
 P L 3 6 0 REFERENCE MANUAL

 Stanford University

 fetched from ftp://lindy.stanford.edu/pub/pl360.tar.gz
 and slightliy reformatted from ANSI carriage lineprinter
 control to ASCII characters and using form feed characters.

 This manual was written and formatted for a lineprinter
 with a wide carriage. Examples in appendix A are likely
 to get truncated in printing.

 If you are reading this text as a pdf file, you will
 see appendix a in landscape mode without truncation.

 CONTENTS

SECTION 1. INTRODUCTION . 1-1

SECTION 2. DEFINITION OF THE PL360 ENVIRONMENT
 2.1 Terminology, Notation, and Basic Definitions . . . 2-1
 2.1.1 The Processor 2-1
 2.1.2 Relationships 2-2
 2.1.3 The Program 2-2
 2.1.4 Syntax 2-2
 2.2 Identifiers and Basic Symbols 2-3
 2.2.1 Identifiers 2-4
 2.2.2 Basic Symbols 2-4
 2.2.3 Standard Identifiers 2-5

SECTION 3. VALUES
 3.1 Hexadecimal Values 3-1
 3.2 Decimal Values 3-1
 3.3 Numeric Values 3-2
 3.4 String Values 3-2

SECTION 4. PROGRAM FORMAT
 4.1 Block Structure 4-1
 4.2 Program Segmentation 4-3
 4.3 Data Segmentation 4-3
 4.4 Main Program 4-4

SECTION 5. DECLARATIONS
 5.1 Register Synonym Declarations 5-1
 5.2 Segment Base Declarations 5-1
 5.3 Cell Declarations 5-2
 5.4 Cell Designators 5-3
 5.5 Cell Synonym Declarations 5-4
 5.6 EQUATE Declarations 5-5

SECTION 6. STATEMENTS
 6.1 Register Assignments 6-1
 6.2 Register Assignment Expressions 6-2
 6.3 Cell Assignments 6-3
 6.4 GOTO Statements and Labels 6-4
 6.5 Conditions and Compound Conditions 6-4
 6.6 IF Statements 6-6
 6.7 WHILE Statements 6-6
 6.8 FOR Statements 6-7
 6.9 CASE Statements 6-7

SECTION 7. FUNCTIONS
 7.1 Function Declarations 7-1
 7.2 Function Statements 7-1

SECTION 8. PROCEDURES
 8.1 Procedure Declarations 8-1
 8.2 Procedure Statements 8-2

SECTION 9. THE RUN-TIME LIBRARY
 9.1 Standard Procedures 9-1
 9.2 Number Conversion Procedures 9-2
 9.3 Data Manipulation Procedures 9-4

 i

SECTION 10. COMPILER CONTROL FACILITIES
 10.1 Instructions to the Compiler 10-1
 10.1.1 Listing Control 10-1
 10.1.2 Listing Options 10-1
 10.1.3 Operating System Control 10-2
 10.1.4 Identification 10-2
 10.1.5 Program Base Register Control 10-2
 10.1.6 Object Deck Control 10-3
 10.1.7 Copy Facility 10-3
 10.1.8 Conditional Compile Directives 10-3
 10.2 Compiler Listing Output 10-4
 10.3 Error Messages of the Compiler 10-5
 10.4 Compiler Object Program Output 10-6

SECTION 11. LINKAGE CONVENTIONS
 11.1 Calling External Routines from PL360 11-1
 11.2 Requesting Supervisor Services 11-2
 11.3 Calling PL360 Procedures from External Routines . 11-2

SECTION 12. PL360 AS AN ORVYL LANGUAGE PROCESSOR
 12.1 Using the PL360 Compiler with ORVYL 12-1
 12.2 Input/Output Subroutines for
 Interactive PL360 Programs 12-3

APPENDIX A. EXAMPLE PROGRAMS AND LISTINGS
 Sample Program Demonstrating Extensions to PL360 . . . A-1
 Right Triangle Problem A-6
 Global Procedure TRTEST A-9
 ORVYL Program to Set Options A-11

APPENDIX B. THE OBJECT CODE B-1

APPENDIX C. COMPILER CONSTRUCTS C-1

APPENDIX D. SYNTACTIC INDEX D-1

APPENDIX E. SYNTACTIC ENTITIES E-1

 TABLES

Table 6.1 Allowable Cell and Register Type Combinations 6-1
Table 6.2 Allowable Cell and Value Combinations 6-3
Table 6.3 Condition Code States 6-5

Table 7.1 Instruction Format 7-2

Table B.1 Object Code Operators B-1

Table C.1 2-Byte Instructions C-2
Table C.2 4-Byte Instructions C-3

 ii

 REFERENCES

[1] N. Wirth: PL360. "A Programming Language for the 360 Computers,"
 JACM 15 (1968) 37.

[2] SCIP/Academic Computing Services Program Libraries, Polya Hall
 Stanford University.

[3] J. Eve: "PL360 Language Extensions," Internal Note, Computing
 Laboratory. University of Newcastle upon Tyne.

[4] G. M. Amdahl, G. A. Blaauw, F. P. Brooks, Jr.: "Architecture
 of the IBM System/360," IBM Journal of Research and Development 8
 (1964) 87.

[5] G. A. Blaauw et al. "The structure of System/360," IBM Systems
 Journal 3 (1964) 119.

[6] "IBM System/360 Principles of Operation," IBM A22-6821.

[7] "IBM System/360 OS Assembler Language," IBM C28-6514.

[8] MTS Vol. I, University of Michigan Computation Center, Ann Arbor.

[9] "IBM System/360 Linkage Editor and Loader" IBM C28-6538.

[10] "PL360 Programming Manual," University Computing Laboratory,
 University of Newcastle upon Tyne, Caremont Tower, Newcastle upon
 Tyne, NE1 7RU, England, 1970.

[11] "IBM System/360 DOS System Control and System Service Programs,"
 IBM C24-5036

[12] R. Fajman and J. Borgelt, "ORVYL User's Guide," Stanford
 University Computation Center, 1971.

[13] "IBM System/360 Disk Operating System Supervisor and Input/Output
 Macros," IBM C24-5037.

[14] N. Wirth: "Format of PL360 Programs," ALGOL W - Project Memo,
 Stanford University, Sept. 9, 1966.

 iii

 FOREWORD

The intent of this manual is to provide a reference tool for programmers
using PL360. Although it is not a textbook, it has been organized in
such a way that each section introduces new material dependent on
information covered in preceding sections. In that sense, it can serve
as a self-teaching aid.

Those readers not familiar with Bacus-Naur Form (BNF), may find the
syntactic rules used to describe the language difficult to understand.
However, the textual descriptions and examples associated with a set of
syntactic rules should serve to clarify those rules. Also, the sample
programs of Appendix A further clarify the language structure.

Knowledge of the 360 architecture [4, 5 or 6] is a prerequisite for
understanding the language definition and some familiarity with the 360
Assembly Language [7] and linkage editor [8] is assumed in the
description of the object code produced by the compiler.

In writing this manual, the authors have drawn heavily upon the
(anonymous) PL360 Programming Manual published by the University of
Newcastle upon Tyne, Computing Laboratory [10].

 iv

 SECTION 1. INTRODUCTION

PL360 is a programming language designed specifically for the IBM
System/360 computers. It provides the facilities for a symbolic machine
language but displays a structure similar to that of ALGOL. A formal
description of an earlier version of the language has been published by
Niklaus Wirth [1] who directed the development of the PL360 language and
its compiler at the Computer Science Department of Stanford University.
Although PL360 was originally designed for writing logically
self-contained programs, subsequent extensions permit communication with
separately compiled programs.

An efficient one pass "in core" compiler, written by Niklaus Wirth,
Joseph W. Wells, Jr. and Edwin Satterthwaite, Jr., which incorporates
these extensions is available through the Stanford Program Library [2].
This compiler translates PL360 source code into object modules in the
format required by several 360 operating systems (OS and MTS for
example). The documentation issued with the compiler includes several
amendments to the original language definition. Further extensions were
carried out at the University of Newcastle by James Eve. These changes
[3,10] were aimed primarily at relaxing the linkage constraints on
separately compiled programs, enabling for example direct communication
with programs using OS/360 type linkages. Michael Malcolm of the
Stanford Computer Science Department made several modifications to the
version of the compiler produced by James Eve. These extensions made it
possible to run the compiler and compiled programs under DOS operating
systems. Assembly language subroutines were also written for both OS
and DOS to facilitate input-output with sequential tape and disk files.
Dick Guertin of the Stanford Center for Information Processing extended
the syntax of PL360, primarily to increase programming convenience. He
has also written assembly language interfaces to allow interactive use
of both the PL360 compiler and PL360 programs under the ORVYL
time-sharing monitor at Stanford. Andrew Koening of Columbia University
also contributed improvements to the compiler.

The language definition and compiler description incorporating all
changes are given in this manual. For a full discussion of the
background underlying the development of PL360 and a description of the
organization and development of the compiler together with some
perceptive comments on the 360 architecture, reference must still be
made to [1], where the aims of the language are summarized:

 ... it was decided to develop a tool which would:
 1. allow full use of the facilities provided by the 360
 hardware,
 2. provide convenience in writing and correcting programs, and
 3. encourage the user to write in a clear and comprehensible
 style.

 As a consequence of 3, it was felt that programs should not be
 able to modify themselves. The language should have the
 facilities necessary to express compiler and supervisor
 programs, and the programmer should be able to determine every
 detailed machine operation.

 1-1

 SECTION 2. DEFINITION OF THE PL360 ENVIRONMENT

2.1 Terminology, Notation, and Basic Definitions

The language is defined in terms of a computer which is comprised of a
number of processing units and a finite set of storage elements. Each
of the storage elements holds a content, also called value. At any
given time, certain significant relationships may exist between storage
elements and values. These relationships may be recognized and altered,
and new values may be created by the processing units. The actions
taken by the processors are determined by a program. The set of
possible programs form the language. A program is composed of, and can
therefore be decomposed into elementary constructions according to the
rules of a syntax, or grammar. To each elementary construction
corresponds an elementary action specified as a semantic rule of the
language. The action denoted by a program is defined as the sequence of
elementary actions corresponding to the elementary constructions which
are obtained when the program is decomposed (parsed) by reading from
left to right.

2.1.1 The Processor

At any time, the state of the processor is described by a sequence of
bits called the program status word (PSW). The status word contains,
among other information, a pointer to the next instruction to be
executed, and a quantity which is called the condition code.

Storage elements are classified into registers and core memory cells,
simply called cells. Registers are divided into three types according
to their size and the operations which can be performed on their values.
The types of registers are:

 a. integer or logical (a sequence of 32 bits)
 b. real (a sequence of 32 bits)
 c. long real (a sequence of 64 bits)

Cells are classified into five types according to their size and the
type of value which they may contain. A cell may be structured or
simple. The types of simple values and simple cells are:

 a. byte or character (a sequence of 8 bits = 1 byte)
 b. short integer (a sequence of 16 bits = 2 bytes, interpreted
 as an integer in two's complement binary notation)
 c. integer or logical (a sequence of 32 bits = 4 bytes,
 interpreted as an integer in two's complement binary
 notation)
 d. real (a sequence of 32 bits = 4 bytes, interpreted as a
 base-16 floating-point number)
 e. long real (a sequence of 64 bits = 8 bytes, interpreted as
 a base-16 floating-point number)

The types integer and logical are treated as equivalent in the language,
and consequently only one of them, namely integer, will be mentioned
throughout this manual. Likewise, byte and character are equivalent and
only byte is mentioned.

 2-1

2.1.2 Relationships

The most fundamental relationship is that which exists between a cell
and its value. It is known as containment; the cell is said to contain
the value.

Another relationship exists between the cells which are the components
of a structured cell, called an array, and the structured cell itself.
It is known as subordination. Structured cells are regarded as
containing the ordered set of the values of the component cells.

A set of relationships between values is defined by monadic and dyadic
functions or operations, which the processor is able to evaluate or
perform. The relationships are defined by mappings between values (or
pairs of values) known as the operands, and values known as the results
of the evaluation. These mappings are not precisely defined in this
manual; instead, see [6].

2.1.3 The Program

A program contains declarations and statements. Declarations serve to
list the cells, registers, procedures, and other quantities which are
involved in the algorithm described by the program, and to associate
names, called identifiers, with them. Statements specify the operations
to be performed on these quantities, to which they refer through the use
of identifiers.

A program is a sequence of tokens, which are basic symbols, strings or
comments. Every token is itself a sequence of characters. The
following conventions are used:

 a. Basic symbols constitute the basic vocabulary of the
 language (cf. 2.2.2). They are either single characters,
 or uppercase letter sequences.
 b. Strings are sequences of characters enclosed in quote marks
 i.e. "string" (cf. 3.4).
 c. Comments are sequences of characters (not containing a
 semicolon) preceded by the basic symbol COMMENT and
 followed by a semicolon (;). Comments may also be written
 as a sequence of characters between vertical bars (!).
 Thus, ! this is a comment ! It is understood that comments
 have no effect on the execution of a program.

In order that a sequence of tokens be an executable program, it must be
constructed according to the rules of the syntax.

2.1.4 Syntax

A sequence of tokens constitutes an instance of a syntactic entity (or
construct), if that entity can be derived from the sequence by one or
more applications of syntatic substitution rules. In each such
application, the sequence equal to the right side of the rule is
replaced by the symbol which is its left side.

 2-2

Syntactic entities (cf. Appendix D, E) are denoted by english words
enclosed in brackets < and >. These words describe approximately the
nature of the syntatic entity, and where these words are used elsewhere
in the text, they refer to that syntactic entity. For reasons of
notational convenience and brevity, the uppercase letters A, K, and T
are also used in the denotation of syntactic entities. They stand as
abbreviations for any of the following words (or pairs):

 A K T

 long real long real long real
 real real real
 integer integer integer
 short integer short integer
 byte

Syntactic rules are of the form <E> ::= & where <E> is a syntactic
entity (called the left side) and & is a finite sequence of tokens and
syntactic entities (called the right side of the rule). The notation

 <E> ::= &1 ! &2 ! ... ! &n

is used as an abbreviation for the n syntactic rules

 <E> ::= &1, <E> ::= &2, ..., <E> ::= &n

If in the denotations of constituents of the rule the uppercase letters
A, K, or T occur more than once, they must be replaced consistently, or
possibly according to further rules given in the accompanying text. As
an example, the syntactic rule

 <K-register> ::= <K-register identifier>

is an abbreviation for the set of rules

 <long real register> ::= <long real register identifier>
 <integer register> ::= <integer register identifier>
 <real register> ::= <real register identifier>

2.2 Identifiers and Basic Symbols

The implementation imposes the restriction that only the first 10
characters of identifiers are recognized as significant.

Throughout this section, user defined identifiers are shown in lowercase
letters to distinguish them from standard identifiers and basic symbols.
In actual practice, all identifiers are constructed from uppercase
letters.

 2-3

2.2.1 Identifiers

 <letter> ::= A!B!C!D!E!F!G!H!I!J!K!L!M!N!O!P!Q!R!S!T!U!V!W!X!Y!Z
 <digit> ::= 0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! 7 ! 8 ! 9
 <identifier> ::= <letter> ! <identifier><letter> ! <identifier><digit>
 <K-register> ::= <identifier>
 <T-cell identifier> ::= <identifier>
 <procedure identifier> ::= <identifier>
 <function identifier> ::= <identifier>
 <integer value identifier> ::= <identifier>

An identifier is a K-register, T-cell, procedure, function, or integer
value identifier, if it has respectively been associated with a
K-register, T-cell, procedure, function, or integer value (called a
quantity) in one of the blocks surrounding its occurrence (cf. 4.1).
This association is achieved by an appropriate declaration. The
identifier is said to designate the associated quantity. If the same
identifier is associated with more than one quantity, then the
considered occurrence designates the quantity to which it was associated
in the innermost block embracing the considered occurrence. In any one
block, an identifier must be associated with exactly one quantity. In
the parse of a program, that association determines which of the rules
given above applies.

Any processing computer and operating system can be considered to
provide an environment in which the program is embedded, and in which
some identifiers are permanently declared. Some identifiers are assumed
to be known in every environment; they are called standard identifiers,
and are listed in Section 2.2.3.

2.2.2 Basic Symbols

Basic symbols which consist of uppercase letter sequences shown below
are denoted by the same letter sequences without further distinction.
Such letter sequences are called reserved words and cannot be used as
identifiers. Embedded blanks are not allowed in reserved words,
identifiers, and numbers. Adjacent reserved words, identifiers, and
numbers must be separated by at least one blank or other
non-alphanumeric. Otherwise, blanks may be used freely. The basic
symbols are:

 + - * / () = < > ^
 , ; . : @ # _ " ' !
 DO IF OF OR
 ABS AND END FOR NEG SYN XOR
 BASE BYTE CASE DATA ELSE GOTO LONG NULL
 REAL SHLA SHLL SHRA SHRL STEP THEN
 ARRAY BEGIN CLOSE DUMMY SHORT UNTIL WHILE
 COMMON EQUATE GLOBAL
 COMMENT INTEGER LOGICAL SEGMENT
 EXTERNAL FUNCTION REGISTER
 CHARACTER PROCEDURE

 2-4

2.2.3 Standard Identifiers

The following identifiers are predeclared in the language but may be
redeclared due to block structure. Their predefined meanings are
specified in Section 5, Section 7.1, or Section 9.1.

 MEM
 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15
 R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15
 F0 F2 F4 F6
 F01 F23 F45 F67
 BALR CLC CLI CVB CVD ED EDMK EX IC
 LA LH LM LTR MVC MVI MVN MVZ NC NI OC OI PACK
 RESET SET SLDA SLDL SPM SRDA SRDL STC STH STM SVC
 TEST TM TR TRT TS UNPK XC XI
 CARRY FALSE MIXED OFF ON OVERFLOW STRING TRUE
 CANCEL GET KLOSE OPEN PAGE PRINT PUNCH PUT READ WRITE

 2-5

 SECTION 3. VALUES

3.1 Hexadecimal Values

Values may be expressed in hexadecimal notation.

 <hexadecimal digit> ::= <digit> ! A ! B ! C ! D ! E ! F
 <hexadecimal value> ::= # <hexadecimal digit>
 ! <hexadecimal value> <hexadecimal digit>

A hexadecimal value denotes a sequence of bits. Each hexadecimal digit
stands for a sequence of four bits defined as follows:

 0 = 0000 4 = 0100 8 = 1000 C = 1100
 1 = 0001 5 = 0101 9 = 1001 D = 1101
 2 = 0010 6 = 0110 A = 1010 E = 1110
 3 = 0011 7 = 0111 B = 1011 F = 1111

Note: If hexadecimal values are used in conjunction with arithmetic or
logical operators in a program, they must be considered as a sequence of
bits which constitute the computer's representation of the number on
which the operator is applied. Hexadecimal values followed by the
letter R or L may be used to denote numbers in unnormalized
floating-point representation [4,5,6].

3.2 Decimal Values

 <unsigned integer number> ::= <digit>
 ! <unsigned integer number> <digit>
 <unsigned short integer number> ::= <unsigned integer number> S
 <fractional number> ::= <unsigned integer number> .
 ! <fractional number> <digit>
 <scale factor> ::= <integer number>
 <floating-point number> ::= <fractional number>
 ! <fractional number> ' <scale factor>
 ! <unsigned integer number> ' <scale factor>
 <unsigned real number> ::= <floating-point number>
 ! <unsigned integer number> R
 <unsigned long real number> ::= <floating-point number> L
 ! <unsigned integer number> L
 <A-number> ::= <unsigned A-number>
 ! _ <unsigned A-number>

Integer, real, and long real numbers are represented in decimal
notation. The latter two can be followed by a scale factor denoting an
integral power of 10. Short integers are distinguished from integers by
the letter S following the number. In order to denote a negative
number, an unsigned number is preceded by the underscore symbol "_".
(Note: the underscore is used so as not to confuse negative values with
the subtract operator "-", which is never part of a number.)

