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INVENTING THE FUTURE 1972–76

Can you tell me, what is Caltech? – Sunshine and palm trees in February – Wine-

tasting with the dean – Driving across America – A question of priority – Two

baffling problems – That sounds easy – Concurrent Pascal and Solo – Al Hartmann’s

compiler – The art of compromise – Getting a sore throat in Bombay – Returning

to Marktoberdorf – The distraction of grants – Leaving the magic kingdom – A

passion for clear thinking.

After the completion of my operating system book, it was time to decide
whether we should return to Europe or stay in the United States. One day,
I received a long-distance phone call from Pasadena in Southern California.
The caller said: “This is Gilbert McCann from Caltech. Would you be
interested in being interviewed for a faculty position?” There was a long
pause at the other end of the phone when I answered: “Certainly, but can
you tell me, what is Caltech?”

California Institute of Technology is probably America’s most demand-
ing college of science and engineering. With about 900 undergraduates, 900
graduates and 300 faculty, it has one professor for every three undergradu-
ates. The students are among the top 1% in the nation. Some of them are
handpicked by professors who visit high-schools around the country.

Caltech has had a major effect on the aerospace industry in Southern
California. The Jet Propulsion Laboratory, America’s first center for space
research, is staffed and managed by Caltech. After a flight of 380 million
kilometers in 167 days, the Mariner 9 spacecraft was placed in orbit around
Mars on November 13, 1971. By the end of June 1972, it had taken over
7,000 pictures and mapped the entire surface of the planet.

In his yearly report for 1971/72, Caltech president Harold Brown wrote:
“Our traditions and capabilities at Caltech are strongly focussed on the most
fundamental matters, at the leading edge of knowledge in each discipline.
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Few of us would be at Caltech if we did not believe that such efforts are of
surpassing value.” I remember one professor telling me, “If MIT is working
on something, we are not interested. Caltech cannot do everything. So we
concentrate on areas in which we are unique.” This philosophy has certainly
paid off. In the first century of the Nobel Prize, 27 Nobel laureates have
been associated with Caltech.

Caltech students are famous for their imaginative pranks. California
Boulevard divides the campus into two parts. To walk across it, you have to
push a button on a traffic signal and wait for a green light. On one occasion,
students unscrewed the light cover, put the green glass at the top and the red
one at the bottom of the signal. Drivers now had to get out of their cars and
push the button to get a (brief) green signal. During rush hour, a mile-long
line of cars moved at snail’s pace. Since the city administration knew that
Caltech students are very intelligent, they assumed that the wiring of the
signal had been changed in some way. So they sent an electrician over to
check it out. He was very puzzled when he couldn’t find anything wrong—
until a Caltech student walked up to him and said: “Excuse me, I thought
the red light was supposed to be on top of the green one.” Great ideas are
often simple!

On “Ditch Day,” Caltech seniors ditch their classes and vanish from
campus. Any senior found on campus risks being caught and tied to a tree
with duct-tape. Senior students have secured their doors in elaborate ways.
Underclass students must then try to get past these “stacks” and into the
seniors’ rooms. In one memorable instance, a senior had filled his room
completely with an enormous water balloon. When some students cut a
hole in the balloon, a flood of water swept them down the corridor.

? ? ?

It was my luck to arrive at Caltech just as they were starting up a department
of Information Science. In September 1971, Caltech dedicated the Jorgensen
Laboratory for information and computer science. The building was a gift
of Earle M. Jorgensen, a Trustee of the Institute since 1957, and his wife.
An elite institution like Caltech, financed by wealthy donors, would (unfor-
tunately) be unthinkable in most European countries, due to the prevailing
egalitarian attitudes and high levels of taxation.

On Wednesday, February 16, 1972, at 4 p.m., I gave a seminar at Caltech
on “Structured multiprogramming.”1 I described conditional critical regions

1P. Brinch Hansen, Structured multiprogramming. Communications of the ACM 15,
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and explained how they waste unpredictable amounts of processing time by
reevaluating boolean conditions until they are true. I then showed how
to eliminate this inefficiency by extending a programming language with
queuing variables, which give the programmer complete control of process
scheduling within conditional critical regions. This idea became an essential
ingredient of the future monitor notation.

My trip to Southern California was a welcome break from the winter in
Pittsburgh. I enjoyed walking around Caltech in February, without a coat,
looking at the palm trees and the beautiful San Gabriel mountains, a few
miles north of Pasadena.

Two days later, I was invited to a wine-tasting dinner at the Athenaeum,
Caltech’s magnificent faculty club, built in Mediterranean style with beauti-
ful landscaping and tennis courts. This elegant building was also a gift from
private donors. The first formal dinner, in February 1931, was attended
by three Nobel Prize winners: Albert Einstein, Robert Millikan and Albert
Michelson.

The wine-tasting was held in a large, oak-panelled dining room. My
host was the sixty-year old Francis Clauser, the charming chairman of the
Division of Engineering and Applied Science. He had done brilliant research
in aeronautics and was a member of the National Academy of Engineering.
During the dinner, we tasted German white wines and California red wines
from Caltech’s private wine cellar. The wines were discussed by the wine
chairman, professor Harold Wayland.

Within a month, Caltech obtained letters of recommendation for me from
Tony Hoare (Belfast), Don Knuth (Stanford), Butler Lampson (Xerox Parc),
Roger Needham (Cambridge), Alan Perlis (Carnegie-Mellon), and Niklaus
Wirth (ETH Zurich).

In March 1972, I was invited to visit Caltech again, this time with Milena
and our two small children. At the Los Angeles Airport, Caltech’s private
limousine was waiting for us. When the driver saw Milena’s winter coat,
he said “You won’t be needin’ that here, Ma’m!” After driving thirty miles
north on the Harbor and Pasadena Freeways, we reached Colorado Boulevard
in Pasadena, where Caltech had reserved a motel room for us.

In the evening, Gilbert McCann and his wife Betty took us out to dinner
at a family restaurant. I remember Betty asking me: “Isn’t it a handicap not
to have a PhD?” I looked surprised and said: ”No, I don’t think so.” The
only degree offered by the Technical University of Denmark was a five-year

July 1972.
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Master’s. I still have reservations about the PhD. It seems to me, that it is
not a good idea to ask young people to spend some of their most creative
years taking more courses, passing final exams, and doing research that fits
into the ideas (and grants) of their professors.

