in the set of imported identi�ers determined by the import-speci�cation
shall be said to be associated with that imported-interface-identi�er.

Each de�ning-point of an imported identi�er occurring within an import-speci�cation shall be
for the region that is the import-speci�cation, and, if an access-quali�er does not occur in the
import-speci�cation, also for the region that is the module-heading, module-block, or block
closest-containing the import-speci�cation.

NOTE | 2 If the access-quali�er quali�ed does occur in the import-speci�cation, then imported identi�ers
can only be referred to within the module-heading, module-block, or containing block by their full name,
which includes the interface-identi�er.

6.11.4 Required interfaces

6.11.4.1 General

The required interface-identi�ers and constituent-identi�ers shall be de�ned as follows.

6.11.4.2 StandardInput and StandardOutput

The required interface-identi�er StandardInput shall denote the required interface composed
of the required constituent-identi�er input. The constituent-identi�er shall denote the required
text�le input.

The required interface-identi�er StandardOutput shall denote the required interface composed
of the required constituent-identi�er output. The constituent-identi�er shall denote the required
text�le output.

The required text�le input or output shall be designated implicitly accessible by a procedure-
statement or a function-designator if and only if one or more of the following �ve conditions is
true.

a) The procedure-statement or function-designator is contained by a block, module-heading, or

114

ISO/IEC 10206:1990(E)

module-block closest-containing an applied occurrence of the required identi�er StandardInput
or StandardOutput, respectively.

b) The procedure-statement or function-designator is contained by a module-block, and the
module-heading associated with the module-block contains an applied occurrence of the
required identi�er StandardInput or StandardOutput, respectively.

c) The procedure-statement or function-designator is contained by the main-program-declaration,
which contains a program-parameter-list containing the identi�er input or output, respectively.

d) The procedure-statement or function-designator is contained by a module-heading or its
associated module-block, and the module-parameter-list of the module-heading contains
the identi�er input or output, respectively.

e) The block is contained by a module-block, and the associated module-heading contains a
module-parameter-list containing the identi�er input or output, respectively.

The activation of the program-block of a program containing a block or module-block in which
the required text�le input is implicitly accessible shall cause the post-assertions of reset to
hold prior to the �rst access to the text�le or its associated bu�er-variable. The e�ect of
the application of the required procedures reset, rewrite, or extend to the text�le shall be
implementation-de�ned.

The activation of the program-block of a program containing a block or module-block in which
the required text�le output is implicitly accessible shall cause the post-assertions of rewrite
to hold prior to the �rst access to the text�le or its associated bu�er-variable. The e�ect of
the application of the required procedures reset, rewrite, or extend to the text�le shall be
implementation-de�ned.

6.11.5 Example of a module

module RandomUniform interface;

f RandomUniform provides the pseudo-random number generator based on the

one designed by Wichmann and Hill, as described in their note `Building

a Random-Number Generator', Byte, March 1987, pp.127-128

g
export

RandomUniform = (random, setseed, getseed, seedtype,

seedmin, seedmax, seedinit);

const

p1 = 30269; m1 = 171;

p2 = 30307; m2 = 172;

p3 = 30323; m3 = 170;

type

seedtype = record

s1: 1..p1-1;

s2: 1..p2-1;

s3: 1..p3-1

end;

const

seedmin = seedtype[s1,s2,s3:1];

115

ISO/IEC 10206:1990(E)

seedmax = seedtype[s1:p1-1; s2:p2-1; s3:p3-1];

seedinit = seedtype[s1:1; s2:10000; s3:3000];

procedure

setseed (s:seedtype);

procedure

getseed (var s:seedtype);

function

random: real;

end. f of RandomUniform heading g

module RandomUniform implementation;

f An implementation of RandomUniform that assumes

maxint >= largestof(p1,p2,p3) (= 30323)

g

var

seed: seedtype value seedinit;

procedure setseed;

begin

seed := s

end;

procedure getseed;

begin

s := seed

end;

function random;

var

x1,x2,x3: integer;

temp: real;

begin

with seed do

begin

f first generator g
x1 := m1*(s1 mod 177) - 2*(s1 div 177);

if x1<0 then x1 := x1+p1;

f second generator g
x2 := m2*(s2 mod 176) - 35*(s2 div 176);

if x2<0 then x2 := x2+p2;

f third generator g
x3 := m3*(s3 mod 178) - 63*(s3 div 178);

if x3<0 then x3 := x3+p3;

f form new seed and function result g
seed := seedtype[s1:x1; s2:x2; s3:x3];

temp := s1/p1 + s2/p2 + s3/p3;

random := temp-trunc(temp)

116

ISO/IEC 10206:1990(E)

end

end; f of random g

end. f of RandomUniform block g

module RandomUniform implementation;

f An alternative implementation of RandomUniform that assumes

maxint >= largestof((p1-1)*m1,(p2-1)*m2,(p3-1)*m3) (= 5212632)

by using larger integers, this will run faster on many machines

g

var

seed: seedtype value seedinit;

procedure setseed;

begin

seed := s

end;

procedure getseed;

begin

s := seed

end;

function random;

var

temp: real;

begin

with seed do

begin

f form new seed g
s1 := (m1*s1) mod p1; f first generator g
s2 := (m2*s2) mod p2; f second generator g
s3 := (m3*s3) mod p3; f third generator g
f form function result g
temp := s1/p1 + s2/p2 + s3/p3;

random := temp-trunc(temp)

end

end; f of random g

end. f of RandomUniform block g

6.11.6 Examples of program-components that are module-declarations

NOTE | 1 Each of examples 2 to 5 depends on one or more of examples 1 to 4 that precede it.

Example 1:

module m1;

117

ISO/IEC 10206:1990(E)

f m1 exports one interface named i1, containing two values named low and high.

The variable null is not exported. m1 has a minimal module-block.g

export i1 = (low,high);

const low = 0; high = 1;

var null: record end;

end f of module-heading for m1 g ;

end f of module-block for m1 g .

Example 2:

module m2;

f m2 exports two interfaces named i2 and j2. i2 contains a type called t; j2

contains the two values (still named low and high) imported from m1 through

interface i1. m2 also has a minimal module-block.g

export

i2 = (t); f define i2 to have t as its only constituent-identifiers. g
j2 = (low,high); f re-export low and high in j2. They are

imported through interface i1. g
import

i1; f import all constituent-identifiers of i1 g

type t = low..high;

end f of module-heading for m2 g ;

end f of module-block for m2 g .

Example 3:

module m3;

f m3 exports one interface containing a function, a type, and two values. The

function-heading is declared in the module-heading, and the function-block is

declared in the module-block. g

export

i3 = (f, i2.f range, i1.low=>f low, i1.high=>f high);

f Export constituent-identifiers f, f range, f low, and

f high. g

118

ISO/IEC 10206:1990(E)

import

i1 qualified; f Import all constituent-identifiers from i1. Within this

module they are named i1.low and i1.high. g
i2 qualified only (t=>f range);

f Import only t through i2. Within this

module it is named i2.f range. g

function f(x: integer): i2.f range;

end f of module-heading for m3 g ;

function f;

begin

if x < i1.low then f := i1.low

else if x > i1.high then f := i1.high

else f := x

end f f g ;

end f of module-block for m3 g .

Example 4:

module m4 interface;

f m4 exports two interfaces named enq and deq. enq contains a

procedure named enqueue. deq contains a procedure called dequeue, a

function called empty, and a type called range. The module-block is given

separately in example 5.g

export enq = (enqueue); deq = (dequeue,empty,range);

import i3 only (f range => range);

f Import only f range through i3. Within m4 it is named

range. g

procedure enqueue(e: range);

procedure dequeue(var e: range);

function empty: Boolean;

end f of module-heading for m4 g .

Example 5:

module m4 implementation;

119

ISO/IEC 10206:1990(E)

f This is the module-block of m4. Note that any other program-components could

be placed between examples 4 and 5. All identifiers and interfaces that are

visible in the module-heading 4 are also visible here. g

type

qp = " qnode;

qnode = record next: qp; c: range end;

var

oldest: qp value nil; f initialize queue to empty g
newest: qp;

function empty;

begin empty := (oldest = nil) end f empty g ;

procedure enqueue;

begin

if empty then

begin new(newest); oldest := newest end

else

begin new(newest".next); newest := newest".next end;

newest".c := e

end f enqueue g ;

procedure dequeue;

var p: qp;

begin

if empty then halt;

e := oldest".c; p := oldest;

if oldest = newest then oldest := nil

else oldest := oldest".next;
dispose(p)

end f dequeue g ;

end f of module-block for m4 g .

NOTE | 2 Each of examples 7 to 9 depends on one or more of examples 6 to 8 that precede it.

Example 6:

module generic sort interface;

export generic sort = (do the sort,max sort index,

protected current pass => number of passes,

protected swap occurred during sort);

f the export of current pass and swap occurred during sort allows the g

120

ISO/IEC 10206:1990(E)

f caller of the sort procedure to determine the status of the sort g
f --- they are marked as protected so that the caller is not g
f allowed write access g

f current pass is renamed to number of passes as it is exported g

type max sort index = 1..maxint;

procedure do the sort(element count : max sort index;

function greater(e1,e2 : max sort index) :Boolean;

procedure swap(e1,e2 : max sort index));

var current pass : 0..maxint value 0;

swap occurred during sort : Boolean value false;

end.

Example 7:

module generic sort implementation;

procedure do the sort;

var swap occurred this pass : Boolean;

n : max sort index;

begin

current pass := 0;

swap occurred during sort := false;

repeat

swap occurred this pass := false;

current pass := current pass + 1;

for n := 1 to element count - 1 do

if greater(n,n + 1) then begin

swap(n,n + 1);

swap occurred this pass := true;

end;

swap occurred during sort := swap occurred during sort or

swap occurred this pass;

until not swap occurred this pass;

end;

end.

Example 8:

121

ISO/IEC 10206:1990(E)

module employee sort interface;

export employee sort = (sort by name,sort by clock number,employee list);

import generic sort;

type

employee = record

last name,first name : string(30);

clock number : 1..maxint;

end;

employee list(num employees : max sort index) =

array [1..num employees] of employee;

procedure sort by name(employees : employee list;

var something done : Boolean);

procedure sort by clock number(employees : employee list;

var something done : Boolean);

end.

Example 9:

module employee sort implementation;

procedure sort by name;

procedure swap employees(e1,e2 : max sort index);

var temp : employee;

begin

temp := employees[e1];

employees[e2] := employees[e1];

employees[e1] := temp;

end;

function name is greater(e1,e2 : max sort index);

begin

name is greater := (employees[e1].last name > employees[e2].last name)

or ((employees[e1].last name = employees[e2].last name) and

(employees[e1].first name > employees[e2].first name));

end;

122

ISO/IEC 10206:1990(E)

begin f sort by name g
do the sort(employees.num employees,name is greater,swap employees);

something done := swap occurred during sort;

end; f sort by name g

procedure sort by clock number;

procedure swap employees(e1,e2 : max sort index);

var temp : employee;

begin

temp := employees[e1];

employees[e2] := employees[e1];

employees[e1] := temp;

end;

function clock is greater(e1,e2 : max sort index);

begin

clock is greater := employees[e1].clock number >

employees[e2].clock number;

end;

begin f sort by clock number g
do the sort(employees.num employees,clock is greater,swap employees);

something done := swap occurred during sort;

end; f sort by clock number g

end.

Example 10:

module event recording ;

export event recording = (record event);

f This procedure allows recording of user-specified events to g
f a log file. The event to be recorded is specified as a g
f string, and a time stamp is added automatically. g

procedure record event(event to record : string);

end;

var

123

ISO/IEC 10206:1990(E)

logfile : bindable text;

logbind : BindingType;

procedure record event;

var stamp : TimeStamp;

begin

GetTimeStamp(stamp);

writeln(logfile,'event ',event to record,' occurred on ',

date(stamp),' at ',time(stamp));

end;

f this module needs an initialization section to open the log file g
f and a termination section to close it g

to begin do

begin

logbind := Binding(logfile);

logbind.name := 'logfile';

bind(logfile,logbind);

rewrite(logfile);

record event('event-module initialization');

end;

to end do

begin

record event('event-module termination');

unbind(logfile);

end;

end.

6.11.7 Example of exporting a range of enumerated-type values

module line parameters interface;

export

line states = (line state, onhook..permanent sequence,

first state, last state, initial state);

f 'onhook..permanent sequence' exports each value name

defined in the type definition. g

type

line state = (onhook, offhook, tone applied,

ringing applied, two way talk, out of service,

permanent sequence);

const

first state = onhook;

124

ISO/IEC 10206:1990(E)

last state = permanent sequence;

initial state = out of service;

end.

module line interfaces interface;

export

standard line interface = (first state..last state,

first state, last state, initial state, set state,

current state);

f 'first state..last state' exports 'onhook' through

'permanent sequence', but not 'first state' and

'last state'; 'first state, last state' exports

'first state' and 'last state'. g

import

line states;

procedure set state(new state: line state);

function current state: line state;

end.

6.12 Main-program-declarations

main-program-declaration = program-heading `;' main-program-block .

program-heading = `program' identi�er [`(' program-parameter-list `)'] .

program-parameter-list = identi�er-list .

main-program-block = block .

The identi�ers contained by the program-parameter-list of a program-heading of a main-program-
declaration shall have distinct spellings, and for each such identi�er there shall be a de�ning-
point as a variable-identi�er with the same spelling for the region that is the block of the main-
program-block of the main-program-declaration. If the spelling is neither input nor output,
the variable-identi�er either shall be local to the block or shall be an imported variable-identi�er
that is a module-parameter. If the spelling is input or output, the occurrence of the identi�er
contained by the program-parameter-list shall constitute a de�ning-point for the region that is
the block of the main-program-block as a variable-identi�er denoting the required text�le input
or output, respectively. If the variable-identi�er is local to the block or has the spelling input or
output, both the variable-identi�er and any variable it denotes shall be designated a program-
parameter. The binding of a variable that is a program-parameter to entities external to the
program shall be implementation-de�ned.

NOTES

1 The external representation of such external entities is not de�ned by this International Standard.

125

ISO/IEC 10206:1990(E)

2 Variables that are program-parameters are not necessarily bound when the program is activated.

3 See 6.11.4.2 regarding reset, rewrite, and extend for the required text�les input and output.

Examples:
1) program copy (f, g);

var f, g : file of real;

begin

reset(f);

rewrite(g);

while not eof(f) do

begin

g" := f";
get(f);

put(g)

end

end.

2) program copytext (input, output);

fThis program copies the characters and line structure of the

textfile input to the textfile output.g
var ch : char;

begin

while not eof do

begin

while not eoln do

begin

read(ch);

write(ch)

end;

readln;

writeln

end

end.

3) program t6p6p3p4 (output);

var globalone, globaltwo : integer;

procedure dummy;

begin

writeln('fail4')

end f of dummy g;

procedure p (procedure f(procedure ff; procedure gg); procedure g);

var localtop : integer;

procedure r;

begin frg
if globalone = 1

then begin

if (globaltwo <> 2) or (localtop <> 1)

126

ISO/IEC 10206:1990(E)

then writeln('fail1')

end

else if globalone = 2

then begin

if (globaltwo <> 2) or (localtop <> 2)

then writeln('fail2')

else writeln('pass')

end

else writeln('fail3');

globalone := globalone + 1

end f of r g;

begin f of p g
globaltwo := globaltwo + 1;

localtop := globaltwo;

if globaltwo = 1

then p(f, r)

else f(g, r)

end f of pg;

procedure q (procedure f; procedure g);

begin

f;

g

end f of qg;

begin f of t6p6p3p4 g
globalone := 1;

globaltwo := 0;

p(q, dummy)

end. f of t6p6p3p4 g

4) program clear my screens;

type

positive = 1..maxint;

graphic screen(max rows,max cols,bits per pixel : positive) =

packed array [0..max rows-1,0..max cols-1] of

set of 0..bits per pixel-1 ;

var

medium res mono : graphic screen(512,512,1);

highres mono : graphic screen(1024,1024,1);

lowres color : graphic screen(256,256,3); f 8 colors g
super highres technicolor : graphic screen(4096,4096,16);

f 65536 colors g

127

ISO/IEC 10206:1990(E)

procedure clear screen(var scr : graphic screen);

var m,n : 0 .. maxint - 1;

begin

for n := 0 to scr.max rows - 1 do

for m := 0 to scr.max cols - 1 do

scr[n,m] := [];

end;

begin f main program g
clear screen(medium res mono);

clear screen(highres mono);

clear screen(lowres color);

clear screen(super highres technicolor);

end. f main program g

6.13 Programs

program = program-block .

program-block = program-component f program-component g .

program-component = main-program-declaration `.' j module-declaration `.' .

A program-block shall contain exactly one main-program-declaration.

A processor should be able to accept the program-components of the program-block separately.

NOTES

1 This International Standard constrains the order of program-components of a conforming program
only by the partial ordering de�ned by 6.2.2.9. A further restriction by a processor on the order of
program-components can be justi�ed only by subclause 1.2 a).

2 This International Standard does not contain mechanisms for interfacing with other languages. If such
a facility is implemented as an extension, it is recommended that a processor enforce the requirements of
Extended Pascal pertaining to type compatibility. This facility could be provided in one of the following
ways.

a) The use of module-parameters and program-parameters to denote variables, procedures, and other
entities that the processor can handle. This would require some extensions, e.g., that a procedure
not contain a block if it is a module-parameter or program-parameter.

b) The extension of import-speci�cation for the same purpose.

c) The importation of a Pascal-compatible interface that has been created by an auxiliary processor.

d) The association of a module-heading with a construct in another language that the implementation
has determined to be equivalent to a module-block.

128

ISO/IEC 10206:1990(E)

Annex A

(Informative)

Collected syntax

A.1 Production rules

The nonterminal symbols number, pointer-type, program, simple-type, simple-type-name, special-
symbol, and structured-type are only referenced by the semantics and are not used in the right-
hand side of any production. The nonterminal symbol program is the start of the grammar. The
subclause of de�nition appears at the left of each production.

6.11.3 access-quali�er = `quali�ed' .

6.4.8 actual-discriminant-part = `(' discriminant-value f `,' discriminant-value g `)' .

6.8.5 actual-parameter = expression j variable-access
j procedure-name j function-name .

6.8.5 actual-parameter-list = `(' actual-parameter f `,' actual-parameter g `)' .

6.8.3.1 adding-operator = `+' j `�' j `><' j `or' j `or else' .

6.1.9 apostrophe-image = `"' .

6.8.8.2 array-constant = constant-access .

6.8.6.2 array-function = function-access .

6.4.3.2 array-type = `array' `[' index-type f `,' index-type g `]' `of' component-type .

6.4.1 array-type-name = type-name .

6.8.7.2 array-value = `[' [array-value-element f `;' array-value-element g [`;']]
[array-value-completer [`;']] `]' .

6.8.7.2 array-value-completer = `otherwise' component-value .

6.8.7.2 array-value-element = case-constant-list `:' component-value .

6.5.3.2 array-variable = variable-access .

6.9.2.2 assignment-statement = (variable-access j function-identi�er) `:=' expression .

6.4.3.5 base-type = ordinal-type .

6.2.1 block = import-part
f label-declaration-part
j constant-de�nition-part
j type-de�nition-part
j variable-declaration-part
j procedure-and-function-declaration-part g
statement-part .

6.8.3.3 Boolean-expression = expression .

129

ISO/IEC 10206:1990(E)

6.7.3.7.1 bound-identi�er = identi�er .

6.5.5 bu�er-variable = �le-variable `"' .

6.4.3.4 case-constant = constant-expression .

6.4.3.4 case-constant-list = case-range f `,' case-range g .

6.9.3.5 case-index = expression .

6.9.3.5 case-list-element = case-constant-list `:' statement .

6.4.3.4 case-range = case-constant [`..' case-constant] .

6.9.3.5 case-statement = `case' case-index `of'
(case-list-element f `;' case-list-element g
[[`;'] case-statement-completer] j case-statement-completer)
[`;'] `end' .

6.9.3.5 case-statement-completer = `otherwise' statement-sequence .

6.1.9 character-string = `'' f string-element g `'' .

6.4.2.1 complex-type-name = type-name .

6.8.6.1 component-function-access = indexed-function-access
j record-function-access .

6.4.3.2 component-type = type-denoter .

6.8.7.1 component-value = expression j array-value j record-value .

6.5.3.1 component-variable = indexed-variable j �eld-designator .

6.9.3.2 compound-statement = `begin' statement-sequence `end' .

6.9.3.3 conditional-statement = if-statement j case-statement .

6.7.3.7.1 conformant-array-form = packed-conformant-array-form
j unpacked-conformant-array-form .

6.7.3.7.1 conformant-array-parameter-speci�cation =
[`protected'](value-conformant-array-speci�cation

j variable-conformant-array-speci�cation) .

6.8.8.1 constant-access = constant-access-component j constant-name .

6.8.8.1 constant-access-component = indexed-constant
j �eld-designated-constant
j substring-constant .

6.3.1 constant-de�nition = identi�er `=' constant-expression .

6.2.1 constant-de�nition-part = `const' constant-de�nition `;' f constant-de�nition `;' g .

6.8.2 constant-expression = expression .

130

ISO/IEC 10206:1990(E)

6.9.3.10 constant-�eld-identi�er = identi�er .

6.3.1 constant-identi�er = identi�er .

6.3.1 constant-name = [imported-interface-identi�er `.'] constant-identi�er .

6.8.7.3 constant-tag-value = constant-expression .

6.11.2 constituent-identi�er = identi�er .

6.9.3.9.1 control-variable = entire-variable .

