SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 11, 397414 (1981)

Edison Programs

PER BRINCH HANSEN
Computer Science Department, University of Southern California, Los Angeles, California 90007, U.S.A4.

SUMMARY

This paper describes three sample programs written in the programming language Edison.
These programs illustrate the practical use of modules, concurrent statements, and
input/output operations. The paper concludes with a brief overview of the Emono operating
system and the Edison compiler both of which are written entirely in Edison.

KEy worDns [Ldison programs Modular programs Concurrent programs Input/output

CONTENTS

1. INTRODUCTION 397
2. THE BACKUP PROGRAM 398
3. THE TYPING PROGRAM 401
4. THE PRINT PROGRAM 405
5. THE EMONO SYSTEM 410
6. THE EDISON COMPILER 413
7. EXECUTION TIMES 414

REFERENCES 414

1. INTRODUCTION

This paper describes three sample programs written in the programming language
Edison.! These programs illustrate the practical use of modules, concurrent state-
ments, and input/output operations.

The first program handles the operating system task of copying the contents of a disk
onto magnetic tape. The second program enables the user of a personal computer to
measure his typing speed. The third program illustrates some of the programming
techniques used in compilation. It prints an Edison program text and underlines the
word symbols of the language. 'These programs have all been tested under the Emono
operating system on a PDP-11/55 computer.

If these programs had been developed directly for a particular operating system
such as Emono) they would have used the available procedures of that system to
perform input/output operations. But since one of their purposes is to illustrate how
Edison can be used to control peripheral devices the programs have been made largely
self-contained.

The programming language Edison has been available on the PDP-11 computers
since 1 July 1980. A single-user operating system, called Emono, has been written in
Edison. It includes an Edison compiler, a PDP-11 assembler, a file system, a screen
editor, and a variety of utility programs, all written in Edison. This report concludes
with a brief overview of the Emono operating system and the Edison compiler.

0038-0644/81/040397-18%01.80 Received 15 October 1980
© 1981 Per Brinch Hansen

398 PER BRINCH HANSEN

2. THE BACKUP PROGRAM

The purpose of the backup program is to write a copy of the entire contents of a disk
- onto magnetic tape. The disk is divided into 200 cylinders of 12K bytes each. The
cylinders are to be written onto the tape as separate blocks starting at the beginning of
the tape. The last block must be followed by an end of file mark on the tape.

The backup program has the form of a procedure declaration preceded by constant
and type declarations

const nl = char(10); linelength = 132
array line [1:linelength] (char)

proc backup(
proc writetext(text: line))

The program uses a procedure writetext to report disk or tape failure to the operator.
This procedure is supplied by the operating system that invokes the execution of the
backup program. The declarations which precede the program heading describe the
parameter type of the procedure writetext as well as the control character new line (nl).
The body of the program (represented by three dots above) consists of a type
declaration of disk cylinders, a disk module, a tape module, and a statement part
describing the backup operation. A cylinder is declared as an array of 6K words

const cylinder_length = 6144 "words"
array cylinder [1:cylinder_length] (int)

The disk transfers are controlled by a module which exports two procedures called
read disk and more disk (Algorithm 1).

When the procedure read disk is called repeatedly it returns the values of successive
disk cylinders. The current cylinder number is given by a local variable which is
automatically initialized to zero by the module.

The boolean function more disk compares the current cylinder number to the disk
size to determine whether more cylinders remain to be read from the disk.

The disk is controlled by four device registers. The byte addresses of these registers
are given by octal numerals named status, count, address, and search. The following
takes place when a cylinder value is read from the disk and assigned to a variable named
block:

1. The store address of the variable is placed in the address register of the disk. The
store address is computed by calling a standard function named addr.

2. The (negative) value of the cylinder length (in words) is placed in the count
register of the disk.

3. The cylinder number (multiplied by a constant) is placed in the search register of
the disk.

4. A read command is placed in the status register of the disk.

5. The process that initiates the disk transfer is delayed until the status register
shows that the disk is ready to perform another operation.

