
• ~IflMI U
U END

— —
F I L U E

~ :
78

t

I

I - —

1.0 ~~~II _ _ _

2.2
=

I.’ ~~~~
.

~ g IllO~0

IIIII~liii!’ .25 IIIII~•~ IIII(~
MICROCOPY RESOLUTION TEST CHART

NAJ IONAI. BURLA U Of SIA NOA RDS - 196 3 A

FOR FURtHER T~~ 1~T p

• /~\

• LuTechnical Document 146

OVERVIEW OF~CONCURRENT PASCAL
FOR THE JNTERDATA 7/16~>-

~~ Developed for the Channel Adaptive Receiver Test bed .
C.. , •~~~_ ~~~~-

• - •~~~
-

~~ --
i i, ~~~~~~~~~ otte1

~~~~i~~ebIi~ •fl
“ Final %ep~~to Feb. r ,~—Nov..~~ ir

D D Prepared for

Ii JUN 5~~ T8 
Naval Electronic Systems Command

Naval Sea Systems mm

B /~

APPROVED FOR PUBLIC REL ; I N  UNLIMITED

NAVAL OCEAN SYSTEMS CENTER
SAN DIEGO, CALIFORNIA 92152 p

J4



NAVAL OCEAN SYSTEMS CENTER . SAN DIEGO, CA 92152

A N  A C T I V I T Y  O F  T H E  N A V A L  M A T E R I A L  C O M M A N D

RR GAVAZZI , CAPT. USN HL BLOOD
Commander Technical Director

ADMINISTRATIVE INFORMATION

The work reported here was sponsored by NAVELEX 31 O/NAVSEA 06H I , under
Task Number XF2 1.22 1.701.UO l 1 and pursued under the Acoustic Communications
Exploratory Development Block Program.

Released by Under authority of
RH Hearn , Head DA Kunz , Head
Electronics Division Fleet Engineering Department

• -~~~ •-.



UNCLASSIFIED
SECURITY CLASSIF ICAT ION OF THIS PAGE (17i... Data Entatad)

~~~~~~ ~‘ E ~’4~” 
DA (% E READ INSTRUCTIONS

1% r~Ji~ I ~~~~~~~~~ I~ I~~ ~~~ ~ BEFORE COMPLETING FORM
I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECiPIENT’S C A T A L O G NUMBER

NOSC ID 146~”
4. T ITLE (and Subtitle) 5. TYPE OF REPGRT & PERIOD COVERED

OVERVIEW OF CONCURRENT PASCAL FOR THE INTERDATA Final Report
7/ 16 February — November 1976
Developed for the Channel Adaptive Receiver Testbed 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) C. CONT RA CT OR GRAN TNUM BER(.)

• DM Cottel

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT . PROJECT , TASK
AREA & WORK UNIT NUMBERS

• Naval Ocean Systems Center
San Diego, CA 92152 XF 21.221.701.U01 1

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

NAVELEX 310 and NAVSEA O6Hl 15 February 1978
Washington , DC 13. NUMBER OF PAGES

12 pages
14. MONITORING A G ENCY NAME & ADDRESS(II diff.rant ftoi~ Control lin4 Offi ce) IS. SECURITY CLASS. (of SI,,. r.pofl)

UNCLASSIFIED
IS.. DECLA SSI FICATION/ DOWNGRADING

SCHEDULE

IS. DISTRIBUTION STATEMENT (of this Report)

Approved for public release. Distribution Unlimited

17. DISTRIBUTION STATEMENT (of II,. ab.t r.ct .nt.red in Block 20. if difl. ,.n S free, Report)

IC. SUPPLEMENTARY NOTES

19. KEY WORD S (Continue on r.v.ra. aid. it n.c.a.ary and identify by block nu~~b.r)

Concurrent Pascal, Interdata , Kernel , minicomputer operating systems, peripheral devices

• 2 A BSTRACT (Cont inu, on r.v.r .. .id. If n.c.a.a,’, and identify by block numb.r)

~bl~his report describes the software system developed to support the Channel Adaptive Receiver (CAR) Project
at the Naval Ocean Systems Center. Reasons are given for choosing the programming language Concurrent
Pascal, as a basis for the softwa re support system. An overview of the Concurrent Pascal implementation
for the Interdata 7/16 mInicomputer is presented.

