
SCHEDULING IN CONCURRENT PASCAL *

F. B. Schneider
A. J. Bernstein

Department of Computer Science
S.U.N.Y. at Stony Brook

Stony Brook, New York, 11794

Introduction

The monitor construct [H74] [B75] and the programming lan-
guage Concurrent Pascal [B75] have provided a basis for research
into operating systems. Based on the experiences gained by the
use of Concurrent Pascal in the construction of operating systems
[B76] [G77] there has been some discussion about the monitor im-
plementations proposed by Brinch Hansen [B75] and Hoare [H74].
For example, the (non) problem of nested monitor calls has re-
ceived considerable attention [L77] [H77] [B78] [W78]. In addi-
tion, the lack of facilities for dynamic resource management in
Concurrent Pascal has inspired research proposals which extend
the language to solve those problems [$77] [K77] [A78]. It is
unfortunate that much of this research culminates in new monitor-
like objects which can only be used to solve particular problems.
As pointed out by Parnas [P78] this seems to indicate that more
primitive constructs from which various monitor-like objects may
be built, are required. In this paper such a construct is in-
troduced and its applicability in monitors used to construct
systems which impose a scheduling discipline on a shared resource
(e.g. disk) is studied.

The Scheduling Scenario

Consider a system in which a number of concurrently executing
processes access some shared resource such as a disk. Disk head
seek times are usually very long compared with the actual data
transfer time associated with a disk access. Consequently, more
efficient disk utilization, as well as improved average waiting
time for processes attempting to access the disk, can be realized
by using a disk head scheduling algorithm such as the one de-
scribed in [H74]. In this algorithm requests are ordered so that
the disk head sweeps across the disk in one direction, then the
ovther, analogous to the operation of an elevator in an office
building.

An access graph [B72] for the implementation of a scheduling
algorithm for a disk is illustrated in Figure i. In order to
access the disk it is required that a user first call the schedul-
er, which may cause the caller to be suspended until a time when
the disk transfer can be performed efficiently. Upon returning

This research was supported in part by NSF grant MCS 76-04828.

15

from the scheduler, the disk is called to perform the actual I/O
operation. Lastly, the scheduler is called to report the comple-
tion of the transfer. This structure, however, is undesirable
since it reveals to higher levels of the system (the user modules
in this case) the functions of scheduling and disk I/O as separate
entitieso In addition, a user could easily defeat the scheduling
algorithm by not calling the scheduler prior to accessing the
disk.

A more desirable arrangement would be to provide a single
call which invoked both the scheduling and transfer functions, and
returned to the higher level on completion. It would then be im-
possible for a user to directly access the resource, save through
the "scheduler". Although Figure 2 exhibits this type of struc-
ture it is unacceptable because entry to the scheduler is pre-
vented if an I/O operation is in progress (due to the mutual ex-
clusion associated with that monitor). Thus no real scheduling
can take place because processes would be suspended at the en-
trance to the scheduler, instead of inside it where an ordering
on the suspended processes would be imposed by some priority
wait mechanism [H74].

The New Construct

To solve this problem, we propose a new mechanism which can
be used in designing a monitor. Ordinarily, processes attempting
to enter monitor procedureswhile another process is active with-
in the monitor are delayed by mutual exclusion at monitor entry.
The order in which these processes ultimately enter is undefined.
We propose the addition of a facility through which this order
can be explicitly controlled. This is accomplished by associat-
ing with each entry procedure an integer valued function called
a scheduling discipline, which yields a priority. This priority
is used to order the processes waiting to enter the monitor.

A scheduling discipline is associated with a procedure entry
by the use clause in the procedure heading. The named scheduling
discipline is then used to compute the priority of a process
attempting to enter that procedure. Scheduling disciplines are
defined as PASCAL functions, declared global to all entry pro-
cedures. The function may reference permanent monitor variables,
though it may not alter their values. The function's parameter
list provides a mechanism for using monitor procedure entry pa-
rameters in the priority computation as well. Call by value is
imposed to ensure that the function executes without side-effects.

Whenever a process attempts to enter a monitor while there is
another process actively executing in the module the caller is
blocked at mutual exclusion. When a process relinquishes control
of the monitor either by exiting a monitor procedure, or by being
suspended at a wait statement, a new process must be granted con-
trol of the monitor. To select this process, the scheduling dis-
cipline (priority function) is evaluated for each process which

16

is blocked at mutual exclusion. These processes are then ordered
on an entry queue, which is a queue associated with the monitor
containing entries for processes arranged in ascending priority
order° The process at the head of the queue is then granted
entrance.