Note: A-number is an abbreviation for long real number, real number,
short integer number and integer number as defined in section 2.1.4 as a
notational convenience.

 3-1

3.3 Numeric Values

 <byte value> ::= <integer number> X
 <short integer value> ::= <short integer number>
 ! <hexadecimal value> S
 <integer value> ::= <integer number>
 ! <hexadecimal value>
 ! <integer value identifier>
 <real value> ::= <real number>
 ! <hexadecimal value> R
 <long real value> ::= <long real number>
 ! <hexadecimal value> L

Examples:

 byte values: 2X _5X
 short integer values: 10S #FF00S
 integer values: 0 #106C _1 size
 real values: 1.0 _3.14 2.7'8 #46000001R
 long real values: 0L 3.14159265359L #4E00000000000001L

3.4 String Values

There are also string values, but these are not generally used in
conjunction with arithmetic or logical operators.

 <string> ::= " <character sequence> "
 ! <hexadecimal value> X
 <character sequence> ::= <character>
 ! <character sequence> <character>
 <character> ::= <any EBCDIC character except "> ! ""

When a string is a character sequence enclosed in quote marks, the
string is limited to a total of 255 characters. If a quote mark (") is
to be a character of the sequence, it is represented by a pair of
consecutive quote marks.

When a string is a hexadecimal value ending in X, up to 16 hexadecimal
digits may be specified. Each pair of hexadecimal digits represents one
character. If the number of hexadecimal digits specified is odd, a
hexadecimal 0 is prefixed to the specified value to make the total even.

Examples: "ABC" denotes the sequence ABC
 "A""Z" denotes the sequence A"Z
 #C1C2C3X denotes the sequence ABC

 3-2

 SECTION 4. PROGRAM FORMAT

Compiler input records consist of 80 characters. The first 72
characters of each record are processed as part of a PL360 program;
characters 73 through 80 are listed but not otherwise processed.
Character 72 of one record is considered to be immediately followed by
character 1 of the next record. Character position 1 may contain any
character except '$' or any other character (e.g., /) that would signal
a compiler control statement or job control statement.

4.1 Block Structure

 <program> ::= <block> . !
 GLOBAL <simple procedure heading>;<statement> . !
 GLOBAL <simple procedure heading> BASE <integer register>;<statement>
 <block> ::= <block body> END
 <block body> ::= <block head> ! <block body><statement>; !
 <block body><label definition>
 <block head> ::= BEGIN ! <block head><declaration>;
 <declaration> ::= <T-cell declaration> !
 <function declaration> ! <procedure declaration> !
 <T-cell synonym> ! <K-register synonym> !
 <integer value synonym> !
 <segment base declaration> ! <segment close declaration>
 <label definition> ::= <identifier> :
 <statement> ::= <simple statement> ! <IF statement> !
 <WHILE statement> ! <FOR statement>
 <simple statement> ::= <K-register assignment> !
 <T-cell assignment> ! <function designator> !
 <procedure statement> ! <CASE statement> ! <GOTO statement> !
 <block> ! NULL

A block has the form

 BEGIN D; D; ...; D; S; S; ...; S; END

where the D's stand for declarations and the S's for statements
optionally preceded by label definitions. END may be labeled. The two
main purposes of a block are:

 1. To enclose a sequence of statements into a structural unit
 which as a whole is classified as a simple statement. The
 constituent statements are executed in sequence from left
 to right.
 2. To introduce new quantities and associate identifiers with
 them. These identifiers may be used to refer to these
 quantities in any of the declarations and statements within
 the block, but are not known outside the block.

The symbol NULL denotes a simple statement which implies no action at
all.

 4-1

Example of a block:

 BEGIN INTEGER BUCKET;
 IF FLAG THEN
 BEGIN BUCKET := R0; R0 := R1; R1 := R2;
 R2 := BUCKET;
 END ELSE
 BEGIN BUCKET := R2; R2 := R1; R1 := R0;
 R0 := BUCKET;
 END
 RESET(FLAG);
 END

The addressing mechanism of the 360 computers is such that instructions
can indicate addresses only relative to a base address contained in a
register. The programmer must insure that

 1. every address in the program specifies a "base" register
 2. the specified register is loaded with the appropriate base
 address whenever an instruction whose address refers to it
 is executed
 3. the difference d between the desired absolute address and
 the available base address satisfies 0 <= d < 4096

This scheme not only increases the amount of 'clerical' work in
programming, but also constitutes a rich source of pitfalls. PL360 is
designed to ease the tedious task of base address assignment, and to
provide checking facilities against errors.

The solution adopted here is that of program segmentation. The program
is subdivided into individual parts, called segments. Every quantity
defined within the program is known by the number of the segment in
which it occurs and by its displacement relative to the origin of that
segment. The problem then consists of subdividing the program and
choosing base registers in such a way that

 a. the compiler knows which register is used as base for each
 compiled address
 b. the compiler can assure that each base register contains
 the desired base address during execution
 c. the number of times base addresses are reloaded into
 registers is reasonably small

It was decided [1] that the programmer should express explicitly which
parts of the program are to constitute segments. The program may then
be organized in a way that minimizes the number of cross-references
between segments.

It should be noted that a programmer's knowledge about segment sizes and
occurrences of cross-reference is quite different for programs than for
data. In the latter case the programmer is aware of the precise amount
of storage needed for the declared quantities, and knows precisely where
in the program references to a specific data segment occur. In the
former case, knowledge about the eventual size of a compiled program
section is only vague, and the programmer is sometimes unaware of the
occurrence of branch instructions implicit in certain constructs of the
language. It was therefore decided [1] to treat programs and data
differently; this decision also conformed with the desirability of
keeping program and data apart as separate entities.

 4-2

4.2 Program Segmentation

A program segment corresponds to a CSECT in assembly language. The
outermost block of a program is always compiled as a segment. Since by
its very nature control lies in exactly one segment at any instant, one
register is designated to hold the base address of the program segment
currently executing. Register R15 is usually used for this purpose
(however, cf. 8.1, 10.1.5). Branching to another segment is
accomplished with a procedure statement which causes the program segment
base register of the destination segment to be loaded with its base
address before branching into that segment (cf. 8.2).

The natural unit for a program segment is the procedure (cf. 8.1). The
normal way to enter a procedure is via a procedure statement (cf. 8.2),
and the normal way to leave it is at its end, or by a call to another
procedure which does not return. An explicit GOTO statement cannot be
used for branching from one segment to another, but may be used to
branch out of a local procedure within a segment. The fact that no
implicitly generated instructions can ever lead control outside of a
segment mimimizes the number of cross references in a natural way. Only
relatively large procedures should constitute program segments, and a
facility is provided to designate such procedures explicitly. A
procedure to be compiled as a program segment must contain the symbol
SEGMENT or GLOBAL in its heading.

4.3 Data Segmentation

For data, the programmer is aware of the precise amount of allocated
memory and of the instances where references are made to these
quantities. A base declaration was therefore introduced which implies
that all quantities declared thereafter within the same block and
preceding another base declaration, refer to the specified register as
their base. These quantities form a data segment. At the place of the
base declaration, an instruction is compiled which loads the register
with the appropriate segment address (except for dummy base declarations
and BASE R0); however, its previous contents are neither saved nor
restored upon exit from the block.

Data segments declared in parallel (i.e., not nested) blocks, can safely
refer to the same base register. Data segments declared within the same
block usually refer to different base registers. Data segments declared
within nested blocks should also refer to different base registers. If
they do not, it is the programmer's responsibility to ensure that the
register is appropriately loaded when a segment is addressed.

There is no limit to the size of data segments. All cell identifiers
must, however, refer to cells whose addresses differ from the segment
base address by less than 4096. If they do not, the compiler provides
an appropriate diagnostic.

 4-3

4.4 Main Program

A PL360 program which is a block is considered to be embedded in a
global procedure such as the following: (cf. 8.1)

 GLOBAL PROCEDURE SEGN001 (R14) BASE R15;
 BEGIN STM(R14,R12,B13(12)); R14 := R13;
 BEGIN GLOBAL DATA SEGN000 BASE R13;
 ARRAY 18 INTEGER B13;
 B13(4) := R14; B14(8) := R13;
 B14(16) := B14(16) XOR B14(16);

 BEGIN COMMENT Main program block;
 END;

 R13 := B13(4); LM(R14,R12,B13(12));
 END;
 END.

The 18 integer area is reserved to conform to procedure calling
conventions (cf. 9.1). If the PL360 program is a global procedure, there
is no implicit base declaration for the data area (cf. 4.3).

When a program is defined as a block, the compiler supplies a transfer
address for the linkage editor or loader [9], and provides the necessary
entry and exit code for linking with a standard operating system (cf.
10.1.3).

When a program is defined as a global procedure, no transfer address is
supplied, and all linkage code must be written by the programmer.

Both types of program are included in the sample programs of Appendix A.

 4-4

 SECTION 5. DECLARATIONS

5.1 Register Synonym Declarations

The System/360 processor has 16 registers which contain integer numbers
and are said to be of type integer (or logical). They are designated by
the standard register identifiers: R0 through R15 (cf. 2.2.3).

The processor also has four registers which contain real numbers or long
real numbers. If those registers are used in conjunction with real
numbers, they are said to be of type real, and are designated by the
standard register identifiers:

 F0, F2, F4, F6

If they are used in conjunction with long real numbers, they are said to
be of type long real, and are designated by the standard register
identifiers:

 F01, F23, F45, F67

The above register identifiers are assumed to be predeclared, and other
identifiers can be associated with these registers. Reference to
specific registers in the text apply to register synonyms also.

 <K-register synonym> ::=
 <simple K-type> REGISTER <identifier> SYN <K-register> !
 <K-register synonym> , <identifier> SYN <K-register>

5.2 Seqment Base Declarations

 <segment base declaration> ::=
 <segment base heading> BASE <integer register>
 <segment base heading> ::= SEGMENT ! GLOBAL DATA <identifier> !
 EXTERNAL DATA <identifier> ! COMMON DATA <identifier> !
 COMMON ! DUMMY
 <segment close declaration> ::= CLOSE BASE

A segment base declaration causes the compiler to use the specified
register as the base address for the cells subsequently declared in the
block in which the base declaration occurs. The segment is terminated
either by the END of the block or by the subsequent appearance of a
segment close declaration. Upon entrance to this block, the appropriate
base address is assigned to the specified base register except for the
dummy base declaration and base declarations that specify BASE R0 (cf.
4.3).

If the symbol DATA is preceded by any of the symbols GLOBAL, EXTERNAL or
COMMON, the corresponding identifier is associated with the data segment
to enable linking of segments in different PL360 programs [8,9,12].
Appearance of the symbol sequence COMMON BASE causes a blank
identification to be associated with the segment (cf. 10.4).

 5-1

Note: Dummy base declarations permit the description of data areas
which are created during the execution of the PL360 program. Any
integer register may be specified in a dummy base declaration. When R0
(or a synonym to R0) is specified in any base declaration, the
subsequent identifiers are understood to have displacements and no base
register (or index register).

5.3 Cell Declarations

 <simple byte type> ::= BYTE ! CHARACTER
 <simple short integer type> ::= SHORT INTEGER
 <simple integer type> ::= INTEGER ! LOGICAL
 <simple real type> ::= REAL
 <simple long real type> ::= LONG REAL
 <T-type> ::= <simple T-type> ! ARRAY <integer value><simple T-type>
 <T-cell declaration> ::= <T-type><item> ! <T-cell declaration>,<item>
 <item> ::= <identifier> ! <identifier> = <fill value>
 <fill value> ::= <T-value> ! <string> !
 @<procedure identifier> ! @@<procedure identifier> !
 @<T-cell designator> ! @@<T-cell identifier> !
 <repetition list><fill value>)
 <repetition list> ::= (! <integer value>(!
 <repetition list><fill value>,

A cell declaration introduces identifiers and associates them with cells
of a specified type belonging to the currently active base declaration
segment (cf. 4.3). The scope of validity of these cell identifiers is
the block in whose heading the declaration occurs (cf. 4.1). Moreover,
a declaration may specify the assignment of an initial value to the
introduced cell. This assignment is understood to have occurred before
execution of the program.

A cell may be initialized to numeric values, strings, relative or
absolute addresses. The number of bytes appropriate for the type of the
declared cell is taken for each (numeric) T-value. Strings are never
expanded or truncated; each character of the string occupies one byte,
initialization starting with the leftmost byte. A short integer or
integer type cell can be initialized to the relative address (i.e., base
register and displacement) corresponding to a T-cell identifier or to
the relative (entry point) address corresponding to a procedure
identifier by means of the @ operator. The @ operator also permits the
initialization of an integer type cell with the relative address (i.e.,
index register, base register and displacement) of a T-cell designator.
The @@ operator enables integer type cells to be initialized with
absolute addresses corresponding to T-cell identifiers or to the entry
point of procedure identifiers.

If a simple type is preceded by the symbol ARRAY and an integer value,
say n , then the declared cell is an array (ordered set) of n cells of
the specified simple type. An initial value list with m <= n entries
specifies the initial values of the first m elements of the array. A
list may be specified as a list of sublists. Repetition of a sequence
of elements may be specified by making the sequence into a list and
preceding it by an integer value, say k , specifying the number of times
the list is to be used. If no integer value precedes a list, it is used
once. Absolute addresses may not occur in lists where k > 1 . Integer
values n and k must be positive.

 5-2

Note: Boundary alignment is performed for a cell declaration (according
to the simple type) and not for each initializing value. Because
strings are never expanded or truncated, care is needed in initializing
with combinations of strings and other values.

Examples:
 BYTE flag
 SHORT INTEGER i,j,k = 10S,m = (5), baddr = @basepoint
 LONG REAL x,y,z = 27'3L
 ARRAY 3 INTEGER size = (36,23,37),parmlist = (@@a,@@b,@@erproc)
 ARRAY 132 BYTE blank = 132(" "),buff = 33(" ",2("*")," ")
 ARRAY fbsize LOGICAL area = fbsize(0)

5.4 Cell Designators

 <T-cell designator> ::= <T-cell identifier>
 ! <T-cell identifier> (<index> / <integer value expression>)
 ! <T-cell identifier> (<index>)
 <index> ::= <integer value expression>
 ! <integer register expression>
 ! <integer register expression> + <integer value expression>
 ! <integer register expression> - <integer value expression>
 <integer register expression> ::= <integer register>
 ! <integer register> + <integer register>
 <integer value expression> ::= <integer value>
 ! <integer value expression> + <integer value>
 ! <integer value expression> - <integer value>

Note: The second form of <T-cell designator> may be specified at any
time, but only has meaning for the first <T-cell designator> of

 <T-cell assignment> ::= <T-cell designator> := <T-cell value>
and
 <condition> ::= <T-cell designator> <relation> <T-cell value>

In these two cases, the integer value expression following the slash (/)
specifies the number of bytes to be moved or compared (cf. 6.3, 6.5).

Cells are denoted by cell designators. The designator for a particular
cell consists of the identifier associated with that cell, optionally
followed by an index or index/length. When an index is used, the
address of the designated cell is taken as the address associated with
the cell identifier plus the value of the index. If a length is to be
specified when no index is required, an index value of 0 must be
specified before the slash; e.g., cell(0/length).

Note: Register R0 or synonym (cf 5.1) must not be specified as an index
constituent. Depending upon the function with which the cell designator
is used and the declaration of the cell identifier, the index may have
0, 1 or 2 integer register constituents. If the cell identifier has no
base register associated with it, then the first integer register (if
any) in the index is understood to be the base register. If the cell
identifier has a base register associated with it, and the context
permits an index register, then an integer register in the index is
taken as an index register. If the identifier has no associated base
register and the context permits indexing, then two integer registers
may appear in the index and they are understood to be the base register
and index register, respectively.

 5-3

Examples:

 age B1(1)
 size(8) B14(R2)
 price(R1) MEM(R3+R7+8)
 line(R2+15) buff(R1+R4-2)
 val(0/20) status(R1/len-1)

5.5 Cell Synonym Declarations

 <T-cell synonym> ::=
 <T-type><identifier><synonymous cell> !
 <T-cell synonym> , <identifier><synonymous cell>
 <synonymous cell> ::= SYN <T-cell designator> ! SYN <integer value>

Cell synonyms serve to associate synonymous identifiers with previously
(i.e., preceding in the text) declared cells. The types associated with
the synonymous cell identifiers need not necessarily agree.

If a synonymous cell is specified by an integer value, then that integer
value represents the displacement (and possibly the base register and
index register) part of the cell's machine address.

Examples: INTEGER a16 SYN a(16)
 ARRAY 32768 SHORT INTEGER memory SYN 0
 INTEGER timer SYN #50

The following example defines the standard integer identifiers:

 INTEGER MEM SYN 0, B5 SYN MEM(R5), B10 SYN MEM(R10),
 B1 SYN MEM(R1), B6 SYN MEM(R6), B11 SYN MEM(R11),
 B2 SYN MEM(R2), B7 SYN MEM(R7), B12 SYN MEM(R12),
 B3 SYN MEM(R3), B8 SYN MEM(R8), B13 SYN MEM(R13),
 B4 SYN MEM(R4), B9 SYN MEM(R9), B14 SYN MEM(R14),
 B15 SYN MEM(R15),

Note: The synonym declaration can be used to associate several
different types with a single cell. Each type is connected with a
distinct identifier.

Example: LONG REAL x = #4E0000000000000L
 INTEGER xlow SYN x(4)

A conversion operation from a number of type integer contained in
register R0 to a number of type long real contained in register F01 can
now be denoted by

 xlow := R0; F01 := F01 - F01 + x;

and a conversion vice-versa by

 F01 := F01 ++ #4E00000000000000L; x := F01; R0 := xlow;

No initialization can be achieved by a synonym declaration.

 5-4

5.6 EQUATE Declarations

 <integer value synonym> ::=
 EQUATE <identifier><synonymous integer value> !
 EQUATE <identifier> SYN <string> !
 EQUATE <identifier> SYN <register name> !
 <integer value synonym>,<identifier><synonymous integer value>
 <synonymous integer value> ::= SYN <integer value> !
 SYN <syn cell value> ! SYN <monadic operator><integer value> !
 <synonymous integer value><arithmetic operator><integer value> !
 <synonymous integer value><logical operator><integer value> !
 <synonymous integer value><shift operator><integer value>
 <syn cell value> ::= <T-cell designator> - <T-cell designator>

Integer value synonyms serve to associate identifiers with integer
values. These integer values are computed at the time the declaration
is parsed and the identifiers thus associated can subsequently be used
as integer values (cf. 2.2.1, 3.3). When the difference of two cell
designators is specified, the cell identifiers must both have the same
base register (cf. 5.2). The difference between their relative
locations within the segment is taken as the associated integer value.
The cell designators must not use index registers. The scope of
validity of these integer synonyms is the block in whose heading the
declaration occurs (cf. 4.1).

See sections 6.1 and 6.2 for definitions of monadic, arithmetic, logical
and shift operators.

Examples: EQUATE a SYN 200, b SYN a+8, c SYN 4
 EQUATE d SYN a/c AND _4
 ARRAY b BYTE x, y
 EQUATE e SYN y-x, f SYN e-c SHLL 2

Note: a = 200, b = 208, c = 4, d = 48, e = 208, f = 816

 5-5

 SECTION 6. STATEMENTS

6.1 Register Assignments

 <T-primary> ::= <T-value> ! <T-cell designator>
 <K-primary> ::= <K-register>

A primary is either a value or the contents of a designated cell or
register.

 <simple K-register assignment> ::=
 <K-register> := <A-primary> !
 <K-register> := <monadic operator><A-primary> !
 <integer register> := <string> !
 <integer register> := @ <T-cell designator> !
 <integer register> := @ <procedure identifier>

A simple register assignment is said to specify the register appearing
to the left of the assignment operator (:=). To this register is
assigned the value designated by the construct to the right of the
assignment symbol. That designated value may be obtained through
execution of a monadic operation specified by a monadic operator.

 <monadic operator> ::= ABS ! NEG ! NEG ABS

The monadic operations are taking the absolute value, sign inversion,
and sign inversion after taking the absolute value.