DD , ~~ ~ 1473 OIT~~~~~~~ 1 NOV 65 I S OBSOL ETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Bli an D.ee L,Iee.d)

- . _ _ _ _ _ _ _ _ _ _ _ _ _

CONTENTS

1. INTRODUCTION . .. page 2

2. CHOOSING THE LANGUAGE . . .2

3. IMPLEMENTATION FOR THE INTERDATA 7/ 1 6. . . 6

4. PERFORMANCE . . . 10

5. CONCLUSIONS... 11

6. REFERENCES. . .12

L
t

ACCESS’ON fe~
NTIS W~ * S.ctlcn V

• 0% ~.?~~c~tlan C
~~~~~~~ ~~~~~~~ D
lDSTi~i~~.~ 

—...,. 

8Yp 
~~

‘

Dist . ,.~ . .,~

1 

,4i~



1. INTRODUCI1ON
This report describes the software system developed to support the Channel Adap-

live Receiver (CAR) project at the Naval Ocean Systems Center (NOSC). This project
involved building a test facility for evaluating an underwater communication technique.

The significant factor in the software system is the use of the programming
language Concurrent Pascal recentl y developed by Per Brinch Hansen 1. In Concurrent
Pascal , the more widely known language Pascal2 is extended to include the ability to
handle concurrent tasks, that is, tasks which are carried on simultaneously within a computer.

The following sections give the reasons for the choice of the language as the basis
for the software support system and then describe the Concurrent Pascal implementation for
an Interdata 7/ 16 minicomputer. Some data describing the compiler size and performance is
included for those who may be considering Concurrent Pascal for their own installation.
Finally, there are some observations on the success of this software development.

For additional information concerning the hardware systems, refer to the hardware
documentation3. A user’s manual for concurrent programming on the CAR fa cility also
exists containing considerable detail concerning the available software and its use4.

2. CHOOSING THE LANGUAGE
There are apparently many alternative approaches to developing minicomputer

software. Programs can be written in machine Assembly Language immediately upon
delivery of the hardware . Or, the manufacturers will provide (at a price) various software
routines and operating systems. What factors, then , led to the decision to invest the time and
manpower in developing the Concurrent Pascal language for the support of the CAR system?

2.1 HARDWARE REQUIREMENTS
The CAR facility allows an experimenter to establish a test configuration from a

minicomputer terminal , enter the various test parameters, initiate the test , and display or
record the results (Figure 1), The hardware involved is an assembly of standard minicomputer
hardware based on an Interdata 7/ 1 6~ , various peripherals, and several devices built by
engineers at NOSC6. The configuration of these devices is shown in Figure 2.

There are three important hardware features which influenced software decisions:
1. multiple peripherals in operation simultaneously,
2. real-time operation required , and
3. unique NOSC built peripheral hardware .

I. Brinch Hansen , P., “The Programming Language Concurrent Pascal,” Information Science, California
Institute of Technology, Pasadena, CA, February 1975

2. Jensen , K. and Wirth , N., Pascal: User Manual and Report. Springer.Verlag, New York , N.Y., 1974
3. Juniper , M.D., “Overview of the Adaptive System Hardware Developed for the Channel Adaptive

Receiver Program ,” ID 141, Naval Ocean Systems Center , San Diego, CA, 1977
4. Cottel , D.M. and Zaun, J.A., “Concurrent Pascal : User’s Manual for the Interdata 7/ 16,” Preliminary

Release, Naval Ocean Systems Center , San Diego, CA, December 1976
5. “Model 7/16 Users Manual ,” In terdata , Inc. Publication number 29.261 , 1971.
6. Juniper , M.D., “Overview of the Adaptive System Hardware Developed for the Channel Adaptive

Receiver Program,” ID 141 , Naval Ocean Systems Center , San Diego, CA 1977

2



a 
_ _ _ _ _ _ _ _ _ _  

I
~~~~~~~~

. I

H .

S~~~~~~R .