6.1.1 digit = `0' j `1' j `2' j `3' j `4' j `5' j `6' j `7' j `8' j `9' .

6.1.7 digit-sequence = digit f digit g .

6.1.4 directive = letter f [underscore] (letter j digit) g .

6.4.7 discriminant-identi�er = identi�er .

6.4.7 discriminant-speci�cation = identi�er-list `:' ordinal-type-name .

6.8.4 discriminant-speci�er = discriminant-identi�er .

6.4.8 discriminant-value = expression .

6.4.8 discriminated-schema = schema-name actual-discriminant-part .

6.4.4 domain-type = type-name j schema-name .

6.9.3.4 else-part = `else' statement .

6.9.2.1 empty-statement = .

6.8.6.1 entire-function-access = function-designator .

6.5.2 entire-variable = variable-name .

6.4.2.3 enumerated-type = `(' identi�er-list `)' .

6.8.3.1 exponentiating-operator = `**' j `pow' .

6.11.2 export-clause = exportable-name j export-renaming-clause .

6.11.2 export-list = (export-clause j export-range)
f `,' (export-clause j export-range) g .

6.11.2 export-part = identi�er `=' `(' export-list `)' .

6.11.2 export-range = �rst-constant-name `..' last-constant-name .

6.11.2 export-renaming-clause = exportable-name `=>' identi�er .

131

ISO/IEC 10206:1990(E)

6.11.2 exportable-name = constant-name
j type-name
j schema-name
j [`protected'] variable-name
j procedure-name
j function-name .

6.8.1 expression = simple-expression [relational-operator simple-expression] .

6.1.7 extended-digit = digit j letter .

6.1.7 extended-number = unsigned-integer `#' extended-digit f extended-digit g .

6.8.1 factor = primary [exponentiating-operator primary] .

6.8.8.3 �eld-designated-constant = record-constant `.' �eld-speci�er
j constant-�eld-identi�er .

6.5.3.3 �eld-designator = record-variable `.' �eld-speci�er j �eld-designator-identi�er .

6.9.3.10 �eld-designator-identi�er = identi�er .

6.4.3.4 �eld-identi�er = identi�er .

6.4.3.4 �eld-list = [(�xed-part [`;' variant-part] j variant-part) [`;']] .

6.8.7.3 �eld-list-value = [(�xed-part-value [`;' variant-part-value] j variant-part-value) [`;']] .

6.5.3.3 �eld-speci�er = �eld-identi�er .

6.8.7.3 �eld-value = �eld-identi�er f `,' �eld-identi�er g
`:' component-value .

6.4.3.6 �le-type = `�le' [`[' index-type `]'] `of' component-type .

6.4.1 �le-type-name = type-name .

6.5.5 �le-variable = variable-access .

6.9.3.9.2 �nal-value = expression .

6.11.1 �nalization-part = `to' `end' `do' statement `;' .

6.11.2 �rst-constant-name = constant-name .

6.4.3.4 �xed-part = record-section f `;' record-section g .

6.8.7.3 �xed-part-value = �eld-value f `;' �eld-value g .

6.9.3.9.1 for-statement = `for' control-variable iteration-clause `do' statement .

6.4.7 formal-discriminant-part = `(' discriminant-speci�cation
f `;' discriminant-speci�cation g `)' .

6.7.3.1 formal-parameter-list = `(' formal-parameter-section f `;' formal-parameter-section g `)' .

132

ISO/IEC 10206:1990(E)

6.7.3.1 formal-parameter-section > value-parameter-speci�cation
j variable-parameter-speci�cation
j procedural-parameter-speci�cation
j functional-parameter-speci�cation .

6.7.3.7.1 formal-parameter-section > conformant-array-parameter-speci�cation .

6.1.7 fractional-part = digit-sequence .

6.8.6.1 function-access = entire-function-access
j component-function-access
j substring-function-access .

6.7.2 function-block = block .

6.7.2 function-declaration = function-heading `;' remote-directive
j function-identi�cation `;' function-block
j function-heading `;' function-block .

6.8.5 function-designator = function-name [actual-parameter-list] .

6.7.2 function-heading = `function' identi�er [formal-parameter-list]
[result-variable-speci�cation] `:' result-type .

6.7.2 function-identi�cation = `function' function-identi�er .

6.8.6.4 function-identi�ed-variable = pointer-function `"' .

6.7.2 function-identi�er = identi�er .

6.7.2 function-name = [imported-interface-identi�er `.'] function-identi�er .

6.7.3.1 functional-parameter-speci�cation = function-heading .

6.9.2.4 goto-statement = `goto' label .

6.5.4 identi�ed-variable = pointer-variable `"' .

6.1.3 identi�er = letter f [underscore] (letter j digit) g .

6.4.2.3 identi�er-list = identi�er f `,' identi�er g .

6.9.3.4 if-statement = `if' Boolean-expression `then' statement [else-part] .

6.1.6 implementation-directive = directive .

6.11.3 import-clause = constituent-identi�er j import-renaming-clause .

6.11.3 import-list = import-clause f `,' import-clause g .

6.2.1 import-part = [`import' import-speci�cation `;' f import-speci�cation `;' g] .

6.11.3 import-quali�er = [selective-import-option] `(' import-list `)' .

6.11.3 import-renaming-clause = constituent-identi�er `=>' identi�er .

133

ISO/IEC 10206:1990(E)

6.11.3 import-speci�cation = interface-identi�er [access-quali�er]
[import-quali�er] .

6.11.3 imported-interface-identi�er = identi�er .

6.5.3.2 index-expression = expression .

6.4.3.2 index-type = ordinal-type .

6.7.3.7.1 index-type-speci�cation = identi�er `..' identi�er `:' ordinal-type-name .

6.8.8.2 indexed-constant = array-constant `[' index-expression f `,' index-expression g `]'
j string-constant `[' index-expression `]' .

6.8.6.2 indexed-function-access = array-function `[' index-expression f `,' index-expression g `]'
j string-function `[' index-expression `]' .

6.5.3.2 indexed-variable = array-variable `[' index-expression f `,' index-expression g `]'
j string-variable `[' index-expression `]' .

6.6 initial-state-speci�er = `value' component-value .

6.9.3.9.2 initial-value = expression .

6.11.1 initialization-part = `to' `begin' `do' statement `;' .

6.1.5 interface-directive = directive .

6.11.2 interface-identi�er = identi�er .

6.11.2 interface-speci�cation-part = `export' export-part `;' f export-part `;' g .

6.9.3.9.1 iteration-clause = sequence-iteration j set-member-iteration .

6.1.8 label = digit-sequence .

6.2.1 label-declaration-part = `label' label f `,' label g `;' .

6.11.2 last-constant-name = constant-name .

6.1.1 letter = `a' j `b' j `c' j `d' j `e' j `f' j `g' j `h' j `i' j `j'
j `k' j `l' j `m' j `n' j `o' j `p' j `q' j `r' j `s'
j `t' j `u' j `v' j `w' j `x' j `y' j `z' .

6.12 main-program-block = block .

6.12 main-program-declaration = program-heading `;' main-program-block .

6.8.1 member-designator = expression [`..' expression] .

134

ISO/IEC 10206:1990(E)

6.11.1 module-block = import-part
f constant-de�nition-part
j type-de�nition-part
j variable-declaration-part
j procedure-and-function-declaration-part g
[initialization-part]
[�nalization-part]
`end' .

6.11.1 module-declaration = module-heading [`;' module-block]
j module-identi�cation `;' module-block .

6.11.1 module-heading = `module' identi�er [interface-directive]
[`(' module-parameter-list `)'] `;'
interface-speci�cation-part
import-part
f constant-de�nition-part
j type-de�nition-part
j variable-declaration-part
j procedure-and-function-heading-part g
`end' .

6.11.1 module-identi�cation = `module' module-identi�er implementation-directive .

6.11.1 module-identi�er = identi�er .

6.11.1 module-parameter-list = identi�er-list .

6.8.3.1 multiplying-operator = `*' j `/' j `div' j `mod' j `and' j `and then' .

6.4.2.1 new-ordinal-type = enumerated-type j subrange-type .

6.4.4 new-pointer-type = `"' domain-type .

6.4.3.1 new-structured-type = [`packed'] unpacked-structured-type .

6.4.1 new-type = new-ordinal-type
j new-structured-type
j new-pointer-type
j restricted-type .

6.1.7 number = signed-number
j [sign] (digit-sequence `.' j `.' fractional-part) [`e' scale-factor] .

6.4.2.1 ordinal-type = new-ordinal-type j ordinal-type-name
j type-inquiry j discriminated-schema .

6.4.2.1 ordinal-type-name = type-name .

6.7.3.7.1 packed-conformant-array-form = `packed' `array' `[' index-type-speci�cation `]' `of' type-name .

6.7.3.1 parameter-form = type-name j schema-name j type-inquiry .

6.7.3.1 parameter-identi�er = identi�er .

135

ISO/IEC 10206:1990(E)

6.8.6.4 pointer-function = function-access .

6.4.4 pointer-type = new-pointer-type j pointer-type-name .

6.4.1 pointer-type-name = type-name .

6.5.4 pointer-variable = variable-access .

6.8.1 primary > variable-access j unsigned-constant j set-constructor
j function-access j `(' expression `)' j `not' primary
j constant-access j schema-discriminant
j structured-value-constructor j discriminant-identi�er .

6.7.3.7.1 primary > bound-identi�er .

6.7.3.1 procedural-parameter-speci�cation = procedure-heading .

6.2.1 procedure-and-function-declaration-part = f (procedure-declaration
j function-declaration) `;' g .

6.11.1 procedure-and-function-heading-part = (procedure-heading j function-heading) `;' .

6.7.1 procedure-block = block .

6.7.1 procedure-declaration = procedure-heading `;' remote-directive
j procedure-identi�cation `;' procedure-block
j procedure-heading `;' procedure-block .

6.7.1 procedure-heading = `procedure' identi�er [formal-parameter-list] .

6.7.1 procedure-identi�cation = `procedure' procedure-identi�er .

6.7.1 procedure-identi�er = identi�er .

6.7.1 procedure-name = [imported-interface-identi�er `.'] procedure-identi�er .

6.9.2.3 procedure-statement = procedure-name ([actual-parameter-list]
j read-parameter-list j readln-parameter-list j readstr-parameter-list
j write-parameter-list j writeln-parameter-list j writestr-parameter-list) .

6.13 program = program-block .

6.13 program-block = program-component f program-component g .

6.13 program-component = main-program-declaration `.' j module-declaration `.' .

6.12 program-heading = `program' identi�er [`(' program-parameter-list `)'] .

6.12 program-parameter-list = identi�er-list .

6.10.1 read-parameter-list = `(' [�le-variable `,'] variable-access f `,' variable-access g `)' .

6.10.2 readln-parameter-list = [`(' (�le-variable j variable-access) f `,' variable-access g `)'] .

6.7.5.5 readstr-parameter-list = `(' string-expression `,' variable-access f `,' variable-access g `)' .

6.4.2.1 real-type-name = type-name .

136

ISO/IEC 10206:1990(E)

6.8.8.3 record-constant = constant-access .

6.8.6.3 record-function = function-access .

6.8.6.3 record-function-access = record-function `.' �eld-speci�er .

6.4.3.4 record-section = identi�er-list `:' type-denoter .

6.4.3.4 record-type = `record' �eld-list `end' .

6.4.1 record-type-name = type-name .

6.8.7.3 record-value = `[' �eld-list-value `]' .

6.5.3.3 record-variable = variable-access .

6.8.3.1 relational-operator = `=' j `<>' j `<' j `>' j `<=' j `>=' j `in' .

6.1.4 remote-directive = directive .

6.9.3.7 repeat-statement = `repeat' statement-sequence `until' Boolean-expression .

6.9.3.6 repetitive-statement = repeat-statement j while-statement j for-statement .

6.4.2.5 restricted-type = `restricted' type-name .

6.7.2 result-type = type-name .

6.7.2 result-variable-speci�cation = `=' identi�er .

6.1.7 scale-factor = [sign] digit-sequence .

6.4.7 schema-de�nition = identi�er `=' schema-name
j identi�er formal-discriminant-part `=' type-denoter .

6.8.4 schema-discriminant = (variable-access j constant-access) `.' discriminant-speci�er
j schema-discriminant-identi�er .

6.9.3.10 schema-discriminant-identi�er = identi�er .

6.4.7 schema-identi�er = identi�er .

6.4.7 schema-name = [imported-interface-identi�er `.'] schema-identi�er .

6.11.3 selective-import-option = `only' .

6.9.3.9.2 sequence-iteration = `:=' initial-value (`to' j `downto') �nal-value .

6.8.1 set-constructor = `[' [member-designator f `,' member-designator g] `]' .

6.9.3.9.3 set-expression = expression .

6.9.3.9.3 set-member-iteration = `in' set-expression .

6.4.3.5 set-type = `set' `of' base-type .

6.4.1 set-type-name = type-name .

137

ISO/IEC 10206:1990(E)

6.8.7.4 set-value = set-constructor .

6.1.7 sign = `+' j `�' .

6.1.7 signed-integer = [sign] unsigned-integer .

6.1.7 signed-number = signed-integer j signed-real .

6.1.7 signed-real = [sign] unsigned-real .

6.8.1 simple-expression = [sign] term f adding-operator term g .

6.9.2.1 simple-statement = empty-statement j assignment-statement
j procedure-statement j goto-statement .

6.4.2.1 simple-type = ordinal-type j real-type-name j complex-type-name .

6.4.1 simple-type-name = type-name .

6.1.2 special-symbol = `+' j `�' j `*' j `/' j `=' j `<' j `>' j `[' j `]'
j `.' j `,' j `:' j `;' j `"' j `(' j `)' j `**'
j `<>' j `<=' j `>=' j `:=' j `..' j `><' j `=>'
j word-symbol .

6.9.1 statement = [label `:'] (simple-statement j structured-statement) .

6.2.1 statement-part = compound-statement .

6.9.3.1 statement-sequence = statement f `;' statement g .

6.1.9 string-character = one-of-a-set-of-implementation-de�ned-characters .

6.8.8.2 string-constant = constant-access .

6.1.9 string-element = apostrophe-image j string-character .

6.7.5.5 string-expression = expression .

6.8.6.2 string-function = function-access .

6.5.3.2 string-variable = variable-access .

6.9.3.1 structured-statement = compound-statement j conditional-statement
j repetitive-statement j with-statement .

6.4.3.1 structured-type = new-structured-type j structured-type-name .

6.4.1 structured-type-name = array-type-name
j record-type-name
j set-type-name
j �le-type-name .

6.8.7.1 structured-value-constructor = array-type-name array-value
j record-type-name record-value
j set-type-name set-value .

138

ISO/IEC 10206:1990(E)

6.4.2.4 subrange-bound = expression .

6.4.2.4 subrange-type = subrange-bound `..' subrange-bound .

6.8.8.4 substring-constant = string-constant `[' index-expression `..' index-expression `]' .

6.8.6.5 substring-function-access = string-function `[' index-expression `..' index-expression `]' .

6.5.6 substring-variable = string-variable `[' index-expression `..' index-expression `]' .

6.4.3.4 tag-�eld = identi�er .

6.8.7.3 tag-�eld-identi�er = �eld-identi�er .

6.4.3.4 tag-type = ordinal-type-name .

6.8.1 term = factor f multiplying-operator factor g .

6.4.1 type-de�nition = identi�er `=' type-denoter .

6.2.1 type-de�nition-part = `type' (type-de�nition j schema-de�nition) `;'
f (type-de�nition j schema-de�nition) `;' g .

6.4.1 type-denoter = [`bindable'] (type-name j new-type
j type-inquiry j discriminated-schema)
[initial-state-speci�er] .

6.4.1 type-identi�er = identi�er .

6.4.9 type-inquiry = `type' `of' type-inquiry-object .

6.4.9 type-inquiry-object = variable-name j parameter-identi�er .

6.4.1 type-name = [imported-interface-identi�er `.'] type-identi�er .

6.1.3 underscore = ` ' .

6.7.3.7.1 unpacked-conformant-array-form =
`array' `[' index-type-speci�cation f `;' index-type-speci�cation g `]'
`of' (type-name j conformant-array-form) .

6.4.3.1 unpacked-structured-type = array-type j record-type j set-type j �le-type .

6.8.1 unsigned-constant = unsigned-number j character-string j `nil' j extended-number .

6.1.7 unsigned-integer = digit-sequence .

6.1.7 unsigned-number = unsigned-integer j unsigned-real .

6.1.7 unsigned-real = digit-sequence `.' fractional-part [`e' scale-factor]
j digit-sequence `e' scale-factor .

6.7.3.7.1 value-conformant-array-speci�cation = identi�er-list `:' conformant-array-form .

6.7.3.1 value-parameter-speci�cation = [`protected'] identi�er-list `:' parameter-form .

139

ISO/IEC 10206:1990(E)

6.5.1 variable-access = entire-variable j component-variable
j identi�ed-variable j bu�er-variable
j substring-variable j function-identi�ed-variable .

6.7.3.7.1 variable-conformant-array-speci�cation = `var' identi�er-list `:' conformant-array-form .

6.5.1 variable-declaration = identi�er-list `:' type-denoter .

6.2.1 variable-declaration-part = `var' variable-declaration `;' f variable-declaration `;' g .

6.5.1 variable-identi�er = identi�er .

6.5.1 variable-name = [imported-interface-identi�er `.'] variable-identi�er .

6.7.3.1 variable-parameter-speci�cation = [`protected'] `var' identi�er-list `:' parameter-form .

6.4.3.4 variant-denoter = `(' �eld-list `)' .

6.4.3.4 variant-list-element = case-constant-list `:' variant-denoter .

6.4.3.4 variant-part = `case' variant-selector `of'
(variant-list-element f `;' variant-list-element g
[[`;'] variant-part-completer]

j variant-part-completer) .

6.4.3.4 variant-part-completer = `otherwise' variant-denoter .

6.8.7.3 variant-part-value = `case' [tag-�eld-identi�er `:']
constant-tag-value `of' `[' �eld-list-value `]' .

6.4.3.4 variant-selector = [tag-�eld `:'] tag-type j discriminant-identi�er .

6.9.3.8 while-statement = `while' Boolean-expression `do' statement .

6.9.3.10 with-element = variable-access j constant-access .

6.9.3.10 with-list = with-element f `,' with-element g .

6.9.3.10 with-statement = `with' with-list `do' statement .

6.1.2 word-symbol = `and' j `and then' j `array' j `begin' j `bindable' j `case'
j `const' j `div' j `do' j `downto' j `else' j `end' j `export'
j `�le' j `for' j `function' j `goto' j `if' j `import'
j `in' j `label' j `mod' j `module' j `nil' j `not' j `of'
j `only' j `or' j `or else' j `otherwise' j `packed' j `pow'
j `procedure' j `program' j `protected' j `quali�ed'
j `record' j `repeat' j `restricted' j `set' j `then' j `to'
j `type' j `until' j `value' j `var' j `while' j `with' .

6.10.3 write-parameter = expression [`:' expression [`:' expression]] .

6.10.3 write-parameter-list = `(' [�le-variable `,'] write-parameter f `,' write-parameter g `)' .

6.10.4 writeln-parameter-list = [`(' (�le-variable j write-parameter) f `,' write-parameter g `)'] .

6.7.5.5 writestr-parameter-list = `(' string-variable `,' write-parameter f `,' write-parameter g `)' .