If a string is assigned to a register, that string must consist of not
more than four characters. If it consists of fewer than four
characters, null characters (#00X) are appended at the left of the
string. The bit representation of characters is defined in EBCDIC
[4,5,6].

The construction with the symbol @ is used to assign to the specified
register the address of the designated cell or the entry point address
of the procedure.

The legal combinations of types to be substituted respectively for the
letters K and A in preceding and subsequent rules of this section are
given in Table 6.1.

 K A
 integer integer
 integer short integer
 real real
 long real real
 long real long real

 Table 6.1 - Allowable Cell and Register Type Combinations

Examples of simple register assignments:

 R0 := i R2 := "xyz"
 R2 := R10 F45 := NEG F01
 R6 := age R13 := ABS height
 F0 := quant(R1)

 6-1

6.2 Register Assignment Expressions

 <K-register assignment> ::= <simple K-register assignment>
 ! <K-register assignment> <arithmetic operator> <A-primary>
 ! <K-register assignment> =: <K-register>
 ! <K-register assignment> =: <A-cell designator>
 ! <integer register assignment> <logical operator> <integer primary>
 ! <integer register assignment> <shift operator> <integer value>
 ! <integer register assignment> <shift operator> <integer register>

 <arithmetic operator> ::= + ! - ! * ! / ! ++ ! --
 <logical operator> ::= AND ! OR ! XOR
 <shift operator> ::= SHLL ! SHLA ! SHRL ! SHRA

A register assignment is said to specify the same register which is
specified by the simple register assignment or the register assignment
from which it is derived. To this register is assigned the value
obtained by applying a dyadic operator to the current value of that
specified register and the value of the primary following the operator.
The operations are the arithmetic operations of addition (+) ,
subtraction (-) , multiplication (*) , and division (/) , the logical
operations of conjunction (AND), exclusive and inclusive disjunction
(XOR, OR), and those of shifting to the left and right, as implemented
in the System/360. The operators ++ and -- denote logical or
unnormalized addition and subtraction when applied to integer or
real/long real registers respectively. When an integer value is
specified following a shift operator, it must be nonnegative and less
than 31. The reverse-assignment operator (=:) specifies that the
contents of the assigned register are to be stored in the register or
cell following the operator.

Examples of register assignments:

 R0 := R3
 R1 := 10 * x =: x
 R10 := i + age - R3 AND size(8)
 R9 := R8 AND R7 SHLL 8 OR R6
 F2 := 3.1416
 F0 := quant(R1) * price(R1)
 F45 := F23 + F01

Note: 1. The syntax implies that sequences of operators, including
 assignment, are executed strictly from left to right. Thus
 R1 := R2 + R1
 is not equivalent to
 R1 := R1 + R2
 but rather to the two statements
 R1 := R2; R1 := R1 + R1 .
 This single aspect of PL360 provides many pitfalls for
 beginners.

 2. Multiplication and division with integer operands can only be
 specified with a multiplicand or dividend register Rn, where n
 is odd. The register Rm with m = n-1 is then used to hold the
 extension to the left of the product and dividend
 respectively. In the case of division, register Rm will be
 assigned the resulting remainder.

 6-2

 Examples: R3 := x * y +z
 R2 is affected by the multiplication.
 R5 := B1/15
 R4 participates in the division and contains the
 remainder.

6.3 Cell Assignments

 <T-cell assignment> ::= <A-cell designator> := <K-register>
 ! <T-cell designator> := <T-cell value>
 ! <T-cell assignment> <logical operator> <T-cell value>
 <T-cell value> ::= <T-cell designator>
 ! <T-value>
 ! <string>

In the first assignment, the value in the K-register is assigned to the
designated A-cell. The allowable combinations of cell and register
types are indicated in Table 6.1. Cells may be indexed.

In the second assignment, the T-cell, T-value or string is assigned to
the designated T-cell. The third form is a logical assignment
expression in which the assigned cell is logically combined with the
specified T-cell, T-value or string. Cell designations must not include
an index register (cf. 5.4). For cell to cell, the cell types must be
identical or the assigned cell must include a length specification (cf.
5.4). For string to cell, the entire string is moved to or logically
combined with the assigned cell regardless of cell type when a length is
not specified, or the shorter of the string length or specified length
is used. For value to cell, the allowable combinations of cell and
value are indicated in the following table:

Note: Length specifications should not be used for value to cell.

 T-cell T-value
 long real long real
 real real, integer
 integer integer, real
 short integer integer*, short integer
 byte integer*, short integer*, byte

 Table 6.2 - Allowable Cell and Value Combinations

 * unused portions of the T-value must
 be all 0 or all 1 bits (sign).

Examples of cell assignments: i := R0
 price(R1) := F0
 x := F67
 price(R1) := price(R2)
 y := 30
 j := "A"
 z(0/5) := z XOR z(5)

 6-3

6.4 GOTO Statements and Labels

 <GOTO statement> ::= GOTO <identifier>

The interpretation of a GOTO statement proceeds with the following steps:

 1. Consider the innermost block containing the GOTO statement.
 2. If the identifier designates a program point within the
 considered block, then program execution resumes at that
 point.
 3. Otherwise, execution of the block is regarded as terminated
 and the innermost block surrounding it is considered.
 4. If this block is in the same program segment as the
 previous blocks, then step 2 is repeated.
 5. Otherwise, the identifier is undefined (cf. 4.2).

Label definitions serve to label points in a block. The identifier of
the label definition is said to designate the point in the block where
the label definition occurs. GOTO statements may refer to such points
(cf. 4.1). The identifier can be chosen freely, with the restriction
that no two points in the same block may be designated by the same
identifier.

6.5 Conditions and Compound Conditions

 <condition> ::= <T-cell designator> <relation> <T-cell value>
 ! <byte cell designator>
 ! ^ <byte cell designator>
 ! <K-register> <relation> <A-primary>
 ! <integer register> <relation> <string>
 ! <relation>
 ! <integer value>
 ! ^ <integer value>
 <relation> ::= = ! ^= ! < ! <= ! >= ! >

A condition is said to be met or not met. In the first condition, the
T-cell preceding the relation is compared to the T-cell, T-value, or
string specified after the relation. The comparison is logical
(unsigned). The condition is met if the specified relation holds
between the values of the compared quantities. The same restrictions
apply regarding combinations allowable as apply to the second form of
T-cell assignment (cf. Table 6.2). A condition specified as a byte
cell (or a byte cell preceded by ^) is met if the value of the byte
cell is #FF (or not #FF). The condition consisting of a relation
enclosed by a register and a primary is met if the specified relation
holds between the current values of the register and the primary. When
an integer register is compared to a string, the comparison is logical
(unsigned), and the string must consist of not more than four
characters. If it consists of fewer than four characters, the string is
right justified and null characters (#00X) are prefixed at the left to
form a four character string. The condition is met if the specified
relation holds between the register and the string. A condition
consisting of only a relation is met if the condition code of the
processor (cf. 2.1.1) is in a state specified by the symbols of Table
6.3 on the following page. A condition consisting of an integer value
(or an integer value preceded by ^) is met if the condition code of the
processor is in a state (or not in a state) specified by summing the
integer components from Table 6.3 to arrive at the specified integer

 6-4

value. Table 6.3 also contains predeclared integer value identifiers
which may be used as specified (or preceded by ^ to obtain all states
except the specified state).

 <compound condition> ::= <combined condition>
 ! <alternative condition>
 <combined condition> ::= <stat condition>
 ! <combined condition> AND <stat condition>
 <alternative condition> ::= <stat condition>
 ! <alternative condition> OR <stat condition>
 <stat condition> ::= <condition>
 ! <statement> ; <condition>

A compound condition is either of the form c1 AND c2 AND c3 ... AND cn
which is said to be met, if and only if all the constituent conditions
are met, or of the form c1 OR c2 OR c3 ... OR cn which is said to be
met, if and only if at least one of the constituent conditions is met.
Note that each condition may be prefaced by a statement and semi-colon.
In such a case, the statement is done before the associated condition is
tested.
 __
 ! identifier ! state !
 ! ! !
 ! overflow ! 3 !
 ! ! !
 ! on ! 3 !
 ! ! !
 ! off ! 0 !
 ! ! !
 ! mixed ! 1 !
 ! ! !
 ! carry ! 1 !
 ! ! !
 ! integer component ! state !
 ! ! !
 ! 8 ! 0 !
 ! ! !
 ! 4 ! 1 !
 ! ! !
 ! 2 ! 2 !
 ! ! !
 ! 1 ! 3 !
 ! ! !
 ! symbol ! state !
 ! ! !
 ! = ! 0 !
 ! ! !
 ! ^ = ! 1 or 2 !
 ! ! !
 ! < ! 1 !
 ! ! !
 ! < = ! 0 or 1 !
 ! ! !
 ! > = ! 0 or 2 !
 ! ! !
 ! > ! 2 !
 ! ! !

 Table 6.3 - Condition Code States

 6-5

6.6 IF Statements

 <IF statement> ::= <if clause> <statement>
 ! <if clause> <true part> <statement>
 <if clause> ::= IF <compound condition> THEN
 <true part> ::= <simple statement> ELSE

The IF statement specifies the conditional execution of statements:

 <if clause> <statement>

The statement is executed, if and only if the compound condition of the
clause is met.

 <if clause> <true part> <statement>

The simple statement of the true part is executed and the statement is
skipped, if and only if the compound condition of the if clause is met.
Otherwise the true part is skipped and the statement is executed. A
simple statement is any statement except an IF, WHILE or FOR statement.

Examples: IF R0 < 10 THEN R1 := 1
 IF F2 > _3.75 AND F2 < 3.75 THEN F0 := F2 ELSE F0 := 0R
 IF < THEN SET(flags(1)) ELSE SET(flags(2))

Note: If the condition consists of just a relation or integer value,
then the decision is made on the basis of the condition code as
determined by a previous instructions.

Examples: EX(R1,CLC(0,B2,B3)); IF = THEN ...
 IF TM(#80,flags); ON THEN ...

6.7 WHILE Statements

 <WHILE statement> ::= <while clause><statement>
 <while clause> ::= WHILE <compound condition> DO

The WHILE statement denotes the repeated execution of a statement as
long as the compound condition in the while clause is met.

Examples: WHILE F0 < prize(R1) DO R1 := R1 + 4
 WHILE R0 < 10 DO
 BEGIN R0 := R0 + 1; F01 := F01 * F01; F23 := F23 * F01;
 END

 6-6

6.8 FOR Statements

 <FOR statement> ::= <for clause><statement>
 <for clause> ::= FOR <integer register assignment> STEP <increment>
 UNTIL <limit> DO
 <increment> ::= <integer value>
 <limit> ::= <integer primary> ! <short integer primary>

The FOR statement specifies the repeated execution of a statement, while
the content of the integer register specified by the assignment in the
for clause takes on the values of an arithmetic progression. That
register is called the control register. The execution of a FOR
statement occurs in the following steps:

 1. the register assignment in the for clause is executed;
 2. if the increment is not negative (negative), then if the
 value of the control register is not greater (not less)
 than the limit, the process continues with step 3;
 otherwise the execution of the FOR statement is terminated;
 3. the statement following the for clause is executed;
 4. the increment is added to the control register, and the
 process resumes with step 2.

Examples: FOR R1 := 0 STEP 1 UNTIL n DO STC(R1,lines(R1))
 FOR R2 := R1 STEP 4 UNTIL R0 DO
 BEGIN F23 := quant(R2) * price(R2);
 F01 := F01 + F23;
 END

6.9 CASE Statements

 <CASE statement> ::= <case sequence> END
 <case sequence> ::= <case clause> BEGIN !
 <case sequence><statement> ;
 <case clause> ::= CASE <integer register> OF

CASE statements permit the selection of one of a sequence of statements
according to the current value of the integer register (other than
register R0) specified in the case clause. The statement whose ordinal
number (starting with 1) is equal to the register value is selected for
execution, and the other statements in the sequence are ignored. The
value of that register is thereby modified.

Example: CASE R1 OF
 BEGIN COMMENT interpretation of instruction code R1;
 F01 := F01 + F23;
 F01 := F01 - F23;
 F01 := F01 * F23;
 F01 := F01 / F23;
 F01 := NEG F01;
 F01 := ABS F01;
 END

 6-7

 SECTION 7. FUNCTIONS

7.1 Function Declarations

 <function declaration> ::= FUNCTION <function definition> !
 <function declaration> , <function definition>
 <function definition> ::=
 <identifier> (<format code> , <instruction code>)
 <instruction code> ::= <integer value>
 <format code> ::= <integer value>

Various data manipulation facilities in the 360 computer cannot be
expressed by an assignment. To make these facilities available in the
language, the function statement is introduced (cf. 7.2), using an
identifier to designate an individual computer instruction. The
function declaration serves to associate this identifier, which thereby
becomes a function identifier, with the desired computer instruction
code, and to define the instruction fields which correspond from left to
right to the parameters given in function statements. The format code
defines the format of the instruction according to Table 7.1 on the
following page. The last two bytes of the instruction code define the
first two bytes of the instruction. The following example defines the
standard function identifiers, which apart from TEST, SET and RESET,
were derived from the symbolic machine code used in assembly language
[7].

FUNCTION BALR(1,#0500), MVI(4,#9200), SRDL(9,#8C00),
 CLC(13,#D500), MVN(5,#D100), STC(12,#4200),
 CLI(4,#9500), MVZ(5,#D300), STH(12,#4000),
 CVB(12,#4F00), NC(5,#D400), STM(3,#9000),
 CVD(12,#4E00), NI(4,#9400), SVC(7,#0A00),
 ED(5,#DE00), OC(5,#D600), TEST(8,#95FF),
 EDMK(5,#DF00), OI(4,#9600), TM(4,#9100),
 EX(2,#4400), PACK(10,#F200), TR(5,#DC00),
 IC(2,#4300), RESET(8,#9200), TRT(5,#DD00),
 LA(2,#4100), SET(8,#92FF), TS(8,#9300),
 LH(12,#4800), SLDA(9,#8F00), UNPK(10,#F300),
 LM(3,#9800), SLDL(9,#8D00), XC(5,#D700),
 LTR(1,#1200), SPM(6,#0400), XI(4,#9700),
 MVC(5,#D200), SRDA(9,#8E00)

7.2 Function Statements

 <function designator> ::= <function identifier> !
 <function identifier> (<parameter list>)
 <parameter list> ::= <parameter> ! <parameter list> , <parameter>
 <parameter> ::= <T-value> ! <string> ! <K-register> !
 <T-cell designator> ! <function designator>

If a function designator is used as a parameter, the first function
identifier must correspond to an execute instruction. That is, the
first byte of the instruction code must have the value #44X. An example
is the predeclared identifier EX (cf. 7.1).

 7-1

Examples:
 SET(flag) STM(R0,R15,save)
 RESET(flag) SVC(255)
 LA(R1,"message") IC(R0,flags(R1))
 UNPK(3,7,B2,worker) EX(R1,MVC(0,lines,buffer))

 Format Number of Instruction Fields
 Code Parameters 0 8 16 32 48

 0 0 ! !

 1 2 ! !R!R!

 2 2 ! !R! LC !

 3 3 ! !R!R! C !

 4 2 ! !ICS! C !

 5 3 ! !ICS! C ! LC !

 6 1 ! !R! !

 7 1 ! !ICS!

 8 1 ! ! C !

 9 2 ! !R! ! IC !

 10 4 ! !I!I! C ! LC !

 11 2 ! !R! ICS !

 12 2 ! !R! C !

 13 3 ! !ICS! LC ! LC !

 14 2 ! ! C ! LC !

 15 1 ! ! LC !

 Field Definition Codes:
 R = K-register
 C = T-cell identifier (or designator in the 20-bit field) address
 I = Integer value (the value is used directly
 S = String in the instruction field)
 L = T-value or string or function designator (the address of the
 value is used in the instruction field)

 Table 7.1 - Instruction Format

 7-2

 SECTION 8. PROCEDURES

8.1 Procedure Declarations

 <procedure declaration> ::= <procedure heading> ; <statement>
 <procedure heading> ::= <simple procedure heading> !
 COMMON <simple procedure heading> !
 <separate procedure heading> !
 <separate procedure heading> BASE <integer register>
 <separate procedure heading> ::=
 SEGMENT <simple procedure heading> !
 GLOBAL <simple procedure heading> !
 EXTERNAL <simple procedure heading>
 <simple procedure heading> ::=
 PROCEDURE <identifier> (<integer register>)

A procedure declaration serves to associate an identifier, which thereby
becomes a procedure identifier, with a statement (cf. 4.1) which is
called a procedure body. This identifier can then be used as an
abbreviation for the procedure body anywhere within the scope of the
declaration. When the procedure is invoked, the register specified in
parentheses in the procedure heading is assigned the return address of
the invoking procedure statement. This register must not be R0.

If the symbol PROCEDURE is preceded by the symbol SEGMENT, GLOBAL, or
EXTERNAL, the procedure body is compiled as a separate program segment.
If the symbol is GLOBAL or EXTERNAL, the corresponding identifier is
associated with the procedure segment to enable linking of segments in
possibly different PL360 programs [8,9,12]. These symbols have no other
influence on the meaning of the program with the exception of
restricting the scope of GOTO statements (cf. 4.2, 6.4 and 10.4). If a
base register is specified in the procedure heading, the procedure body
is compiled using the specified register for the program segment base
register (cf. 4.2); otherwise, the current program base register is
used (usually this is R15, however, cf. 10.1.5). This register must
not be R0. When the procedure is invoked, the specified (or assumed)
base register is assigned the entry point address.

The instructions associated with the statement of both a simple
PROCEDURE and COMMON PROCEDURE are local to the program segment
containing these procedure declarations. However, a COMMON PROCEDURE
also declares the procedure identifier as an additional entry point to
the program segment. Such entry points are normally called upon from
separately compiled programs through an EXTERNAL PROCEDURE declaration.

Examples:
 PROCEDURE NEXTCHAR(R3);
 BEGIN IF R5 < 71 THEN R5 := R5 + 1 ELSE
 BEGIN R0 := @CARDS; READ; R5 := R5--R5;
 END;
 IC(R0,CARD(R5));
 END

 8-1

 PROCEDURE SLOWSORT (R4);
 FOR R1 := 0 STEP 4 UNTIL N DO
 BEGIN R0 := A(R1);
 FOR R2 := R1 + 4 STEP 4 UNTIL N DO
 IF R0 < A(R2) THEN BEGIN R0 := A(R2); R3 := R2; END;
 R2 := A(R1); A(R1) := R0; A(R3) := R2;
 END

 EXTERNAL PROCEDURE SEARCHDISK (R14) BASE R12; NULL;

Note: The code corresponding to a procedure body is terminated by a
branch-on-register instruction specifying the register designated in
parenthesis in the procedure heading. A procedure statement places a
return address in this register when invoking the procedure. In order
to return properly, the programmer must either not change the contents
of that register, or explicitly save and restore its contents during the
execution of the procedure.

8.2 Procedure Statements

 <procedure statement> ::= <procedure identifier> !
 <procedure identifier> (<integer register>)

The procedure statement invokes the execution of the procedure body
designated by the procedure identifier. A return address is assigned to
the register specified in the heading of the designated procedure
declaration. If an integer register is specified in the procedure
statement, on return from the procedure the contents of the invoked
procedure's program base register (usually R15) are transferred to the
specified integer register and the condition code is set by the
transfer. This facilitates the convention of passing return codes in
the invoked procedure's program base register (usually R15, cf. 8.1,
10.1.5).

 8-2

 SECTION 9. THE RUN-TIME LIBRARY

This section describes a set of global procedures written in PL360 which
perform commonly needed tasks. These subroutines are predeclared as
external procedures in the PL360 compiler. In all cases, the procedure
linkage is done with register R14, and R15 should contain the address of
the entry point upon entry. At Stanford, the linkage editor
automatically adds the required subroutines if you are using the
cataloged procedure PL360CG.