The Caltech physicist, Richard Feynman, was even more blunt about his
role as a PhD advisor (Gleick 1992):

I do not like to suggest a problem and suggest a method for its
solution and feel responsible after the student is unable to work
out the problem by the suggested method. . .What happens is
that I find that I do not suggest any method that I do not know
will work and the only way I know it works is by having tried it
out at home previously, so I find the old saying that “A Ph.D.
thesis is research done by a professor under particularly trying
circumstances” is for me the dead truth.

Back at Carnegie-Mellon, I wrote a letter informing family and friends
that “California Institute of Technology has offered me a faculty position as
an Associate Professor of Computer Science. . .I have now accepted this offer
and will start working [at Caltech] on July 1.”

? ? ?

Our trip across the United States and our life in California are described in
Christmas letters to family and friends. We left Pittsburgh on June 1 and
drove 3,100 miles (about 5,000 km) across America to Los Angeles. First,
we went to Montreal, where I chaired a session on the design of operating
systems at the Canadian Computer Conference. On the way, we got a last
glimpse of Niagara Falls. From then on, we drove west through the states of
Quebec, Ontario, Michigan, Illinois, Iowa, South Dakota, Wyoming, Utah,
Nevada and California. Fifteen days in a row we traveled west, every evening
towards a radiant sunset.

South Dakota made the greatest impression. Badlands: desert-like rock
formations eroded by rivers below the surrounding flat country for millions
of years. Mount Rushmore, where Gutzon Borglum, son of a Danish immi-
grant, carved 60-feet tall sculptures of George Washington, Thomas Jeffer-
son, Abraham Lincoln, and Theodore Roosevelt on a granite mountain. The
day we left Mount Rushmore, a dam collapsed, flooding the entire area and
killing many people.
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South Dakota is right in the middle of the old Wild West. This is where
Buffalo Bill came from, and the Sioux Indians still live here. In Custer State
Park we went by Jeep to see a flock of buffalos on the prairie. In Deadwood
City we were shown around the Broken Boot gold mine by an old man who
remembered both Calamity Jane and Wild Bill Hickock from his childhood.
On Boot Hill, high above the city, we found their tombstones.

Yellowstone National Park in Wyoming is larger than Delaware and
Rhode Island combined. It has an incredible collection of natural wonders
in one place: hot springs, geysers, waterfalls, mountains and lakes. At one
point, Milena got out of the car to photograph a black bear sitting beside
the road. The bear didn’t like that, so she had to run back to the car. Inside
the park, we stayed overnight in a five-story alpine lodge.

The next day, we headed south, through the Grand Teton National Park.
In Salt Lake City, Utah, we saw the Mormon Temple with the statue of Christ
by the Danish sculptor, Bertel Thorvaldsen. In Salt Lake City, we bought a
brand new set of radial tires, guaranteed for 40,000 miles. Sixty miles later,
we had a flat tire in the middle of the Great Salt Desert. After mounting a
worn-down spare, we crawled though Nevada until we reached Reno where
we bought another tire (which later was punctured in Los Angeles).

In San Francisco, I wanted to show my family the Golden Gate bridge.
But as we drove across it in the late afternoon the fog drifted in from the
ocean and hid everything. We now drove south along the Pacific Ocean
on the Cabrillo Highway though Monterey, portrayed in Steinbeck’s novels.
Finally we reached Los Angeles.

At Caltech we were met by a lady who handed us the key to a house we
could live in over the summer. It was a white, two-story house on Boulder
Road in the suburb of Altadena. On the second floor, a covered balcony
extended from one end of the house to the other.

Two days later, I flew back to the east coast in four hours to lecture on
the RC 4000 multiprogramming system at a Summer Institute of Computer
Science at University of Maryland.

Greater Los Angeles: 8 million people in one place. Two murders a day
and several thousand robberies. Brilliant weather (if you dare to breathe
the air). The wind from the ocean blows the smog from downtown towards
Pasadena, where the mountains stop it. Sometimes you could not see the
Sierra Madre mountains, a few miles north of Caltech.

On the positive side, Southern California had so many attractions for
the children: Los Angeles Zoo, Universal Studios, Magic Mountain, Farmers
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Market, Knott’s Berry Farm, Lion Country Safari, Marineland, Japanese
Village, Busch Gardens, La Brea Tar Pits, Mount Wilson Observatory (and
its Skyline Park with llamas, deer, goats and turkeys), the Queen Mary (the
world’s largest ocean liner), Disneyland, and, of course, the ocean beaches.

? ? ?

At age 27, Gilbert McCann earned a PhD in electrical engineering from Cal-
tech. As a graduate student, a two-million-volt stroke from a surge generator
paralyzed all his outer nerves and muscles for 24 hours and damaged one of
his eyes permanently.

During World War II, he designed an analog computer that made it
possible to shoot down most of the German V-1 rockets when they reached
the coast of England. After the war, he became a faculty member at Caltech
and started building a huge analog computer. By the 1950s, McCann’s lab
served every aircraft company in America and Europe. When the workload
became too much for Caltech to handle, they spun off a commercial company,
Computer Engineering Associates, with McCann as the largest shareholder.

When I met him in 1972, he was sixty years old. His manners were some-
what brusque. Since Americans habitually abbreviate first names (which we
don’t in Denmark), I wasn’t sure what to call him. So I asked him: “Do you
want me to call you Gilbert or McCann?” In an annoyed tone, he answered
“I respond to either,” which was not very helpful to me.

In his efforts to dominate his department, McCann could be ruthless
towards faculty members whose research and financial support were inde-
pendent of his own. This was obvious in his relationship with professor Fred
Thompson, who had been the most promising student of the famous logi-
cian Alfred Tarski. At Caltech, Fred made a truly courageous gamble on the
future of computing by working on the problem of using English for human
interaction with computers. After several years of hard work, he had finished
a software system in assembly language for a particular computer. At that
crucial stage, McCann used his influence to support an offer from IBM to
replace that computer with another one that was unable to execute Fred’s
program. Years of programming were wasted and Fred had to start all over
again.

? ? ?

In 1961, Fernando Corbató pioneered timesharing at MIT. Ten years later,
computing at Caltech was still a cumbersome affair based on old-fashioned
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batch processing. First, you used a noisy machine, the size of a small desk,
to punch your program on IBM cards. Then you carried your deck of cards
to the neighboring Booth Center for Computing, and gave it to an operator
behind a counter. Several hours later, you walked back to the center and
picked up your punched cards and printed output from one of the small
“pigeonholes” arranged alphabetically by user names.

