
The SuperPascal User Manual

PER BRINCH HANSEN 1

School of Computer and Information Science
Syracuse University, Syracuse, NY 13244, USA

November 1993

Abstract: This report explains how you compile and run SuperPascal programs
[Brinch Hansen 1993a].

1 Command Aliases

If you are using SuperPascal under Unix, please define the following command aliases
in the file .cshrc in your home directory:

alias sc <path name of an executable compiler sc>
alias sr <path name of an executable interpreter sr>

2 Program Compilation

You compile a SuperPascal program by typing the command

sc

followed by a return. When the message

source =

appears, type the name of a program textfile followed by a return. After the message

code =

type the name of a new program codefile followed by a return.

Example:

sc
source = sortprogram
code = sortcode

If the compiler finds errors in a program text, the errors are reported both on
the screen and in the textfile errors, but no program code is output.

1Copyright c©1993 Per Brinch Hansen. All rights reserved.



2 Per Brinch Hansen

3 Program Execution

You run a compiled SuperPascal program by typing the command

sr

followed by a return. When the message

code =

appears, type the name of a program codefile followed by a return. After the message

select files?

you have a choice:

1. If you type no followed by a return, the program will be executed with text
input from the keyboard and text output on the screen.

2. If you type yes followed by a return, you will first be asked to name the input
file:

input =

Type the name of an existing textfile or the word keyboard followed by a return.
Finally, you will be asked to name the output:

output =

Type the name of a new textfile or the word screen followed by a return.

Examples:

sr
code = sortcode
select files? no

sr
code = sortcode
select files? yes
input = testdata
output = screen



The SuperPascal User Manual 3

4 Compile-time Errors

During compilation, the following program errors are reported:

• Ambiguous case constant: Two case constants denote the same value.

• Ambiguous identifier: A program, a function declaration, a procedure declara-
tion, or a record type introduces two named entities with the same identifier.

• Forall statement error: In a restricted forall statement, the element statement
uses a target variable.

• Function block error: A procedure statement occurs in the statement part of
a function block.

• Function parameter error: A function uses an explicit or implicit variable
parameter.

• Identifier kind error: A named entity of the wrong kind is used in some context.
(Constants, types, fields, variables, functions and procedures are different kinds
of named entities.)

• Incomplete comment: The closing delimiter } of a comment is missing.

• Index range error: The index range of an array type has a lower bound that
exceeds the upper bound.

• Number error: A constant denotes a number outside the range of integers or
reals.

• Parallel statement error: In a restricted parallel statement, a target variable
of one process statement is also a target or an expression variable of another
process statement.

• Procedure statement error: In a restricted procedure statement, an entire vari-
able is used more than once as a restricted actual parameter.

• Recursion error: A recursive function or procedure uses an implicit parameter.

• Syntax error: The program syntax is incorrect.

• Type error: The type of an operand is incompatible with its use.

• Undefined identifier: An identifier is used without being defined.



4 Per Brinch Hansen

5 Run-time Errors

During program execution, the following program errors are reported:

• Channel contention: Two processes both attemp to send or receive through
the same channel.

• Deadlock: Every process is delayed by a send or receive operation, but none
of these operations match.

• False assumption: An assume statement denotes a false assumption.

• Message type error: Two processes attempt to communicate through the same
channel, but the output expression and the input variable are of different
message types.

• Range error: The value of an index expression or a chr, pred, or succ function
designator is out of range.

• Undefined case constant: A case expression does not denote a case constant.

• Undefined channel reference: A channel expression does not denote a channel.

6 Software Limits

If a program is too large to be compiled or run, the software displays one of the
following messages and stops. Each message indicates that the limit of a particular
software array type has been exceeded:

• Block limit exceeded: The total number of blocks defined by the program and
its function declarations, procedure declarations, forall statements, and process
statements exceeds the limit maxblock.

• Branch limit exceeded: The total number of branches denoted by all statements
in the program exceeds the limit maxlabel.

• Buffer limit exceeded: The size of the compiled code exceeds the limit maxbuf.

• Case limit exceeded: The number of case constants exceeds the limit maxcase.

• Channel limit exceeded: The number of channels opened exceeds the limit
maxchan.

• Character limit exceeded: The total number of characters in all word symbols
and identifiers exceeds the limit maxchar.



The SuperPascal User Manual 5

• Memory limit exceeded: The program execution exceeds the limit maxaddr.

• Nesting limit exceeded: The level of nesting of the program and its function
declarations, procedure declarations, parallel statements, and forall statements
exceeds the limit maxlevel.

• String limit exceeded: The number of characters in a word symbol, an identifier,
or a character string exceeds the limit maxstring.

The standard software limits are:

maxaddr = 100000 maxchar = 10000
maxblock = 200 maxlabel = 1000
maxbuf = 10000 maxlevel = 10
maxcase = 128 maxstring = 80
maxchan = 10000

If these limits are too small for compilation or execution of a program, the limits
must be increased by editing a common declaration file and recompiling both the
compiler and the interpreter [Brinch Hansen 1993b].

References

[1] Brinch Hansen, P. (1993a) The programming language SuperPascal. School of Computer
and Information Science, Syracuse University, Syracuse, NY.

[2] Brinch Hansen, P. (1993b) The SuperPascal software notes. School of Computer and
Information Science, Syracuse University, Syracuse, NY.