9.1 Standard Procedures

A set of standard procedures is defined for elementary unit record input
and output operations (the first set below), for elementary disk and
tape input and output operations using sequential files (the second
set), and for ease in communicating with the operating system (the
last). The implicit procedure declarations are as follow:

 EXTERNAL PROCEDURE READ (R14) BASE R15; NULL;
 EXTERNAL PROCEDURE WRITE (R14) BASE R15; NULL;
 EXTERNAL PROCEDURE PAGE (R14) BASE R15; NULL;
 EXTERNAL PROCEDURE PUNCH (R14) BASE R15; NULL;
 EXTERNAL PROCEDURE PRINT (R14) BASE R15; NULL;

 EXTERNAL PROCEDURE OPEN(R14) BASE R15; NULL;
 EXTERNAL PROCEDURE GET(R14) BASE R15; NULL;
 EXTERNAL PROCEDURE PUT(R14) BASE R15; NULL;
 EXTERNAL PROCEDURE KLOSE(R14) BASE R15; NULL;

 EXTERNAL PROCEDURE CANCEL(R14) BASE R15; NULL;

Suitable externally compiled or assembled routines must be provided in
the link/loading process; the specifications of these routines are:

 READ Read an 80 character record from the system input data set and
 assign that record to the memory area designated by the
 address in register R0. Set the condition code to 2 if no
 record could be returned due to an end of file condition;
 otherwise, to 0. (ABEND 95 or 96)
 WRITE Write a 133 character record to the system listing data set.
 A 132 character record is taken from the memory area
 designated by the address in register R0 and prefixed by an
 appropriate carriage control character. A control character
 indicating a new page is used after 60 lines have been written
 on a page, otherwise a control character indicating the next
 line is used. The first line is written on a new page.
 (ABEND 95)
 PAGE Give the next output record transmitted by a WRITE to the
 system listing data set a control character indicating a new
 page.
 PUNCH Write the 80 character record designated by the address in
 register R0 to the system punch data set. (ABEND 95)
 PRINT Write the 133 character record designated by the address in
 register R0 to the system listing data set. The calling
 program provides a USASI control character as the first
 character. (ABEND 95)

 9-1

 OPEN At entry, register R0 must be 0 if the file is to be an output
 file or 1 if the file is to be an input file. Register R2
 must contain the address of an 8-byte area containing a unique
 file name. (This is taken as the ddname in an OS environment
 and as the symbolic file name in a DOS environment.) In an OS
 environment, register R1 must contain the address of a
 100-byte full word-aligned area which, following the open,
 will contain the data control block. In a DOS environment,
 register R1 must contain the address of a separately assembled
 DTF table which describes the file. The file is made ready
 for input/output operations. All registers are restored.
 (ABEND 97)
 GET At entry, register R1 must contain the address of a table
 which describes the file. (In an OS environment this table is
 called the data control block and in a DOS environment it is
 called the DFT table.) Upon return, register R1 contains the
 address of the next logical record in the file. (The first
 call of GET returns with the address of the first logical
 record.) When an end-of-file is reached, the condition code is
 set to 2; normally it is set to 0. All registers, except R1,
 are restored.
 PUT At entry, register R1 must contain the address of a table
 which describes the file. Upon return, register R1 contains
 the address of an area in which the next logical record to be
 output is to be built. All other registers are restored.
 KLOSE At entry, register R1 must contain the address of a table
 which describes the file. The corresponding file is closed
 and no further input-output operations can be performed with
 it unless it is opened again. In an OS environment, the
 contents of register R0 denoted by (R0) is also an input
 parameter to this subroutine: if (R0) = 0 , the DISP option
 of the DD statement is used to determine final volume
 positioning; if (R0) <= 0 , the volume is positioned at the
 end of the data set. If (R0) > 0 , the volume is positioned
 at the beginning of the data set. All registers are restored.

 CANCEL The job, including all future job steps, is cancelled.

All of these procedures assume that register R13 contains the address of
an 18 word save area (cf. 4.4) and all registers are restored before
return. Each of the data sets is opened upon initial reference and is
closed by the operating system at the end of a job step.

9.2 Number Conversion Procedures

The two subroutines described below are used to convert the EBCDIC
representation of a number into an internal representation of that
number, or vice-versa. A slightly more conventional number
representation is used by these routines than that of the PL360 language
(cf. 3). The numbers must satisfy the following syntax:

 9-2

 <long complex number> ::= <long real number> + <imaginary number> L
 <complex number> ::= <real number> + <imaginary number>
 <imaginary number> ::= <real number> I ! <integer number> I
 <long real number> ::= <real number> L ! <integer number> L
 <real number> ::= <unscaled real> ! <unscaled real> <scale factor> !
 <integer number> <scale factor> ! <scale factor>
 <unscaled real> ::= <integer number> . <integer number> !
 . <integer number> ! <integer number> .
 <scale factor> ::= ' <integer number> ! ' <sign> <integer number>
 <integer number> ::= <digit> ! <integer number> <digit>
 <sign> ::= + ! -

Numbers are interpreted according to the conventional decimal notation.
A scale factor denotes an integral power of 10 which is multiplied by
the unscaled real or integer number preceding it. A number can have no
imbedded blanks and must be terminated by a blank. These procedures are
predeclared in a manner similar to those described in Section 9.1.

The parameter passing conventions for the two conversion subroutines are
as follows:

VALTOBCD This procedure converts an internally stored value to an EBCDIC
 representation. At entry,

 R1 contains the address of an area to receive the EBCDIC
 representation.
 R2 indicates the type:
 1 = integer
 2 = real
 3 = long real
 4 = complex
 5 = long complex
 R3 contains the field length (>= 1)

 The value to be converted is in R0, F0, F01, F0 and F2, or F01
 and F23, depending on the type (in that order).

 A return code is left in R15:
 0 -> successful conversion
 1 -> field size too small
 2 -> invalid field size
 When the field size is too small to receive the value, the
 field is filled with stars (*).

 All registers, except R14 and R15, are preserved.

BCDTOVAL This procedure converts an EBCDIC representation of a number to
 an internal number. At entry,

 R1 contains the address of the EBCDIC representation (possibly
 preceded by blanks)
 R2 indicates type (see VALTOBCD)

 The resulting value is left in R0, F0, F01, F0 and F2, or F01
 and F23, depending upon the type.

 9-3

 A return code is left in R15:
 0 -> successful scan
 1 -> invalid character in input string
 2 -> missing "I" on imaginary part
 3 -> nonblank terminator
 4 -> number scanned is not assignment compatible
 (e.g., a decimal point is found when R2 = 1)
 5 -> integer too large

 Upon exit, R1 contains the address of the terminator.
 Registers R2-R13 are restored.

9.3 Data Manipulation Procedures

The first procedure described in this section does an in-core indirect
sort using logical comparisons. The second companion routine searches a
sorted list for a specified element. Neither procedure is predeclared.

SHELSORT This procedure sorts character data. The Shell Sort technique
 is used. At entry, registers R0-R3 must be set as follow:

 R0 = the number of items to sort
 R1 = the address of the index array
 R2 = the number of the first byte of the key in each
 record on which the sort is to be done (R2 >= 1)
 R3 = the number of bytes in the key on which the sort
 is to be done

 The index array is a list of 4-byte integers containing the
 address of the items to be sorted. The actual sort is done on
 the elements of the index array and not the records themselves.
 That is, only the order of the elements of the index array is
 modified by the procedure. All registers, except R14, are
 restored.

BISEARCH This procedure locates an element in a sorted list. At entry,
 registers R0-R4 must be set as follow:

 R0 = the number of entries in the sorted table
 R1 = the address of the index array (see SHELSORT)
 R2 = the number of the first byte of the key field in
 the records
 R3 = the number of bytes in each key field
 R4 = the address of the key for which you are looking

 At exit, R1 contains the address of an element in the index
 array that points to a record that contains the desired key.
 If no match is found, R1 = 0.

 All registers, except R1 and R14, are preserved.

 9-4

 SECTION 10. COMPILER CONTROL FACILITY

10.1 Instructions to the Compiler

The compiler accepts instructions inserted anywhere in the sequence of
input records. These instructions affect subsequent records. A
compiler instruction record is marked by the character '$' in column 1
and an instruction in columns 2-72.

10.1.1 Listing Control

$LIST List source records (initial option).

$NOLIST Do not list source records.

$PAGE Start a new page with the next listing record.

$TITLE Start a new page with the next listing record, and use the
 contents of columns 10 through 62 as the title for that and
 subsequent pages.

$STITLE This directive provides a sub-title line. The sub-title will
 remain in effect until the next $TITLE or $STITLE card.
 $STITLE cards may change the sub-title without affecting the
 main $TITLE. $STITLE also causes a page eject.

$SPACE # This directive allows the user to line space a listing by #
 lines where # is a number from 1 to 99. If # is blank, then a
 single line space is assumed. If the number of lines remaining
 on the page is less than #, then a page eject is done instead
 of line spacing.

$EJECT This directive is equivalent to $PAGE.

$ON This directive enables the printing of all $-control cards
 except $TITLE, $STITLE, $EJECT, $PAGE, and $SPACE.

$OFF This directive disables the printing of all $-control cards.
 This is the default condition at the start of compilation.

10.1.2 Listing Options

$XREF All subsequent instances of identifiers are listed in an
 alphabetical cross-reference listing together with the line
 numbers at which they are defined or referenced in the source
 program. The cross-reference listing follows the program
 listing if $LIST is in effect at the end of the program. If
 there is not enough free storage to allocate the cross-
 reference tables, the $XREF instruction is ignored. The
 cross-reference listing will be single spaced unless $XREF 2 is
 specified to double space the listing.

$NOXREF This causes the previous option to be turned off (initial
 option). Any accumulated cross-references will be listed
 following the program as described above for $XREF.

 10-1

$0 Print a summary line at the close of each segment (initial
 option).

$1 Print a summary line and list of external symbol dictionary
 entries at the close of each segment.

$2 List the declared identifiers and associated value as each is
 declared, as well as the information specified in $1.

$3 List the object text in hexadecimal notation at the close of
 each segment, as well as the information specified in $2.

10.1.3 Operating System Control

$OS Subsequent PL360 programs which are statements are compiled
 with entry and exit instruction sequences conforming to the
 program-calling conventions of an OS environment. This is a
 default option when the compiler is used with the OS interface.

$DOS Subsequent PL360 programs which are statements are compiled
 with entry and exit instruction sequences which conform to the
 program calling conventions of a DOS environment. This is the
 default option when the compiler is used with the DOS
 interface.

10.1.4 Identification

$XYY# This directive must precede the first non-control card. All
 compiler generated segment names will commence with XYY rather
 than SEG, and all object deck cards are identified by XYY in
 columns 73 through 75 followed by the letter N and a four digit
 number. X signifies any alphabetic and Y any alphanumeric
 characters. (cf. 10.4).

10.1.5 Program Base Register Control

$BASE=xx This directive must precede the first non-control card.
 Program segments following this directive are compiled with xx
 taken as the program base register. This includes main
 programs, global procedures, segment procedures, and external
 procedures (which do not specify BASE). Procedure calls to
 such segments automatically set the specified base register to
 the entry point address. The decimal number xx must be between
 01 and 15 . Programs which are statements must not be compiled
 with base registers 13 or 14. The initial option is xx=15, and
 all predeclared external procedure declarations always have
 base register R15. It is recommended that this compiler
 directive only be used for programs which make use of SVC
 instructions that do not preserve the contents of register R15.

 10-2

10.1.6 Object Deck Control

$GEN If this directive precedes the first error detected (if any),
 then object decks are still produced if any have been
 requested. Otherwise object decks are suppressed after
 encountering an error.

$NOGO Compile, but suppress the GO step.

10.1.7 Copy Facility

$COPY ddname
$COPY ddname(member)
 These control cards specify that a sequential data set or
 member of a partitioned data set is to be copied into the
 compilation. The compiler temporarily suspends input from the
 standard input medium and continues compilation with the data
 set defined by the $COPY control card. When end-of-information
 is encountered on that data set, compilation continues from the
 standard input with the card image immediately following the
 $COPY control card. Note: $COPY is ignored in the data set
 being copied, i.e., $COPY may not nest. As many $COPY control
 cards as desired may occur in the standard input. When
 compiling under ORVYL, ddname or member is assumed to be the
 ORVYL data set name. An account number may follow to indicate
 a data set belonging to a different account.

10.1.8 Conditional Compile Directives

At the start of compilation of each program (cf. 4.1), an array of
flags is reset by the compiler. The following directives use this
array. The array flags are specified by individual characters in the
directives, and any characters may be used, including blank. Upper and
lowercase characters are considered equivalent. The directives must be
in uppercase in columns 1 through 4 on the control card.

$SET a where 'a' is any character in column 6.
 This directive sets the 'a' flag.

$IFT a b where 'a' is any character in column 6, and 'b' is any char-
$IFF a b acter in column 8.
 These directives examine the 'a' flag. If the 'a' flag is
 set for $IFT, or reset for $IFF, this directive takes no
 action and compilation continues normally.

 If the 'a' flag is reset for $IFT, or set for $IFF, the
 compiler skip-reads source cards until a $END directive is
 encountered with its 'b' character matching the 'b'
 character of the $IFT or $IFF. Compilation then continues
 from that point.

 Note: '$IFF a b' is an unconditional skip to '$END b' if
 '$SET a' has occurred. '$IFT a b' is an unconditional skip
 to '$END b' if '$SET a' has not occurred.

$END b where 'b' is any character in column 6.
 This directive terminates $IFT or $IFF directives.

 10-3

$RESET a where 'a' is any character in column 8.
 This directive resets the 'a' flag.

Examples of Conditional Compile:

1. $SET Z
 .
 .
 $IFT Z
 COMMENT Compile this if 'Z' is $SET;
 .
 .
 $END
 $IFF Z
 COMMENT Compile this if 'Z' is not $SET;
 .
 .
 $END

2. $SET 1
 .
 .
 $IFF 0 X
 $IFF 1 X
 $IFT 2 Q
 $END X
 COMMENT Compile this if '0' or '1' or '2' is $SET;
 .
 .
 $END Q

3. $SET -
 $SET +
 .
 .
 $IFT +
 $IFT -
 COMMENT Compile this if both '+' and '-' are $SET;
 .
 .
 $END

10.2 Compiler Listing Output

If listing is specified, each non-control record is listed as it is
read. Source records in which errors are detected are always listed.
Four sets of numbers appear at the left of each line. The first set
consists of the current internal program segment number (in decimal)
followed by the program object code relative address (in hexadecimal);
the second set, of the current internal data segment number (in decimal)
and the data relative address (in hexadecimal). The fifth number is the
statement number of the source record. The final number, the BEGIN/END
level count, shows the excess of BEGIN symbols over END symbols at the
beginning of the next line following an occurrence of BEGIN/END. This
count is only printed when the BEGIN/END level changes. In addition,
each page begins with a heading which includes the page number, date,
time, and an optional title (cf. 10.1.1). Examples of compiler
listings are given in Appendix A.

 10-4

10.3 Error Messages of the Compiler

Errors detected by the compiler are indicated by a message and a
vertical bar below the point where the error was detected. After about
50 errors, a message is provided, and further diagnostic messages are
counted but not listed. The following is a list of error diagnostics
and their meanings:

Error
Number Message Meaning

 00 SYNTAX The source program violates the PL360 syntax.
 01 VAR MIX TYPES The types of operands in a variable assignment
 are incompatible.
 02 FOR PARAMETER In a for clause, the register is not an integer
 register, or the limit is not a register, cell,
 or number of the integer types.
 03 REG ASS TYPES The types of the operands in a register
 assignment are incompatible.
 04 BIN OP TYPES The types of operands of an arithmetic or
 logical operator are incompatible.
 05 SHIFT OP A real instead of an integer register or number
 is specified in a shift operation.
 06 COMPARE TYPES The types of operands in a comparison are
 incompatible.
 07 REG TYPE OR # Either the type or the number of the register
 used is incorrect.
 08 UNDEFINED ID An undeclared identifier has been referenced.
 The identifier is treated as if it were 'R1'.
 This may generate other errors.
 09 MULT LAB DEF The same identifier is defined as a label more
 than once in the same block.
 10 EXC INI VALUE The number of initializing values exceeds the
 the number of elements declared in an array, or
 a string attempts to initialize beyond the
 declared limits of a variable or array.
 11 NOT INDEXABLE An index register is not allowed for the cell
 designator in this context.
 12 DATA OVERFLOW The address of the declared variable in the
 data segment exceeds 4095.
 13 NO OF ARGS An incorrect number of arguments is used for a
 function.
 14 ILLEGAL CHAR An illegal character was encountered; it is
 skipped.
 15 MULTIPLE ID The same identifier is declared more than once
 in the same block. This occurrence of the
 identifier is ignored.
 16 PROGRAM OFLOW The current program segment is too large. It
 must be resegmented.
 17 INITIAL OFLOW The area of initializing data in the compiler
 is full. This can usually be circumvented by
 suitable data segmentation or by re-ordering
 initialized data within the segment.
 18 ADDRESS OFLOW The number used as index is such that the
 resulting relative address is less than 0 or
 greater than 4095.
 l9 NUMBER OFLOW The integer number is too large in magnitude.

 10-5

 20 MISSING . An end-of-file is encountered before a '.'
 terminating the program. The problem may be a
 missing string quote.
 21 STRING LENGTH The length of a string is either 0 or greater
 than 256.
 22 AND/OR MIX A compound condition must not contain both ANDs
 and ORs.
 23 FUNC DEF NO. The format number in a function declaration is
 illegal.
 24 ILLEGAL PARAM A parameter is incompatible with the specifi-
 cations of the function.
 25 NUMBER A number has been used that has an illegal type
 or value.
 26 SYN MIX Synonym declarations cannot mix cell and
 register declarations, or T-cell designators
 have different base registers.
 27 SEG NO OFLOW The maximum allowed segment numbers has been
 exceeded. The limit is generally set at 255.
 28 ILLEGAL CLOSE A segment close declaration is encountered when
 no data segment is open in the corresponding
 block head.
 29 NO DATA SEG A variable is declared with no open data
 segment. A dummy data segment is opened.
 30 ILLEGAL INIT Initialization is specified in a common data
 segment or replicates an absolute address.

At the end of each program segment, all occurrences of undefined labels
are listed with an indication of where they occurred.

10.4 Compiler Object Program Output

The PL360 compiler is designed to be used in conjunction with
link/loader programs which resolve symbolic cross-references between the
segments of one or more programs. Examples of programs capable of such
resolution are the MTS loader [8], the IBM OS linkage editor or loader
[9], and the IBM DOS linkage editor [11]. The remainder of this section
uses the terminology of these programs.

The output of the PL360 compiler is a sequence of object modules. Each
object module contains a single control section corresponding to a PL360
segment. It consists of 80 character records in the standard format of
external symbol dictionary (ESD), text (TXT), relocation dictionary
(RLD) and an end (END) (cf. [10] and Appendix B).

Every PL360 segment (except a dummy data segment) is associated with an
object module in the following fashion:

 1. If the symbol SEGMENT appears in the SEGMENT declaration, an
 object module is produced for this segment; the control section
 name is generated by the compiler as described below.
 2. If the symbol GLOBAL appears in the segment declaration, an
 object module is produced for this segment; the control section
 name is the first 8 bytes of the identifier appearing in the
 declaration.

 10-6

 3. If the symbol EXTERNAL occurs in the segment declaration, no
 object module is produced; instead the first 8 bytes of the
 identifier in the declaration is assumed to be the name of a
 control section independently generated and is used to indicate
 this in the object module created for the segment containing the
 external declaration.
 4. If the symbol COMMON appears in the segment declaration then an
 object module is created in the form of a labeled or blank common
 control section according to whether the common declaration
 contains an identifier or not.

In all cases a control section has a single entry point; the entry point
name and the control section name are identical. In the case of a PL360
program which is a statement, a transfer address to the entry point is
provided in the END card of the object module for the implicit segment
corresponding to this statement. This transfer address is used by a
loader to determine where to begin execution.

The task of the linkage editor/loader includes matching global and
external declarations, inserting absolute address constants and
completing tables of segment base addresses, contained within each
control section for a program segment, in accordance with the external
symbol dictionary and relocation dictionary generated by the compiler
for that control section.