The overriding concern was to keep Caltech’s mainframe computer run-
ning efficiently with as little human intervention as possible. You were not
allowed anywhere near the computer equipment. Operators collected decks
of punched cards from users and used a small computer to input a batch of
jobs from punched cards to a magnetic tape. This tape was then mounted
on a tape station connected to the mainframe computer. The jobs were now
input and run one at a time in their order of appearance on the tape. The
running jobs output data on another tape. The output tape was moved to
a small computer and printed on a line printer. While the mainframe com-
puter executed a batch of jobs, the small computers simultaneously printed
a previous output tape and produced the next input tape. The final task of
the operators was to separate the printed output manually and place it in
the correct pidgeonholes.

Batch processing was severely limited by the sequential nature of mag-
netic tapes and early computers. Although tapes could be rewound, they
were only efficient when they were accessed sequentially. And most comput-
ers could only execute one program at a time. It was therefore necessary to
run a complete batch of jobs at a time and print the output in “first-come,
first-served” order.

To reduce the computer time that was lost while operators changed mag-
netic tapes on the mainframe computer, it was essential to batch many jobs
on the same tape. Unfortunately, large batches greatly increased service
times from the users’ point of view. It would typically take hours (or even
a day or two) before you received the output of a single job. If the job
involved a program compilation, the only output for that day might be an
error message caused by a misplaced semicolon!

On campus there was an economic conflict between students, who needed
to compile and run small programs with reasonable turn-around times to
meet their deadlines for homework, and researchers, who ran large compu-
tations supported by research grants. The compromise adopted was to run
large jobs at night or on weekends.

McCann directed the computing center for seven years. In his alloca-
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tion of computer time for research, he apparently favored some faculty over
others. Finally, a group of well-funded faculty went to the chairman of en-
gineering and threatened to buy computer time outside campus, unless he
replaced McCann, which he did.

? ? ?

I posed no threat to McCann’s power and found him quite supportive of my
work at Caltech. His main interest was now using computers to study the
nervous system of the fly. He left it to younger faculty, including Giorgio
Ingargiola and me, to develop academic courses.

Giorgio spoke English with a pronounced Italian accent interrupted fre-
quently by an infectious laugh. His office was next door to mine. At noon,
we would walk across the sunny campus and enjoy lunch at the Athenaeum.
He taught a course on formal models of computation and directed a pro-
gramming laboratory with student projects.

Caltech had a trimester system. In the first trimester, I taught struc-
tured programming, followed by compiler design in the second trimester, and
ending with operating systems in the third trimester. These courses could
be taken by students from any department. The enrollment in each course
was 60–70 students, which was a large class at Caltech. I enjoyed teaching
these smart kids, who raised many questions in class and often came up to
me after class to continue our discussions.

The Caltech students published a booklet with candid comments about
the teaching abilities of the faculty. About one professor, they wrote: “He
obviously knows his stuff, and so would you—if only you could stay awake
in his class!” They described my courses as “An easy way to get an A” (a
viewpoint not shared by many students at Syracuse University).

My experience at Regnecentralen had taught me that professional pro-
gramming is not a form of unsystematic trial-and-error. You need to think
deeply until you understand exactly what you want your program to do.
Before you compile a program for the first time, you should proofread it for
logical consistency. And before you run it, you need to prepare a systematic
testcase with output that demonstrates that every line of the program has
been executed.

In this view of programming, thinking time is much more important
than computer time. Programming takes place at a desk away from any
computer. Today, when I see faculty and students spending hours at com-
puter terminals, I wonder: Are they really thinking deeply, or are they just
typing? Modern computing has turned us into amateur typists.
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Thirty years ago, when we had to use batch processing with slow turn-
around, the idea of using the computer as little as possible made all the more
sense to me. In those days, students needed written permission from their
instructors to set up personal accounts with limited amounts of computer
time. To encourage my students to think more and compute less, I gave
them less computer time than they needed to complete the compiler project.
When their accounts ran out, I gave them 50 percent more, then 25 percent
and so on.

At one point, Francis Clauser informed me that my well-intentioned pol-
icy had the unexpected side-effect of making some students “borrow” com-
puter time from the accounts of other students. This was a clear violation of
Caltech’s Honor Code which states that no member of the community shall
take unfair advantage of any other member of the community. As soon as
I heard that, I sacrificed my miserly approach and gave everybody as much
computer time as they needed.

The Honor Code gave us all remarkable freedom. You could, for example,
tell students to go home and solve exercise 2.2.6.8 in Knuth’s book on “Fun-
damental Algorithms”—without looking in the answers section! However,
human nature being what it is, it was not easy for students to live up to the
Honor Code. A survey showed that while most of them strongly supported
the Honor Code, few were prepared to turn in their friends for violating it.

? ? ?

In the spring of 1972 I read about the class concept invented by the Norwe-
gians Ole-Johan Dahl and Kristen Nygaard for their programming language
Simula 67. Although Simula was not a concurrent programming language,
it inspired me in the following way: So far I had thought of a monitor as a
program module that defines all operations on a single data structure. From
Simula I learned to regard a program module as the definition of a class of
data structures accessed by the same procedures.

This was a moment of truth for me. Within a few days I wrote a chapter
on resource protection for my operating system book. I proposed to represent
monitors by shared classes. My book included a single monitor for a message
buffer. Figure 1 shows it in a slightly simplified form. The shared class is a
program module that combines three things: (1) the data representation of
a message buffer, (2) the send and receive procedures, which define the only
possible operations on a buffer, and (3) a statement that defines the initial
buffer state as empty.
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shared class buffer =
slot: integer; empty: boolean;

procedure send(message: integer)
begin

await empty;
slot := message;
empty := false;

end;

procedure receive(var message: integer);
begin

await not empty;
message := slot;
empty := true;

end;

begin empty := true end;

Figure 6.1 The first monitor notation.

The key idea is that processes only have indirect access to the variables
of the shared class. They can call the send and receive procedures, which
operate on the buffer variables, but they do not have direct access to these
variables. This scope rule has an important implication for program reli-
ability: Once you have programmed and tested a shared class, it remains
correct, and cannot easily be corrupted by other parts of the program.

A shared class is a notation that explicitly restricts the operations on a
shared data structure and enables a compiler to check that these restrictions
are obeyed. It also indicates that all operations on a particular instance
must be executed as critical regions. In short, a shared class is a monitor
type. My decision to use await statements in the first monitor proposal was
a matter of taste. I might just as well have used the queuing variables, which
I had proposed in 1972.