140

ISO/IEC 10206:1990(E)

A.2 Index of terminals in A.1

"#" extended-number

"'" character-string

"''" apostrophe-image

"(" actual-discriminant-part

actual-parameter-list

enumerated-type

export-part

formal-discriminant-part

formal-parameter-list

import-qualifier

module-heading

primary

program-heading

read-parameter-list

readln-parameter-list

readstr-parameter-list

special-symbol

variant-denoter

write-parameter-list

writeln-parameter-list

writestr-parameter-list

")" actual-discriminant-part

actual-parameter-list

enumerated-type

export-part

formal-discriminant-part

formal-parameter-list

import-qualifier

module-heading

primary

program-heading

read-parameter-list

readln-parameter-list

readstr-parameter-list

special-symbol

variant-denoter

write-parameter-list

writeln-parameter-list

writestr-parameter-list

"*" multiplying-operator

special-symbol

"**" exponentiating-operator

special-symbol

"+" adding-operator

sign

special-symbol

"," actual-discriminant-part

actual-parameter-list

141

ISO/IEC 10206:1990(E)

array-type

case-constant-list

export-list

field-value

identifier-list

import-list

indexed-constant

indexed-function-access

indexed-variable

label-declaration-part

read-parameter-list

readln-parameter-list

readstr-parameter-list

set-constructor

special-symbol

with-list

write-parameter-list

writeln-parameter-list

writestr-parameter-list

"-" adding-operator

sign

special-symbol

"." constant-name

field-designated-constant

field-designator

function-name

number

procedure-name

program-component

record-function-access

schema-discriminant

schema-name

special-symbol

type-name

unsigned-real

variable-name

".." case-range

export-range

index-type-specification

member-designator

special-symbol

subrange-type

substring-constant

substring-function-access

substring-variable

"/" multiplying-operator

special-symbol

"0" digit

"1" digit

"2" digit

142

ISO/IEC 10206:1990(E)

"3" digit

"4" digit

"5" digit

"6" digit

"7" digit

"8" digit

"9" digit

":" array-value-element

case-list-element

discriminant-specification

field-value

function-heading

index-type-specification

record-section

special-symbol

statement

value-conformant-array-specification

value-parameter-specification

variable-conformant-array-specification

variable-declaration

variable-parameter-specification

variant-list-element

variant-part-value

variant-selector

write-parameter

":=" assignment-statement

sequence-iteration

special-symbol

";" array-value

case-statement

constant-definition-part

field-list

field-list-value

finalization-part

fixed-part

fixed-part-value

formal-discriminant-part

formal-parameter-list

function-declaration

import-part

initialization-part

interface-specification-part

label-declaration-part

main-program-declaration

module-declaration

module-heading

procedure-and-function-declaration-part

procedure-and-function-heading-part

procedure-declaration

special-symbol

143

ISO/IEC 10206:1990(E)

statement-sequence

type-definition-part

unpacked-conformant-array-form

variable-declaration-part

variant-part

"<" relational-operator

special-symbol

"<=" relational-operator

special-symbol

"<>" relational-operator

special-symbol

"=" constant-definition

export-part

relational-operator

result-variable-specification

schema-definition

special-symbol

type-definition

"=>" export-renaming-clause

import-renaming-clause

special-symbol

">" relational-operator

special-symbol

"><" adding-operator

special-symbol

">=" relational-operator

special-symbol

"[" array-type

array-value

file-type

indexed-constant

indexed-function-access

indexed-variable

packed-conformant-array-form

record-value

set-constructor

special-symbol

substring-constant

substring-function-access

substring-variable

unpacked-conformant-array-form

variant-part-value

"]" array-type

array-value

file-type

indexed-constant

indexed-function-access

indexed-variable

packed-conformant-array-form

record-value

144

ISO/IEC 10206:1990(E)

set-constructor

special-symbol

substring-constant

substring-function-access

substring-variable

unpacked-conformant-array-form

variant-part-value

""" buffer-variable

function-identified-variable

identified-variable

new-pointer-type

special-symbol

" " underscore

"a" letter

"and" multiplying-operator

word-symbol

"and then" multiplying-operator

word-symbol

"array" array-type

packed-conformant-array-form

unpacked-conformant-array-form

word-symbol

"b" letter

"begin" compound-statement

initialization-part

word-symbol

"bindable" type-denoter

word-symbol

"c" letter

"case" case-statement

variant-part

variant-part-value

word-symbol

"const" constant-definition-part

word-symbol

"d" letter

"div" multiplying-operator

word-symbol

"do" finalization-part

for-statement

initialization-part

while-statement

with-statement

word-symbol

"downto" sequence-iteration

word-symbol

"e" letter

number

unsigned-real

"else" else-part

145

ISO/IEC 10206:1990(E)

word-symbol

"end" case-statement

compound-statement

finalization-part

module-block

module-heading

record-type

word-symbol

"export" interface-specification-part

word-symbol

"f" letter

"file" file-type

word-symbol

"for" for-statement

word-symbol

"function" function-heading

function-identification

word-symbol

"g" letter

"goto" goto-statement

word-symbol

"h" letter

"i" letter

"if" if-statement

word-symbol

"import" import-part

word-symbol

"in" relational-operator

set-member-iteration

word-symbol

"j" letter

"k" letter

"l" letter

"label" label-declaration-part

word-symbol

"m" letter

"mod" multiplying-operator

word-symbol

"module" module-heading

module-identification

word-symbol

"n" letter

"nil" unsigned-constant

word-symbol

"not" primary

word-symbol

"o" letter

"of" array-type

case-statement

file-type

146

ISO/IEC 10206:1990(E)

packed-conformant-array-form

set-type

type-inquiry

unpacked-conformant-array-form

variant-part

variant-part-value

word-symbol

"only" selective-import-option

word-symbol

"or" adding-operator

word-symbol

"or else" adding-operator

word-symbol

"otherwise" array-value-completer

case-statement-completer

variant-part-completer

word-symbol

"p" letter

"packed" new-structured-type

packed-conformant-array-form

word-symbol

"pow" exponentiating-operator

word-symbol

"procedure" procedure-heading

procedure-identification

word-symbol

"program" program-heading

word-symbol

"protected" conformant-array-parameter-specification

exportable-name

value-parameter-specification

variable-parameter-specification

word-symbol

"q" letter

"qualified" access-qualifier

word-symbol

"r" letter

"record" record-type

word-symbol

"repeat" repeat-statement

word-symbol

"restricted" restricted-type

word-symbol

"s" letter

"set" set-type

word-symbol

"t" letter

"then" if-statement

word-symbol

"to" finalization-part

147

ISO/IEC 10206:1990(E)

initialization-part

sequence-iteration

word-symbol

"type" type-definition-part

type-inquiry

word-symbol

"u" letter

"until" repeat-statement

word-symbol

"v" letter

"value" initial-state-specifier

word-symbol

"var" variable-conformant-array-specification

variable-declaration-part

variable-parameter-specification

word-symbol

"w" letter

"while" while-statement

word-symbol

"with" with-statement

word-symbol

"x" letter

"y" letter

"z" letter

148

ISO/IEC 10206:1990(E)

A.3 Index of nonterminals in A.1

{ a {

access-qualifier import-specification

actual-discriminant-part discriminated-schema

actual-parameter actual-parameter-list

actual-parameter-list function-designator

procedure-statement

adding-operator simple-expression

apostrophe-image string-element

array-constant indexed-constant

array-function indexed-function-access

array-type unpacked-structured-type

array-type-name structured-type-name

structured-value-constructor

array-value component-value

structured-value-constructor

array-value-completer array-value

array-value-element array-value

array-variable indexed-variable

assignment-statement simple-statement

{ b {

base-type set-type

block function-block

main-program-block

procedure-block

Boolean-expression if-statement

repeat-statement

while-statement

bound-identifier primary

buffer-variable variable-access

{ c {

case-constant case-range

case-constant-list array-value-element

case-list-element

variant-list-element

case-index case-statement

case-list-element case-statement

case-range case-constant-list

case-statement conditional-statement

case-statement-completer case-statement

character-string unsigned-constant

149

ISO/IEC 10206:1990(E)

complex-type-name simple-type

component-function-access function-access

component-type array-type

file-type

component-value array-value-completer

array-value-element

field-value

initial-state-specifier

component-variable variable-access

compound-statement statement-part

structured-statement

conditional-statement structured-statement

conformant-array-form unpacked-conformant-array-form

value-conformant-array-specification

variable-conformant-array-specification

conformant-array-parameter-specification

formal-parameter-section

constant-access array-constant

primary

record-constant

schema-discriminant

string-constant

with-element

constant-access-component constant-access

constant-definition constant-definition-part

constant-definition-part block

module-block

module-heading

constant-expression case-constant

constant-definition

constant-tag-value

constant-field-identifier field-designated-constant

constant-identifier constant-name

constant-name constant-access

exportable-name

first-constant-name

last-constant-name

constant-tag-value variant-part-value

constituent-identifier import-clause

import-renaming-clause

control-variable for-statement

{ d {

digit digit-sequence

directive

extended-digit

identifier

150

ISO/IEC 10206:1990(E)

digit-sequence fractional-part

label

number

scale-factor

unsigned-integer

unsigned-real

directive implementation-directive

interface-directive

remote-directive

discriminant-identifier discriminant-specifier

primary

variant-selector

discriminant-specification formal-discriminant-part

discriminant-specifier schema-discriminant

discriminant-value actual-discriminant-part

discriminated-schema ordinal-type

type-denoter

domain-type new-pointer-type

{ e {

else-part if-statement

empty-statement simple-statement

entire-function-access function-access

entire-variable control-variable

variable-access

enumerated-type new-ordinal-type

exponentiating-operator factor

export-clause export-list

export-list export-part

export-part interface-specification-part

export-range export-list

export-renaming-clause export-clause

exportable-name export-clause

export-renaming-clause

expression actual-parameter

assignment-statement

Boolean-expression

case-index

component-value

constant-expression

discriminant-value

final-value

index-expression

initial-value

member-designator

primary

set-expression

151

ISO/IEC 10206:1990(E)

string-expression

subrange-bound

write-parameter

extended-digit extended-number

extended-number unsigned-constant

{ f {

factor term

field-designated-constant constant-access-component

field-designator component-variable

field-designator-identifier field-designator

field-identifier field-specifier

field-value

tag-field-identifier

field-list record-type

variant-denoter

field-list-value record-value

variant-part-value

field-specifier field-designated-constant

field-designator

record-function-access

field-value fixed-part-value

file-type unpacked-structured-type

file-type-name structured-type-name

file-variable buffer-variable

read-parameter-list

readln-parameter-list

write-parameter-list

writeln-parameter-list

final-value sequence-iteration

finalization-part module-block

first-constant-name export-range

fixed-part field-list

fixed-part-value field-list-value

for-statement repetitive-statement

formal-discriminant-part schema-definition

formal-parameter-list function-heading

procedure-heading

formal-parameter-section formal-parameter-list

fractional-part number

unsigned-real

function-access array-function

pointer-function

primary

record-function

string-function

function-block function-declaration

function-declaration procedure-and-function-declaration-part

152

ISO/IEC 10206:1990(E)

function-designator entire-function-access

function-heading function-declaration

functional-parameter-specification

procedure-and-function-heading-part

function-identification function-declaration

function-identified-variable variable-access

function-identifier assignment-statement

function-identification

function-name

function-name actual-parameter

exportable-name

function-designator

functional-parameter-specification ... formal-parameter-section

{ g {

goto-statement simple-statement

{ i {

identified-variable variable-access

identifier bound-identifier

constant-definition

constant-field-identifier

constant-identifier

constituent-identifier

discriminant-identifier

export-part

export-renaming-clause

field-designator-identifier

field-identifier

function-heading

function-identifier

identifier-list

import-renaming-clause

imported-interface-identifier

index-type-specification

interface-identifier

module-heading

module-identifier

parameter-identifier

procedure-heading

procedure-identifier

program-heading

result-variable-specification

schema-definition

schema-discriminant-identifier

153

ISO/IEC 10206:1990(E)

schema-identifier

tag-field

type-definition

type-identifier

variable-identifier

identifier-list discriminant-specification

enumerated-type

module-parameter-list

program-parameter-list

record-section

value-conformant-array-specification

value-parameter-specification

variable-conformant-array-specification

variable-declaration

variable-parameter-specification

if-statement conditional-statement

implementation-directive module-identification

import-clause import-list

import-list import-qualifier

import-part block

module-block

module-heading

import-qualifier import-specification

import-renaming-clause import-clause

import-specification import-part

imported-interface-identifier constant-name

function-name

procedure-name

schema-name

type-name

variable-name

index-expression indexed-constant

indexed-function-access

indexed-variable

substring-constant

substring-function-access

substring-variable

index-type array-type

file-type

index-type-specification packed-conformant-array-form

unpacked-conformant-array-form

indexed-constant constant-access-component

indexed-function-access component-function-access

indexed-variable component-variable

initial-state-specifier type-denoter

initial-value sequence-iteration

initialization-part module-block

interface-directive module-heading

interface-identifier import-specification

interface-specification-part module-heading

154

ISO/IEC 10206:1990(E)

iteration-clause for-statement

{ l {

label goto-statement

label-declaration-part

statement

label-declaration-part block

last-constant-name export-range

letter directive

extended-digit

identifier

{ m {

main-program-block main-program-declaration

main-program-declaration program-component

member-designator set-constructor

module-block module-declaration

module-declaration program-component

module-heading module-declaration

module-identification module-declaration

module-identifier module-identification

module-parameter-list module-heading

multiplying-operator term

{ n {

new-ordinal-type new-type

ordinal-type

new-pointer-type new-type

pointer-type

new-structured-type new-type

structured-type

new-type type-denoter

{ o {

one-of-a-set-of-implementation-defined-characters ...

string-character

ordinal-type base-type

index-type

simple-type

ordinal-type-name discriminant-specification

index-type-specification

ordinal-type

155

ISO/IEC 10206:1990(E)

tag-type

{ p {

packed-conformant-array-form conformant-array-form

parameter-form value-parameter-specification

variable-parameter-specification

parameter-identifier type-inquiry-object

pointer-function function-identified-variable

pointer-type-name pointer-type

pointer-variable identified-variable

primary factor

primary

procedural-parameter-specification ... formal-parameter-section

procedure-and-function-declaration-part block

module-block

procedure-and-function-heading-part ... module-heading

procedure-block procedure-declaration

procedure-declaration procedure-and-function-declaration-part

procedure-heading procedural-parameter-specification

procedure-and-function-heading-part

procedure-declaration

procedure-identification procedure-declaration

procedure-identifier procedure-identification

procedure-name

procedure-name actual-parameter

exportable-name

procedure-statement

procedure-statement simple-statement

program-block program

program-component program-block

program-heading main-program-declaration

program-parameter-list program-heading

{ r {

read-parameter-list procedure-statement

readln-parameter-list procedure-statement

readstr-parameter-list procedure-statement

real-type-name simple-type

record-constant field-designated-constant

record-function record-function-access

record-function-access component-function-access

record-section fixed-part

record-type unpacked-structured-type

record-type-name structured-type-name

structured-value-constructor

record-value component-value

156

ISO/IEC 10206:1990(E)

structured-value-constructor

record-variable field-designator

relational-operator expression

remote-directive function-declaration

procedure-declaration

repeat-statement repetitive-statement

repetitive-statement structured-statement

restricted-type new-type

result-type function-heading

result-variable-specification function-heading

{ s {

scale-factor number

unsigned-real

schema-definition type-definition-part

schema-discriminant primary

schema-discriminant-identifier schema-discriminant

schema-identifier schema-name

schema-name discriminated-schema

domain-type

exportable-name

parameter-form

schema-definition

selective-import-option import-qualifier

sequence-iteration iteration-clause

set-constructor primary

set-value

set-expression set-member-iteration

set-member-iteration iteration-clause

set-type unpacked-structured-type

set-type-name structured-type-name

structured-value-constructor

set-value structured-value-constructor

sign number

scale-factor

signed-integer

signed-real

simple-expression

signed-integer signed-number

signed-number number

signed-real signed-number

simple-expression expression

simple-statement statement

statement case-list-element

else-part

finalization-part

for-statement

157

ISO/IEC 10206:1990(E)

if-statement

initialization-part

statement-sequence

while-statement

with-statement

statement-part block

statement-sequence case-statement-completer

compound-statement

repeat-statement

string-character string-element

string-constant indexed-constant

substring-constant

string-element character-string

string-expression readstr-parameter-list

string-function indexed-function-access

substring-function-access

string-variable indexed-variable

substring-variable

writestr-parameter-list

structured-statement statement

structured-type-name structured-type

structured-value-constructor primary

subrange-bound subrange-type

subrange-type new-ordinal-type

substring-constant constant-access-component

substring-function-access function-access

substring-variable variable-access

{ t {

tag-field variant-selector

tag-field-identifier variant-part-value

tag-type variant-selector

term simple-expression

type-definition type-definition-part

type-definition-part block

module-block

module-heading

type-denoter component-type

record-section

schema-definition

type-definition

variable-declaration

type-identifier type-name

type-inquiry ordinal-type

parameter-form

type-denoter

type-inquiry-object type-inquiry

158

ISO/IEC 10206:1990(E)

type-name array-type-name

complex-type-name

domain-type

exportable-name

file-type-name

ordinal-type-name

packed-conformant-array-form

parameter-form

pointer-type-name

real-type-name

record-type-name

restricted-type

result-type

set-type-name

simple-type-name

type-denoter

unpacked-conformant-array-form

{ u {

underscore directive

identifier

unpacked-conformant-array-form conformant-array-form

unpacked-structured-type new-structured-type

unsigned-constant primary

unsigned-integer extended-number

signed-integer

unsigned-number

unsigned-number unsigned-constant

unsigned-real signed-real

unsigned-number

{ v {

value-conformant-array-specification .. conformant-array-parameter-specification

value-parameter-specification formal-parameter-section

variable-access actual-parameter

array-variable

assignment-statement

file-variable

pointer-variable

primary

read-parameter-list

readln-parameter-list

readstr-parameter-list

record-variable

schema-discriminant

159

ISO/IEC 10206:1990(E)

string-variable

with-element

variable-conformant-array-specification

conformant-array-parameter-specification

variable-declaration variable-declaration-part

variable-declaration-part block

module-block

module-heading

variable-identifier variable-name

variable-name entire-variable

exportable-name

type-inquiry-object

variable-parameter-specification formal-parameter-section

variant-denoter variant-list-element

variant-part-completer

variant-list-element variant-part

variant-part field-list

variant-part-completer variant-part

variant-part-value field-list-value

variant-selector variant-part

{ w {

while-statement repetitive-statement

with-element with-list

with-list with-statement

with-statement structured-statement

word-symbol special-symbol

write-parameter write-parameter-list

writeln-parameter-list

writestr-parameter-list

write-parameter-list procedure-statement

writeln-parameter-list procedure-statement

writestr-parameter-list procedure-statement

160

ISO/IEC 10206:1990(E)

Annex B

(Informative)

Incompatibilities with Pascal standards

Programs that conform to the existing Pascal standards ISO 7185, BS 6192, and ANSI/IEEE770X3.97-
1983 may need to have some identi�ers changed in them because of the addition of new word-
symbols in Extended Pascal. The new word-symbols that have been added to Extended Pascal
are:

and then only protected
bindable or else quali�ed
export otherwise restricted
import pow value
module

161

ISO/IEC 10206:1990(E)

Annex C

(Informative)

Required identi�ers

Identi�er De�nition Identi�er De�nition
abs 6.7.6.2 month 6.4.3.4
arctan 6.7.6.2 name 6.4.3.4
arg 6.7.6.2 NE 6.7.6.7
bind 6.7.5.6 new 6.7.5.3
binding 6.7.6.8 odd 6.7.6.5
BindingType 6.4.3.4 ord 6.7.6.4
Boolean 6.4.2.2 c) output 6.10, 6.11.4.2
bound 6.4.3.4 pack 6.7.5.4
capacity 6.4.3.3.3 page 6.10.5
card 6.7.6.3 polar 6.7.6.3
char 6.4.2.2 d) position 6.7.6.6
chr 6.7.6.4 pred 6.7.6.4
cmplx 6.7.6.3 put 6.7.5.2
complex 6.4.2.2 e) re 6.7.6.2
cos 6.7.6.2 read 6.7.5.2, 6.10.1
date 6.7.6.9 readln 6.10.2
DateValid 6.4.3.4 readstr 6.7.5.5
day 6.4.3.4 real 6.4.2.2 b)
dispose 6.7.5.3 reset 6.7.5.2
empty 6.7.6.5 rewrite 6.7.5.2
eof 6.7.6.5 round 6.7.6.3
eoln 6.7.6.5 second 6.4.3.4
epsreal 6.4.2.2 b) SeekRead 6.7.5.2
EQ 6.7.6.7 SeekUpdate 6.7.5.2
exp 6.7.6.2 SeekWrite 6.7.5.2
extend 6.7.5.2 sin 6.7.6.2
false 6.4.2.2 c) sqr 6.7.6.2
GE 6.7.6.7 sqrt 6.7.6.2
get 6.7.5.2 StandardInput 6.11.4.2
GetTimeStamp 6.7.5.8 StandardOutput 6.11.4.2
GT 6.7.6.7 string 6.4.3.3.3
halt 6.7.5.7 substr 6.7.6.7
hour 6.4.3.4 succ 6.7.6.4
im 6.7.6.2 text 6.4.3.6
index 6.7.6.7 time 6.7.6.9
input 6.10, 6.11.4.2 TimeStamp 6.4.3.4
integer 6.4.2.2 a) TimeValid 6.4.3.4
LastPosition 6.7.6.6 trim 6.7.6.7
LE 6.7.6.7 true 6.4.2.2 c)
length 6.7.6.7 trunc 6.7.6.3
ln 6.7.6.2 unbind 6.7.5.6
LT 6.7.6.7 unpack 6.7.5.4
maxchar 6.4.2.2 d) update 6.7.5.2

162

ISO/IEC 10206:1990(E)

maxint 6.4.2.2 a) write 6.7.5.2, 6.10.3
maxreal 6.4.2.2 b) writeln 6.10.4
minreal 6.4.2.2 b) writestr 6.7.5.5
minute 6.4.3.4 year 6.4.3.4

163

ISO/IEC 10206:1990(E)

Annex D

(Informative)

Errors and dynamic-violations

A complying processor is required to provide documentation concerning its treatment of errors.
To facilitate the production of such documentation, all the errors speci�ed in clause 6 are
described again in this annex. Here, when a value of type T2 is said to be assignment-
compatibility-erroneous with respect to a type T1, it means that one of the following four
statements is true (see 6.4.6).

a) T1 and T2 are compatible ordinal-types, and the value of type T2 is not in the closed
interval speci�ed by the type T1.

b) T1 and T2 are compatible set-types, and a member of the value of type T2 is not in the
closed interval speci�ed by the base-type of the type T1.

c) T1 and T2 are compatible, T1 is a string-type or a char-type, and the length of the value
of T2 is greater than the capacity of T1.

d) T1 and T2 are produced from the same schema, but not with the same tuple.

Statements a) through c) describe errors; statement d) describes a dynamic-violation.

D.1 6.4.2.2
It is an error if an integer operation or function is not performed according to the mathematical
rules for integer arithmetic.

D.2 6.4.2.4
It is a dynamic-violation if the smallest value of a subrange-type is greater than the largest
value of the subrange-type when either subrange-bound is not nonvarying or contains a
discriminant-identi�er.

D.3 6.4.3.4
It is a dynamic-violation to attribute a value to the selector other than the value corresponding
to the discriminant-identi�er according to the tuple.

