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1.0 Introductory NADEX Concepts

NADEX is an acronym for Network ADoptable Executive.

NADEX supports the building of software configurations which

consist of a general graph of communicating nodes. These

nodes may be sequential or concurrent programs which access

NADEX services through a native PREFIX. The PREFIX concept

was originally defined by Per Lrinch Hansen as an interface

to the SOLO R+ operating system. The NADEX Native PREFIX

is the interface to the NADEX Core OS and provides data flow

abstractions to the program running in a node. These

operations permit each program (running in a node) to

exchange messages with other nodes in a software

configuration via full-duplex data transfer streams.

In this document, we first present the concept of a

software configuration. We then present the general

structure of NADEX. Finally, we describe the function of

each module of the NADEX Core OS as it is written in

Concurrent Pascaj 11.
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2.U Software Configurations

2.1 Configuration Properties

A configuration consists of a collection of nodes

connected by data transfer streams (DTS s). Nodes can be

user programs (both sequential and concurrent languages such

as SPASCAL and CPASCAL), file access nodes (for accessingj

files within the NADEX file system), I/O device access nodes

(for accessing 1/O devices not supported by the NADEX file

system), or external configurations such as subsystems.

Nodes within the configuration are connected by UTS's

which are also called connections. Each connection consis,-s

of two bi-directional components--data and parameter. The

data component transfers data in page-sized blocks (a page

is. 512 bytes) and interfaces to the user program at the

page, logical record, or character level. The parameter

component transfers small parameter blocks typically used

for control information. The data and parameter components

are totally independent. The two directions of each

component are independent in the sense that each direction

has its own queue, but the user protocol restrictions are

defined in terms of the bi-directional components.

For the purposes of these discussions, we will speak of

a node issuing reads and writes to a port which is local to

the node. The connection of these ports lorms the Data

Transfer Stream. This is illustrated in Figure 1. Table

2.1 contains the PREFIX which implements these operations.

These should be assumed to be read-page and write-page

k.M ow
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Table 2.

NADEX NATIVE PREFIX w

ivCONST PAGESIZE - bl '; "SIZE OF DATA PACE"8
rkPARNSIZE - OS1ZE OF PARAMETER~ BLOCIKS"

MAXDTS - (:"MAX GLOBIAL DTS ID" *1
MAX-.PORT 10 IV: "MAX P014T I1)"
S'dCL.BLOCI(_SIZE - 24; *SIZE OF SVC i PARI4 BLOCK"

SVCiBLOCIKSIZE w2b: "SIZE OF SVC 'i PARN. BLOCK"

TYPE PAGE - ARRAI I..PAGE...SIZE] OF BYTE;
PARAMETER -ARRAI ll..PAI-%M SIZEJ OF BITE;
SVC1_hLOCI(- ARRAY j1..SVCa_.BLO>CKSIZEJ OF BYTE;

SVCIBLOCK - ARRAY jl..SVCIBLOCKSIZE] OF BITE:

TYPE DTSINDX - 1..MA>.DTS; DTSINDO - .. MAXDTS;
PORTINDX I..MAX-PORT; POFTINDXdi - 0..MAX-POKT:

TYPE DTSSET -SET OF DTS...INDX;

TYPE BUFTIPES - (PARF1_BUF, DATA-BUF, NIL..BUF);

"BUFFER TYPES"

TYPE REQCODES -(REQ_.OK "b.", REQNODE..ABORT"1,
REQDTSADORT "2"-, REQ..DEFER "3", REQUNRES-DTS -4-,
REQPROT.ERROR wb", REQBADPORT ")

"PREFIX DTS OPERATION RETURN CODES"

PROCEDURE READCHAR (PORT: PORTINDX: VAk C:CHiAR);

PROCEDURE WRITE.CIAR (PORT: PORT-IND.; C:CJiAR):

PROCEDURE READ_.DATA (PORT: POKTINDR;: VAR DATA: UNIV PACE:
VAR LENJGTHI: INTEGER:
VAR RESULT: REQ..COEJES):

PROCEDURE WRITEDATA (PORT: PORTJNDX: DATA: UNIV PAGE:
LENGTH: INTEGER: CONDITIONAL:

BOOLEAN:
VAR RESULT: REQ..CODES):

PROCEDURE READ-PAU4 (POMT PORT_3NDA:

VAR PARN: UNIV PAMETER:
VAX RESULT: RtQCOIt)S)

PROCEDURE NRIZEPARH 4PORT: PORT..INUK: PARN:s UNIVl
PARA14ETLIW:

CONOIT ONALs bOU.EAN:
VA& INEULT: &KQCOOBS)t

PRCEUR AP.PORT (PWfk? ftiRI?.NDX: bU?k1PE: &3.?%PtG:



'VAR RDTS: DTS...INDXO: 5
VAR W DTS: DTS..JNDXO);'

PROCEDURE AWAIT-.EVEN4TS (VAR READWAITS, WRITE_.WAITSt

DTS...SET;VAR READ..READYP WRITEREADY:

DT S_..SET:
VAR RESULT: REQ-CODES);

PROCEDURE DISCONNECT ( PORT: PORT_.INDX;
VAR RESULT: REQ.CODES):

PROCEDURE FETCH_.LUSERATTRIBUTES:

I PROCEDURE SUBMIG-.CONFIGs

PROGRAM FSS;
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requests for the data component, and read-parm and

write-parm requests for the parameter component. The

blocking of character and logical record data into pages is

handled by the prefix of the nodes and will not be discussed

here. Unless otherwise specified all discussions arnl,

equally to data and parameters, and no distinction will be

made.

There are no structural restrictions on the graph

formed by the nodes and connections (DTS'si. In particular,

it need not be linear (like SOLO [1] and UNIX [11]) or

hierarchical. It need not even be acyclic as in AMPS [ltj

or connected. Nodes are not precluded from having

connections to themselves. Thus, the configuration is

described by a (labeled) undirected graph. The labeling

occurs where each connection enters the two (not necessarily

distinct) nodes it connects.

The user programs (as well as the various system

routines which implement the other nodes) address the

connections emanating from each node by DTS ids local to the

node. These local DTS ids are also called port numbers.