6. If the status register indicates that an error was detected during the disk transfer
then an error message is displayed for the operator and the program execution halts
after resetting the disk (to remove the error indication).

EDISON PROGRAMS 399

module ''disk"
const status = #177404; count = #177406;
address = #177410; search = #177412; reset = #%1;
read = #5; ready = #200; error = # 100000;
disk_size = 200 "cylinders"

var cylinder_no: int

proc disk_error

begin writetext(line('disk error', nl, "4 7);
place(status, reset);
when sense(status, ready) do skip end;
halt

end

*proc more_disk: bool
begin val more_disk : = cylinder_no { disk_size end

*proc read_disk(var block: cylinder)

begin place(address, addr(block));
place(count, —cylinder_length);
place(search, cylinder_no * 32);
place(status, read);
when sense(status, ready) do skip end;
if sense(status, error) do disk_error end;
cylinder_no : = cylinder_no+1

end

begin cylinder_no : = 0 end
Algorithm 1

7. If the disk transfer succeeded the cylinder number is increased by one.

The disk module describes all the possible disk operations performed by the backup
program. It illustrates the use of the standard procedures addr, place and sense to
control a non-trivial device directly in the Edison-11 language.

" Since there is no attempt to schedule the use of the disk among competing processes
it is assumed that the disk module will be used only by a single process.

The Edison-11 implementation uses neither clock interrupts nor peripheral
interrupts to control processor multiplexing. Concurrent processes are executed one at
a time in cyclical order. Each process runs until it either terminates or delays itself by
means of a when statement. The disk module illustrates the use of a when statement to
delay a process until an input/output operation has been completed.

The magnetic tape is controlled by another module (Algorithm 2), which exports
procedures for rewinding the tape and for writing a cylinder value or a file mark on it.

The tape is controlled by four device registers with addresses named status,
command, count and address. Input/output commands are represented by constants
named rewind, write, and write eof. The relevant states of the tape unit are given by
constants named online, ready, error and eof.

The initial operation of the tape module checks that the power of the tape unit is
turned on, and that a tape reel is mounted and ready to be used by the computer (as
indicated by the online state).

400 PER BRINCH HANSEN

Although the details of the disk and tape procedures differ the programming
techniques used are very similar for the two devices.

module "tape"’

const status = #172520; command = #172522;
count = #172524; address = 4#172526; rewind = #60017;
write = #60005; write_eof = #60007; online = 3 100;
ready = 4 200; error = #100000; eof = #40000

proc tape_error
begin writetext(line('tape error’, nl, '#")); halt end

*proc rewind_tape
begin place(command, rewind);

when sense(command, ready) do skip end
end

*proc write_tape(var block: cylinder)

begin place(address, addr(block));
place(count, —2 * cylinder_length);
place(command, write);
when sense(command, ready) do skip end;
if sense(command, error) do tape_error end

end

*proc mark_tape
begin place(command, write_eof);
when sense(command, ready) do skip end;
if not sense(status, eof) do tape_error end
end

begin if not sense(status, online) do tape_error end eénd
Algorithm 2

When the backup program is executed the initial statements of the modules are
executed one at a time in the order written. Following this the statement part of the
program is executed. It uses a variable x to hold a pair of cylinder values and uses
another variable i as an index to select one of the two cylinder values.

array cylinder_set [false:true] (cylinder)
var x: cylinder_set; i: bool
The statement part itself is shown below:
begin
rewind_tape; i : = false; read_disk(x[i]);
while more_disk do
i:=mnoti;
cobegin 1 do write_tape(x[not i])
also 2 do read_disk(x[1]) end
end;
write_tape(x[i]); mark_tape; rewind_tape
end

EDISON PROGRAMS 401

This algorithm is initially executed as a single, sequential process which rewinds the
tape and reads the first cylinder value from the disk.

If there are more cylinder values to be read from the disk the execution continues as
two concurrent processes: while one process writes the previous cylinder value onto the
tape another process reads the next cylinder value from the disk. When both data
transfers have been completed successfully the two processes terminate and the
execution continues as a single process which repeats the above if necessary.

