
PASCAL USER'S GROUP

USER'S

GROUP P ASCALNEWSLETTER
NUMBER 8

COMMUNICATIONS ABOUT THE PROGRAMMING LANGUAGE PASCAL BY PASCALERS

*

*

*

*

.,*

*

*
#'
*

*

*

*

*

MAY} 1977

TAB LEO F CON TEN T S

a POLICY

2
2
3
6
7

8

8

11

12

15

16

18

19
22
40
40
40
40 "
40
42
44 /
64

.EDITOR'S CONTRIBUTION

HERE AND TffEREWITH PASCAL.
News
Conferences
Books and Articles
Applications

ARTICLES

"Development of a Pascal Compiler for the C. I.1. IRIS 50.
A Parti al History. II
'. .. Olivier Lecarme

"A Further Defence of Formatted Iriput"
.c'.' .' " - B. A. E. 'Meeki ngs

ilPt6~6:~al S fo~P:~~ca 1"
. - heorge H. Richmond

"A Proposal for Increased Security in the Use of Variant
Records"- William Barabash, Charles R. Hill, and

Richard B. Kieburtz . .

"Update on UCSD Pascal, Activities"
- Kenneth L. Bowl es

65 ALL PURPOSE COUPON

..... "#
.'.* .

*

*

'" #
~" 'J' ;

*

*

*

*

*

>
() -

"'.~SCl~L USER 'S G ROUP POLl (1 ES

Purposes - are to promote the use of the programming language Pascal as well as the
ideas behind Pascal. Pascal is a practical, general purpose language
\,/ith a small and systematic structure being used for: '

* teaching programming concepts .
* developing reliable "production" software
* implementing software efficiently on today's machines
* writing portable software

Membership - is open to anyone: particularly the Pasc~l user, teacher, maihtainer, I
impl ementor, di stributor, or just pl ai nfan. Institutional membershi ps, '
especially libraries, are encouraged. Membership is per academic year end~
June 30. Anyone joining for a particular year will receivea1l 4 quarterl}
issues of FMC.a£. NeLIJI.>R.e:Ue.1t for that year. {In other words, back issues ar
sent automatically.} First time members receive a receipt for membership;
renewers do not to save PUG postage.
Cost of membership per a.cademic year is $4 and may be sent to:
Pascal User's Group/%Andy Mickel/University Computer Center/227 Exp'Engr'/
University of Minnesota/Minneapolis, MN 55455 USAf phone: (612) 376-7290

In the United Kingdom,send £2.50 to: . ' .'
Pascal Users' Group/ %Judy Mullins/Mathematics Department/The University/
SOUTHAMPTON/S09 5NH/UnitedKingdom/ (te1ephone~193~~59122x2387) , ..

PASCAL NEWSLETTER POLICIES

The FMC.a£. Nwl.>R.e..ttvr. is the official but .informal publication of theUser's Group .
. . It is produced quarterly (usually September, November,February, and May).

A complete membership list is printed in the November issue. Single
back issues are available for $1 each~ Out of print: #5),2,3,4 :,::

The contribution by PUG members ofi deas , queries, articl es" etters ,and opinions for
the NeJ.IJI.>R.e:Ue.1t is important. Articl es and noti ces concern: Pascal
philosophy, the use of Pascal as a teaching tool, uses of Pascal at differe
computer installations, portable (applications) program exchange, how to
promote Pascal usage, and important events (meetings, publications, etc.).

Imp1 ementatidh information for the programming 1 anguage Pascal on di fferent computer
systems is provided in the NWI.>R.e:Ue.1t out of the necessity to spread the us
of Pascal. This includes contacts for maintainers, documentors, and
distributors of a given implementation as well as v.,rhere to send bug reports
Both qualitative and quantitative descriptions for a given implementation a
publicized. Proposed extensions to Standard Pascal for users of a given ~
impl ementation are aired. Announcements are made of the avail abil i ty of '\€
software writing tools for a Pascal environment. .

(
t~iscellaneous features include bibliographies, questionaires t and membership lists.

. Editor's notes are in pascal style comments (**). '
. .

ALL THE NEWS THAT FITS J WE PRINT. PLEASE SEND WRITTEN MATERIAL TO THE
NEWSLETTER SINGLE SPACED AND IN CAMERA-READY FORM. USE NARROW MARGINS;
(LINE WIDTH 18,5 CENTIMETERS) •. REMEMBERJ ALL LETTERS TO US WILL BE ~

PRINTED UNLESS THEY CONTAIN A REQUEST TO THE CONTRARY,r
v V • "

- Andy Mickel, editor, John P. Strait, associate editor~April 26, 1977.

lID UNIVERSITY OF MINNESOTA University Computer Center
TWIN CITIES 227 Experimental Engineering Building

Minneapolis, Minnesota 55455

(612) 376-7290

his issue with so mqny important topics is late. I think that George Richmond deserves
nother round of thanks for the early work he did on Pascal Newsletter. With this, the
ourth issue I've done, I have to say that it is a lot of work. Without Sara Graffunder
nd .. Jim Miner,who edited the Here and There and Implementation Notes sections respectively,
his issue would not have appeared.

RENEW
e've lowered the cost of PUG membership by keeping the price the same ($41977 < $41976)!

his is the last (and first) renewal notice you'll get. Please renew, especially if you
hink we are doing some good in the world. If you are not reading your own copy of the
ewsletter, why not help us out: join for yourself (we need more members to keep the price
he same). Just think of it as giving up eating ,out one night in the next year. And we
on't refuse additional (no strings attached) contributions!
TANDARDS
ee the Open Forum section for a series of letters.
ICROPROCESSOR Pascal
'ee the Here and There News section under Charles Bacon, P.M. Lashley, Steve Legenhausen,
ndy Mickel, David A. Mundie, and see Implementation Notes under both "Comment: Microproc
ssors" and under individual specific manufacturers's names. And Ken Bowles's article.
ascal Newsletter #9.
eadl ine for written contributions is~. Changes in POLICY: #4 is now out of print.
,11 written material must now be single spaced and typed with narrow margins. We are
'unning out of room!
HIS ISSUE (#B)
Infortunately we have had to cut material from this issue ("all the news that fits •.. ").
;eorge Richmond sent a 5 page bibliography which we couldn't find room for. It had only
5 new entries over his last one in #4, and is incomplete these days if you keep up with
'as cal Newsletter. We were also unable to print a Roster increment as we did in #7.

regret this because it is the roster which enables Pascalers to get together especially
f they are in the same area. This time the number of new members totals 345! It would
lave taken 6 full pages to print in a new compressed format! We just couldn't afford it.
Ie also had to reformat every contribution to save space, and omit extraneous material.
'ut, we have no shortage of material (unlike the disease which afflicted the FORTRAN
~lletin, the LISP Bulletin, the SNOBOL Bulletin, etc.).
ie have had "many suggestions regarding the newsletter. We want to keep it informal and
nteresting and prevent its degeneration into a slick, useless, "professional" journal.

'UG and Pascal Newsletter Mechanics
'UG now has 943 members in 29 countries and 47 states! V.'e need more members to stay
'inancially solvent (we are currently in the black, barely) and we need them as well as
'enewalsearly in the academic year (preferably before August 15). I now strongly disagree
~ith my earlier idea (and Mike Hagerty's letter in this issue) of becoming affiliated with
\CM (1 ike STAPL under SIGPLAN). Did you know that according to Garth Foster (January 6,
[977) STAPL (SIGPLAN Technical committee on APL) only had 973 members after more than 5
{ears in existence? If we affiliated with ACM, the price would probably double, but we'd
le compensated with fancy letterhead on the stationary.

EDITOR'S CONTRIB·UTION

PUG has a broad base with many non-academic members. We have kept the price low,
publicized PUG in unconventional ways (unlike ACM) and in the process have become known in
industry where the real changes can be made. We just completed our fourth mass mailing
(350) on March 28 to the holdouts from George Richmond's old mailing list from newsletters
1-4.
I would like to encourage all PUG members to use their imaginations in making Pascal and
PUG more visible. Write letters to the editor of popular trade journals such as
COMPUTERWORLD, DATAMATION, COMPUTING EUROPE, etc. Di stri butors of compi] ers shoul d send
an All Purpose Coupon to each recipient of their implementations. Write to SIGCSE (Pascal's
strong point is fomputer ~cience Iducation). I can't do all of these things.
I've noticed some big discrepencies in PUG membership at several universities which have
a fair amount of Pascal users. It seems that some local people have not done all they can
to tell their users about PUG. Why is it for example that at the University of Minnesota
there are 4B PUG members, at Lehigh University 13, at Indiana University, the
University of Texas, and the Technical University of Berlin 7, and at the University of
Illinois, Georgia Tech, the University of Southwestern Louisiana, Cornell, and the Imperial
College London, etc. there are 6 PUG members while at the University of Colorado there is
only 3, the University of Washington only 2, and at the University of Manitoba, SUNY Buffalo,
and the University of Massachusetts only I?
BACK ISSUES
I'm sorry that we are slow, but we are not in the publishing business. As I stated in
#7 we have had terrific growing pains resulting from not realizing back in September how
popular PUG was going to be. We are temporarily out of print with #5 and this holds up
mailing 5,6,and 7 to new members as we cannot afford postage for separate mailings. As it
is, it is very expensi ve to ma il back issues. At PUG "central" here in Mi nnesota, we have
no secretaries. John and I (with help from people like Sara and Jim) have opened all our
own mail, answered with personal notes all inquiries, handwritten most addresses on
envelopes, handled all the typing, mailing of back issues, filing, accounting, the mailing
label data base; and sent invoices and bills to persons who haven't paid. That's right,
we never planned on some people not paying. Those who still 'owe PUG money are: Bengt
Norstrom, Lars Magnusson, Bernhard Nebel, Roland F. Blommer, Stanley B. Higgins" Karl J.
Astrom, Wayne Fung, John S. SObolewski, T. Hardy, Ada Szer, and John Nolan.
This is as of today, and I wouldn't be surprised to see "heir money soon, and I don't in
any way want to imply that each does not eventually intend to pay!
SUMMARY
I want to thank all of those who have helped this year, especially Judy Mullins, David
Barron, Carroll Morgan and Tony Gerber (who have enabled Australasian re-mailing with
zero compensation) and Teruo Hikita for remailing #7 to Japanese members. Finally many
thanks are due to the University Computer Center here at the University of Minnesota,
particularly Peter Patton, our director, and Lawrence Liddiard our associate director
for systems for enabling PUG to thrive.

~ -'p," 26, 197)

:z
rn
::t:
C/)

I
rn
-t
-t
rn
;;;0

* 00

HERE AND THERE WITH PASCAL
NEWS (ALPHABETICAL BY LAST NAME)

Charles Bacon, 10717 !.lurbal,k Dr., Potomac, MD 20854 (PUG member): "I am il,terested in a
P"scal rUII"il'g un a RSX-llM sybtem as well as Ull the KI-IO .••• alsu un any 0080 u)stem."
(* 1/10/77 *)

Mark Becker, 300 Cullingwuud Ave., fairfield, CT
a versiuI, uf PASCAL fur the PDP 11 that dues ~
Prucessur." (* 1/31/77 *)

06432 (PUG member):" I'd like to locate
Ube ur require the f luating Puint

(* f rom the newsletter uf the University Cumputer Center at the Ur,iversity of Southern
CalHornia, 1020 IL Jeffersur, Blvd., Lus Angeles, CA 90007: UCC h"s "dded sever"l JCl
prucedures (fur its IBfl 370 system) su that users can invuke the Ullivel'!5ity uf Maflituba
version of PascaL The procedures perform uI,e-otep monitor; compile; compile, luad al,d
gu; cumpile, linkedit; cumpile, liflkedit, ,md go; luad and gu; lwkedlt alld gu; al,d
compile and pUllch WI object deck. 1/1/77 *)

Gary Buos, 517 N. 7th St., Biomarck, NO 58501 (PUG member): "I am ifltereoted ir, kr,owillg
CJbuutChesB prugrClmo written in Pascal."

Kevin W. Carlsol', 1531 Simpsofl St. ~Iadison, WI 53713 (PUG member): (* \,ants to know if
there is ;gr;;;;p uf Pascal u<;ero in or near 11adison. 2/9/77 *)

c. R.Corner, 514 S. 9th St., Moorhead, :'IN 56560 (PUG member): "I'm trying to implement
Pascaluil1he PDP-8 and Orl the PDP-ll. Any ouggestiono?" (*' 3/1/77 *)

Frederick C. Cuwan, The Aeruspace Corporation, ~Iail station A2-2043, P. O. Box 92957, loo
Angeles, CA90009 (PUG member): "I am interested in the mods to make Crelease 2 of
PASCAL 6000-3.4] run un the 7600 under Scope 2.2." (* 3/18/77 *)

Mattia Hmeljak, 1st. di Elettrotecnica ed Hetronica, Urtiversita di Trieote, Trie<;te,
Italy (PUG member): "In Trie<;te University a CDC computer existo and a Pascal compiler is
implemented the,e.

We have also all HP..;2100 mini-cumputer and we would like to run some prugramo there
for teaching and for research. Fur theoe rea SUllo we intend to implement the Pascal,
cumpiler on this machine.

As a firot step. • • we intend to wr ite a P-code interpreter usillg the
Pascal-written interpreter andtranslatil,g it into H-P Algol. Therefore we would be glad
to know if sumeone else is working to implement Pascal 01, the same
mini-cumputer •••• We thank yuu also for any infurmatiull you will cor'oider uoeful to
give us for our work." (* 2/5/77 *)

Stanley B. Higgins, Dept.
member): n.. our
PDP-II/55 • • • software
systems. • • • We would

Ultiversity, Nashville, TN 37232 (PUG
POP-ll/40, PDP-ll/34 and a

ar,d RSX-1l11 uperating
knowing uf [Pascal cumpilers] ."

of Medicine, Vanderbilt
group opera teo a

• by DIC ••• RT-ll
be most intereoted in

(* 2/23/77 ..)

Rubert L. King, 1452 Sandra Dr., Fndicutt, NY 13760 (PUG member): "If pos<;ib1e, please
forward information on free ur very inexpensive Pascal cumpilero for an IB~I 370/17B uf/der
VSI with 3330's and 9-track tapes." (* 2/1/77 *)

Joseph Lachman Computer Center, University of Illinois at Chicago Circle, Bux 434B,
ChiCagu~0680 (PUG member): " • • • At present the UICC computer center has no
Pascal cumpiler. AI'y advice yuu could offer us relative _to the availability, quality.
and costs of PASCAL compilers that will rUIl on IBM/370 or DE C PDP-ll cumputers would be
greatly appreciated." (* 4/5/77 *)

J. Larmouth, Director, Computing laboratory, University of Salford,' Salfurd M5 4WT,
England (PUG member): " Having muved to Salfurd frum Cambridge, I have ceased work on
Pascal. Unfurtunately, there was nobody available at Cambridqe to continoe the work. so

that our efforts towardo a 370 implemer,tatiur, ohuuld be cOI,~idered abandoned.
"I;e did pruduce w,ej diotribute aI' interpreter system but Cambridge.. due" flOt -0

hi::l.ve the mWI-puwer tu cuntinue evefl this bervice. ::x:>
"Sorr) thi<; is all so r.egative. fly interest iI, Pascal remaino, althuugh lOU mi'lht (I)

be il,terested to klluw that I am perhapo more ir,terested ifl HJCLID, as wuuld, I thil,k, be n
mOot member" uf PUG if they kllew m;:;re abuut it." (* 1/5/77. fur ir,formati.ur, abuut ::t>
luciid, CUfioUlt B. W. Lamp~ufi, et. al., "Herurt on the Programmil,g lal,quage ruclid," r
SIGPlAN Notices ,12:2 (februar> 1977); ar,d G. J. Pupek, et. a1., "Not.es 01, the Desigl' :z
of IUCllD," SIGPlAN Noticeo, 12:3 (ilarch 1977), 11-19. *) rn

::<:: P. M. laohleZ' Director of CompuUllg CSCS, POB 764, 114 S. Bullard St., Silver City, (I)

NH 08061: * frum a letter to the editur uf B>te, 2:2 (february 1977), 77-78 *) "I write
primarily in respo"oe tu 11r. Skye's letter iI, yOljr Auguot iosue. I can uI,l> cOllclude ~
that he had beell with IBM too 10119, utherwise he would flOt attempt to debaoe the 8000 ---i
with f Of1THAN or PL/l. f Of1T~AN is a virtual pterodactyl, fly il,g solely by inertia, ---i
whereao PL/l is much better, but tou raP1blir,g in conotructiofl. If he indeed takes up the rn
admirable task uf Wl'iUfl9 ~ hiqh level compiler for the 8080, he wuuld '()e better "dvbed ;;c
to base his cumpiler ur, u fully structured IUI,guage ouch as PASCAL." * The letter gueo
"r, for oeveral par~Qrapho. *)

steve legenhausen, 12 l3arr,Hrd Street, Highland Park, NJ 08904 (PUG member): "I think it
io ab~olutel> importal,t that pers"no prumuUng Pascal realize the danger uf BASIC's
becoming the permWlent and unly lafl9uuge Uft microprocesours. One OI,ly h"s to pick up Wly
100ue uf the cumputer hobbyist magazilleo such as ')1'. Dubbs Jourll'!l., B>te, KHubau,!,
Creative CompuUfl9, etc., to fifld thut each 10 f ilied with BASIC. Sume effurt should be
put forth to promute Paocal ifl this medium." (* 12/31/76 *)

00

Chris P. Lindse}, Computing Coordinator, Harvey [1udd College, Clarement, CA 91711 (PUG ::;;::
member): "Du yuu kl,ow of ~ well-documented, error free veroiUJ, of PASCAL which runs 01, a ::t>
DFCsyotem-lO with a KA proceooor?" (* 1/77 *) ,

R. A. l.ovestedt, 20427 SI 192, Rentun, WA 98055 (PUG member):
HP30007" (* 2/10/77 *)

"Alt) PASCAL work uri

William l>czku, Software Development, NCR Corporatior./Termiflal SYotemo, 950 Dw,by Road, ~
Ithaca, NY 14850 (PUG member): "I am ir,tereoted ill any il,furmatiun yuu may have on
implementatiun uf PASCAL for microprocesours." (* 1/7/77 *)

Philip J. ,Malcolm, former addreoo Zeus-Hermeo Conoultallto ltd.', Shropshire Houoe, 2-10
Capper Street, l ufldort; r,ew address c/o Bank uf Adelaide, 11 l eadel,hall SL, londun I C3V
Il P, I r'gland (PUG member): "Zeus-Hermes is ••• investigating the pussibility uf
adopting a Pascal -- or Modula -- type language for in-huuse development of mini- allu
micro-cumputer ooftwure acruss a bro"d l'ange of target machines.

"Ideal would be a compiler:
wr itt en ill its UWII ~uurce l1:Ulguilge; alld
executable Oil a micrucomputer (with say 32-64K by teo of RAH, disketteo); and
eaoily tr"nsportable tu dif f erent target machineo; and
rely ing ur, ~ very small run-time mOl,itor/ouppurt package.
"We wuuld be delighted to hear from thooe poooesoing ur wurking tuwards such a

system." (* 1/3/77 *)

Andy IUckel, Uldv. Computer Cellter, 227 hp. I:flgr., U. of l1ir,fleouta, t-lim,eapolio,
MN 554:55(PUG member) repurts receiving an educ~tiur,al qoestioJU,aire from Intel about
computer couroes and micru-prucessors. The questiun, "What programming languages are
used?" contained the check-uff answer" f ortral', Algul, PL/l, Pl/M, Baoic, al,d Paocal.
Nut included were Cobul, lisp, Snobul, etc. (* AIldy' s respor,,,e to the catch-all que"tion
at the end was, "Whell are yuu going tu oupport Pascal ur a Pasc~l-subset w,d give up un
Basic?" *)

David A. Mundie, French Department, 302 Cabell Hall, University of Virginia,
Charlottesville, VA 22903 (PUG member): "Is Zilog really maki"<j a microprocessor that
executeo PASCAL conotructs as its machine-level lal'9uage (Syte, v.2, no. 4, April 1977,
p. 140)7" (* 4/3/77 Will a PUG member please write Zilog to Ilsk, then ser,d the at'ower to
the new"letter? *)

Hork O'Bryo'" Computer Center, \4e~terr, Ilichi)oll U.liversit}, Kalar;wzuo, "Iichi,!all 49001:
11 ••• I'm ill chHrC]e uf PASCAL implementatiull alld Hlailltenarlce at WHU. \~e have ali uld
versiw, of NAGlL' s cumpiler fur the PiJP-1J and "ill be rele"~i.,g it fur use here i.,
e8rl) l'1arch. 1"11 keep)UU itLfurmed UII user reactiulL whell it happel!tio

Gene Ii. qlbuII, 421 Couht} Ruad 3, Apt. 512, Hupkifl~, I'li' 55343 (PUG member): "The best
urgume.;t--;;gaifl~t furmatted reod~ ho~)et tu appeor i., the PUG newsletter. I" pruces"i,,!]
large amuuflts uf furmatted dot" (the suppuBed ratiu""le uf furmatted reod~) ke)pu.,ch ur
similar errur~ cause buth tormatting a.Ki cUf,teflt errur~ which re.,der Formatted read~
usel'eHb. III uther wurd~, ill a pruduc:tiur,-eIlVirUI!merlt, the pru<]ri.:lffi must check. datu
character-tur-charocter a~ it is cumi.,g i.,." (* 2/25/77 *)

Jerr) L. ~, 21320 Oldgate Rd., llkhum, Nl 6BOZ2,(PUG member): ,"I am attempting tU,sell
the idea uf usi.,g PASCi\l i.,stead uf f OIHHAN 8S a f lrst language 1', a Cumputers & Bus1ness
cuurse. All) illfurmatiufl tu suppurt my argume.,t (institutiuns using PASCAL, etc., as well
u. the structure aHpect~) wuuld be greatly appreciated." (* 4/8/77 *)

" flo Waldu Hoth, Cumputer Science Dept., Taylur U.,iversit}, Upland, IN 46989 (PUG member):
" ••• I wuuld abu like tu knuw abuut the availability uf a PASCAL paCkage tu ru', un DlC
11 systems under RSTS ur HT-1I." (* 2-24-77 *)

Carl W. Schwarcz, Digital Equipme.,t Curp., 14R 1':'2/E27, 200 fure~t Street, Marlburu,
11A 017"52('PiJG member): ". While empluyed by Cuntrul Data I was respunsible fur the
design and implemefltatiufl uf twu cumpilers fur " Pasc8l"-ba~ed prugramming la.,guage ('the
Suftware \1riter~' Lw,guage') fur the C}ber 170 and C)ber 270." (* 1/25/77 ,,)

Arthur 1. Schwarz, Hughes Aircraft Cu., Bldg. 150/115 A222, Culver City, CA 90230 (PUG
member): HOur instollatiuTI is currently interested in gaining sume expertise ill using
PASCAL. We wuuld like tu ubtain a cumpiler fur use uri uur Sigma 9 cumputer, ur lacking
thb, a cumpiler with acces~ible cude generaturs fur either the CDC ur ltlt1 cumputer
lines." (* 2/8/77 *)

Wayne Seipel, Dux 8259 U.T. Statiun, Austin, TX 78712 (PUG member): "Tt1eUniversity uf
Texas Cumputer Science department needa a PASCAL cumpiler fur a [Data General] "uva 3D.
The department has just purchased 2 prucessurs, each with 32K wurds uf memur} ~nd a
lOi'leqa-byte disk. These will be used by buth graduate and Uf,dergraduate students 111 a
hands-un envirunment. Currellt plall~ call fur the develupmellt of an uperatwg "ystem, and
"PASCAL compiler wuuld make life urders of mag.,itude easier. Any infurmatiur, un a
cumpiler (cumpleted, standard, PASCALl, ur PASCAL 2) "ill be greatl} appreciated.

Cuntact either James Peterson, Cumputer Science Dept., Univer~ity uf Texas, Austin,
TX 78712, ur m}self." (* 3/14/77 *)

Kevin Heiler, 147 Curnell Qrtrs., Ithaca, NY 14850 (PUG member): "Has an}une implemented
PASCALl un a PDP 1l/45? (Is a Janus illterpreter available?)" (" 1/21/77 ..)

Nichulas Wybu1 t, 576 Leu Street, liillside, NJ 07205 (PUG member): "Here at NJIT, Pascal
is begi'Hriflg tu be u~ed in a juniur-level cuurse ill algurithm~ and data-structures; there
is alsu individual interest if! Pascal amung facult) members and the ~tudent bud).

"The student brallch uf the ACM is 'attempting to act as a medium uf infurmatiun ill
this matter. We are i.,terested in yuur gruup alld an} related publicatiuns alld
activitie" •••• " (* 2/4/77 *)

(" From a press release by the U. S. Department uf Defellse distributed by the British
Cumputer,'Society, t4arch 22, 1977, un "The U. S. Department uf Defense Hlgh Order L an
guage EffoH," tu reach a cunsellsus un a cummun high prder language fur embedded systems,
p. 8 *):

"Withuut exceptiun, the fulluwing languages were fuund by the evaluaturs tu be
inapprupriate tu serve as base languages fur a devefup.ment uf the cummun language:
fORTRAN COBOL TACPOL, CMS-2, JOVIAL J73, JOVIAL J38, SIMULA 67, ALGOL 60, and CORAL.

",P;upusal~ shuuld be sulicited frum appropriate lallgu:;ge designers fur mudif icatiun
effurt" u"illg !HI} uf the languages, PASCAL, Pl./I, ur ALGOL 68 as base languages frum
which tu start. These effurt" "huuld be directed toward the pruductiun uf a language
that satisfies the DuD set uf lallguaqe requirements fur embedded cumputer applicatiuns."

CONFERENCES
International Federation of Information Processing Societies (IFIP), August 8-12, 1977 in
Toronto. (* Would a PUG member who is there organize and publicize a Pascal User'~ Group
gathering. We would. but we won't be there. Also. send in a resume of the meetlng for
Newsletter No.9. Thanks. *)

ACM '77, Seattle, Washington, October 17-19, 1977. (* The same here for Newsletter No. 10.*)

REPORT on the Third Annual Computer Studies Symposium at Southampton (March 24-25)

"PASCAL - THE LANGUAGE AND ITS, IMPLEt·1ENTATION"

A little over halfway in this whirlwind, 48 hour happening, the medieval
banquet began. Oavid Barron (the baron) and Judy t~ullins (the baroness) enjoyed
the honor of reigninq over and hosting the attendees; it was a delightful time
indeed.

And so was the whole symposium! I must commend Judy for organizing the
svmposium down to the last detail and thank David for making it a reality. It was
a success by several different measures. Around 134 persons attended. The
proceedings officially listed (including speakers and last minute replacements):
Austria 3;,Belgium 4; Canada 1; Denmark 7; France 4; Germany 16; Great Britain 72;
Ireland 8; Netherlands 2; Sweden 9; Switzerland 5; and the USA 3; The proceedings
contain the texts of all 11 presentations and will be published later this year
(see Books section). All except Per Brinch Hansen's which will appear in an IEEE
publication.

David Barron; U of Southampton, opened the symposium with a talk entitled
"Perspectives on Pascal" which looked at the past, present and future and concluded
with a call to join a "Society to Combat Well-meant Attempts to Change Pascal
(SCHACP)." ,

Urs Ammann. ETH, Zurich, was introduced as the great-grandfather of all Pascal
compiler writers and summarized his work over the last 6 years in "The Zurich
Implementation."

Jim Welsh, Queen's U, Belfast, likel1ise introduced as the grandfather of
Pascal compil er writers detail ed development and performance of "Two ICL 1900
Pascal Compil ers."

David Watt, U of Glasgow, presented an extensive description of "A Pascal
Diagnostics System" for the ICL 1900 implementation.

Mike Rees, U of Southampton, presented a description of the Pascal compiler
effort on the ICL 2970 underway for the past 9 months in "Pascal on an Advanced
Architecture. "

Judy t~ullins, U of Southampton, did not dream up hypothetical architecture,
but rather critically combined existing architectural features in designing "A
Pascal Machine?"

The next day began with Per Brinch Hansen, U of S. California describing
his "Experience With Modular Concurrent Programming" and his opinions of the future.

Pierre Desjardins, U of Montreal. substituted for Olivier Lecarme, U of Nice,
and sketched an overvi ew of "Pascal and Portabil ity" issues.

Brian Wichmann,National Physical Laboratory, Middlesex, coalesced various
aspects on "The Effi ci ency o,f Pascal" in compari son to other 1 anguages and in
different environments.

Graeme Webster, Teeside Polytechnic, advised others who introduce Pascal
into the curriculum with a talk on "Pascal in Education."

There were two discussion sessions. Brian Wichmann led the first on "Pascal
on Minis and Micros" and I introduced the second on "The Future of Pascal"
concerning standards and extensions issues.

In between time, the opportunity to talk and argue with other Pascalers from
so many places was a real treat for all, I'm sure. I managed to meet 48 people,
and in the process confessed to Urs that it was hard to get used to intense, sudden
exposure to so many cultural backgrounds.

, Perhaps the long range accomplishment of the symposium was to pass on a
consensus to the rest of us in PUG regarding standards. See OPEN FORUM.

1ERE AND THERE WITH PASCAL - Andy Mickel, April 17. 1977

:z
rn
:;E;

en
r
rn
-i
-i

rn
;;;0

'It:

00

Third Annual Computer Studies Symposium
"PASCAL - the LANGUAGE and its IMPLEMENTATION"
University of Southampton, March 1977 .

SYMPOSIUM ATTENDEES, (127 pictured here; not all names and faces known together!): A full
or --..", ,. I. _ 1'" _ _ __ •• I • I • ..

,,*=
co

\

Third Annual Computer Studies Symposium
"PASCAL - the LANGUAGE and its IMPLEMENTATION"
University of Southampton, March 1977

SYMPOSIUM SPEAKERS, (oictured from left to right): David Barron~ Per Brinch Hansen, Andy
Mickel, Pierre Desjardins, Graeme Webster, David Watt, Mike Rees, Urs
Ammann, Brian Wichmann, tlim 14elsh, and Judy Mullins.

-0
:P
<./)

")::0
I

Z
rn
::E:
<./)

I
rn
-i
-i
rn
;0

* CO

(J1

BOOKS AND ARTICLES

(. D. W. [JUI'rUl" wurking with Rich steve"s, h"s uffered tu bke uver thi" "ectiur.. What
fullOl's i" a ,.utice uf the pulic) fur the sectiuII, begi",oi,.g with Nu. 9 ,,)

POlICY
---I,. thb sectiun we "hall try tu keep PUC members up-tu-dute with 'the PASCAL
liter"ture UI.der the gel\eral headil\gs lall9"age", Textbuuks, Implernelltatiu,., ApplicatiUl.s.
At the least we shall give a brief citHti,," uf title, authur w.d publisher. , If pussible
we shall ilicluded a brief "bstract a,.d, if the impurta"ce warra"ts 1t, a crltlcal reVlew.
III additiu,. frum time tu time we shall 'Jive (hupefully) cumplete a,.IIut"ted bibliugraphies
uf selected "re"s: with the feedbuck frum PUG member" we shuuld be able tu build up a
reall> cumprehe"sive guide tu the PASCAL literature.

[Juuks m.d pupers ill the estublished juunlul" are f<lirl) eas> tu keep track uf, but
i"ten."l repurt" pre"ellt much mure difficult>. If)UU (ur>uur iliStitUtiU") pruduce a
repurt that)UU are willifl9 to circulate, please "elldme a cup> uf the title page, ur
better btill a cup> uf therepurt. The address is:

Dav id Barru,.
Pascal User's Gruup (U.K.)
Departmellt uf Mathematics
The University
SOUTHAI,IPTOtJ, S09 5NH
U.K.

ur W. Richard Stevell"
Ki tt Peak. NuUur.al Observator>
P. O. Bux 26732
TUbCU'" Al fl5726
U.S.A.

As with the re"t uf PUG, the "uccebb uf this e,.terprise will rest largel> Ull the
el.thusiasm w.d help uf the membership.

10 f ebruar> 1')77 David l3arrull

(* The policy begins with the next issue. What follows is our new information about books
and articles, and a review. *)
BOOKS

b COI.curre,.t Pascal Cump1~ fur IhnlComputers, b) Al Hartma", tu be published ill'
Spri,.ger-Verl"9 a" Vulume 50 1" then lecture Nutes iii Cumputer Scia"ce. Prubabl>
available il> the elld uf April 1977. (- Al writes that the bouk will be uf especial
iflterest tu " ••• HlI> uf }uur membership using the CUllcurre"t Pascal ur Sequelltiar
Pascal cumpilers develuped at Cattech fur the PDP-ll/45 miflicumputer." <)

llitruductiull tu Cumputer Scieflce, b}
published b} Spr inger-Ver lag
urieflted I:Hld Uf:je~ PI::H;cal em the
citatiun i,. Nu. 5. ,,)

Kel. Bowles (U. uf
i" Octuber 1977.
teachil.g vehie le.

Califur,oia, Sa,. !liegu). tu be
« The buuk is cumputer graphics

Nute the chal\ge uf title frum uur

lntruductiul\ tu Prug~~ HI,d !:!:~lem Sulv~ wit~ PASCAL, by 'G.H.
D. Perlma"-;- alld S. 11eill9art, tu be published ill hardback by ;1ile> alld SUIlS
1970. A camera-read) malluscript uf the bouk Cat. be ubtai"ed b> writing

Gelle Oave',purt, lditur
Juh,. Wiley "lid SUIIS Publishers
605 Third Avellue
New Yurk, NY 10016

The malluscript ma}, with writte,. permissiun, be duplicated fur cl"ss use
publicatiull uf the buuk.

Schneider,
in JCtI\UCir)

UI.tll the

Pascal--the l !I119uare "lid its Implemelltatiwl, pruceedings uf the S>mp~sium ill Suuthamptun,
1,1arch 24-25. "At press-time, there lS as yet I\U def ~"1te publlsher ",oct publicatiu,.
date. Perhaps details will be settled i" time fur publicatiUl, in Nu. 9 ,,)

structured Prugramming alld Prublem ~l villg wi ~ PASCAL, b> Richard Kieburtz,
Cumputer Sciel\ce,· SUNY at StUll} Bruuk, StUll} !3ruuk, NY 11794, tu be
Prentice-Hall sumetime in 1977. (" This is rumured; we aren't sure
etc. We hupe we' 11 have the facts il\ time fur Nu. 9.")

Oepartme,.t uf
pub lished b}
uf the title,

AHTIellS

ioU f ic iel.t Implemelltatiul\ a"d Optimizatiull uf Run-time Checking in Pascal," b) Char ie" N.
fi!iCher and Hichard J. leBlanc, SIGPlAN Nutices, 12:3 (t1arch 1977); 19-24.
(- f rum the abstract "): "Cumpleterur7:time checki"9 uf prugrams i" all e"sellUal toul
fur the develupment uf reliable suftware. A ,.umber uf features uf the prugramming
lallgu"ge PASCAL (array", subrcu.geo, puillterb, recurd varia,.ts (discriminated type
UI,iuII"), f urmal prucedure", etc.) CUll require sume checking at rUIl-time as well as
durillg cumpilatiun. The prublem uf eff iciellU} implemellUI.g such checkill9 b
cunsidered. l cu Iguage mudif icatiuns tu simpl if} such checkillg are "uggested. The
pu~sibility of uptimizing SUCl1 checkill9 is discussed."