For PL360 programs which are statements, control section names generated
by the compiler for SEGMENT declarations are of the form SEGNnnn where
nnn is the decimal internal segment number. If the PL360 program is a
global procedure, the first three characters of the procedure identifier
(extended on the right by NN if necessary) are used in place of the
characters 'SEG'. These naming conventions may be overruled by use of
the compiler directive $XYY# (cf. 10.1.4).

Each END card of the object module output of the compiler has the name
"PL360" followed by the date and time of compilation.

 10-7

 SECTION 11. LINKAGE CONVENTIONS

Although PL360 was designed for writing logically self-contained
programs, it is possible to communicate with separately compiled
programs if appropriate linkage and coding conventions are observed.
These conventions are summarized below.

11.1 Calling External Routines from PL360

Addresses which correspond to external symbolic names and which are to
be supplied by linkage editing can be specified by the external or
common declarations of PL360. Entry to the block containing a data
segment declaration causes the specified base register to be loaded with
the corresponding address. External names appearing in procedure
declarations are assumed to designate entry points to subroutines. In
such declarations, the procedure body is normally the statement NULL.
The call of the external procedure P2 from the procedure P1 is
equivalent to the following 360 Assembler coding:

 USING P1,15
 ...
 L l,=V(P2)
 DROP 15
 BALR n,l
 USING *,l
 L 15,=A(P1)
 USING P1,15
 DROP n

This linkage implies the following restrictions upon the called routine:

 1. At entry, the base register specified (or assumed) in the
 external procedure declaration (l) contains the address of
 the entry point, unless l = n.
 2. At entry, the register specified in the external procedure
 declaration (n) contains the return address.
 3. Before return, the return address must be restored to that
 designated register.

Any additional, non-conflicting conventions may be established by the
programmer.

If the called procedure (P2) uses R15 to return information to the
calling routine (P1), the procedure statement in P1 is usually of the
form P2(Rm) , indicating that the return linkage must move the contents
of R15 to Rm , thus setting the condition code before re-establishing
the base address of P1 in R15. The equivalent 360 Assembler coding for
this type of call differs from that already given only in the last four
lines which become

 LTR m,15
 BALR 15,0
 USING *,15
 L 15,=A(P1)
 USING P1,15

 11-1

OS type linkages are facilitated by the fact that if the calling PL360
program is a statement, the first 18 words of the implicit data segment
(base register R13) are available for use as a save area (cf. 4.4), and
by the @@ operator which facilitates the construction of OS-type
parameter lists at compile time.

11.2 Requesting Supervisor Services

SVC instructions are available in PL360 programs through the function
statement. It should be noted, however, that in many operating systems
the contents of R15 are destroyed by execution of some SVC instructions.
In such cases, it is essential that saving and immediately restoring R15
be explicitly programmed. This tedious job of preserving the contents
of the program base register can be avoided by using the $BASE compiler
instruction (cf. 10.1.5), or by explicitly specifying a base register
in the procedure heading (cf. 8.1).

11.3 Calling PL360 Procedures from External Routines

Symbolic names and corresponding addresses to be made known to routines
external to the PL360 program are specified by the global and common
declarations of PL360. Global names specified in procedure declarations
are associated with the corresponding procedure entry point. The
external invocation of PL360 procedures must satisfy the following
restrictions:

1. At entry to a PL360 procedure, the procedure base register (usually
 R15, but cf. 8.1, 10.1.5) must contain the procedure entry address
 and the register specified in the procedure declaration must contain
 the return address.
2. At exit from a correct PL360 procedure, the register specified in
 the procedure declaration will contain the return address.

In addition, the following points should be noted:

1. If the PL360 program was compiled from a block and not a global
 procedure declaration,

 a. the symbolic name of the entry point will normally be
 SEGN001, the symbolic name of the implicit data segment
 (with base register R13) will normally be SEGN000 (cf.
 10.1.4);
 b. the return register will be R14
 c. at entry, R13 must contain the address of an 18 word save
 area, if the $OS option is in effect (cf. 4.4, 10.1.3)
 d. at exit, all registers are restored from this save area with
 R15 set equal to zero (R15=0)

2. Global and external names violate the rules of scope established by
 the PL360 block structure (cf. 2.2.1, 4). By pairing global and
 external declarations, a name can be given arbitrary scope.
 Recursive procedures and co-routines can be programmed using this
 feature; however, this ability should be used carefully and
 sparingly.

 11-2

Consider the following example:

GLOBAL PROCEDURE p1 (R1) BASE R7; The procedure p2 can be entered
 BEGIN GLOBAL DATA d1 BASE R10; with the base register for data
 INTEGER a; segment d1 incorrectly loaded,
 COMMON PROCEDURE p2 (R2); since it is possible to bypass
 BEGIN R0 := a; the entry code of the block con-
 END; taining the base declaration. In
 COMMON PROCEDURE p3 (R2); procedure p3, however, the exter-
 BEGIN EXTERNAL DATA d1 BASE R10; nal declaration causes register
 INTEGER a; loading, but all declarations
 R0 := a; must be repeated. In general,
 END; procedures which are to be
 R0 := a + 1; entered independently should be
 END. declared as separate programs
 whenever possible.

It should be noted that the registers specified in corresponding global
and external procedure declarations must be identical while the
registers specified in corresponding global, external, and common data
segment declarations may be different.

Also note that when common and external procedures are paired, return
registers must be identical and any base register specified in the
external declaration must match the base register of the global or
segment procedure containing the common procedure declaration. Thus,

 EXTERNAL PROCEDURE p2 (R2) BASE R7; NULL;

would be the proper declaration for p2 in a separately compiled segment
considering the above example.

 11-3

 SECTION 12. PL360 AS AN ORVYL LANGUAGE PROCESSOR

This Section contains a brief narrative description of how one uses the
interactive version of PL360 which runs under the ORVYL time-sharing
monitor [12]. This version is made possible through a special
ORVYL-PL360 interface module written in Assembly Language using the
ORVYL macro instructions [12].

12.1 Using the PL360 Compiler with ORVYL

This Section assumes that the ORVYL system is being used at Stanford
where the ORVYL-PL360 compiler is saved as an ORVYL unload file. To use
it, just type:

 ? PL360

You will then receive the message:

 -WELCOME TO PL360, Joe User
 DECK?

If your account has been activated for ORVYL files, then you can type
"YES" and PL360 will respond with:

 FILE NAME?

You should then type the name of an ORVYL file in which PL360 should
place the object modules from the subsequent compilation. This file can
be either new or old. Appending " SCR" to the file name will cause an
old file to be scratched for reuse; otherwise, you will be prompted:

 SCRATCH?

A "NO" response will cause the file naming process to be repeated. The
next thing PL360 asks is:

 LISTING?

If you respond "YES", then you will again be asked to supply an ORVYL
file to receive the PL360 Compiler list output. PL360 then asks:

 -?

You can now type WYLBUR commands which will be passed to and executed by
WYLBUR. You can continue to pass commands to WYLBUR (for example,
collect lines, edit lines, use files, copy files, etc.) until your
WYLBUR working data set contains the PL360 program(s). You then type
"COMPILE" immediately after a -? prompt and PL360 will begin compiling
the program(s) contained in your WYLBUR working data set.

Any error messages and the line on which they occur are typed at the
terminal as the compilation proceeds. Each time a segment is closed a
message is typed at the terminal. When compiling from a WYLBUR working
data set, the compiler terminates at the end of the data set and types:

 -LEAVING PL360

 12-1

You can type in a program directly by responding "COMPILE X" to a -?
prompt, where X represents any non-blank character. PL360 responds:

 BEGIN TYPING PL360 PROGRAM
 -?

You can now type in a PL360 program and each line will be compiled as
you go. Unfortunately, if you make a mistake, you must start over since
the old lines are not saved. Also, leading blanks are stripped from
each input line. For these reasons, it is usually best to compile from
a WYLBUR working data set. When typing the program in directly, you can
leave PL360 at any time by typing "/*" or by simply hitting the ATTN
button at the terminal.

As you are leaving PL360, ORVYL core memory is automatically cleared.
The WYLBUR working data set is not cleared. If the program you are
compiling has numerous errors and you wish to suppress the typing of
error messages at the terminal, then simply hit the ATTN button at the
terminal (except in response to a prompt). PL360 will then ask:

 DO YOU WANT FURTHER ERROR MESSAGES TYPED?

A "NO" will cause the compilation to continue with no further error
messages typed at the terminal. A "YES" will cause compilation to
continue as before. In either case, the listing produced in the ORVYL
file (if any) will be unaffected.

After leaving PL360, you can retrieve the object deck by typing:

 GET <file name> CARD CLEAR

You can retrieve the listing by typing:

 GET <file name> PRINT CLEAR

The listing has 133-byte records, the first byte of which is a carriage
control character. Thus, when the listing is printed offline, the
following WYLBUR command should be used:

 LIST OFF BIN xxx UNN (0)

The (0) part of the LIST command causes the first byte to be treated as
a carriage control character. The resulting line printer listing looks
like a batch PL360 compilation listing. The ORVYL version of PL360 has
several advantages: Waiting for the batch queue is completely
eliminated. Errors are printed at the terminal, and thus can usually be
fixed immediately and another compilation can be made in a minute or
two. Paper is saved since listings with errors are seldom listed
offline. Finally, the ORVYL version of the runtime library can be used
to run and test the program immediately at the terminal. In this way,
ORVYL's debugging tools can be used and debugging takes far less time.
Most short compilations can be done in about a second or two of ORVYL
compute time (less than 50[). This is a significant savings over batch
compilations. The PL360 compiler, which is about 3000 cards long,
compiles in 37 seconds of ORVYL compute time at a cost of about $6.20.

 12-2

12.2 Input/Output Subroutines for Interactive PL360 Programs

The standard input-output subroutines using the same linkage conventions
as the READ and WRITE subroutines described in Section 9.1 are available
for input-output operations directly at the terminal when running a
PL360 program under the ORVYL monitor. A description of the parameter
passing conventions of these subroutines follows:

 READ The address of a 132 byte input area should be provided in R0
 prior to calling READ. Upon return, all registers are
 preserved except R15 which contains the number of non-blank
 characters typed by the user (counting imbedded blanks). All
 details such as error messages for illegal use of tabs or
 waiting too long to respond are taken care of by the READ
 subroutine. If the attention key is typed with no preceding
 characters, the condition code is set to 2, otherwise it is set
 to 0.

 WRITE This subroutine works exactly like the subroutine described in
 Section 9.1; i.e., the address of a 132 byte output area is
 passed through register R0 and all registers are preserved upon
 return. The output area is typed at the terminal.

The following discussion assumes that the ORVYL system is being used at
Stanford where the ORVYL READ and WRITE subroutines and the library
subroutines listed in Section 9 are stored in object module form in the
WYLBUR file T000.PL360.RUNLIB on SYS10. To run a PL360 program in
ORVYL, just follow this simple process. First, compile the program.
This may be achieved either in batch or with the ORVYL version of the
PL360 compiler. The program must be a statement with segment name
SEGN001 (cf. Section 4). Place the object module output of the PL360
compiler in the WYLBUR working data set and type:

 COPY ALL TO END FROM &T000.PL360.RUNLIB ON SYS10
 LOAD TEXT

Your program is now ready to be executed. You could either unload the
program as an ORVYL UNLOAD file and/or type the command ENTER to begin
execution.

Note that file I/O is not provided for in the ORVYL runtime routines.

 12-3

 APPENDIX A. EXAMPLE PROGRAMS AND LISTINGS

See Section 10 for details and descriptions of compiler control.

PL
36

0
CO

MP
IL

AT
IO

N

 S
am

pl
e

Pr
og

ra
m

De
mo

ns
tr

at
in

g
Ex

te
ns

io
ns

 t
o

PL
36

0

OR
VY

L
10

/2
8/

74

PA

GE

 1

$S

TI
TL

E
ca

rd
 t

o
pr

ov
id

e
a

su
b-

ti
tl

e

(K
oe

ni
g)

 $

GE
N

Ge
ne

ra
te

 o
bj

ec
t

de
ck

s
ev

en
 o

n
er

ro
rs

.

 (
Gu

er
ti

n)

6.

 $

BA
SE

=1
2

Sp
ec

if
ie

s
de

fa
ul

t
pr

og
ra

m
ba

se
 r

eg
is

te
r

 (
Ma

lc
ol

m)

7.

 $

SE
T

a

Se
ts

 c
on

di
ti

on
 '

a'

 (
Gu

er
ti

n)

8.

 $

IF
F

b
1

Co

nd
it

io
na

l
co

mp
il

e
te

st

 (
Gu

er
ti

n)

9.

 $

IF
T

a
2

Co

nt
in

ue
 c

om
pi

li
ng

 i
f

co
nd

it
io

n
'a

'
wa

s
$S

ET

 1
0.

 $

EN
D

1

En

d
of

 c
on

di
ti

on
al

 r
an

ge
 1

 (
Gu

er
ti

n)

 1
1.

00
1

00
00

 0

00
 0

00
0

 0

00
1

!
Ve

rt
ic

al
 b

ar
 c

om
me

nt
s

 (
Gu

er
ti

n)
 !

 1
2.

00
1

00
00

 0

00
 0

00
0

 0

00
2

!
Th

es
e

co
mm

en
ts

 c
om

pi
le

d
if

 '
a'

 o
r

'b
'

wa
s

$S
ET

 !

 1
3.

 $

SE
T

b

Se
ts

 c
on

di
ti

on
 '

b'

 1
4.

 $

EN
D

2

En

d
of

 c
on

di
ti

on
al

 r
an

ge
 2

 1
5.

 $

RE
SE

T
a

Tu

rn
 o

ff
 c

on
di

ti
on

 '
a'

 (
Ko

en
ig

)

 1
6.

 $

XR
EF

 1

Tu
rn

 o
n

Cr
os

s-
Re

fe
re

nc
e

ca
pa

bi
li

ty

 (
Gu

er
ti

n)

 1
7.

00
1

00
00

 0

00
 0

00
0

 0

00
3

 1
8.

00
1

00
00

 0

00
 0

00
0

 0

00
4

 B
EG

IN

!c
od

in
g

in
cl

ud
es

 e
st

ab
li

sh
in

g
pr

op
er

 b
as

e
re

gi
st

er
 (

Ma
lc

ol
m)

!

 1
9.

00
1

00
1A

 0

00
 0

04
8

 0

00
5

01

 !
co

di
ng

 i
nc

lu
de

s
XC

 i
ns

tr
uc

ti
on

 t
o

se
t

sa
ve

d
R1

5
to

 0

 (

Ko
en

ig
)

!

 2
0.

 $

3

 2
1.

00
1

00
1A

 0

00
 0

04
8

 0

00
6

 !
EQ

UA
TE

 d
ec

la
ra

ti
on

s
fo

r
in

te
ge

r
va

lu
e

id
en

ti
fi

er
s

 (

Gu
er

ti
n)

!

 2
2.

00
1

00
1A

 0

00
 0

04
8

 0

00
7

EQ
UA

TE
 L

EN
 S

YN
 3

;

 2
3.

 0
00

00
00

3
 L

EN
00

1
00

1A

 0
00

 0
04

8

 0
00

8

AR

RA
Y

LE
N

BY
TE

 A
LP

HA
;

 2

4.

 D

04
8

 A
LP

HA
00

1
00

1A

 0
00

 0
04

B

 0
00

9

IN

TE
GE

R
BE

TA
,

GA
MM

A;

 2

5.

 D

04
C

 B
ET

A

 D

05
0

 G
AM

MA
00

1
00

1A

 0
00

 0
05

4

 0
01

0

 !

EQ
UA

TE
S

al
lo

ws
 m

on
ad

ic
,

ar
it

hm
et

ic
,

Bo
ol

ea
n

an
d

sh
if

t
op

s(
Gu

er
ti

n)
!

 2

6.
00

1
00

1A

 0
00

 0
05

4

 0
01

1

EQ

UA
TE

 L
O

SY
N

9,

LO
MA

SK
 S

YN
 1

 S
HL

L
LO

 -
 1

,

 2

7.

 0

00
00

00
9

 L
O

00
1

00
1A

 0

00
 0

05
4

 0

01
2

 H

I
SY

N
NE

G
LO

 +
 1

6,

HI
MA

SK
 S

YN
 1

 S
HL

L
HI

 -
 1

;

 2
8.

 0
00

00
1F

F
 L

OM
AS

K

 0

00
00

00
7

 H
I

 0
00

00
07

F
 H

IM
AS

K
00

1
00

1A

 0
00

 0
05

4

 0
01

3

 !

EQ
UA

TE
S

al
lo

ws
 c

el
l-

ce
ll

 (
Gu

er
ti

n)
!

 2

9.
00

1
00

1A

 0
00

 0
05

4

 0
01

4

EQ

UA
TE

 S
IZ

E
SY

N
GA

MM
A(

4)
 -

 A
LP

HA
 +

 3
 A

ND
 _

4;

 3

0.

 0

00
00

00
C

 S
IZ

E
00

1
00

1A

 0
00

 0
05

4

 0
01

5

 3

1.
00

1
00

1A

 0
00

 0
05

4

 0
01

6

 !

Da
ta

 S
eg

me
nt

 D
ec

la
ra

ti
on

s
wi

th
 B

AS
E

R0

 (
Gu

er
ti

n
&

Ko
en

ig
)

!

 3

2.
00

1
00

1A

 0
00

 0
05

4

 0
01

7

DU

MM
Y

BA
SE

 R
0;

!(
Gu

er
ti

n)
!

 3

3.
00

1
00

1A

 0
14

 0
00

0

 0
01

8

 I
NT

EG
ER

 M
EM

;

 3

4.

 0

00
0

 M
EM

00
1

00
1A

 0

14
 0

00
4

 0

01
9

CL
OS

E
BA

SE
;

 3
5.

00
1

00
1A

 0

00
 0

05
4

 0

02
0

 3
6.

00
1

00
1A

 0

00
 0

05
4

 0

02
1

GL
OB

AL
 D

AT
A

SP
AC

E
BA

SE
 R

0;

!(

Ko
en

ig
)

!

 3
7.

00
1

00
1A

 0

15
 0

00
0

 0

02
2

 I

NT
EG

ER
 S

OM
EC

EL
L;

 3
8.

 0
00

0
 S

OM
EC

EL
L

00
1

00
1A

 0

15
 0

00
4

 0

02
3

CL
OS

E
BA

SE
;

 3
9.

SP

AC
E

EN
TR

Y
(S

D)
 A

T
00

00

PL
36

0
CO

MP
IL

AT
IO

N

 S
am

pl
e

Pr
og

ra
m

De
mo

ns
tr

at
in

g
Ex

te
ns

io
ns

 t
o

PL
36

0

OR
VY

L
10

/2
8/

74

PA

GE

 2
00

1
00

1A

 0
00

 0
05

4

 0
02

5

GL

OB
AL

 P
RO

CE
DU

RE
 S

AM
PL

E
(R

15
)

BA
SE

 R
6;

 4

2.

 S
AM

PL
E

01
6

00
00

 0

00
 0

05
4

 0

02
6

BE
GI

N

 4
3.

01
6

00
00

 0

00
 0

05
4

 0

02
7

02

 !
CO

MM
ON

 p
ro

ce
du

re
s

to
 a

ll
ow

 a
dd

it
io

na
l

en
tr

y
po

in
ts

.

 (

Gu
er

ti
n)

!

 4
4.

01
6

00
00

 0

00
 0

05
4

 0

02
8

 C

OM
MO

N
PR

OC
ED

UR
E

EN
TR

Y
(R

15
);

 4
5.

 E

NT
RY

01
6

00
08

 0

00
 0

05
4

 0

02
9

 B

EG
IN

!h

as
 a

ll
 t

he
 p

ro
pe

rt
ie

s
of

 l
oc

al
 p

ro
ce

du
re

.!

 4
6.