When the last cylinder value has been read from the disk, while at the same time the
second last cylinder value has been written on the tape, the loop terminates.

The execution now becomes sequential again and the last cylinder value 1s written on
the tape. Following this the tape is marked with an end of file mark and is then rewound.

The reasoning about this concurrent program is quite simple because the two
processes always operate on disjoint, indexed variables x[i] and x[mot i]. These
variables are disjoint because their indices i and not i only can assume ‘opposite’ values
(false and true).

Since the indices are changed only when the execution is purely sequential, no
synchronization of the processes is needed during the execution of the concurrent
statement. The simplicity then is achieved by using a concurrent statement within a
while statement so that the processes are recreated for every cylinder transfer.

For a PDP-11/55 minicomputer with a mixture of bipolar store and core store the
creation and termination of two processes takes only about 0.2ms. When this is
repeated 200 times the overhead of process creation is still only 40 ms for the whole
backup operation. So it seems that the ‘simplistic’ form of concurrency used in Edison
makes the underlying implementation so trivial that an ‘unrealistic’ style of program-
ming now becomes quite practical in some cases.

The backup program copies the whole disk to tape in 74 s (not including the final
rewinding of the tape). This corresponds to a transfer rate of 33200 bytes/s which is 92
per cent of the top speed of the slowest device (the tape unit). If the program is rewritten
to run completely sequentially the execution time is increased by 29 per cent to 96 s.

This program shows how Edison can be used to implement the basic input/output
operations of an operating system.

3. THE TYPING PROGRAM

The purpose of the typing program is to measure the typing speed of a person. The
timing begins when the user types the first character. The characters typed at the
keyboard are shown on a display. When the user types the character # the typing speed
(in words/min) is displayed and the program terminates. (A word is defined as an
uninterrupted sequence of letters typed).

The typing program is shown in its entirety (Algorithm 3). It uses three peripheral
devices: a display, a keyboard, and a line frequency clock. Each device is controlled by a
separate module.

The display module exports procedures for writing a single character, a textstring,
and an integer value. The character new line (nl) is output as a carriage return {cr)
followed by a line feed (lf).

The module uses a local procedure to display a single character. The character is
placed in a buffer register when a status register indicates that the device is ready.

402 PER BRINCH HANSEN

proc typing
const nl = char(10); cr = char(13); linelength = 132
array line [1:linelength] (char)

module ''display"’

const status = #177564; buffer = #177566;
ready = #200; If =nl

proc display(c: char)
begin
when sense(status, ready) do
place(buffer, int(c))
end
end

¥proc write(c: char)

begin if ¢ = If do display(cr) end,
display(c)

end

*proc writetext(text: line)
var i: int; c: char
begini: = 1; ¢ : = text[1];
while ¢ (> '#'do
write(c); 1: =1i+1; ¢ : = text[i]
end
end

*proc writeint{value: int)

array numeral [1:5] (char)

var no: numeral; n: int; more: bool
begin ''value > = 0"

n : = 0; more : = true;
while more do
n:=n+1;

no[n] : = char(value mod 10+int('0"));
value : = value div 10;
more : = value > 0

end;

while n > 0 do
write{no[n]); n : =n—1

end

end

begin skip end 'display”

module "keyboard"

const status = #177560; buffer = #177562;
ready = #200; last = "4

Algorithm 3

EDISON PROGRAMS

set charset (char)
var ch: char; letters: charset

proc read

begin
when sense(status, ready) do

obtain(buffer, ch:int)

end;
ch : = char(int(ch) mod 128);
if ch = cr do ch : = nl end;
write(ch)

end

*proc typist(var words: int)

begin words : = 0;
while ch in letters do
read;

while ch in letters do read end,
words : = words+1
else ch ¢) last do read end
end

begin
letters : = charset(' ABCDEFGHIJKLMNOPQRSTUVWXYZ')
+ charset('abedefghijklmnopgrstuvwxyz');
writetext(line('start typing', nl, '#"));
read
end ''keyboard"

module ''clock"

const status = # 177540; ready = #200;
interval = 167 'units of 0.1 msec'
second = 10000 "units"

var running: bool

*proc clock(var sec: int)
var elapsed: int
begin elapsed : = 0; sec : = (;
while running do
when sense(status, ready) do
place(status, 0)
end;
sec : = sec+ (elapsed +interval) div second,;
elapsed : = (elapsed +interval) mod second
end;
sec : = sec+ 2 * elapsed div second
end