"Pruceedill9s uf the All-U,.iun S>mpuoium un lmplemelltatiu" Techniqueo fur New PrugrOl1lmill9
l ""9uages, Nuvusibirsk 1975."
(., This publicatiull cwoe tu us frumOavid Barru,., whu received it frum PUG member S.
Pukruv»ky, Cumputill9 Centre, USSK Academ) uf Sciences, Nuvusibirsk 630090, USSR.
Hust uf the articles Hre in Russi"", but the IIumber uf bibliugraphical referellces tu
publicatiUl's abuut Pascal lead us tu believe that the articles might be uf i,.terebt
tu PUG members. \,uuld sumeUlie whu read" Russi,," (eusil}) vulullteer tu read ""d
abstract the relevant articles fur Nu. 9? We'll "e,.d a cup> of the juurllal tu >uu
if }UU write tu us i" 11i,.neapulis. The abstracts cuuld 9u tu David !3arrur. fur the
,.ext "ewsletter. ,,)

"Prugramming lallguage,,: What tu Demalld alld Huw tu As"ess Them," b) Niklaus flirth, Berichte
des lnstituts fur Ilifurmatik, t. T. H. Zurich, Nu. 17 (Harch 1976), 1-24.
(TFrum the ab"tract -): "The "uftware ilinutiull has led tu a "uftware crisis which
has stimulated a search fur better methuds and tuuls. This i"cludes the desig', uf
"dequate ,,>stem develup,oent 1""guage".

This paper cUI.taill" sume hillt" un huw such l",.guage" should be designed and
pruposes sume criteri" fur judging them. It uhu cu,.tains !;uggestiu,.s fur evaluati,.g
their implementatiu,.s, a"d emphasizes that a clear distinctiun must be made betwee,. a
lan9uage and its illplementatiuli. The paper ellds with cu,.crete figures abuut a Pascal
implemelltatiufl that ma} be used as }ardstick fur ubjective evaluatiUl.s."

A,. Fxtract frum "Prufessur Cleverb>te'" Visit tu Heavell," b> Niklau~ Hirth, Berichte des
llislituts fur l"furmatik, t. 1. H. Zurich, 17 (Harch 1976), 25-31. U Tu appear in
Suftware Practice cu.d lxperiellce ,,)
(* f rum the "b"tract *): "The fulluwill9 fable is a grutesque extrapulatiun uf past
ulld cunel.t trellds in the desigll uf cumputer hurdware w.d suftware. It i!; inte"ded
tu raise the u"cumfurtable que"UuII "hether these tret.d~ si'lflify real pru'lre"s ur I.Ut
and buggests that there ma} exist sellsible limit!; uf Gruwth fur suftware tuu."

"The Suftware Develup,oellt S}"tem," b> C. G. Davis and C. R. Vick, HU Transactiuns 01.

'Suftware ["gineerillfJ, 3:1 (Jalluar>, 1977), 69-84. (" A summary byPUG member Nick
Sult.t,;eff, whu be,.t ill the citatiun"): lmpleme,.tatiull uf POl-2, all extellbiu,. uf
Pascal, tu, amung uther thillgs, i"clude cu,.curre,.t prucessillg. Are alsu I<riti,.g all
05 ill PDl-2.

"Sume High-level lallguage CUlistruct" fur Data of T>pe HelatiulI: An llivestigatiull b""ed u"
lxtellsiolls tu Pascal," by Juachim VI. 5chmidt, Bericht Nr. 31, I""titUt fur
Iliturmutik, Hamburg, Jalluar> 1977. --- - -
(* frum the ab"tr"ct -): "fur the extellsiun uf high-level lall9u8ges b> data t>pes uf
mude rel"tiuII, three lallguage cUlistruct" are prupused alld discussed:

-.a repetitiun statemelltcuntrulled by relatiulis
_. predic"te" as a generalisatiull uf buulew, expre"siulls
- a cUI.structur fur relatiulls usi"g predicate".

The language con"tructs are develuped step b> step starting with a set uf elementary

z
rn
::E:
c.n
r
rn
-i
-i
rn
;::0

uper"tiul's UII relatiulis. They are designed tu fit intu PASCAL withuut illtruducillg rn
tuu mallY additiufl"l cUlicepts." ("The"e extensiuns, which prucess relatiullal data
base", are beillg experimentally implemellted in Nagel'sOlC-lO cumpiler at H"mburg *) en

BOOK REVIEW

INTRODUCTION TO PASCAL, C.A.G. Webster, Heyden and Son, 1976.
No. of pages: 129. Price: -Q,5.50, .tn.

For several years now there has been an increasing need for
an introductory text on programming which uses Pascal as the
vehicle. Unfortunately, webster has not given uS that book.
The following may indicate why.

In the preface the author claims coverage of an "essentially
full version of the language, discussing where appropriate
the original report and its revision (sic)". In fact the book
describes the original (1971) language and supplements this with
incomplete and inaccurate summaries of the 1972 revision. No
warning is given that the language has developed vigorously since
1972. This makes the book almost useless in conjunction with
compilers for the latest version of the language, Standard Pas
cal.

One might expect that a book on Pascal would pay 30me heed to
modern ideas of programming methodology. Instead we find algo
rithms introduced by machine-language programs and illustrated by
"spaghe t t i" . f lowchar ts. The concept of stepwise re f inemen t
("top-down programming") is not mentioned until three quarters of
the way through the book and then only in the context of pro
cedure declarations. No substantial guidance is given in vital
areas such as program design, testing, debugging, correctness and
maintenance. It might almost be a book on BASIC!

These global defects are compounded by a list of errors of
fact, omission and commission which leaves a blemish in almost
every page. The following are just a few of the more serious.

(a) Variable parameters of procedures are (wrongly) said to
be passed by reference, in a section whiCh manages to make
the (very simple) parameter-passing rules of Pascal seem
almost incomprehensible in their complexity.

(b) Several examples of bad practice in the use of real
arithmetic are hardly compensated, by a superficial warning
about the comparison of real values.

(c) The operator NOT changes the state of the following
operand, according to Chapter 4:
(d) Chapter 6, under the heading "Initializing variables",
describes the definition of symbolic constants. The ini
tialization of variables is also described, but without warn
ing that the feature is not part of the defined language.

(e) There are many lexical, syntactic and logical errors in
the programming examples, some of them seemingly calculated
to cause the maximum confusion for the beginner. For exam
ple, despite a warning early-on about the precedence of
relational operators in Pascal, almost all the more complex
Boolean expressions in the,book are wrongly bracketed (or not
bracketed at all). The following, given as a way of skip
ping characters up to an asterisk or the end of file, is
quite typical :

REPEAT s := inputT; get (input)
UNTIL s:='" AND NOT eof (input)

In short, avoid thi~ boo~.
W. Findlay

University of Glasgow

APPLICATIONS
(~Hepurts uf applicatiu"o cume tu the Newsletter f rum PUG members, pr imaril>. If >uu
kl,uw uf applicatiuns which u"e PASCAl, please send us the details. *)

Pruqress Repurt ~ !1.l - Horch, 1977

Pl T (Programming lw,guage fur Teaching) is a machine independent CAI/CMI (Cumputer
Aided II,structiun/Cumputer 1·1Hnaged Instructiun) ">,,tem implemented e"tirel) in
PASCAl-60aO. Pl T feature" a concise "tructured lesson creatiun la',gu"ge impleme"ted with
a fast sillgle pass cumpiler, all efficie"t interactive i"terpreter, "nd full lesson and
studellt mUliitoring f acilitie".

The Pl T ,,)stem will autumaticall) step individUal students thruugh a series of
les"u"s and tests, Repurts b) stude"t alld/or lessun-tests Can be generated usi"9 the
s)stem's reporting facilitie",

Pl T is in full pruduction use at lehigh Universit) ar,d is being used tu implement a
series uf le"sull" un PASCAL prugrammi',g.

Pl T will be released as an unsuppurted pruduct after cumpletiun uf its s)stem
interlwls mOl,ual ("buut April 30, 1977). Fur further i"furm"tiun please write tu

Richard J, Cichelli Christmas-Saucun Hall 14
Cumputer Science Gruup lehigh Universit)
Deportment uf Mathem"tics Bethlehem, PA 18015

A versiun uf RUNOff (the well-knuwn text furm"tter Hvailable un the mC-lO and other
machi"es) is av"ilable i" PaSCal un the CDC C)ber 175. tducatiunal institutiuns may get
it UII 0 free exchCHlge bClSib pruvided)UU Qelld B tape, expect IlU immediate re::,pullse un
bug-f ixes, and du nut distribute it tu uthers. Ducumentatiun is alsu av"ilable. vlrite tu
Bub Fuster, Cumputing Services Office. Universit) uf I11inui" Urb"fla, Il 61801.

SHP--A S)stem fur cruss cumpilatiun.

Prugr"ms are wr itten in Pascal. The target cude is macru-geflerated with Stage Z
(u"in9 an intermediate cude). Cumplete. Available fur distributiun. Ihchel Galinier
(" PUG member ~), Universite P. Sab"tier-Infurmatique.· 118 Ruute de NarbufHle, 31077
T uuluuse Cedex. France. (" 1/5/77 ,,)

(" Frum a news brief in. Electruflics •. t1arch 17, 1977, p. 140 *): "Electru-Scientific
Industries, Inc., Purtland, Ore., is begi"ning tu uffer its uw" cumpiler fur use b) others
un the tmc PDP-ll]. At the end uf last)ear, Cumputer Autum"tiun Inc., Irvine, Calif.,
"nfluunced " cumbined cumpiler-interpreter fur its uwn milOi-cumputers. Buth cumpanies
puint uut that Pascal •.• is silnpler tu use th"n either furtran ur Basic. tSI is aimiflg
at applicatiuns in autumated test and data-acquisitiun S) stems afld in its uwn laser
trimmers. Cumputer Autumatiun likes it fur develuping cumpilers "lid trallslaturs,"

(lI- 1.t. Bell •. D,C. Bixler, afld t4.t. Dyer, ("An txtendable Appro"ch tu Cumputer-Aided
Suftw"re Requirements tngineerin'l," in structured Design, Infutech State uf the Arts
Cunference, 10/18-20/76, Pl'. 3-27, abu in Jill Tr"nsactiuns ~ Suftware engineering. 3:1
(JaflUar), 1977), 49-60) repurt th"t TIlW used P"scal as the implementatiOf' language in its
cumputer-"ided s)stem fur Inaintai,oing al,d anal)zi',g s)stem suftware requirements.~): "The
simulatur generatur transfurms the [Abstract S)stem Sem"ntic Hudel (" a database lI-)]
representatiun uf the requiremeflts intu simulatur cude in the prugramming langu"ge PASCAL,
The f luw structure uf each [Requirement Netwurk (R_NlT) (lI- the clHss uf prucessiflg f luw
specif icatiuns ,,)] is used tu develup " PASCAL procedure whuse cuntrul f luw implements
that uf the R_NtT struct'ure. tach prucessing step (ALPHA) uf the R NET becumes a call tu
a prucedure cunsisting uf the model ur Hlgurithrn fur the ALPHA. The-mudels ur al,]urithms
are written in PASCAL." (* frum p. 18 ,,)

A listing (6 p"ges) uf the Pascal cude fur the printer plutter described in PUGN Nu.
7 is "vailable free. Write tu Herb Rubensteifl, Univer"it) Cumputer Cent~ 227
txperiment"l tngineering, Universit) uf I~innesut", ~1inneapulb, MN 55455.

ARTICLES
VEVELOPMENT OF A PASCAL COMPILER FOR THE C.I.I. IRIS 50.

1. ENVIRONMENT

A PARTIAL HISTORY.

OUv'£eJt LECARME
UvU.veMae de N'£c.e

The history which is the subject of the present paper takes

p~ace- in the University of Nice t a medium-scale University with about

fifteen thousand students. The department of ~omputer science is very small,

but delivers two different B.Sc. degrees in computer science (informatics),

and has full graduate programs. About two hundred students attend these

undergraduate and graduate courses.

The University computing center serves the whole academic

community with a C.I.I. Iris 50 computer, a medium-scale machine comparable

in power and capabilities with an I.B.M. 360 model 40 or 44. The multi

programming system Siris3 allows the execution of several jobs in fixed

size partitions, the biggest possible size being 220 K bytes (stand-alone

mode), and the most current sizes being 64Kor 96K bytes. The department of

computer science accesses this computer by remote batch processing, with

a mean return time of about one hour.

Programming languages available are an assembly language

(without macro definition capabilitie~, Fortran and Cobol. None of these

languages may be considered an adequate support for teaching computer

science, and especially for teaching programming to future specialists.

Successive attempts to implement Pascal have consequently been done, with

variable success. The main difficulties encountered are the lack of

dedicated manpower, the weakness of software tools available, and the small

amount of storage normally available on the computer.

2. FORMALISM FOR VESCRIBING TRANSLATORS

The so-called T-diagrams of Earley and Sturgis are very useful

to describe the generation of translators by complicated bootstraps.

The four following different symbols describe the different programs

The first one is a hardware processor, i.e. a computer or machine M.

The second one is a software processor, i.e. a program realizing some

unspecified function f, and written in the programming language WL.

The last two are software processors realizing a specified function

tht first one is an interpreter for language IL, and the second one is

a translator from source language SL to object language OL.

By concatenation of different symbols, and provided that the

same language always appears on both sides of any concerned frontier,

we can describe the generation of a compiler by another one. We use four

different arrows describing the translation processes : the solid arrow

indicates that the target program is the tran-slation of a source program

by a programmed translator ; the dashed arrow indicates that the target

program is produced by hand, either from scratch (no source program), or

by modifying one of the languages concerned (this language is specified

along the arrow) ; the dotted arrow indicates that the target program is

a copy of another one, without modification- _; the double-ended arrow

indicates that two programs must be identical for validating the bootstrap.

Using this formalism, we can describe the history of the two principal

Pascal compilers for the CDC 6600 (the following diagrams abusively

simplify the history) :

___ ._.::~lpas .-6000 60;1· .. > First Pascal
compiler

i Pas 60001 past~~ _600~_ 60~of-'
/'Tlpas, [~s _ 6000160000~1 I . J------\ b.~ '\7 600~as2 60QO I .. > ;:~~:~
i \\~' -? ~~;o /'_p_a_

s
c:.
2
--_>.J.IPaS2 _ pasjpas2 6~~~5-- compiler

OL - Y -, _)0. 60001 pasi Pa~ ~300 l60~
l Pas Pas '------60001600~ V

'7EoO~~Ir-v . N.B. These two diagrams
First Pascal

compiler
.~ could be concatenated

3. FIRST ATTEMPT WITH PASCAL-P

A translation into Fortran of the interpreter for P-code

(first version of Pascal-P) had been made in Paris for a CDC 3600, and

carefully written for being really portable. In fact, it was quickly

implemented on the Iris 50, but it gave so disastrous performances in

time and space that the compilation of a tiny program (by interpreting

the compiler) would have necessitated e:":clusive .use of the computer for

about one hour. Explanations of this phenomenon are simple and inte

resting.

2

rn

C/) ,
rn
--l
--l
rn
;;0

~

00

\

The packing and unpacking of P-code instructions fields

were done with multiplications and divisions by powers of 2. The

Fortran compiler did not recognize the special form of these operations,

and generated ordinary code, which was especially complicated for integer

arithmetic. This partly explains the slowness of the interpretation,

other factors being the use of Fortran input-output routines, and the

heavy overlay loading necessary because of memory problems.

These memory problems are partly due to the weaknesses of

the first P-code, corrected in the last version: either the length of

each data object must be explicitly indicated in its representation, or

each object must be allowed the same storage size. This second solution

had been chosen in Paris, because of better time performances, but it

necessitated two memory words (32 bits) for each type Boolean, character,

integer and real, because of the 58 bits necessary for sets when inter

preting the compiler. The interpreter needs a "memory" of 24 K "words l1 ,

i.e. in our case 192K bytes, plus the interpreter itself, the interpreted

program and the Fortran execution support (principally input-output).

The following diagrams describe the two phases of the

generation and use of a Pascal implementation with Pascal-Po

1pas ----~I -;:~----_p_J

.I-p-a~s-·---..L· ~-I pasl-;~s'--"l'~ p

·(71
\ I
.~: Pas

-1~~~1as,~6~~ 60001--
A 1605" tl

I P

l P

OL I \,6000' l----
--~ \j, AI,For 'For ISO ISO

I ISO

\~5)Y
r.
· -';J Pascal compiler"
Pas 600,t... for the CDC 6600 f ,--~' --I ~S-;'-

lpas 1'--""" (source and Object~l· 'Ir,*~J V
'(

»
JJ,.
--I \'.'

'\;/' -
()
r
m
(J)

--+ i' wri tten by
Pas the manufacturer

4. SECOND ATTEMPT WITH PASCAL-P

A completely new translation of the interpreter into Fortran

was done, using the second version of Pascal-Po Borne assembly language

routines were used for packing and unpacking fields, manipulating length

indicators for data, etc. All possible gains in time and size were

carefully searched and programmed. The final version, used during the

last academic year, permitted the compilation and execution of half-page

programs at a tolerable cost, but no more. A student trying to have a

four page program compiled would have exhausted all his available funds

for one month ! This taught to students an extraordinary carefulness when

trying their programs, and in many cases they managed to get a complete

working program in only one run. This_ result is not so bad, but other

frustrations were not tolerable, and this tool could not have been used

for more than one year.

Moreover, the poor performances of this compiler made completely

impossible to use it as a tool for developing an actual compiler, gener~ting

machine code : the compilation of the Pascal-P compiler would have necessi

tated more than 8 continuous hours of exclusive usage of the computer. This

was, practically, absolutely impossible, especially within our local context.

The same diagrams in the preceding section describe this compiler.

S'. A STUDENT JOB

During the same academic year, and USIng only his spare time,

an undergraduate student wrote, partly in Fortran and partly in assembly

language, an in-core load-and-go Pascal compiler. It happened, by

incredibly good fortune, that this compiler was sufficiently well written

to be usable by students. It is used during the present academIC year, and

gives a compilation cost of about 1.4% of that of the Pascal-P second

compiler. It implements stanuard Pascal with only a few very minor

restrictions, but prescribes very snlall limIts on t~e size of programs,

the number of identfiers, the complexity of all declarations, and so on.

All in all, it is only a teaching tool for small programs, and it is

completely impossible to make it usable for implementing a tull compiler.

However, it was a mean to wait for something better and more general,

without too much frustration.

l-p-a-s----,~5~J

~ -1 For I For"'---·
<~

written by
the manufacturer

t ;:-:

.,.
150 ISO

ISO f \
" I 'i----.---

"~!P~_~ ! Pas

>11;;0
ISO

\/

6. DEVELOPMENT OF THE TOOLS FOR THE FUTURE BOOTSTRAP

150 I ISO

,*SO!

/

The compiler of section 3, 4 and 5 are only toy compilers ;

they cannot compile themselves, and consequently they cannot be used for

developing themselves. Since we have no other computer available in the

vicinity~ and no adequate software tool on our computer, many possible

solutions had to be eliminated, especially those which use a powerful

macro-generator. No funds were available for repetitive travels between

Nice and other computing center, and still less for computer time in

other centers.

-0

:l>
Gl

rn

CO

. The chosen solution is consequently very original, somewhat

complicated to describe, but needing unly a minimal amount of programming.

Moreover, this programming is not done by us, but in another (wealthier)

University, Universite Paul Sabatie~ in Toulouse, France. Several

processors are available in that later place: 1°) A Pascal compiler

running on a ell Iris 80 computer, bootstrapped from a CDC 6000 computer

by Didier THIBAULT, and described in Pascal Newsl~tter 87; it is a

compiler from Pascal to Iris 80 machine language, written in Pascal and boot

strapped into Iris 80 machine language, according to the customary

diagram :

_/~jpas ~ __ .l Pas

I pas. . 180 I Pas Ipas ~80 !I80

Ipas t~~oo 1600~r
'i ~OO~ V'

/-''1
Ipas .'C'-.- 180 I ~;::--. 180 J

--.-1 Pas i paB~-':~8~l 1801---

_~. _: O.~ ___ 'V6

I Pas 6000 I ~ '. Pas compiler
1_ I for the CDC 6000
~ (source and object)

. I '.. I' --..:

, 1801

'7,\/0'
Diagram for 1°).

I~ ILl

i
Pas

bootstrapped

.~~Y····
Diagram for 2°) and 3°).

2°) A compiler from a subset of Pascal (called Pascal-E) to' an.intermediate

language ILl, written in Pascal. 3°) A translator from ILl to a second

intermediate language IL2, written in Stage 2; Stage 2 is itself an inter

preter, implemented via a full bootstrap. ILl, IL2 and the corresponding

compiler and translator were developed in Toulouse as a tool for cross

compiling, on th~ Iris 80, Pascal programs fur several mi~i-eomputers.

ILl is a quadruplet language, as suggested by Gries and used between

two passes in many compilers ; IL2 is a machine oriented language,

~specially designed for being easity translated into machine code

for mini-computers, by a second translator written in Stage 2. The

diagram above is for 2°) and·3°).

1. VEVELOPMENT Of THE TOOL ANV'flNAL COMPILERS

We wanted to avoid the bootstrap of a complete compiler,

made by changing the object language on an existing one, because of the

difficulties of debugging and tuning such a large program when using

two computers distant by 600 kilometers. By writing by hand, in Pasc.al-E,

.. a translator from ILl to Iris ·50 machine code, we can obtain the tool

. compiler we need, but in a two-pass form: This translator is very easy

to w.rite since ILl is a quadruplet language. Some modifications are also

necessa,y for the compiler from Pascal-E to ILl, to write it in the

subset of Pascal it accepts, but these modifications. are in fact trivial,

since the only things to do are to replace, for example, writeln (code)

by.writelnc , or write (output,c) .by write (c). By doing six translations

on the Iris 80, according to the following diagram, we obtain a two-pass

'Pascal-E compiler usable on the Iris 50 :

WL ,-"i PE ILII PE IL~1 l~- ILI-,-)oPass I of the
" , . I . . compiler

I~... . I~ll ! PE ~-~~I: ILl I ILI~~--~501150 /_ ...•

tool

J pas/ pa:---~--;SO! Isd. ---'-··· .. -l180i~-- .. · .

"~~~~·i ISO! - \~icf \I.~O '.

'OL ~dY ...

~. .-.--s ·1 Pascal compiler
Pas . I 0 " for the Iris 80

__ . (source and object)

I pas/
1 .. _-

Pass 2 of the tool"
compiler

.~ . - .- - ;-.- . .~

'~ ". _..... :".-~- .. -....

en
r
fT1
-f
-f
fT1
;;c

1"'-1- 150 I IILI 15.0 I ~ i ILl.. ISO i· . I ___ :-~,~, 1~~-1-' i ,---'-0
~.n ILI~~~ ,~~~ »

--/ISO i I.:.~~~ ::
\~~/ '\7 0

\

The future and final compiler for the Iris 50 will be obtained

by filling holes in the "trunk compiler" of H.H. Nageli, as it was done with

success in Tokyo for the Hitac 8000 ; it will be implemented with the tool

compiler :

The two-pass tool compiler is intended to be usable in next March.

It implements the minimal subset of Pascal needed for writing the compiler.

Omitted features are reals, file declarations, most standard procedures or

functions. Standard files necessary for implementing the compiler are built-in,

an accessed via several pre-defined procedures. No other part of the language

is omitted and packed structures are implemented. The translator from ILl

to Iris SO produces code for the linkage editor, one module per procedure.

This will permit segmentation and overlaying of the compiler, but without

any means for checking the validity of access to global variables.

The final compiler will implement exactly standard Pascal, and

produce modules for the linkage editor, as the preceding one. The whole

process should be terminated at the end of 1977 t and several computing centers

are already interested in the final product.
(*Received 77/03/09.*)

A FURTHER DEFENCE (·F FCRHATTED

B. A. E. ~~EKINGS

Computer Studies Department
University of Lancaster

INPUT

In PUGN 11 7, Barron and Null ir.s attempt to demolish the "ase for formatted

input. \Vi thout \'dshing to blow up the controversy beyond rea£onoble pro-

portion. I would like to add a voice in favour of fon~atting.

I feel that Barron and Nullins have rather r;.issed the point, j.nas:nuch as

input data is unfortunately ~ always under our contrel; in addition, of

course, it is unreasonable to exclude a feature from the lill1guage simply

because it can be done in another (mere long-winded) vJay. I have

implemented formatted input in my Pascal P4- compiler forthe followir':g, I

think very £ood, reasons:

i. it is a simple modification to make, \:ith relatively little overheC'.c.

ii. it is ent.irely ... dthin the "sp.irit" of Pascal, n.1king input cGnslstent

with output, which it currently is not

iii. it allows for reading in character s-tri;lgs to c0Dpler!'.ent the s5.mi.lar

output feature

iv. I am I.>:orking iIi general ar<:;c of simu2.ation languf.lges, and her:ce

attempting. to "':00 l~SerG av;,3.Y fI'Cr:1 the trudi t-ionally Fortran hased

languages - I see £ormntterl. input as one less obstacle fer ther:l t,o

overcome in the transition.

I 3m not in any sense an 'advocate of Fc.'rtran, but I CO feel tbat the

association beh'Jeen formatted input and Fcrtr2n is no valid reason fur

its exclu~ion from either lcu:guages.

In short, the c'iddit~_on of formatted input, to supplement 4~h.:.' e:,:1.st:1ng:

unformatted il1put facilities, can onlj' erJ]-lance or: already versatile

(*Received 77/03/21.*)
(* Meekings is not a PUG member yet.*)

PROPOSALS FOR PASCAL
George H. Richmond

University of Colorado
Computing Center

THE REPRESENTATION OF PASCAL FOR COMPUTER INPUT

The original lexical definition of Pascal was closely tied to the CDC
character set. The current implementation . allows for complete
representation of all Pascal ele~ents in the.ASCII character set except
the up arrow which is used for pOlnter and flle references. In this
case, circumflex is the ASCII character that lS used. ,

This lexical representation should have a 48 character alterna~lve
for computer systems with restricted character sets. S?me, ObVIOUS
equivalences are period-period (:.) for, colon (:) (thlS lS almost
always true for the CDC implementatlon), perlod-comma (.,) for semlcolon
(;), and period-equal (.=) for replacement (:=). Addltlonally, two
letter alternatives for relational operators should be allowed.
Brackets for subscripts could be (. and.) or (/ and /). ,

Whether or not to always accept the 48 character representatlons is
an open question.

COMPILE OPTIONS

The Report [1] does not mention co~piler options enc~osed in comme~t
symbols, but perhaps this means of deflnwg complIer ,options should De
formalized. Several compile time optlons llke llstlng control, code
generation, and source line width should be unlversally defIned.

INTERNAL CHARACTER SET

Pascal coU1d be made the first language to standa~dize the ordering
of characters for the basic data type CHAR. ThIS standard could be
ASCII. Thus the basic data type CHAR will have 128 elements. At the
moment, the CDC implementation is stuck with the anachronism of a
character set based on a 6-bit element. It would be reasonable for text
files to be mapped between the internal ASCII set and tne external
operating system character set. The normal character set for a
particular machine could be accessed without translation by using a
packed file of the appropriate integer subrange type.

An alternative solution to the problem of antIquated character s~ts
would be to provide several .CHAR types. ASCII could oe a ~eyword Whl?h
defines the 7-bit ASCII character set. EBCDIC would defIne that 8~blt
set. The local machine implementation of characte~s would be CHAR.
There should be character set conversions across aSSIgnment statements.

REMOVAL OF CURRENT RESTRICTIONS AND ASYMMETRIES

The restrictions and asymmetries outlined below are made with
reference to the CDC implementation of Pascal.. ,

First, and foremost, the designation PACKED should,tell the complIer
to optimize storage usage instead of speed of access ln data structures.
It should not have any other effect upon constructs In the language.
Unfortunately for the CDC implementation, this is not true. One cannot
compare or output unpacked arrays of characters, but this can be done
for packed arrays of characters. This particular, asymmetry is
reminiscent of Fortran in its arbitrariness.

There is an implementation problem in passing element7 of paCked
structures as VAR parameters which will probably have to remaln.

A bothersome restriction is set size. Sets should be allowed to have
any size, not just some convenient but fixed machine size. It is
difficult to justify the exclusion of the last ~ elements of the CDC
character set just because there were only 60 bltS In the CDC word.

If a subrange declaraction of INTEGER exceeds the normal precision of
the usual representation, an automatic extension to multiple preCision
arithmetic should occur. There should be some way to declare the
minimal precision required for the REAL type so that multiple precision
arithmetic could be used if necessary. In tnis manner, a precision
sensitive algorithm could be run on different precision machines witn
good results.

FUNCTIONs should be able to return any type. Identifiers should be
unique to their entire length.

THE PROGRAM DECLARATION

Aside from specifying the name of the main program, the program
declaration contains a list of file names. The current usage of the
declarat.ionin the CDC implementation is to allow immediate opening of
all files upon entry into the main program and to establish the ordering
of files for the positional substitution of system file names that is
possible in CDC operating systems. The first action is unnecessary.
The second action should be clarified in the Report [1] or regarded as a
CDC implementation feature. Neither INPUT or OUTPUT should be mandatory
on the program declaration. All files must be opened explicitly before
test or data transfer. Otherwise, an error is diagnosed. Close
operations should also be available.

VARIAN1' RECORDS

The current definition of var iant records is quite useful and has
been cleverly utilized to subvert type checking withfn the CDC
implementation of the language. This is unaesthetic even though it is
necessary. There ought to be a better way.

Unfortunately, the current definition of the language does not allow
the tag field of variant records to be automatically set when a vari~nt
record is allocated or a variant field is stored and to be tested for
correct type when a field is fetched. This checking should be done to
protect the run-time system from the lazy or careless user. Perhaps
another formal compiler option should be defined to disable this type of
protective code.

THE CASE STATEMENT

A decision in a case statement may be implemented by a jump table or
series of tests. The compiler should choose which technique to use
based on the type of expression involved. Perhaps a type identifier in
addition to the normal expression would nelp narrow the range of values
and allow the faster jump table to be selected. In any case, an ELSE
exit is highly desirable. It is a waste of time to force the programmer
to protect each case statement with an if statement. Also, it would
then be possible to make case statement tests on strings, large
integers, or real numbers. Another extension would be to allow the
subrange notation for case labels so that ranges of values could be
directed to a statement.

BOOLEAN EXPRESSIONS

Boolean expressions should be computed only as far as necessary to
establish the value of each subexpression. AND is FALSE when the left
operand is FALSE. Then the right operand could be ignored. Similarly,
OR" is TRUE when the left operand is TRUE. The ultimate value of tne
entire expression would still be correct by doing this partial
evaluation, and the expression of loop termination conditions when
indices .go out of bounds will be much simpler.

CONSTANTS, DECLARATIONS, AND CONSTRUCTORS

The Pascal
constants. In

language needs a
fact, Wirth [2]

means of constructing
has defined constructors

structured
for this

:z
rn
:E:
(/)

r
rn
-I
-I
rn
;:0

'It;

00

-u
~

Gl

rn

\

purpose. It should be implemented.
In constant declaractions, it should be

time computations using constants and
identifiers.

VALUE INITIALIZATION AND OWN VARIABLES

possible to
previously

perform
defined

compile
constant

The current Pascal has a large core requirement because it does not
have value initialization and it is not overlaid. Value initialization
of structured variables can be done using the constructors mentioned
above.

Value initialization should be possible in procedures other than the
main program. These variables would be initialized on each procedure
entry. On most machines, this will require run time code for
initialization instead of loader initialization.

Own variables (in the sense of Algol 60) should be allowed, and would
be initialized just once at load time.

PROCEDURE AND FUNCTION TYPES FOR COMPILE TIME CHECKING

One omission in the definition of Pascal in the usual strict compile
time type checking is the unchecked correspondence between declaraction,
and usage of procedures and functions passed as parameters to other
procedures and fUnctions. This omission opens the run time system to
mysterious collapse when procedures are incorrectly called. This
compile time check can be done in one pass compilation if procedure and
function type identifiers can be defined. The type would have the
attributes of denoting a procedure or function, the number of
parameters, and the type and VAR property of each parameter or result.
This would actually simplify the syntax of a parameter list by
eliminating the need for the keywords FUNCTION and PROCEDURE. If the
parameter position is typed by a procedure type identifier, then the
actual name of a procedure must be passed at call.

DYNAMIC ARRAY PARAMgTERS

Although some limited means of passing variable sized arrays is
desperately needed ln Pascal, Jacobi's proposal [3] is too limited in
scope. A dynamic array parameter should be indicated in a parameter
list by the inclusion of the keyword DYNAMIC before the type identifier.
Any actual parameter which conforms to the type, except for array
bounds, would be accepted. This allows for arbitrary packed structures.
The prohibition against other than element wise access should only apply
down to the last array substructure.

NEW BASIC TYPES AND OPERATORS

A major advantage of Pascal over other programming languages is its
expressive power in data structures. Because more information ,about the
data being operated on is available to the compiler, better code can be
generated to handle the manipulations. For this reason, the basic types
of Pascal should be expanded. The COMPLEX data type is one that should
be"ildded •

'Qr similar reasons, the exponentiption operator should be added to
the language.

Another extension I propose requires more justification because of
its impact on the implementation. STRING should be added as a basic
type along with operators, standard procedures, and functions for
concatenation, extraction, pattern matching, and type conversion. The
closest approach available now is a record composed of an integer
character count and an array of characters. This is an inadequate
alternative as the compiler cannot easily recognize this as a string and
the programmer is burdened with providing a plethora of auxiliary
routines. The resulting code is less efficient than what is possible if
the type STRING was defined.

Of course, well defined automatic coercions (in the sense of Algol
68) must be available between strings and arrays of characters.
Additional standard procedures and functions equivalent to tne CDC
Fortran ENCODE and DECODE routines should be available. Wnen possible,
the compiler should revert to the older pattern of fixed sized array of
characters instead of treating all character string constants as
STRINGs.

TRANSFER FUNCTIONS

Transfer functions between scalar types and their character string
names,should,be availabl:. There should be a type check defeating
functlon WhlCh regards Its source and destination as bit fields of some
appropriate width. This function would eliminate the need for tne
variant record subversion. Inverse functions for ORD across all basic
types might be considered to be the type check defeating mechanism.

EXTENSION OF RELATIONAL OPERATORS '1'0 S'l'RlJCTURED TYPES

Relational operators already extend to structured types in the one
case of packed array of character. They should extend in tnis manner to
a~l ,structured types. '1'0 do so there must an ordering of elements
wlthln a structured type from first to last and the comparison must
takes place in this order. This straightening should apply to several
other areas of the language as in input/output and constant formation.

FILES AND TEXT FILES

The Report [1] allows attaching the keyword PACKED to file types but
the CDC implementation does nothing with it. Actually, there is a
confusion in this area of file types. There are really three types of
'files. There are unpacked files, paCKed files, and text files. The
type FILE OF CHAR, PACKED ~ILE OF CHAR, and TEXT are not equivalent.