The meaning of the data stream associated with each port is

defined by the program. Port numbers are generally assigned

by the programmer starting with one (since the system will

place a configuration-dependent upper limit on the port

numbers for economy in table storage). These port numbers

are the labels on the configuration graph.

The structure of a configuration Is defined by a

-25,~



language which builds a file called a Configuration

Descriptor File (CDF). The CDF defines the structure of the

configuration and the type (user program, file access, etc.)

of each node. When the user requests that a configuration

be run (either through a terminal command or a command in a

batch job), the CDF is used along with information from the

command to construct a configuration descriptor. The

configuration descriptor includes all of the information

about the configuration including, for example, the names of

the files to be accessed by the file access nodes. The

configuration descriptor contains enough information for the

system to allocate resources and run the configuration.

A typical language for building CDF's might include

statements like 'DEFINE NODE 1 AS USER PROGRAM (filename),'

"DEFINE NODE 2 AS FILE ACCESS (filename),' 'CONNECT NODE 1

PORT 1 TO NODE 2 PORT I.' More complete examples of

configuration description languages are given in reference

15). Thus, there are statements which define each node and

the function it is to perform as well as those which define

each connection. The node definitions may completely

specify the function, or some information (such as

filenames) may be left to be filled in from the command.

The connection definition may include buffer allocation

parameters (to be discussed later). The program which

converts the CDF into a configuration descriptor is called

the Command Processor and runs as a separate configuration.

• • ' 'l"i



2.2 DTS Implementation Considerations

The system places no interpretations on any of the data

contained in the data and parameter buffers, except when

they are used to communicate with a system node (such as

file access or I/O device access). Thus, the user is free

to design his own protocols. The system guarantees that

data (and parameters) are delivered in the same order as

they were written. Note that this applies to each component

in each direction independently.

However, the user protocols implicitly define buffer

allocation parameters which must be available to the system

to ensure that deadlock due to buffer allocation can be

avoided. For each bi-directional component (data and

parameter) of a connection, there is a buffer allocation

quantity called min. This designates the minimum number of

buffers which must be reserved for this bi-directional

component of the connection. The user protocol is related

to this quantity in that it must operate such that it never

requires more than min data items (data pages or parameters)

in-transit at any one time. For example, if two connected

nodes both issue write datas followed by read datas to the

same connection, then min must be at least two. Normally,

synchronized protocols only require a min of one. Mins are

handled separately for parameter and data. Generally, min

will be of concern only when data items are not read in the

same order in which they were written over a single

connection, or when cycles exist within the configuration

I- !



graph. Note that min is an inherent property of user

protocols (although some min's are data dependent and

possibly unbounded) .

When the CDF is defined, the min values for each

connection must be defined to the system. These values must

be at least as large as the min required by the protocol.

The system will default a min of one since most

naturally-occurring protocols require only a min of one.

The system will ensure as much as possible that the user

protocol does not violate min, and will terminate the

4configuration if it does. If the user protocol violates the

min restrictions, it is possible for the deadlock avoidance

in the buffer allocation policies to fail and thusly for the

configuration to deadlock.

In addition, a max will be defined for each connection

component. Max is an upper bound on the number of buffers

which the system is constrained only in that it must be able

to supply at least min buffers to each connection component.

It also should not supply more than max buffers to each

connection component. It may make its own decisions within

those constraints as appropriate based on the relative data

flow rates within the configuration. The default value for

max will be the total number of buffers of the type

allocated to the configuration. The number of data and

parameter buffers to be allocated are also parameters in the

CDF which default to the sum of the mins. Thus, the mins

ensure that the user protocols can function without



deadlock, and the max's allow the user to partition the

buffer pool overriding the dynamic collocation policies of

the system.

The DTSs associated with each configuration are

implemented with a Pipeline Buffer Manager (PIUM). Pipeline

is a misnomer in this case but the PM1 acronym has remained

with the system historically. Functionally, the PBM is the

Configuration Buffer Manager. It is implemented as a

CPASCAL manager which manages parameter and data buffer

classes. The PBM4 contains within it the queues of data

items waiting to be read, pools of free buffers, buffer

allocation information, and deadlock detection information.

The read and write functions are each implemented via a

pair of calls to the PBM. A read is implemented by a read

to the PBM wh.ich returns a reference to a buffer. The data

is then extracted from the buffer and the buffer is released

to the free pool by a release call. A write is implemented

by a request which fills the free buffer, which is followed

by a write which acquires a free buffer, which in turn is

followed by a write which queues the buffer so that it can

be read in sequence by the node at the other end of the

connection. We illustrate this in Figure 2.

The permanent variables of each node contain a table

which maps local DTS ids (port numbers) into PBM DTS ids.
II

The PBM DTS ids are DTS ids which uniquely identify a

connection within the PUM (and thus within the configuration

for the configurations described thus far). The mapping

-i- !-. --- .-
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table also contains an indicator that shows which end of the

connection this port implements. (The ends of tho

connection are arbitrarily named by the system, and th,.

names are used to identify which direction a particular data

item is flowing). (As an implementation consideration, t>:

Pbb, DTS ids are mapped into pairs of numbers, and the

connection end determnes whether the even or odd member of

the pair is used.)

Thus far, we have described a basic self-contained

undistributed configuration and the mechanisms (PBM and

prefix) used to implement it. Note that each node is

defined and proarammed solely in terms of its ports and is

not knowledgeable of the structure of the configuration.

All interprocess communication is done via data transfer

streams. These characteristics will prove quite useful

later when the configuration is distributed.

2.3 Subsystems

In addition to running isolated user configurations,

NADEX allows user configurations to communicate with special

configurations known as subsystems. As mentioned,

subsystems are themselves configurations, but also have an

interface to allow connection to nodes of user

configurations. Typical uses of subsystems would be a data

base management system, a file system, and an

interconfiguration communications system.
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A subsystem is unique in that it is not activated

directly by a user command or a user batch job. Instead, it

is activated whenever a configuration is started which

requires the services of that subsystem. The subsystem then

continues to run until there are no more active users

(configurations). Then, depending on the subsystem, it may

be automatically terminated or it may remain active waiting

V for additional users.

A subsystem serves multiple configurations concurrently

and has much of the responsibility for multiplexing itself

among its users. Furthermore, as user configurations are

initiated and terminated, they can dynamically connect to

a'nd disconnect from the subsystem.