Algorithm 3 (continued)

403

404 PER BRINCH HANSEN

*proc stop
begin running : = false end

begin running : = true; place(status, 0) end '"clock"

var words, seconds: int
begin
cobegin 1 do typist(words); stop
also 2 do clock(seconds) end;
if seconds > 0 do
write(nl); writeint(60 * words div seconds);
writetext(line(' words per minute’, nl, ‘4 "))
end
end 'typing"
Algorithm 3 (continued)

The keyboard module exports a procedure which describes a typist process. This
process reads one character at a time from the keyboard until the last character (3) has
been typed and records the number of words typed.

The module uses a local procedure to read a single character from the keyboard. The
character is obtained from a buffer register when the device is ready. For some
keyboards the character value must be converted from teletype code to ASCII code by
the modulo operation shown. A carriage return (cr) is converted to the character new
line (nl). Finally, the character is echoed on the display by a write operation.

The initial operation of the module defines the set of letters of which words are
composed, displays the message ‘start typing’ and waits until the user has typed the first
character (which is input by a read operation). This delay prevents the clock module
from being initialized until the typing begins.

The clock module exports a procedure which describes a clock process and another
procedure which stops the clock process. The real-time is measured by means of a line
frequency device which sets a bit in a status register every 16-7 ms. The bit is reset by
the program when it has been recognized.

The initial operation of the module describes the clock as running and resets the
device status to start the first clock cycle.

The clock process repeats a loop in which it waits until the status register has been
changed before starting another clock cycle. The clock process measures the real-time
in whoie seconds using a parameter named sec and measures the current fraction of a
second in units of 0-1 ms using a local variable named elapsed. When the variable
named running assumes the value false the clock process rounds off the last fraction
of a second and terminates after recording the total number of seconds elapsed.

When the procedure stop is called by another process the variable running is assigned
the value false to stop the clock process.

The statement part of the program describes two concurrent processes: a typist
process which keeps pace with the user, and a clock process which keeps track of time.
When the typing stops the number of words typed is known and the clock is stopped. At
this point the number of seconds used is also known. After termination of the processes
the typing speed is displayed.

The backup program described earlier uses concurrency only to speed up a time-
consuming operation limited by the computer peripherals. Since the typing process is
limited by the user (and not by the computer) the use of concurrency does not speed

EDISON PROGRAMS 405

things up in the typing program. But it serves as a convenient way of describing two
independent activities (the typing and the progress of time) by separate program pieces
instead of using a sequential program that alternates between operations on the
keyboard and the clock.

The typing program demonstrates the additional freedom of design which concur-
rent programming can add to personal computing if it is supported by an abstract
programming language.

4. THE PRINT PROGRAM

The purpose of the print program is to print the text of an Edison program and
underline the word symbols of the language. The source text to be printed is a sequence
of characters with the following structure

Source text:

[Source line 1* End medium character
Source line:

[Graphic character]* New line character

A new line character (nl) marks the end of each source line. An end medium character
(em) marks the end of the source text. All other control characters in the source text
must be ignored by the print program.

The source text is a correct Edison program written in small letters without
underlined word symbols. In the printed text all word symbols must be underlined.
The text must be printed with at most 50 lines per page, and every page must begin with
2 blank lines.

'The procedure which is used to read the source text character by character is a
parameter of the print program

proc print(
proc read(var ch: char))

The program heading is followed by declarations of control characters and two data
types called line and character set
const If = char(10); nl = If; ff = char(12);
cr = char(13); em = char(25); sp ="
linelength = 127

array line [1:linelength] (char)
set charset (char)

The program describes two concurrent processes called the scanner and the printer.
The scanner inputs the source text and supplements it with underscores, while the
printer breaks the text into pages and outputs it with underscoring. These processes
exchange characters through a common buffer module. In addition, the scanner uses
three modules: (1) A source module inputs the source text while skipping invisible
characters; (2) A symbol module looks up words to determine whether they should be
underlined or not; (3) An underscore module sends characters from the scanner
through the buffer and supplements them with underscores.

