AD=-A10% 200 KANSAS STATE UNIV MANHATTAN DEPT OF COMPUTER SCIENCE Fs6 972
THE STRUCTURE OF THE NADEX OPERATING SYSTEM, (U)
DEC 79 R YOUNGs V WALLENTINE

UNCLASSIFIED TR=79=~12

_ . .

e —]

e AR Y
}
3

,l'EVEl z (2

G *
JHE_STRUCTURE OF THE
uADex'ﬁpsnmmc SYSTEM

<:i\}'kobcrt/¥ounq\3 .

\ Virgil/ﬂallentine)

e

v -
oot .

FSEPUR UG

ADA105200

DT
| | 7915 . _l . ELECI'FE:
+ (Al = N 0CT O 6 1981

% L/i 77\ .':7’ 19- l E

Computer Science Department
Kan-u: State University

S mm—s

jl '/ Decommmmtyio 7y \

"This research was supported in part by grant number
P=16160=A-EL from the Army Research Office and the Army

‘ Institute for Research in Management Information and
Computer Science.

AT e

I il o % e,

-
gg; document has been approved

for public relecse cnd sale; is
-4
iiié

distribution is unlimited.

81 10 2 122 ,
S9L LR

R el UV -
R ~ Tt (T R S A SNESTIACEIE R S) e vt C

Table of Contents
A
Page iy
Introductory NADEX Concepts 1 :
Software Configurations 2 .
2.1 Configuration Properties 2
2.2 DTS Implementation Considerations 8
2.3 Subsystems 12
2.4 Implementing Subsystems 16
2.5 DTS (Port) Operations to Support
Multi-server Subsystems 19
NADEX Structure 23
NADEX Operation 26
4.1 Concurrent Pascal Language Extensions 26
4.2 The NADEX Core 0OS as a Concurrent Pascal
Program 27
4.3 System Initialization 33
4.4 User Signon 34
4.5 Configuration Setup 36
4.6 Server Process Operation 39
4.7 User Initialization 44
4.8 Server Process 1/0 45
4.9 Normal Server Termination 46
4.10 Abnormal Server Termination 47
4.11 Configuration Status Monitoring 48
4.12 Configuration Termination 49
Bibliography 51
Accession For
RTIS GRAXI
DTIC TAB
Unannounced
ificati
By.
Distribution/
Avallability Codes
Avail end/or
Dist Special

vk

e 0k

RS

A

1.0 Introductory NADEX Concepts

NADEX is an acronym for Network ADoptable Executive.
'

NADEX supports the building of software configurations which
consist of a general graph of communicating nodes. These
nodes may be sequential or concurrent programs which access
NADEX services through a native PREFIX. The PREFIX concept
was originally defined by Per Lrinch Hansen as an inter face
to the SOLO {3} operating system. The NADEX Native PREFIX
is the interface to the NADEA Core OS and provides data flow
abstractions to ?he program running in a node. These
operations permit each program (running in a node) to
exchange messages with other nodes in a software
configuration via full-=duplex data transfer streams.

In this document, we first present the concept of a
software configuration. We then present the general
structure of NADEX. Finally, we describe the function of

each module of the NADEX Core OS as it is written in

Concurrent Pasca* ti).

X

3
2
4
%
‘!? f
§
i
Ed
!

ey JERNE,

RC R TN

whs

4

(%)

2,0 Software Confiqurations
2.1 Configuration Properties

A configuration consists of a collection of nodes
connected by data transfer streams (DTS”s). Nodes can be
user programs (both sequential and concurrent languages such
as SPASCAL and CPASCAL), file access nodes (for accessing
files within the NADEX file system), 1/0 device access nodes
(for accessing 1/0 devices not supported by the NADEX file
system), or external configurations such as subsystems,

Nodes within the configuration are connected by DTS"s
which are also called connections. Each connection consis‘s
of two bi-directional components~=data and parameter. The
data component transfers data in page-sized blocks (a page
is. 512 bytes) and interfaces to the user program at the
page, logical record, or character level. The parameter
component transfers small parameter blocks typically used
for control information. The data and parameter components
are totally independent. The ¢two directions of each
component are independent in the sense that each direction
has its own queue, but the user protocol restrictions are
defined in terms of the bi~directional components.

For the purposes of these discussions, we will speak of
a node issving reads and writes to a port which is local to
the node. The connection of these ports {orms the Data
Transfer Stream. This is 4illustrated in Figure 1. Table
2.1 contains the PREFIX which implements these operations,

These should be assumed to be read-page and write-page

SNOILYYNO13INO) 3¥VMLL0S NI SNOILVIINNWWO) WVY90¥d ¥3S()

T 3unoly

gNITdNod 3S00T ¥O NOILI3NNOD VWa
£ AYOW3W NOWWOJ NI @3LNIWITdWI 39 NVI SNOILJ3INNO] °*¢

¥0SS3J0Ud ANVWWOD
NO11VYN9I14NOD Ad @3xsiigvisa (r1) SNOILI3NNO) T

PN o
) EEAJH\ m\ / Nw\v, 1404

s s A e e

4 4 b

[}]

(DEIRLL (MHAVH (HavH (DHILIYM
34073ANT ¥3SN

L L] L ¢

| ! L] 1

INIYLN EL TR
300) 379vV.1¥04 . WVY¥90¥4 ¥3S()
Z 300N T 3a0N
’ ’ s UL e S R

SRR S St = - . :

Table <.14

S,

~—

N AN T T RERNANECERNEIRNATEANRRNATANCATARATNACARSNNN NN
-

A

i e A

" NADEX NATIVE PREFIX =

-
NREAT AR ANATTRAANAANTAATAIRNRNAINSNNANAN AR ARBRNET 0

CONST PAGE_SIZE = 514&; “SI1ZE OF DATA PAGE*"
PARM_SIZE = 34; “SIZE OF PARAMETER BLOCKS"
MAX_D7Ts = 4U; "MAX GLOBAL DTS 1ID"
MAX_PORT = 1lvV; "MAX POKT 1bL*
SVCI_BLOCK_SI1Z2E = <24; “SIZE OF SVC 1 PARM BLOCK"
SVC/_BLOCK_SIZE = 2b; “SIZE OF SVC 7 PARM BLOCK*

Wt e R R,

T h WP EY. %

TYPE PAGE = ARRAY [l..PAGE_S1ZE] OF BYTE;
PARAMETER = ARKAY |[l..PAKM_SIZE] OF BYTE;
SVC1_BLOCK = ARRAY [l..SVC1l_BLOCK_SIZE) OF BYTE;
SVC/_BLOCK = ARRAY [1l..SVC/_BLOCK_SIZE| OF BYTE:

TYPE DTS_INDX = 1. .MAX_DTS; DTS_INDXO = 0,..MAX_DTS;
POKT_INDX = l.,MAX_POKT; PORT_INDXU = U, ,MAX_PORT:

TYPE DTS_SET = SET OF D1S_INDX;

TYPE BUF_TYPES = (PAKM_BUF, DATA_BUF, NIL_BUF);
' "BUFFER TYPES"

TYPE REQ_CODES = (REQ_OK "U", REQ_NODE_ABOKT “1*,
REQ_DTS_ABORT "2", REQ_DEFER "3", REQ_UNRES_DTS "4,
REQ_PROT_ERKOR "5", REQ_BAD_POKRT “o");

*PREFIX DTS OPERATION RETURN CODES"

e ——— .

|
} ' PROCEDURE READ_CHAR (PORT: PORT_INDX; VAK C:CHAR);
PROCEDUKE WRITE_CHAR (PORT: PORT_INDX; C:CHAR):

PROCEDUKE READ_DATA (PORT: POKT_INDA: VAR DATA: UNIV PACE:
VAR LENGTH: INTECER;
VAR RESULT: REQ_COLES):

:

|

[PROCEDURE WRITE_DATA (PORT: PORT_INDA; DATA: UN1V PAGE:;
LENGTH: INTEGEK; CONDITIONAL:

» BOOLEAN;
VAR RESULT: REQ_CODES): f

| _ PROCEDURE KREAD_PARM (POKT: PORT_INDX;
‘ . : VAR PARM: UN1V PAKAMETER:

