
The Programming Language SuperPascal

PER BRINCH HANSEN 1

School of Computer and Information Science
Syracuse University, Syracuse, NY 13244, USA

November 1993

Abstract: This paper defines SuperPascal—a secure programming language for
publication of parallel scientific algorithms. SuperPascal extends a subset of IEEE
Standard Pascal with deterministic statements for parallel processes and synchron-
ous message communication. A parallel statement denotes parallel execution of a
fixed number of statements. A forall statement denotes parallel execution of the
same statement by a dynamic number of processes. Recursive procedures may be
combined with parallel and forall statements to define recursive parallel processes.
Parallel processes communicate by sending typed messages through channels created
dynamically. SuperPascal omits ambiguous and insecure features of Pascal. Restric-
tions on the use of variables enable a single-pass compiler to check that parallel
processes are disjoint, even if the processes use procedures with global variables.

Key Words: Programming languages, Parallel programming, Recursive parallelism, Syn-
chronous communication, SuperPascal.

1 Introduction

This paper defines SuperPascal—a secure programming language for publication of
parallel scientific algorithms. SuperPascal extends a subset of IEEE Standard Pascal
with deterministic statements for parallel processes and synchronous message com-
munication. A parallel statement denotes parallel execution of a fixed number of
statements. A forall statement denotes parallel execution of the same statement by
a dynamic number of processes. Recursive procedures may be combined with par-
allel and forall statements to define recursive parallel processes. Parallel processes
communicate by sending typed message through channels created dynamically. Su-
perPascal omits ambiguous and insecure features of Pascal. Restrictions on the use
of variables enable a single-pass compiler to check that parallel processes are disjoint,
even if the processes use procedures with global variables.

This paper defines the parallel features of SuperPascal using the terminology and
syntax notation of the Standard Pascal report [IEEE 1983]. Brinch Hansen [1993a]
illustrates SuperPascal by examples. The syntactic checking of parallel statements
is discussed further in [Brinch Hansen 1993b].

A portable implementation of SuperPascal has been developed on a Sun work-
station under Unix. It consists of a compiler and an interpreter written in Pascal.

1Copyright c©1993 Per Brinch Hansen. All rights reserved.

2 Per Brinch Hansen

To obtain the SuperPascal software, use anonymous FTP from the directory pbh at
top.cis.syr.edu.

2 Processes and Variables

command =
variable-access | expression | statement | statement-sequence .

The evaluation or execution of a command is called a process. A structured
process is a sequential or parallel composition of processes. The components of a
parallel composition are called parallel processes. They proceed independently at
unpredictable speeds until all of them have terminated.

In a program text an entire variable is a syntactic entity that has an identifier,
a type, and a scope.

During program execution a block is activated when a process evaluates a function
designator or executes a procedure statement or program. Every activation of a block
B creates a new instance of every variable that is local to B. When an activation
terminates, the corresponding variable instances cease to exist.

During recursive and parallel activations of a block, multiple instances of the
local variables exist. Each variable instance is a dynamic entity that has a location,
a current value, and a finite lifetime in memory.

The distinction between a variable as a syntactic entity in the program text and
a class of dynamic entities in memory is usually clear from the context. Where
it is necessary, this paper distinguishes between syntactic variables and variable
instances.

Parallel processes are said to be disjoint if they satisfy the following condition:
Any variable instance that is assigned a value by one of the processes is not accessed
by any of the other processes. In other words, any variable instance that is accessed
by more than one process is not assigned a value by any of the processes.

3 Type Definitions

Every type has an identifier. Two types are the same if they have the same identifier
and the same scope.

Examples:

The following types are used in the examples of this paper:

The Programming Language SuperPascal 3

type
vector = record x, y: real end;
body = record m: real; r, v, f: vector end;
system = array [1..n] of body;
channel = ∗(body);
net = array [0..p] of channel;
mixed = ∗(body, integer);
two = array [0..1] of mixed;
four = array [0..1] of two;

3.1 Channel Types

Processes communicate by means of values called messages transmitted through
entities called channels. A communication takes place when one process is ready to
output a message of some type through a channel and another process is ready to
input a message of the same type through the same channel.

Processes create channels dynamically and access them by means of values known
as channel references. The type of a channel reference is called a channel type.

channel-type =
“∗” “(” message-type-list “)” .

message-type-list =
type-identifier { “,” type-identifier } .

A channel type

∗(T1, T2, . . . , Tn)

denotes an unordered set of channel references created dynamically. Each channel
reference denotes a distinct channel which can transmit messages of distinct types
T1, T2, . . . , Tn only (the message types).