406 PER BRINCH HANSEN

The final text received by the printer process has the following structure

Final text:
[Final line]* End medium character
Final line:
[Graphic character |* Carriage return character
[Extra character ¥ Line feed character
Extra character:
'_" # Space

Each final line consists of the graphic characters of the corresponding source line
followed by a carriage return character (cr). If the line includes one or more word
symbols the carriage return is followed by extra characters, one for each graphic
character of the line. The extra characters are underscores where the corresponding
graphic characters should be underlined and are spaces where they should not be
underlined. Each line ends with a line feed character (If).

The buffer module exports procedures for sending and receiving a single character
(Algorithm 4). The characters are stored in a cyclical buffer of type line. The current
sequence of characters stored in the buffer is described by the indices of the first and last
characters in the buffer and by the length of the sequence. The processes that use the
buffer to communicate are synchronized by means of when statements which delay the
sending (or receiving) of characters until the buffer is nonfull (or nonempty). Initially
the buffer is empty.

module ''buffer"
var buffer: line; first, last, length: int

*proc send(ch: char)
begin
when length { linelength do
buffer[last] : = ch;
last : = last mod linelength+1;
length : = length+1
end
end

*proc receive(var ch: char)
begin
when length > 0 do
ch : = buffer[first];
first : = first mod linelength+1;
length : = length—1
end
end

begin first : = 1; last : = 1; length : = 0 end
Algorithm 4

The source text module exports a procedure nextchar which inputs the next visible
character of the source text (Algorithm 5). The invisible characters consist of all the
control characters with the exception of new line and end medium.

EDISON PROGRAMS 407

The word symbol module exports a boolean function which determines whether or
not a given word is a word symbol (Algorithm 6). This is done by a linear search in a
module "source text"
const nul = char(0); us = char(31); del = char(127)
var invisible: charset; x: char

*proc nextchar(var ch: char)
begin read(ch);
while ch in invisible do read(ch) end

end
begin invisible : = charset(del); x : = nul;
while x { = us do
invisible : = invisible 4 charset(x);
x : = char(int(x)+1)
end;
invisible : = invisible — charset(nl, em)
end

Algorithm 5

module ''word symbols"

const maxsym = 28
array symboltable [1:maxsym] (line)
var symbol: symboltable

#*proc word_symbol(word: line): bool
var i, j: int
begini: = 1;j: = maxsym;
while i { j do
if word ¢ > symbol[i]do1:=1+1
else truedoj: =1end
end
val word_symbol : = word = symbol[i]
end

begin
symbol : = symboltable(line('also'), line('and"),

line('array'), line ('begin'), line (‘cobegin’),
line('const'), line('div"), line('do"), line ('else’),
line(‘end"), line(‘enum'), line('if"), line('in’),
line('lib"), line('mod'), line('module’),
line('not"), line('or"), line('post’), line('pre'),
line('proc’), line('record’), line('set"),
line('skip’), line('val'), line('var'), line('when'),
line('while'))

end

Algorithm 6

408 PER BRINCH HANSEN

table that contains all the word symbols of the language. The table is initialized by
evaluating a single constructor of type symbol table.

The underscore module exports four procedures named roman, italic, new line, and
end medium (Algorithm 7). These procedures are used by the scanner to transmit the
text one character at a time through the buffer. The module uses an integer variable to
count the length of the current line and uses a set variable named underscore to
remember the positions of the characters (if any) that should be underlined on that line.
Initially, the first line is of length zero and the set of characters to be underlined is
empty.

T'he roman operation sends a given character through the buffer and increases the
line length by one. The character will not be underlined.

