AD=A068 162 UNIVERSITY OF SOUTWERN CALIFORNIA LOS ANGELES DEPT OF==ETC F/6 9/2
MULTIPROCESSOR ARCHITECTURES FOR CONCURRENT PROGRAMS, (U)
APR 78 P B HANSEN NOOD14=TT=C=0Y14

NL
Al)
AQeaIe2

END

DATE

FILMED

6 --79
T DOC

UNCLASSTFTED

"l" |0 e iz

== = |2

vl 7

i Er
= L
22 [lis e

4

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-1
]

DOC FiLE CorY”

MA068162

Contract NO’QI“-776C-P7 :

R R A

gELTIPROEESSUR ARCHITECTURES

FGR CUNCURRENT PROGRAMS’

R

—~—

/A S—————

JD) Per Brinch/Haﬂ!Bﬂ /

Camputer Science Dapartment'
University of Scuthern Califarnia
Los Angelss, California 90007

41 Ve Aprﬂ 978 |

N
Abstract This paper praposes a hisrarchical multipracssscr

architscture for resal-time programs written in a concurrent
orocramming language. Ths use of procsssaes and monitors lsads
te 2 multiprocasscr system in which esach procassor has a local
stars dedicatad tg 2 singla process., The procssscrs share 2
cammagn stcre that contains *he manitars., To avoid congesticgn
in the common staore the processes and monitors arse partiticned
inta subsystems that share a hisrarchy of common storss., The
main goal is to develap a synthesis aof an abstract languagas and
a computar architscturs that match in an obvigus way.

AN
Kay Words and Phrases: language-dirsctsd computer design;
meltiprocassor architacture, hisrarchical storess, real-time
applications, cancurrsnt programming, procsssss, menitars

CR Catsgories: 4,2, 4,32, 6.2

Pressuded ot Hhe ACH 72 Confruner | Washingiow, D.C.)
Dec. 41978

This work has bsen sugportad by the Office of "aval Researcn
under contract NRGASGwddS, 097 - (o7 5 '

: fer public relecre end sale; W J
ﬂ / | diswibution is unliveited.

79 03 16

1. Introduction

architsctures for rsal-time applications writtan in an abstract
langquages faor concurrsnt programming,

The proposal rests on the assumption that simplicity,
reliability, and efficiancy are essential for real-time
applicaticns, Without simplicity one cannct sxpsct ts understand
the purpase and details of a larges program. Without rsliability
one cannot sericusly depend on it, And without efficisncy a
real-time program cannaot ksep pacs with its environment,

Although efficiancy is important we will noct let it compromise
the vital need for simplicity. Where such a conflict exists, we
will settle for a simpls systam that can handle many (but nct ail)
real-time applications,

These programming goals can be met by careful design of the
programming languags, ths compiler, and the computar architacturs:

(1) To obtain simplicity real-time programs must bes writtan in
an abstract languags that supports modular programming.

(2) To maks real-time programs s=eliabls the programming language
must pesrmit extansivs compilaticn checks that snsurs the intagrity
of modules.

(3) To maks real-time programs sfficiant they must Bbe
exacutad by a multiprocassor systam in which each grocessor is
dadicatad ta a singls process.

{(4) To make the languags implsmentation straightforward the
multipraocassaor architecturs must suppgort the lanquage concagts
in an obvicus uay,

(5) Te make the multiprocessor inexpansive it must use
microprocssser tachnalogy.

Initially, we locaksd at programming languages in which all
communication between concurrant processss takas place by
messages cnly., This approach sgemed natural for microprocassscr
networks without common stors modules. Messags systems with '
completely deterministic input/cutput behavior have existed for
more than a decade. But a rscsnt proposal has pointed cut an
occcasional nesd for nondesterministic process communicaticn [1].
Since these idsas are still at a very sarly stage, we fslt that
it would be mors appropriate for us ta experiment in only cne
area at a time,

Now we do have several years of expsrisnce with the programming
lanquags Concurrsnt Pascal that includes procassas and meniters
[ﬁ]. So we decided to lagk for a multiprocessor architacture that
supports a language of this type directly.