A type definition cannot be of the recursive form:

T = ∗(. . . , T, . . .)

Examples:

∗(body)
∗(body, integer)

4 Per Brinch Hansen

4 Variables

4.1 Entire Variables

An entire variable is a variable denoted by one of the following kinds of identifiers:

1. A variable identifier introduced by a variable declaration or a forall statement.

2. A function identifier that occurs as the left part of an assignment statement
in the statement part of the corresponding function block.

Examples:

The following entire variables are used in the examples of this paper:

var
inp, out: channel;
c: net;
a: system;
ai, aj: body;
left: mixed;
top: four;
i, j, k: integer;

A variable context is associated with each command C. This context consists
of two sets of entire variables called the target and expression variables of C. If
the process denoted by C may assign a value to an entire variable v (or one of its
components), then v is a target variable of C. If the process may use the value of v
(or one of its components) as an operand, then v is an expression variable of C.

4.2 Block Parameters

Consider a procedure or function block B with a statement part S. An implicit
parameter of B is an entire variable v that is global to B and is part of the variable
context of S. If v is a target variable of S, then v is an implicit variable parameter
of B. If v is an expression variable of S, then v is an implicit value parameter of B.

A function block cannot use formal variable parameters or implicit variable pa-
rameters.

A recursive procedure or function block cannot use implicit parameters.

4.3 Target Variables

An entire variable v is a target variable of a command C in the following cases:

1. The variable identifier v occurs in an assignment statement C that denotes
assignment to v (or one of its components).

The Programming Language SuperPascal 5

2. The variable identifier v occurs in a for statement C that uses v as the control
variable.

3. The variable identifier v occurs in a procedure statement C that uses v (or one
of its components) as an actual variable parameter.

4. The variable v is an implicit variable parameter of a procedure block B, and
C is a procedure statement that denotes activation of B.

5. The variable v is a target variable of a command D, and C is a structured
command that contains D.

4.4 Expression Variables

An entire variable v is an expression variable of a command C in the following cases:

1. The variable identifier v occurs in an expression C that uses v (or one of its
components) as an operand.

2. The variable identifier v occurs in the element statement C of a forall statement
that introduces v as the index variable.

3. The variable v is an implicit value parameter of a function block B, and C is
a function designator that denotes activation of B.

4. The variable v is an implicit value parameter of a procedure block B, and C
is a procedure statement that denotes activation of B.

5. The variable v is an expression variable of a command D, and C is a structured
command that contains D.

4.5 Channel Variables

A channel variable is a variable of a channel type. The value of a channel variable
is undefined unless a channel reference has been assigned to the variable.

channel-variable-access =
variable-access .

Examples:

inp
c[0]
top[i,j]

6 Per Brinch Hansen

5 Expressions

5.1 Channel Expressions

channel-expression =
expression .

A channel expression is an expression of a channel type. The expression is said
to be well-defined if it denotes a channel; otherwise, it is undefined.

Examples:

out
c[k−1]

5.2 Relational Operators

If x and y are well-defined channel expressions of the same type, the following
expressions denote boolean values:

x = y x <> y

The value of x = y is true if x and y denote the same channel, and is false
otherwise. The value of x <> y is the same as the value of

not (x = y)

Example:

left = top[i,j]

6 Message Communication

The required procedures for message communication are

open send receive

6.1 The Procedure Open

open-statement =
“open” “(” open-parameters “)” .

open-parameters =
open-parameter { “,” open-parameter } .

open-parameter =

The Programming Language SuperPascal 7

channel-variable-access .

If v is a channel variable, the statement

open(v)

denotes creation of a new channel.
The open statement is executed by creating a new channel and assigning the

corresponding reference to the channel variable v. The channel reference is of the
same type as the channel variable. The channel exists until the program execution
terminates.

The abbreviation

open(v1, v2, . . . , vn)

is equivalent to

begin open(v1); open(v2, . . . , vn) end

Examples:

open(c[k])
open(inp, out)

6.2 The Procedures Send and Receive

send-statement =
“send” “(” send-parameters “)” .

send-parameters =
channel-expression “,” output-expression-list .

output-expression-list =
output-expression { “,” output-expression } .

output-expression =
expression .

receive-statement =
“receive” “(” receive-parameters “)” .

receive-parameters =
channel-expression “,” input-variable-list .

input-variable-list =
input-variable-access { “,” input-variable-access } .

input-variable-access =
variable-access .

The statement

8 Per Brinch Hansen

send(b, e)

denotes output of the value of an expression e through the channel denoted by an
expression b. The expression b must be of a channel type T , and the type of the
expression e must be a message type of T .