? ? ?

In the spring of 1972, I had sent Tony Hoare a copy of my book manuscript
which included my monitor concept. Six month later, he submitted a paper
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on “A structured paging system,” which was published in the fall of 1973,
one month after the publication of my book. In this paper, Hoare used
my shared classes and queuing variables, with minor changes, to outline an
unimplemented demand paging system.

As an engineer, I had serious reservations about this paper. Nobody can
have confidence in a theoretical specification of something as complicated as
a demand-paging system—unless the validity of the model has been tested in
an actual implementation. At Regnecentralen I had defined the instruction
set of the RC 4000 computer completely by an Algol 60 program. Had we
not built this computer, my hardware specification would have remained an
unpublished, academic exercise.

On a personal level, I was surprised and hurt to find that, instead of
citing my book as the original published source of the monitor concept,
Hoare thanked me (and others) vaguely “for ideas, discussion, inspiration,
and criticism on points too numerous to recall.” When I pointed out that this
was unacceptable, he acknowledged my invention of monitors in a tutorial,
published in the following year (Hoare 1974a). However, the damage had
been done, and, for years, people would continue to call them “Hoare’s
monitors.”

Looking back, it was, of course, naive of me to publish the monitor
concept in a textbook, instead of a professional journal. But I was young
and idealistic and felt that my first book should include at least one original
idea. It did not occur to me that researchers rarely look for original ideas in
undergraduate textbooks.

At that point, I considered it premature to write a tutorial on the monitor
concept. My professional standards were deeply influenced by Naur and
Jensen’s Gier Algol compiler, Dijkstra’s THE multiprogramming system,
Regnecentralen’s RC 4000 multiprogramming system, and Wirth’s Pascal
compiler. Every one of these systems had been implemented before it was
described in a professional journal. Since this was my standard of software
research, I decided to implement monitors before writing more about them.

? ? ?

At Caltech, I started thinking about defining a programming language with
concurrent processes and monitors. To reduce the effort, I decided to include
these concepts in an existing sequential language. Pascal was an obvious
choice for me, since I had used the language in my operating system book. I
named the new language Concurrent Pascal. Apart from that, nothing else
was obvious.



   

114 A Programmer’s Story

With a notation for monitors now in hand, you would think it would be
easy to include it in Pascal. I had no idea of how to do this. I remember
sitting in my garden in Altadena, day after day, staring at a blank piece of
paper and feeling like a complete failure.

I faced two baffling problems for the first time: (1) how can you make
a concurrent programming language secure from time-dependent behavior
by using extensive compilation checks and minimal run-time checks? (2)
When concurrent processes terminate, is it possible to reclaim and reuse
their memory spaces without resorting to slow “garbage collection?” It took
me almost two years to find reasonable solutions to the first problem and
make compromises that enabled me to ignore the second one.

In September 1973, I sent Mike McKeag “a copy of a preliminary work-
ing document that describes my suggestions for an extension of Pascal with
concurrent processes and monitors.” This is the earliest evidence of Concur-
rent Pascal. In April 1974, I distributed a report on “Concurrent Pascal: a
programming language for operating system design.”

Concurrent Pascal extends Pascal with program modules defining mon-
itor, process, and class types. (Since class types are related to sequential
rather than concurrent programming, I will ignore them here.)

The monitor shown in Fig. 6.2 defines a single-slot buffer as a new data
type. If a process tries to receive a message from an empty buffer, the
monitor delays that process in a queuing variable. When another process
sends a message through the same buffer, the monitor immediately continues
the execution of the delayed process within the receive procedure. The
process that performs the continue operation automatically returns from
the send procedure. This context switch ensures mutual exclusion of monitor
calls. Sending is similar to receiving.

Figure 6.3 defines a (trivial) process type that copies an endless stream
of integers from one buffer to another.

The syntax clearly shows that each module defines a data structure and
all the possible operations on it. The compiler must check that (1) every
process and monitor only refers to its own variables; (2) processes interact
through monitor procedures only; and (3) processes do not deadlock by
calling monitors recursively (either directly or indirectly).

I now understood what I was doing. One day the president of Caltech,
Harold Brown, came to my office and asked me to explain my research. After
listening for half an hour, he said, “That sounds easy.” I agreed because that
was how I felt at the time. Caltech sure was different! This was the only time
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type buffer =
monitor
slot: integer; empty: boolean;
sender, receiver: queue;

procedure entry send(message: integer);
begin

if not empty then delay(sender);
slot := message;
continue(receiver);

end;

procedure entry receive(var message: integer);
begin

if empty then delay(receiver);
message := slot;
continue(sender);

end;

begin empty := true end;

Figure 6.2 A monitor type.

in my life, I had the opportunity to discuss my research with a university
president.

? ? ?

More than anyone else, Gordon Bell was the driving force behind the mini-
computer revolution. At Digital Equipment Corporation, he was the main
architect of the PDP 11, the first minicomputer that was powerful enough
to support modern programming languages. When I first met him, he was
spending a sabbatical year at Carnegie-Mellon. By 1975, as vice president
of engineering at DEC, Gordon and his team had designed the 32-bit VAX

computer, which became the standard computer for science and engineer-
ing. In 1983 he started Encore Computer, which built the Encore Multimax,
a multiprocessor that I would later use for parallel programming at Syra-
cuse University. In 1991, president George Bush awarded Gordon Bell the
National Medal of Technology.
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type copyprocess =
process(inp, out: buffer);
value: integer;
begin

cycle
inp.receive(inp, value);
out.send(out, value);

end
end;

Figure 6.3 A process type.

In 1970, when the first PDP 11s were delivered, over 170,000 were sold.
At Caltech, McCann acquired a PDP 11/45 for his lab. Since it cost only a
fraction of a mainframe computer, it was operated in open shop mode (just
like Regnecentralen’s Gier computer had been).

I had already made Pascal available for students on Caltech’s mainframe
computer. In this effort, I was assisted by Robert Deverill, a professional
programmer working for McCann. At the time, no minicomputer supported
Pascal. So we had to program the Concurrent Pascal compiler in Pascal and
test it on Caltech’s mainframe computer before moving it laboriously to the
PDP 11.

An early six-pass compiler was never released. Although it worked per-
fectly, I found it too complicated. Each pass was written by a different
student who had difficulty understanding the rest of the compiler.