In any multipgrocessor systam, procsssas need to communicats to
coaperata on common tasks. £ach procass usss saome portion of the
transmission capacity of the communication lines (which may be
bus lines or common storss), As more processes are connectad to
the same line, a point is socon resached where that line becomes a
bottlaneck.

So 2 ksy problem is to aveid congestion of the communicaticn
lines. To do that one must take advantage of the locality af
stares refarsncess within a concurrent program, One may, for
example, observe the program during its execution to discover
pattarns of store refersnces., Dsmand-paging systams and cache
stores ars typical examplaes of this approach, 8ath regquire
cbmplicatid run-time mechanisms.

We will instsad depand an the compilar to exploit the
locality of referancss that is datarmined by the modularity of
the programming langquags, The use of processas and monitcrs
maturally leads to a multiprocsssor systam in which each procassor
s a local stors dedicated tg a2 singles process and in which
several procasssors shares a common store that contains the
menitars,

g

B et B ol uE s L o i

Although pesrformance measursments ars scarcs for concurrent
programs praeliminary estimatss for Cancurrent Pascal programs
suggsst that each procsss refers to its own cods and variablas
an order of magnitude more aoften than it refsrs tg the monitors.
_Th- simplest architacture propossd hers thersfore consists of
about 10 procasscors each with their ouwn stare and sharing a

single comman storse.

For systams with up to 100 procasscrs we prcpose a tlock-
structursd programming language that maps directly onto a
multiprocsssor architacturs with a hisrarchy of commen stcres.,

g would expsct that more general multiprocsssor systams,
such as the Ca*, can bes configurad to handls the special cases
pressentad hers [i]. Qur purpcse, however, is ta take
full advantage cf the charactaristics of a concurrent praogramming
languags and develop 2 synthesis of a language and an architacture
that match in an obvisus way, This viswpoint lsads to many
simplifying assumptions that should have a beneficial affect an
tha cast and reliability of the hardwars, It is cur visw that
the ssarch for uttar simplicity and full gensrality ars
complimentary (bud® oftsn conflicting) resssarch gecals, Scth
apprcaches should be trisd Bsfore any firm conclusions can be
mads about their merits,

2. Programming concepts

Most complex systams in nature ars organized hiesrarchically
as subsystams which in turn may be further subdividad [4]. In
such systams, each subsystam spands maost of its time performing
an autonomous function and uses much less time intaracting with
a few other subsystams. The exact timing of events
in each subsystam is indspendesnt of the exact timing of ather
subsystams, In the short run the beshavior of each subsystam is
incenendent of other subsystams. In the long rum a subsystem is
influenced aonly by the average behavior of other subsvatems,

In the design of a real-time computar systam one can take
advantags of the hisrarchical naturs of the world by identifying
subtasks that are nearly autonomous and which ars loosely
connactsd ta ane ancther. The great advantage of such systems is
that they can be designed, tsstad, and tuned piscameal By
focussing the attantion on one subsystam at a time.

A real-time application will be contrslled by a concurrsnt
program that runs on a multiprocsssor system dedicated tao that
application. The subtasks will be performed by a fixed number

of asynchronocus procssses that ars executad simultanecusly. The
processas communicate By means of a fixed numbsr of monitors

(s, s].

Figure t shows an example of two procssses that ccmmunicita By

means of a buffer monitsr. The arrows indicats that these procassas
have accass to that monitar. i

buffer manitar

sender procsss recsiver procass

Fig. 1. A hisrarchical subsystam

The following shows how the buffer manitar can be programmed:

manitar buffer
SESERT ISR ey
var slot: message; full: boclsan

procsdurs send(m: message)

SRS ——

when naot full: slot:z m; full:= true end
TR MR Smagm,

procsdurs rscsive(var m: messags)
P coma
when full: m:= slot; full:= false 222

begin full:= false end
P =

SE————

message slot and a boolean indicating mhether or not it is
The monitar alsc dsfines two gperations, send and recsive,

- tha buffsr and an initial statament that makss it empty ta
with,

Frocasses can perform the send and rscaive gperaticns cn
buf fer but canrot accass the data structure dirsctly. This
guarantsed by ths compiler.

The cperations on a monitor taks placs strictly cne at a

the moniter concapt.

statament of the form [7]:
when beclsan sxpression: statament end
Sm—— S
This delays the exscution of the next statament until a

boslean expression tscomes true (as thes result of another
monitor opsration).