D.4 6.4.3.6
If f is a direct-access �le-type with index-type T, a is the smallest value of type T, and b
is the largest value of type T, it is an error if f.L and f.R are de�ned and length(f.L~f.R)
> ord(b)-ord(a)+1.

D.5 6.4.7
It is an error if, within the activation, the domain of a schema contained by the activation
is empty.

D.6 6.4.8
It is a dynamic-violation if the tuple consisting of the values denoted by the discriminant-
values of the actual-discriminant-part taken in textual order is not in the domain of the
schema.

D.7 6.5.1
The execution of any action, operation, or function, de�ned to operate on a variable, is an
error if the variable is bindable and, as a result of the binding, the execution cannot be

164

ISO/IEC 10206:1990(E)

completed as de�ned.

D.8 6.5.3.2
It is an error if for an indexed-variable closest-containing an array-variable and a single
index-expression, the value of the index-expression is assignment-compatibility-erroneous
with respect to the index-type of the array-type.

D.9 6.5.3.2
It is an error if the value of the index-expression in an indexed-variable closest-containing a
string-variable is less than one or greater than the length of the value of the string-variable.

D.10 6.5.3.2
It is an error to alter the length of the value of a string-variable when a reference to a
component of the string-variable exists.

D.11 6.5.3.2
It is an error to access an indexed-variable when the string-variable, if any, of the indexed-
variable is unde�ned.

D.12 6.5.3.3
It is an error unless a variant is active for the entirety of each reference and access to each
component of the variant of a record-variable.

D.13 6.5.4
It is an error if the pointer-variable of an identi�ed-variable either denotes a nil-value or
is unde�ned.

D.14 6.5.4
It is an error to remove from its pointer-type the identifying-value of an identi�ed-variable
when a reference to the identi�ed-variable exists.

D.15 6.5.5
It is an error to alter the value of a �le-variable f when a reference to the bu�er-variable
f"exists.

D.16 6.5.6
It is an error if the string-variable of the substring-variable is unde�ned, or if the value
of an index-expression in a substring-variable is less than 1 or greater than the length
of the value of the string-variable of the substring-variable, or if the value of the �rst
index-expression is greater than the value of the second index-expression.

D.17 6.5.6
It is an error to alter the length of the value of a string-variable when a reference to a
substring of the string-variable exists.

D.18 6.7.3.2
It is an error if the value of any actual value parameter is assignment-compatibility-
erroneous with respect to the type possessed by the corresponding formal-parameter.

D.19 6.7.3.2
It is an error if the actual-parameters contained by the activation-point of an activation
corresponding to formal-parameters that occur in a single value-parameter-speci�cation
containing a schema-name that denotes the schema denoted by the required schema-
identi�er string are string-type or char-type values with di�ering lengths.

165

ISO/IEC 10206:1990(E)

D.20 6.7.3.2
It is a dynamic-violation if the underlying-types of the types of the actual-parameters
corresponding to a parameter-form, that is in a value-parameter-speci�cation and that
contains a schema-name not denoting the schema string, are not produced from a schema
with the same tuple.

D.21 6.7.3.3
It is a dynamic-violation if the underlying-types of the types possessed by the formal-
parameter and actual-parameter are produced from the same schema, but not with the
same tuple.

D.22 6.7.3.5
It is a dynamic-violation if the type denoted by the result-type closest-contained by the
formal-parameter-section and the type of the function are produced from the same schema,
but not with the same tuple.

D.23 6.7.3.6
It is a dynamic-violation if the type-name in the parameter-form of each value-parameter-
speci�cation denotes a type produced from the same schema but not with the same tuple.

D.24 6.7.3.6
It is a dynamic-violation if the type-name in the parameter-form of each variable-parameter-
speci�cation denotes a type produced from the same schema but not with the same tuple.

D.25 6.7.3.7.1
It is an error if the conformant-actual-variables corresponding to formal-parameters that
occur in a single value-conformant-array-speci�cation possess �xed-string-types that have
di�erent capacities or that are not conformable with the conformant-array-form.

D.26 6.7.3.7.2
It is an error if the value parameter is assignment-compatibility-erroneous with respect to
the type possessed by the conformant-actual-variable.

D.27 6.7.3.8
At any place where the rule of conformability is used, it is an error if the smallest or
largest value speci�ed by the index-type of an array-type with a single index-type lies
outside the closed interval speci�ed by the type denoted by the ordinal-type-name of the
index-type-speci�cation of a conformant-array-form closest-containing a single index-type-
speci�cation.

D.28 6.7.5.2
When extend(f) is activated, it is an error if either f0.L or f0.R is unde�ned.

D.29 6.7.5.2
When put(f) is activated, it is an error if f0.M is not Generation or Update; if either f0.L
or f0.R is unde�ned; if f0" is unde�ned; or if f0.R <> S(), and f is not a direct-access
�le-type.

D.30 6.7.5.2
When update(f) is activated, it is an error if f0.M is not Generation or Update, if either
f0.L or f0.R is unde�ned, if f0" is unde�ned, or if f is not a direct-access �le-type.

D.31 6.7.5.2
When reset(f) is activated, it is an error if either f0.L or f0.R is unde�ned.

166

ISO/IEC 10206:1990(E)

D.32 6.7.5.2
When get(f) is activated, it is an error if f0.M is not Inspection or Update, if either f0.L
or f0.R is unde�ned, or if f0.R = S().

D.33 6.7.5.2
When SeekWrite(f,n) is activated, it is an error if either f0.L or f0.R is unde�ned, if (ord(n)-
ord(a)) < 0, if length(f0.L~f0.R) < (ord(n)-ord(a)), or if n is assignment-compatibility-
erroneous with respect to T.

D.34 6.7.5.2
When SeekRead(f,n) is activated, it is an error if either f0.L or f0.R is unde�ned, if (ord(n)-
ord(a)) < 0, if length(f0.L~f0.R) < (ord(n)-ord(a)), or if n is assignment-compatibility-
erroneous with respect to T.

D.35 6.7.5.2
When SeekUpdate(f,n) is activated, it is an error if either f0.L or f0.R is unde�ned, if
(ord(n)-ord(a))< 0, if length(f0.L~f0.R)< (ord(n)-ord(a)), or if n is assignment-compatibility-
erroneous with respect to T.

D.36 6.7.5.2
When read(f,v) is activated, with f, a �le-variable possessing a type other than that denoted
by text, and v, a variable-access, it is an error if f0.M is not Inspection or Update, if either
f0.L or f0.R is unde�ned, if f0.R = S(), or if the value of f" is assignment-compatibility-
erroneous with respect to the type of v.

D.37 6.7.5.2
When write(f,e) is activated, with f, a �le-variable possessing a type other than that denoted
by text, and e, an expression, it is an error if f0.M is not either Generation or Update; if
either f0.L or f0.R is unde�ned; if e is unde�ned; if f0.R <> S(), and f is not a direct-access
�le; or if the value of the expression e is assignment-compatibility-erroneous with respect
to the component-type of the �le-type of f.

D.38 6.7.5.3
When new(p,c1,...,cn) is activated, it is an error if a variant of a variant-part within the new
variable becomes active, and a di�erent variant of the variant-part is one of the speci�ed
variants.

D.39 6.7.5.3
When new(p,d1,...,ds) is activated, it is a dynamic-violation if the tuple consisting of the
values of the expressions d1,...,ds taken in textual order is not in the domain of the schema
denoted by the schema-identi�er of the domain-type of the pointer-type possessed by p.

D.40 6.7.5.3
When dispose(q) is activated, it is an error if the identifying-value had been created using
the form new(p,c1,...,cn).

D.41 6.7.5.3
When dispose(q,k1,...,km) is activated, it is an error unless the variable had been created
using the form new(p,c1,...,cn) and m is equal to n.

D.42 6.7.5.3
When dispose(q,k1,...,km) is activated, it is an error if the variants in the variable identi�ed
by the pointer value of q are di�erent from those speci�ed by the values denoted by the
case-constants k1,...,km.

167

ISO/IEC 10206:1990(E)

D.43 6.7.5.3
When either dispose(q) or dispose(q,k1,...,km) is activated, it is an error if q has a nil-value
or is unde�ned.

D.44 6.7.5.3
It is an error if a variable created using the form new(p,c1,...,cn) is accessed by the
identi�ed-variable of the variable-access of a primary, of an assignment-statement, or of an
actual-parameter.

D.45 6.7.5.4
When pack(a,i,z) is activated, it is an error if the value of i is assignment-compatibility-
erroneous with respect to the index-type of the type of a.

D.46 6.7.5.4
When pack(a,i,z) is activated, it is an error if any of the components of a are both unde�ned
and accessed.

D.47 6.7.5.4
When pack(a,i,z) is activated, it is an error if the index-type of the type of a is exceeded.

D.48 6.7.5.4
When unpack(z,a,i) is activated, it is an error if the value of i is assignment-compatibility-
erroneous with respect to the index-type of the type of a.

D.49 6.7.5.4
When unpack(z,a,i) is activated, it is an error if any of the components of z are unde�ned.

D.50 6.7.5.4
When unpack(z,a,i) is activated, it is an error if the index-type of the type of a is exceeded.

D.51 6.7.5.5
When readstr(e,v1,...,vn) is activated, it is an error if the equivalent of eof(f) is true upon
completion.

D.52 6.7.5.5
When writestr(s,p1,...,pn) is activated, it is an error if any of the write-parameters accesses
the referenced string-variable.

D.53 6.7.5.5
When writestr(s,p1,...,pn) is activated, it is an error if the equivalent of eoln(f) is false
upon completion.

D.54 6.7.5.6
When bind(f,b) is activated, it is a dynamic-violation if the variable f is already bound to
an external entity.

D.55 6.7.5.6
When bind(f,b) is activated, it is a dynamic-violation if the variable f, which possesses a
�le-type, does not possess the bindability that is bindable.

D.56 6.7.5.6
When unbind(f) is activated, it is a dynamic-violation if the variable f, which possesses a
�le-type, does not possess the bindability that is bindable.

D.57 6.7.6.2

168

ISO/IEC 10206:1990(E)

From the value of integer-type or real-type of the expression x, sqr(x) computes a value,
if any, of the same type, for the square of x. When sqr(x) is activated, it is an error if no
such value exists.

D.58 6.7.6.2
From the value of real-type of the expression x, ln(x) computes a value of real-type for the
natural logarithm of x, if x is greater than zero. When ln(x) is activated, it is an error if
the value of the expression x is not greater than zero.

D.59 6.7.6.2
From the value of complex-type of the expression x, ln(x) computes a value of complex-
type for the natural logarithm of x, if x is not equal to zero. When ln(x) is activated, it is
an error if the value of the expression x is equal to zero.

D.60 6.7.6.2
From the value of real-type of the expression x, sqrt(x) computes a value of real-type for
the non-negative square root of x, if x is not negative. When sqrt(x) is activated, it is an
error if the value of the expression x is negative.

D.61 6.7.6.3
From the value of real-type of the expression x, trunc(x) computes a value, if any, of
integer-type, such that if x is positive or zero then 0 <= x�trunc(x) < 1; otherwise, �1
< x�trunc(x) <= 0. When trunc(x) is activated, it is an error if no such value exists.

D.62 6.7.6.3
From the value of real-type of the expression x, round(x) computes a value, if any, of
integer-type, such that if x is positive or zero then round(x) is equivalent to trunc(x+0.5);
otherwise, round(x) is equivalent to trunc(x�0.5). When round(x) is activated, it is an
error if no such value exists.

D.63 6.7.6.3
From the value of unpacked-canonical-set-of-T-type or packed-canonical-set-of-T-type of
the expression x, card(x) computes a value of integer-type for the number of members in
x. When card(x) is activated, it is an error if no such value exists.

D.64 6.7.6.4
From the value of integer-type of the expression x, chr(x) computes a value, if any, of
char-type that is the value whose ordinal number is equal to the value of the expression x.
When chr(x) is activated, it is an error if no such value exists.

D.65 6.7.6.4
From the value of ordinal-type of the expression x, and the value of integer-type of the
expression k, succ(x,k) computes a value, if any, of the same ordinal-type whose ordinal
number is ord(x) + k. When succ(x,k) is activated, it is an error if no such value exists.

D.66 6.7.6.5
When eof(f) is activated, it is an error if f is unde�ned.

D.67 6.7.6.5
When eoln(f) is activated, it is an error if f is unde�ned or if eof(f) is true.

D.68 6.7.6.5
When empty(f) is activated, it is an error if f is unde�ned.

D.69 6.7.6.6

169

ISO/IEC 10206:1990(E)

When position(f) is activated, it is an error if f is unde�ned or if the value of position(f)
does not exist.

D.70 6.7.6.6
When LastPosition(f) is activated, it is an error if f is unde�ned or if the value of LastPosition(f)
does not exist.

D.71 6.7.6.7
When substr(s,i,j) is activated, it is an error if the value of i is less than or equal to zero,
if the value of j is less than zero, or if the value of (i)+(j)�1 is greater than the length of
the value of s.

D.72 6.7.6.8
When binding(f) is activated, it is a dynamic-violation if the variable f, which possesses a
�le-type, does not possess the bindability that is bindable.

D.73 6.7.6.9
When date(t) is activated, it is an error if the values of the �elds Day, Month, and Year
of the value of t do not represent a valid calendar date.

D.74 6.8.1
It is an error to compute the value of an expression that contains a variable denoted by a
variable-access of a primary that is unde�ned at the time of its use.

D.75 6.8.3.2
For a term of the form x/y, it is an error if the value of y is zero.

D.76 6.8.3.2
For a term of the form i div j, it is an error if the value of j is zero.

D.77 6.8.3.2
For a term of the form i mod j, it is an error if the value of j is zero or negative.

D.78 6.8.3.2
For a factor of the form x**y, it is an error if x is zero and y is less than or equal to zero.

D.79 6.8.3.2
For a factor of the form x**y, where x is of integer-type or real-type, it is an error if x is
negative.

D.80 6.8.3.2
For a factor of the form x pow y, it is an error if x is zero and y is less than or equal to
zero.

D.81 6.8.5
It is an error if the value of the result of an activation of a function is unde�ned upon
completion of the algorithm of the activation.

D.82 6.8.6.2
It is an error if for an indexed-function-access closest-containing an array-function and
a single index-expression, the value of the index-expression is assignment-compatibility-
erroneous with respect to the index-type of the array-type possessed by the result of the
array-function.

D.83 6.8.6.2

170

ISO/IEC 10206:1990(E)

It is an error if the value of the index-expression in an indexed-function-access closest-
containing a string-function is less than one or greater than the length of the value of the
string-function.

D.84 6.8.6.3
It is an error to denote a component of an inactive variant of a variant-part of a record-
function.

D.85 6.8.6.4
It is an error if the pointer-function of a function-identi�ed-variable denotes the nil-value.

D.86 6.8.6.5
It is an error if the value of an index-expression in a substring-function-access is less than
one or greater than the length of the value of the string-function of the substring-function-
access or if the value of the �rst index-expression is greater than the value of the second
index-expression.

D.87 6.8.7.1
It is an error if the value denoted by an expression in a component-value is assignment-
compatibility-erroneous with respect to the type of the component-value of a structured-
value-constructor.

D.88 6.8.8.2
It is an error if for an indexed-constant closest-containing an array-constant and a single
index-expression, the value of the index-expression is assignment-compatibility-erroneous
with respect to the index-type of the array-type.

D.89 6.8.8.2
It is an error if the value of the index-expression in an indexed-constant closest-containing
a string-constant is less than one or greater than the length of the value of the string-
constant.

D.90 6.8.8.3
It is an error to access a component of an inactive variant of a variant-part of a record-
constant.

D.91 6.8.8.4
It is an error if the value of an index-expression in a substring-constant is less than 1 or
greater than the length of the value of the string-constant of the substring-constant or if the
value of the �rst index-expression is greater than the value of the second index-expression.

D.92 6.9.2.2
It is an error if the value of the expression of an assignment-statement is assignment-
compatibility-erroneous with respect to the type possessed by either the variable denoted
by the variable-access of the assignment statement, or by the activation result that is
denoted by the function-identi�er of the assignment-statement.

D.93 6.9.2.4
It is a dynamic-violation if the commencement of the activation containing the program-
point has not completed.

D.94 6.9.3.5
For a case-statement without a case-statement-completer, it is a dynamic-violation if no
case-range closest-contained by a case-list-element of the case-statement denotes the value

171

ISO/IEC 10206:1990(E)

of the case-index upon execution of the case-statement.

D.95 6.9.3.9.2
It is an error if the value of initial-value or the value of �nal-value of a sequence-iteration of
an iteration-clause of a for-statement is assignment-compatibility-erroneous with respect
to the type possessed by the control-variable of the for-statement, if the statement of the
for-statement is executed.

D.96 6.9.3.9.3
It is an error if any value that is a member of the value of the set-expression of a set-member-
iteration of an iteration-clause of a for-statement is assignment-compatibility-erroneous
with respect to the type possessed by the control-variable of the for-statement.

D.97 6.10.1
When read is applied to text�le f, it is an error if the bu�er variable f" is unde�ned, if
f0.M is not Inspection or Update, if either f0.L or f0.R is unde�ned, or if f0.R=S().

D.98 6.10.1
On reading an integer from a text�le, after skipping preceding spaces and end-of-lines, it
is an error if the rest of the sequence of characters does not form a signed-integer.

D.99 6.10.1
On reading an integer from a text�le, it is an error if the value of the signed-integer read
is assignment-compatibility-erroneous with respect to the type possessed by the variable-
access.

D.100 6.10.1
On reading a number from a text�le, after skipping preceding spaces and end-of-lines, it
is an error if the rest of the sequence of characters does not form a number.

D.101 6.10.3
When write is applied to text�le f, it is an error if f is unde�ned or if f.M is Inspection.

D.102 6.10.3.1
For write-parameters of the form e:TotalWidth or of the form e:TotalWidth:FracDigits, it
is an error if the value of TotalWidth is less than zero.

D.103 6.10.3.1
For write-parameters of the form e:TotalWidth:FracDigits, it is an error if the value of
FracDigits is less than zero.

D.104 6.10.4
When writeln(f) is activated, it is an error if f0 is unde�ned, if f0.M is not Generation, or
if f0.R <> S().

D.105 6.10.5
When page(f) is activated, it is an error if f0 is unde�ned, if f0.M is not Generation, or if
f0.R <> S().

172

ISO/IEC 10206:1990(E)

Annex E

(Informative)

Implementation-de�ned features

A complying processor is required to provide a de�nition of all the implementation-de�ned
features of the language (see 5.1 d)). To facilitate the production of this de�nition, all the
implementation-de�ned features speci�ed in clause 6 are listed again in this annex.

E.1 6.1.9
The one-to-one correspondence between the set of alternatives from which string-elements
are drawn and a subset of the values of the required char-type is implementation-de�ned.

E.2 6.1.11
Provision of the reference tokens ", [, and], of the alternative token @, and of the delimiting
characters f and g, is implementation-de�ned.

E.3 6.4.2.2 a)
The value of integer-type denoted by the required constant-identi�ermaxint is implementation-
de�ned.

E.4 6.4.2.2 b)
The values of real-type are implementation-de�ned approximations to an implementation-
de�ned subset of the real numbers.

E.5 6.4.2.2 b)
The value of real-type denoted by the required constant-identi�erminreal is implementation-
de�ned.

E.6 6.4.2.2 b)
The value of real-type denoted by the required constant-identi�ermaxreal is implementation-
de�ned.

E.7 6.4.2.2 b)
The value of real-type denoted by the required constant-identi�er epsreal is implementation-
de�ned.

E.8 6.4.2.2 b)
The results of the real arithmetic operators and functions are approximations to the
correspondingmathematical results. The accuracy of this approximation is implementation-
de�ned.

E.9 6.4.2.2 d)
The values of char-type are the enumeration of a set of characters that is implementation-
de�ned.

E.10 6.4.2.2 d)
The ordinal numbers of the character values are values of integer-type that are implementation-
de�ned.

E.11 6.4.2.2 d)
The value of char-type denoted by the required constant-identi�ermaxchar is implementation-
de�ned.

173

ISO/IEC 10206:1990(E)

E.12 6.4.2.2 e)
The values of complex-type are implementation-de�ned approximations to an implementation-
de�ned subset of the complex numbers.

E.13 6.4.2.2 e)
The results of the complex arithmetic operators and required functions are approximations
to the correspondingmathematical results. The accuracy of this approximation is implementation-
de�ned.

E.14 6.4.3.4
The variable-string-type of the �eld associated with the required �eld-identi�er name in
the required record-type denoted by the required type-identi�erBindingType is implementation-
de�ned.

E.15 6.7.5.2
The activities on external entities to which �le-variables are bound and the point at which
they are actually performed are implementation-de�ned.

E.16 6.7.5.6
The binding as a result of the statement bind(f,b) of a variable denoted by f to an entity
that is external to the program and that is designated by b is implementation-de�ned.

E.17 6.7.5.8
The meaning of "current date" returned by the procedureGetTimeStamp is implementation-
de�ned.

E.18 6.7.5.8
The meaning of "current time" returned by the procedureGetTimeStamp is implementation-
de�ned.

E.19 6.7.6.8
The value returned by binding(f), where f is a variable, is implementation-de�ned.

E.20 6.7.6.9
The length of the string returned by the function date is implementation-de�ned.

E.21 6.7.6.9
The representation that is returned by date(t) of the calendar date denoted by t is
implementation-de�ned.

E.22 6.7.6.9
The length of the string returned by the function time is implementation-de�ned.

E.23 6.7.6.9
The representation that is returned by time(t) of the time denoted by t is implementation-
de�ned.

E.24 6.10.3.1
The default value of TotalWidth for integer-type is implementation-de�ned.