From June through September 1974 my first PhD student, Al Hartmann,
wrote another Concurrent Pascal compiler. His goal was to be able to com-
pile small operating systems on a PDP 11/45 with at least 32 K bytes of
memory and a slow, removable disk (about two feet in diameter). The com-
piler was divided into seven passes to fit into the small memory. It consisted
of 8,300 lines written in Pascal and could be completely understood by one
person. Systematic testing of the compiler took three months, from October
through December 1974.

The Concurrent Pascal compiler was used from January 1975 without
problems. It was described in Hartmann’s PhD thesis (1975), later published
as a monograph.

In another month Al Hartmann derived a compiler for a Pascal subset,
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which we called Sequential Pascal (Brinch Hansen 1975b). On the PDP 11,
it compiled the largest pass of the Concurrent Pascal compiler in 3 min. The
compilation speed was limited mostly by the slow disk.

The Concurrent Pascal compiler generated code for a simple machine tai-
lored to the language. I borrowed this idea from a portable Pascal compiler
distributed by Wirth’s group (Nori 1974). My main concern was to simplify
code generation. The portability of Concurrent Pascal was just a useful
by-product of this decision. Twenty years later, the Java language would
resurrect the idea of “platform-independent” concurrent programs. Unfor-
tunately, Java replaced the secure monitor concept of Concurrent Pascal
with insecure shortcuts (Brinch Hansen 1999b).

The Concurrent Pascal machine was simulated by a kernel of 8 K bytes
written in assembly language. The kernel multiprogrammed the PDP 11/45
processor among concurrent processes and executed them using an efficient
technique known as threaded code (Bell 1973). It also performed basic in-
put/output from a typewriter, a disk, a magnetic tape, a line printer, and a
card reader.

I defined the kernel in Pascal (extended with classes). Tom Zepko, a
Caltech undergraduate, helped Bob Deverill hand-translate the kernel into
assembly language for the PDP 11. It was completed in January 1975 and
described in a report (Brinch Hansen 1975d).

The programming tricks of assembly language were impossible in Concur-
rent Pascal: there were no typeless memory words, registers, and addresses
in the language. The programmer was not even aware of the existence of
physical processors and interrupts. The language was so secure that concur-
rent processes ran without any form of memory protection.

In defining Concurrent Pascal, I made major compromises to make pro-
gram execution as efficient as possible on a minicomputer that could only
address two small memory segments simultaneously: (1) All procedures were
non-recursive, (2) All processes, monitors, and classes existed forever, and
(3) All processes and monitors were activated by an initial process.

These compromises made memory allocation trivial. The first rule en-
abled the compiler to determine the memory requirements of each module.
The first two rules made static memory allocation possible. The third rule
made it possible to combine the kernel, the program code, and all monitor
variables into a single memory segment that was included in the address
space of every process. This prevented fragmentation of the limited address
space and made monitor calls almost as fast as simple procedure calls.
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By putting simplicity and efficiency first we undoubtedly lost generality.
But the psychological effect of these compromises was phenomenal. Suddenly
an overwhelming task seemed manageable.

? ? ?

In January 1975, Milena and I traveled to India. The United Nations had
donated funds for the country to open a center of software research and
acquire a large computer at the Tata Institute of Fundamental Research in
Bombay. To celebrate this event, a conference was organized for all com-
puter science teachers in the country. Bill Wulf from Carnegie-Mellon, Rod
Burstall from the University of Edinburgh, and I were invited to lecture.

Since Bombay is on the opposite side of the globe, we broke the long flight
from Los Angeles in half by stopping overnight in Frankfurt, Germany. In
Bombay we stayed at the famous Taj Mahal hotel. The place was swarming
with international guests: oil sheiks in white garments with golden stripes,
Indian women in colorful saris, Japanese tourists—and us. The hotel had
French, Indian, and Chinese restaurants, as well as some sort of cafeteria.
In addition there was room service twenty-four hours a day.

The first couple of days, I ate Indian breakfasts. Since I couldn’t read
the menu, I started from the top and ordered a new dish every morning. A
typical dish consisted of some very spicy curry balls. After a few days, I had
to stop this diet and see the hotel’s doctor about my sore throat.

Right outside our luxury hotel, the poor were sleeping on the pavement.
It was difficult to accept that small children of the same age as our children
were running ahead of us begging.

After a week of lecturing, all of us flew to Aurangabad to see the famous
Ajanta caves—a row of temples cut into massive rock centuries ago. Later,
Milena and I traveled inland to Hyderabad and visited a company that
produced a minicomputer similar to the PDP 11. I noticed that most of
their peripheral devices came from communist countries in Eastern Europe.
When we returned to our hotel room after dinner and turned on the lights,
an army of well-fed cockroaches scampered under the bed. We called room
service and they sent an employee who sprayed the room with kerosene.
That night we slept with the lights on, breathing the smelly fumes.

At Caltech, I had an Indian graduate student, named Sriram Udupa.
One evening, Milena and I visited his family in Bombay. They were orthodox
Brahmins. They served rice and thin fine bread on tin plates covered with
palm leaves. We sat in a circle on the floor and ate with our fingers, since
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Brahmins regard knives and forks as unclean. The dinner was intended
for the men and their sons only. The women served and watched us eat.
However, they made an exception for Milena and allowed her to eat with us.
It was all very dignified and made a deep impression.

After the conference in Bombay, Milena and I flew to New Delhi and
on to Agra to see the famed Taj Mahal mausoleum, built by the Mogul
emperor Shah Jahan (1592–1666) for his favorite wife, Mumtaz Mahal. The
only thing we did that day was sit in the park in front of this master piece
built of white marble with inlaid semiprecious stones. To me, Taj Mahal
was as unique as Michelangelo’s sculptures in Florence, Italy—one of those
rare miracles, which human beings create once every five hundred years. In
the basement under the building there was a marble casket with a big hole
in the lid. The small detail that was missing was the 160-carat Kohinoor
diamond, which an Indian prince gave England’s Queen Victoria. It is now
part of the British crown jewels.

The Taj Mahal reminded me of one of my favorite quotes (Bronowski
1973):

The most powerful drive in the ascent of man is his pleasure in
his own skill. He loves to do what he does well and, having done
it well, he loves to do it better. You see it in his science. You see
it in the magnificence with which he carves and builds, the loving
care, the gaiety, the effrontery. The monuments are supposed to
commemorate kings and religions, heroes, dogmas, but in the
end the man they commemorate is the builder.