The monitor defines a common data structurs consisting of a

fUllo
en
tegin

the
is

time,

Yhen a procsss parforms a monitor operation the comouter will
delay further cpsraticns on tha same monitar until the current
operation is finished, These short-tarm delays ars implicit &

A monitor opsration may, however, postpone its cwn completian
until the common variablas satisfy a cartain cgndition, These
mecium-tarm delays ars expressed in the language by means of 2

L — : . . — —— —

R

WYhen a monitor cperation delays itself explicitly ancther
monitor opsration can taks placs. Ths delayed cperation is
resumed when its prescondition is satisfisd and no other coperation
is in progress.

The boolean exprsssions used = for synchronizaticn ars mors
elegant, but less efficisnt than the gqueus variables used in
Concurrent Pascal [2. é]. Ths low cost of microprocessor
tachnology should, however, maks the mors slsgant concspt the
abvious chaoice.

The exampls bslow shows tmoc concurrent processes that
communicata by means of the monitor buffar:

procsss sander
P

var x: messags
S

cycls producs(x); buffer,send(x) end

process rscsiver

M

var y: messags

P o ad

cycle buffer.rscaive(y); consume(y) end
SRR SRR

Each procsss dsfines a local data structurs consisting of a
singls messags and a cyclical statement that operatas on it.
The variables of ons procsss are® inaccsssible tg cther
procssses, This tog is gquarantsed by the compiler. The checking
of access rights during compilation makes a2 hardwaras protacticn
systam unnecsssary [2].

Thes procssses ars loosely connectad if they spend maost of .
their time opsrating on their local cdata structurss and very %
littls time on exchanging data. Lcosely couplasd procssses spand
anly a fraction of their time within mecnitors,

A monitor can alsc be usaed to control the accsss to common
rescurces, such as a peripheral dsvice, Ths simplest examgle
of a resourcs schedular is shown belou:

monitor rescurcs
var free: boolean

procadure rsquest
when frse: free:= false end
P FaE——

procsdurs relsass
SO S A g

begin free:= trus and
P o 21

begin fres:= trus 222
The rsscurce is free to begin with., A rsquest copsration delays
the calling procsss until the rsscurce is free and makass it
avallabls sxclusively for that process, A reslsasa cpsration makas
the rescurcs free again,

R study of thrase model apsrating systams writtanm in Concurrsnt
Pascal shouws that most monitors either serve as buffars cr as
schadulars [é].

In this discussion the destails of the programming language are
nat important, We will just assume that a concurrent program
_consists of a fixesd set of menitors M followed by 2 fixsd set of
procssses P1, P2, ... , Pn, The monitors are initializsd bafore
ths procssses ars sxscutad.

3. Singls-procassor systam

We will describe thres camputar architactures for a
concurrent programming language., These caomputars will use very
gsimilar methods of stors allocation, but will gradually increase
the degrse of multiprocsssing from 1 ts 10 and, finally, tas 100. {

A single-procasscr systam that has already been implementad
is described first, Its purposs is tg introducs the stcrage
allocaticn scheme and to charactarize the performance of a
single procsssor programmed in Concurrsnt Pascal,

On a single processor with a singls stare the cade and
variables of all monitars can bes storsd in a singla segment M,
The caode and variablss of sach procass can be stored in single
sagmants P1, B2, ,.. , Pn (Fig. 2). '

P1

P2 common staors

Pn

(:E) processcr

Fige 2. Singls processor systam

The compiler snsurss that procasses only communicate By means
aof monitors., So sach procsss only neseds accsss to a subset of
the whola stars., This is important on a procsssor with a short
word langth (16 bits). It makas it possibla ta aextand the stors
beyand the addresssing limit by means aof an address map that
anables each processs to see a virtual stors consisting of the
common segment M and its local segment Ri, This carrssponds
closely to the implamentation of Concurrent Pascal on ths
PDF 11/45 caomputar [é].