01
6

00
08

 0

00
 0

05
4

 0

03
0

03

 !
Ne

w
FU

NC
TI

ON
 t

yp
es

 1
4

&
15

.
 S

ee
 c

om
pi

le
d

co
de

.

 (

Gu
er

ti
n)

!

 4
7.

01
6

00
08

 0

00
 0

05
4

 0

03
1

FU

NC
TI

ON

MO
VE

4(
14

,#
D2

03
),

BR

AN
CH

(1
5,

#4
7F

0)
;

 4
8.

 D
20

3
 M

OV
E4

 4
7F

0
 B

RA
NC

H
01

6
00

08

 0
00

 0
05

4

 0
03

2

MO
VE

4(
GA

MM
A,

BE
TA

);

BR
AN

CH
(B

6(
R4

+1
0)

);

 4

9.
01

6
00

12

 0
00

 0
05

4

 0
03

3

R6
 :

=
R6

-R
6;

!r

et
ur

n
co

nd
it

io
n

in
 B

AS
E!

!(
Gu

er
ti

n)
!

 5

0.
01

6
00

14

 0
00

 0
05

4

 0
03

4

 E
ND

;

 5

1.
01

6
00

16

 0
00

 0
05

4

 0
03

5
02

 E
NT

RY
(R

3)
;

 !
Se

e
co

de
 f

or
 B

AL
 t

o
EN

TR
Y,

 c
on

di
ti

on
 t

o
R3

!

 5

2.
01

6
00

22

 0
00

 0
05

4

 0
03

6

EN

D;

 5

3.

 0

02
0

 6

00
60

7F
F

 0
00

00
00

0

SA
MP

LE

EN

TR
Y

(S
D)

 A
T

00
00

EN

TR
Y

EN
TR

Y
(L

D)
 A

T
00

04
00

1
00

1A

 0
00

 0
05

4

 0
03

8

EX

TE
RN

AL
 P

RO
CE

DU
RE

 E
NT

RY
 (

R1
5)

 B
AS

E
R6

;
 N

UL
L;

!(
Ma

lc
ol

m)
!

 5

5.

 E
NT

RY
00

1
00

1A

 0
00

 0
05

4

 0
03

9

EN

TR
Y;

!S
ee

 c
od

e
fo

r
 B

AL
R

 t
o

CO
MM

ON
 p

ro
ce

du
re

.

 (
Gu

er
ti

n)
!

 5

6.
00

1
00

24

 0
00

 0
05

4

 0
04

0

 5

7.
00

1
00

24

 0
00

 0
05

4

 0
04

1

 !

Ce
ll

 r
ef

er
en

ce
s

ma
y

sp
ec

if
y

Ba
se

,
In

de
x,

 a
nd

 e
xp

re
ss

io
n

 (
Gu

er
ti

n)
!

 5

8.
00

1
00

24

 0
00

 0
05

4

 0
04

2

BE

GI
N

 I
NT

EG
ER

 R
EG

IS
TE

R
RB

 S
YN

 R
1,

RX

 S
YN

 R
2;

 5

9.

 0

00
1

 R
B

 0
00

2
 R

X
00

1
00

24

 0
00

 0
05

4

 0
04

3
02

 S
OM

EC
EL

L(
RB

+R
X+

LE
N+

1)
 :

=
R3

;

 6

0.
00

1
00

28

 0
00

 0
05

4

 0
04

4

EN

D;

 6

1.
00

1
00

28

 0
00

 0
05

4

 0
04

5
01

 6

2.
00

1
00

28

 0
00

 0
05

4

 0
04

6

 !

Ce
ll

-t
o-

ce
ll

 a
ss

ig
nm

en
t

an
d

co
nd

it
io

ns
.

 (
Gu

er
ti

n)
!

 6

3.
00

1
00

28

 0
00

 0
05

4

 0
04

7

B1

 :
=

B2
;

B3

 :
=

16
;

B5

 :
=

"s
tr

in
g"

;

 6

4.
00

1
00

3A

 0
00

 0
05

4

 0
04

8

WH

IL
E

R2
 >

=
R1

 A
ND

 B
2

=
"

"
DO

 6

5.
00

1
00

48

 0
00

 0
05

4

 0
04

9

BE

GI
N

 F
UN

CT
IO

N
RE

DU
CE

(6
,#

06
00

);

RE
DU

CE
(R

2)
;

 E
ND

;

 6

6.

 0

60
0

 R
ED

UC
E

00
1

00
4E

 0

00
 0

05
4

 0

05
0

01

IF
 G

AM
MA

 ^
=

BE
TA

 T
HE

N
GO

TO
 T

AG
;

 6
7.

00
1

00
58

 0

00
 0

05
4

 0

05
1

 6
8.

00
1

00
58

 0

00
 0

05
4

 0

05
2

 !
Ce

ll
-t

o-
ce

ll
 a

ss
ig

nm
en

t
al

lo
ws

 B
oo

le
an

 e
xp

re
ss

io
n

 (

Gu
er

ti
n)

!

 6
9.

00
1

00
58

 0

00
 0

05
4

 0

05
3

BE
TA

 :
=

BE
TA

 A
ND

 G
AM

MA
 O

R
"

 "

;

 7
0.

00
1

00
64

 0

00
 0

05
4

 0

05
4

 7
1.

00
1

00
64

 0

00
 0

05
4

 0

05
5

 !
Ce

ll
-t

o-
ce

ll
 m

ay
 s

pe
ci

fy
 l

en
gt

h
ex

pr
es

si
on

 a
ft

er
 /

 (

Gu
er

ti
n)

!

 7
2.

00
1

00
64

 0

00
 0

05
4

 0

05
6

GA
MM

A(
4-

LE
N/

LE
N)

 :
=

GA
MM

A(
4-

LE
N)

 A
ND

 B
ET

A(
4-

LE
N)

 O
R

AL
PH

A;

 7
3.

00
1

00
70

 0

00
 0

05
4

 0

05
7

AL
PH

A
:=

 "
 "

;
 A

LP
HA

(1
/L

EN
-1

)
:=

 A
LP

HA
;

 7
4.

PL
36

0
CO

MP
IL

AT
IO

N

 S
am

pl
e

Pr
og

ra
m

De
mo

ns
tr

at
in

g
Ex

te
ns

io
ns

 t
o

PL
36

0

OR
VY

L
10

/2
8/

74

PA

GE

 3
00

1
00

7A

 0
00

 0
05

4

 0
05

9

WH

IL
E

R1
 :

=
R1

+R
2;

 R
1

<
16

 A
ND

 R
EA

D;
 ^

=
DO

 R
2

:=
 R

2-
4;

 7

7.
00

1
00

9A

 0
00

 0
05

4

 0
06

0

 7

8.
00

1
00

9A

 0
00

 0
05

4

 0
06

1

 !

Pr
e-

de
cl

ar
ed

 E
QU

AT
ES

 f
or

 u
se

 w
it

h
as

si
gn

me
nt

s
an

d
te

st
s.

 (
Ko

en
ig

)
!

 7

9.
00

1
00

9A

 0
00

 0
05

4

 0
06

2

BE

GI
N

 E
QU

AT
E

OV
ER

FL
OW

 S
YN

 1
,

 O
N

SY
N

1,

MI
XE

D
SY

N
4,

OF

F
SY

N
8,

 8

0.

 0

00
00

00
1

 O
VE

RF
LO

W

 0

00
00

00
1

 O
N

 0
00

00
00

4
 M

IX
ED

00
1

00
9A

 0

00
 0

05
4

 0

06
3

02

CA

RR
Y

SY
N

3,

TR
UE

 S
YN

 _
1,

FA

LS
E

SY
N

0;

 8
1.

 0
00

00
00

8
 O

FF

 0

00
00

00
3

 C
AR

RY

 F

FF
FF

FF
F

 T
RU

E

 0

00
00

00
0

 F
AL

SE
00

1
00

9A

 0
00

 0
05

4

 0
06

4

 8

2.
00

1
00

9A

 0
00

 0
05

4

 0
06

5

 !

<c
on

di
ti

on
>

al
lo

we
d

to
 b

e
<i

nt
eg

er
>

or
 ^

<i
nt

eg
er

>

 (
Ko

en
ig

)
!

 8

3.
00

1
00

9A

 0
00

 0
05

4

 0
06

6

 I
F

EX
(R

4,
TM

(0
,B

1)
);

 M
IX

ED
 T

HE
N

GO
TO

 T
AG

;

 8

4.
00

1
00

A2

 0
00

 0
05

4

 0
06

7

 I
F

^O
N

TH
EN

 G
OT

O
TA

G;

 8

5.
00

1
00

A6

 0
00

 0
05

4

 0
06

8

 A
LP

HA
 :

=
TR

UE
;

 I
F

AL
PH

A(
1)

 =
 F

AL
SE

 T
HE

N
GO

TO
 T

AG
;

 8

6.
00

1
00

B2

 0
00

 0
05

4

 0
06

9

EN

D;

 8

7.
00

1
00

B2

 0
00

 0
05

4

 0
07

0
01

 8

8.
00

1
00

B2

 0
00

 0
05

4

 0
07

1

 !

$S
PA

CE
 c

on
tr

ol
 c

ar
d

to
 s

pa
ce

 l
is

ti
ng

 (
Ko

en
ig

)
!

 8

9.
00

1
00

B2

 0
00

 0
05

4

 0
07

3

BE

TA
(1

)
:=

 #
40

96
CX

;
 G

AM
MA

 :
=

#4
02

02
12

0X
;

 9

2.
00

1
00

BE

 0
00

 0
05

4

 0
07

4

 9

3.
00

1
00

BE

 0
00

 0
05

4

 0
07

5

 !

ST
RI

NG
 e

qu
at

e
wh

ic
h

ha
s

le
ng

th
 o

f
la

st
 "

st
ri

ng
"

 (
Gu

er
ti

n)
!

 9

4.
00

1
00

BE

 0
00

 0
05

4

 0
07

6

LA

(R
1,

"T
hi

s
is

 a
 t

es
t.

")
;

 R
2

:=
 S

TR
IN

G;

 9

5.
00

1
00

C6

 0
00

 0
05

4

 0
07

7

IF

 R
3

=
0

TH
EN

 B
1(

ST
RI

NG
-5

)
:=

 "
me

ss
";

 9

6.
00

1
00

D2

 0
00

 0
05

4

 0
07

8

 9

7.
00

1
00

D2

 0
00

 0
05

4

 0
07

9

 !

CA
SE

 s
ta

te
me

nt
 n

ow
 u

se
s

ha
lf

wo
rd

 v
ec

to
r

ta
bl

e.
 (

Ma
lc

ol
m

&
Gu

er
ti

n)
!

 9

8.
00

1
00

D2

 0
00

 0
05

4

 0
08

0

CA

SE
 R

1
OF

 B
EG

IN

 !
Se

e
co

mp
il

ed
 c

od
e.

!

 9

9.
00

1
00

D2

 0
00

 0
05

4

 0
08

1
02

 R
5

:=
 R

5
+

R3
;

10

0.
00

1
00

DE

 0
00

 0
05

4

 0
08

2

 R
5

:=
 R

5
-

R3
;

10

1.
00

1
00

E4

 0
00

 0
05

4

 0
08

3

 R
5

:=
 R

5
*

R3
;

10

2.
00

1
00

EA

 0
00

 0
05

4

 0
08

4

 R
5

:=
 R

5
/

R3
;

10

3.
00

1
00

F0

 0
00

 0
05

4

 0
08

5

EN

D;

 !
Se

e
co

mp
il

ed
 c

od
e.

!

10

4.
00

1
00

FC

 0
00

 0
05

4

 0
08

6
01

10

5.

 $
CO

PY
 D

DN
AM

E

 C

op
y

fr
om

 s
eq

ue
nt

ia
l

da
ta

 s
et

 (
Gu

er
ti

n)

10

6.
00

1
00

FC

 0
00

 0
05

4

 0
08

7

 !

Th
is

 i
s

co
py

 c
od

e
fr

om
 a

 W
YL

BU
R

Ed
it

 f
or

ma
t

da
ta

 s
et

.!

$C

OP
Y

00
1

00
FC

 0

00
 0

05
4

 0

08
8

 !
 /

/D
DN

AM
E

DD
 D

SN
=S

YS
1.

DD
NA

ME
,V

OL
=S

ER
=T

EM
P0

1,
UN

IT
=2

31
4,

 !

$C
OP

Y
00

1
00

FC

 0
00

 0
05

4

 0
08

9

 !

 /
/

 D
IS

P=
OL

D,
DC

B=
(R

EC
FM

=U
,B

LK
SI

ZE
=3

15
6)

 !

$C

OP
Y

00
1

00
FC

 0

00
 0

05
4

 0

09
0

 !
Th

is
 i

s
th

e
en

d
of

 t
he

 $
CO

PY
 D

DN
AM

E!

$C
OP

Y

 $
CO

PY
 D

AT
A(

ME
MB

ER
)

 C

op
y

fr
om

 p
ar

ti
ti

on
ed

 d
at

a
se

t

 (
Ko

en
ig

)

10

7.
00

1
00

FC

 0
00

 0
05

4

 0
09

1

 !

Th
is

 i
s

co
de

 f
ro

m
ME

MB
ER

 o
f

DA
TA

.!

$C

OP
Y

00
1

00
FC

 0

00
 0

05
4

 0

09
2

 !
 /

/D
AT

A
DD

 D
SN

=S
YS

1.
DA

TA
,V

OL
=S

ER
=T

EM
P0

1,
UN

IT
=2

31
4,

DI
SP

=O
LD

 !

$C
OP

Y
00

1
00

FC

 0
00

 0
05

4

 0
09

3

 !

Th
is

 i
s

th
e

en
d

of
 t

he
 $

CO
PY

 D
AT

A(
ME

MB
ER

)!

$C

OP
Y

PL
36

0
CO

MP
IL

AT
IO

N

 S
am

pl
e

Pr
og

ra
m

De
mo

ns
tr

at
in

g
Ex

te
ns

io
ns

 t
o

PL
36

0

OR
VY

L
10

/2
8/

74

PA

GE

 4
00

1
00

FC

 0
00

 0
05

4

 0
09

4

 T

AG
:

EN
D.

11

0.

SE
GN

00
0

EN

TR
Y

(S
D)

 A
T

00
00

 0
02

0

 5
8C

0F
11

8
 5

03
21

00
4

 D
20

31
00

0
 2

00
0D

20
3

30

00
C1

30

D2
05

50
00

C1

06
19

21

47
50

C0
4E

 0
04

0

 9
54

02
00

0
 4

77
0C

04
E

 0
62

04
7F

0
 C

03
AD

50
3

D0

50
D0

4C

47
60

C0
FC

D4

03
D0

4C

D0
50

D6
03

 0
06

0

 D
04

CC
10

C
 D

40
2D

05
1

 D
04

DD
60

2
 D

05
1D

04
8

92

40
D0

48

D2
01

D0
49

D0

48
1A

12

59
10

C1
30

 0
08

0

 4
7B

0C
09

A
 5

8F
0C

14
4

 0
5E

F5
8C

0
 E

0A
E4

79
0

C0

9A
5B

20

C1
34

47
F0

C0

7A
44

40

C1
2A

47
40

 0
0A

0

 C
0F

C4
7E

0
 C

0F
C9

2F
F

 D
04

89
50

0
 D

04
94

78
0

C0

FC
D2

02

D0
4D

C1
10

D2

03
D0

50

C1
13

41
10

 0
0C

0

 C
11

74
12

0
 0

00
F1

23
3

 4
77

0C
0D

2
 D

20
31

00
A

C1

26
1A

11

48
11

C0
F2

47

F1
C0

00

1A
53

47
FC

 0
0E

0

 0
0F

C1
B5

3
 4

7F
C0

0F
C

 1
C4

34
7F

C
 0

0F
C1

D4
3

47

FC
00

FC

00
DC

00
E2

00

E8
00

EE

58
D0

D0
04

 0
10

0

 9
8E

CD
00

C
 0

7F
EA

2A
3

 9
98

99
58

7
 4

04
04

04
0

04

09
6C

40

20
21

20
E3

88

89
A2

40

89
A2

40
81

 0
12

0

 4
0A

38
5A

2
 A

34
B9

48
5

 A
2A

29
10

0
 1

00
04

71
0

00

00
00

10

00
00

00
04

00

00
00

00

00
00

00
00

 0
14

0

 0
00

00
00

0
 0

00
00

00
0

SE

GN
00

1

EN
TR

Y
(S

D)
 A

T
00

00

SE
GN

00
0

EX

TE
RN

AL
 R

EF
ER

EN
CE

EN

TR
Y

EX
TE

RN
AL

 R
EF

ER
EN

CE

RE
AD

EX

TE
RN

AL
 R

EF
ER

EN
CE

PL
36

0
CR

OS
S

RE
FE

RE
NC

E

 S
am

pl
e

Pr
og

ra
m

De
mo

ns
tr

at
in

g
Ex

te
ns

io
ns

 t
o

PL
36

0

OR
VY

L
10

/2
8/

74

PA

GE

 5
BE

TA

00

09

00
32

00

50

00
53

00

53

00
56

00

73
BR

AN
CH

00

31

00
32

B1

00
47

00

66

00
77

B2

00
47

00

48
B3

00

47
B5

00

47
B6

00

32
CA

RR
Y

00

63
EN

TR
Y

00

28

00
35

00

38

00
39

EX

00
66

FA
LS

E

00
63

00

68
GA

MM
A

00

09

00
14

00

32

00
50

00

53

00
56

00

56

00
73

HI

00
12

00

12
HI

MA
SK

00

12
LA

00

76
LE

N

00

07

00
08

00

43

00
56

00

56

00
56

00

56

00
57

LO

00
11

00

11

00
12

LO
MA

SK

00
11

ME
M

00
18

MI
XE

D

00
62

00

66
MO

VE
4

00

31

00
32

OF
F

00
62

ON

00
62

00

67
OV

ER
FL

OW

00

62
RB

00

42

00
43

RE
AD

00
59

RE
DU

CE

00
49

00

49
RX

00

42

00
43

R0

00
17

00

21
R1

00

42

00
48

00

59

00
59

00

59

00
76

00

80
R1

5

00

25

00
28

00

38
R2

00

42

00
48

00

49

00
59

00

59

00
59

00

76
R3

00

35

00
43

00

77

00
81

00

82

00
83

00

84
R4

00

32

00
66

R5

00
81

00

81

00
82

00

82

00
83

00

83

00
84

00

84
R6

00

25

00
33

00

33

00
33

00

38
SA

MP
LE

00

25
SI

ZE

00

14
SO

ME
CE

LL

00

22

00
43

SP
AC

E

00
21

ST
RI

NG

00
76

00

77
TA

G

00

50

00
66

00

67

00
68

TM

00
66

TR
UE

00
63

00

68

PL
36

0
CO

MP
IL

AT
IO

N

RI
GH

T
TR

IA
NG

LE
 P

RO
BL

EM

 O
RV

YL
 0

4/
09

/7
4

 P

AG
E

 1
00

1
00

18

 0
00

 0
04

8

 0
00

2
01

 *

MA

KE
S

US
E

OF
 M

OS
T

OF
 T

HE
 F

EA
TU

RE
S

OF
 P

L3
60

.

 3

3.
00

1
00

18

 0
00

 0
04

8

 0
00

3

 *

TH

E
PR

OG
RA

M
RE

AD
S

TH
E

SI
DE

S
OF

 A
 R

IG
HT

 T
RI

AN
GL

E,

 3

4.
00

1
00

18

 0
00

 0
04

8

 0
00

4

 *

CO

MP
UT

ES
 T

HE
 H

YP
OT

EN
US

E,
 A

ND
 W

RI
TE

S
TH

E
RE

SU
LT

.
--

;

 3

5.
00

1
00

18

 0
00

 0
04

8

 0
00

5

 3

6.
00

1
00

18

 0
00

 0
04

8

 0
00

6

 C

OM
ME

NT
 -

-
DE

CL
AR

E
EX

TE
RN

AL
 P

RO
CE

DU
RE

S,
 F

UN
CT

IO
NS

,

 3

7.
00

1
00

18

 0
00

 0
04

8

 0
00

7

 *

AN

D
VA

RI
AB

LE
S

FI
RS

T.
 -

-;

 3

8.
00

1
00

18

 0
00

 0
04

8

 0
00

8

 3

9.
00

1
00

18

 0
00

 0
04

8

 0
00

9

EX

TE
RN

AL
 P

RO
CE

DU
RE

 V
AL

TO
BC

D
(R

14
);

NU

LL
;

 4

0.