In particular, an unpacked file of some type aligns items of the type
on any particular machine word (or byte) boundary that is convenient and
provides guick access. A packed file of type is implemented with every
reasonable effort to not waste one bit of disk or memory space.
Specifically, on the CDC machine, FILE OF BOOLEAN would be stored with
one boolean value per 60 bit word and PACKED FILE OF BOOLEAN would be
stored with 60 boolean values in one word. Also, with packed file of
subrange of integer type, it should be possible to access any paCking of
data on disk independent of word boundaries. The only operations
available on packed or unpacked file types are GET and PlJT (or tne
shorthand READ and WRITE with no type conversion) along with assorted
status testing and positioning operations.

The files of type TEXT are' fundamentally different from the other two
file types. First, the procedures HEAD and WRITE are available with
their full formating and type conversion possibilities. But a text file
i~ not a FILE OF CHAR. It is a specially handled character file with
llnes of text. It has line boundaries which a FILE OF CHAR does not
have. In fact, each line of text should be treated like a value of type
STRING.

Also, text files come in two varieties, paged and unpaged. This
attribute is established by declaration at compile or open time. An
unpaged TEXT file would be associated with devices such as card reader
card punch, magnetic tape, or teletype input. A paged TEXT file woul~
be associated with a line printer or teletype output. TEXT files must
operate with the correct order of input and output on interactive
devices. It may be necessary to declare files as being interactive in
order to keep the run time system straightforward.

The user should not be responsible for placing carriage control in
column 1 of every line of paged output. The paged output routine should
normally provide a blank for the line printer but omit it for teletypes.
A call to the PAGE procedure should set up carriege control (like page
eject or form feed) as needed.

:z
rn

U'J

r
rn
-I
-I
rn
;;a

'*"
co

Text files are subject to translation between the operating system
character set and the internal character representation. The rules for
skipping from one line to the next have not yet been well formed and
will have to account for the straightening process of structured types.
The problem of reading blanks before end of file should be resolved once
and for all. It should be possible to read one line of text into one
STRING type variable and perform type conversion later.

For paged text files, it should be possible to automatically invoke
user supplied procedures at top and bottom of forms. Other user
supplied procedures could be invoked on various fault conditions for all
file types.

FORMATTED INPUT AND OUTPUT

It is not n:cessary to resurrect the Fortran format to handle text
file formating in Pascal. The WRITE procedure field width
specifications are fine. They should be extended to the READ procedure.
It should be possible to read and write delimited strings of characters.
There should be an option for separator characters other than blank

between input or output items.

FILE HANDLING

Text files should be processed strictly sequentially. Random
positioning should be allowed on non-text files. Since most operating
systems provide for file structures that are more complex. than currently
defined in Pascal, there should be some generally agreed upon extensions
to file operations that are not mandatory. The CDC implementation does
have the extensions of SEGMENTED files. The CDC version needs
additional extension for multiple file files. For example, add GETEOF,
PUTEOF, and WHILE NOT EOI(for End-Of-Information).

The current CDC implementation does a rather poor job of file
positioning at open and close time. Explicit file open and close
operations are necessary. A rewind or no rewind option is vital for
both. Other file attributes like system file name, buffer size,
procedures for handling ~ata exceptions should have reasonable defaults
but be open to user specification.

OVERLAYS

The Pascal language needs overlays. The first use would be to reduce
the size of the compiler by doing value initialization functions in one
overlay and the main compilation process in another. A halfway overlay
attempt already exists in the CDC implementation to issue compiler error
messages.

Designation of overlays can be achieved by compile time options in
comments or by adding the keyword OVERLAY to the syntax. The choice of
which to use is open and should be decided. Overlays are organized by
procedure or groups of procedures. Explicit overlay calls should not be
necessary as in CDC Fortran. The compiler can recognize a call to a
different overlay and generate the appropriate code.

A good proposal for an overlay mechanism has already been made [3J.
However, it already exceeds the capabilities of the CDC operating
system. To accomodate that system, no more than two levels of overlays
could be allowed and the implementation would be even easier if overlaid
procedures could be called only from the outer block.

As stated in the overlay proposal, overlays can be viewed as is the
designation PACKED. A particular Pascal implementation will try to
follow the overlay directives and the program will always run correctly.
However, the. object code may not be as deeply overlaid as specified.

PREAMBLES AND POSTAMBLE

A compiler does not stand by itself within a computer system. A well
developed language system must have a wide range of subprograms
available for use. One reason that Fortran will be hard to displace is
the large number of subprograms already developed for it.

The implementation of separately compiled procedures in CDC Pascal
was a gigantic step forward in increasing the usability of the language.
But now the user is burdened with declaring all external procedures he
intends to use. The declaration is necessary but it should corne from
the language system rather than the user.

The compiler cannot be reassembled every time a new subprogram is
added to the library, and it should not carry declarations for every
possible external subprogram when only a small number of them for a
specific application will be accessed.

The solution is to allow the selection of several preambles which
initialize the compiler to a particular application environment. The
compiler would look to the preamble for each declaraction section
(PROGRAM, LABEL, CONST, TYPE, VAR, and subprograms) first and then
compile the corresponding user declaration section. preambles should be
input as ordinary text or specially processed system text records.

A provision for a postamble would be useful to allow driver main
programs in a student environment or for a non-code producing dummy main
program when compiling library subprograms.

The preambles and postamble allow a user job to be compiled in any
desired environment. By allowing full procedure parameter description
in the preambles, including procedures passed as parameters, complete
compile time checking of all external subprogram linkages can be
obtained~

Also, some mechanism of protecting access to the elements of a
structured type introduced in the preamble is desirable. This would be
useful in making certain data structures appear as basic types to the
user.

[1] Jensen, Wirth, "Pascal User Manual And Report", 2nd Edition,
Springer-Verlag, 1975.

[2J Wirth, "Algorithms + Data Structures Programs", Printice-Hall,
1975. .

[3] Pascal User"s Group, "Pascal Newsletter", No.5, September 1976.

(*Received 77/03/24.*)

\

A PRCPOSAL FOR INCRfJ\SED SEUJRI1Y IN TIf. USE Cf VARINIT RECORDS

WILLIN'\ BARABASH

CHl\RLES R. HILL

RICHARD B, KlEBURTZ

surf{ AT STONY BROOK.
STONY BRoolV 1'lEw YORK.l17~

The use of variant records in most Pascal implementations is dangerous

because most compilers do not emit a check for conformity with the value of

the tag field when a variant field is referenced. Indeed. the latest version

of the Revised Pascal Report defines a language in which the tagfield may

even be absent. making conformity checks impossible I Even so. when the

tagfield is present and the compiler does emit conformity checks automati-

cally. the programmer still has the ability to dynamically assign values to

the tagfield.

We propose that the variant field of a record be protected from such

abuse. either accidentally or intentionally. This means that the compiler

should be required to emit conformity checks when a variant field is accessed;

that the tagfield must always be present in every variant record; and that

the programmer not be allowed to alter the tagfield in a variant record by

means of a simple assignment s.tatement.

Currently. a variant record can be created dynamicallr wQen the stan

dard procedure. New "s al'pl"ed to a pointer variable that i.s bound to a

variant record type. TlUs standard l'rQcedure has the ahUity to :!-n"t"alize

tag fields. to constants specified in the call. We propose that thereafter

the type of the variant record is frozen by the values of the tagfields~

The fields within the record can all be referred to; however. if a field in

the variant l'art of tQe record i'l referred to. the tagf1.eld ",ill automati-
'''' .. -
cally be tested fot; cOn.:!'orm:i:tr·,

Thja ~ not sufficient, because.var"ant records in a faseal program

can reside. in the stack. bung created on block entry. SUch records can

only be init:talized to "undefined". Also. during the life.time of a dynam-

:l:cally created variant record. it may be created and used. then put on a

free l:tst, then used subsequently. The aubsequent user might want a dif-

ferent set of values assigned to the tagfields of the record. To get

around these difficulties. we propose a new standard procedure which will

1) set all of the fields in the record to "undefined". then

2) initialize the tagfields in t~e record to the constant

values specified in the call.

A call to this procedure would be exactly like a call to standard procedure

New. except that the first parameter would designate an already--existing

record variable instead of a pointer variable. Such a procedure might be

called tTRenew". Note that the use of Renew has one chief drawback, namely

that when a variant record is created. space must be allocated for the

largest possible variant field. On the other hand. if a variant record is

created by means other than the standard procedure New. the maximum space

must be allocated anyway. Furthermore. garbage collection would be simp li-

fied: there. would be no need to provide more than one parameter to standard

procedure. Dispose.

Lastly. i.t might be argued that enforced run-tillle conformity checks

when a variant field is frequent~y referred to can severely degrade the

performance of a Pascal program. W.e prqposp. a slightly 1Il0dified with

statement which can open the scope o~ a variant record with a tag field

value aasertian. The assert"an is checked at run-time once every time

the with statement is entered. Within the body of the with statement.

any reference to a variant field of the record can be. checked for conformity

with. the asserted values of the tagfie1ds at compile time. Such a statement

would have the syntax

with recordvariable (const 1 ••••• const N) do S

meaning that we assert that the variable "recordvariable" has tagfields

whose values are "const 1" , ... , and "const N". as if the call

Renew (recordvariable. const 1 ••••• const N)

was made to initialize the record.
(*Received 77/03/27.*)

z
rn

C/) ,
rn
-I
-I
rn
;::0

'l1=
00

I-'

U1

Update on UCSD PASCAL Activities

Kenneth L. Bowles
Institute for Information Systems
University of California San Diego
La Jolla, California 92093
(714)452-4526

17 April, 1977

LSI-ll Software

UCSD has recently started using a single user software system for
microcomputers, with all major programs written in PASCAL. The
compiler is based on the P-2 portable compiler distributed by the ETH
group at Zurich, but it generates compressed pseudo-code for a much
revised P-machine interpreter. As currently implemented on the LSI-ll
compile speed is about 700 lines per minute (1000 on the PDPll/l0).
The system includes an interactive monitor, editor, utility file
handler, and debugging package in addition to the compiler and
interpreter. With 56K bytes of main memory, and dual floppy disk
drives, it has proven more convenient and faster to do all software
development on the microcomputer than to cross compile from a big
machine. Whereas we have been using versions of this system that
depend on I/O support from the RTll operating system distributed by
Digital Equipment Corp., our new system is independent of any external
software support. The resident monitor, in terpreter, and run-time
support package occupy an aggregate of about 10K bytes of memory.

Operation of large programs is facilitated through the concept of
"Segment Procedures", which are rolled into memory only while actually
invoked. The compiler (20K bytes), editor, and file handler are all
separate segment procedures. One segment procedure can call others,
and segment procedures may be declared nested within other segment
procedures, to allow flexibility in memory management. The user's data
space expands (or contracts if necessary) to take advantage of as much
memory as possible after the appropriate code segments have been
loaded.

Our plan is to have the new system completed to the point where it may
be released to others by mid summer, 1977, with documentation package
included. During the summer, we also plan to complete a graphics
support package (including an editor for graphics oriented CAl
materials), an assembler for PDPll native code, and a compiler option
allowing selected PASCAL procedures to generate native code rather than
P-machine pseudo code. The system is designed to make relatively
painless the problem of adding native code routines programmed in
assembly language, allowing a user to augment the set of built-in
functions and procedures where efficiency is important. This note has
been composed and p~inted using a proprietary extended version of the
text editor intended for use with a CRT display, which should be. ready
for release by late summer. The system should be usable on any PDP11
system capable of bootstrap loading from RXll-compatible floppy disk
drives, or from the drives supplied with the Terak Corporation LSI-ll
based machines (see next section). Further det,ails may be obtained, on
request to the address given in the heading, in separate notes titled
"Status of UCSD PASCAL Project", and "Preliminary Description of UCSD
PASCAL Software System".

LSI-11 Hardware

In addition to the well advertised PDPll/03 systems available from
Digital EqUipment, several smaller companies are offering stand-alone
computers based on the LSI-ll that would be directly suitable for our

software. We have been particularly interested in using a stand-alone
machine with low cost graphic display for interactive educational
applications. In connection with the EDUCOM Discount Program (see
EDUCOM Bulletin, Spring, 1977), it now appears virtually certain that
the Terak Corporation 8510A will be available to member institutions
for about $5300 per machine (LSI-l1, 56K bytes RAM, single floppy disk,
CRT for superimposed but independent text and graphics, keyboard, RS232
asynchronous interface for network or printer connection). An example
of the graphic display of this machine is attached to this note.

Other Microcomputers

Anyone who attended the West Coast Computer Faire in San Francisco
should have come away impressed that small stand-alone microcomputers
are big business and here to stay. It is possible to re-implement our
PASCAL based software system on systems based on any of the most
popular microprocessors within about 3 months of work by one
programmer. At UCSD we have started to re-implement for the Zilog Z80
OEM series of modules, which could serve as the basis for PASCAL
interpretive operation roughly as fast as the LSI-ll. At the Faire, we
talked with prinCipal officers of most of the well known microcomputer
manufacturers who sell to the hobbyist market, and encountered almost
uniform enthusiasm for the idea of making PASCAL available on an
industry-wide basis. On the basis of those conversations, there is a
reasonable chance that our PASCAL system will be available later this
year for use with the 8080A, 6502, and M6800 microprocessors in
addition to the LSI-ll and Z80. .

Proposal for Manufacture~ Independent PASCAL System

There is widespread frustration, among those who make and sell
microcomputer systems, that only BASIC is generally available, and that
no two BASIC implementations are alike. Many of those we talked with
at the Faire asked whether PASCAL would be standardized, to avoid the
problems they encounter with non-standard BASIC (in addition to
providing a more powerful programming vehicle). Even a casual reading
of the PASCAL User Group newsletter is enough to convince one that:
a) people are finding it necessary to enhance PASCAL for their own
particular applications; b) the heterogeneity of the enhancements
already reported is so great that no committee exercise is likely to
produce a standard.

As an alternative, we believe that a chance exists to establish a
defacto standard for PASCAL, at least for small systems, by starting a
bandwagon effect in the microcomputer industry. A good definition of
the underlying language for such a standard is contained in the Jensen
and Wirth "PASCAL User Manual and Report". To implement a complete
interactive software system, with adequate efficiency to run on a
microcomputer, we have found it necessary to add built-in functions and
procedures for handling text and graphics, and an EXIT«procedurename»
built-in for clean termination of highly recursive programs. We have
implemented SETs of up to 255 members in a way that uses memory
efficiently, as well as Packed Arrays of BOOLEAN. For READ from a
keyboard, the implied GET has to happen before the implied transfer
from the window variable associated with the file. For handling floppy
disks and other small storage media, -we use the DEC standard of 512
byte blocks, and allow logical records conforming to any structured
type allowed in PASCAL. In most other respects, we have been able to
conform closely to the language defined in the Jensen/Wirth book.

i-'
(j)

If one common PASCAL based software system were to become available
almost simultaneously for most of the mass distribution microcomputers,
that system would establish the basis of a defacto standard for small
stand-alone computers. Changes to such a system would certainly be
needed with experiencE. but those changes might well be made readily
available to most users through "down line loading" of object code
through the dialed telephone network. Control of the PASCAL language
standard might well be vested, at least temporarily, in a committee
appointed by the PASCAL User's Group. Fast turnaround communications
among the members of such a committee could be supported by "Electronic
Mail" techniques over the dialed telephone network. The verbal
responses we received from the manufacturers at the Computer Faire
suggest that an unusual opportunity, that may not be repeated, exists
in mid 1977 to establish a defacto standard in the manner described

\ here. We invite the PASCAL User's Group to join with us at UCSD in
bringing this about this summer. In most respects, the language and
system definition design questions can be separated from implementation
details. We have sought support to allow some of the advanced computer
science students at UCSD to perform the implementation work on as many
of the microcomputers as possible. Representatives of other
institutions would be welcome to work with us in La Jolla, either on
system definition or implementation. However we will not be able,
ourselves, to devote a major percentage of our working time on
definition of a standard.

Interested readers are invited to request copies of the following
separate notes pertaining to the points discussed in this section: "An
Appeal for Support of Manufacturer Independent Software"
"Direct-Dialed Tele-Mail", "Proposal for EDUCOM Software;Courseware
Exchange", "Minimum Cost Tele-Mail", "Student Projects for UCSD PASCAL
System", "The Quest for a Cheap General Purpose Stand-Alone Computer".

1ntroductory Textbook

For the last two years we have used PASCAL as the basis of the large
attendance introductory course in problem solving and programming at
UCSD. The course is based on a textbook by this writer, that so far
has been printed in the campus print shop. Student responses have been
unusually favorable, and the course reaches more than two-thirds of the
undergraduate population even though it is treated as elective for most
majors. This response results partly from the non-numerical approach
of the book, partly from student interest in our interactive system on
the PDPll's,and partly from our use of Keller'S Personalized System of
Instruction (PSI) as a teaching method. Though s·ui table for PSI, the
book oanalso be used as the basis for a conventional course. At the
invitation of Professor David Gries, acting as computer science area
editor for Springer Verlag publishers, the book will be published in
paperback form this summer. The production schedule will be tight, and
we anticlpate that the first copies will be available barely in time
for the start of fall quarter classes in late September. Springer is
interes.ted in knowing who might be interested in using the book and
when. Unfortunately, alterations to make the non-numerical approach
more readily accessible on many machines will make it difficult to
circulate advance copies of the final text until late June at the
earliest. We will be happy to forward inquiries to Springer.

Though very popular with the students, the non-numerical approach of
the book has been difficult to sell to most of the publishers. The
approach used so-far has depended upon programming examples using
English text, and requires STRING .variables and supporting built-in
functions that we have added to PASCAL. In spite of this, the students
learn the same programming skills that are taught in courses using
traditional algebraic problem examples.

Since the inception of our project, we have wanted to orient the course
to teaching with graphics oriented problem examples, using an approach
motivated by the "Turtle Graphics" used by Seymour Papert of MIT. The
microcomputers now becoming available make it possible to teach with a
graphics orientation at virtually no higher price than needed for
non-graphic materials. Accordingly, the textbook will be revised to
augment, and often replace, the text oriented examples with graphics
examples. For potential users lacking a microcomputer with graphics
display, several alternate possibilities exist. Our built-in functions
and procedures for graphics should be relatively easy to add to
existing PASCAL compilers for other machines, and we will supply
documentation to assist in that process. A description of the
built-in's needed is contained in the note "Status of UCSD PASCAL
Project" already cited. The implementation will assume a graphic
display based on the "bit-map· principle, for which many devices are
available in the microcomputer industry. Alternate display drivers
will also be provided for the Tektronix 4006, 4010, ... series of
direct-view storage tube terminals. Successful, though crude, plotting
of the graphic output will also be possible on ordinary line printers.
High quality graphic output is possible on matrix printers such as
those made by Printronix (the graphic example attached to this note),
Gould, Varian, and Versatec.

86700 PASCAL Compiler

A PASCAL compiler which generates native code for the 86700 is now in
operation at UCSD and available for distribution from the UCSD Computer
Center. The compiler is written in PASCAL, and is based on the same
variant of the P-2 portable compiler on which we have based the
microcomputer implementation. Compile speed is about 5000 lines per
minute of logged processor time. This compiler has been used for
teaching large classes at UCSD for the last two months. As far as we
know, most of the serious bugs in the original P-2 compiler have been
corrected in both the 86700 and microcomputer implementations. The
86700 compiler provides access to most of the extensive file handling
features of the 86700 .. At present, no implementation documentation has
been completed for the B6700 compiler. The Computer Center will almost
certainly generate such a document given an indication of interest in
using this compiler·by other institutions. Readers interested in
obtaining a copy of the 86700 compiler should contact Henry Fischer,
UCSD Computer Center, La Jolla, CA 92093 (714)452-4050.

Apology to Correspondents

I offer an apology to the many people interested in our PASCAL work who
have tried unsuccessfully to reach me by telephone or letter in the
last few months. Currently I must depend upon several pooled
secretaries who are not easily a6cessible. Having been occupied with a
heavy teaching schedule, and with a committee assignment consuming one
or two full working days per week, the correspondence has piled up. The
series of titled notes and position papers cited earlier have been
generated in self defense as a way to answer the many inquiries. The
committee assignment has entered a dormant period. Future written
requests for these papers will be answered promptly, but telephone
inquiries may remain difficult until the re-write of the book is
completed.

(*Received 77/04/20.*)

:;z:

rn
:::e::
(/)

r
rn
-l
-l
rn
:::0

* ex.>

.0

'" ~
:::;

t
<I:
Gl ...
-0...

L

" -i
IS

L

f!
~

~

d
~
"'0
(

-Q..

..J
~

~ .a:-
Q..

]
iii

.c.o"TO

~
--2

'" 1:
:i
~
~

<II
VI
'»
.~

....J)

'" ~
~~

,'j I

~!'I
-...J~
'\(<£

r-..
'-"

C
<I

~
'" ~

SOME COMMENTS ON PASCAL I/O

While admitting that PASCAL has I/O specifications involving the concept of

files and the GET and PUT statements that are consistent with the flavour

of the language and with theoretical manipulation of data, I feel that it is lacking

in simple, easy to use I/O and in flexible I/O.

In any practical programmtTIg application, I/O 'is used for two main functions:

(a) Input of data from, and output of results to the real world.

(b) Permanent storage of data external to the program but internal to the

computer, e.g. on tapes or disk.

Concerning the first function, I feel that, not withstanding the READ function

in PASCAL, the.use of TEXT files can be rather cumbersome and tedious. This is

particularly so when dealing with string input {what delimits the string?} and when

being used by a beginning programmer. would like to see some form of simple I/O

akin to the free format I/O of the PL/I GET LIST and PUT LIST concepts.

I have less of a complaint concerning the second function, but would suggest

that information to be stored is often not homogenous as is effectively required by

PASCAL files. One could argue that different types of data should be stored in

different files, but this raises the problem of correlating the data in the files.

Alternatively, one could use a file based on a RECORD type with a variant part, but

this implies a varying size to the logical units of the file and may be difficult

or cumbersome to implement on some computers. Finally it would be-nice to be able

to easily randomly access files and to update existing files in place.

have not yet sufficiently formalised any alternative or additional I/O specific

at,ions for PASCAL and-would be interested in hearing from anyone with ideas along

these lines. Note that I consider it essential that any such specifications should

as far as possible follow the PASCAL principle of being machine independant.

Chris Bishop
Computing Centre
University of Otago
P.O. Box 56,
Dunedin
NEW ZEALAND.

(*~eceived 77/04/07.*)

(/)

r
rn
-I
-I
rn
:::0

f-'

00

..

Mr. Andrew B. Mickel,
Editor, Pascal Newsletter,
Computer Center,
Uni versi ty of ~linnesota,
Minneapolis, Minnesota. 55455
U.S.A.

Dear Andy:

McMASTER UNIVERSITY
llAMILTO~, ONTARIO, CANADA

LHS 4K I

OEPARTMENT OF API'L1ED MATHEMATICS

January 14, 1977.

From the correspondence on "standardization" in PNEWS 5 and ~ it seems
fairly obvious that Humpty Dumpty's meaning of the term meaning is the rule.
The letters seem to fall into two categories: on the one hand we have calls
for the formation of an "official" standards committee, and on the other claims
that "standard Pascal" is being adhered to, but necessary modifications need
to be made for a variety of reasons. I put myself into the second group.

What are the objectives of standardization?

If the objectives are to ensure that a program written in establishment
A can be run at establishment B without any changes whatsoever, whether or
not A and B have exactly the same computers operating under exactly the same
operatlng system, then I maintain that this is jest a pipe dream, because
even a program written in ANSI standard FORTRAN in an IBM shop will need to
be worked over if it is to run in a CDC shop. Moreover, a small change in
an operating system can entail changes in the implementation of a language
even if the change is completely transparent to the users of all other languages
in the same establishment.

What I am driving at is that only in the case of an operating-system
independent language, not just a hardware-independent language is there any
hope of us being able to achieve "perfect" standardization.

Pascal happens to be less of an OS-jndependent language than, say,
FORTRfu~, Eighteen months ago it took me quite a bit of effort to make some
implementation-type changes when McMaster went from SCOPE 3.4.3 to 3.4.4.
These changes were necessitated by changes to the source-line termination
conventions used by the INTERCOM EDITOR made by CDC, There would not have
been any need for these changes if I were doing all my computing in the batch
mode via the central site. Apart from being lazy, I find that working
through a ternlinal increases my throughput, so that it made sense to me to
depart from the defacto standard Pascal as distributed by ETH. I know of
several universities who made similar changes for much the same reasons.
A more serious point is the necessity to empty buffers after each meassage.
I would have liked to change the language specification concerning files,
but resisted this temptation and changed the operating-system interface
instead. Nevertheless, if I want to ·send an interactive program of mine to
someone else, I also have to send the seventy odd changes to the interface
and hope that this is enough information to allow the recipient to change my
program so thoc it can run under his system. I will go so far as to say that
McMaster offers "standard Pascal", but not the standard Pascal system. I
doubt if any "language standard" committee would find it appropriate to consider
point'!!; such as these which do not affect the lanl'uage as such.

I have made a point of killing every version of Pascal other than the
current one as soon as it has been recieved and tested. Admittedly, the
number of Pascal users at McMaster is small, but FORTRAN is very deeply
entrenched even amoung the Computer Science Faculty. Within the next few
months we are acquiring a second CDC6400 to be run. under NOS, so that
changes to the OS interface will be required.

OPEN FORUM FOR MEMBERS

To summarize: let us be perfectly clear about what we mean by
"standardization". I would like to point out that the University of Toron~o
is trying to enforce standardization of their SP/k languages by distributing
binary modules only and prohibiting recipients from seeing compile,:s in source
form. Do we want this approach? In other words: "Weak or strong standardization?"

Yours sincerely,

i~~e,-~&;tr
N. Solntseff.

NS:ib

P.S. My offer of help still stands. Of the three tasks listed in PNEWS 6,
I do not think that I could manage the bibliography properly.-------

P.P.S. I would like to see a "bug" corner giving details of bugs real ()r
imaginary. One ean then know immediately whether the bug one
discovers has been noted by someone previously,

_~~~,_PA __ T __ T_ER_N_A_N_A_L_Y_SI_S-c-&_R __ EC_O_G_N_IT_IO_N_CO_R_P_~_N -TH-E -MA-L-L

Mr. Andy Mickel
Editor, Pascal Newsletter
227 Experimental Engr. Bldg.
University of Hinnesota
l1inneapolis, liN 55455

Dear Andy:

12 January 1977

ROME, N. Y. 13440

315-336-8400

315_724_4072.

I would just like to make a short comment on Richard Cichelli's
proposal (Newsletter #6) for direct access files in Pascal implemented as
long array's. That is, I feel the suggestion was excellent in terms of
simplicity and elegance~ but that the word "long" is an unfortunate choice.
The compiler doesn't have to be told that the array is long or short -- it
knows the exact length of every variable. What the programmer is really
trying to tell the compiler is that it is all right for the array to be
allocated on a slow, mass storage device because faster access speed would
not justify (for this particular variable) using the required amount of
scarce main storage. Thus, I submit that "slow array" would be more ap
propriate, as it specifies an attribute of the storage allocation, just as
does the word "packed".

Thank you.

MNC/pak

Sincerely,

PATTERN ANALYSIS AND
RECOGNITION CORPORATION

By Mi:tl~?f.t\~
Programmer

z
rn

(/)

r
rn
-I
-I
rn
:;0

* 00

OPEN FORUM FOR MEMBERS

UNITED
COMPUTING SYSTEMS, INC.
A UNITED TELECOMMUNICATIONS CO.

UNITED COMPUTING SYSTEMS, INC .. 2525 WASHINGTON, KANSAS CITY, MO. 64108 I 816 22~·9700

January 4, 1977

Dr. G. Michael Schneider
university of Minnesota
114 Lind Hall
Minneapolis, Minnesota 55455

Dear Dr. Schneider:

I was impressed by your concern for the future of PASCAL, as ex- ,
pressed in PUGN #6. I also agree with your propesal 'Of the initiatien
of "proper administratien" of PASCAL'.

Perhaps, however, it weuld be wise te include some direction in the
areas 'Of P. Brinch Hansen's concurrent PASCAL and Niklaus Wirth's
MODULA (if/when it gees). , Itweuld be' unfortunate if enlythe"appli
cation" areas are "well tempered" and. the related "systems" areas are
left undirected. since there is a pessibility that we at ucs may be
deing seme work'in more machine dependent areas (using MODULA), it
weuld be advantageeus 'te have., a "sounding beard n fer linguistic adapt
ations (net necessarily 'including all machine dependent extensiens).
Anether advantage te this approachweuld pe te help dispense'inferma-,
tien,on how varieus machine dependent language extensiens were dene.

Hopefully, this request, if incerperated, 'weuld net significantly in
crease the burden uoon the committee. It could significantlv increase
the scope 'Of PASCAL- and P,ASCAL-like usage, and at the same time, hepe
fully,preve that an "adapted PASCAL' is a .geed (great) "system level"
language.

Yeur censideration 'Of this matter is appreciated.

Sincerely,

UNITED COMPUTING SYSTEMS, INC.

L.niS
Distributed Systems Divisien

LDL/mgr
cc: Andy Nickel

Jehn Strait:

(* In a phone call April 11, Larry wished to
clarify that he didn't view Pascal as a SIL
and rather that emphasis should be placed
on MODULA, He urged that anyone releasing
Pascal-ware shou'ld put it in a source library
editor compatible form against which future
modifications can be made (such as CDC HODIFY).*)

THE UNIVERSITY OF BRITISH COLUMBIA
2015 WESIlROOK MALL

VANCOUVER, B,C .. CANADA

DEPARTMENT 'OF COMPUTER SCIENCE

Andy Mickel
University Computer Centre
227 Exp Engr
University of Minnesota
Minneapolis, Mn 55455

Dear Andy,

V6T lW5

14 February 1977

I would like to add one more opionion to the standards issue, along with the
idea that Pascal might someday replace Fortran.

First of all, there should be no doubt that Standard Pascal will never replace
Fortran. Describe Pascal to a numerical analyst and he will laugh. Several mandatory
extensions include:

- Parameter arrays of unknown size
- Shared variables for separately- compiled procedures
- Input formatting and improved output formats.

So suppose that we standardize a language resembling Standard Pascal. We lose the
time and energy of those making the standard and those modifying Pascal implementations.
More people are using the language, so later extension efforts must live by the frist
standard. Meanwhile, Fortran programmers look at the language and reject it, so they
will never bother with the revised version.

Why shouldn't Pascal be revised? Fortran's main problem is its age. Pascal
has been around for a nurnb~r of years too, so it could benefit from some re-design.
Some of the improvements found in Concurrent Pascal, Modula, and Euclid might well be
added to the language. (It is not at all clear that the result would still be
called Pascal.)

Hopefully, this new language would resemble Standard Pascal to the point that existing
programs could be mechanically translated to. the new language.

If the hopes of Pascal users are to be realized, it seems that we should recognize
the need for a language re-design and work towards the organization of that effort.

~cerelY'..1 t
, " £Jvrfl' 1(~{, "0

):>

(7)

£T1

N
C>

ABT ASSOCIATES INC.

SS WHEELER STREET. CAMBRIDGE. MASSACHUSETTS 02138

24 January 1977

Andy Mickel
227 Exp. Engr.
University of Minnesota
Minneapolis, Minn 55455

Dear Andy:

Enclosed is the check I promised for an additional copy of Number 6.
and a two-year extension of my subscription. J am looking forward
to a long series of interesting issues.

There are several issues I would like to raise which I shall attempt
to group together as (1) Standards. (2) Mods to the Standard. (3)
Mods to the implementation. and (4) available software.

Now that there is an obvious push for the formation of a Standards
Committee in the abstract. I would like to put in a pitch for our
interests. and suggest that PUG should be responsible for the organ
ization of the Committee. It seems appropriate to suggest that PUG
might reform under SIGPLAN as a Special Technical Committee while
putting a first draft ANSI Standard for the language. Any help you
might need in getting this ball rolling which I could provide is
available for the asking.

Now that I have looked over three suggested implementations of vari
able dimensioned arrays, it is clear that some mechanism must be
provided to review and coordinate comment upon proposed extensions
and modifications to Standard PASCAL. My favorite extension is the
inclusion of OTHERWISE as the final branch under the CASE statement;
a suggestion which I know causes you no end of grief. I have included
a revised syntax graph for the case statement which demonstrates the
feature.

As we have discussed on the phone. the CDC 6000 implementation could
be improved. In addition to the proposals made before. I would like
to recommend that PASCAL and the system routines be modified so that
when files are passed as formal parameters, the FET address is passed,
in the same manner as all of the other SCOPE and KRONOS software.
GiVen that PASCAL has an already demonstrated to be inadequate file
system, this minor change would allow the user to develop and test
new I/O routines without all of the additional calculation involved
in adjusting the PASCAL EFET to the 6000 FET addresses. If you have
a set of mods which do this, I would greatly appreciate receiving a
copy.

Andy Mickel - 2
24 January 1977

The last item concerns available software: I would like to know how
we start a register of PASCAL and PASCAL callable software for exchange.
For example, I have just completed a PASCAL core dump interpreter which
lists specified locations of the user's CM and control point area in
octal, COMPASS, alfa, real and integer with a wide range of options.
This is useful, obviously, for systems work on a 6000, although the code
is interesting. It comes with its own PP routine, BCD, which creates a
Binary Core Dump on a user-provided file for later analysis. Given that
PASCPMD does not help when the routine being developed is in another
language (e.g. COMPASS). being called from a PASCAL mainline driver.
this is a real boon.

looking forward to your action. I remain

Sincerely yours.

ichael Patrick Hagerty
Director of Systems Research

and Design

:z
rn

-0
):>

G')

rn
N

f-'

SPECIAL TOPIc: STANDARDS

The following set of five exchanges regard the topic of ~ascal standards. It was first
prompted by a very long letter by Niklaus who has come altound to the position of
conventionalizing some extensions beyond a standard. Nik1aus invited ·Richard Kieburtz and
J¢rgen Steensgaard-Madsen to reply.

·At the Southampton Pascal Symposium I was a late addition to the program for the purpose of
introducing a discussion on standards and extensions, The 4 pages are reproduced from the
proceedings in order to explain the assumptions made and to report on the reaction. Before
my presentation, Bjarne Dacker urged that a consensus be arrived at, rather than a soon-to
be-forgotten discussion. As the discussion began, Tony Addyman (who had informed others of
his intentions to get an official (ISO, ANSI, etc.) stanqard in Here and There PUGN#6)
pointed out that perhaps the most important argument in favor of an officially accepted
standard is that if trusted Pascalers don't do it someone else will (like a large computer
manufacturer) and do it their way! . .
Another thought that arose during the discussion was that although Niklaus has shown an
unwillingness to move in and clear the air, no one would 'stop him if he did, There was
general agreement to this as was the general distaste of creating a "standards committee,"
So most important (as well as being good news) was that ~ony felt that if anomalies in the
Revised Report could be fixed up, then it would be relati'Vely easy to work within the
British Standards Institute (P.SI) to achieve an eventual ,ISO standard - without resorting
to a standards committee. Tony agreed to send in a list of such complaints against the
Revised Report. No one.at the Symposium objected to Tony's proposed actions.
David Barron who had agreed to Bjarne's suggestion, conducted votes(!) on each of·the three
items listed under Considerations of a Standard, The first passed unanimously, the second
passed with two half-hearted no votes changing to absten~ions, and the third passed with
only 4 no votes. However in each case approximately one':,third of the people present did not
vote, I pointed out that I would be seeing Niklaus withi," a week and would put these ideas
to him. The discussion ended leaving people wondering about the future,
When Niklaus came to Minnesota to talk on Modula March 31, John Strait, Jim Miner, Dan
Laliberte and I put these ideas to him regarding standard,s. I pointed out the need for an
officially accepted standard noting the consensus in the Symposium - which surprisingly
had not included adding features in the process.
Niklaus and I agreed that I would collect from Pascal us~rs and Newsletter readers suggested
topics for necessary clarification in the Report and would work with ·him on such points so.
that they could then be included in the Standard. We will also work on a conventionalized
set of extensions to be published in a future issue of Pascal Newsletter. It would be nice
that if by the end of 1977 these matters were cleared up 'and that we had an ISO standard.
I am of the opinion that real progress without the potential pollution of the language is
being made. .