When a user describes a configuration, access to a

subsystem is shown as a single node with connections from

other nodes in the configuration. However, when the

configuration is implemented, the system will not create

such a node. Instead, the connections to the subsystem node

in the user description will be connections between user

nodes and the user interface of the subsystem. This is

illustrated in Figure 3.

The user nodes communicate with the subsystem just as

if it were another node. The normal DTS operations (read

and write parameter and data) are used to implement a

protocol defined by the particular subsystem. The user

nodes themselves are not aware that they are communicating

with a subsystem rather than with another node (which uses

' . ' 4 - , :, o ,.'#n . m 4, 77 , ,w o. . .
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the same protocol, of course).

From the subsystem's point of view, there is a set of

connections defined in the subsystem's configuration

description called the user interface connections. These

have one end which terminates within the subsystem (perhaps

on a one-to-many basis) and the other end is initially left

free. When user configuration is started, its connections

to the subsystem will be implemented over some of these user

interface connections.

The subsystem again uses the normal DTS operations to

communicate with the various users which it serves. Since

subsystems serve multiple users, they will typically be

users of the multiple-condition wait, which waits for

requests coming from the various users.

Note that neither the subsystem nor the user

configuration is aware (at this point) that the subsystem is

actually a subsystem. In fact, without changing any of the

programming discussed so far, the collection of nodes which

constitute a subsystem could be taken and placed in the user

configuration. The connections from user nodes to the

subsystem would be the user interface connections, and the

two parts of the configuration would otherwise be

independent. This allows a user to use a private copy of

the subsystem within a user configuration if necessary.

This is the recommended procedure for debugging subsystems.

Note that no changes in any of the programming is required

to move between these two modes.

A __



2.4 Implementing Subsystems

In the implementation of a real subsystem, the

subsystem exists just as any other configuration does. The

only distinctions are the presence of the user interface

connections and the lack of a user terminal or batch job

which controls the configuration. In particular, the

configuration does have a PBtH which implements both its own

internal connections and part of the connections to users

over the user interface connections.

Once a user configuration has connected to a subsystem,

we can speak of the user-subsystem connection as a single

entity which was formed by matching a port in the user

configuration description which terminated at the subsystem

node with a user interface port in the subsystem. However,

this connection is really implemented by two

connections--one in the user PB01 and one in the subsystem

PBM. This complication is necessary to ensure that all of

the events which cause conditions in an await-condition

request to become true occur within the caller's PMI.

In general, each side of the connection issues reads

within its own PBM but issues writes to the other P01. All

buffers are allocated from the user PDM. Thus, a user

writes to a subsystem by acquiring a buffer from the user

PSM, filling it with data, and writing it into the subsystem

PBM. A user reads from a subsystem by reading a buffer from

the user PDI, copying out the data, and then releasing it

into the user P0. A subsystem reads from a user by reading

* 4.



a buffer from the subsystem PBM and then releasing it into

the user PBM. A subsystem writes to a user by acquiring a

buffer from the user PBM, filling it with data, and then

writing it into the user P13M.

Note that the data-available condition for the user

occurs in the user PBM, and the data-available condition lor

the subsystem occurs in the subsystem PBM. However, since

all buffers come from the user PbM. the buffer-available-

for-write condition always occurs within the user PBM. It

is anticipated that subsystems will always use conditional

writes into user PBM's. (Actually, it is the acquire that

is conditional.) If such a request is rejected due to a

buffer unavailability (either due to max excession or a

depletion of the PBM free buffer pool), then the connection

is flagged. Note that this can occur only if at least min

buffers are currently queued for the user. When the user

issues a read from this connection, the flag is

interrogated. If it is set, then a status is returned (to

the prefix routine) which causes it to call the subsystem

PDM to inform it that buffers are (maybe) now available for

this connection. That will cause a wait for K
buffer-available within the subsystem PBM for that

connection to be marked as complete, and the subsystem will

eventually retry the conditional write.

The user-subsystem connection is actually implemented

as two separate DTS's--one in the user P014 and one in the

subsystem PUM. For this reason, the prefix entries for this

.4
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connection must have the PBM references and the PBM DTS ids

for both parts of the connection, and thusly will use ths-

appropriate ones depending on the type of call.

The await-condition facility allows the subsystem to

exercise flow control among its various users. Sirce tho-

subsystem can remove connections from the waiting sets and

use its own algorithms to determine which connections to

service first, it can implement whatever controls are

necessary. Since all user-subsystem communication uses

buffers from the various user PB" s, there are no problems

with buffer allocation within the subsystem PBM due to the

varying number of users and their requirements. The

conditional write and await-multiple-condition facilitie!,;

prevent the subsystem from even being forced to wait in a

particular user's PBM or to wait for a request from -

particular user.

Note that many-to-many connections are restricted in

that each end of a connection must reside totally within one

configuration. Thus, an end of a connection cannot be split

between a subsystem node and other nodes In the desc- ption

of a user configuration. The user end of a user interface

connection in a subsystem cannot be split, although the

subsystem end can and probably will be split between various

nodes of the subsystem.

Subsystems are not prevented from being users of other

subsystems. However, the restriction that a configuration

cannot be initiated until all of the subsystems it uses are



running imposes a hierarchy on subsystems. Since the user

interface connections are driven by requests from user

configurations, it is not possible to connect the user

interface connections of two subsystems together.

Note that the deadlock detection algorithms cannot

detect protocol violations for users communicating through

subsystems (even if the communication takes the form of just

requesting the same resource). This is due to the fact that

internode dependencies are known only within the internal

data structures of the subsystem and cannot be deduced from

the various PBM data structures.

2,5 DTS (Port) Operations to Support Multi-server
Subsystems

The read and write functions described thus far have

been unconditional serial operations; that is, they request

a specific operation on a specific port and do not return

until that operation has been performed. (They can also

terminate as a result of configuration termination due to

errors.) Therefore, programs which use them are

deterministic (assuming the nodes to which they are

connected are deterministic) and do not use undefined

variables.