The italic operation sends a given character through the buffer and increases the line
length by one. The character is also included in the set of characters to be underlined.

module "underscore"

set intset (int)
var underscore: intset; length: int

*proc roman(ch: char)
begin send(ch); length : = length+1 end

*proc italic(ch: char)
begin roman(ch);

underscore : = underscore + intset(length)
end

*proc newline
var i: int
begin send(cr);
if underscore ¢} intset do
1i:=0
while 1 { length do
i:=1i+1;
if i in underscore do send('_")
else true do send(sp) end

end;
underscore : = intset
end;
send(lf); length : =0
end

*proc endmedium
begin send(em) end

begin underscore : = intset; length : = 0 end

Algorithm 7

EDISON PROGRAMS 409

The new line operation sends a carriage return through the buffer and examines the
underscore set. If it is nonempty an extra character is transmitted for each character
position of the line. The extra character is an underscore, if the position is included in
the set, and is a space, if it is not in the set. Finally, a line feed character is transmitted
and the length of the next line is set to zero with an empty set of underscores.

The end medium operation sends an end medium character through the buffer.

The scanner process is described by a procedure which examines the source text
character by character. (Algorithm 8). A letter is the beginning of a word which is -

“assembled in a local variable of type line. When the word is complete it is looked up to
determine whether it is a word symbol in the Edison language. In that case, it is sent to
the printer as a sequence of italic characters; otherwise, it is transmitted as roman
characters. Any other graphic characters are copied directly as roman characters. The
control characters new line and end medium are treated as described earlier.

proc scanner
var ch: char; letters, alphanum: charset;
word: line; length, i: int; mark: bool
begin
letters : = charset('abedefghijklmnopqgrstuvwxyz');
alphanum : = letters +charset ('0123456789_");
nextchar(ch);
while ch in letters do
word : = line(sp); length : = 0;
while ch in alphanum do
length : = length + 1; word[length] : = ch; nextchar(ch)
end;
mark : = word_symbol(word); i : = 0;
while i { length do
i:=1i4+1;
if mark do italic(word[i])
else true do roman(word[i]) end
end
else ch = nl do newline; nextchar(ch)
else ch (> em do roman(ch); nextchar(ch) end;
endmedium
end

Algorithm 8

A printer module exports a single procedure which describes the printer process
(Algorithm 9). It uses a local procedure to write a single character on a line printer. The
printer process counts the number of lines printed in a local variable. At the beginning
and after every 50 lines printed it outputs a form feed (ff) followed by two new line
characters (nl). It then receives lines character by character from the buffer and prints
them. This continues until an end medium character (em) has been received.

410 PER BRINCH HANSEN

module “printer"
const status = #177514; buffer = #177516; ready = #200

proc write(ch: char)
begin
when sense(status, ready) do
place(buffer, int(ch))
end
end

*¥proc printer
const pagelimit = 50 "lines’
var lineno: int; ch: char
begin lineno : = 1; receive(ch);
while ch (> em do
if lineno mod pagelimit = 1 do
write(ff); write(nl); write(nl)
end;
while ch ¢ if do
write(ch); receive(ch)

end;
write(ch); receive(ch);
lineno : = lineno+1
end
end

" begin skip end
Algorithm 9

The statement part of the print program consists of a concurrent statement which
describes the scanning and printing as simultaneous operations

begin
cobegin 1 do scanner
also 2 do printer end
end

In its present form, the print program underlines word symbols wherever they occur
in the source text. By extending the scanner with more cases one can prevent
underlining within comments and character strings.

This program demonstrates the use of message buffers to smooth temporary
fluctuations of processing speeds. It also illustrates in a simplified form well-known
programming techniques which are used in compilers to recognize and classify text
symbols.

5. THE EMONO SYSTEM

The Emono system enables a single user to develop and execute Edison programs on a
PDP-11 computer with 28K words of store, a disk of 1M words, a display terminal, a
magnetic tape unit, and a line printer.

EDISON PROGRAMS 411

The system consists of an operating system and a set of standard programs, all
written in Edison. Emono was derived from a Concurrent Pascal system called Mono
by rewriting all the programs in Edison.? By adopting the same filing system as Mono it
was possible to develop Emono on a Mono disk using a preliminary Edison compiler
written in Sequential Pascal. The Emono system has been in operation since 1 July
1980.