So it is really sad to see some people (for example, George Richmond. and some· of the aspects
of his article in this issue) call for more and more redundant additions to Pascal,
Sparceness is Pascal's nature (and is a virtue). Anyone who is using Pascal should try to
make do with what facilities are already in the language, For example there is so much of
a cry to see an otherwise clause added to a case statement. The facilities are already
there for a large majority of instances: --

if selector in (set of case labels]
- then -

case sel ector Qf.

end
else-

After a period of using and getting to know Pascal, one can conceive of many natural
extensions and wonder why these were left out of the language. Answer: a line had to be
drawn on the total number of features in order to adhere to another design goal: efficiency
of realization! ,. - Andy Mickel

XEROX

: ... ~

Xerox Corpr;.ration
Pdl;) AH.1 f;U~';'lfCh Car, Ie;
3333 Co,'ct.,:- Htll Road
Palo Alto. California 94304

Mr, Andy Mickel
Editor, Pascal Newsletter
Computer Center
University of Minnesola
Minneapolis, Mn. 55455

Dear Andy.

January 31. 1977

I have received the Pascal Newsletter No. 6 and would like to congratulate you on a
very nice job. By now it is quite evident thai the Users' Group and Ihe NewsleUer
cater to a genuine need. Thank you atso for your letters inviting me to express my
opinion on several issues raised in the Newslelter in general and on standardization in
particular, The latter is a r'i!currenl topic, although the reasons Why a "standard" is
needed in addition to the Pascal Report are not entirely obvious.

Standards are successful if, and only if, many people feel Ihat each of them can profii
by adhering to a mutual consensus, and that deviating from that consensus is
detrimental 10 their individual. interesls, In the case uf Pascal, there is the original
language definition, and any implementor must decide for himself whether or not to
adhere to it. All 100 often, he is tempted by his own bright ideas on how to do be Iter
on tittle points, and unfortunately it is the user of his implementation who. will later be
inconvenienced by the non-standard. But, alas, even the existence of a standard
.:annol prevent this from happening. I agree thai there are a few areas where lhe
temptation to extend the language is particularly strong, and where it might indeed be
beneficial to have a commonly accepted way of extending Pascal.

This sounds like. a good idea; yet I have my reservation about declaring these
extensions 10 be Standard Pascal. After. all, there are many implementations in
existence, and it would seem unfair to suddenly declare that what once was a Pascal
compiler now suddenly. isn't so any longer. Also, once you start on the alley of
extensions, there is seldom a consensus about where to stop. An even more serious
problem is the' published literature on Pascal, which, I believe, would have to be
properly upd<lted: the Report, the User Manual, tutorials, books, etc. There is a great
deal of virtue in stability.

After lhese caveats, let me list and discuss those points where I nevertheless believe
that a recommended set of extensions could have a beneficial influence.

1. Dynamic arrays. It is generally agreed thai dynamic arrays are missing and &hould
be made available, even if they cause some conceptual inconsistencies with Pascal's
notion of strictly static typing. There remains Ihe queslion 01 whether this extension

en
r
rn
-I
-I
rn
::0

'*t:
00

should bring truly dynamic arrays (as in {,I'IOI 60). or be restricted to parameters in
procedures (which do not in'Jolve any ~ctll;J1 storage nl!ocalion) such as in Fortran.

Should the dynamic property be applicable 10 named arrays (1I1<e in Algol 60), or 10
variables referenced via poinlers only (see SIGPLAN Notices 12, 1, 52-56)? In any
case and for good reasons. array bounds must always be stnlic, if the mray is a
component of a record or a file structure. The proposal of Jacobi (PH 5 p. 23) meets
all these consideralions, and has proven to be economically implementable.

2. Array- and Record-Constructors. The primary motivation is the desire to have a
convenient facility for initialization of tables. Yet if a nolation for structured values is
introduced, it might as well be available in general instead of being restricted to
specific places. For example, given a declaration

a : array [1 .. 3] of
record i: integer; x: reat;

S : packed array [0 .. 4] of char

end

an assignment might look like

a := «5, 0.3, "BEGIN"), (3, 1.2, "END "), (4, 0.1, "GOTO "))

It is of course tempting to admit general expressions as constructor elements, but this
may give rise to some nasty pitfalls, Consider, for instance, the assignment

a := «a[2].i, a[3].x, "ARRAY"), (a[1].i, a[3).x, a[k).s), ",

From the point of view of implementation, and perhaps also of clarity of exposition, it
is reasonable to require a type identifier preceding each list of component values.
Yet this appears to be quite cumbersome in the case of structured components of
(long) arrays, as in the example above. where the identifier would have to be repeated
many timBs. Moreover, it appears that the use of constructors with type identifiers
would necessitate the possibility to include constant declarations after type
definitions. This would unfortunately entail a change of syntax. Also. a notation for
eliding and perhaps repeating components would appear as desirable. This may
suffice to show that the subject of extending Pascal with constructors is a

complicated subject. II

let me add two more items to the list which are mentioned again and again in the
Newsletter. I am, how'ever, rather doubtful about their indispensibility:

3. Default in case lists. Certainly there are situations where it might be convenient to
have a default case being selected when the case expression is unequal to all case
labels, such as when the case expression is of type char, and you do not wish to
explicitly list all "other" characters. (But convenient is not the same as necessary).

4. Formatted input. The only justification for such a facility is convenience in reading
densely packed (i.e. encoded) data. A syntax identical to tMt of the write statement
would seem most natural. But I cannot accept an elaborate proposal like Hagerty's
(PN 6, p.43), which includes Boolean values (who would "pack" a Boolean value into 5
characters!) and specifies complicated rules about "overriding decimal". Such
sophistications have only one effect: to greatly increase the possibilities of data

mismatch errors discoverable at run-time only. It seems that there must b'3 better
approaclles to this subjecl than 10 adhere bl!ntlly to the conventions of the p~st. !

Many other extensions have been mentioned as needed. convenient. convenlional. or
merely desirable. Most of them. however. belong ·to a different category which, I
believe. tl~S nothing to do with the goal of attaining D common language. Ralher, their
primary objective is to introduce some favourile facility suggested by either a
particular application or, more frequenlly. an existing operating system. Whereas, f
have no objection to such extensions in principle, they do not belong into the core
language, whose facilities must be understood without reference to any particular
implementation. If at all possible, they should be incorporated in the form of
predefined procedures. functions, types and variables, and in the documentation they
must be clearly marked as facilities pertaining to a given system. There are so many
different kinds of operating system facilities in existence, that an attempt to enforce
any particular set as a standard would be quite detrimental to imptementations with
incompatible environment. The version of S. Knudsen (PN 6, p.33) on indexed files is
an example: although it may be useful on the CDC maChines, it would be ridiculous to
enforce this concept on an implementation for IBM computers.

The four items listed above are free of such environment dependent considerations.
They migh therefore well be considered -- if properly worked out -- as Standard
Extensions of Pascal. We might publish a final proposal. in the Newsletter, thereby
avoiding to have to officially change the definition of Pascal as widely published in the
literature. A set of Standard Extensions might encourage implementors to adopt a
common notation.

The remainder of this letter consists of some miscellaneous comments on various
contributions in Newslelter 6. Above all,'1 enjoyed the Southampton-Hobart dialogue
and in particular Professor Sales's yuks and ouches (p.61). I emphatically support his
advice against private character sets. Two are already too many. but we shall have to
live with ASCII and EBCDIC due to higher forces. II is unfortunate that CDC users are
compelled to have an additional one based on 6 bits and strange conventions about
line ends, and this has considerabty hampered transportation of Pascal.

Files and input/output are a frequent topic, and this is not surprising. I agree that· files
playa special role among Pascal's data structures, and that it would be unwise to try
to eradicate or hide this special role by. for example. letting the aSSignment operator
denote the copying of an entire IIle (p. 61). On the other hand, I disagree with the
strong statement that "Pascal's files are an anachronism" (p.47). The Pascal Report
specifies clearly that fife here means sequential file, and perhaps sequence would
have been a less misleading term. The concept of a sequence is as little an
anachronism as is the notion of an integer (which retains liS importance inspite of the
existence of real and complex numbers). In fact, the sequence has so far proven to
be the only data slructure that is wielely accepted Gnel simple enough to describe
much about input and output in a maclline-independent fashion. Every other attempt
has remQined highly tailored to specific file systems and proven to be of lillie interest
to programmers not using the same environment. The proposal by Hagerty (p.43) is a
nice example to support this case. What, for example, CGn it mean to "read an

end-of-file". if not some imptementation dependent mark in a sequence of elements, a
mGrk that may be followed by elher elements and is Iherefore nol the end. It is
important thai we distinguish between the end (of a'sequence) and a possible way to
represent this end, Let not such confusion penetrate the framework of Pascal! An
attempt to define any proposal on new facilities in terms of an abstract, consistent set
of axioms is a highly recommended test for its soundness and independence 01
implementation particulars. (See Hoare and Wirtfu: An axiomatic definition of the
programming language Pascal. Acfa Informatica 2, p, 335-355, 1973).

"Fortran's archaic control character at the start of a printed line" (bottom, p.47) has
never been a part of Pascal's definition. It was merely part of a suggested standard
for program interchange, alluding to the fact that this convention is .lIsed wherever
Fortran is available. The Pascal system itself is not even aware of the special
significance of the first character.

Another misunderstanding accuses Pascal of being "unsuitable as an interactive
language". What. above all, is an inferactive language? A correct statement might be:
"The· Pascal 6000-3.4 file system without. modifications is inadequate for use in an
interactive mode". In fact, the notion of file may well be used to represent the
sequence of characters originating at the input termipal. However, at the heart of the
problem ties the fact that interactive use inher~ntly postulates two concurrent
processes, namely the programmer and the programmed computer. Yet Pascal does
not include the notion of concurrency. Nevertheless, the problem Can be "solved" in
this particular case in several ways. The most popular one is to require a readln
statement before the first input request, which includes a delay until the next line
arrives from the terminal,

Finally, I should like to mention that there exist items where standardization should n~t
be considered at all. The form of compiler directives is one of those, They were
intentionally moved into comments, so they could be ignored as such if desired. The
idea of portability is stretched too far, if even compiler directives should carryover
automatically.

Yours sincerely,

Prof. N. Wirth

c: U. Ammann" ETH

DIKU DATALOGISK INSTITUT KtiJ8ENHAVNS UNIVERSITET

SIGURDSGADE 41, DK-2200 KtiJ8ENHAVN, DANMARK, TLF. (01) TA 9466

Mr. A. f41ckel
University Computer Center
227 Exp. Engr,
University of Minnesota
Minneapoli, MN 55455
USA

Dear Mr. Mickel,

February 9, 1977

JSM/HG

Professor Wirth has asked my opinion with respect to stand
ardizing some extensions to Pascal. He did that after reading our
Pascal 1100 User Manual and in his reply he mentioned that you
too would be interested. As they m~,y be of interest to others also
I have set up a small paper, which you may include in Pascal News
letter. Further I enclose for you a copy of our Pascal 1100 User
Manual.

Yours sincerely

1'o-\.'Y~ ':,"'-~:"5.~,,-,'\. t-\,o:)..""-....

)¢rgen Steensgaard-Madsen

COMMENTS ON PASCAL EXTENSIONS

J, Steensgaard-Madsen
DIKU

Sigurdsgade 41
DK-2200 Copenhagen

Denmark

The programming language Pascal was originally designed

primarily for educational purposes. Its popularity is steadily
growing and it seems natural to consider the language also for

applications. Doing so, a few well-known shortcomings of the
language increase in importance. From the experience gained by
bootstrapping a Pascal compiler to the UNIVAC 1100 machines,

and the extensions of the language built into that compiler, I
should like to state my opinion on selected topics, These will

be

a. initialization of variables

b. dynamic arrays

c. exhaustive specification of parameters
d. the case statement

e. handling of TEXT variables.

\

Initialization of variables

Quite often a program depends heavily on tables, the con

tent of which is a rather complex pattern of elementary values.

With Pascal such tables are held in variables and the initiali

zation of these is cumbersome and probably costly.

As a means to overcome this problem a constructor concept

has appeared. A constructor looks like a function, but general

ly results in a structured value and accepts constant parameters

only. The name of the function is identical to an identifier of

the result type.
I find the constructor to be only a partial solution to the

initialization problem, but perhaps it may be useful as an ex

pression yielding a structured result, i.e. if the parameters

may be expressions. To my taste it requires too much writing

to build a table with structured entries using constructors.

But more important, it means that any table still must be a var

iable, although its value may remain unaltered after initiali

zation. In this case the table probably will be represented

twice, once in the variable and once for the purpose of initial

izing the variable.
Now, if you provide for the identification of structured

constants you have the option of easy initialization by usual

assignment. This is done in our Pascal compiler and experience

indicates that structured constants are used more in their own

right than for initialization of variables.

rules

We have extended the syntax for constant definition by the

<constant definition> ::=

<constant identifier> : <type> = <values>

<values> ::= <value> I «value> {,<value>})

<value>

<subset> : :=

<constant>

<constant>

[<subset> {,<subset>})

<constant> .. <constant>

To ease the use of this facility we allow a mixture of constant

and type definition parts in one block.

Dynamic' arrays

Under this heading two problems must be considered. First,

the requirement in Pascal of complete type agreement between

formal and actual parameters means that it is impossible to

write one procedure to invert matrices of different sizes. This

again makes it a doubtful enterprise to build a library of Pas

cal procedures. No serious technical problems have to be solved

to mend this defect. It almost suffices to define a syntax for

the description of array parameters without fixing bounds for
indices. The most suitable way is to eventually replace the i

dentifier specifying the type of a parameter with a construct

like

<packed> array [<type> {,<type>}] of <type>

Secondly, the fixed-sized representation of values other

than file values is fundamental to Pascal, but is felt restric

tive to users familiar with Algol to whom it is natural to let

the value of an expression determine the size of a table.

I consider it fruitless to modify the type concept of Pas

cal in such a way that index bounds may be determined by expres

sions in general. Alternatively I propose to introduce the con

cept 'of an array of variables to be distinct from one variable,

the type of which is an array structure. The bounds for arrays

of variables may then depend on general expressions. Syntacti

cally you may declare several arrays of variables by the rule

<variable declaration> ::=
<variable identifier> {,<variable identifier>}

[<bounds> {,<bounds>}) : <type>
<bound> ::= <expression> .. <expression>

An implementation along these lines is well under way for

our compiler and the additional complexity seems modest. The

specification of array parameters is taken as a point of uni

fication of the, two array co.ncepts.

Exhaustive specification of parameters

The number and types of parameters in formal calls of pro

cedures and functions cannot at reasonable costs be checked at

compile time. It is possible to devise means by which the pro

grammer can specify such parameters. Consistency can then be

checked at compile time. The requirement in Pascal that formal

procedures and functions may be called with value parameters

only, can be completely relaxed.

Although this may seem a minor problem I find that its so

lution is important. Not only just for aestetic reasons. The use

of formal procedures and functions is uncommon, but properly done

you may achieve protection of data usually connected with a

monitor/class/module concept; and with even greater flexibility

in certain cases (e.g. ,hidden and recursive modulesl. I do have

very favourable experiences from actual use but space is too

short for further elaboration here. You may consult our Pascal

N
V1

1100 User-Manual for the syntactic details, but this contains

no important examples.

The case statement

Pascal has often been praised for its case statement. The

explicit labelling of entries makes programs very readable. Nev

ertheless the Pascal Report does not specify the action when the

case expression does not compute one of the values labelling an

entry. It seems most reasonable to provide the programmer a means

by which to handle this situation and settle for a common inter
pretation if that is not used.

Further I find it very convenient but not so important to

allow an interval to indicate labelling of an entry. In our com
piler we have adopted the following syntax

<case statements> ::=

~ <expression> of

<case list element> {;<case list element>}

<case termination>

<case list element> ::=

<case labelling> {,<case labelling>} <statement>
<case labelling> :;=

<constant> I <constant> .. <constant>

<case termination>

end I otherwise <statement>

The statement following otherwise is executed if none of

the labelled entries are selected. The termination end is equiv

alent to otherwise <empty>.

Handling of TEXT variables

A format specification in the read procedure in analogy

with the write procedure has been claimed a need. I have no

strong opinion on the subject itself but want to warn against

rushing to a solution. Proper use of the read procedure seems

to be difficult, judged by the number of errors found in begin

ners programs. The reason to this is, I suppose, the lack of a

suitable standard structure in TEXT variables. This may be ex

plained by the development history of Pascal, especially the

late addition of a read procedure including type conversion.

I would find it a most unhappy situation to introduce a

standard for formatted input before an agreement on TEXT struc-

ture. This should include a rule stating that the value of eof

only changes when a line marker is passed, in complete agree

ment with the scheme

while not eof (f) do begin

while not eoln (f) do begin

read (f, x); use (x)

end;
read In (f)

end

Another trouble with reading a TEXT variable is that the above

scheme is only correct if x is a CHAR variable. A closer look

into the problem reveals that the above scheme applies to read

ing in general, if trailing blanks in a line are skipped during

a read operation. This will be true if x is replaced with sev

eral variables provided that read (f, VI, V2, ••• , vn) is consid

ered a fatal error only if eof (f) is true prior to the call.

With the above structur~ format specification may be safe

ly introduced if interpreted in such a way that detection of a

line marker may shorten a field.

Formatted reading would probably be used mostly to read

a TEXT variable previously written with Pascal output format

specification. Writing may result in a field larger than spec

ified. This situation ought to be detectable when reading and

a standard structure of TEXT variables may be a sufficient means

to this.

Concluding remark

Except for formatted reading my opinions expressed above

are based on actual experience, both my own and a large number

of computer science students. Neither in themselves nor in com

bination do the presented extensions complicate the compiler

seriously and the additional conceptual complexity is clearly

outweighted by the increased possibilities.

(* Jorgen is not a PUG member yet. *)

:z
rn

C/)

r
rn
-I
-I
rn
::0

'1'1:
vo

StonyBrook

Professor Niklaus Wirth
Xerox-Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, California 94304

Dear Professor Wirth:

State -University of New York
at Stony Brook
Stony Brook, New York 11794

Department of Computer Science
telephone: (516) 248-7146

March 7, 1977

I received the copy of your letter on standardization of Pascal
extensions, and read it with much interest. I certainlyagrecwith the
general philosophy expressed on standardization and on the role of language
extensions; The concern that you express for keeping the published liter
ature up to date with the.working versions of the language is also well
taken; no implementor will ordinarily undertake such a responsibility.

My principal concerns on the Standard version qf Pascal, as opposed
to possible extensions, are two:

A. The complete typing of formal procedure parameters should have been
standardized. The strong typing inherent in the language fails to
carryover here, leaving to·the implementor the choice as to whether
to omit type checking of parameters in calls upon formal procedure or
functionnilDles ·(unt~ble}.or toc.ompilea run-:time checking
mechanism. Several implementorshave chosen a third route--to define
their own syntax for the declaration of the parameter types of formal
procedures. These several syntactic deVices have in common that they
all permit full type checking during compilation, but they are mutually
incompatible. .

B. The field width specifier given in the argu~ents of a call to the pro
cedure Write should not have been made a part of the Standard language
in my view. Although the mechanism is convenient and easy to use, its
syntax is not context-free and it is not easy to implement unless one
uses recursive-descent parsing, which allows the use of semantic in
formation to aid the parse.

With reg~rd to the recommended set of extensions, it is really important
to look for extensions that work well with the Standard language and work ",,11
with one another. My own prejudices are that one should first add diagnostic
facilties to an implementation of the standard language, then look at
extcutions. One obvious extension, consistent with the design, is to
relax the implementation restriction on the maximum cardinality of set types.
There are known algorithms for flow analysis, for instance in which

the ability to handle large sets as bit vectors is crucial to performance.
Next in order, by my preference, would be to add typed, structured constant
declarations. The lack of a facility to initial.1ze tables is a genuine
weakness. Third would be an external, or separate compilation facility,
with type checking extended across program linkages. Fourth on my list
would be some form of string processing, at least at the leval that exists
in ALGOLW, but preferably ·allowing a variable length specifier in the sub.,
string selector. On the recommended set of extentions that you have
addressed:

(1) Dynamic arrays are greatly overrated. Fast, dynamic sequential-access
storage can be provided by implementing internal files as corefiles.
Linked lists are convenient and easy ·to use to implement stacks and
queues. In any single program, vectors and matrices tend to be all
of the same size, or of a: few fixed sizes. In fact, until one has a
facility to compile program components separately, creating a proce
dure or module library of relocatable programs, there is really no
need at all for dynamic arrays. When a ·library modUle is· designed
to be incorporated into a variety of applications programs, then
elastic bounds do become somewhat of a necessity. However, a very
minimal degree of 'dynamism' is required, even in library modules.
Each applications program will have a characteristic set of dimen
sions that its arrays use, and these dimensions, communicated to the
library module-during program linkage, should provide sufficient
elasticity in the bounds of arrays. I would propose tbat the critical
dimensions be declared as parametric constants not known at compile
time, as distinguished from "manifest" constants. l'arametric constants
could be used to define subranges, just as are manifest constants. The
only limitations that I know of on the use of parametricsubrange types
would be in connection with another possible extension, default clauses.
in case. lists. Of course, a=ays and sets indexed by or based upon an
elastic subrange would have. to be doped in an implementation. even
thougb the constants are defined prior to actual run initiation.

(2) Array- and Record- constructors. If the initialization of tables is
the primary motivation for these. constructors, and I believe that it
is, thenwhy should they be defined on the right side of an assignment
statement, in the statement body of a block? It seems that it would
suffice to define typed, structur~d constants in the block heading,
allowing ~ and ~definitions to appear in alternate. order.
I certainly agree that the inclusion of general expressions as construc
tor elements would be a major, and I think unwarranted extension of
Pascal. The notion of multiple assignment has some attractive aspects,
but this is something to be built into the foundations of a programming
language, not to be added on.

(3) Default in case lists is only a convenience, a cosmetic extensions,
but it turns out that it is a very attractive one. Our students,
who are currently using the Pascal 1100 compiler from Copenhagen
which has this feature, like it a lot. And we haven't encouraged
them to use it, they ·have just found out about it. Since it is one
of the easiest extensions to make, perturbing nothing else (until
parametric constants are addcd,.at least) :I·see.no·objection to it.

(4) Formatted input has no justification that I can see. It has a
historical origin in the technology of fixed-field, unit-record data
processing. Far more useful in some 'large-program applications would
be the.ability to specify, in a machine-dependent way, the format of
data packing in the declaration of a packed record. This would be a
rather specialized extension, but is worthy of some serious thougbt.

In our implementation, we have first concentrated on providing some
useful diagnostics, borrowed with much admiration from Ed Satterthwaite's
contribution to the ALGOLW compiler, and on a relatively clean· implementation
that can be built upon and maintained. We have give" it lot of thought to
generating efficient code, and have provided hooks f~r optimization, but
have deferred work on an optimizer until we feel that most of the compiler
bugs have appeared and been eradicated. We are just now completing the
implementation of nonstandard files. An effi~ient and safe storage manage
ment scheme is our next target, and doesn't appear to be too difficult. We
are. presently working on two actual extensions, separate compilation with,
type-checking across module linkages, and the addition of typed, structured
constants. Incidentally, we adopted your suggestions for the syntax of
record and array constructors. Some of this may be working by the time of
your visit.

We have thought.about adding a default case clause, and allowing ranges
to specify case labels, but I'm nof sure this will get done. Also, we have
tbought about allowing parametric constants, but no decision has yet been
made on whether to go aheed with an implementation of; this idea, either.

One final comment on the use of Pascal in writi~ programs for inter
active execution is that the expedient adopted in the Copenhagen Pascal/nOO
seems worthwhile. They have made the nonstandard imp,lementation adaptation
that when a Text file is opened, or Reset, the Eoln ~ondition is initially
true. Thie means that to accept input, one may need to execute an initial.
call to Readln. but it,avoids the condition that inpUit from a terminal is
expected prior'to printing of the first prompting line of output. Thus. it
works very nicely in interactive programs.

I look forward to an in-depth discussion with you at the time of your
visit on March 23, until then.

RBK:pdm

Third Annual Computer Studies Symposium
"PASCAL- the LANGUAGE and its IMPLEMENTATION"
University of Southampton, March 1977

THE FUTURE OF PASCAL (Extensions and Standardization)

Andrew B. Mickel

University Computer Center
University of Minnesota

The Present State of Affairs

1. It's been 7 years since Pascal's initial development, but ~ 3 years
has seen widespread use and easy to obtain literature (books) has been

2. We have 3 official documents:

since Pascal
available.

- the Revised Report (Second Edition, Third Printing of the book: Pascal User
Manual and Report)

- the Axiomatic Definition (in Acta Informatica, 1973)
- the User Manual

3. Now in early 1977 we have working implementations on dozens of different machines,
thousands of users, an ever-increasing base of computer science departments which
are using Pascal for teaching, and a rapidly growing user's group of more than 800
members in 28 countries.

4. Pascal has had an enormous effect on computer science - just witness the imitations
of features in the literature and in conference papers.

5. Much applications and production software is being written in Pascal at all levels:
from individuals, to small software writing firms, to large organizations (research
computer centers and corporations.)

6. No major computer manufacturer has yet officially produced and supported a Pascal
system for general user applications.

7. We therefore can proclaim a fair measure of success. But •••
S. Even though we have a "standard" in the official documents. many imp1ementors are

not adhering closely to it. There are at least these reaso'ns:
- most implementations so far are done at universities and it is their purpose to

experiment with new things: some valid, some "bright ideas."
- most Pascal compilers are written in Pascal and are very transparent and compact

which allows easy modification.

- there are lots of questions about,details not specified in the 3 official documents
but which are left up to the implementation to decide what to do. This aspect has
led to accusations against Pascal such as CDC bias, requiring a look at the CDC
.compi1er to see how it did things (things defined by implementation). and whom to
ask to find out about other aspects.

9. The result is bad not only for users of these Pascal implementations, but also for
the implementor and the future of Pascal if it is to spread in the world's computing

-0

J;>o

C/)

n
J;>o

r
:z
rn
::E:
C/)

r
rn
-I
-I
rn
::0

'It:

00

community. Increased acceptance of Pascal helps each Pascal programmer to be able
to use Pascal respectably.

10. Within the Pascal community (PUG in particular) we have some of the best people in
computing in the world today. They naturally tend to strive for excellence and
would like to see the looseness tightened; the vagueness clarified.

11. Thus the issue of an officially accepted standard for Pascal is raised which
supposedly should help the situation.

Desirable Goals and Current Problems

1. Let's consider the original design goals of Pascal:
- sparse, simple language (easy to learn/efficient to translate)
- general purpose language (but not all-purpose)
- vehicle for portable software (certainly better than FORTRAN)
- tool for systematic programming (teaching and writing reliable software)
- efficient realization (for sheer practicality)

2. What roles should Pascal play?
~ an as-low-as-you-want-to-go high-level language forming a basis for much other

software
- help put an end to the FORTRAN age so that young new programmers won't be faced

with a life sentence of writing ugly code because of "practical realities." Using
Pascal should be a respectable activity.

- to be an alternative to dinosaur languages. Consider how ha~d it is.to get a
common medium such ~s Pascal widely established. There's not much hope for
another language to come along if Pascal (even with its small imperfections)
doesn't make it. Computer manufacturers will continue to control users' lives by
pushing FORTRAN, COBOL, and PL/I with the excuse "that's what the customers want."

3. It is wise to stay within these assumptions (upon which much of Pascal's current
viability lies), and try to understand how to satisfy all the design goals to the
greatest degree without holding any single one to an extreme degree.

4. Within Pascal User's Group, many persons are quite concerned that Pascal will fly
apart, be killed, or become just as bad as other languages without adherence to a
standard.

5. But't~ere is also pressure to us'e the movement for a standard to extend Pascal l't

the same time. This is bad because:
- most importantly, there is a current investment in documentation in the form of

defining documents, manuals, and books; implementations which are currently
operational; and applications softwa~. We are already in cement, and it is too
late to add extensions to the official language.

- the size of the language as described in the Revised Report is already large
enough in terms of learning the whole language in a reasonable time and in writing
complete implementations on small (mini/micro) computers. The importance of small

computers cannot be overlooked because of their ever increasing numbers and use
by more and more people.

- a committee, which would have to effect a standard,cannot possibly possess the
clarity of vision of a single designer who alone considers design goals and
tradeoffs.

6. There is much difficulty in obtaining an officially accepted standard by a standards
organization. For example, I am told that ANSI requires a committee. Who would
choose it, how will it meet, what will its powers be, and how binding will be its
decisions?

7. The basic problems with the three official documents seem to be semantic holes
(Swiss cheese?). On the other hand their outstanding virtue is small size. The
Revised Report requires reading between the lines, the Axiomatic Definition goes as
far as it can but is not complete, and the User Manual is not a rigorous source for
semantics and shouldn't be. The problems are vagueness and uncertainty. The
situation might be better today if i) it had been explicitly spelled out what
features were left out from Pascal and why. nnd if ii) it had been explicitly
stated which unspecified details in the Report were left up to the implementation to
define and suggest valid alternatives. We would then know where we stand as users
and implementors, and be saved from the archeological digging of trying to find
these things out.

Considerations of a Standard

1. The case is nOl'1 made for:
- standardizing the Revised Report with semantics tightened up,
- conventionalizing extensions to the standard which apply to any implementations

incorporating them, (The User's Group and Pascal Newsletter can be the forum.)
- stating examples of extensions which should not be conventionized.

2. The advantages of an officially accepted (ISO, ANSI, etc.)standard are:
- If most people involved with Pascal adhere to it, it will become a living standard

and there will be peer pressure (pol itical enforcement) brought to bear aga'inst
others. Therefore users can point to implementations masquerading under the name
Pascal and avoid them. At the present time it would seem that the Revised Report
would be such a standard, except for the fact that so many influential Pascalers
find it hard to defend mostly because of semantic holes.

- Portable software possibilities are enhanced, and users are happy.
- It will increase acceptance of Pascal by large organizations because Pascal will

appear to be a legitimate option to take for writing software.
- It will be economically enforceable in the marketplace. If a large customer (say
,the United States Government) wants an ANSI-standard Pasca.l in the manufacturer's

array of software, it will be there.
3. Some extensions should be conventionalized and others should not. Many

\.

implementations do provide desirable extensions. some of which enhance Pascal's
utility. It is possible to make these uniform across computer systems because they
meet many of Pascal's design goals. The spirit of conventionalized extensions is:
"if an implementation extends in a certain direction, it should do it this way."
On the other hand, many extensions should not be con~entionalized because they are
so machine and operating system dependent as to conflict severely with design goals
(mainly efficiency).

4. An incomplete list of details that seem to need attention regarding the Revised
Report:
- the symbol" •• " is a Pascal symbol in the User Manual, but not in the Report
- sets of char are not necessarily guaranteed, but in practice seem to be a useful

guide for minimum set size.
- what is meant by the concept of same type?

a) explicitly same type identifier? or
b) same structure?

- are compound boolean expressions evaluated fully or sequentially left to_ right
allowing partial evaluation? (spe:cified in the Manual but not in the Report)

- what should be the undefined values of scalars and pointers? (~for pOinters
will not necessarily suffice.)

- what is the effect of a case value out of range?
- what is the effect of unset tag fields in variant records?

5. Candidates for conventionalized extensions:
- variable extent array parameters
- constructors for structured constants
- specification of all parameters and their types for procedures and functions as

formal parameters.
- a data initialization facility (value part)
- formatted read procedure
- reading and writing enumerated scalar values
- the procedure dispose
- external procedures and functions (whether precompiled or in source form)
- interactive input/output
~ otherwise for case statements

6. Examples of extensions which should not be conventionalized across implementations:
- operating system file substructures, their access methods, and their myriad

attributes (including direct a~ces~ secondary storage)
- additional, predefined constants, types, variables, functions, and procedures
- compiler options
- very specialized extensions (significant digit arithmetic, error trap labels,

extra looping control structures, synonyms for standard Pascal symbols, etc.)

!-Ianchester University
Oxford Road
Manchester
7th ApriL 1977 (-Late at night .)

Dear Andy
PLease find encL osed an attention List, which refers to the

Revised Report.for you to put in newsLetter 98 and uLtimateLy to
pass on to Nikl.aus wirth.~!any of the points may seem triviaL, but
I am trying to prevent probLems Later.

I have had no time prior to Easter to take any action ;on
standardising pascal. in the UK ,apart from generating this List.
This List incLudes contributions from others.lwiLL be sending you
a copy- of a Letter which Brian \~ichmann has sent me on this matter.
some of the items on this List are due to Brian~

This Letter wiLL have to be brief, since I am trying to type
it myseLf on an onLine terminal.(offline) lAs weLl. as the List!!

I wilL be putting a case at the next meeting of opsin, (the
British standards committee deaLing with programming Languages)
for the production of an officiaL standard for pascaL. This may be
either a UK standard or an ISO standard. If this case is accepted
then I can form a working group to study the probLem and DPS/13
wiLL appLy to a superior committee for faCilities for the work.
It is the responsibility of this committee(DPs/-/1) to initiate new
work. The working group wiLL be OK,since it wont need BSI resources.

The working group (roughLy equival.ent to X3J1-4's in-ANSi)
wilL have two main tasks, -

1.TO criticaLLy examine the Current Revised RepOrt and
submit their resuLts to NikLaus wirth (via you).

2.To ensure that any document(s) resuLting fran your work
wilL be acceptabLe as standards documents.l dont want TWO
standards for pascaL.

The Wt:; wilL have the responsibility for producing a draft standard
as far as the standards organisations are concerned.

some thoughts- on standards.
1. In addition to the standards document for standard pascaL,

we need •
a)A definition of acceptabLe aLternative representations

of the pascaL speciaL symboLs e.g. t:[l
b) A suite of PI" ogramst 0 vaL ida te pascaL compiLers

for conformance with the standard.
2. Here is a possibLe definition of a standard conforming
processor.(processor :: compiLer + run time support Or
interpreter etc.)
A standard conforming processor must correctLy process aLL
standard conforming pascaL programs.ln addition ,it must be
abLe to determine whether or not it's input is a standard
conforming program. This has impLications for extensions.
A processor must be abLe to monitor the use of any
non-standard facilities or semantics.This monitoring couLd be
optionaL.This aLso impLies that the standard must not forbid
anything that cannot be(easiLy) d18cked for.

If anyone in the UK is wilLing to assist in the production of the
attention List and/or join in the ~]ci , wouLd they pLease contact
me?

Yours, Tony Addyman.