E.25 6.10.3.1
The default value of TotalWidth for real-type is implementation-de�ned.

E.26 6.10.3.1
The default value of TotalWidth for Boolean-type is implementation-de�ned.

174

ISO/IEC 10206:1990(E)

E.27 6.10.3.4.1
The value of ExpDigits is implementation-de�ned.

E.28 6.10.3.4.1
The value of the exponent character (`e' or `E') is implementation-de�ned.

E.29 6.10.3.5
The case of each letter of 'True' and 'False' for output of Boolean values is implementation-
de�ned.

E.30 6.10.5
The e�ect of the statement page(f) on the text�le f is implementation-de�ned.

E.31 6.11.1
The binding of variables denoted by the module parameters to entities external to the
program is implementation-de�ned.

E.32 6.11.4.2
The e�ect of the application of either of the required procedures reset, rewrite, or extend
to the required text�le input is implementation-de�ned.

E.33 6.11.4.2
The e�ect of the application of either of the required procedures reset, rewrite, or extend
to the required text�le output is implementation-de�ned.

E.34 6.12
The binding of variables denoted by the program parameters to entities external to the
program is implementation-de�ned.

175

ISO/IEC 10206:1990(E)

Annex F

(Informative)

Implementation-dependent features

A complying processor is required to provide documentation concerning its treatment of all the
implementation-dependent features of the language (see 5.1 j) and 5.1 g)). To facilitate the
production of this de�nition, all the implementation-dependent features speci�ed in clause 6 are
listed again in this annex.

F.1 6.4.8
A discriminant-value that is an expression shall denote the current value of the expression
upon activation of the block closest-containing the discriminant-value. The order of evaluation
of all such expressions contained in that block is implementation-dependent.

F.2 6.5.3.2
The order of both the evaluation of the index-expressions of, and the access to the array-
variable or string-variable of, an indexed-variable is implementation-dependent.

F.3 6.5.6
The order of both the evaluation of the index-expressions of, and the access to the string-
variable of, a substring-variable is implementation-dependent.

F.4 6.7.5.3
The order of evaluation of the expressions d1, ...,ds in new(p,d1, ...,ds) is implementation-
dependent.

F.5 6.8.1
The order of evaluation of the expressions of a member-designator is implementation-
dependent.

F.6 6.8.1
The order of evaluation of the member-designators of a set-constructor is implementation-
dependent.

F.7 6.8.3.1
Except for and then and or else, the order of evaluation of the operands of a dyadic operator
is implementation-dependent.

F.8 6.8.5
The order of evaluation, accessing, and binding of the actual-parameters of the actual-
parameter-list, if any, of a function-designator is implementation-dependent.

F.9 6.8.6.2
The order of evaluation both of the index-expressions of, and of the array-function or
string-function of, an indexed-function-access is implementation-dependent.

F.10 6.8.6.5
The order of evaluation both of the index-expressions of, and of the string-function of, a
substring-function-access is implementation-dependent.

F.11 6.8.7.1
The order of evaluation of the component-values contained by a structured-value-constructor

176

ISO/IEC 10206:1990(E)

is implementation-dependent.

F.12 6.8.8.2
The order of evaluation of the index-expressions of an indexed-constant is implementation-
dependent.

F.13 6.8.8.4
The order of evaluation of the index-expressions of a substring-constant is implementation-
dependent.

F.14 6.9.2.2
The order of accessing the variable and evaluating the expression of an assignment-statement
is implementation-dependent.

F.15 6.9.2.3
The order of evaluation, accessing, and binding of the actual-parameters of the actual-
parameter-list, if any, of a procedure-statement is implementation-dependent.

F.16 6.9.3.9.3
In a set-member-iteration, the order of selection of members of the value of a set-expression
is implementation-dependent.

F.17 6.10.1
When reading an integer or real representation from a text�le f, it is implementation-
dependent whether the �rst character examined is the value of the bu�er-variable or the
value of the �rst component of f.R.

F.18 6.10.5
The e�ect of inspecting a text�le to which the page procedure was applied during generation
is implementation-dependent.

177

ISO/IEC 10206:1990(E)

Annex G

(Informative)

Bibliography

ANSI X3.30-1985, Representation of Calendar Date and Ordinal Date for Information Interchange.

ANSI/IEEE770X3.97-1983,American National Standard Pascal Computer Programming Language.

BS6192:1982, British Standard Speci�cation for Computer programming language Pascal.

ISO 646:1983, Information processing| ISO 7-bit coded character set for information interchange.

ISO 6903:1985, Information processing | Representation of numerical values in character strings
for information interchange.

ISO 7185:1983, Programming languages | PASCAL.

ISO 8601:1988, Data elements and interchange formats | Information interchange|Representation
of dates and times.

178

ISO/IEC 10206:1990(E)

Index

abs 6.7.6.2
access-quali�er 6.11.3
accuracy 6.4.2.2, 6.8.2
activation 5.1, 6.2, 6.2.1, 6.2.3,

6.2.3.2, 6.2.3.3, 6.2.3.4, 6.2.3.5,
6.2.3.6, 6.2.3.7, 6.2.3.8, 6.3.1,
6.4.1, 6.4.2.3, 6.4.7, 6.4.8,
6.5.1, 6.6, 6.7.1, 6.7.2,
6.7.3.1, 6.7.3.2, 6.7.3.3, 6.7.3.4,
6.7.3.5, 6.7.3.7.1, 6.7.3.7.2, 6.7.3.7.3,
6.7.5.3, 6.7.5.7, 6.7.6.8, 6.8.5,
6.8.6.1, 6.9.2.2, 6.9.2.3, 6.9.2.4,
6.9.4, 6.10.5, 6.11.4.2

activation order 6.2.3.6
activation-point 6.2.3.4, 6.7.3.2, 6.7.3.3, 6.7.3.4,

6.7.3.5, 6.9.2.4
active (non-) 6.4.3.4, 6.5.3.3, 6.7.5.3, 6.8.6.3,

6.8.7.3, 6.8.8.3
actual-discriminant-part 6.2.3.8, 6.4.8, 6.8.1
actual-parameter 6.2.3.8, 6.4.2.2, 6.4.3.3.1, 6.7.3.1,

6.7.3.2, 6.7.3.3, 6.7.3.4, 6.7.3.5,
6.7.3.6, 6.7.3.7.1, 6.7.3.7.2, 6.7.3.7.3,
6.7.5.3, 6.8.5, 6.9.2.3, 6.9.4

actual-parameter-list 6.7.6.5, 6.8.5, 6.9.2.3, 6.9.4,
6.10.5

adding-operator 6.8.1, 6.8.3.1
algorithm 6.2.1, 6.2.3.2, 6.2.3.4, 6.2.3.5,

6.2.3.8, 6.8.5
allocation 6.7.5.1, 6.7.5.3
allowed 6.4.7
and 6.1.2, 6.8.3.1, 6.8.3.3
and then 6.1.2, 6.8.1, 6.8.3.1, 6.8.3.3
apostrophe-image 6.1.9
applied occurrence 6.2.1, 6.2.2.8, 6.2.2.9, 6.2.2.11,

6.2.2.13, 6.3.1, 6.4.1, 6.4.2.3,
6.4.7, 6.5.1, 6.7.1, 6.7.2,
6.7.3.1, 6.8.2, 6.8.7.3, 6.9.3.10,
6.11.3, 6.11.4.2

approximation 6.4.2.2, 6.7.6.3, 6.8.3.2
arctan 6.3.2, 6.7.6.2
arg 6.7.6.2
argument 6.7.6.2, 6.7.6.3
arithmetic operator 6.4.2.2, 6.8.3.2
array 6.1.2, 6.4.3.2, 6.7.3.7.1
array-constant 6.8.8.2
array-function 6.8.6.2
array-type 6.2.4, 6.4.1, 6.4.3.1, 6.4.3.2,

6.4.3.3.2, 6.5.3.2, 6.7.3.7.1, 6.7.3.8,

179

ISO/IEC 10206:1990(E)

6.7.5.4, 6.8.6.2, 6.8.7.2, 6.8.8.2
array-type-name 6.4.1, 6.8.7.1
array-value 6.4.7, 6.6, 6.8.7.1, 6.8.7.2
array-value-completer 6.8.7.2
array-value-element 6.8.7.2
array-variable 6.5.3.2, 6.9.4
assignment 6.4.2.5, 6.9.4
assignment-compatible (-ility) 6.4.4, 6.4.6, 6.5.3.2, 6.6,

6.7.3.2, 6.7.3.7.2, 6.7.5.2, 6.7.5.4,
6.8.1, 6.8.6.2, 6.8.7.1, 6.8.7.4,
6.8.8.2, 6.9.2.2, 6.9.3.9.2, 6.9.3.9.3,
6.10.1

assignment-statement 6.7.2, 6.7.5.3, 6.9.2.1, 6.9.2.2,
associate (-ed) 6.2.2.12, 6.2.3.2, 6.2.3.7, 6.3.1,

6.4.1, 6.4.2.2, 6.4.2.5, 6.4.3.4,
6.4.7, 6.4.8, 6.5.1, 6.5.3.3,
6.5.5, 6.7.1, 6.7.2, 6.7.3.1,
6.7.3.2, 6.7.3.3, 6.7.3.4, 6.7.3.5,
6.7.3.7.1, 6.7.3.7.2, 6.7.3.7.3, 6.7.5.2,
6.7.5.3, 6.8.6.3, 6.8.7.3, 6.8.8.3,
6.9.2.2, 6.9.3.10, 6.11.1, 6.11.3,
6.11.4.2

attribute (de-, -ed, -tion) 6.2.3.8, 6.2.4, 6.4.1, 6.4.2.5,
6.4.3.4, 6.4.3.6, 6.5.1, 6.5.3.3,
6.6, 6.7.3.2, 6.7.3.7.2, 6.7.5.3,
6.7.5.4, 6.7.5.8, 6.7.6.7, 6.8.1,
6.9.2.2, 6.9.3.9.1, 6.9.3.9.3, 6.10.1

base-type 6.4.1, 6.4.3.5, 6.4.5, 6.4.6,
6.6,

bear (-ing, -s, borne) 6.2.4, 6.4.3.4, 6.5.1, 6.6,
6.7.5.3

begin 6.1.2, 6.9.3.2, 6.11.1
bind 6.4.3.4, 6.7.5.6, 6.7.6.8, 6.9.4,

6.11.6
bindability 6.2.2.7, 6.2.3.2, 6.4.1, 6.4.2.1,

6.4.2.5, 6.4.3.1, 6.4.3.2, 6.4.3.3.3,
6.4.3.4, 6.4.3.5, 6.4.3.6, 6.4.4,
6.4.6, 6.4.7, 6.4.8, 6.4.9,
6.5.1, 6.5.3.1, 6.5.5, 6.5.6,
6.7.2, 6.7.3.2, 6.7.3.3, 6.7.3.6,
6.7.3.7.1, 6.7.3.8, 6.7.5.3, 6.7.5.6,
6.7.6.8, 6.11.2, 6.11.3

bindable (non-) 6.1.2, 6.2.3.2, 6.4.1, 6.4.2.1,
6.4.2.5, 6.4.3.1, 6.4.3.2, 6.4.3.4,
6.4.3.5, 6.4.3.6, 6.4.4, 6.4.7,
6.4.8, 6.4.10, 6.5.1, 6.5.3.1,
6.5.5, 6.5.6, 6.7.2, 6.7.3.2,
6.7.3.7.1, 6.7.3.8, 6.7.5.6, 6.7.6.8,
6.9.3.9.1, 6.11.6

binding 6.4.3.4, 6.5.1, 6.7.5.1, 6.7.5.6,

180

ISO/IEC 10206:1990(E)

6.7.6.1, 6.7.6.8, 6.8.5, 6.9.2.3,
6.11.1, 6.11.6, 6.12

BindingType 6.4.3.4, 6.7.5.6, 6.7.6.8, 6.11.6
block 6.2, 6.2.1, 6.2.2.13, 6.2.3.1,

6.2.3.2, 6.2.3.3, 6.2.3.4, 6.2.3.5,
6.2.3.7, 6.2.3.8, 6.3.1, 6.4.1,
6.4.2.3, 6.4.7, 6.4.8, 6.5.1,
6.7.1, 6.7.2, 6.7.3.1, 6.7.3.2,
6.7.3.3, 6.7.3.4, 6.7.3.5, 6.7.3.7.1,
6.8.5, 6.8.6.1, 6.9.1, 6.9.2.3,
6.9.3.9.1, 6.11.2, 6.11.3, 6.11.4.2,
6.11.5, 6.13

Boolean 6.4.2.2, 6.4.3.2, 6.4.3.4, 6.4.10,
6.5.1, 6.7.6.1, 6.7.6.5, 6.8.3.3,
6.11.6

Boolean-expression 6.8.3.3, 6.9.3.4, 6.9.3.7, 6.9.3.8
Boolean operator 6.8.3.3
Boolean-type 6.4.2.2, 6.7.6.7, 6.8.3.3, 6.8.3.5,

6.10.3.1, 6.10.3.5
bound 4, 6.2.3.5, 6.2.4, 6.4.3.4,

6.5.1, 6.5.3.1, 6.7.5.2, 6.7.5.3,
6.7.5.6, 6.7.6.8, 6.8.5, 6.9.2.3,
6.11.1, 6.12

bound-identi�er 6.7.3.7.1, 6.8.2
bu�er-variable 6.5.1, 6.5.5, 6.7.1, 6.7.5.2,

6.10.1, 6.10.5, 6.11.4.2
canonical-string-type 6.1.9, 6.4.3.3.1, 6.4.6, 6.7.5.5,

6.7.6.7, 6.7.6.9, 6.8.1, 6.8.3.5,
6.8.3.6, 6.8.6.5, 6.8.8.4

canonical-set-of-T-type 6.4.3.5
capacity 1.2, 6.4.3.3.1, 6.4.3.3.2, 6.4.3.3.3,

6.4.6, 6.5.6, 6.7.3.7.1, 6.7.3.7.2,
6.7.5.3, 6.7.5.5, 6.7.6.7, 6.10.1

card 6.7.6.3
case 6.1.2, 6.4.3.4, 6.8.7.3, 6.9.3.5
case-constant 6.4.3.4, 6.7.5.3, 6.9.3.5
case-constant-list 6.4.3.4, 6.4.7, 6.8.7.2, 6.9.3.5
case-index 6.9.3.5
case-list-element 6.9.3.5
case-range 6.4.3.4, 6.8.7.2, 6.9.3.5
case-statement 6.9.3.3, 6.9.3.5
case-statement-completer 6.9.3.5
char 6.4.2.2, 6.4.3.3.2, 6.4.3.5, 6.4.3.6,

6.4.10, 6.5.1, 6.6, 6.7.1,
char-type 6.1.9, 6.4.2.2, 6.4.3.3.1, 6.4.3.3.2,

6.4.3.6, 6.4.5, 6.4.6, 6.5.5,
6.7.3.2, 6.7.3.7.2, 6.7.5.5, 6.7.6.4,
6.7.6.7, 6.8.3.5, 6.8.3.6, 6.10.1,
6.10.3.1, 6.10.3.2

character 2, 4, 6.1, 6.1.1,

181

ISO/IEC 10206:1990(E)

6.1.3, 6.1.7, 6.1.9, 6.1.10,
6.1.11, 6.4.2.2, 6.4.3.6, 6.7.6.4,
6.7.6.7, 6.10.1, 6.10.3, 6.10.3.2,
6.10.3.3, 6.10.3.4.1, 6.10.3.4.2, 6.10.3.6,

character-string 6.1.1, 6.1.9, 6.1.10, 6.4.3.3.1,
6.8.1, 6.10.3.5

chr 6.7.6.4
closest-contain (-s, -ed, -ing) 4
cmplx 6.7.6.3
commencement 6.2.3.2, 6.2.3.5, 6.2.3.6, 6.2.3.8,

6.4.8, 6.7.3.2, 6.7.3.3, 6.7.3.7.2,
6.7.3.7.3, 6.9.2.4

comment 6.1.10
comparison 6.7.6.7, 6.8.3.5
compatible (-ibility) 6.1.4, 6.1.5, 6.4.2.4, 6.4.3.4,

6.4.4, 6.4.5, 6.4.6, 6.4.8,
6.4.10, 6.6, 6.7.3.8, 6.7.5.3,
6.8.1, 6.8.3.5, 6.9.3.9.2, 6.9.3.9.3,
6.10.1, 6.13

complete (-ed, -tion) 3.2, 5.1, 6.2.3.2, 6.2.3.6,
6.2.3.8, 6.5.1, 6.7.5.5, 6.8.5,
6.9.2.4, 6.9.3.7

complex 6.4.2.2, 6.4.6, 6.5.1, 6.7.6.3
complex-type 6.4.2.1, 6.4.2.2, 6.4.6, 6.7.6.2,

6.7.6.3, 6.8.2, 6.8.3.2, 6.8.3.5
complex-type-name 6.4.2.1
comply (-ies, -ing, -iant, -iance) 1.1, 3.3, 5, 5.1,

5.2, 6.7.5.3
component 6.2.4, 6.4.1, 6.4.2.5, 6.4.3.1,

6.4.3.2, 6.4.3.3.1, 6.4.3.3.3, 6.4.3.4,
6.4.3.6, 6.4.6, 6.5.1, 6.5.3.1,
6.5.3.2, 6.5.3.3, 6.5.6, 6.6,
6.7.2, 6.7.3.2, 6.7.3.3, 6.7.3.6,
6.7.3.7.1, 6.7.3.7.3, 6.7.5.2, 6.7.5.3,
6.7.5.4, 6.7.6.5, 6.7.6.7, 6.8.3.6,
6.8.6.1, 6.8.6.2, 6.8.6.3, 6.8.6.5,
6.8.7.2, 6.8.7.3, 6.8.8.1, 6.8.8.2,
6.8.8.3, 6.8.8.4, 6.9.3.10, 6.9.4,
6.10.1, 6.10.4, 6.10.5

component-function-access 6.8.6.1
component-type 6.2.4, 6.4.1, 6.4.3.2, 6.4.3.3.2,

6.4.3.6, 6.4.6, 6.5.5, 6.6,
6.7.2, 6.7.3.2, 6.7.3.7.1, 6.7.3.7.2,
6.7.3.8, 6.7.5.4, 6.8.7.1, 6.8.7.2

component-value 6.4.3.6, 6.4.6, 6.6, 6.8.3.5,
6.8.7.1, 6.8.7.2, 6.8.7.3

component-variable 6.5.1, 6.5.3, 6.5.3.1, 6.5.3.2
compound-statement 6.2.1, 6.9.1, 6.9.3.1, 6.9.3.2
concatenation 4, 6.4.2.2, 6.4.3.3.1, 6.4.3.6,

6.7.5.5, 6.8.3.6

182

ISO/IEC 10206:1990(E)

conditional-statement 6.9.3.1, 6.9.3.3
conformable (-ability) 6.7.3.7.1, 6.7.3.8
conformant 6.7.3.7, 6.7.3.7.2, 6.7.3.7.3
conformant array 6.7.3.7, 6.7.3.7.2
conformant-actual-variable 6.4.2.2, 6.4.3.3.1, 6.7.3.7.1, 6.7.3.7.2,

6.7.3.7.3
conformant-array-form 6.2.3.2, 6.4.1, 6.7.3.6, 6.7.3.7.1,

6.7.3.8
conformant-array-parameter 6.7.3.7.1, 6.7.3.7.2
conformant-array-parameter-speci�cation 6.7.3.6, 6.7.3.7.1
congruity (-ous) 6.7.3.4, 6.7.3.5, 6.7.3.6
const 6.1.2, 6.2.1
constant 6.3, 6.3.1, 6.4.2.2, 6.4.2.3,

6.6, 6.7.3.7.1, 6.8.8.1, 6.11.2
constant-access 6.8.1, 6.8.4, 6.8.8.1, 6.8.8.2,

6.8.8.3, 6.9.3.10
constant-access-component 6.8.8.1
constant-de�nition 6.2.1, 6.3.1
constant-de�nition-part 6.2.1, 6.3.1, 6.3.2, 6.11.1
constant-expression 6.3.1, 6.4.3.4, 6.8.2, 6.8.7.3
constant-�eld-identi�er 6.8.8.3, 6.9.3.10
constant-identi�er 6.2.2.6, 6.2.2.9, 6.3.1, 6.4.2.2,

6.4.2.3, 6.11.2, 6.11.3
constant-name 6.2.2.6, 6.3.1, 6.8.8.1, 6.11.2
constant-tag-value 6.8.7.3
constituent-identi�er 6.11.2, 6.11.3, 6.11.4.1, 6.11.4.2,

6.11.6
contain (-s, -ed, -ing) 4, 6.2.3.2, 6.2.3.8
control-variable 6.9.3.9.1, 6.9.3.9.2, 6.9.3.9.3,
correspond (-ing) 1.2, 4, 6.1.4, 6.1.5,