On a singls procsssor concurrsnt procsssas are simulatad by means
of clock intarrupts. A process has axclusive accass to the common
segment as long as it performs a monitor aperation without
dalaying itself, This is ensuresd by disabling clock intarrupts
tamograrily., Procasses tiat ars rsady ta continue or ares wmaiting
for conditions to be satisfisd ars reschedulad perisdically in
round-robin order, This is the classical tachnigue of procsssor
multipiexing,

The Cancurrsnt Pascal compilar generatas virtual cods
for a stack machine, This virtual cods is intarpratad by a
wachine program of 1 K words on the BDP 11/4S,

G

Sa far, thres model operating systams have been writtan in
Concurrent Pascal. The largest one is the Soclo systam which
requires a stores of 39 K words [2]. The monitors occupy a

common segment of about 4 K words whils the procsss sagments vary
from 200 words to 20 K words each.]

One of cur main concsrns will be tg aveid congestion of the
caoammon staorss in a multiprocsssor systam, To illustratas the
problem we will consider taxt processing as an example that
invelves a fair amount of data transmission bstween prncssses
and a minimal amount of data processing., The procassing of a
stream of input data is cammon in resal-time applications (although
the data itams may raprssant measurements rather than charactars).

In the Solo systam, the intsrnal spesd of taxt procsssing is
about 1000 - 3000 char/ssc far laxical analysis and line-orientead
aditing. In performing thess tasks the systam spsnds less than 10
par cant of its time on monitar opsrations. So ths processes ars
certainly logsely connectad.

4, A twoc-lsvel multiproecsssor

Figurgfs‘shuus a proposqd multiprocsssor systam with n
microprocessors and n + 1 stors maodulas, £ach procssser is
dedicatad to the exacution of a singls procass, ihen a2 process
delays itself its procassscr is alsc idls, A procsssor has a local
stors that halds the code and variables of a single procsss, The
procsssors are connected to a singls common store that helds tha
code and variables of all monitars,

10

m : commgon store (monitars)

P1 P2 P Pn local stors (procasses)

é é procsessors

Fige 3. A two-level multiprocassar

The virtual addrsss spacs of a singls procassor consists aof its
local stors and ths common stors. A procsssor can access its cun
store dirsctly (but no octhar procssscor can), Accsss to tha cammen
stores is controllsd by a round-robin arbitar. Initially, we will
assuyme that a procassor has exclusive accsss to ths commen store
for the duration of a menitar opsration (cr until the gperaticn
delays itself). This is achisved By rsguest and rslsess
microinstructions on the comman arbitar. From the point of visw
of a procassor, its local stgore and the common stors aperatas at
the same spead (say, 3 Psac/wcrd).

A peripheral davics can be attached asither ta the lccal stors
of a single procassor cr to the common store. A procsssor remains
idle during an input/cutput agperation, This makss input/cutput
apgpear to be an indivisibls cperation and eliminatss ths nesd
for intarrupts.

fast rssponse to extsrnal asvents is guarantaed by using
dedicatad processors that respond immediataly to thess svents.

As long as thes common stors is used primazily for intsrmal
coemmunication (but is not a critical factor in the immediats
responss tg reel-time events) it is quita accsptabls that it

is mcncpolized by a singls procsssor during a monitor gpsration,
Latsr we will relax things a bit and pearmit gperations on

- diffearent monitors to take place simultanecusly,

11

To maks an gvaluation of such a sys‘am we will assume that the
processcor and stors tachnology is comparabls to that of the LSI
11 microcomputers. If the virtual cods generatad by the compilsr
must be exscutad by an intsrprester writtan in machine code then
each procsssor will bs 3 times slower than the POP 11/4S [9]. But,
if the virtual cods is aexscutad dirsctly by microprograms, then
it should be slightly fastar than the intarpretad cods aon the
PDP 11/45, We will assums the lattar and use the known performance
figures ?or Concurrsnt Pascal statements [2] raducad somewhat to
takas the absence of procsssor multiplexing ints accaunt,

The ssnd and racaive aperations on the buffar defined sarlier
will then taks absut (70 + 3¢) psec sach, whers c iz the numgsr
of characters par messags. So it will taks 0.7 msac tg transmit
a block of 100 charactsrs from ona procass ts another, If ths
common stors is used only for transmitting blocks of this size
By means of monitors thenm it has a capacity of 135,000 char/sec.