In spite of the exotic sights, it was depressing to visit India after growing
up in a Scandinavian welfare state. Right outside the Taj Mahal, there
was a small, stinking village. They said that American pilots slept in their
airplanes in Calcutta to avoid seeing the hell, which was called life there.
And Bombay smelled like a garbage dump everywhere (even inside the Taj
Mahal hotel). Life seemed depressing even for the well-educated middle class
of engineers and researchers we met.

After another stop in Frankfurt we returned home to our children, who
had enjoyed staying with friends and never missed us.

? ? ?

After returning to Caltech, I wrote three model operating systems in Con-
current Pascal to evaluate the language. The modular concurrency had a
dramatic (and unexpected) impact on my style of programming.



    

120 A Programmer’s Story

It was the first time I had programmed in a language that enabled me
to divide programs into modules that could be programmed and tested sep-
arately. The creative part was clearly the initial selection of modules and
the combination of modules into hierarchical structures. The programming
of each module was often trivial. I soon adopted the rule that each module
should consist of no more than one page of text. This discipline made pro-
grams far more readable and reliable than traditional programs that operate
on global data structures.

In May 1975 I finished the Solo system, a single-user operating system
for the development of Concurrent and Sequential Pascal programs on a
PDP 11/45. The operating system was written in Concurrent Pascal. All
other programs, including the Concurrent and Sequential Pascal compilers,
were written in Sequential Pascal. The heart of Solo was a job process that
compiled and ran programs stored on a removable user disk. Two additional
processes performed input and output simultaneously. System commands
enabled the user to replace Solo with any other Concurrent Pascal program
stored on disk, or to restart Solo again. Al Hartmann had already written
the compilers. I wrote the operating system and its utility programs in three
months. Wolfgang Franzen measured and improved the performance of the
disk allocation algorithm.

The Solo system was the first major example of a concurrent program
consisting of processes, monitors, and classes (Brinch Hansen 1975c). It en-
abled us to use Sequential and Concurrent Pascal on the PDP 11/45 without
going through the cumbersome batch processing at Caltech’s computing cen-
ter.

At Regnecentralen we had used the RC 4000 computer to implement pro-
cess control programs for a chemical plant, two power plants, and a weather
bureau. These real-time applications had one thing in common: each was
unique in its software requirements. Consequently the programs were ex-
pensive to develop.

When the cost of a large program cannot be shared by many users, the
only practical way of reducing cost is to give process control engineers a
high-level language for concurrent programming. I illustrated this point by
means of a real-time scheduler, which had been programmed in assembly
language at Regnecentralen. I now reprogrammed the same scheduler in
Concurrent Pascal.

The real-time scheduler executed a fixed number of task processes with
frequencies chosen by an operator. I wrote it in three days. It took 3 hours
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of machine time to test it systematically. Writing a description took another
couple of days. So the whole program was developed in less than a week
(Brinch Hansen 1975e).

At the end of 1975 I wrote a job-stream system that compiled and ex-
ecuted short Pascal programs input from a card reader and output on a
line printer. Input, execution, and output took place simultaneously using
buffers stored on a disk. A user job was preempted if its compilation and
execution time exceeded 1 minute. I designed, programmed, and tested the
system in 10 days. When the system was finished, it ran short jobs contin-
uously at the speed of the line printer (Brinch Hansen 1976a).

Each model operating system was a Concurrent Pascal program of about
1,000 lines of text divided into 15–25 modules. A module was roughly one
page of text (50–60 lines) with about 5 procedures of 10–15 lines each (Ta-
ble 1).

Table 1 Model operating systems.

Solo Job Real
stream time

Lines 1,300 1,400 600
Modules 23 24 13
Lines/module 57 58 46
Procedures/module 5 4 4
Lines/procedure 11 15 12

These examples showed that it was possible to build nontrivial concurrent
programs from very simple modules that could be studied page by page
(Brinch Hansen 1977).

Compared to assembly language, Concurrent Pascal reduced my pro-
gramming effort by an order of magnitude and made concurrent programs
so simple that a software journal could publish the entire 1,300 lines of the
Solo program text (Brinch Hansen 1975c).

I tested the modules of a concurrent program one at a time starting with
those that did not depend on other modules. In each test run, the initial
process was replaced by a short test process that called the top module and
made it execute all its statements at least once. When a module worked,
another one was tested on top of it.

Dijkstra had used a similar procedure to test the THE multiprogramming
system, which was written in assembly language. However, Concurrent Pas-
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cal made bottom-up testing secure. The compilation checks of access rights
ensured that new (untested) modules could not make old (tested) modules
fail. My experience was that a well-designed concurrent program of one
thousand lines required a couple of compilations followed by one test run
per module. And then it worked (Brinch Hansen 1977).

? ? ?

In his book, “Advice to a Young Scientist,” the Nobel Laureate Peter Medaw-
ar (1979) wrote:

Ever since Bacon’s day experimentation has been thought to
be so deeply and so very necessarily a part of science that ex-
ploratory activities that are not experimental are often denied
the right to be classified as sciences at all.

Unfortunately, this obvious requirement has often been ignored in aca-
demic research on software design. In a guest editorial introducing the Solo
papers, I commented on the sad state of my profession (Brinch Hansen
1976c):

It is not uncommon for a computer scientist to make a proposal
without testing whether it is any good in practice. After spending
3 days writing up the monitor proposal and 3 years implementing
it, I can very well understand this temptation. It is perhaps
also sometimes a human response to the tremendous pressure on
university professors to get funding and recognition fast.

Nevertheless, we must remember that only one thing counts
in engineering: Does it work?. . .What would we think of math-
ematicians if most of their papers contained conjectures only?
Sometimes an educated guess can be a great source of inspira-
tion. But we must surely hope that the editors of computer
journals will reject most proposals until they have been tried at
least experimentally.

There was no doubt in my mind, that it was essential to put monitors to
a realistic test before I could recommend them as a proven tool for software
engineering. That was the whole purpose of developing Concurrent Pascal
and Solo.
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In July 1975, I described Concurrent Pascal and Solo at the International
Summer School in Marktoberdorf, Germany. After presenting our system,
that had been working for three months, I found it odd to hear Tony Hoare
present an outline of an unimplemented operating system, which would be
published in the proceedings of the Summer School (Hoare 1976b).

The first operating system written in Concurrent Pascal (called Deamy)
was used only to evaluate the expressive power of the language and was
never built (Brinch Hansen 1974a). The second one (called Pilot) was used
for several months but was too slow. They were described in internal working
documents only.