6.1.7, 6.1.9, 6.1.11, 6.2.1,
6.2.3.2, 6.2.3.8, 6.4.1, 6.4.2.2,
6.4.3.3.1, 6.4.3.4, 6.4.3.6, 6.4.7,
6.4.8, 6.5.1, 6.7.1, 6.7.2,
6.7.3.1, 6.7.3.2, 6.7.3.3, 6.7.3.4,
6.7.3.5, 6.7.3.6, 6.7.3.7.1, 6.7.3.7.2,
6.7.3.7.3, 6.7.3.8, 6.7.4, 6.7.5.2,
6.7.5.3, 6.7.5.5, 6.7.6.7, 6.8.4,
6.8.5, 6.8.7.3, 6.9.2.3, 6.9.3.10,
6.9.4, 6.11.3

correspond to 6.4.3.4, 6.4.3.6, 6.4.7, 6.7.5.3,
6.8.5, 6.8.7.3, 6.9.2.3, 6.11.3

cos 6.7.6.2
create (-ed, -ion) 6.2.3.5, 6.2.3.8, 6.2.4, 6.4.4,

6.4.7, 6.5.3.3, 6.7.5.3, 6.13
date 6.4.3.4, 6.7.5.8, 6.7.6.9, 6.11.6
DateValid 6.4.3.4, 6.7.5.8
day 6.4.3.4, 6.7.5.8, 6.7.6.9
decimal 6.1.7, 6.10.3.3, 6.10.3.4, 6.10.3.4.1,

6.10.3.4.2

183

ISO/IEC 10206:1990(E)

declaration 3.1, 5.1, 6.5, 6.7,
6.7.2, 6.8.8.1

de�ning occurrence 3, 6.2.2.8, 6.2.2.11, 6.2.2.13,
6.2.3.8

de�ning-point 6.2.1, 6.2.2.1, 6.2.2.2, 6.2.2.3,
6.2.2.4, 6.2.2.5, 6.2.2.7, 6.2.2.8,
6.2.2.9, 6.2.2.10, 6.2.2.11, 6.2.2.12,
6.2.3.1, 6.2.3.2, 6.3.1, 6.4.1,
6.4.2.3, 6.4.3.4, 6.4.7, 6.4.9,
6.5.1, 6.5.3.3, 6.7.1, 6.7.2,
6.7.3.1, 6.7.3.6, 6.7.3.7.1, 6.7.3.7.2,
6.8.2, 6.8.4, 6.8.6.3, 6.8.7.3,
6.8.8.3, 6.9.3.10, 6.9.4, 6.11.1,
6.11.2, 6.11.3, 6.12

de�nition 3, 3.1, 3.2, 4,
5.1, 6.1.7, 6.2.2.11, 6.7.3.7.1,
6.7.5.2, 6.8.3.5, 6.10.2, 6.10.3,
6.11.7

digit 6.1.1, 6.1.3, 6.1.4, 6.1.7,
6.4.2.2, 6.7.1, 6.10.3.3

digit-character 6.10.3.3, 6.10.3.4.1, 6.10.3.4.2
digit-sequence 6.1.7, 6.1.8
digit-value 4, 6.1.7
direct access �le 6.4.3.6, 6.7.5.2, 6.7.6.1, 6.7.6.5,

6.7.6.6
direct-access 6.4.3.6, 6.7.5.2, 6.7.6.1, 6.7.6.5,

6.7.6.6
directive 6.1.4, 6.1.5, 6.1.6
discriminant 6.4.3.3.3, 6.4.7, 6.4.8, 6.7.5.3,

6.8.4, 6.9.3.10
discriminant-identi�er 6.4.2.4, 6.4.3.3.2, 6.4.3.3.3, 6.4.3.4,

6.4.7, 6.8.1, 6.8.2, 6.8.4,
6.9.3.10, 6.11.2

discriminant-speci�cation 6.4.7
discriminant-speci�er 6.2.2.6, 6.8.4
discriminant-value 6.4.7, 6.4.8, 6.11.1
discriminated-schema (-ata) 6.4.1, 6.4.2.1, 6.4.8, 6.7.2
dispose 6.4.1, 6.7.5.3, 6.11.6
div 6.1.2, 6.8.3.1, 6.8.3.2, 6.9.3.5,

6.9.3.8, 6.11.5
do 6.1.2, 6.9.3.8, 6.9.3.9.1, 6.9.3.10,

6.11.1
domain 6.4.3.3.3, 6.4.7, 6.4.8, 6.7.3.2,

6.7.3.3, 6.7.5.3
domain-type 6.2.2.9, 6.4.1, 6.4.4, 6.4.7,

6.7.5.3
downto 6.1.2, 6.9.3.9.2
dyadic 6.4.2.2, 6.8.3.1, 6.8.3.2
dynamic-violation 3.1, 3.2, 5.1, 6.4.2.4,

6.4.3.4, 6.4.6, 6.4.8, 6.7.3.2,

184

ISO/IEC 10206:1990(E)

6.7.3.3, 6.7.3.5, 6.7.3.6, 6.7.5.3,
6.7.5.6, 6.7.6.8, 6.9.2.4, 6.9.3.5

else 6.1.2, 6.9.3.4
else-part 6.9.3.4
empty (non-) 6.4.3.3.1, 6.4.3.4, 6.4.3.6, 6.4.7,

6.7.5.2, 6.7.6.5, 6.8.2, 6.10.1,
6.10.5, 6.11.6

empty-statement 6.2.3.2, 6.9.2.1
end 6.1.2, 6.4.3.4, 6.9.3.2, 6.9.3.5,

6.11.1
end-of-�le 6.4.3.6, 6.10.2
end-of-line 6.4.3.6, 6.7.5.2, 6.7.6.5, 6.10.1,

6.10.4, 6.10.5
entire-function-access 6.8.6.1
entire-variable 6.5.1, 6.5.2, 6.9.3.9.1
enumerated-type 6.4.2.1, 6.4.2.3, 6.11.2, 6.11.7
eof 6.7.1, 6.7.5.5, 6.7.6.5, 6.8.2,

6.8.5, 6.9.3.8, 6.12
eoln 6.7.5.5, 6.7.6.5, 6.8.2, 6.10.1,

6.10.2, 6.12
epsreal 6.4.2.2, 6.7.1, 6.7.2
EQ 6.7.6.7
equivalent 4, 6.4.3.2, 6.5.3.2, 6.7.3.6,

6.7.3.7.1, 6.7.3.8, 6.7.5.2, 6.7.5.4,
6.7.5.5, 6.7.5.6, 6.7.6.3, 6.7.6.4,
6.7.6.5, 6.7.6.7, 6.8.3.5, 6.8.6.1,
6.8.6.2, 6.8.8.2, 6.9.3.8, 6.9.3.9.2,
6.9.3.10, 6.9.4, 6.10.1, 6.10.2,
6.10.3, 6.10.3.1, 6.10.3.5, 6.10.4,

error 1.2, 3.2, 5.1, 6.4.2.2,
6.4.3.6, 6.4.6, 6.4.7, 6.5.1,
6.5.3.1, 6.5.3.2, 6.5.3.3, 6.5.4,
6.5.5, 6.5.6, 6.7.3.2, 6.7.3.7.1,
6.7.3.8, 6.7.5.2, 6.7.5.3, 6.7.5.4,
6.7.5.5, 6.7.5.6, 6.7.6.2, 6.7.6.3,
6.7.6.4, 6.7.6.5, 6.7.6.6, 6.7.6.7,
6.7.6.9, 6.8.1, 6.8.3.2, 6.8.3.3,
6.8.5, 6.8.6.2, 6.8.6.3, 6.8.6.4,
6.8.6.5, 6.8.8.2, 6.8.8.3, 6.8.8.4,
6.10.1, 6.10.3, 6.10.3.1, 6.10.4,
6.10.5

evaluate (-ed, -ing, -tion) 6.2.3.8, 6.4.2.4, 6.4.8, 6.5.3.2,
6.5.6, 6.7.3.7.2, 6.7.5.2, 6.7.5.3,
6.7.5.4, 6.8.1, 6.8.3.1, 6.8.3.3,
6.8.5, 6.8.6.2, 6.8.6.5, 6.8.7.1,
6.8.8.2, 6.8.8.4, 6.9.2.2, 6.9.2.3,
6.9.3.5, 6.9.3.7, 6.9.3.9.3, 6.10.3

execute (-es, -ed, -tion, -able) 1.2, 3.1, 3.2, 3.6,
5.1, 6.2.1, 6.4.4, 6.5.1,
6.7.5.2, 6.7.5.4, 6.7.5.5, 6.7.5.7,

185

ISO/IEC 10206:1990(E)

6.9.1, 6.9.2.2, 6.9.3.1, 6.9.3.2,
6.9.3.4, 6.9.3.5, 6.9.3.6, 6.9.3.7,
6.9.3.9.1, 6.9.3.9.2, 6.9.3.9.3, 6.9.3.10,
6.9.4, 6.10.1, 6.10.2, 6.10.3,
6.10.4

exp 6.5.1, 6.7.6.2, 6.8.3.2
ExpDigits 6.10.3.4.1
exponent 6.10.3.4.1
exponentiating-operator 6.8.1, 6.8.3.1
exponentiation 6.8.3.2
export (-s, -ed, -ing) 6.1.2, 6.2.2.13, 6.4.2.5, 6.11.1,

6.11.2, 6.11.5, 6.11.6, 6.11.7
export-clause 6.11.2
export-list 6.2.2.9, 6.11.2
export-part 6.11.2
export-range 6.11.2
export-renaming-clause 6.11.2
exportable-name 6.11.2
expression 6.4.1, 6.4.2.4, 6.4.3.3.2, 6.4.7,

6.4.8, 6.5.3.2, 6.6, 6.7.2,
6.7.3.2, 6.7.3.7.2, 6.7.5.2, 6.7.5.3,
6.7.5.4, 6.7.5.5, 6.7.5.6, 6.7.6.2,
6.7.6.3, 6.7.6.4, 6.7.6.5, 6.7.6.7,
6.7.6.9, 6.8.1, 6.8.2, 6.8.3.3,
6.8.5, 6.8.7.1, 6.9.2.2, 6.9.3.5,
6.9.3.9.2, 6.9.3.9.3, 6.10.3, 6.10.3.1,
6.11.1

extend (-ed, -ing) 1.1, 1.2, 4, 5.1,
6.1.1, 6.1.4, 6.1.5, 6.1.9,
6.1.11, 6.4.3.6, 6.7.1, 6.7.5.2,
6.7.6.7, 6.8.3.5, 6.11.4.2, 6.12,
6.13

extended-digit 6.1.7
extended-number 6.1.1, 6.1.7, 6.1.10, 6.8.1
extension 3.3, 5.1, 6.1.4, 6.1.5,

6.4.3.4,
external 6.1.4, 6.1.5, 6.2.3.5, 6.2.4,

6.4.3.4, 6.5.1, 6.5.3.1, 6.7.5.2,
6.7.5.3, 6.7.5.6, 6.7.6.8, 6.11.1,
6.12

factor 6.8.1, 6.8.3.1, 6.8.3.2
false 6.4.2.2, 6.10.3.5
�eld 6.4.3.4, 6.5.3.3, 6.7.3.3, 6.7.5.8,

6.7.6.8, 6.7.6.9, 6.8.1, 6.8.7.3
�eld-designated-constant 6.2.2.6, 6.8.8.1, 6.8.8.3
�eld-designator 6.2.2.6, 6.5.3.1, 6.5.3.3
�eld-designator-identi�er 6.5.3.3, 6.8.2, 6.9.3.10, 6.9.4
�eld-identi�er 6.2.2.6, 6.4.3.4, 6.5.3.3, 6.8.6.3,

6.8.7.3, 6.8.8.3, 6.9.3.10, 6.11.2
�eld-list 6.4.3.4, 6.5.1, 6.7.5.3, 6.8.7.3

186

ISO/IEC 10206:1990(E)

�eld-list-value 6.8.7.3
�eld-speci�er 6.2.2.6, 6.5.3.3, 6.8.6.3, 6.8.8.3
�eld-value 6.2.2.6, 6.8.7.3
�eld-width 6.10.3.1, 6.10.3.5
�le 6.1.2, 6.4.1, 6.4.3.6, 6.4.10,

6.5.1, 6.7.1, 6.7.5.1, 6.7.5.2,
6.7.6.8, 6.10.2, 6.10.3.1, 6.10.3.2,
6.10.3.3, 6.10.3.4, 6.10.3.5, 6.11.6,
6.12

�le-type 6.2.4, 6.4.1, 6.4.3.1, 6.4.3.6,
6.4.6, 6.5.5, 6.7.2, 6.7.3.2,
6.7.3.3, 6.7.3.6, 6.7.3.7.2, 6.7.5.2,
6.7.5.6, 6.7.6.5, 6.7.6.6, 6.7.6.8,
6.8.7.1

�le-type-name 6.4.1
�le-variable 6.5.5, 6.7.5.2, 6.7.6.5, 6.7.6.6,

6.10.1, 6.10.2, 6.10.3, 6.10.4
�nal-value 6.9.3.9.2
�nalization 6.2.3.2, 6.2.3.4, 6.2.3.5, 6.2.3.6
�nalization-part 6.2.3.2, 6.11.1
�rst-constant-name 6.11.2
�xed-component-initial-state 6.7.3.7.1
�xed-component-type 6.7.3.7.1, 6.7.3.7.2
�xed-part 6.4.3.4, 6.8.7.3
�xed-part-value 6.8.7.3
�xed-point 6.4.2.2, 6.10.3.4.2
�xed-string-index-type 6.4.3.3.2
�xed-string-type 6.4.2.2, 6.4.3.3.1, 6.4.3.3.2, 6.4.6,

6.5.3.2, 6.5.6, 6.7.3.3, 6.7.3.7.1,
6.7.3.7.2, 6.7.5.5, 6.8.6.2, 6.8.8.2,
6.10.1

oating-point 6.4.2.2, 6.10.3.4.1
for 6.1.2, 6.9.3.9.1
for-statement 6.9.3.6, 6.9.3.9, 6.9.3.9.1, 6.9.3.9.2,

6.9.3.9.3, 6.9.4
formal-discriminant-part 6.2.3.2, 6.4.7
formal-parameter 6.2.3.2, 6.2.3.5, 6.2.3.8, 6.4.2.5,

6.7.1, 6.7.2, 6.7.3.1, 6.7.3.2,
6.7.3.3, 6.7.3.4, 6.7.3.5, 6.7.3.6,
6.7.3.7.1, 6.7.3.7.2, 6.7.3.7.3, 6.8.5,
6.9.2.3

formal-parameter-list 6.2.3.2, 6.4.9, 6.7.1, 6.7.2,
6.7.3.1, 6.7.3.4, 6.7.3.5, 6.7.3.6,
6.7.3.7.1

formal-parameter-section 6.7.3.1, 6.7.3.4, 6.7.3.5, 6.7.3.6,
6.7.3.7.1

forward 6.1.4, 6.2.1, 6.7.1, 6.7.2
FracDigits 6.10.3.1, 6.10.3.4.2
fractional-part 6.1.7
function 6.1.2, 6.2.2.7, 6.2.2.10, 6.2.3.2,

187

ISO/IEC 10206:1990(E)

6.2.3.3, 6.2.3.5, 6.4.2.2, 6.4.2.5,
6.4.3.4, 6.4.3.6, 6.5.1, 6.7,
6.7.1, 6.7.2, 6.7.3.5, 6.7.3.6,
6.7.4, 6.7.5.3, 6.7.5.6, 6.7.6,
6.7.6.1, 6.7.6.2, 6.7.6.3, 6.7.6.4,
6.7.6.5, 6.7.6.6, 6.7.6.7, 6.7.6.8,
6.7.6.9, 6.8.2, 6.8.5, 6.8.6.1,
6.9.2.2, 6.10.3.3, 6.10.3.4.1, 6.10.3.4.2,
6.11.2, 6.11.3, 6.11.5, 6.11.6,
6.11.7

function-access 6.8.1, 6.8.6, 6.8.6.1, 6.8.6.2,
6.8.6.3, 6.8.6.4

function-block 6.1.4, 6.2.3.2, 6.2.3.3, 6.7.2,
6.7.3.1, 6.8.5, 6.9.2.2, 6.11.6

function-declaration 6.1.4, 6.2.1, 6.7.2, 6.8.5
function-designator 6.2.3.2, 6.2.3.4, 6.7.3.7.2, 6.7.6.5,

6.8.5, 6.8.6.1, 6.11.4.2
function-heading 6.1.4, 6.7.2, 6.7.3.1, 6.7.3.6,

6.11.1, 6.11.6
function-identi�cation 6.7.2
function-identi�ed-variable 6.5.1, 6.8.6.4
function-identi�er 6.2.2.6, 6.2.2.9, 6.2.3.1, 6.2.3.2,

6.7.2, 6.7.3.1, 6.7.3.5, 6.7.4,
6.8.2, 6.9.2.2, 6.11.2, 6.11.3

function-name 6.2.2.6, 6.7.2, 6.7.3.5, 6.8.5,
6.8.6.1, 6.11.2

function-result-identi�er 6.7.2
functional-parameter-speci�cation 6.7.3.1, 6.7.3.6
GE 6.7.6.7
generation 6.4.3.6, 6.7.5.2, 6.10.4, 6.10.5
get 6.7.1, 6.7.5.2, 6.9.3.8, 6.10.1,

6.10.2, 6.12
GetTimeStamp 6.4.3.4, 6.7.5.8, 6.9.4, 6.11.6
goto 6.1.2, 6.9.2.4
goto-statement 6.8.5, 6.9.1, 6.9.2.1, 6.9.2.4,

6.9.3.1, 6.9.3.7, 6.9.3.9.1
greatest-value 6.11.2
GT 6.7.6.7
halt 6.7.5.7, 6.9.2.3, 6.9.3.5, 6.11.6
host-type 6.4.2.1, 6.4.2.4, 6.7.3.2
hour 6.4.3.4, 6.7.5.8
identi�ed-variable 6.5.1, 6.5.4, 6.7.5.3
identi�er 3.3, 4, 6.1.1, 6.1.3,

6.1.10, 6.2.2.1, 6.2.2.5, 6.2.2.6,
6.2.2.7, 6.2.2.8, 6.2.2.9, 6.2.2.10,
6.2.2.11, 6.3.1, 6.4.1, 6.4.2.3,
6.4.3.4, 6.4.7, 6.5.1, 6.7.1,
6.7.2, 6.7.3.1, 6.7.3.2, 6.7.3.7.1,
6.8.2, 6.9.3.9.1, 6.9.3.10, 6.11.1,
6.11.2, 6.11.3, 6.11.4.2, 6.11.6,

188

ISO/IEC 10206:1990(E)

6.12
identi�er-list 6.2.2.6, 6.4.2.3, 6.4.3.4, 6.4.7,

6.5.1, 6.7.3.1, 6.7.3.2, 6.7.3.7.1,
6.7.3.7.2, 6.7.3.7.3, 6.11.1, 6.12

identifying-value 6.2.4, 6.4.1, 6.4.4, 6.5.1,
6.5.4, 6.7.5.3

if 6.1.2, 6.9.3.4
if-statement 6.9.3.3, 6.9.3.4
im 6.7.6.2
implementation 1.2, 3.2, 5.1, 6.1.6,

6.4.2.5, 6.8.2, 6.11.1, 6.11.5,
6.11.6, 6.13

implementation-de�ned 3.2, 3.4, 5.1, 5.2,
6.1.9, 6.1.11, 6.4.2.2, 6.4.3.4,
6.4.3.6, 6.7.5.2, 6.7.5.6, 6.7.5.8,
6.7.6.8, 6.7.6.9, 6.8.2, 6.10.2,
6.10.3, 6.10.3.1, 6.10.3.4.1, 6.10.3.5,
6.10.5, 6.11.1, 6.11.4.2, 6.12

implementation-dependent 3.5, 5.1, 5.2, 6.2.3.6,
6.4.3.6, 6.4.8, 6.5.3.2, 6.5.6,
6.7.5.3, 6.7.5.6, 6.8.1, 6.8.3.1,
6.8.5, 6.8.6.2, 6.8.6.5, 6.8.7.1,
6.8.8.2, 6.8.8.4, 6.9.2.2, 6.9.2.3,
6.9.3.9.3, 6.10.1, 6.10.5

implementation-directive 6.1.1, 6.1.6, 6.11.1
implicitly accessible 6.2.3.2, 6.7.6.5, 6.10.1, 6.10.2,

6.10.3, 6.10.4, 6.10.5, 6.11.4.2
import (-s, -ed) 6.1.2, 6.2.1, 6.2.2.6, 6.2.2.7,

6.2.2.13, 6.3.1, 6.4.1, 6.4.2.5,
6.4.7, 6.5.1, 6.7.1, 6.7.2,
6.11.1, 6.11.3, 6.11.6, 6.11.7,
6.12

import-clause 6.11.3
import-list 6.11.3
import-part 6.2.1, 6.11.1
import-quali�er 6.2.2.6, 6.11.3
import-renaming-clause 6.11.3
import-speci�cation 6.2.1, 6.2.2.6, 6.11.2, 6.11.3,
imported-interface-identi�er 6.2.2.6, 6.3.1, 6.4.1, 6.4.7,

6.5.1, 6.7.1, 6.7.2, 6.11.3
in 4, 6.1.2, 6.8.3.1, 6.8.3.5,

6.9.3.9.3
index (-ed, -ing) 6.3.2, 6.4.3.3.1, 6.4.3.3.3, 6.4.6,

6.4.7, 6.5.3.2, 6.5.6, 6.7.6.7,
6.8.3.6, 6.8.6.2, 6.8.6.5, 6.8.8.2,
6.8.8.4, 6.10.1

index-domain 6.4.3.3.1, 6.5.3.2, 6.8.6.2, 6.8.8.2
index-expression 6.5.3.2, 6.5.6, 6.8.6.2, 6.8.6.5,

6.8.8.2, 6.8.8.4
index-type 6.4.1, 6.4.3.2, 6.4.3.3.2, 6.4.3.6,

189

ISO/IEC 10206:1990(E)