To evaluata a case whers the tatal traffic through the commecn
stere is high we assume that all the procsssars operats an
charactars at the highest possible rata, Consider thersfore a
machine with 10 procsssors and assume that sach procassor has a
throughput of 3000 char/sec - a tatal throughput of 30,000
char/sec. This means that esach processor uses the common store
eanly 2 per csnt of the time while all of them use it far anly
20 par cant of the time, It is this strong localizatiocn aof
referencas tg thes local storas which makss the tuc-lesvel system
practical.

With a utilization factor of only 0.2 sach procasscor will on
the averaga immediataly gat accsss to the caommon staore when it
negds it [5]. Sincas the cammon stors only comprisas 9 per cent
of the wmhols store, its low utilization does not matter,

In practics, it seems unlikely that an applicaticn will maks
it possibls faor 10 procsssors to apsrata csntinucusly without
idls psricds, Sc the common store should csrtainly have
sufficisnt spesd for such a systam,

12

In some applications procassss might interact more often than
in the presvicus example. In that case, it may be necassary to
reduce the number of procssses connectad to a single common stars
somewhat and use a hierarchy of commen stores as dascribed latar.
However, if each process spends more than 10 per cent of its time
in a common store, then we have a tightly coupled system which
the machine was not built tg handls.

Identical. procasses that operata in unison on common arrays
is an important example of tight coupling. Ancthar sxampls is
a pipelins that performs very fast operations an a strsam of
small data items, These spscial applications requirs a diffarent
kind of computar architscturs which may bBe highly spscializad
if extreme spesd is raquired [15]. This paper concsntratas on
computar architescturss for a wida varisty of applications in
which diffsrent procssses gperzata asynchronously at medium
speeds, It may well be feasibls to handls fast rsal-tims
applications by connecting a general-purpose multiprocessar to
spacial-purposs pracassors for data rsduction or synchronous
 computation, .

S. The averhsad of synchronization

So far we have ignored the problam of tha paricdic svaluation

of a boclean expression 8 within a delayed monitor cpsration.
“hen a procass attampts to exscuta the synchronization
statament

shen 8: S gng

the procass is in-the middla of 2 manitor aperaticn-and has .
axclusive accass ta the commen stors. The code gasneratad for
the uwhen statament will therafors bs asquivalsnt tgo the folliowing
grogram piascs

ﬁﬂi&f.ﬂﬁi 8: release; requast end

S

This cods saguencs svaluatas the boolean expressicn, As long as
it is false the procassor rslsasas the commen store acain and

o

13

waits for another turn, When another procsss has completad a
manitor operation that makas the expression true, the statament
S will be executad. The rsquest and rslsase opsrations rsfer to
the arbitar that gives a procsssor exclusive accsss tao the
common store,

Typical synchronizing conditiaons, such as

not full length < max user in turn
P P

will taks 30-100 psec each time they are rsevaluated.

Previcusly, we considersd the extrame case in which 10
procsssors wers running contincusly without delay. We will now
axamine the gthar sxtrsme case in which 9 processes ars waiting
for different conditions to bs satisfiad, When the last procsss
axscutas a2 send opesration on a huffer it bescomes possible faor
one of the wmaiting procassas to complsts a rscsive aopsration,
In that case, the send and rscsive operations can now both be
delayed by the reevaluation of 8-9 conditions of 100 psec sach.
This increases the rasponss time of the intaraction from 3.7 tao
2.4 msec in the worst cass, Howsver, at ths procsssing rats of
3000 char/sec, the exchangs of a block of 100 charactars only
takes placs avery 33 msec, Thes anly effsct of the 2.4 msac is
to slom the procasses down by 7 per cant,

Sinca the arbitsr intarleaves ths rsevaluation of conditions
with new monitor calls in round-robin order, the amount of
reevaluation is automatically reducad when the traffic intensity
increases,

Ngverthesless, the rsevaluaticn still has ssveral undasirable
consequencas: (1) it makss the coupling of intaracting processes
unnacassarily tight at time=; (2) it slows all aother menitar
gperations douwn; and (3) it forcss the programmer to uss anly
the simplest possibls csnditions (rather than the mest natural
ones), It would thersfors be desirable tao limit the effacts of
resevaluation,