The following is a brief overview of the system to illustrate the capabilities of the
Edison language for non-trivial software development.

"The programs of a user are stored as text and code files on a removable disk pack. The
standard files are described in a single system catalog, while those files that are still
being developed are described in one or more user catalogs.

At the beginning of a session, the user mounts his own disk pack and starts the
Emono system. The user then types a command that gives him access to the files
described in a given user catalog as well as those described in the system catalog.
The user can now input, compile, edit, and test Edison programs. When a program is
finished, the user can move its description from the given user catalog to any other
catalog (including the system catalog).

The user can make copies of text files on the line printer. But the system makes the
display and editing at the terminal so convenient that the need for printed listings is
reduced considerably.

It is possible to copy the files of a single catalog (or the whole disk) onto magnetic
tape and use it to reestablish disk files after hardware or software failure.

To begin with the operating system executes a cyclical Edison program called do
which accepts commands from the terminal. Each command specifies the execution of
an Edison program with a set of arguments. The given program is loaded from the disk
and executed as a library procedure called by the do program. Any Edison program can
call any other Edison program stored on the disk by means of a procedure called run
implemented by the operating system.

The interface between the Emono system and any of its user programs is a set of
procedures that are implemented by the operating system and are passed as arguments
to the user programs before they are executed. These procedures give each user
program simultaneous access to at most four sequential files. Other procedures enable
programs to use the terminal, to create and delete files on the disk, and to call other
programs stored on the disk.

The Emono system uses the same structure of catalogs and files as the Mono
system from which it is derived. T'o avoid occasional, but time consuming, relocation of
data on the disk, the pages allocated to a single file are addressed indirectly through a
page map—a single disk page which defines the addresses of the data pages of the file.
The page map allows the operating system to place the data pages anywhere on the disk
and let them remain there until the file is deleted.

The system catalog is a file that starts at a fixed disk address and which describes
the name and page map address of each standard file {including itself). Each user
catalog is described as a file in the system catalog. At the beginning of a terminal
session, all file names are looked up in the system catalog. The user can now select
a given user catalog by name. Following this, all file names are first looked up in
the given user catalog, and (if that fails) they are then looked up in the system catalog.
A file is opened by looking it up in the current set of catalogs used and bringing its page
map into the main store.

412 PER BRINCH HANSEN

Since each user has his own removable disk pack, files need only be protected against
accidental overwriting and deletion. All files are initially unprotected. The user
protects a file by calling a standard program that sets the protection attribute of the file
to true in the catalog that describes it.

The Emono operating system itself and most of its standard programs are sequential
Edison programs. Some of the standard programs and user programs do, however,
include concurrent statements. The usefuiness of concurrency in application programs
has already been demonstrated by the three sample programs.

The Emono system consists of about 30 Edison programs of the following lengths:

Emono program 900 lines
Do program 300 lines
File program 700 lines
Catalog programs 3000 lines
Device programs 1100 lines
Edit program 1000 lines
Edison compiler 4300 lines
Assembler 1900 lines
Other programs 1100 lines
Total system 14300 lines

By comparison the Mono system written in Concurrent and Sequential Pascal consists
of 25600 lines of program text.
The Emono system requires a main store of 28K words which is used as follows

Edison kernel 2K words
Operating system 8K words
User programs and variables 18K words
Main store 28K words

With this amount of store the Edison compiler can recompile its largest pass and still
leave 2K words unused. The Mono system written in Concurrent and Sequential
Pascal requires 34K words of store.

The system kernel is the only program written in assembler language. Its function is
to load and execute abstract Edison code. It occupies 2K words of store

Operator communication 400 words

Program loading 500 words
Code interpreter 1100 words
Edison kernel 2000 words

I developed the Edison compiler, the assembler, and the kernel over a period of 6
months. The rest of the Mono programs were rewritten in Edison by Habib Maghami
and Peter Lyngbaek in two months.