6.4.7, 6.5.3.2, 6.7.3.7.1, 6.7.3.8,
6.7.5.2, 6.7.5.4, 6.7.6.6, 6.8.6.2,
6.8.7.2, 6.8.8.2

index-type-speci�cation 6.7.3.6, 6.7.3.7.1, 6.7.3.8
indexed-constant 6.8.8.1, 6.8.8.2
indexed-function-access 6.8.6.1, 6.8.6.2
indexed-variable 6.5.3.1, 6.5.3.2, 6.7.3.7.2
initial state 6.2.2.7, 6.2.3.2, 6.2.3.5, 6.2.3.8,

6.2.4, 6.4.1, 6.4.2.1, 6.4.2.5,
6.4.3.1, 6.4.3.2, 6.4.3.3.3, 6.4.3.4,
6.4.3.5, 6.4.3.6, 6.4.4, 6.4.7,
6.4.8, 6.4.9, 6.4.10, 6.5.1,
6.5.3.3, 6.5.5, 6.7.1, 6.7.2,
6.7.3.2, 6.7.3.3, 6.7.3.7.1, 6.7.5.3,
6.11.2, 6.11.3

initial-state-speci�er 6.4.1, 6.4.3.2, 6.4.7, 6.6
initial-value 6.9.3.9.2
initialization 6.2.3.2, 6.2.3.4, 6.2.3.8, 6.11.6
initialization-part 6.2.3.2, 6.11.1
input 3.6, 6.1.4, 6.2.2.10, 6.5.5,

6.7.5.2, 6.7.6.5, 6.10, 6.10.1,
6.10.2, 6.11.1, 6.11.4.2, 6.12

inspection 6.4.3.6, 6.7.5.2, 6.10.3
integer 6.2.2.6, 6.4.2.1, 6.4.2.2, 6.4.2.5,

6.4.3.3.2, 6.4.3.4, 6.4.6, 6.4.7,
6.4.10, 6.5.1, 6.7.1, 6.7.3.1,
6.7.5.3, 6.8.3.2, 6.8.8.1, 6.10.3.3,
6.10.3.4.1, 6.10.3.4.2, 6.11.5, 6.11.6,
6.12

integer-type 6.1.7, 6.4.2.2, 6.4.3.3.3, 6.4.6,
6.5.3.2, 6.5.6, 6.7.5.5, 6.7.6.2,
6.7.6.3, 6.7.6.4, 6.7.6.5, 6.7.6.7,
6.8.3.2, 6.8.3.5, 6.8.6.2, 6.8.6.5,
6.8.8.2, 6.8.8.4, 6.10.1, 6.10.3.1,
6.10.3.3

interface 6.1.5, 6.2.2.2, 6.2.2.10, 6.2.2.13,
6.4.2.5, 6.11.1, 6.11.2, 6.11.3,
6.11.4, 6.11.4.2, 6.11.5, 6.11.6,
6.11.7, 6.13

interface-directive 6.1.1, 6.1.5, 6.11.1
interface-identi�er 6.2.2.6, 6.2.2.13, 6.11.2, 6.11.3,

6.11.4.1, 6.11.4.2
interface-speci�cation-part 6.11.1, 6.11.2
iteration 6.8.8.1
iteration-clause 6.9.3.9.1, 6.9.3.9.2, 6.9.3.9.3
label 6.1.1, 6.1.2, 6.1.8, 6.1.10,

6.2.1, 6.2.2.1, 6.2.2.5, 6.2.2.7,
6.2.2.8, 6.2.2.9, 6.2.2.11, 6.2.3.2,
6.9.1, 6.9.2.4, 6.9.3.5

label-declaration-part 6.2.1, 6.2.3.2

190

ISO/IEC 10206:1990(E)

last-constant-name 6.11.2
LastPosition 6.7.6.6, 6.8.2
LE 6.7.6.7
least-value 6.11.2
length 6.1.3, 6.1.9, 6.4.2.2, 6.4.3.3.1,

6.4.3.3.2, 6.4.3.3.3, 6.4.3.6, 6.4.6,
6.5.3.2, 6.5.6, 6.7.3.2, 6.7.3.7.2,
6.7.5.2, 6.7.6.6, 6.7.6.7, 6.7.6.9,
6.8.3.5, 6.8.3.6, 6.8.6.5, 6.8.8.4,
6.10.1, 6.10.3.6

letter 6.1.1, 6.1.3, 6.1.4, 6.1.7,
6.4.2.2, 6.10.3.5

line-sequence 6.4.3.6
ln 6.7.6.2, 6.8.3.2
local 6.2.3.1, 6.2.3.2, 6.2.3.8, 6.4.3.4,

6.7.3.1, 6.11.1, 6.12
LT 6.7.6.7
magnitude 6.7.6.2, 6.7.6.3
main-program-block 6.2.2.13, 6.2.3.2, 6.2.3.6, 6.2.3.7,

6.12
main-program-declaration 6.11.4.2, 6.12, 6.13
maxchar 6.4.2.2
maxint 5.2, 6.1.7, 6.4.2.2, 6.4.10,

6.9.3.5, 6.11.5, 6.11.6, 6.12
maxreal 6.4.2.2
member 6.4.3.3.1, 6.4.3.4, 6.4.3.5, 6.4.6,

6.7.6.3, 6.8.1, 6.8.3.4, 6.8.3.5,
6.9.3.9.3

member-designator 6.8.1
meta-identi�er 4, 6.1.7
metasymbol 4
minreal 6.4.2.2
minute 6.4.3.4, 6.7.5.8
mod 6.1.2, 6.7.2, 6.7.6.5, 6.8.3.1,

6.8.3.2, 6.9.3.7, 6.11.5
mode-type 6.4.3.6
module 6.1.2, 6.2.2.13, 6.2.3.1, 6.2.3.2,

6.2.3.5, 6.2.3.6, 6.2.3.7, 6.2.3.8,
6.4.2.5, 6.11, 6.11.1, 6.11.5,
6.11.6, 6.11.7

module-block 6.1.5, 6.2.2.12, 6.2.2.13, 6.2.3.1,
6.2.3.2, 6.2.3.7, 6.2.3.8, 6.3.1,
6.4.1, 6.4.2.3, 6.4.7, 6.4.8,
6.5.1, 6.7.1, 6.7.2, 6.11.1,
6.11.3, 6.11.4.2, 6.11.6, 6.13

module-declaration 6.1.5, 6.1.6, 6.11.1, 6.11.6,
6.13

module-heading 6.1.5, 6.2.2.9, 6.2.2.12, 6.2.2.13,
6.2.3.2, 6.2.3.7, 6.2.3.8, 6.3.1,
6.4.1, 6.4.2.3, 6.4.7, 6.4.8,

191

ISO/IEC 10206:1990(E)

6.5.1, 6.7.1, 6.7.2, 6.11.1,
6.11.3, 6.11.4.2, 6.11.6, 6.13

module-identi�cation 6.1.6, 6.11.1
module-identi�er 6.11.1
module-parameter 6.2.3.5, 6.5.1, 6.11.1, 6.11.2,

6.11.3, 6.12, 6.13
module-parameter-list 6.2.2.6, 6.11.1, 6.11.4.2
monadic 6.4.2.2, 6.8.3.2
month 6.4.3.4, 6.5.1, 6.7.5.8, 6.7.6.9,

6.9.3.10
multiplying-operator 6.8.1, 6.8.3.1
name 6.4.3.4
NE 6.7.6.7
negation 6.8.3.3
new 6.4.4, 6.4.7, 6.5.6, 6.7.3.3,

6.7.5.3, 6.9.4, 6.10.5, 6.11.2,
6.11.3, 6.11.5, 6.11.6

new-ordinal-type 6.4.1, 6.4.2.1, 6.4.3.4
new-pointer-type 6.2.2.9, 6.4.1, 6.4.4, 6.4.7,

6.7.5.3
new-structured-type 6.4.1, 6.4.3.1, 6.6
new-type 6.2.3.2, 6.4.1, 6.4.7
nil 6.1.2, 6.3.1, 6.4.4, 6.4.10,

6.8.1, 6.9.3.4, 6.11.6
nil-value 6.4.4, 6.5.4, 6.7.5.3, 6.8.6.4
non-decimal representation, see extended-number
nonvarying 6.4.1, 6.4.2.4, 6.4.3.3.2, 6.4.7,

6.6, 6.8.2, 6.11.1
not 6.1.2, 6.8.1, 6.8.3.3
null 6.4.3.4, 6.11.6
null-string 6.4.3.3.1, 6.7.6.7, 6.10.1
number 5.1, 6.1.7, 6.1.9, 6.4.2.1,

6.4.2.2, 6.4.2.3, 6.4.3.2, 6.4.3.3.1,
6.4.7, 6.7.3.6, 6.7.6.3, 6.7.6.4,
6.8.5, 6.9.2.3, 6.10.1, 6.10.3.3,
6.10.3.4, 6.10.3.4.1, 6.10.3.4.2, 6.11.5

odd 6.7.6.5, 6.9.3.8
of 4, 6.1.2, 6.4.3.2, 6.4.3.4,

6.4.3.5, 6.4.3.6, 6.4.9, 6.7.3.7.1,
6.8.7.3, 6.9.3.5

only 6.1.2, 6.11.3
operand 6.7.6.2, 6.8.3.1, 6.8.3.2, 6.8.3.3,

6.8.3.4, 6.8.3.5, 6.8.3.6
operation 6.4.1, 6.4.2.2, 6.4.2.5, 6.4.3.1,

6.4.3.6, 6.5.1, 6.7.2, 6.7.5.2,
6.8.3.2, 6.8.3.3, 6.8.3.4, 6.8.3.5,
6.8.3.6

operator 6.4.2.2, 6.4.3.3.1, 6.4.3.5, 6.4.4,
6.5.1, 6.7.6.7, 6.8.1, 6.8.3,
6.8.3.1, 6.8.3.2, 6.8.3.3, 6.8.3.4,

192

ISO/IEC 10206:1990(E)

6.8.3.5, 6.8.3.6, 6.9.3.5
or 6.1.2, 6.8.3.1, 6.8.3.3
or else 6.1.2, 6.8.1, 6.8.3.1, 6.8.3.3
ord 6.4.3.2, 6.4.3.6, 6.4.10, 6.7.1,

6.7.5.2, 6.7.6.4, 6.8.5
ordinal number 6.4.2.1, 6.4.2.2, 6.4.2.3, 6.7.6.4
ordinal-type 6.4.2, 6.4.2.1, 6.4.2.2, 6.4.2.4,

6.4.3.2, 6.4.3.5, 6.4.5, 6.4.6,
6.7.6.4, 6.8.1, 6.8.3.4, 6.8.3.5,
6.9.3.5, 6.9.3.9.1

ordinal-type-name 6.4.2.1, 6.4.3.4, 6.4.7, 6.7.3.6,
6.7.3.7.1, 6.7.3.8

otherwise 6.1.2, 6.4.3.4, 6.8.7.2, 6.9.3.5
output 5.2, 6.2.2.10, 6.4.2.5, 6.7.5.2,

6.10, 6.10.3, 6.10.4, 6.10.5,
6.11.1, 6.11.4.2, 6.12

pack 6.7.5.4, 6.9.4
packed 6.1.2, 6.4.3.1, 6.4.3.2, 6.4.3.3.2,

6.4.3.4, 6.4.3.5, 6.4.5, 6.7.3.3,
6.7.3.7.1, 6.7.3.7.3, 6.7.3.8, 6.7.5.2,
6.7.5.3, 6.7.5.4, 6.8.1, 6.9.4,
6.10.1, 6.12

packed-canonical-set-of-T-type 6.4.3.5, 6.7.3.2, 6.7.6.3, 6.8.1,
6.8.3.4, 6.8.3.5, 6.9.3.9.3

packed-conformant-array-form 6.7.3.6, 6.7.3.7.1, 6.7.3.8
page 6.7.5.2, 6.10.5
parameter 6.2.3.8, 6.4.2.2, 6.4.2.5, 6.4.3.3.1,

6.4.9, 6.7.1, 6.7.3, 6.7.3.1,
6.7.3.2, 6.7.3.3, 6.7.3.4, 6.7.3.5,
6.7.3.6, 6.7.3.7, 6.7.3.7.3, 6.7.5.2,
6.7.5.3, 6.7.5.5, 6.7.6.5, 6.7.6.6,
6.7.6.8, 6.8.2, 6.8.5, 6.8.6.1,
6.9.2.3, 6.9.4, 6.10.1, 6.10.2,
6.10.3, 6.10.3.1, 6.10.3.5, 6.10.4

parameter-form 6.7.3.1, 6.7.3.2, 6.7.3.3, 6.7.3.6
parameter-identi�er 6.4.9, 6.7.3.1, 6.7.3.6, 6.7.3.7.1
pass-by-reference see variable parameter
pass-by-value see value parameter
permissible 6.4.3.4, 6.4.3.6, 6.4.6, 6.7.2,

6.8.7.1
pointer-function 6.8.6.4
pointer-type 6.2.4, 6.3.1, 6.4.1, 6.4.4,

6.5.4, 6.7.5.3, 6.8.3.5, 6.8.6.4
pointer-type-name 6.4.1, 6.4.4
pointer-variable 6.5.4
polar 6.4.2.2, 6.5.1, 6.7.6.3
position 6.4.3.6, 6.7.6.1, 6.7.6.6, 6.7.6.7,

6.8.2, 6.10.2
post-assertion 6.7.5.2, 6.10.1, 6.10.2, 6.10.3,

6.10.4, 6.11.4.2

193

ISO/IEC 10206:1990(E)

pow 6.1.2, 6.8.1, 6.8.3.1, 6.8.3.2,
6.10.3.3, 6.10.3.4.1, 6.10.3.4.2

pre-assertion 6.7.5.2, 6.10.1, 6.10.4, 6.10.5
precedence 6.8.1
pred 6.7.6.4, 6.9.3.9.2
predeclared see required
prede�ned see required
primary 6.7.3.2, 6.7.3.7.1, 6.7.5.3, 6.8.1,

6.8.3.1
principal identi�er 6.4.2.3, 6.11.2, 6.11.3
procedural-parameter-speci�cation 6.7.3.1, 6.7.3.6
procedure 3.2, 6.1.2, 6.2.2.6, 6.2.2.7,

6.2.2.10, 6.2.3.2, 6.2.3.3, 6.2.3.5,
6.4.1, 6.4.2.5, 6.4.3.4, 6.4.3.6,
6.4.4, 6.4.9, 6.7, 6.7.1,
6.7.3.1, 6.7.3.3, 6.7.3.4, 6.7.3.5,
6.7.3.6, 6.7.4, 6.7.5, 6.7.5.1,
6.7.5.2, 6.7.5.3, 6.7.5.4, 6.7.5.5,
6.7.5.6, 6.7.5.7, 6.7.5.8, 6.7.6.8,
6.9.2.3, 6.9.4, 6.10.1, 6.10.2,
6.10.3, 6.10.4, 6.10.5, 6.11.2,
6.11.3, 6.11.4.2, 6.11.5, 6.11.6,
6.11.7, 6.12, 6.13

procedure-and-function-declaration-part 6.2.1, 6.2.3.1, 6.7.1, 6.7.2,
6.9.3.9.1, 6.11.1

procedure-and-function-heading-part 6.2.3.1, 6.7.1, 6.7.2, 6.11.1
procedure-block 6.1.4, 6.2.3.2, 6.2.3.3, 6.7.1,

6.7.3.1, 6.9.2.3
procedure-declaration 6.1.4, 6.2.1, 6.7.1, 6.9.2.3
procedure-heading 6.1.4, 6.7.1, 6.7.3.1, 6.7.3.6,

6.11.1
procedure-identi�cation 6.7.1
procedure-identi�er 6.2.2.6, 6.2.2.9, 6.2.3.1, 6.2.3.2,

6.7.1, 6.7.3.1, 6.7.3.4, 6.7.4,
6.11.2, 6.11.3

procedure-name 6.2.2.6, 6.7.1, 6.7.3.4, 6.8.5,
6.9.2.3, 6.11.2

procedure-statement 6.2.3.2, 6.2.3.4, 6.7.5.2, 6.9.2.1,
6.9.2.3, 6.9.4, 6.10.1, 6.10.2,
6.10.3, 6.10.4, 6.10.5, 6.11.4.2

processor 1.1, 1.2, 3.1, 3.2,
3.4, 3.5, 3.6, 5.2,
6.1.4, 6.1.5, 6.1.11, 6.4.3.1,
6.4.3.4, 6.7.3.1, 6.7.6.8,

produce (-ed) 3.6, 5.1, 5.2, 6.1.4,
6.4.1, 6.4.3.3.3, 6.4.4, 6.4.6,
6.4.7, 6.4.8, 6.7.3.2, 6.7.3.3,
6.7.3.5, 6.7.3.6, 6.8.4, 6.9.3.10,
6.11.2

production 4

194

ISO/IEC 10206:1990(E)

program 1.1, 1.2, 3.1, 3.2,
3.3, 3.6, 4, 5.1,
6.1.1, 6.1.2, 6.1.10, 6.2.2.2,
6.2.2.6, 6.2.2.10, 6.2.3.2, 6.2.4,
6.4.2.5, 6.4.4, 6.7.3.3, 6.7.5.3,
6.7.5.4, 6.7.5.5, 6.7.5.6, 6.7.5.7,
6.7.6.7, 6.7.6.8, 6.9.3.9.2, 6.11.1,
6.11.4.2, 6.12, 6.13

program-block 1.2, 5.1, 6.1.4, 6.2.2.1,
6.2.2.9, 6.2.3.6, 6.7.5.3, 6.8.2,
6.9.2.4, 6.11.1, 6.11.2, 6.11.4.2,
6.13

program-component 6.11.1, 6.11.6, 6.13
program-heading 6.2.2.1, 6.12
program-parameter 6.2.3.5, 6.5.1, 6.7.6.8, 6.12,
program-parameter-list 6.2.2.6, 6.11.4.2, 6.12
program-point 6.2.1, 6.2.3.2, 6.2.3.5, 6.9.2.4
protectable 6.4.1, 6.7.3.1, 6.11.2
protected 6.1.2, 6.5.1, 6.7.2, 6.7.3.1,

6.7.3.6, 6.7.3.7.1, 6.9.4, 6.11.2,
6.11.3, 6.11.6

put 6.7.1, 6.7.5.2, 6.10.3, 6.12
quali�ed 6.1.2, 6.2.2.6, 6.2.2.11, 6.11.3,

6.11.6
range 6.4.7, 6.4.10, 6.11.2, 6.11.6,

6.11.7
range-type 6.4.2.1, 6.4.2.4, 6.4.3.5, 6.4.5,

6.9.3.9.2
re 6.7.6.2
read 6.7.5.2, 6.7.5.5, 6.9.2.3, 6.9.4,

6.10.1, 6.10.2, 6.12
read-parameter-list 6.9.2.3, 6.9.4, 6.10.1
readln 6.7.5.2, 6.7.6.8, 6.9.2.3, 6.9.4,

6.10.2, 6.12
readln-parameter-list 6.9.2.3, 6.9.4, 6.10.2
readstr 6.7.5.5, 6.9.2.3, 6.9.4
readstr-parameter-list 6.7.5.5, 6.9.2.3, 6.9.4
real 6.4.2.2, 6.4.2.5, 6.4.3.2, 6.4.3.4,

6.4.3.6, 6.4.6, 6.4.10, 6.5.1,
6.7.1, 6.7.2, 6.7.5.5, 6.7.6.2,
6.7.6.3, 6.8.3.2, 6.10.3.4.1, 6.11.5,
6.12

real-type 6.1.7, 6.4.2.1, 6.4.2.2, 6.4.6,
6.7.5.5, 6.7.6.2, 6.7.6.3, 6.8.2,
6.8.3.2, 6.8.3.5, 6.10.1, 6.10.3.1,
6.10.3.4

real-type-name 6.4.2.1
record 6.1.2, 6.4.2.5, 6.4.3.4, 6.4.7,

6.4.10, 6.5.1, 6.11.5, 6.11.6
record-constant 6.8.8.3

195

ISO/IEC 10206:1990(E)

record-function 6.8.6.3
record-function-access 6.2.2.6, 6.8.6.1, 6.8.6.3
record-section 6.4.3.4
record-type 6.2.4, 6.4.3.1, 6.4.3.4, 6.5.3.3,

6.7.5.3, 6.7.6.8, 6.8.6.3, 6.8.7.3,
6.8.8.3, 6.9.3.10, 6.11.2

record-type-name 6.4.1, 6.8.7.1
record-value 6.6, 6.8.7.1, 6.8.7.3
record-variable 6.4.3.4, 6.5.3.3, 6.8.6.1, 6.9.4
reference (-ed, -es, -ing) 6.2.3.2, 6.2.3.5, 6.5.3.1, 6.5.3.2,

6.5.3.3, 6.5.4, 6.5.5, 6.5.6,
6.7.3.3, 6.7.3.7.1, 6.7.3.7.3, 6.7.5.2,
6.7.5.4, 6.7.5.5, 6.7.6.8, 6.9.2.2,
6.9.3.10, 6.10.1, 6.10.2, 6.10.3,
6.10.4, 6.11.1

reference representation 6.1.11
region 6.2.1, 6.2.2.2, 6.2.2.3, 6.2.2.4,

6.2.2.5, 6.2.2.6, 6.2.2.7, 6.2.2.10,
6.2.2.12, 6.2.3.1, 6.3.1, 6.4.1,
6.4.2.3, 6.4.3.4, 6.4.7, 6.5.1,
6.5.3.3, 6.7.1, 6.7.2, 6.7.3.1,
6.7.3.7.1, 6.8.4, 6.8.6.3, 6.8.7.3,
6.8.8.3, 6.9.3.10, 6.11.1, 6.11.2,
6.11.3, 6.12

relational-operator 6.4.2.2, 6.4.3.3.1, 6.8.1, 6.8.3.1,
6.8.3.5

remote-directive 6.1.1, 6.1.4, 6.2.1, 6.7.1,
6.7.2

repeat 6.1.2, 6.7.2, 6.7.6.8, 6.9.3.7,
6.9.3.8, 6.11.6

repeat-statement 6.9.3.6, 6.9.3.7
repetitive-statement 6.9.3.1, 6.9.3.6
representation 1.2, 6.1.1, 6.1.11, 6.4.2.2,