In a collection of his best papers, Hoare (1989) wrote:

The ultimate test of an idea, and the one that deserves the most
trust, is when it has been applied successfully in some important
project. . .These more substantial tests have always been left to
my readers.

He was apparently looking for a “royal road” to software research that would
save him from being personally involved in the completion of his “model op-
erating system.” It would be another four years before Hoare’s coworkers
completed their own monitor language, Pascal Plus (Welsh 1979). They
never developed an operating system in Pascal Plus capable of compiling
and executing real programs. None of this detracts from Hoare’s accom-
plishments as a theoretician. But as a software developer, he was obviously
not in the same class as Peter Naur, Edsger Dijkstra, and Niklaus Wirth.

In a paper on programming languages for real-time control, Tony Hoare
(1976a) had this to say about Concurrent Pascal:

This is one of the few successful extensions of Pascal, and includes
well structured capabilities for parallel processing, for exclusion
and for synchronization. It was tested before publication in the
construction of a small operating system, which promises well
for its suitability for real-time programming. Although it does
not claim to offer a final solution of the problem it tackles, it is
an outstanding example of the best of academic research in this
area.

At Marktoberdorf, Bill Wulf talked about his Hydra operating system,
which used run-time checking of access rights (called “capabilities”). In a
summary of the Summer School, Dijkstra (1975) wrote:
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Bill Wulf (Carnegie Mellon) and Per Brinch Hansen (Cal.Tech.)
reported both on their development projects (the Hydra system
and a pilot model to try out the applicability of Concurrent Pas-
cal, respectively). Both gave eight lectures, and it was a pity that
their subject were so similar: sometimes all the details became
rather boring and the relative importance of operating system
design became overstressed.

I remember thinking, has Dijkstra forgotten that it was his development
of a working system that gave us confidence in the ideas behind the THE
multiprogramming system?

Alas, by 1975 Dijkstra had already formed the dogmatic opinion that
programming is a mathematical discipline in which there is no place for
concise informal reasoning supported by other means of documentation, such
as pictures, “operational” explanations (as he called them), and systematic
test cases. He was no longer interested in programs that were too large to be
proven mathematically correct. (This pretty much ruled out any program
of more than a couple of pages).

However, Niklaus Wirth was not in doubt about what we had done:

I thank you very much for sending me the two reports on Con-
current Pascal and on the Solo operating system. They are truly
encouraging and describe solid engineering progress. This is ex-
tremely refreshing after the large heaps of papers that flood the
literature and which only present new, abstract ideas, and usu-
ally make things more complicated than they were before. May I
ask you to kindly send me a second copy of these valuable reports
for our library. (Letter from Wirth, October 14, 1975.)

? ? ?

I have always regarded research proposals as a distraction from my work.
By the time I get a small grant, I have already done so much work, that
I hardly need the money! The problem is that funding agencies cannot
afford to admit that awarding research grants is like active management of
investment funds: program directors like to believe that they are making
rational choices, but in reality they just take turns being lucky!

Most professors will never make a major discovery. So why do we grant
them tenure? Because we have no way of knowing which ones will make the
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fundamental contributions! So we gamble on all of them. And, if only one
in ten researchers change their fields, it is still an excellent investment from
society’s point of view. That’s the reality of research. However, if funding
agencies respected this fact, they would have to award grants on a random
basis. Since it is difficult to acknowledge this inconvenient truth, the charade
begins: faculty members make promises, they know they can’t keep. And
funding agencies shy away from the lone inventor and express a preference
for grandiose “multi-disciplinary” research involving several departments (or
even universities).

As a new faculty member at Caltech, I had applied for a grant, but was
unsuccessful. One anonymous reviewer wrote: “What the world needs is
parallel computers, not parallel languages!” When Tony Hoare visited me in
January 1974, I asked him “what’s wrong with my research proposal?” He
looked at it and gave me some worldly advice: “Instead of saying that your
ideas are a great improvement over those of professor X, why don’t you say:
This work builds on the foundation established by professor X.” I followed
his advice and, in September 1974, was awarded a grant of $71,200 by the
National Science Foundation. Of course, by then I had already worked on
Concurrent Pascal for two years without external support and would finish
the research in another nine months.

I used some of the money to pay McCann for computer time on the
PDP 11/45. Towards the end of my project, I decided to cut my computer
time in half. The next day, McCann’s secretary, Evelyn Johnson, informed
me that McCann had just doubled the hourly rate for computing. However,
that is the only time I personally felt that McCann misused his power. I
am grateful to him for letting me use a minicomputer that made my work
accessible thoughout the world.

At Caltech we prepared a distribution tape with the source text and
portable code of the Solo system, including the Concurrent and Sequential
Pascal compilers. The system reports were supplemented by implementation
notes (Brinch Hansen 1976b).

I used part of my grant to hire a secretary, named Barbara. For the
job interview, she wore a dress, high heels, and war paint. As soon as she
reported to work, she wore jeans, like everybody else. By the spring of
1976, she had distributed the system to 75 companies and 100 universities
in 21 countries: Australia, Austria, Belgium, Canada, Denmark, Finland,
France, Germany, Great Britain, Holland, India, Ireland, Italy, Japan, Nor-
way, South Africa, the Soviet Union, Spain, Sweden, Switzerland, and the
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United States.
We charged around $100 to pay for the expenses of shipping the system

tape and manuals. After a while, we had accumulated a small surplus. When
I left Caltech, a check for this amount was issued to NSF. In response, the
program director wrote: “You are supposed to spend our money—not return
it!”

? ? ?

Shortly after my arrival at Caltech, Robert Cannon replaced Francis Clauser
as chairman of engineering and applied science. He would move computer
science at Caltech in a new direction and end McCann’s dominance of the
field.

Bob Cannon wanted to know how Caltech could become unique in com-
puting. So he put together a committee that included Carver Mead (Applied
Physics), Herb Keller (Applied Mathematics), John Pierce (former Head of
Bell Labs and inventor of the communications satellite), Gilbert McCann
and me (Information Science). He met with us regularly and kept asking
the same question: “Where is the gold buried in computing?”

At our suggestion, he invited leading computer scientists from other uni-
versities to meet with the committee at Caltech. The visitors included John
McCarthy (creator of the programming language LISP), Ivan Sutherland (a
pioneer in computer graphics), and (at my suggestion) Tony Hoare. Mead
and Sutherland hit it off immediately and started traveling around the coun-
try asking researchers the same question as Bob Cannon. They came back
and told Cannon: “VLSI technology is the future of computing!” Carver
Mead predicted that by 2001 transistor sizes would shrink by a factor of
100, and he was absolutely right.