C/)

r
rn
-i
-i
rn
;0

'1:1:
co

-0
;r=.
Gl

r<'1

Chapter
3

4

6.1.2

6.1.3

6.2

6.2.1
6.2.2

6.2.3

6.2.4

6.3

7.2.1

7.3

5

5Slnd5.1

5.1
8.1.4

Ail ATT£NTION LIST (pART 1 ?)

as a speciaL sym~oL?
foCU~CU as a speciaL symboL ? (see 10)
strings are constants of pACKED arrays of char - but
see aLsO 8.1.4 and 12.3.8
a) OrdinaL vaLues of type char - digits are coherent?

_ Letters & digits are ordered?
b) Using ISO or simiLarLy fuLL character sets,are the

controL characters e.g. FF,CR etc. members of the type
char?
If yes - do tlley have a constant representation?

- is LF (the end of Line marker) to be a member
of the type char? - see 6.2.4 and 12

If no - are they to be aLL converted to spaces on input?
IncLuding the one chosen to be EOP marker?

NOT REAL I Introduce the concept of the Associated scaLar
Type from the user HanuaL.
packed has, no effect on the meaning - but see 8.1.4,9.1.1,
9.1.2 and 12.3.8
Restrict index type to scaLar(except REAL)
Add "A record type containing variants may hoLd the vaLue
of onLy one variant at any time".This is a (poor) attempt
to say something about the storage of variants,and
whether they overLay.
SET OF REAL 7 see aLso the comments on set operators and
type equivaLence. "
Are fiLe components aLLowed to contain pointer vaLues?
If so, is this sensibLe?
TYpE PT= tTEXT ; ???
pointer equaLity tests are aLLowed - but see 8.1.4
The meaning of a program with an index expression out-of
range?This shouLd be ILLE~AL not UNDEFINED.
Note -some pecpLe think paCked arrays are not indexabLe.
what is the meaning of Pt ,if pis undefined or NIL?
CouLd this be anILLE~AL program,pLease?
The meaning of [x •• Y] if X > Y ? - see UM-8
can we deduce the base type of a <set> from the types of
its eLements? If SO,then [1,2) is of type SET OF INTEGER.
The vaLues 1 and 2 are constants of type integer -see 4
Add comments on integer arithmetic and NAXI'lT from UH-2c
Add comments on booLean expression evaLuSlti"on from U'1-4A
Introduce the concept of Associated scaLar Type from UM-58
Operations between sets and the use of IN ; consider:

TYPE s1 "SET OF 'A' •• 'Z'; s2 "SET OF '0' •• '9';
yAR LETTERS: s1 : DIGITS: 52 ; CH : CHAR:

.
IF CH IN LETTEaS+DIGITS THEN •••••
Is this LegaL?No ! - the types are incompatibLe.The definition
of sets and set operators must be phrased to maxe this LegaL.
MOD and DIy on integer subranges?
EquaLity on pointers? - see 6.3
Operations on (paCked) arrays of char - see 4 etc.

Chapter
9.1.1

9.1.1.1
9.1.2

9.1.3

9.2.2

9·2.4

\Jhen are two types identica L? I f same type identifier
then see the set exampLe etc. If same "structure" then
consider these :-
Assuming
TypE A1 ,. ARRAY[1 •• 10] OF INTE~ER;

A2 pACKED ARRAy[1 •• 10) OF 1 •• 100;
A3 ARRAy[1 •• 10] OF 1 __ 100;
R1 RECORD A : CHAR: P : tR1 END:
H2 RECORD B : CHAR; Q : tR2 END;
R3 RECORD F : TEXT END;

YAR A : A1; 8 : A2; C : A3; 0 : R1; E : R2;
F, G : R); H : 5 •• 10: J : 3 •• 8:

Consider A ." B- B -= C- 0 -= E- F -= 4- H .= J
Note - File- assignment is not p~ohibited (yet) •

- Assignment between variabLes of different subranges
of the same type is not expLicity aLLowed.

A program which assigns an out-of range vaLue to a scalar
Or subrange variable shouLd be ILLEGAL.
",hat about the assignment restrictions from UM-10"Cpage 64)7
These need run-time checks. Is a compile time restriction
possibLe? .
The order of evaLuation of <variabLe> and the <expression>
shouLd be UflDEFINED.Why shouLd side-effects from a function
have a defined effect?
Do expressions of type subrange of integer exist?
The assignment ruLes must appLy to vaLueparameters.HOw about
VAR parameters? FiLe parameters by vaLue prohibited?
~DTO into a structured statement - ·OK?lt must be prohibited.
If mereLy undefined ,a program which compiLes successfuLLy
and is run with aLL checl,ing on can stilL go "wiLd"!
Case LabeL types? scaLar(not REAL)?
<case LabeL> ::= <constant> ?
Action on case expression out of range?CouLd this be either
a) the empty statement cf ALGOL 60 or b) ILLEGAL?
A non-locaL variabLe as a controL variabLe?
The semantics in 9.2.).) do not cover
FOR I := 2 TO 1 DO S;
The value' of the controL variabLe shouLd be undefined on exit,
see Ul·I-4C3.This suggests positive action to store an
·unpleasant" value in the controL variabLe - GOOD!
Consider UN-4C),if the finaL vaLue is caLculated once onLy
it is :i.DlQ..Qil.S.j.!:l.!..~ to change it,so why prohibit any attempt
to do sO?Assignment to the controL variabLe shouLd be
ilLegaL,.. but how to check for it? (Non-locaL references from
prDGeciuees). Is the O('der of evaLuation of e1 and e2 undefined?
The effect of nested WITH statements? - see U:-1-7A.
\nTH A,B DO:: WiTH A DO wiTH B DO •
why prohibit the aLteration of i in WITH A[i] DO ?It is
very difficult to check.CouLd the t;ITH statement be defined
to evaluate its <record variabLe List> just once?lt wouLd
then be compatibLe with YAR-parameters and the FOR Loop_
(see 9.1.2)

-0

»
C/)

n
»
r-

C/)

r
rn
-l
-l
rn
:;:0

'Ito
00

Chapter
10

'10.1.1

10. 1.2

11

11.1.3

11.1.4

12

12.).6
12.3.8

14.4

The ruLes of scope and the accessing of non-Local. variabLes
and types etc. are not adequateLy def!ned. (see U11 Introducti.on I
and UM-11A).There is NO mention of defining before using!!!
so consider these :-
TYpE A =< REC~D etc.
PROCEDURE •••

TYPE pA = fA: .
A = RECORD C. DIFFERE~~ .) etc.

I~hich type A do variabLes of type pA point to??
PR~RAM •••

END.

PRCCEDURE pC •••)
PRD;EDURE Q(•••)

END

pC •••) C. but whichonEi? .)

END
PRD;EDURE p(•••)

END

Which procedure does Q caLL ?The 'ruLes of scope suggest 'the
second one.
Is assignment to ft aLLowed if one is reading from f?
Is put(f) aLLolved on fHe f if eof(f) is true because of
C~~[ing to the end of the fiLe, without caLLing rewrite(f)?
Is skipbLanks (see UM-12A) LegaL?
Has d,ispose .definiteLy been down-graded to a pre-defined but
not standard procedure?
what is the effect if no ·assignments occur dynamical.Ly inside
the function to tl:le function identifiel"?An undefined vaLue is
returned?
Definition of trunc and round shouLd be taken ,from UM-2B.
PLease define ord(user defined scaLar'> to start from O.
what .is the effect of pred(i), if i =, 1 and var i: 1 •• 101
It shouLd produce 0 without error since pred(in'this case)
produces an integer vat;ue.8ut what about prad and succ on
user defined scaLars?shouLd it be a fauLt?
Is reading a subrange variabLe subject to the same conditions
as assignment?what do read(integer) and read(rea~) do if eof .
is true before read is caLLed ?How about returning an undefined
CUunpLeasantU) vaLue?
Action if n = O? compa('e this section with U:·j-1287 and U11-1283
see 4 and 8.1.4
This must ra.main as a program interchange consideration' onLy.
ImpLementations of pascal. shouLd not have to 'know' about this
if their operating systews do not beLieve in it,

I
I
I

1 ~ ; UNIVERSITY OF MINNESOTA Uni.a,.ityComputarCenter ·w j ·l ! lWlN CITIES 227 Experimental Engineering Building

I Minneapolis, Minnesota 55455

. (612) 373·4360
, !

Tony Addyman
Department of Computer Science
University of Manchester

Dear.Tony,

April 24, 1977

Thank you for going to the trouble of making the list of potential
problems in the revised report. I'm impressed at the thoroughness evident in
your list •. I'm printing the list as an example, and what I will do is collect
those sent to me by others, sort and combine them and then send them on to
Niklaus as he and I agreed. We want to get most of this done by September·.

Please don't forget the. principle we learned as of Newsletter #5 CWirth's
letter) : don't confuse the language with the implementation. Also remember
that because the revised report is concerned with the language only, some
aspects of Pascal are intentionally left undefined to be defined by t~
implementation. But there definitely should be a list of specific aspects to
be defined by implementation accompanying the revised report; rather than a
vague implication by omission.

Omissions in the revised report right no" ca:\l mean.:
1) the aspect in question is undefined,
2) the aspect:in question is to be defined by implementation, or
3) the aspect was not given consideration and the revised report

therefore has as error.

OK, so I (for example) don't think that including 6.3 in your list is a
valid complaint. The langpage doesn't prevent pointers to files, files of files
etc. '.and it shouldn't. An implementation (with today's technology) may have to •
restrict these possibilities. . .

. .1 know you'are going ahead with standardizing via ISO; it will certainly
be a far sight better than even touching ANSI. I've just found out more details
on the BASIC Standard and it'was very disappointing to nearly everyone I talked
to. There were a lot of 8-7 votes (some going the "wrong" way) in a 15 person
committee. And the whole effort will be measured in units of years. So, I
emphasize again that committees are a disaster, and the one you need for BSI
and ISO is only fo~ review as you promised. In other word~your working group
is not to twiddle with the language. You did say when I was in England that
there were precedents within ISO for ereating standards without committees.
That is the only acceptable route for Pascal at this point. I want to be able
to trust you. I hope you will do your best.

Keep smiling,

~

The University of Tasmania
Postal Address: Box 252C, G.p.a., Hobart. Tasmania, Australia 7001

Telephone: 230561. Cables'Tasun;' Telex: 58150 UNTAS

IN REPLY PLEASE QUOTE:

FILE NO.
DEPARTMENT OF INFORMATION SCIENCE

IF :TELEPHONING OA CALLING

ASK FOR

Mr. Andy Mickel,
University Computer Center,
227 Experimental Engineering Building,
MINNEAPOLIS, Minnesota 55455 USA.

Dear Andy,

Please find enclosed a contribution
issue. It addresses the file question;
can reiterate something I wrote in it to
PASCAL has more to fear from its friends

28th January, 1977.

for the PASCAL Newsletter in some future
quite a serious one for PASCAL. If I

emphas i ze it to you, I bel i eve that
than its enemies.

I'd also like to briefly comment on your editorial in #6 where you said you
couldn't understand my views on page 2. It is very hard to say all that one
would like to when writing is all that is possible across several 1000's of kms.
What my attitudes are briefly are as follows:

(1) Adhere to standard PASCAL where this is well-defined in the Report or
where a portability trend can be clearly perceived. Unfortunately the
Revised Report is hopeless as a standards document (much too loose, and
dumb on many semantic issues), and PASCAL is inadequate in some areas.

(2) Where tli'ler.e is a gap in PASCAL, or an unsupportably bad feature, then if
the gap has to be filled it should "be with (a) maximum compatibility
with PASCAL aims and style, and (b) maximum compatibility with Burroughs
practice. Somewhere a compromise; though often the two agree. The
sort of thing I have in mind is in the specification of file attributes
(none i~ PASCAL), or compiler options (too terse and clumsy in Wirth's
PASCAL), or extended standard functions (even Wirth has a larger set than
the Revised Report).

I could weep over some of the things PASCAL has in fact carried over from
the past (its silly semicolon structure for example), but no-one can do anything
about them now. I wouldn't bother trying, except to point out the mess, and
apply a bit of plaster in our implementation to ease the problem.

I wouldn't think this covering letter is worth including in the newsletter
(I don't feel too slighted), but you may if you wish.

Yours
"oo~~

Arthur Sale
Professor of Information Science.

PASCAL files

In PASCAL Newsletter #5, made some remarks concerning the inadequacy of

the PASCAL file concept. Provocative, perhaps, because I have drawn a number

of letters defending PASCAL and suggesting extensions to it. In fact,

Newsletters #5 and #5 also had comments by other people pointing out possible

extensions to PASCAL in this area. I think the topic is so important,

judging from the interest and the many suggested remedies, that it deserves

a brief comment in the Newsletter. So here goes.

(1) Are PASCAL's files inadequate?

That depends, of course, on how you interpret inadequate: inadequate for what?

I put the question in terms of the use of PASCAL for systems programming, and

as a possible user-programmer language (the FORTRAN replacement role). would

have thought the answer was quite clearly no; for instance I could not write

an analyser in PASCAL to inspect the code-files of the B5700 computer (that

requires random-access), nor to scan a disk directory; it would be unbearably

cumbersome to carry out any conversation with an interactive terminal as

the discourse would have to be carried out at the read(char) level ••••

Some of my correspondents disagreed, and thought PASCAL's files were just fine;

a sequence of elements was all they needed. If so, fine, it can be enough

for teaching and some applications. However, in nearly all cases they gave

themselves away subconsciously by proposing far-reaching changes to PASCAL

which would go far outside the current language. Often these were disguised

as innocuous extensions: let files be treated as full PASCAL types.... No,

it is widely recognized that the files of PASCAL, though quite adequate and

regular for a teaching environment (the design target of PASCAL) are not

fully up to the reality of the computing world.

(2) Are files variables?

I have argued that files are not variables in the same senses as scalars,

sets, records and arrays, and that it would have been better for PASCAL had

the declaration of file objects been separated from that of VAR objects, just

as CONST and LABEL are. I shall have to justify this view later, though

it is by now impossible to make such a change in the language.

This view is the one to which most people take umbrage, and they usually

state that files ~ variables, with equal status with other variable types,

following this up with examples of how files may be used in PASCAL as full

variable types. To quote from one letter:

" a) "filei := file2" should specify a file copy.

b) An array of files could be an array of, (pointers to?) file

descriptors in main storage.

c) "filei < file2" is just as meaningful as "arrayi < array2" or

"'cat' < 'dog'" and could be implemented as a small (albeit

time-consuming) loop.

d) The scope of files could be the same as the scope of variables

(procedure entry and exit). Of course a file declared as a

formal parameter to a main program should exist (or be created)

before execution and after termination."

I would not attempt to argue that the above oould not be done; I could

easily see how to do these things myself. The mind of man is quite capable

of thinking up a meaning for any construot. No, my quarrel is that these

views are very superficial. For the sake of one regularity (treating

files as full variables), they would import into'PASCAl a whole host of other

seoond- and third-order irregularities. Let me remark that the ideas

I have quoted above must have occurred to every serious PASCALler; they

must have occurred to Wirth; surely it is significant that the Revised

Report is so quiet on this subject? Let me try to show some of the

flaws in the reasoning.

(a) Is "filei :=' file2" sensible? The first problem is that some files

are read-only (a card-reader?) and cannot be assigned to. Also some files

are not of finite length (a file equivalent to a remote-terminal for example)

and the copying might be infinite.

and final states of the two files.

Then there is the problem of the initial

'Suppose filei and file2 have something on

them already. Does the statement imply a reset and rewrite followed by the

copy? And how are the files left? positioned at eof, or olosed, or

reset/rewrite called?

(b) Is "file1 < file2" sensible? Much the same things could be said.

It is easy to define the ordering if the files arre of different length,

but what if they are empty (never written to) or never opened? In what

state are they and their file buffers left? Since some things are

inherently not ordered (sets, records), only some files could be compared.

What to do. if the file components were records with variants? This

is regularity?

(c) fs an array of files sensible? Sure, one can have an array of files,

and a record with a file component. It is easy to see the logical

consequences here: they lead from allowing files as structuring components

of arrays and records, to allowing files as value parameters, probably

even to allowing records, arrays and files to be function result types,

and finally to the ultimate absurdity: allowing files of files.

Remember that any operation involving files and file assignment must

cause a,oopy of the whole file; it is not suffioient to oopy the

desoriptor. Even more so must it be the oase that writing file-desoriptors

to a file will lead to ohaos as time elapses and some of the objects

desoribed vanish and others change •••

I will say it again: the confusion arises because files are something

outside a program in execution: their lifetime (or extent, to use a

technical term) is not identical to their scope.

(d) What about scope? If one views the scope of a file-name as the region in

which it is known, then there are no problems about associating the

scope of a file-name with the scope of the program/procedure/function

in which it is declared. This is exactly the interpretation in 86700

PASCAL with the additional semantic interpretation that at procedure exit

all files still open in that scope are implicitly closed, with the

consequent side-effects.

It is silly to olaim the program heading of PASCAL as a solution to this

problem. A little familiarity with CDC computers reveals it as a

kludge, and an importation from CDC, FORTRArJ. The "parameters" in

the program heading are not PASCAL parameters. Though this would be

preferable, and would remove the irregularity of the program heading

itself, it would not solve the problem since it does not address it

adequately. (Quite as a Side-issue, why cannot main-programs be

procedures, thereby allowing them to be called as things with genuine

parameters? Any answers?)

Come back and look at lifetime. What sorts of files are there? Some

have lifetimes Which preoede the program's life in execution and continue

past it. Some permanent files for example on disk, some tape files,

a remote terminal file, and so on. Others do not exist before the

program starts execution, but exist after it: a disk file written by

the program for example. Vet others exist before the program starts

execution but not after it (as in an archiving program's usual handling).

Some only exist during the program's lifetime and are quite temporary.

And others, for example print-files, are created during the program's

execution and are then detached at the point of closure, to live on for

a brief time (inaccessible to the program again) until they are printed.

Surely lifetime and scope of files are orthogonal concepts? If they are not,

then We get all sorts of difficult and really messy problems. Let me detail

a few.

(i) Suppose I have a compiler, written in PASCAL, and it needs provision

to talk to an interactive terminal user who is using it to compile

something. Fine, you say, the remote terminal is an external file

imported into the program. Declare it in the program heading.

Yes, but this compiler is also used in queue (batch) situations.

Thougll it knows of this file, it never uses it in these situations,

so it never opens it, so it never exists for it. Declaration in the

program heading might send us on a fruitless search for a non-existent

file we were never going to access •••

(ii) Suppose again I have a program writing a file. During the course

of execution, it knows that the file it is writing is rubbish because

errors have occurred. It doesn't want to enter it into the

permanent directory. But if its ok, it does. How? In existing

PASCAL?

I can keep on going. I hope these are enough examples to get you to supply

some more of your own which highlight the difference between scope and

extent. A file ought to be an object whose lifetime is controlled (if at

all) by explicit program commands, but whose name is known in a given

scope.

(3) Is the best way to random access through slow array of ••• ?

A key question, 'if you accept the importance of being able to randomly

aCCeSS files at all. The answer must be no, however, for exactly the same

reason that sequential files are not ~ array of (char?). Both entities

are not variables in the same sense as the rest of PASCAL, and both entities
, ,

may be of unknown size at the program's compile-time.

Note, I am not saying that a ~ prefix, like packed in that it can be

ignored by an implementor, is not useful. It could be very useful, particularly,

in computers with multi-level memories such as CDC's ECS, to be able to

declare an array as~. The Elliott 503 of long ago did this very successfully

in its Algol. What I am saying is that a ~ array is not a random access

file. Far from it.

No, a random-access file may be one written by a program which does not know

its length until it has been written; for example the generated code file

of the 86700 PASCAL. Largely this is written sequentially, but it is trEe

structured internally and the compiler needs to make some random accesses

to patch up pieces of it. Even more so, a program which accesses an already

written random-access file may not know its length. Random accessing a

file is a property of the access, not of the file. 86700's have files

which may be accessed either sequentially or randomly as you choose (if

it is a disk file of course). My suggestion for this is to attach the

random access key to the read and write statements, or as Wirth suggests

for CDC segmented files, to versions of reset and rewrite. Possibly with

an array-connotation syntax:

seek(file1[index])

or seek(file1,index)

(4) What relation is there between PASCAL files and our operating system files?

It is possible to argue that current operating systems support things

they call 'files' which are often a mess, and that PASCAL files should have

no truck with any of this mess. This is a defensible argument, and I cannot

argue against it. If accepted however, it has the effect of relegating

PASCAL to the role of an academic language - having an effect on t<;aching

and the future evolution of languages but none on the real world out there.

The facts are that real-world files exist; their facilities cannot be completely

ignored except at the cost of making the language irrelevant to systems and

applications programmers. Some of you may be satisfied with that, but I am

not.

What We need rather is to assimilate what is good in real file structure

into a pseudo-standard: a document describing preferred extensions to PASCAL.

Then implementors would have some idea of what might be a recognized

extension compatible with some people, rather than the mixture of suggestions

that have been put tome.

SUMMARY

PASCAL has much more to fear from its friends than its enemies. Its two

greatest dangers are from naive extensions and PASCAL-fanaticism. The language

has defects; it has strengthS. Let's be a bit more cautious.

I'd also like everyone thinking about files in PASCAL to ask themselves

which of the following sorts of files they are thinking about:

magnetic tape files,

disk files,

:z
rn

printer spool files,

directly attached printers,

files attached to interactive terminals,

card reader files,

and so on.

I am interested of course in the purpose and lifetime activities of such file

types, not whether.they actually reside on a spinning magnetic thing of

21 surfaces or whatever... The differences in activities are still surprizingly

large, and important.

And finally, let me exhort all implementors and users to regard the standard

usage of PASCAL files as being limited to their declaration as types and

corresponding ~ objects; their use as ~ parameters to procedures and

functions; and their use with the file buffer and the I/O procedures.

Further, the scope of a file name should be regarded as the scope of its

name alone. The question of its lifetime is regrettably one that standard

PASCAL does not address-adequately.

POSTSCRIPT

AN INVITATION TO USERS AND IMPLEMENTORS

Prof Arthur Sale

Department of Information Science

UniverSity of Tasmania

Hobart, Tasmania 7001

This is an invitation to users and implementors of the many PASCALs there

are around (though I have little faith in the response ability of implementors)

to write to me to say what their PASCAL compiler actually does implement

with respect to files. Does it permit file assignment? files as procedure

parameters? files of arrays? arrays of files? If I receive anything, and

if it permits of a summary, I'll try to write one for a future newsletter.

The Revised Report is hardly a guide at all in this area.

LETTER TO THE EDITOR,

P.U.G.N.

Dear Andy,

Three criticisms. I regret to say.

1. PUGN DISTRI8UTION

Department of Information Science

1977 February 14

I understand that you have decided to post overseas subscribers their

newsletters by surface mail {other than USA and UK). Ipito.tu.t v-<.gowtOlUlly.

Do you realize that with all the ships involved this means I get the

newsletter about 3 months after it has been published? Only by courtesy

of Judy Mullins have I received a copy of newsletter #7 yet, and when my

own copy finally arrives it will be far too late to comment on anything In

It, or indeed to carry out any meaningful correspondence. Airmail 1s a

must for post to Tasmania.

2. EDITORIAL SNIPING

In your editorial In Newsletter #7, y,ou took me to task for "wholeSALE

bending of PASCAL" and reminded me of an implementor's responsibility to

the user community. May I say that was surprised since I have not indulged

In such destructive bending, nor do think PASCAL will bridge 8urroughs

users onto other machines. However, what should especially I ike to

point out to you is that if you are going to object to something, you ought to

be specific in your objections. I have no reply at the moment, except to

think that you have confused language criticism and insights with implementation

intent or fact (on a document which has now served its purpose), or to think

you place an inflated worth on some very minor points.

If I may, I'll make two points to illustrate. The first relates to the

responsibility of implementors to the user community. am well aware of this

respcnsibility, and indeed one of the aims of the 86700/87700 compiler is to

be a more searching test of "standards-compatibility" than the CDC compiler

-0

»
en
n
»
r
:z
rn
~

en
r
rn
-;
-;
rn
;;0

:::l:
00

UNiVERSITY OF MINNESOTA i University Computer Center
lWIM CITIES 1227 Experimontal Engineering Buildin.

Prof. Arthur Sale
Department of Information Science
The University of Tasmania
Box 252C G.P.O.
Hobart 7001 Tasmania
Australia

Dear Arthur,

Minneapolis. Minnesota 55455

(612) 3734360

AprU 26, 1977

It'.s been too long since I have written you a letter. I received your nfce
personal reply and all the enclosures of March 18 to mY personal 1etter to you
dated March 10. Yesterday we got your Burroughs 6700 Status Report. Thanks I
Since returning from Southampton on March 2B I'v~ been $~amped with work. On
March 31 Niklaus came to the university here to give a talk on Modu1a (aSO persons
plus, standing room only). Next week for 4 days, the CDC annual user's meeting
was held here in Minneapolis. I began to go through a /lOem motmtain of mail and
process over 150 new PUG memberships. We star-ted to put together PUGHI/8 Iln April
16. Now we are finishing that up and should go to press within a few dayso
Again I'd like to apologize for singling you out as an example 1n two consecutive
editorials. The last exchange of letters has 1 hope helped me understand that your
attitude that I at first oerceived as "very opinionated" and "KnO'il it all" is
actually intended to provoke debate, to prevent dogmatic thinking among over-.
enthusiastic Pascalers, and to overcome great distances from Tasmania, In short.
as the cliche goes, we need people like you. And your valuahle contributions to
PUG and the Newsletter justify mailing the newsletter til you by airmail and at a
loss. But r would like to take you up on your choice of being a distribution
center (and perhaps money collector) for Australa~ia for the next academ1c ye~r
(beginning with '9). We'll have to work out the details this summer (wlnterl).
We have 8 members in Japan, but I suppose Jap3.n l:ilnnot be mailed to cheaply from
Australia?
On to another topic. When I looked at Judy's letters I discovered that there was
one from her to you I'd never seen that would have really clarified the exchange
in PUGNI/6. It explained their proposed Iel ASCII subset character set. In fact
they have taken up the idea proposed by yourself and others which is to process
both ASCII and EBCDIC internally as compile options,
On ·-the question of files and the program heading and the larger accusation that
Pascal is biased toward CDC computer systems, I'd like to say that I believe:

1) Files as a data structure (sequential access) are a useful concept and
therefore files can be special entities represented by variables and used for
perfornnng I/O. I don't believe in file assignment though.

2) Arrays are a random-access structure in Pascal and so "virtual" (or slow)
arrays would be appropriate for "direct access secondary storage" (read: operating
system random-access files) •. And so arrays can be used for I/O.

3) The program heading is not a "CDC quirk." The first Pascal compilers for
CDC machines did not have them;1t is ,not a necessity. CDC Fortran coinCidentally

has a similar construct. But when you think about it. the program heading would
be the ideal place for putting all your computer system dependent information
about fTIeattributes (KIND, MAXRECSIZE. etc.) on the B6700 instead of the var
declaration. The program heading is a natura) way to interface a program to-fts
surrounding environment with formal parameters.

4) Other complaints against CDC bias probably should be rephrased as s1mp1e
architectur.e/multi-register machine bias. Wirth designed Pascal to be run
efficiently on tbday's machines (1970-72) and he has had at least IBM 360.
CDC 6000, and PDP-II experience. So we witness that highly structured computers
(such as the B6700 and ICl upper 2900) are among the last to have Pascal compilers.
(The problems facing 360 implementations are probably due to 1ntel'fac1ng with
their dinosaur operating systems). Nagel's DEC-IO compiler. M1ke Ball's Univac
compiler, and Hikita's Hitac 8000 (Amdahl 470) compiler have: shown that "CDC bias"
is a phony issue.
I'm glad you are willing to change your views as you indicated regarding syntax. _
As I said, I'm still learning about the issues myself and ha~e m&de mistakes and
changed my views.
Regard-Ing Pascal's vfabll 1ty and keeping it in the greenhouse. I should say that
for better or wol"Se some smaller U.S. computer comp,mies are jumping the gun ,'And
have stolen Pascal from tile greenhouse. Do not I.mderestfmate the "real WOY-ld"
interest 1n Pascal in the U.S. The PUG membe~hip in the U.S. is at least 40~
non-academic versus less than 10~ outside the U.S. How about that? Maybe that's
why your viewpoint differs from mine. I don't really think I'm ahead of time
because one can't control what everyone else is doing. Sure. it would be nice to
have consolidation. But just the fact that PUG and PUGH exist have put activities
out of reach by spreading the word very widely. If you fear irreparable harm ~ .it
has probably already happened - but realistically we couldn't have on the (1M hand
protected Pascal in the greenhouse, and at the same time organ1zed a group for
consolidation. We organized openly and, among other things, that's how you and I
came to know each other! But you are ri ght about: "if I as i'). well dl sposed friend
of Pascal can find holes, be assured that real enemies will be less forgiving,"
1'm hoping the news #8 will bring regarding standards wll1 be encourag1.ng news to
you, and I apologize that I can't fit it here 1n this letter.
Minnesota usage of Pascal? 1 did pOint out that I;hel7 editorial did not say that
Pascal neets Waite's criteria, but rather in trying to spread Pascal usage at
Minnesota. Waite's guideHnes proved to be very useful in pl'illctice. You want.Cld a
breakdown on usage:

number of research and oroduction runs/number of instructional runs

asca
MN F Fo rt ran
Cobol
APl
SNOBOL
SIMUlA
ALGOL
BASIC

1st 9 months 76·77 75~76 74·75 1st g mo76-77 15-76 74-75
'65,158 8,928
393,107 526,252

6,250 8,555
6,262 6.658

28,727 36,494

1,373 1.998
448,814 1.476.984

(*Other processors include COMPASS(assemb1er). DARE,EMULATE,GPSS,lISP,MIMIC,MIXAl.
Pl/l. SIMSCRIPT, RPG. There are over 100)nteractive terminals for student
use; the University of Minnesota has 55000 students on the Twin Cl ties campus. *)

Regarding the printing of your and Judy's correspondence, that's fine (except that
space may not permit). As will be evident in #B, there is more than enough debate
'going right now. Your implementation notes, etc. are very nice. We'll print most
of them in #9. Thank you very much for being understanding. X've resolved to be
more careful 1n the future.

Sincerely, ~

U?

r
rn
-i
-i
rn
:::0

VJ

00

"

for example. I greatly regret that the existing PASCAL user-community does

not have much of a clue about standardization; most seem to think that the

CDC compiler defines the standard! There are a number of other important

goals too; 1 intend this to be much more than the usual PASCAL 'toy' compiler.

You make one good point (which I think you cannot have me~nt). Why not

stick to Burroughs Algol? I could say why not stick to FORTRAN too, but

you'd probably object to that. In fact, I bel ieve PASCAL's ecolog,i-cal

vi ab i 11 ty when compared to Burroughs Al go 1 or standard FORTRAN is very

dubious at the moment, but I'll treat of that later. The important thing

to realize is that Burroughs compilers are good (really good) and PASCAL's

viability In Burroughs must rest on real strengths, not Just claims. This,

coupled with the known weird features of CDC systems (and thence PASCAL) must

lead to the uncovery of unfortunate aspects of PASCAL. I cannot help it.

3. PASCAL SUPPORT

I was surprised to see you write in the editorial that you bel ieved PASCAL

meets Bill Waite's criteria for ecological viability, for my impression Is

quite the reverse. Possibly in CDC machines it. might have enough support, but

that Is a tiny fraction of the computing community. To take some examples,

I have assiduously tried to amass the PASCAL software that PUGNassures me

Is around. The results have been decidely poor. Apart from interchange media

problems, most programs contain machine dependencies of considerable

subtlety, and totally inadequate commentary. Not all, but most. The

original XREF used at least seven non-standard features which had to be

repaired, some with difficulty, and even then its specifications left a lot

to be desired. To my knowledge, no available cross-referencer is able to

distinguish between names which are lexically the same but declared at

different levels, nor can they cope with long names (say 72 characters?).

To summarize, 1 think your editorial is ahead of time. We certainly don't

need crusaders yet, we need some consolidation before irreparable hprm is done.

At Its present state of development, PASCAL stands to go under the FORTRAN

steamroller, for precisely Waite's reasons. And really,what do you mean

when you say that PASCAL is the third out of 20 languages In four years?

In Minnesota? Measured by what? If I was advising someone to choose

a language to write a significant numerical piece of software at this point

in time, I couldn't (regretfully) advise them to use PASCAL. It would be

irresponsible.

So much for the criticisms. Can I still assure you that despite the

bits of rubbish here and there in the Newsletter, It serves a very useful

purpose. I'll keep on contributing because this is a critical point in

PASCAL's development, and because its well WIRTHwhile. Without the newsletter,

wide communication would be much more difficult, and your policy of no

censorship or refereeing is conducive to good development.

I'd like, too to put a question to you. In Newsletter #6, you published

some of the correspondence between Judy Mullins and myself on implementations

on Burroughs B6700s and ICL 2900s (which we sent you). We've been carrying on

an active correspondence, same of which would be of interest to the PASCAL

community. In some ways though, such a practice could be misunderstood

or embarassing as half-baked Ideas come to light, if it were all reprinted by

you. The importan tissues often get rewr i tten as notes to PUGN (some

examples may get into #8), but what I ask is this: would it be useful for

the readership to look over the letters as they develop? I"m game, and

I'll ask Judy, but I am uncertain as to the merit of the practice. What

do you think?

Yours sincerely,

Arthur Sale

Professor of Information Science

University of Tasmania

(Burroughs B6700 implementor)

. PS. By the waY,apropos of your plea for help, if there is anything

doing on standardization, you can count me in. I've had a fair bit of

experience with standards and standards committees, and I know just how

large a task there is to do. Perhaps I can help as co-ordinator?

-0
»
c.n
n
»
I

z
rn

c.n
I
rn
--I
--I
rn
:::0

'It:
00

-0

»
Gl

rn

UNIVEASITE:: DE NICE

LABORATOIRE O'INFORMATIOUE
PARe VALROSI!:

06034 NICE CECEX

TtL. 51 91 00 Nke, Ie 4th March 1977

Dear Andy

am sorry that the paper I promised to write is so late, but
you are preparing PUG Newsletters faster than I can read them. At last,
here is the paper on the Pascal implementation we are developing for the
CII Iris 50. It is not yet in the form requested by Tim Bonham, because
nothing is terminated, and anyway the Iris 50 is a machine which does
not'exist in many copies.

A Pascal subgroup has been officially set up as·a part of the
group "Languages and programming" of AFCET. To give comparisons, and with
the corresponding scale changes, AFCET is the French counter-part of ACM,
and the group on languages and programming is something like SIGPLAN, so
this Pascal subgroup is something like STAPL within SIGPLAN within Acr~;

very complicated indeed. The first meeting of the group will take place
in Nice on June 13 and 14. A newsletter is planned to begin at the end
of the present month. Answers to a questionnaire show strong interest of
participants on frequent information exchanges, and desire to keep .good
bonds with PUG. If there is no copyright problem, and whh your

authorization, I intend to extract some most important informations from
PUGN for our newsletter, and even maybe to directly copy some pages.

Do you think it would be interesting to publish some brief
information about my compiler writing system (written in Pascal and
generating compilers written in Pascal) in a section of PUGN about
software writing tools? This system is probably bigger than ordinary
tools (about 6000 Pascal lines), and has a very special purpose, but
it presents some interest for the community.