6.4.3.1, 6.4.3.6, 6.7.5.5, 6.7.6.9,
6.10.3, 6.10.3.2, 6.10.3.3, 6.10.3.4,
6.10.3.4.1, 6.10.3.4.2, 6.10.3.5, 6.10.3.6,
6.11.1, 6.12

required 3.2, 4, 5.1, 6.1.3,
6.1.4, 6.1.5, 6.1.6, 6.1.9,
6.1.11, 6.2.2.10, 6.2.3.2, 6.3.1,
6.4.1, 6.4.2.2, 6.4.3.3.1, 6.4.3.3.3,
6.4.3.4, 6.4.3.6, 6.4.4, 6.4.8,
6.7.1, 6.7.3.2, 6.7.3.5, 6.7.4,
6.7.5, 6.7.5.1, 6.7.5.2, 6.7.5.3,
6.7.5.5, 6.7.5.6, 6.7.5.8, 6.7.6,
6.7.6.1, 6.7.6.2, 6.7.6.5, 6.7.6.8,
6.7.6.9, 6.8.2, 6.9.2.3, 6.9.2.4,
6.9.4, 6.10.1, 6.10.2, 6.10.3,
6.10.3.4.2, 6.10.4, 6.10.5, 6.11.1,
6.11.2, 6.11.4, 6.11.4.1, 6.11.4.2,

196

ISO/IEC 10206:1990(E)

6.12
reset 6.7.1, 6.7.5.2, 6.7.5.5, 6.11.4.2,
restricted 6.1.2, 6.4.2.5
restricted-type 6.4.1, 6.4.2.5, 6.4.3.4, 6.4.3.6,

6.7.3.3
restriction 6.4.3.4, 6.4.6, 6.7.5.5, 6.7.6.2,

6.9.3.9.2, 6.13
result 5.1, 6.2.3.2, 6.4.2.2, 6.4.2.5,

6.5.1, 6.7.1, 6.7.2, 6.7.5.3,
6.7.6.2, 6.7.6.3, 6.7.6.4, 6.7.6.6,
6.7.6.7, 6.7.6.8, 6.7.6.9, 6.8.3.2,
6.8.3.4, 6.8.3.5, 6.8.3.6, 6.8.5,
6.8.6.1, 6.9.2.2, 6.11.2, 6.11.5

result-type 6.7.2, 6.7.3.5, 6.7.3.6
result-variable-speci�cation 6.7.2
rewrite 6.7.1, 6.7.5.2, 6.7.5.5, 6.11.4.2,

6.11.6, 6.12
round 6.7.6.3
same tuple 6.4.7
same type 6.4.1, 6.7.3.7.1
scale-factor 6.1.7
schema (-ata) 6.2.2.7, 6.2.2.10, 6.2.3.2, 6.2.3.5,

6.4, 6.4.1, 6.4.3.3.3, 6.4.3.4,
6.4.4, 6.4.6, 6.4.7, 6.4.8,
6.7.3.2, 6.7.3.3, 6.7.3.5, 6.7.3.6,
6.7.5.3, 6.8.4, 6.9.3.10, 6.11.2,
6.11.3

schema-de�nition 6.2.1, 6.2.3.2, 6.2.3.8, 6.4.1,
6.4.7, 6.8.1

schema-discriminant 6.2.2.6, 6.8.1, 6.8.2, 6.8.4
schema-discriminant-identi�er 6.8.4, 6.9.3.10
schema-identi�er 6.2.2.6, 6.2.2.9, 6.4.1, 6.4.3.3.3,

6.4.7, 6.7.3.2, 6.7.5.3, 6.11.2,
6.11.3

schema-name 6.2.2.6, 6.4.4, 6.4.7, 6.4.8,
6.7.3.1, 6.7.3.2, 6.7.3.3, 6.7.3.6,
6.11.2

schematic 6.7.3.3
scope 1, 6.2, 6.2.2, 6.2.2.2,

6.2.2.4, 6.2.2.5, 6.2.2.6, 6.2.2.8,
6.11.2

second 6.4.2.4, 6.4.2.5, 6.4.3.4, 6.4.7,
6.5.6, 6.7.3.7.1, 6.7.5.8, 6.8.6.5,
6.8.8.4, 6.11.5

SeekRead 6.7.5.2
SeekUpdate 6.7.5.2
SeekWrite 6.7.5.2
selective-import-option 6.11.3
selector 6.4.3.4, 6.4.3.6, 6.5.1, 6.5.3.3,

6.7.3.3, 6.7.5.3, 6.8.7.3

197

ISO/IEC 10206:1990(E)

selector-type 6.4.1, 6.4.3.4
separate compilation see program-component
sequence 6.4.3.6
sequence-iteration 6.9.3.9.1, 6.9.3.9.2
sequence-type 6.4.3.6, 6.10.1
set 6.1.2, 6.4.3.5
set operator 6.8.3.2, 6.8.3.4
set-constructor 6.8.1, 6.8.7.4
set-expression 6.9.3.9.3
set-member-iteration 6.9.3.9.1, 6.9.3.9.3
set-type 6.4.1, 6.4.3.1, 6.4.3.5, 6.4.5,

6.4.6, 6.7.3.2, 6.8.1, 6.8.3.5,
6.8.7.4

set-type-name 6.4.1, 6.8.7.1
set-value 6.8.7.1, 6.8.7.4
sign 6.1.7, 6.8.1, 6.8.3.2, 6.10.3.3,

6.10.3.4.1
signed-integer 6.1.7, 6.4.2.2, 6.10.1
signed-number 6.1.7
signed-real 6.1.7, 6.4.2.2
simple-expression 6.8.1, 6.8.3.1, 6.8.3.3
simple-statement 6.9.1, 6.9.2, 6.9.2.1
simple-type 6.4.1, 6.4.2, 6.4.2.1, 6.4.2.2,

6.8.3.5
simple-type-name 6.4.1
sin 6.7.6.2, 6.8.1, 6.8.5
special-symbol 6.1.1, 6.1.2
spelling 3.3, 6.1.3, 6.1.8, 6.2.2.5,

6.2.2.7, 6.2.2.8, 6.4.2.3, 6.11.1,
6.11.3, 6.12

sqr 6.7.6.2, 6.9.2.2, 6.9.3.8
sqrt 6.7.2, 6.7.6.2, 6.8.5
StandardInput 6.2.2.10, 6.11.4.2
StandardOutput 6.2.2.10, 6.4.2.5, 6.11.4.2
statement 3.1, 5.1, 6.2.1, 6.2.3.2,

6.4.5, 6.4.6, 6.5.1, 6.7.2,
6.7.3.6, 6.7.3.8, 6.7.5.2, 6.7.5.4,
6.7.5.5, 6.7.5.6, 6.8.7.2, 6.9,
6.9.1, 6.9.2.1, 6.9.3.1, 6.9.3.4,
6.9.3.5, 6.9.3.6, 6.9.3.8, 6.9.3.9.1,
6.9.3.9.2, 6.9.3.9.3, 6.9.3.10, 6.9.4,
6.10.1, 6.10.2, 6.10.3, 6.10.4,
6.11.1

statement-part 6.2.1, 6.2.3.2, 6.9.1
statement-sequence 6.9.1, 6.9.3.1, 6.9.3.2, 6.9.3.5,

6.9.3.7
state 6.2, 6.2.2.7, 6.2.3.2, 6.2.3.5,

6.2.3.8, 6.2.4, 6.4.1, 6.4.2.1,
6.4.2.5, 6.4.3.1, 6.4.3.2, 6.4.3.3.3,
6.4.3.4, 6.4.3.5, 6.4.3.6, 6.4.4,

198

ISO/IEC 10206:1990(E)

6.4.7, 6.4.8, 6.4.9, 6.4.10,
6.5.1, 6.5.3.1, 6.5.3.3, 6.5.5,
6.6, 6.7.1, 6.7.2, 6.7.3.1,
6.7.3.2, 6.7.3.3, 6.7.3.7.1, 6.7.5.2,
6.7.5.3, 6.7.5.6, 6.11.2, 6.11.3

string 6.1.9, 6.4.2.2, 6.4.3.3.1, 6.4.3.3.3,
6.4.8, 6.4.10, 6.7.3.2, 6.7.5.1,
6.7.5.3, 6.7.5.5, 6.7.6.1, 6.7.6.7,
6.8.3.2, 6.8.3.6, 6.11.6

string operator 6.8.3.2, 6.8.3.6
string-character 6.1.9
string-constant 6.8.8.2, 6.8.8.4
string-element 6.1.9, 6.4.3.3.1
string-expression 6.7.5.5
string-function 6.8.6.2, 6.8.6.5
string-type 6.4.2.2, 6.4.3.3, 6.4.3.3.1, 6.4.3.3.2,

6.4.3.3.3, 6.4.5, 6.4.6, 6.5.3.1,
6.5.3.2, 6.7.3.2, 6.7.3.3, 6.7.3.7.1,
6.7.3.7.2, 6.7.5.5, 6.7.6.7, 6.8.1,
6.8.3.5, 6.8.6.2, 6.8.6.5, 6.8.8.2,
6.8.8.4, 6.10.1, 6.10.3.1, 6.10.3.6

string-variable 6.5.3.2, 6.5.6, 6.7.5.5, 6.9.4
structured-statement 6.9.1, 6.9.3, 6.9.3.1
structured-type 6.2.4, 6.4.1, 6.4.3, 6.4.3.1,

6.4.3.4, 6.4.3.6, 6.5.1, 6.6,
6.7.2, 6.8.7.1

structured-type-name 6.4.1, 6.4.3.1
structured-value-constructor 6.8.1, 6.8.7, 6.8.7.1
subrange-bound 6.2.3.8, 6.4.1, 6.4.2.4, 6.4.3.3.2,

6.4.7, 6.11.1
subrange-type 6.4.1, 6.4.2.1, 6.4.2.4, 6.4.3.3.2,

6.4.3.5, 6.4.7, 6.7.3.2
substr 6.7.6.7
substring-constant 6.8.8.1, 6.8.8.4
substring-function-access 6.8.6.1, 6.8.6.5
substring-variable 6.5.1, 6.5.6, 6.7.3.3
succ 6.7.5.4, 6.7.6.4, 6.7.6.6, 6.9.2.2,

6.9.3.9.2
supply (-ies, -ying) 6.2.2.13, 6.2.3.6, 6.11.1
symbol 4, 6.1.7, 6.4.1, 6.8.3.2,

6.9.2.1
tag-�eld 6.4.3.4, 6.7.5.3
tag-�eld-identi�er 6.2.2.6, 6.8.7.3
tag-type 6.4.3.4, 6.7.5.3
term 3, 4, 5.1, 6.4.3.1,

6.8.1, 6.8.3.1, 6.8.3.2, 6.8.3.3,
6.8.3.5

terminal (non-) 4, 6.7.5.2
terminate (-ed, -es, -ion) 5.1, 6.2.3.2, 6.2.3.5, 6.2.3.6,

6.7.5.3, 6.8.5, 6.9.2.4, 6.10.4,

199

ISO/IEC 10206:1990(E)

6.11.6
text 4, 5.1, 6.1.10, 6.2.2.2,

6.2.2.6, 6.4.2.5, 6.4.3.6, 6.7.1,
6.7.5.2, 6.7.5.5, 6.7.6.8, 6.10.1,
6.10.5, 6.11.6

text�le 6.2.3.2, 6.4.2.2, 6.4.3.3.1, 6.4.3.6,
6.5.5, 6.7.6.5, 6.10.1, 6.10.2,
6.10.3, 6.10.4, 6.10.5, 6.11.1,
6.11.4.2, 6.12

then 6.1.2, 6.9.3.4
threaten (-ing) 6.5.1, 6.7.2, 6.9.3.9.1, 6.9.4
time 6.1.3, 6.4.3.1, 6.4.3.4, 6.5.1,

6.7.5.1, 6.7.5.6, 6.7.5.8, 6.7.6.1,
6.7.6.9, 6.11.6

TimeStamp 6.4.3.4, 6.7.2, 6.7.5.8, 6.7.6.9,
6.11.6

TimeValid 6.4.3.4, 6.7.5.8
to 6.1.2, 6.9.3.9.2, 6.11.1
token 4, 6.1, 6.1.1, 6.1.2,

6.1.10, 6.1.11, 6.4.3.1, 6.4.4,
6.9.3.4

totally-unde�ned 6.2.4, 6.4.1, 6.4.2.1, 6.4.3.4,
6.4.3.5, 6.4.3.6, 6.4.4, 6.4.8,
6.5.1, 6.5.3.3, 6.5.5, 6.6,
6.7.3.2, 6.7.5.2, 6.7.5.6, 6.7.6.8,
6.10.1, 6.10.4, 6.10.5

TotalWidth 6.10.3.1, 6.10.3.2, 6.10.3.3, 6.10.3.4.1,
6.10.3.4.2, 6.10.3.5, 6.10.3.6

trim 6.7.6.7
true 6.4.2.2, 6.10.3.5
trunc 6.7.6.3
tuple (triple, k-tuples, m-tuples) 6.4.3.2, 6.4.3.3.3, 6.4.3.4, 6.4.6,

6.4.7, 6.4.8, 6.7.3.2, 6.7.3.3,
6.7.3.5, 6.7.3.6, 6.7.5.3, 6.8.1,
6.8.4, 6.9.3.10

type 6.2.3.2, 6.4
type-de�nition 6.2.1, 6.4.1
type-de�nition-part 6.2.1, 6.2.2.9, 6.4.1, 6.4.7,

6.4.10, 6.11.1
type-denoter 6.2.4, 6.4.1, 6.4.3.2, 6.4.3.4,

6.4.3.6, 6.4.7, 6.5.1, 6.6,
6.7.2

type-identi�er 6.2.2.6, 6.2.2.7, 6.2.2.9, 6.2.2.11,
6.3.2, 6.4.1, 6.4.2.2, 6.4.3.4,
6.4.3.6, 6.7.5.2, 6.7.5.3, 6.7.5.6,
6.7.5.8, 6.7.6.8, 6.7.6.9, 6.11.2,
6.11.3

type-inquiry 6.4.1, 6.4.2.1, 6.4.9, 6.7.3.1,
6.7.3.2, 6.7.3.3, 6.7.3.6

type-inquiry-object 6.4.9

200

ISO/IEC 10206:1990(E)

type-name 6.2.2.6, 6.4.1, 6.4.2.1, 6.4.2.5,
6.4.4, 6.7.2, 6.7.3.1, 6.7.3.2,
6.7.3.3, 6.7.3.6, 6.7.3.7.1, 6.7.3.8,
6.8.2, 6.11.2

unbind 6.7.5.6, 6.7.6.8, 6.9.4, 6.11.6
unde�ned 6.2.4, 6.4.3.4, 6.4.10, 6.5.3.2,

6.5.3.3, 6.5.4, 6.5.6, 6.6,
6.7.5.2, 6.7.5.3, 6.7.5.4, 6.7.6.5,
6.7.6.6, 6.8.1, 6.8.5, 6.9.3.9.1,
6.10.3, 6.10.4

underlying-type 6.4.2.5, 6.7.3.2, 6.7.3.3, 6.9.2.2
underscore 6.1.3, 6.1.4
unpack 6.7.5.4, 6.9.4
unpacked-canonical-set-of-T-type 6.4.3.5, 6.7.3.2, 6.7.6.3, 6.8.1,

6.8.3.4, 6.8.3.5, 6.9.3.9.3
unpacked-conformant-array-form 6.7.3.6, 6.7.3.7.1, 6.7.3.8
unpacked-structured-type 6.4.3.1
unsigned-constant 6.8.1
unsigned-integer 6.1.7
unsigned-number 6.1.1, 6.1.7, 6.1.10, 6.8.1
unsigned-real 6.1.7
until 6.1.2, 6.9.3.7
update 6.4.3.6, 6.7.5.2
value 6.2.4
value parameter 6.2.3.8, 6.4.2.2, 6.4.2.5, 6.4.3.3.1,

6.7.3.1, 6.7.3.2
value-bearing (non-) 6.2.3.8, 6.2.4, 6.4.3.2, 6.4.3.4
value-conformant-array-speci�cation 6.2.3.2, 6.4.2.2, 6.4.3.3.1, 6.7.3.6,

6.7.3.7.1, 6.7.3.7.2
value-parameter-speci�cation 6.2.3.2, 6.4.9, 6.7.3.1, 6.7.3.2,

6.7.3.6
var 6.1.2, 6.2.1, 6.2.2.6, 6.4.2.5,

6.4.9, 6.5.1, 6.7.1, 6.7.2,
6.7.3.1, 6.7.3.7.1, 6.7.6.8, 6.8.8.1,
6.11.5, 6.11.6, 6.12

variable 6.2.3.2, 6.5
variable parameter 6.2.3.8, 6.4.2.5, 6.7.3.1, 6.7.3.3,

6.7.3.7.3, 6.7.5.2, 6.7.5.3, 6.8.6.1,
6.9.4, 6.10.1

variable-access 6.5.1, 6.5.3.2, 6.5.3.3, 6.5.4,
6.5.5, 6.7.2, 6.7.3.3, 6.7.3.7.3,
6.7.5.2, 6.7.5.3, 6.7.5.4, 6.7.5.5,
6.7.5.6, 6.7.5.8, 6.7.6.8, 6.8.1,
6.8.2, 6.8.4, 6.8.5, 6.8.6.1,
6.9.2.2, 6.9.3.9.1, 6.9.3.10, 6.9.4,
6.10.1, 6.10.2

variable-conformant-array-speci�cation 6.2.3.2, 6.7.3.6, 6.7.3.7.1, 6.7.3.7.3
variable-declaration 6.2.1, 6.2.3.8, 6.5.1
variable-declaration-part 6.2.1, 6.2.3.1, 6.5.1, 6.9.3.9.1,

6.11.1

201

ISO/IEC 10206:1990(E)

variable-identi�er 6.2.2.6, 6.2.2.9, 6.2.3.1, 6.2.3.2,
6.2.3.8, 6.4.9, 6.5.1, 6.7.2,
6.7.3.1, 6.7.3.2, 6.7.3.3, 6.7.3.7.1,
6.7.3.7.2, 6.7.3.7.3, 6.8.2, 6.11.1,
6.11.2, 6.11.3, 6.12

variable-name 6.2.2.6, 6.4.9, 6.5.1, 6.5.2,
6.7.3.6, 6.11.2

variable-parameter-speci�cation 6.2.3.2, 6.4.9, 6.7.3.1, 6.7.3.3,
6.7.3.6

variable-string-type 6.4.3.3.1, 6.4.3.3.3, 6.4.3.4, 6.5.3.2,
6.7.5.3, 6.7.5.5, 6.7.6.7, 6.8.6.2,
6.8.8.2, 6.10.1

variant 6.1.7, 6.1.11, 6.4.3.4, 6.4.7,
6.5.1, 6.5.3.3, 6.7.5.3, 6.8.6.3,
6.8.7.3, 6.8.8.3

variant record see variant-part
variant-denoter 6.4.3.4, 6.5.1, 6.7.5.3
variant-list-element 6.4.3.4
variant-part 6.4.3.4, 6.4.7, 6.5.1, 6.5.3.3,

6.7.3.3, 6.7.5.3, 6.8.7.3
variant-part-completer 6.4.3.4
variant-part-value 6.8.7.3
variant-selector 6.4.3.4, 6.4.7, 6.7.5.2, 6.7.5.3,

6.10.1
variant-type 6.4.3.4, 6.8.7.3
violation (non-) 3.1, 3.2, 5.1, 6.6
while 6.1.2, 6.9.3.8
while-statement 6.9.3.6, 6.9.3.8
with 6.1.2, 6.9.3.10
with-element 6.9.3.10, 6.9.4
with-list 6.9.3.10, 6.9.4
with-statement 6.8.6.1, 6.9.3.1, 6.9.3.10, 6.9.4
within 6.2.3.3
word-symbol 6.1.2, 6.1.3, 6.1.10
write 6.4.2.5, 6.7.5.2, 6.9.2.3, 6.9.3.10,

6.10.3, 6.10.3.1, 6.10.3.4.1, 6.10.3.4.2,
6.10.4, 6.11.6, 6.12

write-parameter 6.7.5.5, 6.10.3, 6.10.3.1, 6.10.4
write-parameter-list 6.9.2.3, 6.10.3
writeln 5.2, 6.4.2.5, 6.7.5.2, 6.7.5.5,

6.7.6.8, 6.8.8.1, 6.9.2.3, 6.9.3.4,
6.9.3.5, 6.10.4, 6.10.5, 6.11.6,

writeln-parameter-list 6.9.2.3, 6.10.4
writestr 6.7.5.5, 6.9.2.3, 6.9.4
writestr-parameter-list 6.7.5.5, 6.9.2.3
year 6.4.3.4, 6.4.10, 6.5.1, 6.5.3.3,

6.7.5.8, 6.7.6.9, 6.9.3.10

202