14

A radical (but expensive) solution to the problem of
resvaluation is to use a common stors that is 10 times faster
than a local stors and use local buffer registars tc interlesave
refersnces to single words in the common store, If we restrict
the machine to 10 procsssors, the common stors will aluways
appear tag be as fast as the local stors of each procasscr. So
the sffsct of rsevaluation disappears,

Since we are now interlsaving operations on differant menitors
simultanecusly, we need a separata arbitar for sach monitaor. Each
arbitsr will be respressentad by a gates variable in the common
store., The lack and unlack agperations an a2 gats variablas will be
performed By microprograms. Thase coperations ars made indivisible
ty means of resguest and rslsase coperations on the singles harduware
arbitar:

lock(gata): rsquest
whiles gats = 0: rslsase; resquest end
gata:= 0O GEEs
relsass

unlock(gata): request; gata:= 1; relsase

If the common and local stcorss have the same accass times the
following scheme will limit the overhead of synchronizaticn. Each
monitor is now rspresantad by two common variablss, callad the
gats and the clock. The gata variable controls arbitratizcn By means
of lock and unlock cperations as befors, The clock is incrementad
cyclically by cne every time an cpesration has changed the monitor
variablss, The clock nead only bs incrrinented at the baginning cof
each when statament and at the end of each monitsr precadurs.

Instaad of rssvaluating a complicatad boolean sxprsssion 2
repeatadly a process can now simply lock at the meniter cleck
until it changss its valus, Cnly then is it necsssary to svaluata
the boclsan expraession again, This leads ta the following cade
segqueancs for a ushen statament:

|

18

increment (clock)

while not B:

Pl o o V. o
unlock(gata)
awaitchangs(clock)
lock(gate)

and

S

A delayed procsss storss the current value of the clock in a
local registar and comparss it with ths clock variabls every 100
Rsec. So the awaitchange instruction is microprogrammed as
follous '

ragistar:= clock
shils ragistar = clock: idla(100) end

If we assume that load and store aperations an the comman stcre
taks placas one at a time (thanks to the hardwars arbitar), then
it is not necsssary for a delayad procass tao lgck the gate variabls
Just to loock at the clock value., Consagquently, the idling and
reexamination of ths clock variabls only raquirss one cycle of the
common store (or 3 psec) svery 100 ussc.

As long as the stats of a monitor is uncianged a delayed process
can at most consume 3 per cant of the common store cycles. The
reevaluation of a synchronizing conditipn B anly takss placs whan
another procass changes the stats of a monitor (and its clock). In
the taxt procsssing exampls considarsd earlisr an expression is
evaluated in 100 pssc every 33 msec - an overhsad of only (0.3 per
cant, Within csrtain limits the averhsad of synchronization is nouw
influsncad very little by the complexity of the expressicns usad.
The existanca of the gata and clock variablas is hiddsn from the
programmar,

The intarlsaving of common stors rsfarsncss alsoc makes it
practical to connect a small number of sharad peripharals to the
common store (although we expact that most davicss will he
connectad ta the local stors of a microprocesscr).

-

2

16

§, A hisrarchical multiprocsssor

-

For real-time applications that require more than 10
processors we proposs a block-structursd programming language
in mhich subsets of procssses and monitors can be groupsed into
a hierarchy of subsystams,

A concurrent program now consists of nestad subsystems (Fig. 4).
Each subsystem in turn contains a sst of monitors and procsssss,
A procsss can use only those monitors that ars within its
own subsystam and within the subsystems that senclasa it, In
figure 4 the gutar subsystam consists of the set of monitors mQ,
The first inner subsystam consists of the sst af monitars M1
and the prucessses 81, 2, .. , °m, Thess procsssas can uyse the
local monitors Mt and the global monitors MO, Similarly, a
procass Ji in the gther inner subsystam can use its local
monitors M2 and the global monitors MO, Sut a process within
ane af the inner subsystems cannat yss a monitor within ths
gther inner subsystem.

ma

m
P1

Pm

"2
al

an

, Fig, 4, A hisrarchy cf subsystams

———

S TR ey S

17

e assume that each subsystam uses its cwun monitors an order of
magnituds more frequently than it uses the global monitors.,