The statement

receive(c, v)

denotes input of the value of a variable v through the channel denoted by an expres-
sion c. The expression c must be of a channel type T , and the type of the variable
v must be a message type of T .

The send and receive operations defined by the above statements are said to
match if they satisfy the following conditions:

1. The channel expressions b and c are of the same type T and denote the same
channel.

2. The output expression e and the input variable v are of the same type, which
is a message type of T .

The execution of a send operation delays a process until another process is ready
to execute a matching receive operation (and vice versa). If and when this happens,
a communication takes place as follows:

1. The sending process obtains a value by evaluating the output expression e.

2. The receiving process assigns the value to the input variable v.

After the communication, the sending and receiving processes proceed indepen-
dently.

Communication Errors:

1. Undefined channel reference: A channel expression does not denote a channel.

2. Channel contention: Two parallel processes both attempt to send (or receive)
through the same channel at the same time.

3. Message type error: Two parallel processes attempt to communicate through
the same channel, but the output expression and the input variable are of
different message types.

The abbreviation

send(b, e1, e2, . . . , en)

The Programming Language SuperPascal 9

is equivalent to

begin send(b, e1); send(b, e2, . . . , en) end

The abbreviation

receive(c, v1, v2, . . . , vn)

is equivalent to

begin receive(c, v1); receive(c, v2, . . . , vn) end

Examples:

send(out, ai)
receive(inp, aj)
send(top[i,j], 2, ai)

7 Statements

7.1 Assignment Statements

If x is a channel variable access and y is a well-defined channel expression of the
same type, the effect of the assignment statement

x := y

is to make the values of x and y denote the same channel.

Example:

left := top[i,j]

7.2 Procedure Statements

The restricted actual parameters of a procedure statement are the explicit variable
parameters that occur in the actual parameter list and the implicit parameters of
the corresponding procedure block.

Restriction: The restricted actual parameters of a procedure statement must be
distinct entire variables (or components of such variables).

A procedure statement cannot occur in the statement part of a function block.
This rule also applies to a procedure statement that denotes activation of a required
procedure.

10 Per Brinch Hansen

7.3 Parallel Statements

parallel-statement =
“parallel” process-statement-list “end” .

process-statement-list =
process-statement { “|” process-statement } .

process-statement =
statement-sequence .

A parallel statement denotes parallel processes. Each process is denoted by a
separate process statement.

The effect of a parallel statement is to execute the process statements as parallel
processes until all of them have terminated.

Restriction: In a parallel statement, a target variable of one process statement
cannot be a target or expression variable of another process statement.

Example:

parallel
source(a, c[0]); sink(a, c[p])|
forall k := 1 to p do

node(k, c[k−1], c[k])
end

7.4 Forall Statements

forall-statement =
“forall” index-variable-declaration “do”

element-statement .
index-variable-declaration =

variable-identifier “:=” process-index-range .
process-index-range =

expression “to” expression .
element-statement =

statement .

The statement

forall i := e1 to e2 do S

denotes a (possibly empty) array of parallel processes, called element processes, and
a corresponding range of values, called process indices. The lower and upper bounds
of the process index range are denoted by two expressions, e1 and e2, of the same

The Programming Language SuperPascal 11

simple type (the index type). Every index value corresponds to a separate element
process defined by an index variable i and an element statement S.

The index variable declaration

i := e1 to e2

introduces the index variable i which is local to the element statement S.
A forall statement is executed as follows:

1. The expressions e1 and e2 are evaluated. If e1 > e2, the execution of the forall
statement terminates; otherwise, step 2 takes place.

2. e2− e1 + 1 element processes run in parallel until all of them have terminated.
Each element process creates a local instance of the index variable i, assigns
the corresponding process index to the variable, and executes the element
statement S. When an element process terminates, its local instance of the
index variable ceases to exist.

Restriction: In a forall statement, the element statement cannot use target vari-
ables.

Examples:

forall k := 1 to p do
node(k, c[k−1], c[k])

forall i := 0 to 1 do
forall j := 0 to 1 do

quadtree(i, j, top[i,j])

7.5 Unrestricted Statements

unrestricted-statement =
sic-clause statement .

sic-clause =
“[” “sic” “]” .

A statement S is said to be unrestricted in the following cases:

1. The statement S is prefixed by a sic clause.

2. The statement S is a component of an unrestricted statement.

12 Per Brinch Hansen

All other statements are said to be restricted.
Restricted statements must satisfy the rules labeled as restrictions in this paper.

These rules restrict the use of entire variables in procedure statements, parallel
statements, and forall statements to make it possible to check the disjointness of
parallel processes during single-pass compilation (see 7.2, 7.3 and 7.4).