VAR KEBULT: REQ_COLES):;

) PROCEDUKE WRITE_PARM (PORT: PORIT_INDN; PARN: UNILV q
|

T PARAMETER
| g CONDITIUNAL: BOOLEAN;
g WAk MESULT: REQ_COURS):

PROCEDURS MAP_PORT (POKT: PORT_1INDX: BUF_TYPR: BUF_TIPES: ’;i

gty S« + - RN AT

VAR RDTS: DTS_INDXO;
VAR WDTS: DTS_INDXO);

PROCEDURE AWAIT_EVENTS (VAR READ_WAITS, WRITE_WAITS:

DTS_SET;
VAR READ_READY, WRITE_READY:

DTS_SET;
VAR RESULT: REQ_CODES);

PROCEDURE DISCONNECT (PORT: PORT_INDX;
VAR RESULT: REQ_CODES):

PROCEDURE FETCH_LUSER_ATTRIBUTES;
PROCEDURE SUBMIG_CONFI1G;

PROGRAM FSS;

e v

R S

6

request8® for the data component, and read~parm and
write-parm requests for the parameter component. The
blocking of character and logical record data into pages is
handled by the prefix of the nodes and will not be discussed
here. Unless otherwise specified all discussions apr!:
equally to data and parameters, and no distinction will be
made.

There are no structural restrictions on the graph
formed by the nodes and connections (DTS"s). 1In particular,
it need not be 1linear (like SOLO [1) and UNIX [11]) or
hierarchical. It need not even be acyclic as in AMPS [l¢]
or connected. Nodes are not precluded from having
connections to themselves. Thus, the configuration is
described by a (labeled) undirected graph. The labeling
occurs where each connection enters the two (not necessarily
distinct) nodes it connects.

The user programs (as well as the various system
routines which jimplement the other nodes) address the
connections emanating from each node by DTS ids local to the
node. These local DTS ids are also called port numbers.
The meaning of the data stream associated with each port is
defined by the program. Port numbers are generally assigned
by the programmer starting with one (since the system will
place 8 configurstion-dependent upper limit on the port
numbers for economy in table storage). These port numbers
are the labels on the configuration graph.

The structure of a configuration is defined by a

——g—y

language which builds a file called a Configuration
Descriptor File (CDF). The CDF defines the structure of the
configuration and the type (user program, file access, etc.)
of each node. When the user requests that a configuration
be run (either through a terminal command or a command in a
batch job), the CDF is used along with information from the
command to construct a configuration descriptor. The
configuration descriptor includes all of the information
about the configuration including, for example, the names of
the files to be accessed by the file access nodes. The
configuration descriptor contains enough information for the
system to allocate resources and run the configuration.

A typical language for building CDF’s might include
statements like “DEFINE NODE 1 AS USER PROGRAM (filename),”
‘DEFINE NODE 2 AS FILE ACCESS (filename),” °‘CONNECT NODE 1
PORT 1 TO HNODE 2 PORT 1.° More complete examples of
configuration description languages are g¢given in reference
[15). Thus, there are statements which define each node and
the function it is to performm as well as those which define
each connection. The node definitions may completely
specify the function, or some information {such as
filenames) may be left to be filled in from the command.
The connection definition may include buffer allocation
parameters (to be discussed later). The program which

converts the CDF into a configuration descriptor is called

the Command Processor and runs as a separate configuration.

e AT

b

e e e s e wean s aten D

e g

.-

4.2 DTS Implementation Considerations

The system places no interpretations on any of the data
contained in the data and parameter buffers, except when
they are used to communicate with a system node (such as
file access or I/0 device access). Thus, the user is free
to design his own protocols. The system quarantees that
data (and parameters) are delivered in the same order as
they were written. Note that this applies to each component
in each direction independently.

However, the wuser protocols implicitly define buffer
allocation parameters which must be available to the system
to ensure that deadlock due to buffer allocation can be
avoided. For each bi~directional component (data and
parameter) of a connection, there is a buffer allocation
quantity called min. This designates the minimum numbcr of
buffers which must be reserved for this bi-directional
component of the connection. The wuser protocol is relatea
to this quantity in that it must operate such that it ’never
requires more than min data items (data pages or parameters)
in-transit at any one time. For example, if two connected
nodes both issue write datas f{followed by read datas to the
same connection, then min must be at least two. Normally,
synchronized protocols only require a min of one. Mins are
handled separately for parameter and data., Generally, min
will be of concern only when data jtems are not read in the
same order in which they were written over a s8ingle

connection, or when «cycles exist within the configuration

y |
graph. Note that min is an inherent property of user
protocols (although some min’s are data dependent and
poss ibly unbounded). 1

When the CDF is defined, the min values for each

. connection must be defined to the system. These values must
be at least as large as the min required by the protocol.

The system will default a min of one since most
naturally=-occurring protocols require only a min of one.

The system will ensure as much as possible that the user

protocol does not violate min, and will terminate the
configuration if it does. 1If the user protocol violates the

min restrictions, it is possible for the deadlock avoidance

I A S

in the buffer allocation policies to fail and thusly for the
configuration to deadlock. o
In addition, a max will be defined for each conneétion

component. Max is an upper bound on the number of buffers

VRN s

which the system is constrained only in that it must be able
to supply at least min buffers to each connection component. ,

. It also should not supply more than max buffers to each

connection component. It may make its own decisions within

those constraints as appropriate based on the relative data

: Pap——

|

[

flow rates within the configuration. '"The default value f{or ﬁ
|

max will be the total number of buffers of the type ;
|

t

|

allocated to the configuration. The number of data and

parameter buffers to be allocated are also parameters in the

CDF which default to the s8sum of the mins. Thus, the mins

PR, oY

ensure that the |user protocols can function without

A— e)
—— i o, i . 2 P it S R Y e T

N

B e

10
deadlock, and the max“s allow the wuser to partition the
buffer pool overriding the dynamic <collocation policies of
the systemnm,

The DTSs associated with each configuration are
implemented with a Pipeline Buffer Manager (PBM). Pipeline
is a misnomer in this case but the PBM acronym has reimained
with the system historically. Functionally, the PBM is the
Con figuration Buf{er Manager, It is implemented as a
CPASCAL manager which manages parameter and data buffer
classes. The PBM contains within it the queues of data
items waiting to be read, pools of free buffers, buffer
allocation information, and deadlock detection information.

The read and write functions are each implemented via a
pair of calls to the PDBM. A read is implemented by a read
to the PBM which returns a reference to a buffer. The data
is then extracted from the buffer and the buffer is released
to the free pool by & release call. A write is implemented
by a request which fills the free buffer, which is followed
by a write which acquires a free buffer, which in turn is
followed by a write which queues the buffer sc that it can
be read in sequence by the node at the other end of the
connection. We illustrate this in Figure <.

The permanent variables of each node contain a table
which maps local DTS ids (port numbers) into PBM DS ids.
The PBM DTS ids are DTS ids which wuniquely identify a
connection within the PBM (and thus within the configuration

for the configurations described thus far). The mapping

[,

par S E——

A) MecHANISM OF BUFFER ALLOCATION WITHIN PIPELINE 11
SHARED Burfer PootL--

MANAGER OF
PAGE BUFFER
CLASSES

(PBM)

WRITE
ACQUIRE
RELEASE
READ

\ {PREFIX

| PREFIX

—~1, ACQUIRE.PBM
2, WRITE.BUF
3, WRITE.PBM

—bll
2l
3.

READ.PBM
READ,BUF
RELEASE . PBM

— WRITE

—— READ

Nobe 1

Nobe 2

Nope 3

LEGEND:

PIPELINE

® GUARANTEES NO DEADLOCK ON BUFFERS SHARED IN PIPELINE

ACCESS RIGHT

= = = ACCESS VIA REFERENCE

B) CONCEPTUAL REPRESENTATION

Nope 1

FIGure 2:

Nobe 2

-1

P1pELINE CONNECTIONS

Nopbe 3

R R o R A O e

Py e _

o e

wry
BV
f
.

45

A
!