I am sorry to have given an erroneous information in my preceding
letter. No Pascal compilers for the IBM 1130 were made in N~uchatel.

A Pascal-S compiler (not an interpretor) has been made by Helmut Sandmayr
Neu Technikum, CH-9470 Buchs, Switzerland. I apologize for the error to
people who have already written to Neuchatel.

Yours sincerely,

O. LECARME

Dear Andy,

University College,

Professor R. F. Churchhouse, B.Sc., M.A., Ph.D., F.B.e.S.
Head of Department of Computing Mathematics
Mathematics Institute, Senghennydd Road, Cardiff
Telephone Cardiff 44211 Ext. 2677 & 2678

Cardiff

28th March 1977.

Following the recent PASCAL Symposium at Southampton may I
make an impassioned plea on behalf of potential future users
of the language.

So many people talk glibly about not re-inventing the wheel.
Yet as I survey the many and diverse efforts at implementing
PASCAL on mini/micro-computers (particularly PDP-lIs) surely
this is what we are in danger of doing. For unless we both
a). recognise the value to others of the software products we
originate and b). invest accordingly in faithful standardisation,
intentional portability and quality documentation, much is vanity.
To take the specific example of providing PASCAL for student
teaching purposes on a PDP-II, what is the use of existing
"implementations lf which a). their originators have never even
thought of as potentially useful to others and b). are non
standard, tied to a particular operating system without provision
for change, and atrociously written up? My plea is to all good
PASCALlers to honour the original spirit of the language by
practising these principles and, possibly much more important,
doing their utmost to persuade others to do so also. Down with
back-street implementors!

Yours sincerely,

Nick Fiddian

NEW! !

IMPLEMENTATION NOTES
IMPLEMENTATION CHECKLIST IMPORTANT ! !

We have added one new item to the Implementation Checklist (reprinted below) to
indicate the kinds of library support provided by implementations. Once again we must ask
implementors to follow the Checklist, and to subm~t notices in "camera-ready" form.
Because of the large number of implementations being reported, we request that all notices
be single spaced.

1. Names, addresses, and phone numbers of implementors and distributors.

2. Machine(s) (manufacturer, model/series).

3. Operating system(s), minimal hardware configuration:, etc.

4. Method of distribution (cost, magnetic tape formats, etc.).

5. Documentation available (machine retrievable, in form of a supplement to the book:
Pascal User Manual and Report).

6. Maintenance policy (for how long, future development plans, accept bug reports).

7. Fully implements Standard Pascal (Why not? what is different?).

8. Compiler or interpreter? (written in what language, length in source lines, compiler
or interpreter size in words or bytes, compilation $peed in characters per second,
compilation/execution speed compared to other language processors (e.g., FORTRAN».

9. Reliability of compiler or interpreter (poor, moderate, good, excellent?).

10. Method of development
cross-compiled, etc.;
implementors).

(from Pascal-P, hand coded from
effort to implement in person

scratch,
months,

bcotstrapped,
experience of

11. Are libraries of subprograms available? Are facilities for external and FORTRAN
other languages) procedures available? Is separate compilation available?

GENERAL INFORMATION (77/4/28).

(or

As an aid to persons searching for implementations, an index to the Implementation
Notes section for Newsletter issues 5 through 8 is printed at the end of this issue.
Unfortunately, we had to leave out or summarize a number of letters and notices because of
space constraints.

-Jim Miner

All Implementors:
Why not use the Pascal Newsletter to help yourselves (and all of us) disseminate news

of new releases for existing implementations to all the sites on your distribution list?
Also, to ensure that everyone on your list receives the Newsletter (and is a member of
PUG) please send out an All Purpose Coupon with each copy of your implementation that you
distribute.

--

Comment on Mioro-processors.
One of the more interesting developments that we have seen is the increasing use of ~

Pascal as a micro-computer programming language. Among these machines we count DEC's »
LSI-l1, the Intel 8080, the Motorola 6800, TI's 9900, and the Zilog z-80. (I'm just not
sure about the Nanodata QM-l ••••) Most of these are interpreted, but native code
implementations are beginning to appear (see Pete Zechmeister's Intel 8080 notioe in this
issue). r

Another fascinating rumor, whioh was published in two places (Byte, and Computer
Faire) suggests that the next Zilog processor will be based on Pascal with the
instruction set inoluding some Pascal-like construots. Apparently users and designers are
beginning to see the advantages of a simple yet powerful language. Perhaps the experienoe
will lead to cleaner micro architecture.

SOFTWARE WRITING TOOLS

Responding to the call for a central clearinghouse for software writing tools,
Richard J. Cichelli has volunteered to distribute them and will announoe a formal policy
in Newsletter #9. At our suggestion Rich will limit distribution to implementors who
distribute Pascal systems and who will include the software tools in each distributed
copy. This is to prevent an absurd workload for Rich. Rich is probably in possession of
the largest number of software writing tools in Pascal and for Pascal programmers. (See
the article entitled "Pascal Potpourri" in Newsletter 1t6.)

PASCAL-P

Remember there is a policy of no maintenance promised on Pascal 1'4. It is the final
version from Zurioh. Nevertheless, Christian Jacobi (ETH, Zurioh) has provided us with two
sets of ohanges (printed below) to be made to version P4, mainly oorrecting bugs in
address calculations and code generation. Note that the form "name.number" refers to the
sequencing on the compiler source as distributed.

Unfortunately we have not received the results of the Pascal-I' questionnaire which
appeared in Newsletter U5. Chris informed us on February 14 that the results were in
preparation. ~

UPDATE 1 to Pascal P4 January 1977

Replace line BOOT. 4 by
for i := ordminchar to ordmaxchar £2 sop(chr(iD := nooPj

Replace line p.477 by
load; genlabel (lcix);

Insert after line P.479
genujpxjp(57(*ujp*) ,lcix~

Replace line P.147 by
~j,_~ align(lspi,displ);

Replace line P. 424 by

Insert after line PASCP.3200
align (parmptr,llc1);

locpar := locpar+ptrsizei
align (parmptr ,locparli

Replace line P.53l by
if ia.typet. form 'I power then

PASCAL TRUNK COMPILER

Dear Mr. Mickel.

I send you here the information about the trunk compiler you asked for:

1. Implementation + distribution
H.H. Nage1i
Institut fUr Informatik
ETH-Zentrum

CH-S092 ZUrich / Switzerland
Te 1. 32'6211

2. The trunk compiler is the machine independent part of a Pascal
compiler in which the code generation has to be inserted.

3. -

4. Distribution on magnetic tapes. Costs SFr. 50.-- .

5. Documentation (in German) will be available in May 77.

6. Maintenance policy: no policy defined yet.

7. Full Pascal is treated.

S. The trunk compiler is a Pascal program with a certain number of
empty procedures.

9. Reliability: moderate.

10. Development: from Ammann's Pascal CDC 6000 compil er.

Sincerely yours,

'.J?L
H.H. Nageli March 3, 1977

PASCAL J

Manpower problems have forced us to cancel the
projected February Release of PASCALJ. Although we
have made some progress in our efforts to improve the
bootstrapping process, we lack the supporting documen
tation necessary for a distributable product. We will
therefore continue to distribute the September 1976
version of the system to those requesting it.

We would like to emphasize once again that we
consider the portability of this version to be in
adequate, with L'ilplementation times ranging upward
from six man-months required. Reduction of this
impleme,ntation time is our prime concern, and is
absorbing the meagre resources which are currently avail
able to the project. As soon as significant progress
has been made in this direction we shall ,release a new
version. In the meantime, we shall attempt to fix any
",eported errors.

Software Engineering Group

UNIVERSITY OF COLORADO

eOULOER.CO~ORAOO SO~C9

MODULA

Niklaus Wirth has published three articles describing his latest language which he
calls Modula. The articles appear in the Ilarch, 1971, issue of Software Practice and
Experience (vol. 7). It is our policy to discuss languages adhering to the principles
embodied in Pascal, and some of the characteristics of Modula make it a very attractive
programming tool, particularly for small, peripheral oriented machines. for this reason we
reprint here the Summaries (abstracts) of the articles. Please note that Niklaus considers
Bodula still in the experLnental stage 'and the Zurich implementation is not for
distribution.

"Modula: a 'Language for Modular Multiprogramming", S-P&E 7 (1977), pages 3-35.
SUI1MARY
"This paper defines a language called Modula, which is intended primarily for programming
dedicated computer systems, including process control systems on smaller machines. The
language is largely Pascal, but in addition to conventional block structure it introduces
a so-called module structure. A module is a set of procedures, data types and variables,
where the programmer has precise control over the names that are imported from and
exported to the environment. Modula includes general multiprocessing facilities, namely
processes, interface modules and signals. It also allows the specification of facilities
that represent a computer's specific peripheral devices. Those given in this paper pertain
to the PDP-11."

(Copyright (C) 1976 by N. Wirth)

"The Use of Modula", S-P&E 7 (1977), pages 37-65.
SUi1MARY
"Three sample programs are developed and explained with the purpose of demonstating the
use of the programming language Modula. The examples concentrate on the uses of modules,
concurrent processes and synchronizing signals. In particular, they all focus on the
problems of operating peripheral devices. The concurrency of their driver processes has to
occur in real time. The devices include a typewriter, a card reader, a line printer, a
disk, a terminal with tape cassettes and a graphical display unit. The three programs are
listed in full."

(Copyright (C) 1976 by N. Wirth)

"Design and Implementation of Hodula", S-P&E 7,67-84 (1977)
SUMHARY
"This paper gives an account of some design decisions made during the development of the
programming language Modula. It explains the essential characteristics of its
implementation on the PDP-11 computer, in particular its run-time administration of
processes and the mechanism of signalling. The paper ends with some comments on the
suitability of the PDP-11 for this high-level multiprogramming language."

(Copyright (C) 1976 by N. Wirth)

F EAT U REI 11 P L E r', E 11 TAT ION NOT E S

READING AND WRITING SCALARS

Introduction

It has long been a source of irritation that "standard" PASCAL does not

permit the reading of boolean values (though-it permits their writing), and

does -not permit either reading or writing of programmer-defined scalar types.

I n Burroughs B6700/67700 PASCAL, both these def i c i enci es are remed i ed, and

the regularity of PASCAL is improved. The utility of this step should not

need labouring, especially as it dispenses with' unnecessary rules, and in

view of its obvious uses in an interactive environment.

=
rn
:::e:
(/J

r
rn
-i
-i
rn
:;0

-c
J>
en
rnj
..I::'

N

Insert after line PASCP.3204
if vkind
begin

Insert after line PASCP.3207
end;

actual ~

Corrections to the Pascal P4 System UPDATE 2

, Replace line p.122 With kind regards

flc := l+k-(k+l) mod k

Ch. Jacobi
Replace line p.528

cstptrix := 0,
topnew := lcaftermarkstack,
topmax := lcaftermarkstack,

The first correction delivers an improvement of storage
allocation in case flc = 0 (e.g. records).

The second correction is evident.

Craig E. Bridge (DuPont, Wilmington, Delaware) furnished the modifications printed
·below to allow the compiler to be cross-compiled between machines with different character
sets. He also notes in a letter dated Feb. 16, 1917, (which was not printed for lack of
space) that where cross-compilation is to be done very often the cross-compiler should be
modified to generate proper code (jump table) for statements of the form "case chartype of
..• end".

*IDENT DUPONT
*DECK PASCP
*I DUPONT MOn
*1

SET FOR PASCP VERSION P. 06-JAN-77 C.E. f.mIDGE

*1
*1
*1
*1
*1
*I
*I
*1
*I
*1
*I
*1
*1
*1
*I
*I
*I

ELIMINATE LAST HOST MACHINE CHARACTER SET DEF~NDENCY THAT
PROPAGATES FROM THE HOST COMPUTER DURING CROSS CODE GENERATION.

NOTE: THE PASCP COMPILER ALREADY HAD A UNIVERSAL INPUT PROCESSOR
HOWEVER HIE CASE STATEMENT CODE OENERATION PATTEfW flANI\S ON THE
ORDINALS OF SETS (INCLUDING T~~ IMPLIED CHARACTER SET) TO BE
THE SAME ON THE HOST AS IT IS ON l~E TAGET MACHINE. THIS IS
NOT NECESSARILY TRUE OF CHARACTER SETB.

IN PARTICULAR, CASE CH OF •• :.. GENERATED A JUMP TABLE
USING T~~ ORDINATES OF THE HOST MACHINE CHARACTER SET. SEE
STATEMENT PASCP.376

FURTHERMORE, ANY PASCAL PROGRAMS WITH STATEMENTS OF l~E
ABOVE FORM CANNOT BE CROSS COMPILED FOR MACHINES WITH DIFFERENT
CHARACTER SETS UNLESS T~~ CASE STATEMENT CODE GENERATION
PATTERN IS MODIFIED.

IMPLEMENTATION NOTES

NOTE: _ IS AS CLOSE TO THREE HORIZONTAL BARS (CDC DISPLAY CODE
60 OCTAL AND EXTERNAL BCD 36 OCTAL AS OW~ FONT CAN COME.

*****************.************************************** •• *******
*WlfiNlNG: THIS 1100H.iET IS UNTESTED. t~E flGNT IIiWE A f10DIFY *
*~~OCESSOR AVAILABLE ON SITE. THE MODS WERE MADE USING *
IA TEXT EJ) I lUI, (,ND TIlEY (,F'PE"R TO oJOI'I\. F'LEA!:>E INSPECT *
,nl·IE RESULTS DEFOI,E DISTIUBUTING m:y(]ND YUlJl, SITE. W;Ui l~Et-JtiI'E. *
******I*.**.*.****.e*.********* •• ** •••• **************************

;f.[IELETE 1". !:;7
CHTI" = (LETTER,NUI1DER,SPECIAL,ILLEGAL.CHSTRQUO.CHPERIOD.CHLT,

CHGT,CHLF'AREN.CHSPACE);
.DELETE PASCP.376 F'ASCP.379

CASE CHATP[CHJ OF
LETTE":

*nELETE 1""./9
UNTIL CHA"lP[CH] IN [~'ECIAL,ILLEGAL,CHSTRQUO.CHCOLON.

*DELETE PASCP.395
NWHlE:R I

*DELETE PASCP.453
CII~:;mCWO:

tDO_ErE PASCP.474
CHCOLON:

.DELETE PA!:>CP.480
CHPEI~lOD :

*DEl.E"fE PASCP.486
CHLTI

*J)ELETE PASCP.495
tHGT:

*DELETE PASCP.501
CHLPAREN:

*DELETE PASCP.514 PASCP.516
E>F"ECIAU

*DELETE P.B5
CHSPACE: SY :. OTHERSY

*DELETE PASCP.453
CHS rI~nuo:

*DELETE PASCP.474
CHCOL.ONI

.DELETE PASCP.4BO
CHI""Er;:IODI

.DELETE F'ASCP.4B6
CHLTI

*DELETE PASCP.495
CHGT:

*DELETE PASCP.501
CHI...F'AI~EN

.DELETE PASCP.514 PASCP.516
SPECIAL:

*DELETE P.85
CHSPACE: SY := OTHERSY

*DELETE P.ti91

CHPERIOD,CHLT,CHGT.CHLPAREN,CHSPACEJ;

CHARTPC_I_J :. SPECIAL; CHARTPC_(_J := CHLPARENi
.DELETE 1".593 1".596

CHARTP[_=_] .- SPECIAL; CHARTPC __ J := CHSPACEi
CHARTP[~,_] := SPECIAL.; CHARTP[_._J :- CHPE:RIODi
CHARTPC ____] :- CHSTRQUO; CHAr;:TP[_[_J := SPECIAL I
CHARTPC_J_l :. S~~CIALi CHARTPC_I_J := CHCOLON;

*DELETE 1".598
CHARTPC_<_l :- CHLT; CHARTPC_>_J I- CHGT;

=
rn
:>E:
en
r
rn
-I
-I
rn
:::0

ppogram exo.mple(output,input);

!:J:JE£
answers

var

reply

begin

read(reply) ;

(yes,no,maybe);

answers;

write (output, reply);

writeln(reply:6);

end.

Semantics of reading

The input stream is scanned for an alphabetic character. It and succeeding

alphanumeric characters are assembled into a "lexical token" according to

PASCAL rules, and then compared with a stored table of the programmer-defined

cons tant-names of the type. I f a match occurs, the appropr i ate constant va I ua

is stored into the variable in the read I ist, otherwise a read error occurs.

The construction of the "lexical token" is terminated by any character which is

not alphanumeric (usually a space or a comma).

Semantics of writing

The characters of the constant-name corresponding to the scalar value,

preceded by a single space, are inserted into the output stream if no

field width is specified. If a width is specified, the name is inserted into

a character field of that size, right justified and fil led with preceding

spaces if necessary. If the name will not fit in the field, or if the

scalar-value Is somehow out-of-range, a non-fatal write error occurs.

Boolean values

Values of boolean type are treated exactly as if declared:

!:J:JE£
boolean = (false,true);

andl.thus the externa I representat i on of any boo I ean va I ue is false/true

(and not F/T, or 0/1).

Burroughs 86700 compiler features

Since the 86700 compiler is a true anylength identifier system, ~ characters

of the constant-names and of the input tokens are significant in distinguishing

one name from another. In addition, since lower-case letters are permitted,

the letters in input tokens are upper-cased before comparison with the

stored name-table which is stored in canonical upper-case form by the compiler.

Persons requiring their programs to be portable should be aware that

"standard" PASCAL permits implementors to ignore names after the first 8

characters, though this feature is not "standard".

Scalar name tables

The name-table is not created by the compiler unless th~ compiled program

contains a read or write with a scalar element. The table only includes

the types the compiler finds are necessary (except for boolean, which Is

handled by a table internal to the read/write intrinsic procedure). The

run-time space penalty is typically very small.

RECOMMENDATION

10 ;t/u.o .i.nCJteM ed lteg!Wvr.M:1f .u., a;;t;tJtac.tive :to an .i.mpiemen:tolt 00
PASCAL, Olt .i.6 a :teac.he!t. c.aYl c.onv.i.nc.e an .i.mpiementolt :to .i.nc.iude il,

1 <lltggu:t adhe!tUlc.e :to :the above .i.deM M OM M pOM.i.ble. Th.v..

appUu :to :the Ilead.i.ng 06 boolean vaiuu atone, M wc.U M :to a

molte c.ompltI1elt6.i.ve adopt.i.on 06 :the 6aUi.i.tlf.

PO linER VALUES

Introduction

This implementation note serves to document some relevant decisions relating

to the representation of values of a pointer type in 66700/B7700 PASCAL. The

note may be useful to users of this computer and to other implementors.

Normal pointer values

The representation of pointers in the B6700 and 87700 computers could have

been a problem of considerable difficulty (perhaps impossible) i'f PASCAL had

been defined so as to allow pointers to objects outside its heap. Since it

did not permit this, it allowed the heap to be implemented as a single

segment of virtual storage (paged into 256-word pages). Normal pointer

values are thus represented as integer words, being utilized as subscripts

into the heap vector when a pointer access is required. It is important to

realize that the concept address does not exist in Burroughs 86700/87700

computers.

The legal values of a pointer variable range from zero to an upper limit

which is co~piled into a PASCAL program. The default limit gives 1000 words,

but this may be set at any value by the compiler option HEAP.

:z
rn

(/) ,
rn
-l
-l
rn
;;0

-0
):>

G'>

rn

The nil value

The nil value, which points nOl;here, is implemented as a very large numeric

value. Any reference to an apparent object (even if it includes record

selection or array indexing) through a pointer which has this value will cause

a machine interrupt when the access is attempted (because the subscript is

out-of-bounds of the heap size shown in the heap descriptor). This check

has no speed penalty as it is carried out by the hardware. It remains possible

to compare pointers for equality even with the nil value. ,
The uninitialized value

The value of a pointer variable before it is first specificallY defined by

an assignment, read, or whatever, is left to the implementor's discretion by

"standard" PASCAL. It is "/orthwhile pointing out here that the uninitiallzed

value may perhaps not be best implemented by nil and a special representation

should be considered (though on some computers there may be no other suitable

value) .

Because of the importance of pointers, and the responsibil ity of compilers to

detect as many illegal constructs as possible (as well as correctly compil ing

the correct ones), the uninitial ized value for pointe:rs in the 8-urroughs

86700/87700 PASCAL is not zero (the 86700 norm), nor is it nil. Uninitialized

pointers are set to 86700 words vlith a tag of six. Such tag-six words in

the 86700 and 87700 computers can be overwritten with a numeric or other-type

operand (tags 0, 2 & 4), but an attempt to util ize a tag-six word in a~ithmetic
or indexing is illegal and causes a machine interrupt. The use of an

uninitlalized will therefore be detected (v,hether in a comparison or an access)

and will cause program termination.

Conclusion

The 66700/87700 PASCAL compiler applies stringent testing to PASCAL pointer

values so as to enforce compl iance with the "standard". Implementors on

other computers may wish to consider whether they can make effective use of

the nil value, and of the difference bet\;een nil and the uninitial ized value.

1977 february 15

Arthur Sale

Professor of Information Science

University of Tasmania

(Burroughs s6700 imp I ementor)

Implementation Note on Run-time Pointer Tests.
The paper by Charles Fischer and Richard LeBlanc described in the Here and There

(Articles) section presents a method for feasibly implementing run-time pointer checks.
The method has been installed successfully on their Univac 1100 compiler. as well as by
John P. Strait on the CoC-6000 compiler and by John Reynolds on the ICL 2970 compiler.

Simply stated. each unique element allocated on the heap is assigned a unique integer
or "key" (a counter starting at 1) which is stored with the pointer variable and with the
heap element. The key and pointer value (address) are transmitted together during pointer
assignment or parameter passing. A pointer reference is considered valid only if tne key
in the reference and the key in the heap element match (comparison of keys for equality).
Therefore. "dangling references" to a heap element which has been disposed will be
detected (i~plying that DISPOSE changes the key in the disposed element). Note that the
method is nearly secure-- it is possible (but very unlikely) that a key will match with
garbage on the heap existing in the place of a disposed element. Similarly. undefined
pointers will have undefined keys which could. with low probability. match their referent
keys.

-Andy Mickel

MACHINE DEPENDENT IMPLEMENTATIONS

BURROUGHS 3700, 4700

Dear Tim:
Here is a brief outline of our. Pascal project; please note
that although our intentions were to produce both ·B4700 and
B6700 implementations, the latter has not been possible.
Fortunately, Professor Sale is producing a 66700 compiler.

1. Imp1ementors.

R .M. Lansford
3620 Greenhill Rd.
Pasadena, Ca. 91107

P. L McCullough
110 S. El Nido St.
Pasadena, Ca. 91107

W. C. Price
480 Pembrook Dr.
Pasadena, Ca. 91107

2. Environment.

This implementation will run on Burroughs 637/4700 machines,
with Accumulator operators, under MCPV 5.7 and the
Time-Sharing System.

3. Distribution.

No ~lans at present - the need has not arisen.

4; Documentation.

What there is exists as a forward to the program listing, in
the form of a supplement to the Pascal User Manual and Report.

5. Maintenance policy.

None. Development has terminated. "If you find'em, fix'em."

6. Unimplemented features.

a. real arithmetic
b. formal procedures and functions
c. files, with the exception of the text

files Input and Output.

7. Added features.

a. segmentation
b. symbolic procedure call tracing
c. stack checking and statistics.
d. packing is automatic

8. Compiler development.

The compiler was bootstrapped from an early PI compiler
obtained from Cal Tech.

The compiler consists of two passes. The first is written in
Pascal and emits augmented P-code. The second pass (written in
BPl, a Pl360-1ike assembler), generates 4700 code from the
P-code.

The first version of the code generator was written by Mike
Mahon in 2 man-months. An additional 8 man-months have been
expended in teaching the compiler about such things as optimal
variable size and a1ign~ent, segmentation, etc.

The results are:
Pass I 4000 1i nes of Pascal, compiled

@1000 lines/min.
Pass 2 : 2500 lines of BPL, taking 45 secs to

generate code for Pass I of the compiler.
110K bytes are needed for a logical (reasonable) segmentation
of the compiler.

9. Compiler reliability.

Good, but not excellent.

BURROUGHS 6700

Sincerely,

2.1rrl, d:I,,1,pu.L'
R. M. Lansford January 17, 1977

Antti Salava (Department of Computer Science, University of Helsinki, Toolonkatu 11,
SF-00100 Helsinki 10, Finland) reports "we have here an almost-finished Pascal compiler
running on the B6700. The compiler is written in Burroughs Extended Algol and generates
B6700 machine code. I won't go to details now because we are currently preparing a report
on our Pascal implementation."

(* Received 77/1/17. *)

Ken Bowles reports that a B6700 implementation exists at the University of California
San Diego. The implementation was evolved from Pascal P2 by Mark Overgaard and Jim Madden
(cf. Pascal Newsletter '4). The latest version is a real compiler, written in Pascal,
which produces native code for the B6700. Current compile speed is 5000 lines per minute,
but expected improvements could make that 10000 lines per minute -- as fast as the
Burroughs Fast Algol compiler. Virtually all of the Burroughs 1/0 facilities are
supported. Distribution is scheduled to start in mid-summer. For more information, contact
Henry Fischer, UCSD Computer Center, La Jolla, CA 92093 (71~/452-~050).

BRIEF NOTES ON A PASCAL IMPLEMENTATION AT OTAGO UNIVERSITY

About 18 months ago we obtained an implementation of PASCAL for a Burroughs

B6700 computer from Karlsruhe University. For reference, this compiler produces

symbolic code for a hypothetical stack machine. This symbolic code must be

assembled to produce absolute machine code which may then be interpreted. Both

the assembler and interpreter are written in Burroughs Extended ALGOL. Since the

compiler itself is written in PASCAL, the compilation of a program involves the

interpretation of the compiler code file. As a consequence, on our machine, it

took about 50 minutes processor time to compile the compiler.

To improve efficiency I rewrote the compiler in Extended ALGOL. This version

still produces the same symbolic code but is considerably faster. For example

the ALGOL version of the compiler takes less than I 1/2 minutes process time to

compile the PASCAL version of the compiler.

I have started" work on turning the ALGOL version into a true compiler for the

B6700 but priority of other work has caused delays. I will probably be getting

down to it in earnest again in about July of this year.

Copies of this compiler have already been sent to Massey University, Palmerston

North," New Zealand and to Warwick University in England_ If anyone else would like

a cop~ could they send a tape to me and I will return same with all PASCAL material

we hav~ plus brief notes on usage. The ~apes can be in one of the following formats

(please specify which is required):-

(a) 1600 bpi,

(b) 800 bpi,

(c) 1600 bpi,

(d) 800 bpi,

Chris Bishop
Computing Centre
University of Otago
P.O. Box 56
Dunedin
NEW ZEALAND.

Phase

NRZ, 9

Phase

NRZ, 9

encoded, 9 track, B6700 library tape

track, B6700 library tape

encoded, 9 track, USASI multi-file tape

track, USASI multi-file tape.

(/)

r
rn
-l
-l
rn
;::0

"*' 00

,

PASCAL FOR THE BURROUGHS 86700/87700 STATUS REPORT

1977 Apri 1 20

Professor A.H.J. Sale
Department of Information
Science,

University of Tasmania.

The PASCAL compiler for the Burroughs 86700/87700 computers has been
operational on the University 'of Tasmania's 66700 installation for
approximately two months in normal shift time, and has caused no operational
problems at all in that time. It is used by staff, and by students of the
Department of Information Science for coursework.

A restricted release has taken place of two 86700 sites in New Zealand
to enable the compiler to operate under less favourable conditions than
its nursery site, and to elicit comments (favourable or not). No more
sites will be suppl ied the current version so that potential sources of
error-reports can be kept to a manageable size, though at present no errors
have been reported from any remote site. Work has now started on a second
release which will remove three restrictio~s in the present version which
are annoying.

A supplement to the PASCAL Use~ Manual and Report has been prepared, and
is available to interested persons by writing to the Department. It
details the interpretations to be given to undefined areas of the PASCAL
documents, cautionary material on non-standard features of other PASCALs,
86700-specific features, and differences from CDC PASCAL-6000. A
Reference Manual is in preparation (a dictionary-style document), but is
not yet complete.

To control error-reporting and the consequent work, we have also adopted
a formal approach (more professional perhaps!) which may be of interest to
other PASCAL implementorswho want their implementation to be kept under
control, and more than the usual plaything~ Each site supplied with a
copy of the compi ler is (egistered with us~ and given a supply of FTR-forms
(Field Trouble Reports) which are personalized to that site. On
detecting an apparent bug in the compiler, a responsible person in the
site will complete the FTR-form (numbered), return a copy to us, and wait.
Our response is to acknm·iledge the FTR as soon as possible, indicating our
initial assessment of it. If the problem can be detoured (in other words,
avoid the problem area), or the compiler or the intrinsics patched, a
patch notice is issued: immediately to the reporting site, and in a
regular cycle to other sites. All sites will get a regular report On
FTRs still extant (not yet finalized), and on the patch notices issued.
It is the responsibility of each site to keep the compiler's patch level
in the version number corresponding to the latest level. This is printed
on each compilation listing for checking purposes.

Examples of the three forms are attached, in case anyone wishes to
copy them.

We have not yet formalized the treatment of what might be called New Featu~e
Requests. A quite large number of FTRs turn out to be of this kind rather
than genuine error situat,ions.

FIELD TROUBLE REPORT B6700/7700 PASCAL

I FTR No PASCAL I XVZ 01 I
L-------------~~~t~---L--~~~--J FTR numbe~

installation code

Installation and add~ess:

Computing Centre,
The XVZ Corporation,
Somewhere,
Australia.

Date of FTR: .. _. __ . __ ... _ .. _--- .. _ -. __ ._---
Pe~son autho~izing FTR: ---_ _--_._ -... ------
Desc~iption of problem {if necessary use extra sheets}:

....... --------------
.........:.--'--- ... -....... ----... - -.-.. ~ _----.- .. _ _ _---..... .

._--------------

~--.---.------~,.-----.-~--..• . _------------------_.

Can the problem be detoured? Yes: 0 No: 0 Irrelevant:D

{If YES, then attach brief description of detour used.}

Do you want it fixed immediately: 0
Boon: 0
sometime: 0 ?

Please attach a listing of a small ppogpam that exhibits the
problem, with supporting info~mation. If the probZem cannot
be isolated in a small prog~am, be prepared to ~eceive a request
for a tape ~f the problem cannot be otherwise resolved. Do not
send a·tape unless ~equested. --

::;z

rn
::s::
V>

r
rn
--l
--l
rn
;;;0

:;j:

00

ACKNOWLEDGEt1ENT OF FIR FOR B6Z00/UOO PASCAL

FTR No PAS~~. ____ ~ ________ ~
Date received: ___________________________ _

Date acknowledged: _______________________________________ _

Your FTR is

[J Ignored. We do not consider it requires action.

[J Too hard. We acknowledge your problem, but it is
too hard to solve at present.

[] Noted. The problem requires further study and we
cannot forecast when a solution will be forthcoming.

[] In process. We have some idea of the problem, but

it will take a few weeks to resolve.

[J Patched. The attached patch notice should resolve the

problem. The change will be in the next release.

[] Already solved. Check the notices you have received

as we believe the problem has been reported & solved.

o Misclassified. Your FTR will be treated as a

Field Suggestion, rather than a Trouble Report.

(] Concurrent. Another FTR has reported this, and will

be treated as the reference FTR (No).
[J Other: __ _

Attached please find:

0 A patch for the PASCAL compiler source

0 A patch for the PASCAL intrinsics -source

0 A suggested detour around the problem. .,
.,': 0 Other material:

Acknowledgement authorized by: _______________________ _

The reliabil ity and robustness of the compiler have been excellent.
Its performance is simi larly good; the execution speed of the compiler
being almost identical to the B6700 Algol compiler, and its needs for
compilation space being about 50-60% that of the Algol compiler (probably
due to PASCAL's lesser complexity). In execution, the compiled PASCAL
programs run 51 ightly slower than equiv~lent Algol programs on average,
but the difference is usually within 20% and fairly negligible. Fortran-
compiled programs usually execute about 20% slm;Jer still unless the vectormode
optimization is invoked.

At the risk of sounding repetitious, I would like to re-emphasize the
Importance of the Waite criteria to which the Editor drew attention.
A professional attitude is essential for the success of PASCAL; otherwise
we run the risk of yet another fly-by-night language, or almost as bad,
having PASCAL's impact confined to educational institutions.

PATCH NOTICE FOR B6Z00/ZZ00 ~

PATCH No PASCAL

Date of patch:

~ patch number ~
I L. ____________ compi ler re lease number

Person authorizing: ___________ -C.. __________ _

Origin of Fault:

[] FTR No PASCAL- __________ __

[] Internal discovery

Brief description of fault repaired:

Description of patch:

File name: Version: ___________ __

COMPUTER AUTOMATION LSI-2
(i CO'1lputer Automa~ion received some attenti.on for thei.r announce,nents of this
implementation which appeared in the trade papers CompLlterworld (Feb. 7. 1977) and
Computer 'deei<!y (feD. 1'7, 1977). (Also see the Here and There Applicatons section.) By way
of co,Jparison, CA sells their F0tlTHAN IV for .1600 to $1700, and their operating system
for $1900 to $2000. A glance at tne LSI-2 Pascal User's Guide shows the follolling. Only 2
levels of static nesting are allowed (p 2-4). The operators AND, OR, and XOR can be
applied to integer as well as Boolean operands. The reserved words FIL~, GO'fO, LABeL, and
PAC':IlO are not supported (p 2-5). ;1ixed mode arithmetic is not sLlpported (p 2-6). The
following standard functions are not supported: 000, EOLN, EOF~ SQR, ROUND, SIN, COS,
A,iCTIIH, L:i, C:XP, S\iRT (p 2-6). .)

ComputerAutomation

March 22, 1977

Dear Andy:

Computer Automation, using Brinch Hansen's Pascal compiler, has implemented

Sequential Pascal on its LSI-2, 16-bit minicomputer running under its operating

system, as, configured with 32K memory and moving head or floppy disk.

The Pascal system, released December, 1976, is distributed on floppy disk for a

cost of $900.00. Documentation includes the Jensen and Wirth manual and a user's

guide explaining the operation of Pascal under Computer Automation's OS. The

Pascal compiler is fully supported including acceptance and response to user

trouble reports.

The compiler supports Hansen's implementation of Pascal as discussed in if6.

However, the I/o capabilities presently are based on the operating system for their

implementation. In the near future, however, standard Pascal I/o will be implemented.

The reliability of the compiler is very good. This has been verified by the library

of programs that are being written in Pascal here. We are making the effort to

write new software in Pascal as its advantages over assembly language are obvious.

In pass 1 of our 7 pass compiler, we have implemented an automatic formatting option.

This feature, implemented with very little compile-time overhead, rearranges the

indentation of appropriate Pascal constructs in order to make the logical meaning of

the program more evident. We have found this to be very helpful in communicating

programs between different programmers as indenting style is preserved across

programs. By incorporating this into the compiler these conventions are enforced.

computer Automation would like to see the user's group strengthened so that standards

are encouraged for program portability. This would facilitate the creation of a

clearing house for Pascal Software tools as advocated by Mike Ball in if6. Areas such

as I/o and compiler control options need to be standardized. I am interested in

participating in the user's group and am willing to contribute to this effort as a

representative of Computer Automation.