The same rules do not apply to unrestricted statements. Consequently, the
programmer must prove that each unrestricted statement preserves the disjointness
of parallel processes; otherwise, the semantics of unrestricted statements are beyond
the scope of this paper.

Examples:

[sic] { i <> j }
swap(a[i], a[j])

[sic] { i <> j }
parallel a[i] := ai|a[j] := aj end

[sic] { disjoint elements a[i] }
forall i := 1 to n do a[i] := ai

7.6 Assume Statements

assume-statement =
“assume” assumption .

assumption =
expression .

The effect of an assume statement is to test an assumption denoted by a boolean
expression. If the assumption is true, the test terminates; otherwise, program exe-
cution stops.

Example:

assume i <> j

8 SuperPascal versus Pascal

The following summarizes the differences between SuperPascal and Pascal.

8.1 Added Features

Table 1 lists the SuperPascal features that were added to Pascal.

The Programming Language SuperPascal 13

8.2 Excluded Features

Table 2 lists the Pascal features that were excluded from SuperPascal.

8.3 Minor Differences

SuperPascal differs from Pascal in the following details:

1. Program parameters are comments only.

2. A multi-dimensional array type is defined in terms of one-dimensional array
types.

3. The required type string is the only string type:

string = array [1..maxstring] of char

A character string with n string elements denotes a string of n characters
followed by maxstring−n null characters, where

2≤n≤ maxstring maxstring = 80 null = chr(0)

The default length n of a write parameter of type string is the number of
characters (if any) which precede the first null character (if any), where 0≤n≤
maxstring.

4. The required textfile input is the only input file. The file identifier is omitted
from eof and eoln function designators and read and readln statements. The
input file is an implicit value parameter of the eof and eoln functions and is
an implicit variable parameter of the read and readln procedures (see 4.2).

5. The required textfile output is the only output file. The file identifier is omitted
from write and writeln statements. The output file is an implicit variable
parameter of the write and writeln procedures (see 4.2).

8.4 Required Identifiers

Table 3 lists the required identifiers of SuperPascal.

14 Per Brinch Hansen

Table 1: Added features

Language Required
concepts identifiers
channel types null
structured function types maxstring
parallel statements string
forall statements open
unrestricted statements send
assume statements receive

Table 2: Excluded features

Language Required
concepts identifiers
labels text
subrange types input
record variants output
empty field lists page
set types reset
file types get
pointer types rewrite
packed types put
nameless types new
renamed types dispose
functions with side-effects pack
functional parameters unpack
procedural parameters
forward declarations
goto statements
with statements

The Programming Language SuperPascal 15

Table 3: Required identifiers

abs maxint round
arctan maxstring send
boolean null sin
char odd sqr
chr open sqrt
cos ord string
eof pred succ
eoln read true
exp readln trunc
false real write
integer receive writeln
ln

8.5 Syntax Summary

The following grammar defines the complete syntax of SuperPascal.

program =
program-heading “;” program-block “.” .

program-heading =
“program” program-identifier [“(” program-parameters “)”] .

program-parameters =
parameter-identifier { “,” parameter-identifier } .

program-block =
block .

block =
[constant-definitions] [type-definitions]

[variable-declarations] [routine-declarations]
statement-part .

constant-definitions =
“const” constant-definition “;” { constant-definition “;” } .

constant-definition =
constant-identifier “=” constant .

constant =
[sign] unsigned-constant .

sign =
“+” | “−” .

type-definitions =
“type” type-definition “;” { type-definition “;” } .

type-definition =

16 Per Brinch Hansen

type-identifier “=” new-type .
new-type =

enumerated-type | array-type | record-type | channel-type .
enumerated-type =

“(” constant-identifier-list “)” .
constant-identifier-list =

constant-identifier { “,” constant-identifier } .
array-type =

“array” index-range “of” type-identifier .
index-range =

“[” constant “..” constant “]” .
record-type =

“record” field-list “end” .
field-list =

record-section { “;” record-section } [“;”] .
record-section =

field-identifier-list “:” type-identifier .
field-identifier-list =

field-identifier { “,” field-identifier } .
channel-type =

“∗” “(” message-type-list “)” .
message-type-list =

type-identifier { “,” type-identifier } .
variable-declarations =

“var” variable-declaration “;” { variable-declaration “;” } .
variable-declaration =

variable-identifier-list “:” type-identifier .
variable-identifier-list =

variable-identifier { “,” variable-identifier } .
routine-declarations =

routine-declaration “;” { routine-declaration “;” } .
routine-declaration =

function-declaration | procedure-declaration .
function-declaration =

function-heading “;” function-block .
function-heading =

“function” function-identifier [formal-parameter-list]
“:” type-identifier .

formal-parameter-list =
“(” formal-parameters “)” .

formal-parameters =
formal-parameter-section { “;” formal-parameter-section } .