!
=4

12
table also contains an indicator that shows which end of the

connection this ©port implements. (The ends of the

T Ns
vy

connection are arbitrarily named by the system, and theo
. names are used to identify which direction a particular data

*

P item is flowing). (As an implementation consideration, *+tl:

N

-

t PBM DTS 1ids are mapped into pairs of numbers, and the

connection end determines whether the even or odd member of

e XT3 TN NS,

the pair is used.)
Thus far, we have described a basic self~-contained

undistributed configuration and the mechanisms (PEM and

prefix) used to implement it. Note that each node is

defined and proogrammed solely in terms of its ports and is 3

not knowledgeable of the structure of the configuration.

All interprocess communication is done via data transfer
streams. These characteristics will prove quite wusefiul

later when the configuration is distributed.

2,3 Subsystems ,
In addition to running isolated user configurations,
NADEX allows user configurations to communicate with special

configurations known as subsystems, As mentioned, .

subsystems are themselves configurations, but also have an
inter face to allow connection to nodes of user
configurations. Typical uses of subsystems would be a data
base management system, a file system, and an

interconfiguration communications system, @

e - ————— T T et m—————— e]

» o i) i , ol W e o o b

13

A subsystem is unique in that it is not activated
directly by a user command or a user batch job. 1Instead, it
is activated whenever a configuration is started which
requires the services of that subsystem. The subsystem then
continues to run until there are no more active users
(configurations). Then, depending on the subsystem, it may
be automatically terminated or it may remain active waiting
for additional users.

A subsystem serves multiple configurations concurrently
and has much of the responsibility for multiplexing itself
among its users. Furthermore, as user configurations are
initiated and terminated, they can dynamically connect to
and disconnect from the subsystem.

When a user describes a configuration, access to a
subsystem is shown as a single node with connections {from
other nodes in the configuration. However, when the
configuration is implemented, the system will not create
such a node. Instead, the connections to the subsystem node
in the user description will be connections between user
nodes and the user interface of the subsystem. This is
illustrated in Figure 3.

The user nodes communicate with the subsystem just as
if it were another node. The normal DTS operations (read
and write parameter and data) are used to implement a
protocol defined by the particular subsystem. The user
nodes themselves are not aware that they are communicating

with a subsystem rather than with another node (which uses

e e s SRR AN 8. o - s e it s 4

+ 4 = re e Amrast

RG2S TAREE. N

FILe LocaL FILe 14
INPUT PAGING Output
NopE NopEe Nobpe
N () b
][(5)

TERMINAL | (1) UseRr (2) TERMINAL ,
INuT === ProGRAM QurpuT ;
NopEe Nope NopE '

i
(6)(7)(8)

|
DATA FrLow VIEw {

Temp (3) OF
FILES 3
ConFIGURATIONS ;
LEGEND: fi
(1),), (3), (&) seuenTIAL [/0 STREAMS X
(5 PAGED BUFFER PROTOCOL 'i

6), (7), (8) RANDOM 1/0 prROTOCOL i

TERMINAL User FILE
ManaGeR % PROGRAM &> SUBSYSTEM
SUBSYSTEM Nope
1T][(5)
TERMINALS
PAGING |
Nope i
FiGure 3
IMPLEMENTATION OF DATA FLow IN SuBsYsTeEM CONNECTION

ey

5

e ¥ F WX

15
the same protocol, of course).

From the subsystem”s point of view, there is a set of
connections defined in the subsystem”s configuration
description called the user interface connections. These
have one end which terminates within the subsystem (perhaps
on a one~to~many basis) and the other end is initially left
free. When user configuration is started, its connections
to the subsystem will be implemented over some of these user
interface connections.

The subsystem again uses the normal DTS operations to
communicate with the varjous users which it serves. Since
subsystems serve multiple wusers, they will typically be
users of the multiple~condition wait, which waits for
requests coming from the various users.

Note that neither the subsystem nor the user
configuration is aware (at this point) that the subsystem is
actually a subsystem. 1In fact, without changing any of the
programming discussed -so far, the collection of nodes which
constitute a subsystem could be taken and placed in the user
configuration. The connections from user nodes ¢to the
subsystem would be the user interface connections, and the
two parts of the configuration would otherwise be
independent. This allows a user to wuse a private copy of
the subsystem wjithin a user configuration if necessary.
This is the recommended procedure for debugging subsystems.
Note that no changes in any of the programming is required

to move between these two modes.

o din
TN D Sy

b

B P K FUNST S

- eem Ve we B e T

lv
4.4 Implementing Subsystems

In the implementation of a real subsystem, the
subsystem exists just as any other configuration does. The
only distinctions are the presence of the user interface
connections and the lack of a user terminal or batch job
which controls the configuration. In particular, the
configuration does have a PBM which implements both its own
internal connections and part of the connections to users
over the user interface connections,

Once a user configuration has connected to a subsystem,
we can speak of the user~-subsystem connection as a single
entity which was formed by matching a port in the user
configuration description which terminated at the subsystem
node with a user interface port in the subsystem. However,
this connection is really implemented by two
connections=~one in the wuser PBM and one in the subsystemn
PBM. This complication is necessary to ensure that all of
the events which cause conditions in an await-condition
request to become true occur within the caller”s PEM.

In general, each 8ide of the connection issues reads
within its own PBM but issues writes to the other PBM, All
buffers are allocated from the wuser PBM. Thus, a user
writes to a subsystem by acquiring a buffer from the user
PBM, filling it with data, and writing it into the subsystem
PBM. A user reads from a subsystem by reading a buffer from
the user PBM, copying out the data, and then releasing it

into the user PBM. A subsystem reads from a user by reading

-

T e

4%

6.

NP 3 54

w®

13

x4

14
a bufter from the subsystem P!LEM and then releasing it into
the user PBM. A Subsystem writes to a user by acquiring a
putfer from the wuser ¥¢BM, filling it with data, and then
writing it into the user PLNM.

Note that the data—available condition for the user
occurs in the user PBM, and the data~available condition tor
the subsystem occurs in the subsystem PBM. However, since
all buffers come from the user PEM, the buffer~available-
for-write condition always occurs within the user PBM. It
is anticipated that subsystems will always use conditional
writes into user PBM's. (Actual{y, it is the acquire that
is conditional.) If such a request is rejected due to a
buffer unavailability (either due to max excession or a
depletion of the PBM {ree buffer pool), then the connection
is flagged. Note that this can occur only if at least min
buffers are currently gqueued for the user. When the user
issues a read from this connect ion, the flag is
interrogated. If it is set, then a status is returned (to
the prefix routine) which causes it to call the subsystem
PBM to inform it that buffers are (maybe) now available {for
this connection. That will cause a wait for
buffer~available within the subsystem PBM for that
connection to be marked as complete, and the subsystem will
eventually retry the conditional write.

The user-subsystem connection is actually implemented
as two separate DTS s~~one in the wuser PBM and one in the

subsystem PBM, For this reason, the prefix entries for this

AR A e B

 THRE". O

v

~,

e L

L o —— /o —— "

iy
connection must have the PBM references and the PBM DTS ids
for both parts of the connection, and thusly will use the
appropriate ones depending on the type of call.

The await-condition fac;lity allows the subsystem to
exercise flow control among its various users. Since th-
subsystem can remove connections from the waiting sets and
use its own algorithms to determine which connections to
service first, it can implement whatever controls are
necessary. Since all wuser~subsystem communication uses
buffers from the various user PBM s, there are no problems
with buffer allocation within the subsystem PBM due to the
varying number of wusers and their requirements. The
conditional write and await-multiple~condition facilitie=s
prevent the subsystem from even being forced to wait in a
particular user's PBM or ¢to wait for a request from .
particular user.

Note that many~to~many connections are restricted in
that each end of a connection must reside totally within one
configuration. Thus, an end of a connection cannot be split
between a subsystem node and other nodes in the desc jiption
of a user configuration. The wuser end of a user interface
connection in a subsystem cannot be s8plit, although the
subsystem end can and probably will be split between various
nodes of the subsystem,

Subsystems are not prevented from being users of other
subsystems, Jowever, the restriction that a configuration

cannot be injtiated until all of the subsystems it uses are

i
'

19
running imposes a hierarchy on subsystems. Since the user
interface connections are driven by reguests from user
configurations, it 1is not possible to <connect the user
interface connections of two subsystems together.