In order to write programs which process several data

streams concurrently and which are adaptive to the data flow

Sj rates In the various data streams, it is necessary to have
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conditional operations and multiple-event waits. (See Table

2.1.) As shown in Figure 4, a subsystem may have to service

multiple ports whose requests are asynchronous. This

condition, as noted also by Sunshine in UNIX Ill], must be

solved by tagging messages with the sender's identifier or

with unique ports. Since each port can be identified with a

particular function, and since tagged messages require the

user node to de-multiplex messages in the data stream, the

NADEX Native PREFIX provides a facility (AWAIT_EvENTS) to

identify when and which DTS(s) require attention.

Basically, the DTS-related events which can occur

involve efther the availability of data items (due to a

write from the other end of the DTS) or of buffers (within

the min/max constraints) so that a write can be performed.

These events also describe the only conditions under which a

node can be delayed while executing a DTS-related

operat ion.

A multiple-event wait prefix routine is defined which

allows a user to wait for the occurrence of any one of a set

of events. The events involve the availability of data

items or that of buffers for the data and parameter

components of each of the DTS's connected to the node.

These are represented by four sets--data-input,

parameter-input, data-output, and parameter-output-of local

DTS ids. A DTS id is a member of the set if that condition

will cause the wait to complete. Note that these are

*remembered" events and are really conditions rather than
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events. When the multiple-wait returns, the user will b.

provided with an indication all of the conditions which now

hold. The user can then, based on those conditions, isSue'

the appropriate unconditional renuest knowing that it will

complete immediately.

The last statement was true for input requests but is

not always true for output. Buffer availability is

dependent on two factors--the connection will not exceed

max, and there is a free buffer in the buffer pool. Clearly

other nodes which share the same buffer pool can cause the

second condition to become false after it has been signaled

via a multiple-wait that it was true. The other node on a

connection can cause the first condition to become false

also. Therefore, it is necessary to have a conditional

write which will return a status indicating whether or not a

buffer could be allocated.
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3.0 NADEX Structure

NADEX is an operating system in support of full-duplex

data transfer streams (DTS s) between a general graph

structure of nodes--software configurations. Each node can

run concurrent or sequential programs. In this section we

describe the structure of NADEX, its layering and the

interfaces between the layers.

In Figure 5 we illustrate the structure of NADEX as a

system of five layers. The outer ring is a possible set of

subsystems in support of user configurations. The NADE

Core OS supports only DTS operations and configuration

construction so that a system can be tailored to a user

environment. The subsystems in the outer layer are such

tailored functions. These subsystems are interconnected via

the data transfer stream (data flow control) mechanism of

layer 5. These DTS s are established by layer 4, and data

is transmitted via the implementation of layer 3. Access to

these services are provided to user programs using the NADEX

PREFIX.

This NADEX Native PREFIX--interface 4 in Figure 5--is

presented in Table 2.1. Its design objective was to present

to the user a set of data flow abstractions. With these

operations a user (or user envelope) can develop any

protocol he wishes between nodes in a configuration.

Examples of the use of this PREFIX are presented in

reference 117).

In addition to DTS operations, a user or system program
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(command processor) can initiate another configuration via

the NATIVE PREFIX. In order to support this spin-off of

configurations, the NADEX CORE OS (layers 2 and 3) needs a

representation of the configuration. This is represented by

a Configuration Descriptor (CD). This CD is described in

reference 1171, and it is submitted to NADEX through the

SUBMITCONFIG call.

The NADEX Core OS (layers 2 and 3) is implemented in

CPASCAL/32. Therefore, its kernel (layer 4 in Figure 5) is

the CPASCAL/32 kernel. The functions of this kernel and its

interface (interface 3 in Figure 5) in support of NADEX is

described in reference (181. The remainder of this document

consists of a discussion of the structure of layers 2 and 3

as they are implemented in Concurrent Pascal.

L__



4.G NADEX Operation

In this section, we discuss the structure of the NADEX

Core OS module by module and then trace the operation of the

NADEX system from system initialization throuoh the

initiation and termination of a user configuration. Within

this document, various acronyms will be used for system

component names which correspond to names used in the NADEX
A!

code. For more detailed information on the topics discussed

here, refer to the NADEX code listing and associated support

routines .

4.1 Concurrent Pascal (CPASCAL) Language Extensions

Several extensions were made to Concurrent Pascal to

support the implementation of NADEX. These extensions were

made under two conditions. First, any change must be

absolutely necessary for efficiency of operation in both

time and space. Second, the basic precepts of CPascal

(compiler checking for time dependent errors) must not be

violated.

The first extension was to provide a mechanism for

dynamic allocation of resources-buffers and memory. The

manager concept of Silberschatz, et. al. I19] was chosen but

with a syntax more in keeping with Sequential Pascal.

Pointers to system components were introduced so that

resources could be represented as system components

(monitors and classes) and dynamically assigned to various

__ _ _ _ _ _ _ __*_ _ _ _ _



processes as these resources were needed. (See Figure 2.)

A "transier-only" assignment of pointer values (via the

assignment statement or vice parameter passage) to class

types prevents the addition of any new time dependent errors

in CPascal.

Second, we added records as system types. This was

necessary to pass large data structures between processes

without excessive copying. Pointers to records are treated

as pointers to classes in terms of "transfer-only"

assignment. Records are used in NADEX whenever an excessive

number (and sometimes an undetermined number) of different

encapsulations of the data are required. This would have

forced each class to have an excessive n imber of entry

procedures. In fact, there are times when it is impossible

to anticipate what encapsulation is necessary.

Third, we extended the kernel to support hierarchical

Concurrent Pascal programs. This permits concurrent

programs to be executed under an operating system--a

Concurrent Pascal Virtual Machine. This is documented in

reference lib] and illustrated in Figure b.

4.2 The NADEX Core OS as Concurrent Pascal Program

The NADEX system initial process initializes all of the

NADEX system components, activates configuration processes

for the two terminals used for testing, and then terminates.

The basic functions of each system component along with the
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initialization will be described at this point. This

program structure is illustrated in Figure 7.

The SMM is the System Memory Manager. It manages

dynamic NADEX system memory using a first-fit

GETMAIN/FhEEZ1AIN logic. The memory managed by SMM is

allocated via the kernel GETMEM routine which returns a

pointer to all unused memory within the task's region along

with its size. Memory is managed using a descending-address

ordered linked list of free blocks, where the first word is

the link to the next free block and the second word is the

length of this free block in bytes. All memory is allocated

in b byte units. Dynamic memory is not obtained at the time

the SMN is INITed, but is acquired later after all processes

have been INITed (and thus have had storage allocated to

them).