The evaluation of that scheduling discipline may only be per-
formed while there is no process actively executing in the moni-
tor, because permanent monitor variables will be referenced. It
may be that a number of processes must be added to the entry
queue each time control is relinquished. This is because the
time spent at the scheduled resource (e.g. disk) by a process can
be relatively long, and for that time the mutual exclusion at the
monitor will be in effect due to the nested call (as in Figure 2).

Figure 3 illustrates the use of this feature by implementing
the disk head scheduling algorithm discussed earlier.

It should be noted that it is not possible to write patho-
logical scheduling disciplines in which each time a process re-
linquishes control of the monitor the relative ordering of the
processes on the entry queue changes due to the altered values
of the permanent variables. Such a capability does not appear
to have any practical application and would incur a high execution
overhead for the context switches associated with the repeated
evaluation of the priority functions. The construct, as we have
proposed it, requires two context switches for each process that
enters the monitor; one for priority evaluation, and a second at
monitor entry. In certain situations even this may be deemed
excessive overhead.

Conclusion

A generalization of the monitor [H74] [B75] has been pre-
sented which permits a natural solution to scheduling problems.
The construct is analogous to a priority wait mechanism [H74] for
monitor entry. Present monitor implementa-~ns usually impose a
first come first served discipline on monitor entry which pre-
cludes their use in certain situations and leads to awkward system
constructions.

Acknowledgements

The authors are grateful to A. Mahjoub, P. Harter, and
K. Ekanadham for discussion about the material presented here.

17

S

users

Figure 1

users

~~ i cheduler

Disk

Figure 2

18

type disksched = monitor (diskdrive : disk) ;
const disksize = D ; (* number of tracks on disk *)
vat incr, lastincr : boolean ;

tracks scanned, curaddr, lastaddr : integer ;

function priority
begin

if incr and

end ;

(trkno : integer) : integer ;

(trkno>curaddr)
then priority -- trkno + tracks scanned
else if incr

then priority := disksize - trkno + disksize
+ tracks scanned

else if not incr and trkno<curaddr
then priority := disksize - trkno

+ tracks scanned
else priority := disksize + trkno

+ tracks scanned

(* schedule discipline *)

procedure entr_____~y accessdisk (trkadder : integer ;
var block : page ;
iotype : (read,write))

use priority (trkadder) ;
begin

lastaddr := curaddr ;
curaddr := trkadder ;
lastincr := incr ;
if curaddr>lastaddr then incr := true

else incr := false ;
if not (lastincr = incr) then tracks scanned :=

tracks scanned + disksize ;
call diskdrive (block, iotype) ;

end ;

begin (* initialization *)
incr := true ; curaddr := 0 ; tracks scanned := 0

end

Figure 3- Example

19

A78

B72

B75

B76

G77

H74

H77

K77

L77

P78

S77

W78

References

Andrews, G.R., McGraw, J.R.r "Language Features for
Process Interaction", O_perating S_j{stems Reviewr Vol llr
No. 2 (April 1977) pp 114-127.

Brinch Hansen, Per, _Operating System Principles Prentice
Hall, New Jersey, 1973.

Brinch Hansen, Per, "The Programming Language Concurrent
Pascal", IEEE Transactions on Software Engineering,
SE-I,2 (June 1975) pp 199-206.

Brinch Hansen, Per, "The Solo Operating System: A Concurrent
Pascal Program", Software Practice and Experience, Vol 6
pp 141 - 149.

Graf, N., Kretschmar, H., Lohr, L.P., Morawetz, B., "How to
Design and Implement Small Time-Sharing Systems Using Con-
current Pascal", TR-77-09, Fachbereich Informatik, TU Berlin
(1977) .

Hoare, C.A.R., "Monitors: An Operating System Structuring
Concept", CACM 17,10 (Oct 1974), pp 549 - 557.

Haddon, B.K., "Nested Monitor Calls", Operating Systems
Review Vol ii, No. 4 (Oct 1977), pp 18 - 23.

Kieburtz, R.B., Silberschatz, A., "Capability Managers"
TR 71, Dept. of Computer Science, S.U.N.Y. at Stony Brook
(May 1977).

Lister, A., "The Problem of Nested Monitor Calls", Operating
Systems Review, Vol ii, No. 2 (July 1977), pp 5 - 7.

Parnas, D.L., "The Non-problem of Nested Monitor Calls",
Operating Systems Review , Vol 12, No. 1 (Jan. 1978) pp 12 -
14.

Silberschatz, A., Kieburtz, R.B., Berstein, A.J., "Extending
Concurrent Pascal to Allow Dynamic Resource Management",
IEEE Transactions on Software Engineering, SE-3, No. 3
(May 1977).

Wettstein, H., "The Problem of Nested Monitor Calls Re-
ppViSited"19 - ~30perating. Systems Review, Vol 12, No. 1 (Jan. 1978)

20