The Programming Language SuperPascal 17

formal-parameter-section =
[“var”] variable-declaration .

function-block =
block .

procedure-declaration =
procedure-heading “;” procedure-block .

procedure-heading =
“procedure” procedure-identifier [formal-parameter-list] .

procedure-block =
block .

statement-part =
compound-statement .

compound-statement =
“begin” statement-sequence “end” .

statement-sequence =
statement { “;” statement } .

statement =
empty-statement | assignment-statement |
procedure-statement | if-statement |
while-statement | repeat-statement |
for-statement | case-statement |
compound-statement | parallel-statement |
forall-statement | unrestricted-statement |
assume-statement .

empty-statement = .
assignment-statement =

left-part “:=” expression .
left-part =

variable-access | function-identifier .
procedure-statement =

procedure-identifier [actual-parameter-list] .
actual-parameter-list =

“(” actual-parameters “)” .
actual-parameters =

actual-parameter { “,” actual-parameter } .
actual-parameter =

expression | variable-access | write-parameter .
write-parameter =

expression [“:” expression [“:” expression]] .
if-statement =

“if” expression “then” statement
[“else” statement] .

18 Per Brinch Hansen

while-statement =
“while” expression “do” statement .

repeat-statement =
“repeat” statement-sequence “until” expression .

for-statement =
“for” control-variable “:=” expression

(“to” | “downto”) expression “do” statement .
control-variable =

entire-variable .
case-statement =

“case” expression “of” case-list “end” .
case-list =

case-list-element { “;” case-list-element } [“;”] .
case-list-element =

case-constant { “,” case-constant } “:” statement .
case-constant =

constant .
parallel-statement =

“parallel” process-statement-list “end” .
process-statement-list =

process-statement { “|” process-statement } .
process-statement =

statement-sequence .
forall-statement =

“forall” index-variable-declaration “do”
element-statement .

index-variable-declaration =
variable-identifier “:=” process-index-range .

process-index-range =
expression “to” expression .

element-statement =
statement .

unrestricted-statement =
“[” “sic” “]” statement .

assume-statement =
“assume” expression .

expression =
simple-expression

[relational-operator simple-expression] .
relational-operator =

“<” | “=” | “>” | “<=” | “<>” | “>=” .
simple-expression =

The Programming Language SuperPascal 19

[sign] term { adding-operator term } .
adding-operator =

“+” | “−” | “or” .
term =

factor { multiplying-operator factor } .
multiplying-operator =

“∗” | “/” | “div” | “mod” | “and” .
factor =

function-designator | variable-access |
unsigned-constant | “(” expression “)” |
“not” factor .

function-designator =
function-identifier [actual-parameter-list] .

variable-access =
entire-variable { component-selector } .

entire-variable =
variable-identifier .

component-selector =
field-selector | indexed-selector .

field-selector =
“.” field-identifier .

indexed-selector =
“[” index-expressions “]” .

index-expressions =
expression { “,” expression } .

unsigned-constant =
character-string | unsigned-real |
unsigned-integer | constant-identifier .

character-string =
“ ’ ” string-elements “ ’ ” .

string-elements =
string-element { string-element } .

string-element =
string-character | apostrophe-image .

apostrophe-image =
“ ” ” .

unsigned-real =
unsigned-integer real-option .

real-option =
“.” fractional-part [scaling-part] | scaling-part .

fractional-part =
digit-sequence .

20 Per Brinch Hansen

scaling-part =
“e” scale-factor .

scale-factor =
[sign] unsigned-integer .

unsigned-integer =
digit-sequence .

digit-sequence =
digit { digit } .

identifier =
letter { letter | digit } .

Acknowledgements

I thank Jonathan Greenfield and Peter O’Hearn for their helpful comments.

References

[1] IEEE (1983). IEEE Standard Pascal Computer Programming Language. Institute of Elec-
trical and Electronics Engineers, New York, NY.

[2] Brinch Hansen, P. (1993a) SuperPascal—a publication language for parallel scientific
computing. School of Computer and Information Science, Syracuse University, Syracuse,
NY.

[3] Brinch Hansen, P. (1993b) Interference control in SuperPascal—a block-structured paral-
lel language. School of Computer and Information Science, Syracuse Syracuse University,
Syracuse, NY.