Note that the deadlock detection algorithms cannot
detect protocol violations for wusers communicating through
subsystems (even if the commpnication takes the form of just
requesting the same resource). This is due to the fact that
internode dependencies are known only within the internal
data structures of the subsystem and cannot be deduced from

the various PBM data structures.

[X}
.
v

DTS (Port) Operations to Support Multi-server
Subsystems
The read and write functions described thus far have
been unconditional serial operations; that is, they request
a specific operation on a specific port and do not return
unt il that operation has been performed. (They can also
terminate as a result of configuration termination due to
errors.) Therefore, programs which use them are
deterministic (assuming the nodes to which they are
connected are deterministic) and do not wuse undefined
variables.

In order to write programs which process several data
streams concurrently and which are adaptive to the data flow

rates in the various data streams, it is necessary to have

- -t T P e

20U

conditional operations and multiple-event waits. (Sce Table
<,1.) As shown in Figure 4, a subsystem may have to service
multiple ports whose requests are asynchronous. This
condition, as noted also by Sunshine in UNIX {11}, must be
solved by tagging messages with thé sender”s identifier or
with unique ports. Since each port can be identified with a
particular function, and since tagged messages require the
user node to de-multiplex messages in the data stream, the
NADEX Native PREF1X provides a facility (AWAIT_EVENTS) to
identify when and which DTS (s) require attention.

Basically, the DTS-related events which can occur
involve er%her the availability of data items (due to a
write from the other end of the DTS) or of buffers (within
the min/max constraints) so that a write can be performed.
These events also describe the only conditions under which a
node can be delayed while executing a DTS-related
operation.

A multiple-event wait prefix routine is defined which
allows a user to wait for the occurrence of any one of a set
of‘events. The events involve the availability of data
items or that of buffers for the data and parameter
components of each of the DTS’ s connected to the node.
These are represented by four sets-~data~input,
parameter~input, data-output, and parameter~output~of local
DTS ids. A DTS jid is a member of the set if that condition
will cauvuse the wait to complete. Note that these are

*remembered® events and are really conditions rather than

TSRy N

L

.

m»m__‘.ﬁl.“.,. A

ExaMPLE SYsTeMs WHicH Require

ASYNCHRONOUS COMMUNICATION

TeLEcONFERENCING (TEMS) - ELECTRONIC MAIL SYSTEM

21

0O
TENS m MESSAGES STORED BY
DATA SENDER
BASE RECEIVER
TIME
CoNFERENCE
MaNAGER
ProcEss
t , * SEPARATE PORTS FOR EACH
PATH WITH MANAGER EXE-
cuTing READ/WRITE &
| PROCEED on ALL PORTS
USER (MULTI-CONDITION
senp/pecy | B m O warrs)
PROCESSES
SEND(®) SEND(m) SEND(D)
RECEIVE RECEIVE RECEIVE
(B or O) (B or) (D or W)

F1Gure 4

L martt ol e v T

L
events. When the multiple-wait returns, the vuser will be
provided with an indication all of the conditions which now
hold. The user can then, based on those conditions, issue
the appropriate unconditional recquest knowing that it will
complete immediately.

The last statement was true for input requests but is
not always true for output. Buffer availability is
dependent on two factors-~the connection will not exceed
max, and there is a free buffer in the buffer pool. Clearly
other nodes which share the same buffer pool can cause the
second condition to become false after it has been signaled
via a mult;ple‘wait that it was true. The other node on a
connection can cause the first condition to become false
also. Therefore, it is necessary to have a conditional
write which will return a status indicating whether or not a

buffer could be allocated.

A
[}

3,0 NADEX Structure

NADEX is an operating system in support of full-duplex
data transfer streams (DTS"s) between a general graph
structure of nodes~-software configurations. Each node can
run concurrent or sequential programs. In this section we
describe the structure of NADEX, its layering and the
interfaces between the layers.

In Figure 5 we illustrate the structure of NADEX as a
system of five layers. The outer ring is a possible set of
subsystems in support of user configurations. The NADEA
Core OS supports only DTS opgrations and configuration
construction so that a system can be tailored to a user
envirorment. The subsystems in the outer layer are such
tailored functions. These subsystems are interconnected via
the data transfer stream (data flow control) mechanism of
layer 3. These DTS s are established by layer 4, and data
is transmitted via the implementation of layer 3. Access to
these services are provided to user programs using the NADEX
PREFIA.

This NADEX Native PREFIX--interface 4 in Figure 5--is
presented in Table 2.1, 1Its design objective was to present
to the user a set of data flow abstractions. With these
operations a user (or user envelope) can develop any
protocol he wishes between nodes in a configuration.
Examples of the wuse of this PREFIM are presented in
reference |17},

In addition to DTS operations, a user or system program

i

TR W

e

WILSASENS
1714

24

PORTABLE
CODE
(PROGRAMS)

PROGRAM
INTERCONNECTION AND
RESOURCE MANAGEMENT

DATA FLOW

MACHINE
ARCHITECTURE

CONFIGURATION

CONNECT 10N

INTER-

TERMINATION

9
7 R
©
CONFIGURATION \
INITIATION, QUIESCING,
p ‘

VNMOPTNOM—AZ—

FIGURE 5
NADEX STRUCTURE

g A — -

25
(command processor) can init,ate another configuration via
the NATIVE PREFIX. In order to support this spin-off of
configurations, the NADEX CORE OS (layers 2 and 3) needs a
representation of the configuration. This is represented by
a Configuration Descriptor (CD). This CD is described in
reference [(17), and it is submitted to NADEX through the
SUBMIT_CONFIG call.

The NADEX Core OS {layers 2 and 3) is implemented in
CPASCAL/32. Therefore, its kernel (layer 4 in Figure 5) is
the CPASCAL/32 kernel. The functions of this kernel and its
interface (interface 3 in Figure 5) in support of NADEX is
described in reference [18]. The remainder of this document
consists of a discussion of the structure of layers 2 and 3

as they are implemented in Concurrent Pascal.

—_—— e A e

e =

«b

4.0 NADEXN Operation
In this section, we discuss the structure of the NADLEX
Core OS module by module and then trace the operation of the
NADEX system from system initjalization through the
initiation and termination of a user configuration. wWithin
this document, various acronyms will be wused for system
component names which correspond to names used in the NADEX
code. For more detailed information on the topics discussed
here, refer to the NADEX code listing and associated support

routines,

4,1 Concurrent Pascal (CPASCAL) Language Extensions

Several extensions were made to Concurrent Pascal to
support the implementation of NADEXA. These extensions wcre
made under two conditions. First, any change must be
absolutely necessary for efficiency of operation in both
time and space. Ssecond, the basic precepts of CPascal
{compiler checking for time dependent errors) must not be
violated.

The first extension was to provide a mechanism for
dynamic allocation of resources~~builfers and memory. ‘The
manager concept of Silberschatz, et. al. [1¥] was chosen but
with a syntax more in keepiny with Sequential Pascal.
Pointers to system components were introduced so that
resources could be represented as system components

{(monitors and classes) and dynamically assigned to various

T P T e o

Y
1

s ot i

[PRRPOWA- 1179 U W

o , . e e e g vt e i e O ek

ECE

P

<!

processes as these resources were needed. (See Figure <4.)
A "transfer~only" assignment of pointer values (via the
assignment statement or vice parameter passage) to class
types prevents the addition of any new time dependent errors
in CPascal.

Second, we added records as system types. This was
necessary to pass large data structures between processes
without excessive copying. Pointers to records are treated
as pointers to classes in terms of “transfer-only"
assignment. Records are used in NADEX whenever an excessive
number (and sometimes an undetermined number) of different
encapsulations of the data are required. This would have
forced each class ¢to have an excessive number of entry
procedures. In fact, there are times when it is impossible
to anticipate what encapsulation iS necessary.

Third, we extended the kernel to support hierarchical

Concurrent Pascal programs. This permits concurrent
programs to be executed under an operating system~-a
Concurrent Pascal Virtual Machine. This is documented in

reference [l%) and illustrated in Figure .