LRO 7303-12.77B

Figure 1. Car Testbed Facility

The minicomputer is primarily used for sequencing operations and for control of
devices and data flow. During experiments it is necessary to operate the displays, for instance,
at the same time that data is being read from the disk or tape (or both). In addition , as is
often the case in signal processing applications , both data inputs and display outputs must
be handled in real-time. This requires that as much of the input/output operations as
possible be overlapped; for example , the next input data sample cannot be held up until
a tape operation completes.

The handling of concurrent operations is one of the most difficult of programming
tasks. Most programmers (indeed , most people) are experienced in handling one task after
another in a sequential fashion. The proper handling of the synchronization of concurrent
tasks requires the greatest care in preventing unwanted and unforeseen interactions between
tasks7. The Concurrent Pascal language provides the tools for correctly handling these
interactions. In fact , by enforcing certain rules and access rights, it totally prevents the
programmer from making many potentially dangerous constructions.

7. Haberniann, A.N., “Introduction to Operating Systems Design ,” Science Research Associates, Inc.,
Palo Alto, CA, 1976

3

_ _ _
~~.-

MAO MAG
TAPE TAPE

I/o
I ~ COMMAND I—I

I-.
TERMINAL MINICOMPUTER DIRECT ~~~~

ADAP1IVE

I—,

ANALO~~ INPUTS ANALOG

[F
’
~~ oJ

~~ ~~~~~~~~~~~~~ DISC

[

~~~~~~~~~~

_

~~~~NALOG OUTPUTS

Figure 2. lest-bed component interconnections.

Finally, although Interdata has available operating systems which are for real-time
applications, they would first have to be modified extensively to handle those peripheral
devices built by NOSC. These include real-time displays and fast data buffering through direct
memory access channels. The input/output portions of a typical operating system are usually
the most difficult portions to understand , with many special purpose details for each unique
device. For these reasons, the “simple modification of an existing system” is actually much
more difficult than is immediately apparent.

2.2 OPERATIONAL REQUIREMENTS
It must be kept in mind that those using the CAR testbed are not programmers but

signal processing analysts, engineers, and technicians. It is important that the software not
only avoid crashing, but also be reliable in the sense that it will always do what the user
expects it to do. This means he must be confident that he can specify a test and be sure that
the results are the correct results. In addition , when errors do occur , the system must make it
clear to the user exactly what the problems are.

Because of the nature of an experimental facility, it is a fact of life that software
changes will be frequent. Each new user will require different data , access to previously
unavailable parameters, or a myriad of other unforeseen possibilities. It is mandatorY ,
therefore, that the software system be changeable in such a way that the changes have
minimum ramifications in other areas of the program , and in a way that will not require

4

_ .
j .