 V
AL

TO
BC

D
00

1
00

18

 0
00

 0
04

8

 0
01

0

EX

TE
RN

AL
 P

RO
CE

DU
RE

 B
CD

TO
VA

L
(R

14
);

NU

LL
;

 4

1.

 B
CD

TO
VA

L
00

1
00

18

 0
00

 0
04

8

 0
01

1

 4

2.
00

1
00

18

 0
00

 0
04

8

 0
01

2

PR

OC
ED

UR
E

SQ
RT

 (
R1

4)
;

 I
F

F0
1

>
0L

 T
HE

N

 4

3.

 S
QR

T
00

1
00

22

 0
00

 0
04

8

 0
01

3

CO

MM
EN

T
TH

IS
 P

RO
CE

DU
RE

 T
AK

ES
 T

HE
 S

QU
AR

E
RO

OT
 O

F
TH

E
VA

LU
E

IN
 F

01
;

 4

4.
00

1
00

22

 0
00

 0
04

8

 0
01

4

BE

GI
N

 L
ON

G
RE

AL
 F

CO
N;

 4

5.

 D

04
8

 F
CO

N
00

1
00

22

 0
00

 0
05

0

 0
01

5
02

 F
CO

N
:=

 F
01

;
 R

1
:=

 R
1-

R1
;

 4

6.
00

1
00

28

 0
00

 0
05

0

 0
01

6

 I
C(

R1
,F

CO
N)

;
 R

1
:=

 R
1

-
#4

0S
 S

HR
A

1
+

#4
0S

;

 4

7.
00

1
00

38

 0
00

 0
05

0

 0
01

7

 S
TC

(R
1,

FC
ON

);

F4
5

:=
 F

CO
N;

F6

 :
=

1R
;

 4

8.
00

1
00

44

 0
00

 0
05

0

 0
01

8

 W
HI

LE
 F

67
 >

 1
0'

_6
L

DO

 4

9.
00

1
00

4C

 0
00

 0
05

0

 0
01

9

 B
EG

IN

F2
3

:=
 F

45
;

 5

0.
00

1
00

4E

 0
00

 0
05

0

 0
02

0
03

F4
5

:=
 F

01
/F

23
 +

 F
23

 /
 2

L;

 5

1.
00

1
00

58

 0
00

 0
05

0

 0
02

1

F6
7

:=
 F

45
 -

 F
23

;
 F

67
 :

=
AB

S
F6

7;

 5

2.
00

1
00

5E

 0
00

 0
05

0

 0
02

2

 E
ND

;
 F

01
 :

=
F4

5;

 5

3.
00

1
00

64

 0
00

 0
05

0

 0
02

3
02

EN

D;

 5

4.
00

1
00

66

 0
00

 0
05

0

 0
02

4
01

 5

5.
00

1
00

66

 0
00

 0
05

0

 0
02

5

 C

OM
ME

NT
 -

-
RE

AD
 &

 W
RI

TE
 A

RE
 A

LR
EA

DY
 K

NO
WN

 -
-;

 5

6.
00

1
00

66

 0
00

 0
05

0

 0
02

6

FU

NC
TI

ON
 R

ED
UC

E
(6

,#
06

00
);

CO

MM
EN

T
--

 S
UB

TR
AC

T
1

FR
OM

 R
EG

IS
TE

R
--

;

 5

7.

 0

60
0

 R
ED

UC
E

00
1

00
66

 0

00
 0

05
0

 0

02
7

 5
8.

00
1

00
66

 0

00
 0

05
0

 0

02
8

AR
RA

Y
13

4
BY

TE
 O

UT
PU

T
=

(

 5
9.

 D
05

0
 O

UT
PU

T
00

1
00

66

 0
00

 0
0D

6

 0
02

9

 "
 H

YP
OT

EN
US

E
=

FO
R

SI
DE

S
OF

",
10

0(
"

")
);

 6

0.
00

1
00

66

 0
00

 0
0D

6

 0
03

0

BY

TE
 C

AR
D

SY
N

OU
TP

UT
(3

5)
,

AN
SW

ER
 S

YN
 O

UT
PU

T(
14

);

 6

1.

 D

07
3

 C
AR

D

 D

05
E

 A
NS

WE
R

00
1

00
66

 0

00
 0

0D
6

 0

03
1

 6
2.

00
1

00
66

 0

00
 0

0D
6

 0

03
2

 C
OM

ME
NT

 -
-

MA
IN

 C
OD

E
--

;

 6
3.

00
1

00
66

 0

00
 0

0D
6

 0

03
3

 L
OO

P:
 R

0
:=

 @
CA

RD
;

 R
EA

D;

IF
 ^

=
TH

EN
 G

OT
O

EX
IT

;

 6
4.

00
1

00
78

 0

00
 0

0D
6

 0

03
4

R1
 :

=
@C

AR
D;

R2

 :
=

3;

BC
DT

OV
AL

;
 F

67
 :

=
F0

1
*

F0
1;

 6
5.

00
1

00
8E

 0

00
 0

0D
6

 0

03
5

BC
DT

OV
AL

;
 F

01
 :

=
F0

1
*

F0
1

+
F6

7;

 6
6.

00
1

00
9C

 0

00
 0

0D
6

 0

03
6

SQ
RT

;

CO
MM

EN
T

--
 T

AK
E

SQ
UA

RE
 R

OO
T

OF
 V

AL
UE

 I
N

F0
1

--
;

 6
7.

00
1

00
A0

 0

00
 0

0D
6

 0

03
7

R1
 :

=
@A

NS
WE

R;

R3
 :

=
7;

VA

LT
OB

CD
;

 6
8.

00
1

00
B2

 0

00
 0

0D
6

 0

03
8

R0
 :

=
@O

UT
PU

T;

WR
IT

E;

GO
TO

 L
OO

P;

 6
9.

00
1

00
C4

 0

00
 0

0D
6

 0

03
9

 E
XI

T:
 E

ND
.

 7
0.

 0
07

0

 D
6C

64
04

0
 4

04
04

04
0

 4
04

04
04

0
 4

04
04

04
0

40

40
40

40

40
40

40
40

40

40
40

40

40
40

40
40

 0
09

0
TO

 0
0C

C

 4

04
04

04
0

 0
0D

0

 4
04

04
04

0
 4

04
0

SE

GN
00

0

EN
TR

Y
(S

D)
 A

T
00

00

PL
36

0
CO

MP
IL

AT
IO

N

RI
GH

T
TR

IA
NG

LE
 P

RO
BL

EM

 O
RV

YL
 0

4/
09

/7
4

 P

AG
E

 2

 0

02
0

 F

06
46

00
0

 D
04

81
B1

1
 4

31
0D

04
8

 4
B1

0F
0C

E

8A
10

00
01

4A

10
F0

CE

42
10

D0
48

68

40
D0

48

 0

04
0

 7

86
0F

0D
0

 6
96

0F
0F

0
 4

7D
0F

06
2

 2
82

42
84

0

2D
42

2A
42

6D

40
F0

F8

28
64

2B
62

20

66
47

F0

 0

06
0

 F

04
42

80
4

 0
7F

E4
10

0
 D

07
35

8F
0

 F
0D

C0
5E

F

58
F0

E0
64

47

60
F0

C4

41
10

D0
73

41

20
00

03

 0

08
0

 5

8F
0F

0E
0

 0
5E

F5
8F

0
 E

04
E2

86
0

 2
C6

05
8F

0

F0
E0

05
EF

58

F0
E0

40

2C
00

2A
06

45

E0
F0

1C

 0

0A
0

 4

11
0D

05
E

 4
13

00
00

7
 5

8F
0F

0E
4

 0
5E

F5
8F

0

E0
26

41
00

D0

50
58

F0

F0
E8

05
EF

58

F0
E0

18

 0

0C
0

 4

7F
0F

06
6

 5
8D

0D
00

4
 9

8E
CD

00
C

 0
7F

E0
04

0

41
10

00
00

00

00
00

00

00
00

00
00

00

00
00

00

 0

0E
0

 0

00
00

00
0

 0
00

00
00

0
 0

00
00

00
0

 7
25

65
52

0

3C
A7

C5
AC

47

1B
47

84

41
20

00
00

00

00
00

00

SE
GN

00
1

EN

TR
Y

(S
D)

 A
T

00
00

SE

GN
00

0

EX
TE

RN
AL

 R
EF

ER
EN

CE

RE
AD

EX

TE
RN

AL
 R

EF
ER

EN
CE

BC

DT
OV

AL

EX
TE

RN
AL

 R
EF

ER
EN

CE

VA
LT

OB
CD

EX

TE
RN

AL
 R

EF
ER

EN
CE

WR

IT
E

EX
TE

RN
AL

 R
EF

ER
EN

CE

PL
36

0
CO

MP
IL

AT
IO

N

TR
TE

ST

 O
RV

YL
 0

4/
09

/7
4

 P

AG
E

 1

 T
RT

ES
T

01
4

00
00

 0

00
 0

00
0

 0

00
2

01

 C
OM

ME
NT

 T
HI

S
RO

UT
IN

E
TE

ST
S

AN
 I

NP
UT

 S
TR

IN
G

5.

01
4

00
00

 0

00
 0

00
0

 0

00
3

 *
 A

GA
IN

ST
 A

 T
RA

NS
LA

TE
 T

AB
LE

.

6.

01
4

00
00

 0

00
 0

00
0

 0

00
4

 *
 E

NT
ER

 W
IT

H
R1

 =
 @

 O
F

ST
RI

NG
 T

O
BE

 T
ES

TE
D.

7.

01
4

00
00

 0

00
 0

00
0

 0

00
5

 *

R2

 =
 @

 O
F

TA
BL

E.

8.

01
4

00
00

 0

00
 0

00
0

 0

00
6

 *

R3

 =
 L

EN
GT

H
OF

 S
TR

IN
G

TO
 B

E
TE

ST
ED

.

9.

01
4

00
00

 0

00
 0

00
0

 0

00
7

 *
 E

XI
TS

 W
IT

H
R1

 =
 L

EN
GT

H
OF

 T
RA

NS
LA

TE
D

ST
RI

NG
.

 1
0.

01
4

00
00

 0

00
 0

00
0

 0

00
8

 *

R2

 =
 T

RA
NS

LA
TE

 T
AB

LE
 C

HA
RA

CT
ER

 W
HI

CH

 1
1.

01
4

00
00

 0

00
 0

00
0

 0

00
9

 *

 S

TO
PP

ED
 T

RA
NS

LA
TI

ON
.

 1
2.

01
4

00
00

 0

00
 0

00
0

 0

01
0

 *

AL
SO

,
CO

ND
IT

IO
N

CO
DE

 S
ET

 B
AS

ED
 O

N
R2

;

 1
3.

01
4

00
00

 0

00
 0

00
0

 0

01
1

FU
NC

TI
ON

 R
ED

UC
E(

6,
#0

60
0)

;

 1
4.

 0
60

0
 R

ED
UC

E
01

4
00

00

 0
00

 0
00

0

 0
01

2

ST

M(
R3

,R
6,

B1
3(

12
))

;
CO

MM
EN

T
SA

VE
 R

EG
IS

TE
RS

;

 1

5.
01

4
00

04

 0
00

 0
00

0

 0
01

3

R4

 :
=

R2
;

R5
 :

=
@B

1;
 R

2
:=

 R
2-

R2
;

R1
 :

=
R2

;

 1

6.
01

4
00

0E

 0
00

 0
00

0

 0
01

4

IF

 R
3

>
0

TH
EN

 1

7.
01

4
00

14

 0
00

 0
00

0

 0
01

5

BE

GI
N

RE
DU

CE
(R

3)
;

R6
 :

=
R2

;

 1

8.
01

4
00

18

 0
00

 0
00

0

 0
01

6
02

 F
OR

 R
3

:=
 R

3
ST

EP
 _

25
6

UN
TI

L
25

6
DO

 1

9.
01

4
00

18

 0
00

 0
00

0

 0
01

7

 B
EG

IN
 T

RT
(2

55
,B

5,
B4

);
 I

F
^=

 T
HE

N

 2

0.
01

4
00

26

 0
00

 0
00

0

 0
01

8
03

BE
GI

N
R1

 :
=

@B
1(

R6
)-

R5
;

GO
TO

 E
XI

T;

 2

1.
01

4
00

30

 0
00

 0
00

0

 0
01

9
04

EN
D

EL
SE

 2

2.
01

4
00

30

 0
00

 0
00

0

 0
02

0
03

BE
GI

N
R6

 :
=

@B
6(

25
6)

;
R5

 :
=

@B
5(

25
6)

;

 2

3.
01

4
00

3C

 0
00

 0
00

0

 0
02

1
04

EN
D;

 2

4.
01

4
00

3C

 0
00

 0
00

0

 0
02

2
03

 E
ND

;
EX

(R
3,

TR
T(

0,
B5

,B
4)

);

 2

5.
01

4
00

4C

 0
00

 0
00

0

 0
02

3
02

 I
F

=
TH

EN
 R

1
:=

 @
B5

(R
3+

1)
;

 2

6.
01

4
00

54

 0
00

 0
00

0

 0
02

4

 R
1

:=
 @

B1
(R

6)
 -

 R
5;

 2

7.
01

4
00

5A

 0
00

 0
00

0

 0
02

5

EN

D;

 2

8.
01

4
00

5A

 0
00

 0
00

0

 0
02

6
01

 E

XI
T:

 L
M(

R3
,R

6,
B1

3(
12

))
;

LT
R(

R2
,R

2)
;

 2

9.
01

4
00

60

 0
00

 0
00

0

 0
02

7

 E

ND
.

 3

0.

 0

02
0

 4

00
04

79
0

 F
03

44
11

6
 1

00
01

B1
5

 4
7F

0F
05

A

47
F0

F0
3C

41

60
61

00

41
50

51
00

5A

30
F0

68

 0

04
0

 5

93
0F

06
C

 4
7A

0F
01

C
 4

43
0F

06
2

 4
77

0F
05

4

41
13

50
01

41

16
10

00

1B
15

98
36

D0

0C
12

22

 0

06
0

 0

7F
ED

D0
0

 5
00

04
00

0
 F

FF
FF

F0
0

 0
00

00
10

0

TR
TE

ST

EN

TR
Y

(S
D)

 A
T

00
00

PL
36

0
CO

MP
IL

AT
IO

N

OR
VY

L
PR

OG
RA

M
TO

 S
ET

 O
PT

IO
NS

 O
RV

YL
 0

4/
22

/7
4

 P

AG
E

 1

 O
PT

IO
N

01
4

00
00

 0

00
 0

00
0

 0

00
2

 B
EG

IN
 B

AL
R(

R1
0,

R0
);

R1

 :
=

2;

R1
0

:=
 R

10
-R

1;

2.

01
4

00
08

 0

00
 0

00
0

 0

00
3

01

BE
GI

N
PR

OC
ED

UR
E

TP
UT

 (
R9

);

3.

 T

PU
T

01
4

00
0C

 0

00
 0

00
0

 0

00
4

02

 B

EG
IN

 R
0

:=
 1

;
 S

VC
(2

46
);

R0

 :
=

1;

SV
C(

24
2)

;

4.

01
4

00
18

 0

00
 0

00
0

 0

00
5

03

 E

ND
;

 P
RO

CE
DU

RE
 W

YL
BU

R
(R

9)
;

5.

 W

YL
BU

R
01

4
00

1A

 0
00

 0
00

0

 0
00

6
02

 B
EG

IN
 R

1
:=

 N
EG

 R
1;

R0

 :
=

R0
-R

0;

SV
C(

25
4)

;
 E

ND
;

6.
01

4
00

22

 0
00

 0
00

0

 0
00

7
02

 L
A(

R1
,#

5F
1C

X)
;

 R
15

 :
=

2;

TP
UT

;

7.
01

4
00

2E

 0
00

 0
00

0

 0
00

8

 L
A(

R1
,"

SE
T

TE
RS

E"
);

R1

5
:=

 S
TR

IN
G;

WY

LB
UR

;

8.
01

4
00

3A

 0
00

 0
00

0

 0
00

9

 L
A(

R1
,"

SE
T

NU
M"

);

R1
5

:=
 S

TR
IN

G;

WY
LB

UR
;

9.
01

4
00

46

 0
00

 0
00

0

 0
01

0

 L
A(

R1
,"

SE
T

VO
L

SY
S1

9"
);

R1

5
:=

 S
TR

IN
G;

WY

LB
UR

;

 1

0.
01

4
00

52

 0
00

 0
00

0

 0
01

1

 L
A(

R1
,"

SE
T

NO
TI

ME
")

;
 R

15
 :

=
ST

RI
NG

;
 W

YL
BU

R;

 1

1.
01

4
00

5E

 0
00

 0
00

0

 0
01

2

 L
A(

R1
,"

SE
T

WI
DT

H
72

")
;

 R
15

 :
=

ST
RI

NG
;

 W
YL

BU
R;

 1

2.
01

4
00

6A

 0
00

 0
00

0

 0
01

3

 S
VC

(2
53

);

 1

3.
01

4
00

6C

 0
00

 0
00

0

 0
01

4

EN

D;

 1

4.
01

4
00

6C

 0
00

 0
00

0

 0
01

5
01

 E

ND
.

 1

5.

 APPENDIX B. THE OBJECT CODE

Three principal postulates were used as guidelines in the design of the
language:

 1. Statements which express operations on data must correspond
 to machine instructions in an obvious way. Their structure
 must be such that they decompose into structural elements,
 each corresponding directly to a single instruction.
 2. No storage element of the computer should be hidden from
 the programmer. In particular, the usage of registers
 should be explicitly expressed by each program.
 3. The control of sequencing should be expressible implicitly
 by the structure of certain statements (e.g., through
 prefixing them with clauses indicating their conditional or
 iterative execution).

The following paragraphs show the machine code into which the various
constructs of the language are translated. The mnemonics of the 360
Assembly language [7] are used to denote the individual instructions.
It is assumed that R15 is the program base register (cf. 4.2, 10.1).

 Operands Operators

K register A primary 1 2 3 4 5 6
 (type) (type) := + - * / ++

integer integer register LR AR SR MR DR ALR S

integer integer cell L A S M D AL S

integer short integer cell LH AH SH MH

real real register LER AER SER MER DER AUR S

real real cell LE AE SE ME DE AU S

long real real register LER AER SER MER DER AUR S

long real long real register LDR ADR SDR MDR DDR AWR S

long real real cell LE AE SE ME DE AU S

long real long real cell LD AD SD MD DD AW S

 Table B.1 - Object Code Operators

1. <K-register> := <A-primary>

The code consists of a single load instruction depending on the types of
register and primary (cf. Table B.1, column 1).

 B-1

2. <K-register assignment><operator><A-primary>

The code consists of a single instruction depending on the operator and
the types of register and primary. It is determined according to Table
B.1, columns 2-7.

3. <A-cell> := <K-register>

The code consists of a single store instruction depending on the types
of cell and register as indicated by Table B.1, column 8.

4. IF <condition-1> AND ... AND <condition-n-1> AND
 <condition-n> THEN <simple statement> ELSE <statement>

 (condition-1)
 BC c1,L1
 ...
 (condition-n-1)
 BC cn-1,L1
 (condition-n)
 BC cn,L1
 (simple statement)
 B L2
 L1 (statement)
 L2

ci is determined by the i-th condition, which itself either translates
into a compare instruction depending on the types of compared quantities
(cf. Table B.1, column 9), or has no corresponding instruction, if it
merely designates a relation or integer value.