4,2 The NADEX Core OS as Concurrent Pascal Program

The NADEX system initial process initializes all of the
NADEM system components, activates con{fiquration processecs
for the two terminals used for tes;ing. and then terminates,

The basic functjions of each system component along with the

2 MG s e
RESN

AN i AN L i Rt PSRN SN W

~

i e &

28

LeEver O PROCESSES

[- 1 1

p LEvieL 1 SEQUENTIAL |
PIRocE s|s ES PascaL
PROGRA
10 (DEV, ROGRAN
t PARM)

LeveL 1 CPascaL ProGrRAM
MONITORS, ETC.

e GO MM WSt £t Tk

j

|

CONCURRENT SEQUENTIAL i

PREFIX PREFIX N

N |

| Lever 0 0S (NADEX) - |

: Mon1TORS, MANAGERS, AND CLASSES 1
! ;

KERNEL ‘

FIGURE b
VIRTUAL CPAscAL MACHINE

G 0 T |

Yy
initialization will be described at ¢this point. This
program structure is illustrated in Figure 7,

The SMM is the System Memory Manager. It manages
dynamic NADE X system memory us ing a first-fit

GETMAIN/FREEMAIN logic. The memory managed by SMM is
allocated via the kernel GETMEM routine which returns a
pointer to all unused memory within the task’s region along
with its size., Memory is managed using a descending—address
ordered linked list of free blocks, where the first word is
the link to the next free block and the second word is the
length of this free block in bytes. All memory is allocated
in b byte units. Dynamic memory is not obtained at the time
the SMM is INITed, but is acguired later after all processes
have been INITed (and thus have had storage allocated to
them).

The next component is the SRM (System Resource
Manager). This manager provides exclusive access ENQ/DEQ
(enqueueing and dequeueing) control for arbitrarily named
objects. Objects are identified by a pair of integers——the
first denoting a class of resources and the second denoting
a specific resovrce. The SRM is currently used for
serializing system initialization, access to dynamic connect
Drss, acress to non-shareable 1/0 devices (such as the
simulated loader storage unit used to load the 1logon
processor and the File Subsystem), access to shared DTSs
{such as one IO node being used as a program loading source

for multiple nodes), and serializing the loading of shared

A g

3 T S e e .~ b
.4 R R RS AT A T rper S TR YWD A A

i
i
T

oA o SR RS

|

P T T T TR v

CARDEC N PR 5

BUFFER CLASSES

SYSTEM BUFFER
MANAGER

A?

CONFIGURA-
TION

(CoM)

r
I
!
I
I
I
I
|
I
| | MANAGER /
I
|
|
I
|
l
|
I
|
I
I
I
I

CONFIGURATION
PROCESS

PBM 1 |-

DESCRIPTOR | /

PIPELINE BUFFER
MANAGER 1

(PBM)

Af

sysTem PBM

SERVER PROCESS
ALLOCATION
MONITOR

SYSTEM MEMORY
MANAGER

1

RESOURCE
RESERVATION
MONITOR

T

ACTIVE
CONFIGURATION
MONITOR

SYSTEM RESOURCE
MANAGER

FiGure 7

PBM N

k}__‘

SERVER
PROCESS

NADEX ImpLeMENTATION (CONCURRENT PAscAL)

30

. e PR
DM L N e N Ao LS PRI ™ ety
. 'mm . A e sl i i, 1 % * g

et i L e A "

e ey — - -

-y

5]

_J‘“‘

»

A0 T 3

S Y

T

31
programs.

The Kesource Reservation Manager (RRM) performs
allocation of system resources and controls access to shared
programs. It contains a table RSRC_TABLE which contains the
current allocation state of the resources it manages. The
resources currently managed are system memory (in
conjunction with the SMM), server processes, data and
parameter buffers, configuration descriptors, and shared
programs. The PROG_TAELE maintains the current state of
shared programs including number of wusers, current memory
location, program identification, and code space size,
Initially, the tables are <cleared and the resource tables
(except memory) are initialized from the system generation
constants which set the number of the various resources
which are available. The KKkM has access to the SMM in order
to allocate/release memory.

The Active Configuration Monitor (ACM) maintains the
status of all configurations in ¢the system and is used for
system~level inter~configuration communication. It »also
ass igns configuration processes and provides access t; the
configuration descriptor while the configuration is active.
Its CNFG_TABLE maintains the status of each configuration.

The SPAM is the Server Process Allocation Monitor.
I1dle server processes wait here, and it assigns server
processes and activates them upon request from a
conf iguration process, (Allocation is performed by the

RRM.)

et E et AT Amaw s L s

[T

ORI -

Ny
r

A M
i
i

32
The SBM is the System Buffer Manager. The SBM contains

J ’ the variable declarations for both parameter and data

-~

buffers, and performs assignment of buffers upon reguest.,

f (Allocation is performed by the RRM.) It also contains the
-

E code for generating pointers to the buffers so that they co-
2 be passed to requesting processes.

; The SPM is the System PDM Manager. The SPM contains

variable declarations for the Pipeline Buffer Managers
(PBMs). It will generate pointers to a specific PBM upon
request. PBMs exist in a one~to~one correspondence to
configquration processes, so no allocation 1is necessary and
assignment is pre~defined.

The PBM is the Pjpeline PBuffer Manager. The name PBM
is historical as the function is more appropriately called
Configuration Buffer Manager or Configuration kKesource
Manager. The PBM is responsible for implementina DTS
operations, as well as maintaining status information on the
varjous nodes of 2 configuration.

The PBMI (PBM interface) is a higher~level interface to
the PBM which hides all of the multi-PBM aspects of
subsystem access and which performs port to DTS mappings.
PBM1°s exist as variables of server processes.

The CDM is the Configuration Descriptor Manager. It
ass igns configuration descriptors similar to the way the SkM

assigns Dbuffers, Configuration Descriptors (cbs) are

[RN Saathbs oo ia f aumn e o e or SN

managed records which describe configurations which are

active or which are to Dbe activated at a later time,

b et A e 'i o

PP Y S, 0, S

=

X

- 1T

A ofds W V. @,

Allocation of CDs is done by the RRM.

An SP is a server process. SP's are used to implement
the nodes of a configuration which require an active entity
(i.e., user programs, I/OQ access). A sysgen-defined number
of SP's exist and are INITed during system initialization.

A CP is a Confiquration Process. CP’s are used to
control configurations including the allocation of
resources, configuration setup, configuration status
monitoring, configuration termination, and freeing of

resources. A sysgen~defined number of CP s exist also.

4,3 System Initialization

System initialization consists first of INITing all of
the above, except the SP°s and CP°s. These components’
initialization routines generally initialize their status
tables and return. The initial process then ENQs on the
system initialization resource by calling the SRM. It then
INITs all of the SP’s and CP's. The first statement of each
of these is an ENQ on the system initialization resource, so
they will all hang at that point., After all of the
processes have been INITed, the KRM is called to cause the
SMM to call the kernel to request (via GETMEM) the remaining
memory in the task’s region for use as dynamic system
memory. At this point, all language-required allocation is

complete since all processes have been INITed. System

memory is initialized and its size placed in the RRM's entry

3
4
i
1
i

34
for memory and control returns. The ENQ's have prevented
the CP's and SP's from executing to a point that they would
have required system memory before it had been initialized.,
The initial process now DEQ°s the initialization resource.
This allows the first queued process to acquire it, which
immediately DEQ"s it. Thus, all of the processes are
released to complete their injtialization and begin
processing.

A server process has no specific initialization other
than INITing its PBMS. It then enters its processing 1loop,
the first step of which (in routine INIT_NODE) is to call
SPAM,SERVER_WAIT to wait for something to do.

A configuration process similarly enters its main
processing loop in routine RUN. The first step is to call
ACM. IDLE_CONFIG_PROCESS to wait for something to do.

The initial process then, to simulate the operation of
the currently unimplemented Terminal Manager Subsystem,
calls ACM.ALLOC_CONFIG_PROC to request allocation of a
configuration process to terminals at logical vnits lb and
19, sSince there is no control over the timing relative to
the initialization of the CP's, this code must loop issuing

WAIT s and retrying until a CP is available.