Sincerely,

Robert C. Hutchins

CONTROL DATA CYBER 18

Computer Automation, Inc
NAKED MINI<!l Division
18651 Von Karman
Irvine, California 92713
Telephone: 714 833 8830
TWX: 910 5951767

Jim Fontana (CDC) describes the CYB~R 18 as a self-contained interactive system, and
the compiler as being derived from the compiler for the CDC 2550 front end processor.
Dennis Nicolai (CDC, Minneapolis) told us that the CYBER 18 and the 2550 have equivalent
instruction sets, and that the compiler is a cross-compiler whiCh runs on CYB~R 70's and
170's. Code is linked and "down loaded" to the CYBER 18.

CONTROL DATA 6000, 7000, CYBER 70, CYBER 170

1. On January 31, 1977, Niklaus Wirth and Urs Ammann of ETrl, Zurich, entered into a seven
point agreement with Andy Mickel and John Strait at the University of Minnesota for the
purpose of future maintenance of Pascal 6000. Maintenance duties will now be handled by
i'linnesota. We will continue to collaborate with Urs, Niklaus,Chris Jacobi, and Svend
Knudsen, and other Pascal 6000 users in development of the Pascal 6000 system.

2. INPORTANT: we are now soliciting local modifications and additions to the library
that have been made to Pascal 6000 at your site (we are working on a Release 3). Please
send a listing only to John P. Strait, UCC: 227 Exp Engr, University of Hinnesota,
Minneapolis, ~, 55455, USA.

3. We would like to thank Wilhelm Burger (U. of Texas), Dave Tarabar (U. of
I-Iassachusetts), Gideon Yuval (Hebrew U.), Tony Addyman and Peter Hayes (U. of Manchester),
Helmut Golde (U. of Washington), Richard Cichelli (Lehigh U.), Gary Carter and Ron Sheen
(U. of Nevada), Tony Gerber and Carroll Norgan (U. of Sydney), and Hichael Hagerty (ABT
Associates) for already sending in listings.

4; As announced in Pascal Newsletter 115 we are still accepting bug reports.

5. We are soliciting listings'of software tools.

6. Release 3 work is underway. Release 3 will appear no sooner than early 1978. These
features are projected: improved compiler and run-time system, enhanced library, enhanced
tools, documentation, and installation procedures.

7. Peter Hayes in a letter to Urs Ammann dated Jan. 18, 1977, suggested that the
University of Manchester's 7600 mods to Pascal 6000 (derived from CERN's 7600 mods
announced .in #5) be included on the distribution tape. We intend to accommodate this in
Release 3.

RECAU Pascal Manual by Jorgen Staunstrup and Ewald Skov Jensen, Regional EDP Center
at the University Aarhus, Denmark (March, 1977, 177 pages), describes the CDC 6000 Pascal
implementation with local extensions. Because Pascal is the most-used language there (!) a
definitive description (better than Jensen and Wirth) was deemed necessary.

-Andy and John.

:z
rn

C/)

r
rn
--I
--I
rn
:;0

:;t:

00

DATA GENERAL NOVA

Dear J" \\:'Iy'
University of Lancaster

The Department of Computer Studies at Lancaster University has
developed facilities for running PASCAL programs under the RDOS
operating system on the Data General Nova series of computers. We
are prepared to release these facilities as from 1st May, 1977, with
out any formal commitment to provide support.

Programs are compiled using the PASCAL-P4 compiler, which produces
PCODE. This is then converted to binary form by an assembler (written
in PASCAL), ready to be executed by an interpreter (written in NOVA
assembly language).

Typical runtimes compare favourably with those of other languages
generally available on the Nova.

Enquiries are welcomed from interested users: please contact
Mr. R. E. Berry at the above address.

Yours faithfully,
/1 ,/"l r (~r:r

Department of Computer Studies
flailrigg, Lancaster
Telephone Lancaster 6S20r (STD 0524)

DIGITAL EQUIPMENT PDP-IO, DECsYSTEM-IO, DECSYSTEM-20

Charles HedriCk (University of
independently report that tile improved
tJewsletter ,6 will be Jistributed oy
~arlJoro, 11assachusetts.

DIGITAL EQUIPMENT PDP-II

Illinois) and ,jally \,edel '(University of fexas)
202-10 co;"piler announced by Nagel in Pascal

LH::CUS (l)i 6 i tal 8quipment Computer Users Society) in

~.e J1aVe been hoping :'0 i1ear frOiJ Stephen SchHarm (coordinator of Dt'.:CUS SIG I?ascal)
regardinG the protlress of trJat ~roup. He have not yet received the group's newsletter. In
view of ',:.ne large nuclber of i:-oplementations for the POP-11, it appears t.hat coordination
is desperately needed. Anyone interested is encouraged to contact Schwartc at E. I. DuPont
de lJemours Co., 101 Ueech St.!-~ilmington, 08 19893 (302/714-16G9).

Kenne i1 EO't/les has announced a Pascal based stand-alone software syste:ll (including
compiler, interpreter, editor, 3nd interactive monitor) for the PDP-11/10 and the LSI-l0
(also the 'lil03 Z-dJ). The sys~e:11 will be available in mid-sum,ner throu3h the UCSD
Co;r:puter Center. The price has LJeen set at :p200 each. Compilation speed is 1000
linesl:ninute on the ?Di'-11/10 and 700 lines/minute on tne LSI-l1. The language processed
is ?ascal P2 J extended vii th procedures for string processing and graphics appl icat ions. It
processes the full ASCII character set, and a110H8 sets of char. All systems support
graphics display, Keyboard, and floppy diSK:. for ;nore information see Ken's article in
~his issue, or contact hen at Institute for Information Syste:ns, University of California
San Diego, La Jolla, CA 92093 (714/452-4526),

There may be hope for UNIX users! "en Bowles (above) tells us that a compile and go
rascal implementation has been written by Ken Thompson of Bell Laboratories. Can anyone
tell us ;l1ore? Also we have heard that ~ierre Verbaeten and K.V. Leuren have an
implementation. Their aJdress is Applied i1athe:natics and Programming Division,
Celestijnenlaan 200 B, 8-3030 Meverlee ~elgium.

un Autlust 24, 1976, Jeff SChriebman (485 Cory Hall, U. of Calif. Berkeley, 94720) wrote to
George Richmond (. who forwarded the letter to us on feo. 10, 1971 .) that he has a Pascal
interpreter running under U~IX on a PDP-ll/70. We have received no reply to a follow-up
inquiry (* 'eo. 24, 1971 .), Richard J. Cichelli reports that Charles J. Printer of the
University of Caltfornia has a Pascal interpreter under uarx, which has very tight code.
PLcA.s~, can anyone help us track down these people or their i:nplementations?

Wiley Greiner (TRli, Inc.), in a letter dated
implementation by Brian Lucas of tne iJational bureau of
RSX11d (V6,2) and RSX11M (V3.0). (* Come on Brian, don't
us ••) Wiley's address is building 90-2173, TrlW/DSSU,
CA 902'78.

March 11, 1977, mentioned an
Standards which runs under D~C's

be bashful , ~le~3e write to
One Space ~ark, ~edondo tieach,

2

PDP-11 PASCAL IMPLEMENTATION NOT~

IMPL!:.ME:N10R

Seved Torstendahl
Address:
Teleton AB LM !:.ricsson
ALI U f e
5-125 26 StOCkholm. Sweden

Phone number:
Sweden. J8 I ~9 02 OJ until

08 I 719 UO uO from

MACHINE

1 'I77-U3-31
1 ~ 77-U4-01

DEC-10: crosscompiler that generates code for
all PDP-11's.

PDP-l1: model SS and UP.

This version of the compiler does not

Stockholm
1977-02-09

generate COde tor floating point hardware or extended
arithmetic. But the next version will dO so when an option
switCh is set.

OPERATING SYSTEM

RSX-11M. (OEC-l0 crosscompiler under TOPS-l01.
ProDdplv it is an easy taSk to replace the WSX
interfacing routines with new ones interfacing DOS
or RT-l1. we 00 n01 olan to do that .ork here.
Maybe routines to interface with RSX-11S
~ill be made.

DISTRIBUTION.DOCUMENTATIO~,MAINIENANCE

Not yet clear. but hopefully more intormation
will De available soon. A user ~anual. complementing
the Report, is under development.

-0

:;:.
G>

rrt

~tS'RICIIONS AND tXTENSION&

The comoiler is a modification of the crosseompiler
trom Mr Bron of Twente University of Technology,
The Netherlands. Two major modifications have been
undertaKen:

the compiler generates standard Object mOdules
the compiler gives full access to RSX file system

The following list is mainly a copy trom Mr Bran's
contribution in Pascal Newsletter #7.

with regard to the definition of Pascal in Pascal
User Manual ana Neport the following restrictions hold:

- pacKed data structures are only implemented for
cnaracter arrays (always packed, two cher's/word
and tor boolean arrays (packing optional,
one ooolean/bit). fhe procedures pack and unpack
are not implemented.

- onlY local jumps are allowed.
- a pair of procedures, mark and release, to allocate

end deallocate dyna~ic storage.

The following extensions have been implemented:

- function results can be of nonscalar type,
- arrays with unspecified bounds (but specified

index-structure) can be used as formal parameters
to procedures, allowin~ differently declared
variaoles or constants as actual parameters,

- a string parameter type has been intoduced in which
one-d1mensional character arrays or substrings thereof
may 01.' passea as para~eters. Such strinqs ana their
constituent characters are considered as "reao only",

- procedures may be compiled separately,
- separately compilej proceaures can be accessed

throuqh a declaration with the procedure block
replaced by "extern".

~OtJRCE LAI-IGUAGE

Tn~ compilers are ~ritten in Pascal, and both have
the same source coae except for two separatel,
compiled routines. Tne crosscompiler is generated
when the DEC-10 Pasrel compiler from Hamburg compiles
tne source. when it then compiles itself the
PDP-11 version is created.

lhe slle of the compiler is 50Kwords ot COde. In a
PDP-11 running under HSx-11M V2 only 32 Kwords are
available for code and data. Throu~h a slight mOdification
ot tne overlay load,ng rout~ne of RSX-11M it has
oeen possible to seg~ent the very recursive compiler.
It now fits 1n a 32 ~wordS partition ana uses about
t~ Kworjs for coae leaving 10 KwordS tor oata.

HELIAdILI1,(

Good. Tne reliaoilit, of the original crosscompiler
was very gooo.

10 ~tTHOO OF DEVELOPMENT

The crosscompiler for PDP-11 ,running on DEC-10
produced by Bron et al was ~sed as input. A8 mentioned
earlier, this compiler was modified to generate Object
code linkable under RSX-11M and to give access to
the file system ot kSX-11M. When the crosscompiler ~as
finiShed it compiled itself and the compiler was thus
transferred to POP-11.

The implementation effort until no~ is about 5 manmonths.
To make use of f lO,ati ng point hardware 8'I10ther two
manmonths will be necessary. Probably a new version
which performs some optimization will be developped
later.

Dear sir:

At my installation, we are presently using the ElectroScientific
Industries implementation of PASCAL on three different PDP-11 processors,
all using the RT-lloperating system. These machines are a 16K 11/05,
a 28,K 11/10, and a 28K 11/40 with FIS, Our applications are in speech
recognition, real-time simulation, and computer graphics using Evans &
Suntherlund Picture Systems. We have found the ESI PASCAL to be much
faster than DEC FORTRAN, and very economical in core requirements. Our
worst case benchmark involved a "number-crunching" program translated almost
literally from FORTRAN-for this benchmark, the ESI PASCAL executed about 40%
faster than FORTRAN, while requiring about one third the core for execution.
Much of the core improvement is due to the small support package required
for ESI PASCAL, as opposed to the somewhat larger requirements of DEC
FORTRAN.

We have found that we can compile quite large programs even on
our 16K 11/05. We have compiled 3000 line programs in 28K on the 11/40.
At my request, since our applications involve graphics using programs
with in MACRO to expect FORTRAN calling sequences, ESI have added the
capability to declare procedures "external FORTRAN"'. We have successfully
used this feature to communicate with the Evans & Suthland graphics software
in a production environment. ESI also offers an optional optimizer, and a
formatting/cross reference package.

Reliability of the compiler has been far better than the DEC FORTRAN
system which has been completely replaced at our installation. The vendor
seems to be responsive in terms of support.

We have ordered PASCAL for our XDS Sigma 9 and DEC 11/70 running
UNIX, I will inform you of our success with these implementations.

I am interested in implementations of PASCAL on DG NOVA, HP 21MX,
DEC PDP-12, SEL840MP.

'l-vj
p.O. Box 235
Moffett Field, CA 94035

I(JAV(
\ I, Xt}ISU. lay B. Curtis

L

-u
):>

Gl

f'T'1

V1

o

University of lliinois at Urbana-Champaign
DEPARTMENT OF COMPUTER SCIENCE
Urbana, 111inois 61801
(217) 333-4428 January 21, 1977

Mr. Timothy Bonham
Pascal Implementations
University Comput~r Center
227 Experimental Engineering Building
University of Minnesota
Minneapolis, MN 55455

Dear Mr. Bonham:

This letter is in response to your October 25 inquiry concerning the
University of Illinois Pascal effort.

Our normal procedure upon receipt of a specific inquiry for Pascal-II is
to continue correspondence via a standard letter (see enclosure A). That letter
provides a rough description of our compiler and details the method by which a
"legitimate ll party may obtain a copy. In particular, it is required that the
recipient agree to the conditions set forth in Professor Snyder's letter (see
enclosure B). The question of whether any specific usage is deemed "research,
education or other legitimate purpose'! or whether it is deemed "commercial" is
one that can be answered only by the University of Illinois Administration and/or
the National Science Foundation.

The Pascal-II compiler was developed by A. Ian Stocks and Jayant Krishnaswamy*
under the direction of the late Professor Donald B. Gillies. It was originally
intended solely for in-house use as both a systems programming language and a
pedagogical tool. However, increased outside interest resulted in fairly wide
spread distribution of various versions of the compiler. Consequently, we have
found it necessary to freeze the distribution version as described in enclosure
A. In particular, our distribution version does not implement WITH, variant
records, arrays of records, procedures-as-parameters, and type SET.

In addition, we have made a number of extensions to the language which we
have found to be quite useful. Most of these extensions are mentioned in [1].
Unfortunately, there is no documentation beyond that for these extensions.

Since the project under which the compiler was developed has expired, we
have no source of funds for maintaining and upgrading the compiler. Consequently,
we offer Pascal-II "as-i5,11 with no plans** to extend it or to implement it on
other systems. (However, we have word that others (besides ESI) have transported

*Pr"esent addresses: Professor A. I. Stocks, Department of Computer Science, Univer
sity of Southwestern Louisiana, P. O. Box 4330, Lafayette, Louisiana 70509;
J. Krishnaswamy, Department of Computer Science, University of Illinois at Urbana
Champaign, Urbana, Illinois 61801

**Read: "plans which will result in and updated distribution version." We, of
course, are continuing with unsponsored research, which includes: 1) implementing
full Pascal; 2) Professor Roy Campbell's extending Pascal-II to include "Path
Expressions" (Pathcal??), and; 3) transporting Pascal-ll to modified RT-ll and
MERT (mini UNIX).

Pascal-ll to RT-ll and DOS/V9.) Finally, we have no magnetic tape or RK style
disk facilities J and the clerical personnel who perform the distribution service
are trained to simply copy from one_DECtape to another. Therefore, PDP-II
formated DECtape is our only mode of distribution.

MDM:clg

Sincerely yours,

M. Dennis Mickunas
Assistant Professor of
Computer Science

Enclosures

1. Stocks, A. 1. and J. Krishnaswamy. "On a Transportable High Level Language
for Minicomputers," ACM SIGMINI-SIGPLAN Interface Meeting: Programming
Systems in the Small Processor Environment, New Orleans, March 1976.

ENCLOSURE A
This letter is in response to your inquiry concerning our PDP-II

PPSCAL compiler.

Our PPSCAL-ll compiler and the associated package of run-time routines
operate under our own operating -system, which grew out of DEC's IDs/v4. While
our PASCAL-ll system is not yet complete enough for widespread distribution, we
are happy to make it available on a limited basis to interested persons. Our
distribution package includes:

1) PPSCAL-ll source of the PASCAL-ll compiler;
2) MACRO-II source of the PPSCAL-ll run-time routines;
3) binary for both the compiler and the run-time routines, and;
4) binary for our operating system.

In case you desire to install PASCAL-lIon your own version of IDS,
we also provide a list of Dos/v4 modifications. We believe that these modifica
tions are sufficient for adapting IDs/v4 to PASCAL-ll, but we can, of course,
make no guarantees. We caution that these modifications are not sufficient for
installing PASCAL-lIon other operating systems, but your IDS expert should be
able to make the necessary modifications using our DOS/V4 modifications as guide
lines.

Hardware requirements for executing the compiler are: a PDP-ll/20 (or
higher) processor with 28K words of addressable core storage, and ei ther 1) a
DEC RF-ll, or; 2) a DEC RK-ll. In case you have some other disk, your IDS expert
should have little trouble replacing our disk driver with your own. In addition,
it is necessary that your system be able to read DECtapes, since that is our only
mode of distribution for the PASCAL-ll system.

The present version of our PPSCAL-ll compiler does not implement WITH
or type REAL or SET, nor does it permit variant records or procedures-as-parameters.
Our version is otherwise essentially in accord with the Revised Report, except that
we have preserved EOL in lieu of WRIT)lLN/READLN, and we have incorporated some ex
tensions, including compile-time options; source level library routines, and over
la;ys. D:Jcwnentation for the compiler is, unfortunately, very sparse at present,
but we shall include in the distribution package all that is available.

The PPSCAL-ll compiler was developed at the University of Illinois at
Urbana-Champaign and is copyrighted by its Board of Trustees. This work was sup
ported, in part, by NSF Grant DCR 72-03740 AOI to the University of Illinois at
Urbana-Champaign. Accordingly, distribution is made to any interested persons or

-0
:;po
(/)

n
:;po

r
:2

rn
::E:
(/)

r
rn
-i
-i
rn
:;:0

-0
:;po

Gl

rn
\Jl

I-'

parties who -intend to use this software for "research, education, or other
legi timate purposes." The NSF requires that we inform them of those receiving
this software and their intended uses of it. Consequently, if you are interested
in obtaining this software, please mail

to

1) three (3) DECtapes (These ~ be in PDP-ll format!);
2) a statement of your intended uses;
3) one signed copy of Professor Snyder's enclosed letter, and;
4) a stamped, self-addressed mailer for returning your DECtapes

(total weight is about 2 pounds)

PASCAL-ll
\ c/o M. D. Mickunas

222 Digital Computer Laboratory
University of Illinois at Urbana-Champaign
Urbana, IL 61801

Upon receipt of the above items, we shall return your DECtapes with a
copy of our distribution package.

HEWLETT PACKARD HP-2100

Mattia Hmeljak (U. of Trieste) wrote (0 Feb. 5, 1977 .) to say that his group intends
to implement a P-Code interpreter in HP-Algol for the' HP-2100. He asks that anyone else
working on an implementation for this machine contact him at Istituto di Elettrotecnica ed
Elettronica, Universita di Trieste, Trieste-Italy.

HONEYWELL SERIES 66

Janis Zeltins of Honeywell Information Systems, 7400 Metro Boulevard, Edina,
MN 55435 (MS-1104), informed us of the availability of documentation for the Honeywell
implementation running under the GCOS operating system. "A Pascal Product Brief"
(publication HAW66, free) is a 1 to 2 page marketing oriented piece. A fuller description
of the implementation is "Pascal User's Guide" (manual DAW65, $1.30; about 30 pages).
These are available through Honeywell Information Systems, Attn: Publication
Services MS-339, 40 Guest Street, Brighton, MA 02135.

IBM 360, 370

Obviously there is a crisis with IBM implementations (just as bad or worse than
PDP-11'sl). After having evaluated both the SUNY Stony Brook and the University of
Manitoba compilers (the two most widely distributed), and found them to be disapPOinting,
two new projects were begun. Albrecht Biedl at the Technical University of Berlin and a
group at Imperial College, London, independently embarked on new implementations based on
Pascal P4.Dissatisfaction with the Stony Brook and Manitoba compilers exists elsewhere,
although a good report on Stony Brook's comes from David Gomberg at American University,
Washington D.C., and an expression of contentment with Manitoba's comes via the University
Computer Center Newsletter, U. of Southern California, Los Angeles.

David Gomberg reported to us on Feb. 22, 1977, that "anyone waiting for a clean
supported version of the HITAC 8800 Pascal for use under OS/360" can stop holding their
breath. He received a letter from Teruo Hikita to the effect that they feel some
unwillingness to distribute the system formally because of lack of full support, liD
routines coded in Fortran, lack of IBM compatible load modules, and inability to support
the system "formally and continuously."

However, Joseph Mezzaroba, Villanova University (215/527-2100, x669), reported on
April 16, 1977, that he recently coaxed a copy of the HITAC compiler from Hi~ita and had
it running for 3 weeks under DOS. The 1/0 routines are being rewritten in assembler.
Joseph is very happy with the system - it produces good code and has been extremely
reliable in its initial use by 60 graduate students (1500 jObs). HIrAC Pascal compiles
twice as fast as PLII and executes 5 times faster than PL/I under DOS according to
Hezzaroba.

Currently we still have the
Manitoba (no news for d months!), New
of Urenoble, Oslo Heart Hospital, and
the other two European efforts and we

Tokyo (HITAC 8800) compiler, SUllY Stony Brook, U. of
t1exico Tech., Stanford Linear Accelerator Center, U.
now the U. of British Columbia implementation. Add
have ten major implementations on the IBM 3701
HiCkel -Andy

Dear Andy:

This note will serve to describe our Pascal implementation
for the IBM 370/168 running under the MTS operating system.
I've also enclosed a copy of our User's Guide.

1.

2.

3.

4.

5.

Professor Bary W. Pollack
Frofessor Robert A. Fraley
Department of computer Science
University of British Columbia
vancouver, British Columbia
Canada V6T 1115
604-228-6794, 604-228-3061

IBM 370/168. The machine operates in university
environmentvith haavy background and moderate interactive
loads. The translator should be compatible with most large
rBM 360 or 370 series machines. Current development uses
the MTS operating system.

Q£~~i!ng §I~i~!, ~d]im21 hsX§~sI~ £2U1!gYlailQn.

Operates under the Michigan Terminal System, MTS. The
monitor may be mOdified with minimal effort to run under
VS, OS, -etc. The translator reguires about 320,000 bytes
of core. Standard OS object modules ars ganerated. An
obsolete OS monitor is availabla; we hope to have it
updated to work with the current compiler shortly.
Division of the compiler into overlays tor non-VM systems
would be possible.

The current version is available for distribution
Distribution will be via q-track magnetic tape. Costs
be limited to postage (and tape purchase, if ona is
supplied) •

now.
will
not

Documentation consists of a User's Guide containing a
complete description of the language's departures from the
Jensen and Wirth Pascal Usar Manual and Report.

:z
rT1

~

U"l

r
rT1

-i
-i
rT1
;;0

"'0

»
G"l

rT1

Vl
N

maintenanC2 pOlicy has no~ ys~ b~an decid~d upon. It is
anticip~ted ~ha· periodic upgrades and modifications will
bE 'listribu~ed at least once" r"dr. R<,port0,1 buqs will be
corr~ct~d as quickly as possibl3 with nb~ification ~o
users.

Ths compil~r provides numerous ext<'nsions and a faw
restrictions. A compile= option issues ~rror m7s3aq~s wh~n
~on-standard features aEG used. A compl~te description is
con'ainc>d within the documentation provided. ~ 5ummary of
th? diff3r.nc a g follows.

Strings ar~ padded on the right with blanks.
Therg is a 'leASE" default l~bel: "<>'1
optio~al 1':'1 allowed befor~ IIELSE".
"(...)" may bE used ~nstead of "[... l".
The EDL character has be~& retaingd.
"PACKID" is ignored.
Additional built-in funcntions:

~IOI, :-lAX, SUDSTR (using c:>nstant length), posItION
(provid~s direct-access I/O), 1/0 interiac@
f~nctions and ax~~nsions to RESET a9d REW&ITE,
INSERT fUuction for data-packing.

Input of charactEr strinqs using "EAD.
Support of EBCDIC charac~?rs ~, &, and I.
Use 't ••• 't for comm~nts.
"VALUE" section exists for variable initialization.,
H€xad~cimal intEgers support~d.
FORTRAN subroutinES may be called. A rEturn code is
available in the standard variable RCODE.
Direct access fil~s.

].:iEllIl£1ionEl:

Sets currently limited to 0 •• 31.
PROGRAM statement not used.
FILES may not be compon~nts of othar structur~s.
(Expression> .. Cexpression> is not allowed in sets.
INPUT~ is initially EOL instead of ~he first character
of the file. This is transparent when READ is IIsed.
DISPOSE is not implemont~d.

McCarthy IF.
OR and AND lower precedence than relations;
"usual" pracedence ossd throughout.
Ssts over ranqe 0 .• 255.
Better control of input anb output formats.

The translator is written in Pascal and is modeled aftar
the CDC 6400 impl~mentation, but it has been extensively
modified and improvsd. The translator consists of
approximately 8000 lines of Pascal code. The run-time
library consists of approximately 500 lines of Pascal code.
The monitor (which contains the interface to the operating
system) consists of approximately 2000 lines of IBM

Ass~mbler G code. The translation speed has not be~n
determined, but it seems faster than our Alqol-~ compiler.
The code produced has been timed aqainst Alqol-W code and
is almost unifor<llly 10-15% better. This is especially true
of any pro~ram using a large numb~r of procedure calls.
The compiler com~iles its~lf in less than 60 s~conds of
370/168 processor time.

Tha reliability to dat"! has been excellent. A student
version of the translator has been running since September,
1976, with only on,= detacted compil~r SEror. The main
system version has be~lD in operation since December, 1975.
All problems which have been encounter~d to dat8 have been
corrected.

10. l1!l.!;ho£ £1 £:l.¥elQll~n1.

The original translator was ~eveloped by Wirth and several
graduate students at Stanford University as a partial
re-write of ths CDC 6400 version in 1972. The curren~
translator and monitor have been extensively modified, a
run-time litrary has been implement€d, and a post-mortem
symbolic dump package bas been developed. ThA translator
has bien under continuous development at UBC since

::;:::~:' "'5, 0, ;A::y-~:J:i;O~1~tJ7~
Feb. 4, 1977 ~~ "1 Pollack & Robert A. Fral<=y

Pascal/360 now available to DOS users

UNIVERSITY OF BRITISH COLUMBIA
Department of Computer Science

2075 Wesbrook Place
Vancouver, British columbia

Canada V6T 1\15

The Stony Brook Pascal/360 compiler (announced in SIGPLAN Notices,
Feb. 1976) has been given a DOS interface. It has been installed and
tested on an IBM 370/135 running DOS/VS release 32. This version of
the compiler is identical to Pascal/360 Release 1, Update 3 (OS) except
for the operating system interface. At present, the main storage
requirement is a 150K partition. A small-partition edition for DOS/360
users is planned for summer, 1977 release.

The distribution tape, installation instructions, and copies of
all future maintenance updates and documentation are available for a
one-time fee of $175. A User's Guide is also available in quantities
at $1 per copy. For complete information, please write to:

Pascal Compiler Project
Dept. of Computer Science
State University of New York

at Stony Brook
Stony Brook, New York 11794

z
rn

(/)

r
rn
-t
-t
rn
:;0

IBn 1130

0.. LecarlJe wishes to apolo~ise for an error in issue d6 regarding the Irl(1 1130. He
incorrect ly i.nfor!..o'led us that ,an inp!e'TIentation was co,:tpleted at the University of
~~euchatel. Instead, he says, a Pascal .. S cQ,npiler (not interpreter) has been i:llpleinented
for the 1130 by lie:!..,nut. Sand:i1ayr, j~ev Tecnnii<Ut.1, Cti-9470 Guc,hs, Switzerland.

ICL 1900 SERIES

The current ICL l~OO series compiler was developed over the period 1974-76 by Jim
\;e1311, COli..lCl Quinn, and hathleen ;·lc.shane, at the Departwent of Computer Science, Queen's
0ni~ersity, Belfast b'r7 1~N i~orthern Ireland, U.~. This project was a co~p!ete rewrite of

'tne old lCL 1900 compiler (far,lOus ·for being the first to exist outside of Zurich).
Iinproved code and internal design, iruplementation of the revised report, and i~proved

diasnustic facil ities ~,ere goals achieved by the new co{npiler, known as the U~2. The ICL
~~2 compiler is distributed by Jim to nearly 50 sites, mostly within the U.K.

Its perfomance COClpares very favorably to fortran on the IeL 1900. The compiler
requires nearly 32cC to run -and ('las oeen installed und-er various operating systems: l.1eorge
3, ""eorge 4, executive, ,<iAXI>lOf, and COOt'.

The 'Jlost interesting feature of the :~iK2 cOi.lpiler from an implementor's point of view
is that it- has been designed :'0 be ported to other -machines. Specifically, the semantic
analysis ,p.nd code ,<;€wera:.ion parts have been cleanly separated. l'hus it can be used as a
bootstrap cO;lipiler for ot.her :nachines and can be li«ened to the Pascal rrunk compiler.
(See the I~L 2900 section below.)

Diagnost.ic enilancements to the i,iK2 were provided by David \iatt and Bill Findlay,
COiOputer 3cience Depart-,nent, University of G13sgow, Glasgow G12 3QQ Scotland, U.K. Their
diagnost i.es syste;ll includes a post-:aorte,u dump with array, record, and file-status
variaules displayeJ; an executi'on profile shotls the nu.-aoer 0f times each line of a pr06ralTI
is eXecuted, and retrospective and forward. traces of the exact source statements executed.

Documentat.ion (in toe i'orla of -a supplement to the revised report) for the ICL 1900
iijlplementation fro,:; C!.asgow (dated t'eo. 23, 1977, 2'1 pages very clearly written)
indicates that the ISL 1908 ~-oit character set is used, sets may have 48 elements, files
are not allo'h'ed as coclponents of any structured type, and non-discriminated variant
recoros-were removed.

-Andy Hickel

ICL 2900

One project based on the ICL 1900 ~1i{2 compiler (above) is to produce a cOL:lpiler for
the upper ICL 2~JO series ,"achines (29·70, 2980) at the University of :Southa:npton,
supported oy David Barron, Judy nullins, John Goodson, [like Rees, and Andy Schulkins. The
cOf1.piler is lar;;ely being written oy John Reyno-lds \vith the aij of Jules Zell, Doth of the
l.::lperial College, Department of Computing and Control, London S~~7, Ij.K. John Reynolds
rewrote the code generators for the 2900 Lolhich is stack-oriented and possesses a
completely different archi't..ecture than the 1"900 series machines. Poor computer system
perforrJance of tne 2nD at Southampton led to the decision by Joiln to develop the co,npiler
on the Control lJata 7'JOO at the University of London Co:nputing Centre, making use of Urs
Am~nann I S Pascal 6000. After compil ing Jill ',Jelsh' s cor:lpiler with Urs Ammann's compiler and
fixing the :onlyl) ten errors wIliel1 resulted (out of .9000 lines of code) John "as able to
&enerate assemDler for tlle 297J which t1e ported to Southatnpton and successfully loadea and
ran test pro~ra,;)s. John remarKed that 'tne event of sucessfully [{.oving to the 7600 "said
something about each of Urs A:nllann's compiler, JiJl Helshts cO(:lpiler, and Pascal the
lan.;uage."

To circucavent an unwieldy ICL operating system on t,l<! 2970, the University
idit1tlur$h scientific joboer will probably be used -to harbor this i>ascal compiler.

-Andy :1ickel

of

I~b: David Joslin of Sussex University Computer Centre, Fal.ner, Brighton, Sussex, U.K., is
coordinating this consortium of universities by acting as a clearinghouse for all ICL
con~ilers. Anyone having IC~ ne~s snoulJ forward it to David who is in close contact with
':'..-he f'ascal I'~ewsletter.

INTEL 8080

I1r. Anoy Mickel
Pascal Implementations
University Computer Center : 227 Exp Engr
University of Minnesota
Minneapolis, l1innesota 55455

Dear Andy,

Feb 22, 1977

~nis letter is in response to our recent telephone conversation
rega~oing sequential Pascal for the Intel 8080A microcomputer.

~he sequential Pascal compiler, written by Per Brincn Hansen
ana Alfred C. Hartmann of Caltech, generates code for a virtual
macnine. I have simulated the virtual machine with a real machine,
the Intel Intellec Microcomputer Development System (MDS). My PAS80
program, which is the implementation of the virtual machine, is
written in tne high level language PL/M-80. Emulating a 16-bit
virtual machine using PL/M-80 on the 8-bit Intel 8080A certainly did
not proauce a high-speed real machine. However, J feel that compilation
and execution speeds are tolerable for the purposes of beginning work
with Pascal on the 8080A.

At this time the 7 pass' sequential Pascal compiler has been
successfully self-compiled on the microcomputer (9,835 lines).

I will use the checklist provioed in the Implementation Notes section
of your newsletter to provide you with further information:

1. Implementor:

Tnomas A. Rolanoer
1012 Smith Ave.
Campbell, Ca. 95008
(408) 378-5785

Distributor:

INSI'l"E
Intel User's Library
Microcomputer Division
3065 Bowers Ave.
Santa Clara, Ca.· 95051
(408) 246-7501 x2948

2. Machine: Intel 8080A using the
Intel Intellec Microcomputer Development System

3. uperating System: Intel MDS ISIS-II

Haraware Configuration: 64K Bytes of RAM
Dual Floppy Disks

4. Distribution Format:
Tne software is distributed on two soft-sectored diskettes

containing: the PASS0 program, the sequential Pascal compiler in
virtual machine code form, the PL/M-80 source code for PAs80,
and the source code for the entire 7 pass sequential Pascal compiler
written in sequential Pascal.

5.

6.

Documentation:
PAS8D aocumentation is supplied in the form of a short User's

Guiae, syntax graphs, and the source cooe for the virtual machine
implementation and the compiler.

Maintenance policy:

NONE, however bug reports will be accepted.

Future Development Plans:
The initial version of PAS80 does not support floating point

operations. However, all of the requirea hooks have been incorporated,
facilitating the implementation which is currently in progress.

I,ork is also in progress to reauce memory requirements from 60K
to 32K bytes.

Direct machine coae generation for the Intel 8080A is being
consiaerea.

Tne possibility of a concurrent Pascal implementation is also
unaer consiaeration.

7. Pascal Implementation:
Complete sequential Pascal, as described by Per Brinch Hansen, has

been implementea with the exception of floating point operations.

8. Compiler Characteristics:

-Interpreter, written in PL/M-80,
1300 lines of source cooe,
10K bytes.

-Speea,
3~ lines / minute,

9. Reliability of Compiler:
Unknown, however it will self-compile and has been used success

fully by students, providing reasonable oiagnostics and error recovery.

10. Methoa of Development:
The virtual machine implementation was coded in PL/M-SI and then.

oebuggea using the virtual machine cooe files of the sequential Pascal
compiler itself to compile small test programs, and then finally
the compiler was self-compilea.

The implementation required about 2 man-months-of-evenings ana
was accomplished in my spare time. It could have been completed in
about 2 1/2 weeks on a full-time basis.