_ _ _ _
-

~
-. - .

-

~~~~~~~~~~



an extensive debugging effort. Here again , the result must be no less reliable than the original
system. This necessity requires that the code be readable and understandable. In addition , for
any software system to be complete , normal documentation is required.

Studies have shown8 that three quarters of the total cost of software development
is actually incurred after the initial development and testing. That fraction would normally
be expected to increase for the case where frequent changes are certain. Making the code
reliable and changeable is economically justified. Such a code provides cost reductions
when changing needs of users require system updating.

.

2.3 ALTERNATIVES
The method of implementing the CAR software support system falls to these three

choices:

I . use assembly language
2. modify an Interdata operating system
3. use a high level concurrent language

Here is a summary of the advantages and disadvantages of these choices.

2.3.1 ASSEMBLY LANGUAGE
The use of the interdata Assembler has two distinct advantages: it is immediately

available without requiring extensive development time and effort , and it can be made (by
a programming artist) very efficient in terms of memory space required and the speed of
execution of the code. Unfortunately, these advantages are overwhelmed by the disad-
vantages. Correct assembly language coding requires extreme discipline to avoid situations
where changes have repercussions in many other parts of the code. The additional problems
of writing concurrent code have already been mentioned. Assembly language code requires
more debugging time than that written in a high level language. Further , the very process of
making the code efficient and fast also causes it to be totally unintelligible and therefore
virtually impossible to change without creating additional problems which require further
debugging. Making the major revisions which are certain to be required in this experimental
system would be prohibitively expensive.

For all this, assembly language has of necessity usually been the choice for these
problems. Since no high level language was available , system designers simply had to require
much less flexibility. In some cases, a hybrid configuration can be used by writing the
concurrent parts in assembly language and using some higher language for those portions of
a sequential nature.

2.3.2 OPERATING SYSTEM MODIFICATION
This has most of the same disadvantages as assembly language usage , with the

advantages greatly diluted. Although apparently a lot of work has been done already, in
fact the code is still in assembly language and is therefore subject to all the same problems.

8. Ross, D.T., “Homilies for Humble Standard s,” Comm. ACM , 11 , 19 November 1976.



Adding to or modifying an existing program of this nature , usually without adequate internal
documentation , is very difficult — yet the drivers for the NOSC hardware must be added.
Further , the real-time aspects may have been optimized for some other application and
would require further modification for the CAR system in particular. Finally, the mini-
computer software provided by the manufacturers is known to be rudimentary even for
simple sequential uses. In reality, most users with real-time requirements (and many with-
out) simply write their own special purpose programs, rather than try to make available
routines fit their problem.

2.3.3 HIGH LEVEL CONCURRENT LANGUAGE
Until recently, of course , this was not one of the available choices. The availability

of Concurrent Pascal is a significant step toward generating reliable and understandable
real-time operating systems. Concurrent Pascal provides the structured language facilities
of Pasca l as well as the concurrent tools necessary to properly support the CAR testbed.
This means the code can be written in an understandable way with all aspects of concurrent
task interaction becoming more app~rent. The modularity enforced by the language ensures
that small changes do not propagate to other parts of the program.

A potential disadvantage is that a compiler for a high level language usually generates
machine code which takes more space and runs slightly slower than that produced by an
expert programmer. Experts are not usually available , however , so only in extreme
circumstances is this too high a price. In fact , it makes more sense for both economic and
reliability reasons to compensate for these drawbacks, if necessary , by adding more memory,
making hardware modifications, or developing an optimizing compiler .

2.4 THE DECISION
The only apparent reason not to choose Concurrent Pascal as the CAR support system

would be if the cost or time of developing the language for the Interdata 7/ 16 were pro-
hibitive. The availability of the compiler and other implementation documentation from
Per Bu nch Hanse n at a nominal price made the decision clear.

3. IMPLEMENTATION FOR THE INTERDATA 7/ 16

3.1 CONCURRENT PASCAL
Concurrent Pascal was designed by Per Brinch Hansen as a language for structured

programming of computer operating systems9. Because of the need to handle multiple
periphera l devices simultaneously, the language is ideally suited to the CAR support
problem. The sequential language Pascal has been extended to include concurrent construc-
tions , primarily processes and monitors , which allow the compiler to check access rights
and various task interactions before the program is ever executed.

The language constructions which Concurrent Pascal provid’ ~ad to the writing
of relatively short and simple modules whose function is easy to nd check. This type

9. Brinch Hanse n , P., “Concurrent Pascal Report ,” Information Science, California Institute of Technology,
Pasadena , CA , June 1975

6