Example: IF R1 < R2 THEN R0 := R3 ELSE R0 := R4

 CR 1,2
 BC 10, L1
 LR 0,3
 B L2
 L1 LR 0,4
 L2

5. IF <condition-1> OR ... OR <condition-n-1> OR
 <condition-n> THEN <simple statement> ELSE <statement>

 (condition-1)
 BC c1,L1
 ...
 (condition-n-1)
 BC cn-1,L1
 (condition-n)
 BC cn,L2
 L1 (simple statement)
 B L3
 L2 (statement)
 L3

 B-2

6. CASE <integer register-m> OF
 BEGIN <statement-1>;
 <statement-2>;
 ...
 <statement-n>;
 END

 AR m,m
 LH m,SW(m)
 B 0(m,p)
 L1 EQU *-ORIGIN
 (statement-1)
 B LX(P,0)
 L2 EQU *-ORIGIN
 (statement-2)
 B LX(P,0)
 . .
 . .
 . .
 Ln EQU *-ORIGIN
 (statement-n)
 B LX(P,0)
 SW EQU *-2
 DC Y(L1)
 DC Y(L2)
 . .
 . .
 . .
 DC Y(Ln)
 LX EQU *-ORIGIN

ORIGIN is the address of the beginning of the program segment and
register Rp is assumed to contain this address (cf. 5.1, 8.1).

7. WHILE <condition> DO <statement>

 L1 (condition)
 BC cond,L2
 (statement)
 B L1
 L2

If the condition is compound, then code sequences similar to those given
under 4 and 5 are used.

8. FOR <integer register assignment>
 STEP <increment> UNTIL <limit> DO <statement>

 (integer register assignment)
 B L2
 L1 (statement)
 A m,INC
 L2 C m,LIM
 BC cond,L1

 B-3

Rm is the register specified by the assignment, INC the location where
the increment is stored, and LIM the location where the limit is stored.
The compare instruction at L2 may be either a C, CH, or CR instruction
depending on the type of limit. Moreover, cond depends on the sign of
the increment.

9. PROCEDURE <identifier>(<integer register>);<statement>

 P (statement)
 BR m

It is assumed that the integer register enclosed in parentheses is Rm
and P is a label corresponding to the procedure identifier.

10. <procedure identifier>

 BAL m,P

 or L b,newbase
 BALR m,b
 L b,oldbase

 or L b,newbase
 BAL m,P
 L b,oldbase

It is here assumed that P designates the relative address of the
procedure to be called within the program segment in which it is
declared, and m is the return address register specified in its
declaration, and b is the program segment's base register. The first
version of code is obtained whenever the segment in which the procedure
is declared is also the one in which it is invoked. If the procedure
call is of the form

 <procedure identifier>(Rn)

then the instruction sequences become:

 BAL m,P
 LTR n,b
 BALR b,0
 L b,oldbase

 or L b,newbase
 BALR m,b
 LTR n,b
 BALR b,0
 L b,oldbase

 or L b,newbase
 BAL m,P
 LTR n,b
 BALR b,0
 L b,oldbase

 B-4

 APPENDIX C. COMPILER CONSTRUCTS

Registers

 Reg R0 thru R15 INTEGER
 Freg F0, F2, F4, F6 REAL
 Lreg F01, F23, F45, F67 LONG REAL

Subscript -d indicates that register assigned on the left side of the
assign symbol (:=), thus

 Reg-d := Expression

Cells

 Bcell BYTE Value X
 Scell SHORT INTEGER Value S
 Icell INTEGER Value
 Fcell REAL Value R
 Lcell LONG REAL Value L

Note: Values may replace cells in an expression.

 Reg-d := Icell could be: (Icell)
 Reg-d := #FACE 0000FACE
 Reg-d := "DROP" C4D9D6D7
 Reg-d := _4 FFFFFFFC

Conditions

Cond represents, = , ^= , >= , <= , > , < , Number , ^Number

 C-1

In the following tables, * preceding the CODE indicates the instruction
does not change the condition code.

 Code Mnemonic Compiler Construct

 05 BALR Procname (not local procedure call)
 07 BCR END of any PROCEDURE
 10 LPR Reg-d := ABS Reg
 11 LNR Reg-d := NEG ABS Reg
 12 LTR Reg Cond 0
 13 LCR Reg-d := NEG Reg
 14 NR Reg-d AND Reg
 16 OR Reg-d OR Reg
 17 XR Reg-d XOR Reg
 *18 LR Reg-d := Reg or Reg-d ... =: Reg
 Note: Reg-d := Reg-d generates no code.
 19 CR Reg-1 Cond Reg-2
 1A AR Reg-d + Reg
 1B SR Reg-d - Reg
 *1C MR Reg-d * Reg
 Note: Reg-d must be odd numbered
 *1D DR Reg-d / Reg
 Note: Reg-d must be odd numbered
 1E ALR Reg-d ++ Reg
 1F SLR Reg-d -- Reg
 20 LPDR Lreg-d := ABS Lreg
 21 LNDR Lreg-d := NEG ABS Lreg
 22 LTDR Lreg Cond 0L
 23 LCDR Lreg-d := NEG Lreg
 *28 LDR Lreg-d := Lreg or Lreg-d ... =: Lreg
 Note: Lreg-d := Lreg-d generates no code.
 29 CDR Lreg-1 Cond Lreg-2
 2A ADR Lreg-d + Lreg
 2B SDR Lreg-d - Lreg
 *2C MDR Lreg-d * Lreg
 *2D DDR Lreg-d / Lreg
 2E AWR Lreg-d ++ Lreg
 2F SWR Lreg-d -- Lreg
 30 LPER Freg-d := ABS Freg
 31 LNER Freg-d := NEG ABS Freg
 32 LTER Freg Cond 0R
 33 LCER Freg-d := NEG Freg
 *38 LER Freg-d := Freg or Freg-d ... =: Freg
 Note: Freg-d := Freg-d generates no code.
 39 CER Freg-1 Cond Freg-2
 3A AER Freg-d + Freg
 3B SER Freg-d - Freg
 *3C MER Freg-d * Freg
 *3D DER Freg-d / Freg
 3E AUR Freg-d ++ Freg
 3F SUR Freg-d -- Freg

 Table C.1 - 2-Byte Instructions

 C-2

 All these instructions allow indexable cells.

 Code Mnemonic Compiler Construct

 *40 STH Scell := Reg or Reg-d ... =: Scell
 *41 LA Reg-d := @Cell
 45 BAL Procname (local procedure call)
 *47 BC GOTO Tag
 --- THEN
 --- ELSE
 --- DO
 *48 LH Reg-d := Scell
 49 CH Reg Cond Scell
 4A AH Reg-d + Scell
 4B SH Reg-d - Scell
 *4C MH Reg-d * Scell
 *50 ST Icell := Reg or Reg-d ... =: Icell
 54 N Reg-d AND Icell
 56 O Reg-d OR Icell
 57 X Reg-d XOR Icell
 *58 L Reg-d := Icell or Reg-d := @Procname
 59 C Reg-d Cond Icell
 5A A Reg-d + Icell
 5B S Reg-d - Icell
 *5C M Reg-d * Icell
 Note: Reg-d must be odd numbered
 *5D D Reg-d / Icell
 Note: Reg-d must be odd numbered
 5E AL Reg-d ++ Icell
 5F SL Reg-d -- Icell
 *60 STD Lcell := Lreg or Lreg-d ... =: Lcell
 *68 LD Lreg-d := Lcell
 69 CD Lreg-d Cond Lcell
 6A AD Lreg-d + Lcell
 6B SD Lreg-d - Lcell
 *6C MD Lreg-d * Lcell
 *6D DD Lreg-d / Lcell
 6E AW Lreg-d ++ Lcell
 6F SW Lreg-d -- Lcell
 *70 STE Fcell := Freg or Freg-d ... =: Fcell
 *78 LE Freg-d := Fcell
 79 CE Freg-d Cond Fcell
 7A AE Freg-d + Fcell
 7B SE Freg-d - Fcell
 *7C ME Freg-d * Fcell
 *7D DE Freg-d / Fcell
 7E AU Freg-d ++ Fcell
 7F SU Freg-d -- Fcell
 *88 SRL Reg-d SHRL Ivalue or Reg
 *89 SLL Reg-d SHLL Ivalue or Reg
 8A SRA Reg-d SHRA Ivalue or Reg
 8B SLA Reg-d SHLA Ivalue or Reg

 Table C.2 - 4-Byte Instructions

 C-3

 APPENDIX D. SYNTACTIC INDEX

Syntactic Entity Section Syntactic Entity Section

<A-number> 3.2 <label definition> 4.1
<alternative condition> 6.5 <letter> 2.2.1
<arithmetic operator> 6.2 <limit> 6.8
<block> 4.1 <logical operator> 6.2
<block body> 4.1 <monadic operator> 6.1
<block head> 4.1 <parameter> 7.2
<case cause> 6.9 <parameter list> 7.2
<case sequence> 6.9 <procedure declaration> 8.1
<CASE statement> 6.9 <procedure heading> 8.1
<character> 3.4 <procedure identifier> 2.2.1
<character sequence> 3.4 <procedure statement> 8.2
<combined condition> 6.5 <program> 4.1
<compound condition> 6.5 <relation> 6.5
<condition> 6.5 <repetition list> 5.3
<declaration> 4.1 <scale factor> 3.2
<digit> 2.2.1 <segment base declaration> 5.2
<fill value> 5.3 <segment base heading> 5.2
<floating-point number> 3.2 <segment close declaration> 5.2
<for clause> 6.8 <separate procedure heading> 8.1
<FOR statement> 6.8 <shift operator> 6.2
<format code> 7.1 <simple K-register assignment> 6.1
<fractional number> 3.2 <simple procedure heading> 8.1
<function declaration> 7.1 <simple statement> 4.1
<function definition> 7.1 <simple T-type> 5.3
<function designator> 7.2 <stat condition> 6.5
<function identifier> 2.2.1 <statement> 4.1
<GOTO statement> 6.4 <string> 3.4
<hexadecimal digit> 3.1 <syn cell value> 5.6
<hexadecimal value> 3.1 <synonymous cell> 5.5
<identifier> 2.2.1 <synonymous integer value> 5.6
<if clause> 6.6 <T-cell assignment> 6.3
<IF statement> 6.6 <T-cell declaration> 5.3
<increment> 6.8 <T-cell designator> 5.4
<index> 5.4 <T-cell identifier> 2.2.1
<instruction code> 7.1 <T-cell synonym> 5.5
<integer register expression> 5.4 <T-cell value> 6.3
<integer value expression> 5.4 <T-primary> 6.1
<integer value identifier> 2.2.1 <T-type> 5.3
<integer value synonym> 5.6 <T-value> 3.3
<item> 5.3 <true part> 6.6
<K-primary> 6.1 <unsigned A-number> 3.2
<K-register> 2.2.1 <while clause> 6.7
<K-register assignment> 6.2 <WHILE statement> 6.7
<K-register synonym> 5.1

 D-1

 APPENDIX E. SYNTACTIC ENTITIES

 <A-number> ::= <unsigned A-number> !
 _ <unsigned A-number>
 <alternative condition> ::= <stat condition> !
 <alternative condition> OR <stat condition>
 <arithmetic operator> ::= + ! - ! * ! / ! ++ ! --
 <block body> ::= <block head> !
 <block body> <statement> ; !
 <block body> <label definition>
 <block head> ::= BEGIN ! <block head> <declaration> ;
 <block> ::= <block body> END
 <byte value> ::= <integer number> X
 <case clause> ::= CASE <integer register> OF
 <case sequence> ::= <case clause> BEGIN !
 <case sequence> <statement> ;
 <CASE statement> ::= <case sequence> END
 <character> ::= <any EBCDIC character except "> ! ""
 <character sequence> ::= <character> !
 <character sequence> <character>
 <combined condition> ::= <stat condition> !
 <combined condition> AND <stat condition>
 <compound condition> ::= <combined condition> !
 <alternative condition>
 <condition> ::= <T-cell designator> <relation> <T-cell value> !
 <byte cell designator> !
 ^ <byte cell designator> !
 <K-register> <relation> <A-primary> !
 <integer register> <relation> <string> !
 <relation> !
 <integer value> !
 ^ <integer value>
 <declaration> ::= <T-cell declaration> !
 <procedure declaration> !
 <function declaration> !
 <T-cell synonym> !
 <K-register synonym> !
 <integer value synonym> !
 <segment base declaration> !
 <segment close declaration>
 <digit> ::= 0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! 7 ! 8 ! 9
 <fill value> ::= <T-value> !
 <string> !
 @<procedure identifier> !
 @@<procedure identifier> !
 @<T-cell designator> !
 @@<T-cell identifier> !
 <repetition list> <fill value>)
 <floating-point number> ::= <fractional number> !
 <fractional number> ' <scale factor> !
 <unsigned integer number> ' <scale factor>
 <for clause> ::= FOR <integer register assignment> STEP <increment>
 UNTIL <limit> DO
 <FOR statement> ::= <for clause> <statement>

 E-1

 <format code> ::= <integer value>
 <fractional number> ::= <unsigned integer number> . !
 <fractional number> <digit>
 <function declaration> ::= FUNCTION <function definition> !
 <function declaration> , <function definition>
 <function definition> ::=
 <identifier> (<format code> , <instruction code>)
 <function designator> ::= <function identifier> !
 <function identifier> (<parameter list>)
 <function identifier> ::= <identifier>
 <GOTO statement> ::= GOTO <identifier>
 <hexadecimal digit> ::= <digit> ! A ! B ! C ! D ! E ! F
 <hexadecimal value> ::= # <hexadecimal digit> !
 <hexadecimal value> <hexadecimal digit>
 <identifier> ::= <letter> ! <identifier> <letter> ! <identifier> <digit>
 <if clause> ::= IF <compound condition> THEN
 <IF statement> ::= <if clause> <statement> !
 <if clause> <true part> <statement>
 <increment> ::= <integer value>
 <index> ::= <integer value expression> !
 <integer register expression> !
 <integer register expression> + <integer value expression> !
 <integer register expression> - <integer value expression>
 <instruction code> ::= <integer value>
 <integer register expression> ::= <integer register> !
 <integer register> + <integer register>
 <integer value expression> ::= <integer value> !
 <integer value expression> + <integer value> !
 <integer value expression> - <integer value>
 <integer value identifier> ::= <identifier>
 <integer value synonym> ::=
 EQUATE <identifier> <synonymous integer value> !
 EQUATE <identifier> SYN <string> !
 EQUATE <identifier> SYN <register name> !
 <integer value synonym> , <identifier> <synonymous integer value>
 <integer value> ::= <integer number> !
 <hexadecimal value> !
 <integer value identifier>
 <item> ::= <identifier> ! <identifier> = <fill value>
 <K-primary> ::= <K-register>
 <K-register assignment> ::= <simple K-register assignment> !
 <K-register assignment> <arithmetic operator> <A-primary> !
 <K-register assignment> =: <K-register> !
 <K-register assignment> =: <A-cell designator> !
 <integer register assignment> <logical operator> <integer primary> !
 <integer register assignment> <shift operator> <integer value> !
 <integer register assignment> <shift operator> <integer register>
 <K-register synonym> ::=
 <simple K-type> REGISTER <identifier> SYN <K-register> !
 <K-register synonym> , <identifier> SYN <K-register>
 <K-register> ::= <identifier>
 <label definition> ::= <identifier> :
 <letter> ::= A!B!C!D!E!F!G!H!I!J!K!L!M!N!O!P!Q!R!S!T!U!V!W!X!Y!Z
 <limit> ::= <integer primary> ! <short integer primary>

 E-2

 <logical operator> ::= AND ! OR ! XOR
 <long real value> ::= <long real number> !
 <hexadecimal value> L
 <monadic operator> ::= ABS ! NEG ! NEG ABS
 <parameter list> ::= <parameter> ! <parameter list> , <parameter>
 <parameter> ::= <T-value> !
 <T-cell designator> !
 <K-register> !
 <string> !
 <function designator>
 <procedure declaration> ::= <procedure heading> ; <statement>
 <procedure heading> ::= <simple procedure heading> !
 COMMON <simple procedure heading> !
 <separate procedure heading> !
 <separate procedure heading> BASE <integer register>
 <procedure identifier> ::= <identifier>
 <procedure statement> ::= <procedure identifier> !
 <procedure identifier> (<integer register>)
 <program> ::= <block> . !
 GLOBAL <simple procedure heading> ; <statement> . !
 GLOBAL <simple procedure heading> BASE <integer register> ; <statement>
 <real value> ::= <real number> !
 <hexadecimal value> R
 <relation> ::= = ! ^= ! < ! <= ! >= ! >
 <repetition list> ::= (!
 <integer value> (!
 <repetition list> <fill value> ,
 <scale factor> ::= <integer number>
 <segment base declaration> ::=
 <segment base heading> BASE <integer register>
 <segment base heading> ::= SEGMENT !
 GLOBAL DATA <identifier> !
 EXTERNAL DATA <identifier> !
 COMMON DATA <identifier> !
 COMMON !
 DUMMY
 <segment close declaration> ::= CLOSE BASE
 <separate procedure heading> ::=
 SEGMENT <simple procedure heading> !
 GLOBAL <simple procedure heading> !
 EXTERNAL <simple procedure heading>
 <shift operator> ::= SHLL ! SHLA ! SHRL ! SHRA
 <short integer value> ::= <short integer number> !
 <hexadecimal value> S
 <simple byte type> ::= BYTE ! CHARACTER
 <simple integer type> ::= INTEGER ! LOGICAL
 <simple K-register assignment> ::=
 <K-register> := <A-primary> !
 <K-register> := <monadic operator> <A-primary> !
 <integer register> := <string> !
 <integer register> := @ <T-cell designator> !
 <integer register> := @ <procedure identifier>
 <simple long real type> ::= LONG REAL

 E-3

 <simple procedure heading> ::=
 PROCEDURE <identifier> (<integer register>)
 <simple real type> ::= REAL
 <simple short integer type> ::= SHORT INTEGER
 <simple statement> ::= <block> !
 <K-register assignment> !
 <T-cell assignment> !
 <function designator> !
 <procedure statement> !
 <GOTO statement> !
 <CASE statement> !
 NULL
 <stat condition> ::= <condition> !
 <statement> ; <condition>
 <statement> ::= <simple statement> !
 <IF statement> !
 <WHILE statement> !
 <FOR statement>
 <string> ::= " <character sequence> " !
 <hexadecimal value> X
 <syn cell value> ::= <T-cell designator> - <T-cell designator>
 <synonymous cell> ::= SYN <T-cell designator> ! SYN <integer value>
 <synonymous integer value> ::= SYN <integer value> !
 SYN <monadic operator> <integer value> !
 SYN <syn cell value> !
 <synonymous integer value> <arithmetic operator> <integer value> !
 <synonymous integer value> <logical operator> <integer value> !
 <synonymous integer value> <shift operator> <integer value>
 <T-cell assignment> ::= <A-cell designator> := <K-register> !
 <T-cell designator> := <T-cell value> !
 <T-cell assignment> <logical operator> <T-cell value>
 <T-cell declaration> ::= <T-type> <item> ! <T-cell declaration> , <item>
 <T-cell designator> ::= <T-cell identifier> !
 <T-cell identifier> (<index> / <integer value expression>) !
 <T-cell identifier> (<index>)
 <T-cell identifier> ::= <identifier>
 <T-cell synonym> ::=
 <T-type> <identifier> <synonymous cell> !
 <T-cell synonym> , <identifier> <synonymous cell>
 <T-cell value> ::= <T-cell designator> !
 <T-value> !
 <string>
 <T-primary> ::= <T-value> ! <T-cell designator>
 <T-type> ::= <simple T-type> ! ARRAY <integer value> <simple T-type>
 <true part> ::= <simple statement> ELSE
 <unsigned integer number> ::= <digit> !
 <unsigned integer number> <digit>
 <unsigned long real number> ::= <floating-point number> L !
 <unsigned integer number> L
 <unsigned real number> ::= <floating-point number> !
 <unsigned integer number> R
 <unsigned short integer number> ::= <unsigned integer number> S
 <while clause> ::= WHILE <compound condition> DO
 <WHILE statement> ::= <while clause> <statement>

 E-4