4.4 User Signon
When a user attempts to signon to the system, that

information §s relayed by calling ACM.ALLOC_CONFIG_PROC

35
passing the device id (logical wunit number) of the user’s
terminal. In the case of the current system which does not
include a terminal manager, this is done by the initial
process, once for each terminal.

ACM.,ALLOC_CONFIG_PROC finds an idle CP, wupdates its
CNFG_TABLE entry to contain the terminal id, indicates that
the configuration is in logon state, and schedules the CP to
be continued. The cP, which was waiting in
ACM.IDLE_CONFIG_PROC obtains the terminal id, userid
(generated from the terminal id), and a CD pointer (null in
this case since the CP was activated by a logon request).

The next step is for the CP to call the CDM to acquire
a CD (since none was provided on the ACM call). The RRM is
initialized with one CD allocated to each CP, so only
assignment is required. The internal routine BUILD_LOGON_CD
is called to build the CD describing the logon processor.
This CD is hard~coded into NADEX and builds a 3~node
configuration. The first runs the logon sequential program.
The second is an I/0 node for the console. The third is an
I/0 node for the permanently-assigned logical unit (emulated
LSU) which contains the logon program code. The CD stack is
initialized, and the CP prepares to run this CD.
ACM.USER_LOGON jis called to indicate that logon is complete.
Currently, this merely changes the config state to CMDP and
checks that a logoff request has not yet been received for
the config. Processing then prqceeds as for the general

case of initiating a configuration.

%022

et

Sondhon

s ¢ W Vs e WA Pog s

306
4.5 Configuration Setup

The first step in setting up a configuration is calling
ACM.CONFIG_ENTER_CMDP. This sets the current state to CMDP
and verifies that a logoff request has not vyet been
received. The configuration id, terminal id, and user id
are inserted into the CD. The COMPLETE_CD routine is called
which verifies the <correctness of the CD and builds some
cross reference tables (such as CD_DTS_TABLE) within the
CD.

If this is successful, ACM.CONFIG_ENTER;RRM is called
to signify that the config is going to call the kKM. Thuas
also checks that an abort/logoff request has not been
received. If that is successful, then RKM.RESERVE_CONFIG is
called to allocate resources to the configuration.

The RRM is set up such that common processing may be
performed for most resource types driven by calls to
UPDATE_KRSRC in routine UPDATE_CONFIG_RSRC. This routine is
set up to allow backing~out of partially completed resource
allocation in the event that complete allocation is not
possible, as well as to handle the releasing of resources
following completion of a configuration. Special handling
is required for memory since the SMM must be called to
ensure that a contiquous piece of memory of the requested
gsize is available, and for programs since memory is recguired
only if the requested program does not currently have memory
allocated for it.

The basic logic is to allocate each resource in order

TS DI TR

ot

v,

.

P e . LN e a5 i ',‘ AT ,"«‘P" T L AR e 5
AV i e R e ittt
i o .

3/
from the CD until either all resources have been allocated
or an error occurs. If all are allocated, control returns
to the caller. 1I1f an error occurs, then all resources which
were allocate? are released, 1{f it is possible that
sufficient resources may becoms2 available eventually, the CP
waits in the RRM. The particular resource on which the
error occurred is saved so that the CP will be flagged as
waiting for that resource: and whenever another process
releases some of that resource, the CP will be awakened and
the allocation process retried. Memory is actually assigned
since only the SMM knows whether contiguous memory is
available.

For programs, memory is allocated only if the program
is non-shareable (not loaded from a subsystem) or if memory
is not <currently reserved for the program. Instead of
returning the memory address in the CD, a program id is
returned which will Jlater be wused to obtain the memory
address from the RRM when the program is to be invoked.

After the resources have been allocated (and assigned
in the case of memory and programs), the PBM associated with
this configuration is acquired from the SPM.
PBM.INIT_CONFIG is called to initialize the PBM with
information from the CD about the configuration which is to
be run. The CD contains information about the number of
nodes, number of DTS s, DTS and connection characteristics,
etc. The PBM calls the SBM to assign the specified numbers

of parm and data buffers.

e ——— i

- S ARt s 0

3%

The CP then calls ACM.CONNECT_SUBSYS to request
activation of any subsystems used by this configuration. If
the requested subsystems are already running, their user
count is incremented and no other processing is required.
If they are not running at all, a CP is assigned to run the
subsystem and it is continued (from its call to
ACM.IDLE_CONF1G_PROC). 1In this case, it will receive a null
terminal id and the subsystem name will be the user id. As
above, it will build a CD to run logon which will build the
CD to run the subsystem. The user s CP will wait in the ACH
until the subsystem has been activated (not counting the
logon processor). If the subsystem is changing states, the
user waits until the state change is complete and then
determines whether it can be used or whether the subsysten
must be activated (i.e., it just terminated).

When ACM.CONNECT_SUBSYS returns with a successful
return code, it means that all of the required subsystems
are running and their user counts have been incremented.
The subsystem names are obtained from the CD.

Local routine (in the CP) CONNECT_SUBSYS is then called
to perform the dynamic connection to each subsystem.
Dynamic connection consists of writing a parameter to the
subsystem over its DC DTS requesting assignment of a user
interface DTS for this user. A CD-supplied parameter may
also be written to define the function of the DTS. The
subsystem then writes a parameter which contains the

assigned DTS id which is placed in the CD. All of this is

39
done under an ENQ for the subsystem’s DC DTS in the SkM to
serialize access to the DC DTS. In the event of an error
response from the subsystem, the user’'s PBM is informed by a
simulated disconnect call that the DTS is not usable.

The CP then in routine START_NODES calls
SPAM.ASSIGN_SERVER to assign a server process to each node
requiring one. Due to sequencing constraints, the CP may
have to wait for an SP to be available (this is only a
transient condition since the KERM guarantees that one will
be available). The pointer to the CD is then passed through
the SPAM to the server process which uses it to perform ijts
initialization and then passes it back to the CP through the
SPAM. The CP is continued at this time and returns.

The CP then per forms the configuration status

monitoring function.

4,% Server Process Operation

The normal processing loop for a server process begins
with a ~call ¢to SPAM.IDLE_SERVER (from local routine
INIT_NODE). This routine returns the pointer to the CD for
the config, the <config id, and the node id for this
particular node. The SP extracts information pertaining to
its node from the appropriate fields in the CD into its own
varijables.

Be fore returning the CcD, the server calls

PBMI.INIT_NODE passing in the CD. Note that the PLMI is a

Y

.

e

4u

class which is a variable of the SP. PEMIL,INIT_NODE

per forms some initialization functions. It «clears its PEM
and port tables. A pointer to the local PBM is obtained
from the SPM. The INIT_NODE routine of the local PBM is

called which saves the kernel’s process id (for use in a
STOP recuest) for the SP and checks if an abort has already
been recuested for this node. Upon return to the PBMI, the
port table is then built using information for this node
from the Cb. The PBM's MAP_DTS routine is used to map CD
DTS ids into PBM DTS ids. For connections to a subsystem,
routine ADD_PDM is called to obtain a reference from the ¢PM
to the subsystem PBM and add it to the PBM table.

When PBMI initialiation is complete, it returns to
INIT_NODE in the SP which «calls SPAM.RELEASE_CDP to return
the CD to the CP through the SPAM, INIT_NODE then returns
to the main processino loop of the SP in routine RUN.

The SP then performs the appropriate processing for the
node. For an 1I0 node, a device~type~dependent processing
routine is called (CONSCOL_I0O, SECL_INPUT, SEQL_OUTPUT). For
a user program (secuential or concurrent);, the SRM is called
to ENQ on the program loader resource for the specified
program id. RRM.FETCH_PROG is called to obtain a pointer to
the memory assigned to the program and to determine whether
the program is already loaded (from the status in the RRM's
PROG_TABLE). 1f it is not already loaded (this is the first

user or the program is private), then local routine

LOAD_PROGRAM is called to load (and relocate) the program

.

ar

P

LI g

41
into the specified memory over the program loader port
specified in the CD. Otherwise, the program has already
been loaded and relocated and is ready for execution. The
program id is DEQed in the SRM and the program is invoked
with the requested prefix (native or
PASDRIVR-compatibility).