~~~~~ -
-. -

~~~~~~~~~~~~~~
. .- -~~~--~~



of construction makes it extremely simple for the programmer to test parts of the system
separately, then assemble the parts with no danger that a new section can create new bugs
in an already tested module. Relatively large programs can be put together , mainly from
debugged modules, with the result that little new debugging time is required.

The compiler has been modified to meet the needs of the CAR program. As
obtained from Brinch Hansen , the output of the compiler was an intermediate language
which was executed by interpreting the intermediate instructi’ins using a machine language
Kernel program. Since this was too slow for the CAR real-time application , the compiler
was changed to generate output code directly in Interdata machine language. Although
this procedure increases the size and complexity of the compiler , it dramatically increases
the speed at which programs are able to execute.

The original compiler consisted of seven passes. This means that the actual compila-
tion is split into seven sequentially executed programs or passes, with each pass partially
reducing the data , then transferring it to the next pass in an intermediate format. The final
two passes, which generated interpreter code , were replaced by four new passes (now nine
passes altogether) which generate Interdata 7/ 16 machine instructions. One of the new
passes does a peephole optimization of the generated code: modifications such as replacing
long instructions with shorter ones, or removing redundant instructions. As a result , the
code generated by the modified compiler is really very good : it takes less memory space
than that generated by the interpreting version , and it will run many times faster,

Although the compiler was changed internally, the actual language remains the same
with the single exception of standard procedures and functions. Some were changed or
eliminated, while others were added to provide the specifi c capabilities needed for the
CAR system.

3.2 OPERATING PROCEDURES
The Concurrent Pascal compiler would normally be run on the same computer for

which the output code is intended. The compiler output would simply be loaded and
executed. This was the case, for example , with Brinch Hansen on his Concurrent Pascal
operating system SOLO ’°. Although SOLO was implemented for the Interdata 7/ 16 , the
compiler (written in Sequential Pascal) could not be maintained there because of the
restricted memory size (64 kilobytes). Time and manpower considerations prevented making
the modifications necessary to allow the compilers to run on the Interdata.

An alternate method of preparing Concurrent Pascal programs for execution on the
Interdata is therefore used as shown in Figure 3. The facilities of a Univac 1110 computer
at NOSC, including the file handling utilities and a text editor , are used to create the source
code. In addition , several utility programs were written specifically for the CAR project
to provide formatted listings and other text manipulation. Interdata machine code is
then generated by cross-compiling, that is, the compiler runs in the Univac 1110 but outputs
code for the Interdata. The code is transported on magnetic tape to the minicomputer where
the Interdata Disc Operating System 1 I and some Interdata utilities are used to prepare a
boot tape. When this tape is loaded into the machine using the normal boot procedure , the

10. Bu nch Hansen, P., “The SOLO Operating System: A Concurrent Pascal Program,” Information Science,
California Institute of Technology, Pasadena , CA, June 1975

11. “Common Assembler Language (CAL) User’s Manual ,” Interdata , Inc., Publication number 29.375,
1974

7

~~-



INTERDATA 7/16 INTERDATA 7/16
JN IVAC 111 ~~~~~ UNDER UNDER

DOS OPERATING SYSTEM CAR CONCURRENT PASCAL

EDITOR 

OPERATING SYSTEM

COMPUTER LOADER
UTILITIES ASSEMBLER USER CAR PROGRAM

MAGNETIC BOOT
_________ 

TAPE 
___________________ 

TAPE 
_____________________

Figure 3. Steps to executing a Concurrent Pascal Program.

Concurrent Pascal program begins execution. It becomes, in effect , the operating system.
While this sequence is somewhat elaborate , it allows the use of a large library of existing
Univac utilities with a minimum of further software development for the Interdata.

The langu age and runtime system both suppor t the calling and execution of
Sequential Pascal programs. Sequential Pascal is a derivative of the Concurrent language with
the concurrent constructions removed and a few restrictions (pointers and recursive routine
calls) lifted ’ 2~ To date , these facilities have not been needed for direct CAR support , but
are available should the application demand it.

3.3 THE RUNTIME SYSTEM
“Runtime System” means the components which are in operation during the execu-

tion of a program. This section describes the following four parts of the runtime system and
their general functions and characteristics:

I . the Kernel ,
2. the 10 machine ,
3. Library routines, and
4. Concurrent compiler output.

Their relationship can be visualized as shown in Figure 4.

3.3.1 KERNEL