It would be a simple task to transfer the Emono system to an LSI microcomputer
with a dual floppy disk. However, since Emono was copied directly from a system that
was originally written in Concurrent Pascal it does not fully take advantage of the
greater flexibility of the Edison language. It would also be cumbersome to move the
Emono system to other microcomputers since the Edison programs include machine-
dependent input/output operations. The main purpose of the Emono system is to serve
as an early program development system for future Edison systems.

EDISON PROGRAMS 413

6. THE EDISON COMPILER

The Edison compiler is the largest program written so far in Edison. The followingisa
brief overview of the compiler which will be described in detail elsewhere.

The compiler is divided into four passes, which are called one at a time by a control
program named Edison. In general, each pass makes a single scan of the program text
and outputs intermediate code on the disk. This becomes the input to the next pass.

The function of the passes is listed below.

Pass 1: Symbol analysis

Pass 2: Syntax and scope analysis
Pass 3: Syntax and semantic analysis
Pass 4: Code generation

Pass 1 scans the program text character by character and converts symbols to integer
values. This pass does not distinguish between different uses of the same name in
different blocks.

Pass 2 checks the program text by means of recursive descent using one procedure for
each syntactic form of the language and skipping over invalid sentences. Different uses
of the same name in different blocks are replaced by unique name indices. Apart from
this, scope analysis is only concerned about whether a name can be used in a given
context, but does not worry about what kind of entity it refers to.

Pass 3 checks that operands and operators are compatible and computes the lengths
of types and the addresses of variables. T'o make this (the most complicated pass)
understandable, the method of recursive descent is again used to recognize syntactic
forms.

Pass 4 scans its input twice and builds a table of program labels and procedure stack
requirements during the first scan. During the second scan it outputs abstract code in
which program labels are replaced by relative addresses.

The compiler was first written in Edison to make sure that the language was
convenient for compiler implementation. The compiler was then rewritten in
Sequential Pascal using a programming style corresponding to the available data types
and statements of Edison. Finally, the compiler was completely rewritten in Edison and
compiled by means of the Pascal version of the compiler.

The final compiler consists of 4300 lines of Edison text

Edison 500 lines
Pass 1 300 lines
Pass 2 1000 lines
Pass 3 1500 lines
Pass 4 1000 lines

Compiler 4300 lines
The Edison compiler is only half the size of the Concurrent Pascal compiler, and
compiles a language that is more powerful than the combination of Sequential and
Concurrent Pascal.

On a PDP-11/55 minicomputer, the Edison compiler uses a storage area of 16K
words to recompile its largest pass. After an initial time of 9 s it compiles about 14
lines/s. The compilation of pass 3 (1500 lines) takes about 2 min. The compiler
generates about 4 words of abstract code per line of program text. The size of the Edison
code is about 75 per cent of the corresponding code for Sequential Pascal.

414 PER BRINCH HANSEN

7. EXECUTION TIMES

The execution times of Edison-11 programs shown below are measured in units known
as average operation times. For a PDP-11/55 computer with 16 K words of bipolar store
and 12K words of core store the average operation time is about 6 us. For the L.SI-11
microcomputer it is approximately 30 ps.

set record or array
elementary operands operands
operands (7 members) (n words)
constant ¢ 1 442 n 1404 n
whole variable v 1 4 2404 n
L= 1 4 1+04n
= 2 5 1404 n
=)= 1
in 3
and or not 1
+ - 1 4
L 2 6
div mod 3
Other execution times are shown below:
field variable v.f v+2
indexed variable v[e] v+e+4
procedure call (no parameters) 7
if Bdo S end B+S+1
while B do S end B+S+2)n
when B do S end (B+6) n+S
cobegin 1 do S1 S1+...+Sn
+84+13 n

also n do Sn end
A conditional statement of the form
v=cdo S

where v is a whole variable and c is a constant of the same elementary type has the
execution time S+1.

REFERENCES

1. P. Brinch Hansen, ‘Edison—a multiprocessor language’, Software—Practice and Experience, 11,

325-361 (1981).
2. P. Brinch Hansen and J. Fellows, “The Trio operating system’, Software—Practice and Experience,

10, 943-948 (1980).