The next component is the SRM (System Resource

Manager). This manager provides exclusive access ENQ/DEQ

(enqueueing and dequeueing) control for arbitrarily named

objects. Objects are identified by a pair ol integers--the

first denoting a class of resources and the second denoting

a specific resource. The SRM is currently used for

serializing system initialization, access to dynamic connect

DTSs, ac.'ess to non-shareable I/O devices (such as the

simulated loader storage unit used to load the logon

processor and the File Subsystem), access to shared DTSs

(such as one 10 node being used as a program loading source

for multiple nodes), and serializing the loading of shared
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programs.

The Resource Reservation Manager (RRM) performs

allocation of system resources and controls access to shared

programs. It contains a table RSRCTABLE which contains the

current allocation state of the resources it manages. The

resources currently managed are system memory (in

coniunction with the SMM), server processes, data and

parameter buffers, configuration descriptors, and shared

programs. The PROG_TABLE maintains the current state of

shared programs including number of users, current memory

location, program identification, and code space size.

Initially, the tables are cleared and the resource tables

(except memory) are initialized from the system generation

constants which set the number of the various resources

which are available. The RRM has access to the SMM in order

to allocate/release memory.

The Active Configuration Monitor (ACM) maintains the

status of all configurations in the system and is used for

system-level inter-configuration communication. It also

assigns configuration processes and provides access to the

configuration descriptor while the configuration is active.

Its CNJFGTA3LE maintains the status of each configuration.

The SPAM is the Server Process Allocation Monitor.

Idle server processes wait here, and it assigns server

processes and activates them upon request from a

configuration process. (Allocation is performed by the

" i~JIN. )

*
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The SBM is the System Buffer Manager. The SL3M contains

the variable declarations for both parameter and data

buffers, and performs assignment of buffers upon request. A

(Allocation is performed by the RRM.) It also contains the

code for generating pointers to the buffers so that they cp-

be passed to requesting processes.

The SPM is the System PBM Manager. The SP1 contains

variable declarations for the Pipeline Buffer Managers

(PBMs). It will generate pointers to a specific PBM upon

request. PBMs exist in a one-to-one correspondence to

configuration processes, so no allocation is necessary anc

assignment is pre-defined.

The PBM is th-' Pipeline Buffer Manager. The name PISM

is historical as the function is more appropriately called

Configuration Buffer Manager or Configuration Resourco

Manager. The PBM is responsible for implementing D'S

operations, as well as maintaining status information on the

various nodes of a configuration.

The PDMI (POM Interface) is a higher-level interface to

the PBM which hides all of the multi-PBM aspects of

subsystem access and which performs port to DTS mappings.

PBMI's exist as variables of server processes.

The CDM is the Configuration Descriptor Manager. It

assigns configuration descriptors similar to the way the SbM

assigns buffers. Configuration Descriptors (CDs) are

managed records which describe configurations which are

active or which are to be activated at a later time.

WW 771,,Z7TT.
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Allocation of CDs is done by the RRM.

An SP is a server process. SP's are used to implement

the nodes of a configuration which require an active entity

(i.e., user programs, I/O access). A sysgen-defined number

of SP's exist and are INITed during system initialization.

A CP is a Configuration Process. CP's are used to

control configurations including the allocation of

resources, configuration setup, configuration status

monitoring, configuration termination, and freeing of

resources. A sysgen-defined number of CP's exist also.

4.3 System Initialization

System initialization consists first of INITing all of

the above, except the SP's and CP's. These components'

initialization routines generally initialize their status

tables and return. The initial process then ENQs on the

system initialization resource by calling the SRM. It then

INITs all of the SP's and CP's. The first statement of each

of these is an ENO on the system initialization resource, so

they will all hang at that point. After all of the

processes have been INITed, the RRM is called to cause the

SMM to call the kernel to request (via GETMEM) the remaining

memory in the task's region for use as dynamic system

memory. At this point, all language-required allocation is

complete since all processes have been INITed. System

memory Is Initialized and its size placed in the RRM's entry

-~ . .
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for memory and control returns. The ENQ s have prevented

the CP s and SP's from executing to a point that they would

have required system memory before it had been initialized.

The initial process now DEO&s the initialization resource.

This allows the first queued process to acquire it, which-

immediately DEQ s it. Thus, all of the processes are

released to complete their initialization and begin

processing.

A server process has no specific initialization other

than INITing its PBMS. It then enters its processing loop,

the first step of which (in routine INITNODE) is to call

SPAM.SERIVER_WAIT to wait for something to do.

A configuration process similarly enters its main

processing loop in routine RUN. The first step is to call

ACM.IDLECONFIGPROCESS to wait for something to do.

The initial process then, to simulate the operation of

the currently unimplemented Terminal Manager Subsystem,

calls ACM.ALLOCCONFIG_PROC to request allocation of a

configuration process to terminals at logical units lb and

10. Since there is no control over the timing relative to

the initialization of the CP s, this code must loop issuing

WAIT's and retrying until a CP is available.

4.4 User Signon

When a user attempts to signon to the system, that

information is relayed by calling ACM.ALLOC_CONFIGPROC

-- , .



passing the device id (logical unit number) of the user's

terminal. In the case of the current system which does not

include a terminal manager, this is done by the initial

process, once for each terminal.

ACM.ALLOCCONFIGPROC finds an idle CP, updates its

CNFGTABLE entry to contain the terminal id, indicates that

the configuration is in logon state, and schedules the CP to

be continued. The CP, which was waiting in

ACM.IDLECONFIG PROC obtains the terminal id, userid

(generated from the terminal id), and a CD pointer (null in

this case since the CP was activated by a logon request).

The next step is for the CP to call the CDM to acquire

a CD (since none was provided on the ACM call). The RRM is

initialized with one CD allocated to each CP, so only

assignment is required. The internal routine BUILD LOGONCD

is called to build the CD describing the logon processor.

This CD is hard-coded into NADEX and builds a 3-node

configuration. The first runs the logon sequential program.

