SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 11, 397414 (1981)

Edison Programs

PER BRINCH HANSEN
Computer Science Department, University of Southern California, Los Angeles, California 90007, U.S.A4.

SUMMARY

This paper describes three sample programs written in the programming language Edison.
These programs illustrate the practical use of modules, concurrent statements, and
input/output operations. The paper concludes with a brief overview of the Emono operating
system and the Edison compiler both of which are written entirely in Edison.

KEy worDns [Ldison programs Modular programs Concurrent programs Input/output

CONTENTS

1. INTRODUCTION 397
2. THE BACKUP PROGRAM 398
3. THE TYPING PROGRAM 401
4. THE PRINT PROGRAM 405
5. THE EMONO SYSTEM 410
6. THE EDISON COMPILER 413
7. EXECUTION TIMES 414

REFERENCES 414

1. INTRODUCTION

This paper describes three sample programs written in the programming language
Edison.! These programs illustrate the practical use of modules, concurrent state-
ments, and input/output operations.

The first program handles the operating system task of copying the contents of a disk
onto magnetic tape. The second program enables the user of a personal computer to
measure his typing speed. The third program illustrates some of the programming
techniques used in compilation. It prints an Edison program text and underlines the
word symbols of the language. 'These programs have all been tested under the Emono
operating system on a PDP-11/55 computer.

If these programs had been developed directly for a particular operating system
such as Emono) they would have used the available procedures of that system to
perform input/output operations. But since one of their purposes is to illustrate how
Edison can be used to control peripheral devices the programs have been made largely
self-contained.

The programming language Edison has been available on the PDP-11 computers
since 1 July 1980. A single-user operating system, called Emono, has been written in
Edison. It includes an Edison compiler, a PDP-11 assembler, a file system, a screen
editor, and a variety of utility programs, all written in Edison. This report concludes
with a brief overview of the Emono operating system and the Edison compiler.

0038-0644/81/040397-18%01.80 Received 15 October 1980
© 1981 Per Brinch Hansen

The program uses a procedure writetext to report disk or tape failure to the operator.
This procedure is supplied by the operating system that invokes the execution of the
backup program. The declarations which precede the program heading describe the
parameter type of the procedure writetext as well as the control character new line (nl).
The body of the program (represented by three dots above) consists of a type
declaration of disk cylinders, a disk module, a tape module, and a statement part
describing the backup operation. A cylinder is declared as an array of 6K words

const cylinder_length = 6144 "words"
array cylinder [1:cylinder_length] (int)

The disk transfers are controlled by a module which exports two procedures called
read disk and more disk (Algorithm 1).

When the procedure read disk is called repeatedly it returns the values of successive
disk cylinders. The current cylinder number is given by a local variable which is
automatically initialized to zero by the module.

The boolean function more disk compares the current cylinder number to the disk
size to determine whether more cylinders remain to be read from the disk.

The disk is controlled by four device registers. The byte addresses of these registers
are given by octal numerals named status, count, address, and search. The following
takes place when a cylinder value is read from the disk and assigned to a variable named
block:

1. The store address of the variable is placed in the address register of the disk. The
store address is computed by calling a standard function named addr.

2. The (negative) value of the cylinder length (in words) is placed in the count
register of the disk.

3. The cylinder number (multiplied by a constant) is placed in the search register of
the disk.

4. A read command is placed in the status register of the disk.

5. The process that initiates the disk transfer is delayed until the status register
shows that the disk is ready to perform another operation.

6. If the status register indicates that an error was detected during the disk transfer
then an error message is displayed for the operator and the program execution halts
after resetting the disk (to remove the error indication).