Program loading is performed by reading pages over the
program loader port and copying them into the assigned
memory. The RELOC_PROGKAM routine is called to relocate
adcons and RXJ3 instructions wusing KLD information loaded
into memory along with the program, Note that access to
this memory during the load/relocate process is serialized
by use of the SRM and that no language protection is
provided. This occurs because the program memory is
effectively a managed record to which there are multiple
pointers.

Since DTS operations will be discussed elsewhere, the
discussion of those routines in the native pefix and the
routines of the PASDRIVK prefix which map into DTS
operations will be deferred. The native prefix contains
some other routines, however, which require special handling
by NADEX.

The FETCH_USER_ATTR native prefix routine returns
information from the SP°s variables about the configuration
and node, such as user id, terminal id, and node number.
The SvCl and SVC7 prefix routines merely invoke the kernel’s

SVCl and SVC7 functions. Note that these uses are currently

i

o bk i

42
unprotected and that no facility exists in the current kRM
for assignment of LU's, FETCH_PAKM allows the wuser to
obtain the parameter information for the program which was
saved {rom the CD one parameter buffer at a time.

Invocation of overlay programs is done in twn steps
through the native prefix., The first is the loading of an
overlay program done through LOAD_OVERLAY, The wuser
provides the port number of a port which he has
pre~configured such that the program loader can just read
pages of code into memory from the DTS until end of file is
detected. The program is relocated after it is loaded. The
size of the overlay area was specified in the CD and the
overlay memory was passed to the SP in the CD from the KRM.
The second step is the INVOKE_OVERLAY routine which actually
invokes the program with a wuser~supplied parameter ard
returns the program result when the program terminates.
Nocte that NADEX does not currenty support multiple levels of
overlay since only one' overlay area exists and NADEX does
not have information to be wused in restoring the previous
contents of an overlay area.

The CANCEL_NODE routine may be used to request that the
node be cancelled. That will be discussed in the section on
node termination. CANCEL_CONFIG is used by special
avthorized users to request the ACM to cancel other
configurations.

The SUBMIT_CONFIG prefix routine is wused to allow a

user program (such as the logon processor or a command

T et s e o e

PRSI

SN PR

R

Yoot

43
professor) to present a new CD for execution. Execution may
be in one of three modes. CALL and XCTL take effect when
the current configuration terminates. CALL indicates that
the new config is to be executed, and when it terminates,
the current config is to be re-jinvoked. This would be used
by a command processor when it invoked a user program, for
example. 4ACTL indicates that the new config is ¢to be
executed in place of the current one. This would be used by
the lcgon processor when it transfers control to a subsystem
or a commnand processor contiguration, since return to the
logon processor is not required, The third type is a
SPIN_OFF which means that the new config is to execute
asynchronously.

All SUBMIT_CONFIG requests go to ACM.SUBMIT_CHECK to
check whether the user has CD’s allocated to perform the
regquested function and whether the wuser is violating the
rules on submits (e.g. more than one of type CALL/XCTL).
The CNFG_TABLE in the ACM keeps track of how many CD°s have
been used from the config’s allocation. 1If the submit is
allowed, the CDM is called ¢to acquire a CD and the CD is
copied from the user’s parameter into the CcD.
ACM.COMPLETE_SUBNIT is then called to complete the submit
operation. For MACTL or CALL type, the CD pointer is saved
in the CNFG_TABLE so that it may be passed to the CP along
with the submit type. For a SPIN_OFF type, the ACM attempts
to allocate an idle CP (waiting in ACM.IDLE_CONFIG_PROC)

passing it the CD for the config it is to run. 1If this is

i s e e e e

-

T

RN 3 2 1)

44
successful, that CP will be entered with a non-nil CD
pointer so it will skip the building of a CD for the logon

processor and go directly to config setup for the specified

config. 1If the spin~off was unsuccessful, the CDM is called
to release the CD. The spun~off CD no longer counts against
the config’s CD allocation since it is effectively replaced
by the pre-allocated CD for the CP which is running the

spun~off config.

4.7 VUser Initialization

To put this in perspective, let wus look at how it is .
used by the system when a user logs on. The logon processor
seeing that it is not running on behalf of a subsystem
builds a CD for the system command processor and submits it
with the XCTL. It then terminates and the command processor
is invoked in its place. Since the command processor
requires the File Subsystem (FSs), another config will be
activated to start up the FSS if it is not running. This

config will also invoke the logon processor which will build

b B bt

a CD to run the FSS (loading it from a pre~assigned 1logical

unjt). It then submits it with type XCTL and terminates ,
which causes the FSS to be activated. When the FSS is |
running, this allows the command processor to be activated. A
The command processor communjcates with the user and the FSS
and eventually builds a CD to run the user’s configuration.

It submits it with type CALL and terminates which causes the

— e ‘ ¥

l . 45

;

: user’s configuration to be run. When the wuser’s !

; configuration is finished, the command processor

]

' configuration is re~-invoked. When the wuser issues the ’

SIGNOFF command to the command processor, the command

SRS §

processor configuration terminates; and since there is no

:

configuration to re-invoke, the user is logged off and the

»

a .
r‘ CP returns to the ACM to await reassignment. :
= ' oo
o 1

]

4. Server Process 1/0
The SEQL_INPUT routine of the server process merely

p : reads paces from the specified logical wunit using SVCl and :
{
. writes them to port | of the node. The routine ENQ s on the %%
L

logical unit in the SRM before beginning so that exclusive
access is obtained (since sequential reads are used). When
end~of-file is reached, the logical unit is rewound and data
trans fer continues. (An end~of~file buffer is sent to the
user, however.) Transfier stops when an error status is !
obtained on the write to port 1. At that time, the logical i
: unit is DEQed and the routine terminates.
The SEQL_OUTPUT routine, when implemented, will perform 5
3 similar function for output files. Currently, SEQL_INPUT ‘
. is used only for program Jloading from pre-assigned logical

units for the logon processor and the file subsystem, and no

use has been found for the output function.

The CONSOLE_IO routine performs jnteractive I/70 to a

torminal device using $VCl. The console protocol is defincd

TR T N T
o Lk e P,

L%

v‘g‘

LS

A

B T A

pER S

et

Y
-

¢

40
elsewhere and will not be repeated here other than noting
that the console is initially in write mode and that writing

an EM requests a read of one line.

4.9 Normal Server Termination

A server normally terminates by returning to procedure
RUN which then calls TEKMINATE_NODE. This node then calls
KRM.KELEASE_PROGRAM to release the program (if any) and
calls KKM.RELEASE_MEMORY to release the memory {for the data
space and overlay <code space for the node. Memory is
released in this manner since there is no easy way to obtain
access to the CD to place the memory pointers back in it so
they may be passed to the KRM by the CP. Also, experience
has proven that memory is the most scarce resource and thus
releasing it as soon as possible (each node’s termination
rather than config termination) may be beneficial,

The server then calis PBM1.TERKMINATE_NODE. This first
calls the TERMINATE_NODE routine in the local PBM which
flags the node as aborted and aborts all of the appropriate
DTSs which cannot be used without this node. Then for each
port, any buffers held in the PBMI (due to character
operations) are returned ¢to the appropriate PBM; and the
port is disconnected by the DISC_POKT routine. Finally, the
PBMI returns to the SP.

The SP then calls ACM.TERMINATE_SERVER to inform the

ACM that a server process of this config haes terminated.

Ao

41
The ACM keeps track of the number of active servers and,
when it becomes =zero, informs the CP that the config has '

terminated. The SP then returns to the top of its

process ing loop which is to call SPAM.SERVER_WAIT to wait

for reassignment.

. 4,10 Abnormal Server Termination ﬂ
Abnormal termination can be initiated from several i

places. Various error checks in the prefix routines of the

server itself may request termination. The PBMI may request

termination due to bad responses from the PBM. The PBM

may i
request it due to some error condition. Finally, l

: termination may be requested by some other process (like a 3;
f system operator). li
! External aborts are handled by requesting an abort by f%
i

calling ACM.CANCEL_CONFIG. (Note that externally you can

|
|
cancel only an entire configuration.) The abort request and i

its level (abort config or logoff user) is stored in the .