The second is an I/O node for the console. The third is an

1/0 node for the permanently-assigned logical unit (emulated

LSU) which contains the logon program code. The CD stack is

initialized, and the CP prepares to run this CD.

ACM.USER LOGON is called to indicate that logon is complete.

Currently, this merely changes the config state to CMDP and

checks that a logoff request has not yet been received for

the config. Processing then proceeds as for the general

case of initiating a configuration.

4.
ii-



4.5 Configuration Setup

The first step in setting up a configuration is calling

ACM.CONFIGENTER_CMDP. This sets the current state to CMDP

and verifies that a logoff request has not yet been

received. The configuration id, terminal id, and user d

are inserted into the CD. The COMPLETECD routine is called

which verifies the correctness of the CD and builds some

cross reference tables (such as CDDTSTABLE) within the

CD.

If this is successful, ACM.CONFIGENTERRRM is called

to signify that the config is going to call the RRM. This

also checks that an abort/logoff request has not been

received. If that is successful, then RRM.RESERVE-CONFIG is

called to allocate resources to the configuration.

The RRM is set up such that common processing may be

performed for most resource types driven by calls to

UPDATE-RSRC in routine UPDATE-CONFIG-RSRC. This routine is

set up to allow backing'out of partially completed resource

allocation in the event that complete allocation is not

possible, as well as to handle the releasing of resources

following completion of a configuration. Special handling

is required for memory since the SMM must be called to

ensure that a contiguous piece of memory of the requested

size is available, and for programs since memory is required

only if the requested program does not currently have memory

allocated for it.

The basic logic is to allocate each resource in order

•



from the CD until either all resources have been allocated

or an error occurs. If all are allocated, control returns

to the caller. If an error occurs, then all resources which

were allocate (' are released. If it is possible that

sufficient resources may become available eventually, the CP

waits in the R"I. The particular resource on which the

error occurred is saved so that the CP will be flagged as

waiting for that resource: and whenever another process

releases some of that resource, the CP will be awakened and

the allocation process retried. Memory is actually assigned

since only the SMM knows whether contiguous memory is

ava ilabl e.

For programs, memory is allocated only if the program

is non-shareable (not loaded from a subsystem) or if memory

is not currently reserved for the program. Instead of

returning the memory address in the CD, a program id is

returned which will later be used to obtain the memory

address from the RRM when the program is to be invoked.

After the resources have been allocated (and assigned

in the case of memory and programs), the PBM associated with

this configuration is acquired from the SPM.

PBM. INITCONFIG is called to initialize the PBM with

information from the CD about the configuration which is to

be run. The CD contains information about the number of

nodes, number of DTS's, DTS and connection characteristics,

etc. The PBM calls the SBM to assign the specified numbers

of parm and data buffers.

LF
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The CP then calls ACM.CONNECT_SUBSYS to request

activation of any subsystems used by this configuration. If

the requested subsystems are already running, their user

count is incremented and no other processing is required.

If they are not running at all, a CP is assigned to rur, the

subsystem and it is continued (from its call to

ACM.IDLECONFIG_PROC). In this case, it will receive a null

terminal id and the subsystem name will be the user id. As

above, it will build a CD to run logon which will build the

CD to run the subsystem. The user's CP will wait in the ACM

until the subsystem has been activated (not counting the

logon processor). If the subsystem is changing states, the

user waits until the state change is complete and then

determines whether it can be used or whether the subsystem

must be activated (i.e., it iust terminated).

When AC.M.CONNECT_SUBSYS returns with a successful

return code, it means that all of the required subsystems

are running and their user counts have been incremented.

The subsystem names are obtained from the CD.

Local routine (in the CP) CONNECTSUBSIS is then called

to perform the dynamic connection to each subsystem.

Dynamic connection consists of writing a parameter to the

slubsystem over its DC DTS requesting assignment of a user

interface DTS for this user. A CD-supplied parameter may

also be written to define the function of the DTS. The

subsystem then writes a parameter which contains the

assigned DTS id which is placed in the CD. All of this is



done under an ENQ for the subsystem's DC DTS in the SRN to

serialize access to the DC DTS. In the event of an error

response from the subsystem, the user's PBM is informed by a

simulated disconnect call that the DTS is not usable.

The CP then in routine START_NODES calls

SPAN.ASSIGN SERVER to assign a server process to each node

requiring one. Due to sequencing constraints, the CP may

have to wait for an SP to be available (this is only a

transient condition since the FRM guarantees that one will

be available). The pointer to the CD is then passed through

the SPAN to the server process which uses it to perform its

initialization and then passes it back to the CP through the

SPAN. The CP is continued at this time and returns.

The CP then performs the configuration status

monitoring function.

4.b Server Process Operation

The normal processing loop for a server process begins

with a call to SPAN.IDLESERVER (from local routine

INIT-NODE). This routine returns the pointer to the CD for

the config, the config id* and the node id for this

particular node. The SP extracts information pertaining to

its node from the appropriate fields in the CD into its own

variables.

Before returning the CD, the server calls

PDMI.INIT_NODE passing in the CD. Note that the PJBMI is a



4 0

class which is a variable of the SP. PbMI.INIT_NODE

performs some initialization functions. It clears its P13M

and port tables. A pointer to the local PbM is obtained

from the SPM. The INITNODE routine of the local PBL,1 is

called which saves the kernel's process id (for use in a

STOP reouest) for the SP and checks if an abort has already

been recuested for this node. Upon return to the PBMI, the

port table is then built using information for this node

from the CD. The PBN's MAP-DTS routine is used to map CD

DTS ids into PBM DTS ids. For connections to a subsystem,

routine ADD_PDM is called to obtain a reference from the SPM

to the subsystem PBM and add it to the PBM table.

When PBMI initialiation is complete, it returns to

INITNODE in the SP which calls SPAM.RELEASECDP to return

the CD to the CP through the SPAM. INITNODE then returns

to the main processing loop of the SP in routine RUN.