I was familiar with the process of implementing tne virtual
macnine trom previous experiences on the PDP 11/40 unaer RSTS/E ana
witn tne TI 9900. Creoit for the ease of implementation is due to
Per Brinch Ha~sen who oeveloped the virtual machine.

In summary, while compilation ana execution speeds are slow,
tnis implementation ooes provide a tool which can be used for further
~ascal oevelopments on microcomputers.

~~'W-a4_ r1 ttJ!.a~",,-
Thomas A. Rolander

UNIVERSITY OF MINNESOTA
lWlN CITIES

1m PLEME NTOR

Peter Zechmeister

Peter Zechmeister
Microcomputer User's Group (umMUG)
Department of Electrical Engineering
139 Electrical Engineering
123 Church Street S.£.
Minneapolis, Minnesota 55455

Microcomputer User's Group (UmMUG)
Dept. of Electrical Engineering
123 Church Street S. E.
Minneapolis, minnesota 55455

I am responding to the request of new implementors. If anyone
needs more specific information please write me.

mACHINE - Intel 8080 a-bit microprocessor

The target machine for this implementation is an Intel a-bit
microprocessor. With easy modifications it can be adapted to run
on most microprocessors.

OPERATING SYSTEM AND HARDWARE CONFIGURATION - Target Machine

The compiler includes a high level operating system which
interfaces between the user, software, and hardware in a simple
but powerful syntax. The minimum configuration consists of a
console I/O device (TTY), about 16K memory for the compiler to
reside in (Not yet completed. If the cross compiler is used only
the OS is needed; 2K memory + users program.). Note that the
compiler, user programs, and OS may reside in ROm, since code is
seperate from the variable space.

mETHOD OF DISTRIBUTION

None at this time but possibly late this Summer.

DocumENTATION AVAILABLE

Being worked on.

mAINTENANCE POLICY

Being worked on.

STANDARD PASCAL

This implementation, which I call Tiny Pascal (TP), may seem
a little barbaric compared to Pascal 6000, but this compiler was
written with the microcomputer in mind and is an improvement in
software for the small computer user. I would also like to add
that this compiler (system) represents the minimal language and
is meant to be a systems implementation language as well as a
low level programming language which can be expanded with minimal
effort. The complex data structures and variable types were left
out of the compiler in order to fit the compiler on a micro in a
reasonably small memory. The data types may be added in a future
Extended Tiny Pascal (ETP). Also there exists the bootstrap
compiler which is being used to generate TP and the monitor routines
(all written in Tiny Pascal), and is written in Pascal 6000 which
produces 8080 code.

-0

J>
G)

rn

IMPLEMENTATION

This is a true compiler that produces 8080 code. The Pascal
6000 bootstrap compiler is around 2500 lines long and loads in
about 14K. The TP compiler is around 1500 lines long and loads
in about 14K (Not yet finished.). The compiler route was taken
because an interpreter system is too slow for most real-time lab
situations even though they are smaller. This is also an excellent,
language for hardware design by manufacturers, allowing bit
fiddling but yet still a high level language in a reasonable
amount of memory. (* The cross-compiler runs at 2400 lines/minute

on a CDC 6400. *)
RELIAB ILITY

, The reliability of the compiler is excellent, an efficient
register mapping algorithm is incorporated into the compiler.

METHOD OF DEVELDPEMENT

The original compiler was developed from PLO (Taken from the
book Algorithms + Data Structures = Programs by Niklaus Wirth.).
A considerable amount of modifications was done to implement
variable types, Pascal statements, code generation, and register
mapping,

The TP compiler (bootstrap) currently produces good runnable code but
documentation and a few loose ends remain to be taken care of. I am
currently considering the writting of Modula for 8080 based
microcomputers, since TP could be used as a starting point.

Sincerely,

p~~
PeterZechmeister

INTERDATA 4

Jean Vaucher of the University of Montreal has informed us in a letter dated Dec. 13.
1976, that the Interdata 4 project there has been discontinued because of the availability
of rascal on other machines.

MOTOROLA 6800

Hark Rustad ilas provided us with some changes (received April 4. 197'll to his notice
which appeared in Pascal Newsletter #6. Under Checklist point 7, he indicates that the
following features have been added or restored: case statement, variant. records,
enumeration types. for statement. the type real (as a four byte quantity), and an exit
statement (which returns fro~ a procedure or function). Mark lists the deviations from
standard Pascal as being:

1. No declared files; get, put, reset. and rewrite are not supported.
2. The with and !loto statements are not supported.
3. The standard procedures sin, cos, arctan, exp, ln, sqrt, pack, and unpack are

not supported.
q. The case statement has an optional else clause.
5. The predefined procedure exit is non-standard.

llark also says that the compiler code occupies about 19K-20K bytes, while his t1-CODE
interpreter takes about 3K (including a floating point package). He is currently working
on optimization features for the compiler.

NANODATA QM-l

""",",t)i.i:,Y
JI-...."
17 March 1977

Ref: 6201. DMH-016

Implementor: Dennis Heimbigner
TRW DSSG
Mail Station: R3/1072
1 Space Park
Redondo Beach, CA 90278
(213) 536-2914 or (213) 535-0833

Machine: Nanodata QM-l with (minimum)
256 words nanostore

BK words control store
60K words main store

9755 55 megabyte disk
TASK version 1. 04. 02 or later
PROD version 2.04.01 or later

Optional:

Card reader
Printer (highly desirable)

Documentation: a. Brinch Hansen's SOLO manuals (not available thru TRW)
b. Short machine readable document describing the

implementation and ways to modify it.

Reliability: In-house use has been light but the system has been good.
to the extent we have used it.

Method of Development: The Concurrent Pascal system kernel was
programmed in micro-code. Some care was taken to insure
that the QM-l's virtual machine was compatible with the
virtual machine defined by the PDP-ll/45 kernel. Please
note that I did B£! implement a PDP-ll/45 emulator. As
a result, virtual code object files (e.g., type SEQCODE
or CONCODE) which run correctly under the PDP-ll/45 system
should run under the QH-l·system. The reverse is also true
for programs which do not use the fact that integers on the
QM-l are 18 bits as opposed to 16 on the PDP-II.

The kernel was micro-coded in about 6 months, from January
1976 to June 1976; on a part-time basis. Some one half
of that time was spent on the IO drivers.

Speed: Appears to run at about one-third the speed of the PDP-ll/45
system. I believe that a modest programming effort could
achieve parity in speed.

Distribution: Release by TRW is currently under consideration.
Inquiries are welcome.

Sincerely,

J)' f.'-

···~~~Xcy
Dennis H. Heimbigner ~
DEFENSE AND SPACE SVSTEMS GROUP OF TRW INC .• ONE SPACE PARI\. REDONDO BEACH. CALIFORNIA 90278. (213) 535.4321

U)

,.
rn
-t
-t
rn
;;;0

"'0

::J:>
G'l

rn

Vl

O'l

NORSK DATA NORD-IO

A first version of PASCAL is now running on the NORD-IO under
the MOSS operating system. This note gives a short
introduction to the PASCAL system and how to use it.

NORD-lO PASCAL

The compiler has been developed from the P-PASCAL compiler by
the following group:

Andora Fjeldsgaard
Petter Gjerull
Stein Gjessing
Jan Husemoen
Ketil Moen
Terje Noodt

The implementation is described in "Rapport om implementerinq
av PASCAL p~ NORD-IO", University of Oslo.) April 1976.

The compiler utilizes the 2-bank feature of the NORD-la, so it
is possible to run 64K programs with 64K of data. The present
version compiles to symbolic assembly code, so that a compiled
program must be assembled by AMORAL before it can be ex.cuted.

Non-implemented features

Compared to the full PASCAL language, the following are the
main restrictions in NORD-IO PASCAL:

1. p~cke~ is not implemented (the compiler does however
accept the symbol PACKED).

2. The type file is not implemented.

3. Formal procedures are not implemented.

4. Range and index checking are not implemented.

':5'~. Ar i thmet ic over flow is not checked.

How to use the system

The compiler is activated by the command

)*PASCAL

After the compiler has been loaded it will ask the user to
specify which logica~ units are to be used for input, listing
and compiled code. T~is conversation takes the following form:

INPUT =
<specify octal unit number of source code file>

OUPUT =
<specify octal unit number of listing file>

PRR =

<specify octal unit number of the file where compiled
code will be written>

The files should be opened before activating the compiler, but
it is also possible to exit from the compiler by CTRL A, open
the file, and then continue with the)GO command.

When compilation is finished (signalled b~ right parenthesis),
the file containing the compiled code can for instance be
saved for la~er use. To execute the program, go throuqh the
following steps:

1 Open the compiled code file with logical unit 3 (if not
already open on this lun).

2) *LINKP
3) GO

NB:!.! E-~f.AL E.r:.'?'Ham ~i!..;' ~!:or~ ~~ '?f its data
at hi9.~ !:~~~~~!- Thus a !ex!: !~~!: f'?£
editi~9. ~ill ~ot E~ preserved !~!ough ~ PA~~~
.':ompilation '?E ~~~cutio!! of ~ PASCAL E~~

The compiler
comment and

C

T
L

recognizes the following options (placed within a
preceded by $):

Produce code - default is off
Produce tables of variables - default is off
Produce listing - default is on

I~ a PASCAL program the programmer can use the following file
names:

INPUT
OUTPUT
PRR
PRO

(default input file)
(default output file)

The files that are u~ed should appear in the program heading,
as f. ex.:

PROGRA;'l PROG (INPUT, PRR) ;

Before data access to a' file the program must call
RESET«file name»

~or an input file, and,
REWRITE«file name»

for an output file. These calls have the effect of wr{ting the
filename followed by an equal sign to the terminal, whereafter
the logical unit number (octal) of the file can be specified.

For the files INPUT and OUTPUT the calls to RESET and REWRITE
are done automatically if they appear in the program heading.

1. A ~! can have up to 64 elements.

2. A procedure cannot have more than 253 words of local
variables, including parameters, but excluding record and
array variables.

3. An integer variable occupies I 16-bit word, a floating
variable 3 16-bit words.

4. A string can have a maximum length of 16 characters.

Impr£ve~nts and chang~

It is expected that the PASCAL system will be impro~ed and
changed freouently in the near future. A description of any
cti-'anqe or improvement will be written on the file *PASCINF,
which may be inspected or listed by the PASCAL user.

Questions, comments and error reports are invited, and can be
given to any member of the PASCAL group.

Terje's address is Com?uting Center, University of Oslo, Blindern, Oslo 3, Norway.

ORGANISATION EUROPEENNE POUR LA RECHERCHE NUCLEAIRE

CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN LABORATOIRE I

Adresse postMe/Postal address:

1211 GENEVE 23
SUISSE I SWITZERLAND

Votre reference
Your reference

Dear Andy,

SIEGE: GENEVE/SUISSE

PASCAL NEWSLETTER

Andy Mickel
PASCAL Users Group
UCC: 227 Exp. Engr.
University of Minnesota
Minneapolis, MN 5545
U. S. A.

Geneva, 19th January 1977

I am pleased to announce the successful implementation of a

Standard PASCAL compiler on the Norsk Data NORD-IO computer (running under

SINTRAN III o/s), by myself and my colleague Robert Cailliau. We developed

our compiler from the Zurich P4 code compiler, first assembling the source

P4 code into relocatable binary P4 code and then interpreting it as

efficiently as possible by an assembly code program. It is a great tribute

to Professor Wirth and his team at Zurich, who have produced a most excep

tionally concise description of the implementation procedure and a very

readable compiler written in PASCAL, that we were able to implement our

system in about man months. Apart from a small problem with the character

set (why do CDC have to be different to everybody else?), the implementation

went like a dream.

The very professional polish to the compiler and its documentation,

plus experience with its use, indicate that the compiler itself is extremely

reliable, and since our assembler/interpreter is very simple in terms of

coding and has successfully compiled the compiler, we have considerable faith

in our system. Naturally, it is not ultra-fast, but nevertheless takes only

15 minutes to compile the compiler, which for a l6-bit minicomputer with

2 ~sec cycle time is not too bad.

Naturally, anyone is welcome to receive a copy of our system, although

the NORD-IO is currently used exclusively in Europe.

A quick word on the PASCAL language itself - I feel that when

Professor Wirth stopped just short of creating the long sought after "obvious"

replacement to FORTRAN as the standard language, he missed a great opportunity.

Naturally unable to be the perfect all-time language, it does have some slight

drawbacks (frequently discussed in this newsletter, and in particular no interface

to external routines), most of which it would seem could be ,elatively easily

overcome, but which, however, do make it more difficult than it should be to

persuade users to take it up.

Anyone interested in our PASCAL system can contact

David Bates
PS/CCI Group
CERN, 1211 Geneva 23
Switzerland (tel. 41-98-11)

Sincerely,

S [1"1 S T 1 GOO / SOL A R

ENSMIM

PUG

£COLE NATIONALE SUPDRIEURE DE LA MlOTALLURGIE

ET DE L'INDUSTRIE DES MINES DE NANCY

'FeoL!: nES MINES, Pare de Saurupt 51012 NANCY CEnEX TeLePHONE (281 5L42,}2

TELEX, ENSMIM 850661

NANCY,I.February 2,1977

SEMS T1600 / SOLAR

1: Implementor

PASCAL IMPLEMENTATION

Alain Tisserant
Departement Informatique de 1 'INPL
Ecole des Mines
Parc de Saurupt
54042 Nancy Cedex FRANCE

Tel.: (28) 51 42 32

2: Machines: SEMS T1600 and SOLAR 16/05/40/65

3: OS: BOS-D
c/o Timothy Bonham Hardware required
University Computer Center

MTS16

227 Experimental Engineering Building
Minneapolis, Minnesota 55455
USA

Dear Tim:

As announced to George Richmond we are (still) working
on implementing a Pascal compiler for the SEMS minicomputer
series. To answer your 10 questions see attached implementation
notice.

Our hope is to provide an entire implementation with
efficient debugging tools for the programmer on a small computer.
As all the available documentation on this project is writen in
french, we think it better to send it directly only to people
who ask for it, and I enclose one copy of it for your own use.

Yours sincerely,

~--

A. Tisserant

4,5,6

FHE or MHU disk
16 K words of core memory (minimum)

Compiler not yet available, Will be distributed
by TRIA.

7: Fully implements standard Pascal; also compatible with
the IRIS 80 Pascal compiler.
Its extensions are character strings

LOOP .. , EXIT ... END statement
I/O for sets and scalars symbol ics

It allows also separate compilations, insertion of ASM or
Fortran routines, and sets of any interval of integers.

8: Pascal is compiled in two passes, w;th intermediate language
use. Of course, compilers are written in Pascal; the
intermediate language is an adaptation of P-code for
minicomputers. This implementation provides a fully
transparent virtual memory.

9: Reliability: expected to be excellent!

10: P-code has been adapted for non-stack, 16 bits words,
based addressing and accumulator machines. An automatic
segmentation mechanism will allow compilation and execution
of large programs (such as the compiler) with small
memory requirements.

First pass of the compiler is parametrizable. but
second pass must be hand rewritten for each implementation.

-0
)0>

G>

rn
V1
LO

SIEMENS 4004, 7000 SERIES

SIEMENS PASCAL BS2000 PROGRAMMING SYSTEM.

A PASCAL Compiler for SIEHENS 4004/151 and all SIEMENS

series 7000 installations running under operating system

BS2000 has been deveJopped by Dr. Manfred Sommer
(Dept. D AP GE - SIEMENS AG - MUNICH - GERMANY)
on the basis of the ETH p4 Compiler.

The Compiler may be used in an interactive Edit, Compile
and Go environment, as the Compiler produc'es code that
may run without relocation anywhere in virtual memory.
The interactive environment is provided by a PASCAL program
'dialogue' which invokes the Compiler and/or generated pro
grams by an additional standard procedure :execp (i.e. invoke

PASCAL program). This procedure may be used by all PASCAL
programs and supplies the possibility of a nested execution

hierarchy of PASCAL main programs.
The code produced by the Compiler (the instruction set used
is almost compatible with IBM 360/370 series instruction set)
may be put from virtual memory into a savefile. This savefile
may be reformatted by a PASCAL proe;ram so as to be submitted
to the system linkage utility routines.
The Compiler does some localized optimizations with the

aim of producing a compiler suitable for the compilation
of application programs. The result is that the code produced
seems to be much faster than the code produced by the standard

Fortran compiler.
The compilation speed is rather fast averaging 40 lines per

second on a 4004/151 and more than 100 lines per second on

a 7000/7.755.
The Compiler supports the language standard PASCAL.
File handling is fully implemented by the sequential file

access method. Work will be done to support also the
(direct access) indexed sequential file access method.

The predicate packed of arrays ,. records is ignored

as it would not change much on a byte machine.
The procedure dispose is replaced - as in all P-Compilers -

by the procedures mark and release.
Global labels may only be used to get back to the

main program.
There are no limitations imposed by the compiler.
Additional standard procedures are provided to make
operating system services available with the aim to make
the compiler suitable for the compilation of system proF,rams.

There is the possibility to interact with the operating
system by calls of additional standard procedures.

The system seems to be as efficient and reliable as
PASCAL systems are usually.

There is a users manual - written in german lang,uage.
For the conditions of availability contact the author.

The Compiler has been developed on the basis of the ETH P4
Compiler. This Compiler has been extended to process full
standard PASCAL with some typical modifications (i.e.

mark/release, case '" else, variable string assignments

and comparisons). The character code is EBCDIC, the setsize

is 256 allowing for set of char. The code generation is
done on the basis of the int~rmediate P-code at the end

of each procedure trying to do some local optimizations.
The code is generated into virtual memory Clnd may be

executed immediatly or pGt into a standard module library.

For further information contact

Dr. Manfred Sommer
SIEMENS AG

Department D AP GE

Postbox 70 00 78
D - 8000 M u n i c h
(West Germany)

The efficiency of SIEMENS. PASCAL BS2000

In N. Wirths: "Programming languages " (Berichte des
Instituts fUr Informatik der ETH Z0rich Nr. 17) there is

a list of programs for comparative studies . These programs
are measured on a CDC 6400 SCOPE 3.4 installation, assumed

to be roughly equivalent to a 370/155 by a remark in the
same paper. This set of programs was run for comparison

on a SIEMENS 7.755 under BS2000 operating system, assumed
to be roughly equivalent to a 370/155 in turn.

Results are:

CDC 6400 SIEMENS 7.755

1. Powers of two

2. Palindromes

3. Quicksort (different test data

intsize)

4. characount (micro seconds per char)

5. numericio a) input

b) output

6. Queens

7. Prim

8. ancestor a) build matrix

b) evaluate ancestors

. c) output matrix

9. ancestor-S a) build matrix

setsize = 100 b) evaluate ancestors

c) output matrix

SCOPE 3.4- BS2000 V

0.813 0.885

2.695 5.223

2.861 3.985

68 82
1. 238 2.5111

0.980 2.260

0.679 1.009

1. 061 1. 083

0.291 0.267

1. 667 1.569

0.578 0.614

0.084

0.322

0.627

Programs 1,4,6,7,8 indicate that the times used are

3.0

indeed roughly equivalent; 3,9 are not comparable; the

different values on program 5 are probably due to a different

file structure; and program 2 is assumed to be an example

for the term "roughly equiValent" - it is not known why

it behaves different from program 7.

It should be noted that BS2000 is a virtual memory operating

system and paging interrupts lead to differen~ execution

times of the same program in the order of io s.

On the other hand there are still some final optimisations

in the code generator not yet implemented'" it is hoped

that the times will be better by a an order up to 20 %
as soon as those optimisations are ready.

The compilation of the compiler yields a performance of

90 lines I second.

There have been some tests on the length of the sequence

of instructions for calling "Ackermann". The SIEMENS

compiler produces 15 instructions needing 52 bytes of code.

TEXAS INSTRUMENTS TI-ASC

uous!.as S. Johnson, Advanced Software Technolo;:;y Dept., H.'s. 295, Texas Ins:.ru.llents,
Oallas, Texas 75222, tells us that a superset of Pascal ~a]!ed ?DL is i.r.p!.e,nen:'Bd on the
TI-ASC. Tl1rou3h other sources we have learned toa: PDL ",·;as JevelopeJ usi.nt: a ?us~al
cross-compiler running on a Control Data 76;)8 which produced code for the A.3C. t'ClL I,.:as
developed for a ballistic 1115s11e Defense A~ency project, and is described in tile article:
"An extendable approach to computer-aided Doftware require~llents enJineerln~" by r.~. E~ll,
i).C. Bixler, and H.t:. Oyer, It::.::..: Transactions on 30ft\~are C:nGi:1eerin,:; 3 {Jan., 191'f) ,
pp 49-50.

TEXAS INSTRUMENTS TI-990, TI-9900

Douzlas Johnson (above) also reports that there is a Pascal cross-coi:J.piler which runs
on an I~r'l 370 and produces code for the TI-990 and the TI-9910. Several people ilave toU
us that TI has developeu a native-code compiler Wilicil runs on the 990/10 under the UX10
operating system.

A very different implementation for the TI-9900 (a 16-bit micro), '1ICrlOfASCAL, is
notable for being a stand-alone turnkey Pascal machine with bundled software and hardware.
In add.ition to the materials printed here, the im.plementors sent us a fairly gooa-sized
manual, mostly in Ger[!lan. Deviations from standard Pascal appear to be: files, "lith and
~oto statements, label declarations, and procedures/functions as parameters are not
supported. Sets of 64 characters are supported.

We present ourselves:

MICROPASCAL

1.) the implementors are:

H. Schauer, R. Nagler, A. Szer; Institut fUr Informationssysteme

1040 Wien, ArgentinierstraBe 8, Austria, Tel. 65 87 31/313

the distributors are:

ECO-Computer GesmbH&Co Kg (Fa. Langschwert)

1010 Wien, Tuchlauben 14, Austria, Tel. 63 35 80

2.) our implementation is called MICROPASCAL

3.) the minimal hardware configuration is the microprocessor

TI 9900/4 (Texas Instruments), a mark-sense card-reader and

a line-printer (with interfaces). You need no operating

system to run the compiler.

4.) only the whole system is selled(hardware and software) and

costs 200.000.- OS (Austrian Schilling). (about 1500 US ~).

5.) the system will be ready for sale in summer 77, we intend

to make more of it and we would like to accept bug reports.

6.) documentation is available in form of a supplement to the

PASCAL-Report

:z
rn

(/) ,
rn
--i
--i
rn
;;0

7.) it fully implements Standard PASCAL beside a few little things

caused by the hardware configuration (see documentation).

S.} it is a portable compiler-interpreter system which saves

memory and is very slow compared _I~ith other systems; it is

written in PASCAL and machine-code, 3000 source_lines, 12kROM

words, no external memory .

9.} the reliability of the system is excellent

IO.}it was written in PASCAL and bootstrapped to the microprocessor.

it takes three month to implement it on any microprocessor

with no special experience of the implernentors.

MICROPASCAL is a system that pel'Tl1its t:,e tl'ansiation and execution of PASCAL

p~ograms on a mic~op~ocesso~. It consists of a mic~oprocesso~, memo~d fo~ the operating

syste~ and the user progrwns and two interfaces for input and output. The main pu~~ose

of the system is to support progrcJrming education.

Basic concepts: the compiZer tran.sZc:.tes the source prcgra.'71 into an intermediate

language rep~esented as a t~ee, whe~e each node ~ep~esents one decla..~ation and each

leave cor:sists of the intermediate code of a PASCAL block in ~evel'::;ed polish notation.

This t~ee is the static information of the p~ogram. The compilation does not exceed the

lellel of syntactic decomposition defined by the synt= diag~cms in the P.4SCAL re?o~t,

At 'execution time the code is intel';:>~eted by aid of the nmtime stack which prov";des t!,e

dyna~ic information, The ~untime stack cor:sists of parcmete~s and local data of all the

c.ctive suDrout"':nes. The inter'preter. performs alZ context-sensitive checkin.g at the e::;2-

cut ion time. The intermediate language is comp~essed by using a nume~ic code of variable

Vmgth to ~ep~esent the identifie~s: those which are frequently used are rep~eser:ted

by short n"J1/bers. Sir:ce any infomation concerning the identifie~s is stored in the nodes

of the t~ee, the intermediate code is not redundant. The inte~?~eter is "micro;:>rogramned",

i, e. in the ir:ciirrmediate code all ope~ators a~e calls of sub~outines Of the interprete~.

Features of the system:

it su;:>ports portability: the machine-independent parts of the system, i.e. the cornpile~

and part of the interpreter are in the intermediate language (and interpreted th,mselves).

Only the nucleus of the inte~p~eter (organisation of the runtime stack and the execution

of ope~ations) is machine-dependent and the~efore han9coded.

- extremely low ~equirement of sto~age (l2K ROM): the same interp~eter is used to control

the compilation, the machine-independent ;:>art of the interp~etation and the exeoution

of the use~ program (the p~obZem of runtime efficier:cy was no constra£nt, to the problem).

- ve~ easy handling: the system is ready as soon power is on. No need for any hardware

o~ software st<p;:>ort to p~ovide or maintain a rr.achine-~eadable program. The in;:>ut device

is a mark-sense card ~eade~ and the output is a printed listing.

The machir:e-independa."lt parts of the system are written in PASCAL and bootst~appad by

an existing PASCAL compiZe~.

UNIVAC 90110

M. Sommer (see Siemens 4004 announcement, above) responded to Bill Hopkins')'equest
in Newsletter #7 for an implementation I'or the ~CA/univac Spectra 'fU: "Stemming from the
former cooperation between ileA and SIt:r1l::NS there is a close correspondence between SPECTRA
70 and SIEMENS 4004 computers. Our operating system is derived fro", V110S - now called
BS2000. Our PASCAL implementation is running on a 4004/151 (compatible with SPECTRA 70/61)
under BS2000 (compatible with VMOS)." (Letter to B. Hopkins, dated feb. 2, 1917.)

(* Thanks, Manfred! *)

UNIVAC 1100 SERIES

Bill Barabash or SUNY Stony Brook reports that they are in possession of all three
Pascal compilers for the U 1110. They use the DIKU compiler by Steensgaard-11adsen for
beginning students because it only requires 42K. They use the l11ke Ball San Diego compiler
(60K) in advanced courses because it allO\,s the creation of modules with independent
global areas. They also run a preliminary version of the Fischer-LeBlanc liisconsin
compiler which requires 80K and must itself be compiled by l1ike Sall' s compiler. It's
extensive checking appears to be quite sound according to Bill.

VARIAN V-70 SERIES

In a note dated Feb. 1, 1977, Gregory L. !lopwood, Varian Data Machines,
2722 t1ichelson Drive, Irvine, California 92664, (714/833-2400) states "Xes >Ie are
interested in Pascal. Varian has a Pascal compiler (Brinch Hansen) >lhich runs on our V70
line of minis.1t

In a letter dated feD. 4, 1977, Michael Teener, lJata Sciences Division, Technology
Service Corporation, 2811 Wilshire Boulevard, Santa t10nica, California 90403,
(213/829-7411) reports:

Technology Service Corporation
Data Sciences Division

2811 Wilshire Boulevard, Santa Monica, California 90403 Phone: (213) 829.7411

4 February 1977

Mr. Andy Mickel
University Computer Center
227 Experimental Engineering Building
University of Minnesota
Minneapolis, Minnesota 55455

Dear Andy:

For the past year or so I have been looking for a Pascal compiler for
our Varian V-76 minicomputer. I looked into using a Pascal-P imple
mentation, but that turned out to be too much work to do singlehanded.
I mentioned this little project to our local Varian rep, who then
shocked me by saying, "But we already have Pascal."

Simply put, anyone can get Pascal from the Varian Users Group (VOICE).
The required equipment is a Varian V-70 with 32K+ memory, memory map,
Vortex II O.S., extended instruction set and 512 words of writable
control store (~JCS). This last requirement is of considerable interest

z
rn

(/)

r
rn
----i
----i
rn
::0

since Varian uses the WCS td set up the V-70 as a Pascal machine ... its
machine language looks suspiciously like P-code. The compiler itself is
quite fast. According to my friends at Varian. it compiles over 1000
statements a minute. Some other characteristics are:

I/O is not standard, instead it is oriented around Vortex II
I/O macros. All files must be opened before using, with
reference to files via logical unit numbers. 'GET' and 'PUT'
do buffered I/O and 'READ' and 'WRITE' do character by character
I/O.

Programs can be overlaid.

The range on integers is -32768 .. 32767.

Integer case labels must be in the range 0 ... 127.

The range of rea 1 sis about _1038 .. 1038.

The relative precision of a real is about 10-16 .

A string must have an even number of characters. (All arrays
of type 'CHAR' are packed).

Enumeration types ('X=(A.B •...)') cannot be defined within
record types.

An enumeration type used as a tag field type can have at most
16 constant identifiers.

Integer variant labels must be in the range 0 .. 15.

A set of integers can only include members in the range 0 .. 127
(strangely enough, this is room for 2ll ASCII characters).

There is no 'text' type.

Corrments are enclosed in double quotes (").

Brackets '[' and 'J' are rEpresented by '(.' and '.)'.

The horizontal arrow character (underline on newer printers) can
be used in identifiers.

Th:= first ten characters of an identifier are significant.

I haven't had a chance to play with it much, but the programmers at Varian
claim it is extremely bug-free for a brand-new compiler. Anyway. anyone
can get it from Varian as VOICE #183C8.

As for Pascal itself. I would like to add my voice to the growing crowd of
real-world (i.e., non-academic) programmers who would like, or rather.
demand formatted and structured I/O. Michael Hagerty's comments in #6
on this subject are excellent. '

Aside from I/O and dynamic array parameters (about which enough has been said).
I really don't like the 'begin-end' blocking of Pascal. It just doesn't
read very well and adds needless confusion to the source code. I would far
prefer to use an implicit structure more like Algol 68 or IFTRAN. As a
matter of fact. Nancy Brooks of General Research Corporation is implementing
a Pascal pre-processor much like IFTRAN (which is a joint GRC-TSC Fortran
Pre-Processor) which has the following syntax:

Similarly for 'FOR'. 'CASE', and 'WITH'. (The 'REPEAT' form
is already consistent with this.)

The idea is to get rid of all those 'END's. Our experience with IFTRAN
leads us to believe that providing unique ending delimiters for compound
statements within each type of control structure catches many of the
common structural errors in complex programs. The 'IF' - 'ORIF' -
'ELSE' - 'ENDIF' structure is particularly good for this purpose. Besides
all that. the resulting pretty-printed listings are a delight to read.

Anyway, Pascal is the best overall language yet, and if the I/O problems
are fixed. it could be near perfect for our use.

Keep up the good work.

MT:cs

Michael Teener
Manager
Computing Center

P.S. Oh yes. Varian Pascal does not have label types or 'GO TO's. How's
that for a restriction?

(* Editor's note: we made a mistake! We mistook the commentary on Pascal
in this letter to be an explanation of extensions to the Varian
implementation. Half of this letter, therefore should have appeared in
the Open Forum section. *)

blDG Z-80

Ken Bowles has announced an implementation for the z-80 to be distributed sometime
this sunmer. For more details see the Digital Equipment PDP-11 section of this Newsletter.

According to Jim C. Warren, editor of Dr. Dobbs Journal of Computer Calisthenics &
Orthodontia (Oct., 1976 issue, p 6), Niel Colvin of Technical Design Labs, Trenton. New
Jersey, has adapted a P-code compiler for the Z-BO. The P-code interpreter reportedly
occupies about 1K bytes. Another Zilog rumor is that Dean Brown is the person at Zilog to
see about Pascal.

INDEX TO IMPLEMENTATION NOTICES (ISSUES #5 - #3)

Portable Implementations.

Pascal P.
#5: 44-50.
116: 65-67.
#7: 27.
#8: 40-41.

Pascal Trunk.
#5: 51.
118: 42.

l'ascal J.
#5: 51.
#7: 27-28.
#8: 42.

Pascal S.
U5: 51.

Pascal Variants.

Concurrent Pascal.
li5 ': 53-54.
#6: 67-69.

Modula.
118: 42.

Software Writing Tools.

#6: 70.
iI7: 29.
118: 40.

Machine Dependent Implementations.

Note: (I) indicates that one
or more implementations exist,
are underway, or are being
considered.

Amdahl 470.
see IBM 360, 370.

Burroughs B1700.
#6: 71.

Burroughs B3700,B4700.
118: 44-45.

Burroughs B5700.
(I)

Burroughs B6700.
H5: 51.
116: 72-74.
117: 29.
#8: 45-41.

CII 10070.
see also Xerox Sigma 7.
li6: 74.
U7: 29-30.

CII Iris 50.
116: 74.

CII Iris 80.
116: 74.
#7: 29-31.

Computer Automation LSI-2.
ns: 48.

Control Data Cyber 18, 2550.
115: 51.
118: 48.

Control Data 3300.
(I)

Control Data 3600.
(*J

Control Data 6000,7000;Cyber70,170.
115: 51-53.
n6: 74-75.
118: 48.

Cray Research CHAr-I.
116: 75-76.

Data General Nova series.
#8: 49.

Digital Equipment PDP-B.
#7: 32.

Digital Equipment PDP-l0.
115: 54-55.
116: 76-78.
113: 49.

Digital Equipment PDP-11.
115: 53-54.
116: 78-79.
117: 32-37.
118: 49-52.

Foxboro FOX 1 •
117: 37-38.

Fujitsu FACOM 230-38.
(* J

Fujitsu FACOM 230-55.
(oJ

Hewlett Packard HP-2100.
#6: 80.
liS: 52.

Hewlett Packard HP-3000.
116: 80.

Hitachi HITAC 8700, 8800.
see IBM 360, 370.

Honeywell series 6.
(I)

Honeywell H316.
li5: 55.
116: 80.

Honeywell 6000, Level 66 series.
~5: 55.
86: 80.
18: 52.

IBM 360, 370.
15: 55-63.
86: 81-86.
117: 38-39.
#il: 52-53.

IBM 1130.
#6: 86.
117: 39.
118: 54.

ICL 1900.
1i8: 54.

ICL 2910.
118: 54.

Intel 8080.
liS: 54-56.

Interdata 4.
118: 56.

Interdata 7/16.
116: 87.

Interdata 8/32.
#7: 40.

MitsubishiMELCOM 1700.
(I)

Motorola 6800.
#6: 87-88.
H8: 56.

Nanodata QM-l.
liB: 56.

Norsk Data NORD-l0,
118: 57-58.

Philips P-1400.
(*)

Prime P-400.
116: 88.

RCA Spectra 70.
see Siemens 4004, 7000.
see Univac 90/70.

SEL8600.
(I)

SEMS T1600, Solar.
1t8: 59.

Siemens 150.
(I)

Siemens 4004/157.
fi6: 88.
118: 60-61.

Siemens 7000.
#8: 60-61.

Telefunken TR-440 •.
(*)

Texas Instruments TI-ASC.
H8: 61.

Texas Instruments TI-980A.
(0)

Texas Instruments TI-990, 9910.
#8: 61-62.

Univac 90170.
see Siemens 4004, 7000.
U8: 62.

Univac 1100 series.
85: 64.
#6: 89-90.
#7: 40-42.
#8: 62.

Varian V70 series.
116: 90.
118: 62-63.

Xerox Sigma 6, 9.
#6: 90.
#7: 42-44.

Xerox Sigma 7.
see also CII 10070.
#6: 90.
il7: 31, 44.

Zilog Z-BO.
118: 63.

-0

»
C/)

n
»
r