CNFG_TABLE; and if this is a stronger request than one which
is pending, the CP is continued. The CP will have been
waiting at ACM.AWAIT_CONFIT_EVENT and will receive a return { ‘
code which causes it to call ABORT_CONFIG in the local PBM.

The PBM ABORT_CONFIG routine merely calls ABORT_NODE

for all of the nodes. ABORT_NODE flags the node as aborted

e AT TPETTWN P OYOLINT T T o papeacagy B o ran et W T
-

and saves the abort reason (typically a line number from the

original requestor). 1f the node has called INIT_NODE, then

4b
the kernel’s process id is available and a STOP is done on
the process. 1f the node is waiting in the PBM, then it is
continued and all of the DTSs associated with the node are
aborted.

An ABORT requested in the PBMI causes the PBM1 s
ABORT_REQUEST flag to be set and causes the PBMI to stop the
server. An ABORT in the server calls PBMI.ABORT which alsco
causes the stop.

The STOP causes the kernel to pop user program levels
whenever they would be executed. However, prefix execution
will not be interrupted. Thus, the prefix routines need
only check explicitly for abort conditions in places where
they can loop or can enter a wait condition. The 1/0
routines check the PBMI status codes for a KEQ_ABOKT_NODL
status which indicates that the node has been aborted in the
PBM or PBMI. Routines such as the program loader which use
DTS operations also make such checks. Thus, the node will
fairly quickly return to the point in the processing loop

where it performs the normal termination procedure.

4.11 Confiquration Status Moni;oring

While the configuration is executing, the CP is waiting
in ACM.AWAIT_CONKFIG_EVENT. The events of interest are
quiesce request (for non-permanent subsystems), abort

request, logoff request, and con{iguration termination

(i.e., all servers have terminated). For a quiesce request,

B R SN

I ———

[S

49
the CP writes a quiesce~request parameter over the DC DTS to
the subsystem it is running. For an abort or logoff
request, ABORT_CONFIG in the local PBM is called to initiate
configuration abort. For these cases, ACM.AWAIT_CONFIG_
EVENT is called again to wait for another event. Each of
these events will be reflected only once, and only if a
higher precedence event has not already been reflected. The
ACM keeps track of this using CNFG_STATE, which is the state
reflected to the CP, and CNFG_NEW_STATE, which is the state
requested (e.q., ACTIVE, QUIESCE, ABCRT, LOGOFF). A quiesce
is requested only for a non-permanent subsystem when its

active user count reaches zero.

4,12 Configuration Termination

When all of the servers have terminated (the count is
maintained in the ACM and decremented when
ACM.TERMINATE_SERVER is called), then the termination event
is returned to the CP on the ACM.AWAIT_CONFIG_EVENT call.

This breaks it out of the loop calling

ACM,AWAIT_CONFIG_EVENT.

ACM.DISCONNECT_SUESYS is then called (with the CD) to
disconnect from all of the subsystems to which the config
was connected. Disconnecting decrements the active user
count and causes non~permancent subsystem with active user
count of zero to be signaled to quiesce. Note that since

all of the servers have terminated, all of the PEMI"s have

w2 pp il e

mbatie:

50
completed the DTS disconnects from the subsystem PEM’s.

ACM .CONFIG_CHECK_STATE is called to determjine whether a
logoff was requested. The KELEASE_BUFFERS routine in the
local PBM is called to return allocated buffers to the SBM,
RRM.RELEASE_CONFIG 1is called to release all resources
(except memory and programs) allocated to the config.

Local routine UPDATE_CD_STACK is called to handle the
CD stack used by the SUBMIT_CONFIG prefix routine. If no
CD°s were submitted, the top entry is popped from the stack.
I1f a CALL type submit was issued, the current CD is pushed
onto the stack and the submitted CD becomes the current CD.
If an XCTL ¢type submit was issued, the <current CD is
replaced by the submitted CD. The submit information 1is
obtained from ACM.FETCHL_SUBMIT_CD. Any CDs allocated to the
config that were not used are released by calling
RRM.RELEASE_CDS., 1If this was a subsystem and no submit was
per formed, ACM.SUBSYS_RESTART_CHECK is <called to determine
whether the subsystem should be rstarted (e.g., there is a
user already waiting for it). 1f that is the case, then the
current CD becomes the new CD. When CD’s are popped or
replaced, the old CD is released by calling the CDM and the
allocation is released by calling the kRM. If the stack 1is
empty when a pop is required, then the user will be logged
off.

If a logoff was not requested (either by the ACM or
because a pop from the CD stack was required and the stack

was empty), then the CP 1loops back to setup the new

51

configuration. Otherwise, the user will be logged off. The

CD stack is emptied, freeing all of the CD’s in the CDM and

KFM.

The CP then repeats its processing loop by calling

ACM.IDLE_CONFIG_PROC,

1,

3.

iu,

i1,

12.

13,

5.0 Bibliography

Brinch Hansen, P,, The Architecture of Concurrent
Programs, PrenticevHall, 1%//,

Holt, k. C,; Graham, G. S.; Lazowshka, E. D, and Scott,
M. A., Announcing Concurrent SP/K, Operating Systein
Review, 14, < (April 1lv/b),

Brinch Hansen, P,, Operating Systems Principles,
Prentice Hall, 1l¥/3,

Hoare, C. A. R., “"Monitors: An Operating System
Structuring Concept,” CACM, 1/, 1V (Octpber 1%74).,

Dowson, M, The DEMOS Muyltiple Processor Technical
Summary, National Physical Laboratory Technical Report,
NPL Report 1Ul, April, l¥76, Teddington, Middlesex TWII
OLW, UK.

Hoare, C. A. R, Communicating Sequential Processes,
CACM, Vvol, <21, No. &, (August) Ll¥/b, pp. bbLOL=b//,

Farber, D, J., et al,, "The Distributed Comput}ng
System Digest of Papers," COMPCON /3, February 173,
pp. 31-34,

Digital Equipment Corp., VAX=ll//bl Software Handbook,
19774,

Organick, E. 1., The Multics System: An Examination of
its Structure, MIT Press, 1v/&.

Thompson, K. and Ritchje, D. M., The UNIX Time-sharing
Syatem. CACM' VOI. ll' No. l' July iv7/4, Dp- 365=3/5,

Ritchie, D. M., A Retrospective in UNIX Time=sharing
System, The Bell Bystem Technical Journal, Vol. 5/, No.
v, Pt, 2' (J\lly - A“gu't)l i¥i/e,

Brinch Hansen, P., The SOLO Operating System, Software
Practice and Experience, Vol: o, DMNo. <, April = June
1y/6, pp, lél=sive,

Sunshine, C., Interprocess Communication Extensions for
the UNIX Qperating System: 1. Design Copnsiderations,

l4,

15,

16,

17,

lb,

1y,

Rand Tech. Report k-<UL4/1l-AF, June 1Y/ 7/,

Zucker, S., Interprocess Communication Extensiocns for
the UNIX Operating System: I1l. Implementation, Rand
Tech. Report R=2U04/2-AF, June LY/1/,

Rochat, K.; Wallentine, V.; and Young, R., A Software
Configuration Control System, (in preparation).

Morrison, J. P., Data Stream Linkage Mechanism, IBM
Systems Journal, Vol. 1/, No. 4, 1l¥%7/b,

Young, R. and Wallentine, V., The NADEX Core Operating
System Services, Dept. of Computer Science, Kansas
State University, Technical Report, TR~/¥~ll, November
1v79,

Young, R. and Wallentjne, V., The Kernel of CPascal/3Z2,
Dept. of Computer Science, Kansas State University,
Technical Report, TR=7Y-=13, December 1%7%,

Silberschatz, A.:; Kieburtz, k. B.; and Bernstein, A.
J., "Extending Concurrent Pascal to Allow Dynamic

Resource Management,® IEE {Trans. Software Eng.. Vol.
SE-3, pp. 210~41/, May 197/,

e elles ey ae a