The Kernel is an assembly language program which implements a hypothetical com-

puter having a set of instructions tailored to running concurrent programs. These virtual
instructions include process initialization , process communication signals, and process
interaction protection. Also provided are entries to allow waiting for a specified time
interva l or to await an error. The Interdata memory protection hardware is used by the
Kernel to protect the operating system (the Concurrent Pascal program) from inadvertent
destruction by users (Sequential Pascal programs). All user and system errors are detected
and indicated to the operator.

12. Bunch Hansen , P. and Hartmann , A.C., “Sequential Pascal Report ,” Information Science, California
Institute of Technology , Pasadena , CA, Ju ly 1975

8



USER USER USER
PROCESS #1 PROCESS #2 PROCESS #N...
Concurrent Concurrent Concurrent

Pasca l Pasca l Pasca l

INITIAL PROCESS
Concurrent Pascal

COMPILER LIBRARY ROUTINES
Assembly Language

KERNEL 10 MACHINE
Assembly Language Assem bly Language

INTERDATA HARDWARE
CPU, MEM ORY , INTERRUPTS, DEVICES

Figure 4. Concurrent Pascal runtime system hierarchy.

3.3.2 10 MACHINE
The 10 machine is implemented at the same level as the Kernel. An assembly

language program , the 10 machine was designed to reduce the machine and device depenuent
portions of the Concurrent code while still giving the advantages of programming device
operations in the higher level language. The details of interrupt handling and device addressing
are kept out of the user’s hands.

The 10 machine is an interpreter: an array of generalized device instructions is
passed to the 10 machine where they are executed one by one. The instruction set was
chosen to provide the basic requirements for device control: issue a command , get the
status of the device, and do a data transfer. Additional details are not necessary at the user
level. It should not be important , for example, what method is used to transfer the data
(10 instructions or direct memory access, bytes or multiple byte tran sfers) because that is
a function of the particular hardware configuration.

3.3.3 LIBRARY
Library routines are used to shorten the code generated by the compiler. When a

complicated or lengthy piece of code is required (such as a subroutine call), the compiler
simply inserts the code to cause a jump to the library routine. These routines are usually
quite small and are written in assembly language. Library routines include the various
methods of calling routines, copying large data blocks, and operations on sets (a Pascal data
form).

9



3.3.4 USER PROGRAM
The final runtime element is, of course, the Concurrent Pascal program. The output

of the compiler consists of four sections. The first is a table of reference addresses for the
library routines. Next is the executable code which is reentrant so that multiple refere nces
can be made to the same code areas. Following these instructions is a table of literal
constants: strings of characters, sets, and real numbers which are never changed during
program execution. By separating the fixed elements from the program data areas , the
memory protection hardware may be used to give additional code protection and reliability.
In the future , a diagnostic table will be appended to the compiler output to provide the data
needed for a symbolic debugging and diagnostic program.

4. PERFORMANCE
The Kernel (including the 10 machine and the library routines) consists of 4500

lines of Interdata assembly language code, and was written and tested in five man-months.
This task was greatly simplified by the fact the Kernel is made up of many nearly inde-
pendent routines. The sizes for the Kernel code are given in Table 1. The largest version
includes code for gathering data on the frequency and type of Kernel entry , as well as
detailed data on the elapsed execution time of all processes. These instructions were
removed for the second version, Finally, some of the CAR programs required extraordinary
measures to squeeze them into the Interdata memory. For those cases, a minimum
Kernel was created by removing all code related to timed waits and sequential programs.
The first 700 bytes of memory in the Interdata are reserved for special uses. This space is
included in Table 1.

Table 1. Size of Kernel Code.

Kernel Version Space In Bytes

Full Kernel 9000
No Test Data 8000
Concurrent Only 5900

Modifying the compiler involved not only replacing the final two passes with four
new ones, but also changing earlier passes as necessary to provide data for the new mode of
code generation. This turned out to be a definite disadvantage of the multiple pass organiza-
tion (small changes tended to propagate through many passes). The compiler conversion
took about one man-year to complete. Table 2 summarizes the results of compiling the nine
concurrent passes using the sequential compiler. Code output from the concurrent com-
piler would show similar characteristics since the code generation and optimization is
virtually identical in the two compilers.

The most notable feature of the table is the large range in code reduction obtained