The SP then performs the appropriate processing for the

node. For an 10 node, a device-type-dependent processing

routine is called (CONSOL_10, SEQLINPUT, SEQL-OUTPUT). For

a user program (seauential or concurrent), the SRM is called

to ENQ on the program loader resource for the specified

program id. RRM.FETCHPROG is called to obtain a pointer to

the memory assigned to the program and to determine whether

the program is already loaded (from the status in the RRM's

PROG_TABLE). If it is not already loaded (this is the first

user or the program is private), then local routine

LOAD PROGRAM is called to load (and relocate) the program
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into the specified memory over the program loader port

specified in the CD. Otherwise, the program has already

been loaded and relocated and is ready for execution. The

program id is DEQed in the SRM and the program is invoked

with the requested prefix (native or

PASDRI'%R-compatibility).

Program loading is performed by reading pages over the

program loader port and copying them into the assigned

memory. The RELOCPROGRAM routine is called to relocate

adcons and RX5 instructions using RLD information loaded

into memory along with the program. Note that access to

this memory during the load/relocate process is serialized

by use of the SRM and that no language protection is

provided. This occurs because the program memory is

effectively a managed record to which there are multiple

pointers.

Since DTS operations will be discussed elsewhere, the

discussion of those routines in the native pefix and the

routines of the PASDRIVR prefix which map into DTS

operations will be deferred. The native prefix contains

some other routines, however, which require special handling

by NADEX.

The FETCHUSERATTR native prefix routine returns

information from the SP's variables about the configuration

and node, such as user id, terminal id, and node number.

The SVCI and svC7 prefix routines merely invoke the kernel's

SVCl and SVC7 functions. Note that these uses are currently

- .:-
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unprotected and that no facility exists in the current RRM

for assignment of LUs. FETC11_PARI allows the user to

obtain the parameter information for the program which was

saved from the CD one parameter buffer at a time.

Invocation of overlay programs is done in two steps

through the native prefix. The first is the loading of an

overlay program done through LOADOVERLAI. The user

provides the port number of a port which he has

pre-configured such that the program loader can just read

pages of code into memory from the DTS until end of file is

detected. The program is relocated after it is loaded. The

size of the overlay area was specified in the CD and the

overlay memory was passed to the SP in the CD from the RRM.

The second step is the INVOKEOVERLAY routine which actually

invokes the program with a user-supplied parameter ard

returns the program result when the program terminates.

Note that NADEX does not currenty support multiple levels of

overlay since only one overlay area exists and NADEX does

not have information to be used in restoring the previous

contents of an overlay area.

The CANCEL-NODE routine may be used to request that the

node be cancelled. That will be discussed in the section on

node termination. CANCELCONFIG is used by special

authorized users to request the ACM to cancel other

configurations.

The SUDMITCONFIG prefix routine is used to allow a

user program (such as the logon processor or a command
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processor) to present a new CD for execution. Execution may

be in one of three modes. CALL and XCTL take effect when

the current configuration terminates. CALL indicates that

the new config is to be executed, and when it terminates,

the current config is to be re-invoked. This would be used

by a command processor when it invoked a user program, for

example. ACTL indicates that the new config is to be

executed in place of the current one. This would be used by

the logon processor when it transfers control to a subsystem

or a command processor configuration, since return to the

logon processor is not required. The third type is a

SPIN-OFF which means that the new config is to execute

asynchronously.

All SUbMIT_CONFIG requests go to ACM.SUUMITCHECK to

check whether the user has CD*s allocated to perform the

requested function and whether the user is violating the

rules on submits (e.g. more than one of type CALL/XCTL).

The CNFG-TABLE in the ACM keeps track of how many CD's have

been used from the config's allocation. If the submit is

allowed, the CDM is called to acquire a CD and the CD is

copied from the user's parameter into the CD.

ACM.COMPLETESUBMIT is then called to complete the submit

operation. For XCTL or CALL type, the CD pointer is saved

in the CNFG_TABLE so that it may be passed to the CP along

with the submit type. For a SPIN-OFF type, the ACM attempts

to allocate an idle CP (waiting in ACM.IDLECONFIGPROC)

passing it the CD for the config it is to run. If this is6i
-I. . . . . . . . . . . . . . . . . . L
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successful, that CP will be entered with a non-nil CD

pointer so it will skip the building of a CD for the logon

processor and go directly to config setup for the specified

config. If the spin-off was unsuccessful, the CDM is called

to release the CD. The spun-off CD no longer counts against

the config's CD allocation since it is effectively replaced

by the pre-allocated CD for the CP which is running the

spun-off config.

4.7 User Initialization

To put this in perspective, let us look at how it is

used by the system when a user logs on. The logon processor

seeing that it is not running on behalf of a subsystem

builds a CD for the system command processor and submits it

with the XCTL. It then terminates and the command processor

is invoked in its place. Since the command processor

requires the File Subsystem (FSS), another config will be

activated to start up the FSS if it is not running. This

config will also invoke the logon processor which will build

a CD to run the FSS (loading it from a pre-assigned logical

unit). It then submits it with type JCTL and terminates

which causes the FSS to be activated. When the FSS is

running, this allows the command processor to be activated.

The command processor communicates with the user and the FSS

and eventually builds a CD to run the user's configuration.

It submits it with type CALL and terminates which causes the

-!A P
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user s configuration to be run. When the user's

configuration is finished, the command processor

configuration is re-invoked. When the user issues the

SIGNOFF command to the command processor, the command

processor configuration terminates; and since there is no

configuration to re-invoke, the user is logged off and the

CP returns to the ACM to await reassignment.

4.b Server Process I/O

The SEQL.INPUT routine of the server process merely

reads pages from the specified logical unit using SVCI and

writes them to port I of the node. The routine ENQ"s on the

logical unit in the SRM before beginning so that exclusive

access is obtained (since sequential reads are used). When

end-of-file is reached, the logical unit is rewound and data

transfer continues. (An end-of-file buffer is sent to the

user, however.) Transfer stops when an error status is

obtained on the write to port I. At that time, the logical

unit is DEQed and the routine terminates.

The SEQL.OUTPUT routine, when implemented, will perform

a similar function for output files. Currently, SEQL_INPUT

is used only for program loading from pre-assigned logical

units for the logon processor and the file subsystem, and no

use has been found for the output function.

The CONSOLESO routine performs interactive I/O to a

terminal device using SVCl. The console protocol is defined
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elsewhere and will not be repeated here other than noting

that the console is initially in write mode and that writing

an EM requests a read of one line.