In 1976, Caltech hired Sutherland to lead computer science at Caltech.
Only then did Cannon deal with the political problem of McCann: He in-
formed McCann that the Jorgenson Laboratory would now house two sepa-
rate departments, named Bioinformation Systems (headed by McCann) and
Computer Science (headed by Sutherland).

As an untenured faculty member I was now caught in the middle of a
power struggle that was beyond my control. Carver Mead would indeed
put Caltech at the cutting edge in hardware technology and would eventu-
ally receive the National Medal of Technology in a White House ceremony.
Unfortunately, as far as I could tell, he had absolutely no appreciation of
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modern programming. He believed that programming, as we knew it then,
would become superfluous once you could put a million transistors on a chip.

As soon as Mead and Sutherland decided to concentrate on VLSI technol-
ogy, Caltech was no longer interested in the fundamental ideas of program-
ming explored by Dijkstra, Hoare, Wirth, and me. Under those circum-
stances, I considered it professional suicide to apply for tenure at Caltech.
After five exciting years, I decided to leave the magic kingdom in Pasadena.
On April 30, 1976, I submitted my letter of resignation to Bob Cannon
(Fig. 6.4).

? ? ?

When I left Caltech, I was 38 years old and had just completed some of
my best work. In a historical paper (Brinch Hansen 1993), my colleague,
Giorgio Ingargiola, described his impression of me at Caltech:

You had this tremendous clarity about what you were doing in
concurrency and languages; you made restrictive choices usually
on the basis of efficiency (you list a number of such choices in your
paper). You stated something like “start with as few and simple
mechanisms as possible; add later only if it becomes necessary.”

At least in your discussions and lectures, you built programs
from English statements, making explicit the invariants and re-
fining these statements, usually not modifying them, until the
program was done.

I was amazed at how slowly you developed code when lectur-
ing, and, by contrast, how fast you got debugged running code
for the Concurrent Pascal compiler, and for various concurrent
programs and the Solo OS.

You had very little interest in computer science topics outside
of the area in which you were doing research. You made polite
noises, you indicated interest, but your span of attention was
minimal.

My PhD student, Al Hartmann, contributed this amusing portrait:

There are really two histories interwoven in this paper—the his-
tory of the development of concurrent modular programming,
and the history of one man’s ruthless quest for simplicity in de-
sign and programming. The former topic is indifferent to whether
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California Institute of Technology
Information Science 286-80
Pasadena, California 91125

30 April 1976

Dr. Robert H. Cannon, Jr.
Division Chairman
Engineering and Applied Science
Caltech 104-44

Dear Bob,

I have decided to leave Caltech as an Associate Professor of
Computer Science on August 31, 1976.

Computer Science at Caltech is now changing completely as
indeed it should. I am sure that Ivan Sutherland will give
Caltech strength in computer applications.

To make an outstanding contribution to computer engineering
you will, of course also need some of the most creative minds
in computer design, programming, and theory.

Although the Computer Science Committee initially declined
to make offers to three of the most outstanding computer
scientists: Tony Hoare, Edsger Dijkstra, and Niklaus Wirth,
I hope that you eventually will reconsider this decision. The
combination of any one of them and myself would have given
Caltech a strength in programming that would have been
unequaled anywhere else.

I have enjoyed working with Caltech students for the past
four years. Together we have developed the first abstract
programming language for Concurrent programming. It has
now been distributed to about 60 companies and 85 univer-
sities throughout the worId.

I will be very pleased to serve on the Computer Science
Program Committee until I leave campus.

Yours sincerely,

Per Brinch Hansen
Associate Professor of Computer Science

Figure 6.4 My resignation letter.
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one chooses to develop concurrency mechanisms for greater ex-
pressive power and more complex functionality, or, as you have
chosen, to radically shorten and simplify the design of common
concurrent systems. The Solo operating system is downright
primitive in the sparseness of its features, representing a counter-
cultural current against ever-increasing operating system com-
plexity. Your style and taste in programming run almost counter
to the second law of thermodynamics, that all closed systems
tend towards increasing entropy and disorder.

In a world of Brinch Hansens (which may exist in some paral-
lel dimension to ours), all systems tend towards reduced entropy
over time and toward a blissful state of ultimate simplicity. Each
new release of the operating system for one’s personal worksta-
tion is smaller than the previous release, consumes fewer system
resources, runs faster on simpler hardware, provides a reduced
set of easier to use features than the last release, and carries a
lower price tag. Hardware designers espousing the same philos-
ophy produce successive single-chip microprocessors with expo-
nentially declining transistor counts from generation to genera-
tion, dramatically shrinking die sizes, and reducing process steps
by resorting to fewer, simpler device types. No one would need
to “invent” RISC computing in this world, since reduced feature
sets would be an inexorable law of nature.

The Concurrent Pascal project had a profound influence on Tom Zepko:

Part of the history you describe is an important part of my own
history. At the time I was involved with Concurrent Pascal, I
was an undergraduate and not so much concerned with the con-
ceptual significance of the language as with learning how to build
a language system from the ground up. I got the practical expe-
rience I wanted by working on the Concurrent Pascal compiler,
the threaded code interpreter, and the operating system kernel.
I have continued to do this same kind of work for the last fifteen
years.

The concepts behind the Concurrent Pascal, the evolution of
the ideas as you describe them, are clearer to me now than they
were as a student. The needs you were addressing do require
some years of experience to appreciate. But even as a student,
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some things left a lasting impression. What I learned from you,
beyond specific programming techniques, is what I can only de-
scribe as a passion for clear thinking. This was obvious in the way
you approached program design, and it was obviously the driving
force behind the design of the Concurrent Pascal language.

Some of the ideas embodied in Concurrent Pascal were radical
at the time. That they seem less so now is a tribute to the trail-
blazing nature of your work. Your approach to programming
and to language design now has many advocates. Structured
programming, modular design, strong typing, data encapsula-
tion, and so on, are all considered essential elements of modern
programming and have found their way into a wide variety of
languages. I’m thankful to have played a part in this work.

Although I did not seek tenure at Caltech, I still treasure a Christmas
card from my student, Bart Locanthi, that simply said: “Being my teacher
is a tenured position.”