by optimizing the output code and removing code to do runtime range checking. The gain
is highly dependent on the type of code being written. Pass 2, for example , is almost

10

_ _ _ _ _ _ _-- 
-~~- -- --~~~~~~~-- .



Table 2. Sizes of concurrent compiler passes.

Program Final Code Optimization Check Removal Total
Name Space (Bytes) Improvement Improvement Reduction

Pass 1 8828 14% 11% 25%
Pass 2 13302 10 2 12
Pass 3 13070 17 26 43
Pass 4 9994 16 27 43
Pass S 8758 14 14 28
Pass 6 15008 20 13 33
Pass 7 17150 19 17 36
Pass 8 17930 16 30 46
Pass 9 19540 17 6 23

entirely procedure calls , whereas Pass 8 uses a large number of subrange types. Pass 9 is
larger than the others because of the large character arrays required to print error messages
in a readable way.

5. CONCLUSIONS
All who have had occasion to write concurrent programs for the CAR project agree

that it is not only amazingly easy to assemble complex concurrent jobs , it is also fun to do.
During the time the device drivers were being developed , many concurrent programs of
2000 to 3000 lines were written and tested within a week or two. Once compiled , the
programs nearly always ran when firs t loaded. The usual case was to find that the design
specifications for the test program needed revision. Since the Kernel testing was completed ,
there have never been any time dependent bugs. This remarkable experience is probably
due not only to the concurrent protection mechanisms in the language, but also because
the structure of Concurrent Pascal encourages the use of small modular procedures which
are readable and understandable. These experiences confirm the arguments in favor of
choosing Concurrent Pascal to support the CAR project.

On the other hand , the 10 machine was somewhat of a disappointment in actual
use. The concept is still valid — to provide a uniform method for handling all peripheral
devices while shielding the user from the machine details such as device addressing or
interrupt handling. The problem lies with the unpredictability of the existing device hard-
ware. The disk interface , for instance , requires that a series of output commands meet
critica l timing constraints. Further , interrupts can occur from any of the three device
addresses involved depending upon the current transfer conditions. Special cases like
these complicate both the 10 machine code and the Concurrent Pascal device handler ,
and lead to the situation where each device driver has to be individually worked out by
experimentation with the hardware.

Nearly every Interdata device dealt with presented some unique interface problem ,
but the situation is not limited to Interdata hardware . On finding similar problems with
his PDP- l I devices, Nicklaus Wirth suggested a set of hardware implementation rules for

11

-~~~~~~ - - - - - -~ ~~~~— ---——----— .‘  .-~-
. - ‘I —



peripheral device interfaces which would allow straight forward device handling ’3 . A
uniform method of handling communication with peripherals would greatly simplify the
software interface problems.

All of the soft ware work described in this report was greatly influence d by
Michael S. Ball. Among his many contributions were the design of the runtime system ,
the general course of the compiler modifications , and the design and implementation of
the final two compiler passes (code optimization and output).

6. REFERENCES
1. Brinch Hansen , P. The Programming Language Concurrent Pascal. Information

Science , California Institute of Technology, February 1975.

2. Jensen , K., and Wirth , N. PASCAL: User Manual and Report. Springer-Verlag,
New York , 1974.

3. Juniper , M.D. Overview of the Adaptive System Hardware Developed for the
Channel Adaptive Receiver Program. NOSC ID 141 , Naval Ocean Systems Center , 1977.

4. Cottel , D.M., and Zaun , J.A. Concurrent Pascal: User’s Manual for the Interdata
7/ 16. Preliminary release , Naval Ocean Systems Center , December 1 976.

5. Interdata , Inc. Model 7/ 16 User ’s Manual , Publication number 29-261 , 1971.

6. Juns~. . r , M.D. Overview of the Adaptive System Hardware Developed for the
Channel Adaptive Receiver Program. NOSC TD 141 , Naval Ocean Systems Center , 1977.

7. Habermann , A.N. Introduction to Operating Systems Design . Science Research
Associates, Inc., Palo Alto , California , 1 976.

8. Ross, D.T. Homilies for Humble Standards. Comm. ACM , 19, I l , November 1976.

9. Brinch Hansen , P. Concurrent Pascal Report. Information Science, California Institute
of Technology, June 1975.

10. Brinch Hanse n , P. The SOLO Operating System: A Concurrent Pascal Program.
Information Science , California Institute of Technology, June 1975.

11 . Interdata , Inc. Common Assembler Language (CAL) User’s Manual , Publication
number 29-375 , 1 974.

12. Brinch Hansen, P., and Hartmann , A.C. Sequential Pascal Report. Information
Science, California Institute of Technology , July 1975.

13. Wirth , N. Design and Implementation of MODULA. Software — Practice and
Experience , Vol. 7, 1977 .

13. Wirth , N., “Design and Implementation of MODULA ,” Software—Practice and Exper ience,
Vol. 7 , 1977

12