4.9 Normal Server Termination

A server normally terminates by returning to procedure

RUN which then calls TERMINATENODE. This node then calls

RRM.RELEASEPROGRAM to release the program (if any) and

calls RRM.RELEASEMEMORY to release the memory for the data

space and overlay code space for the node. Memory is

released in this manner since there is no easy way to obtain

access to the CD to place the memory pointers back in it so

they may be passed to the RRri by the CP. Also, experience

has proven that memory is the most scarce resource and thus

releasing it as soon as possible (each node's terminatioi,

rather than config termination) may be beneficial.

The server then calls PBMI.TERMINATE-NODE. This first

calls the TERMINATENODE routine in the local PBM which

flags the node as aborted and aborts all of the appropriate

DTSs which cannot be used without this node. Then for each

port, any buffers held in the PBMI (due to character

operations) are returned to the appropriate PBM: and the

port is disconnected by the DISCPORT routine. Finally, the

PBMI returns to the SP.

The SP then calls ACM.TERMINATESERVER to inform the

ACM that a server process of this config has terminated.

rWN
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The ACM keeps track of the number of active servers and,

when it becomes zero, informs the CP that the config has

terminated. The SP then returns to the top of its

processing loop which is to call SPAM.SERVERWAIT to wait

for reassignment.

4.10 Abnormal Server Termination

Abnormal termination can be initiated from several

places. Various error checks in the prefix routines of the

server itself may request termination. The PBMI may request

termination due to bad responses from the PB31. The PBM may

request it due to some error condition. Finally,

termination may be requested by some other process (like a

system operator).

External aborts are handled by requesting an abort by

calling ACM.CANCELCONFIG. (Note that externally you can

cancel only an entire configuration.) The abort request and

its level (abort config or logoff user) is stored in the

CNFGTABLE; and if this is a stronger request than one which

is pending, the CP is continued. The CP will have been

waiting at ACM.AWAITCONFITEVENT and receive a return

code which causes it to call ABO[TCONFIG in the local PBM.

The PB1 ABORT-CONFIC routine merely calls ABORT-NODE

~for all of the nodes. ABel, _NODE flags the node as abortedI

and saves the abort reason (typically a line number from the

original requestor). If the node has called INIT_NODE, then

1i"..,.
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the kernel's process id is available and a STOP is done on

the process. If the node is waiting in the PBM, then it is

continued and all of the DTSs associated with the node are

aborted.

An ABORT requested in the PBMI causes the PBMI s

ABORT-REQUEST flag to be set and causes the PBMI to stop the

server. An ABORT in the server calls PBMI.ABORT which also

causes the stop.

The STOP causes the kernel to pop user program levels

whenever they would be executed. However, pref.x execution

will not be interrupted. Thus, the prefix routines need

only check explicitly for abort conditions in places where

they can loop or can enter a wait condition. The I/O

routines check the PBMI status codes for a REQ_ABORT-NODL

status which indicates that the node has been aborted in the

PBM or PBMI. Routines such as the program loader which use

DTS operations also make such checks. Thus, the node will

fairly quickly return to the point in the processing loop

where it performs the normal termination procedure.

4.11 Configuration Status fonitoring

While the configuration is executing, the CP is waiting

in ACM.AWAIT-CONFIGEVENT. The events of interest are

qulesce request (for non-permanent subsystems), abort

request, logoff request, and configuration termination

(i.e., all servers have terminated). For a quiesce request,
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the CP writes a quiesce-request parameter over the DC DTS to

the subsystem it is running. For an abort or logoff

request, ABORTCONFIG in the local PBM is called to initiate

configuration abort. For these cases, ACM.AWAITCONFIG_

EVENT is called again to wait for another event. Each of

these events will be reflected only once, and only if a

higher precedence event has not already been reflected. The

ACM keeps track of this using CNFG_STATE, which is the state

reflected to the CP, and CNFGNEWSTATE, which is the state

requested (e.q., ACTIVE, QUIESCE, ABORT, LOGOFF). A quiesce

is requested only for a non-permanent subsystem when its

active user count reaches zero.

4.12 Configuration Termination

When all of the servers have terminated (the count is

maintained in the ACM and decremented when

ACM.TERMINATESERVER is called), then the termination event

is returned to the CP on the ACM.AWAITCONFIGEVENT call.

This breaks it out of the loop calling

ACM.AWAIT_CONFIG_EIVENT.

ACM.DISCONNECTSUnSYS is then called (with the CD) to

disconnect from all of the subsystems to which the config

was connected. Disconnecting decrements the active user

count and causes non-permanent subsystem with active user

count of zero to be signaled to quiesce. Note that since

all of the servers have terminated, all of the PBMIs have



completed the DTS disconnects from the subsystem PEM's.

ACM.CONFIGCIIECKSTATE is called to determine whether a

logoff was requested. The RELEASEBUFFERS routine in the

local PBM is called to return allocated buffers to the SUM.

RRM.FRELEASE_CONFIG is called to release all resources

(except memory and programs) allocated to the config.

Local routine UPDATECDSTACK is called to handle the

CD stack used by the SUBMITCONFIG prefix routine. If no

CD's were submitted, the top entry is popped from the stack.

If a CALL type submit was issued, the current CD is pushed

onto the stack and the submitted CD becomes the current CU.

If an XCTL type submit was issued, the current CD is

replaced by the submitted CD. The submit information is

obtained from ACM.FETCliSUBIITCD. Any CDs allocated to the

config that were not used are released by calling

RRM.RELEASECDS. If this was a subsystem and no submit was

performed, ACM.SUBSYSRESTARTCIECK is called to determine

whether the subsystem should be rstarted (e.g., there is a

user already waiting for it). If that is the case, then the

current CD becomes the new CD. When CD's are popped or

replaced, the old CD is released by calling the CDM and the

allocation is released by calling the RRM. If the stack is

empty when a pop is required, then the user will be logged

'o off.
of.If a logoff was not requested (either by the AC14 or

because a pop from the CD stack was required and the stack
I

was empty), then the CP loops back to setup the new

-4r



configuration. Otherwise, the user will be logged off. The

CD stack is emptied, freeing all of the CD's in the CDM and

RRM. The CP then repeats its processing loop by calling

ACM. IDLE_CONFIGPROC.
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