Programs writtan in such a language can bs exscutad by a
myltiprocsssor with.a hisrarchy of common storss (Fig. S).

mg common store
mq m2 common stcres
p1 eee fm Q1 see Qn lccal stgres

I B

Fig. S. A hisrarchical multipraocessar

Althaugh the horizontal lines can be intarprstad as bus lines,
Fig. S is not a diagram of the connections of hardwars modulss ta
bus lines. It is a diagram of the accsss rights of procsssors to
store madulss,

The virtual stars of each processcr consists of its local store
and all the common storss that lis on a path from the procasssor
ta the roct of the storage tree. For procsss Pt ths comman storss
are M and MO, When P1 rsfers to MO it has exclusive accesss ta
Both M1 and MO0, The hisrarchical usage of arbitars prevents some
deadlocks [5].

Although the multiprocasscr in Fig, S sesms to be tailored ta
the program sketched in Fig, 4, it should really be viswed as a
general-purpcse machins that can executs any cancurrent program

" ¢ T
L
' - % P

18

with one or two subsystams mhich in turn ars divided ints no mors
than 10 procssses sach. '

For a 16 bit processor it sseems reasonabls to have a thrse-lasvel
machine whers the common stores contain 8 K words each and the
local staores caontain 16 K wards each, Such a machine could
include a tagtal of 100 processors and 1.6 M words, A 32 bit
processcr systsm could have more procssscors and mors stors lesvels,
It seems likely, howsver, that special-purpose machinss are
needed to utilizs a much higher degrse of concurrsncy
efficiantly.

7. Fimal remarks

F ot

The recant resduction of hardware caosts for microprocasscors will
scon put grsat pressurs on scoftuare dssigners to resducs their costs
as well, The only way ta do that is to urite all scftware in
abstract programming languages that hide the irrelsvant details af
computars., Ta maks an abstract languags efficiant encugh for
real-time applications one must design a computar architescturs that
supports the langquags fesaturss dirsctly.

Ten years ago this approach led to the development of stack
machines for ssqusntial programming languages. This papgsr suggests
that a multiprocsssor systam with hisrarchical storage will
support a concurrsnt programming languags with processaes and
monitors efficisntly., Machines with stacks and tree-structured
storage exploit the scope rules of the programming languags to
share storage ef'ficisntly among program mcdulss.

The papgsr describes a reasonably simple way of limiting the
reevaluation of synchronizing exprsssions within monitcrs. It
alsc propgoses a block-structured language concapt (called a
subszstam) which enablas the programmer to partition the cata
structurss of a concurrsnt program higrarchically ameng
asynchronous procsssas.

It needs tg be strasssed again that this paper is cnly a
propesal for a multiprocesscr systam that has not been built
yst,

T —

—

P —

19

Acknowl sdgement

This wark has bssn supportad by the Offics of Naval Research
under contract NR0O49-41S. It is a pleasurs to acknowledgs the

helpful comments of Wolfgang Franzen, Charles Hayden, and
Jgrgen Staunstrup.

Refsrancss

1.

2.

3.

4,

S.
S.

7.

g.

10.

Hoare, C.A.R,, Communicating sequantial procasses.
To appear in Comm, ACM.

8rinch Hanssn, P,, The architacturs of caoncurrent programs,
Frentices-Hall, Englswocd 1ffs, NJ, July 1 .

Swan, R.J., et al,, Ca* - a modular multi-microgrocassor.
AF IPS Computar Confesrsncs 1977, 638-44,

Pattas, H.H. (ed.), Hisrarchy thear
comolex systams, Gaorgs

8rinch Hansen, P,, Opsrating systam orincipgles.

Prantice-Hall, Englswocd CLiffs, NJ, July 1973,

Hoars, C.,A.R., Monitors: an cperating systam structuring
cancspgt, Camm, ACM 17, 10 (Oct, 1974), S49-57,

Hoars, C.,A.R,, Towards a theory of parallasl progremming.

In Joarating systams tachnigues, Academic Press, New York,
NY, 1973,

8rinch Hansen, P., Structursd myltiprogramming,
Comm, ACM 15, 7 (July 1972), S574-78.

8rinch Hansen, P,, and Haydsn, C, Microcomoutsr

Computar Scisnce Department, Univers ty ¢
Califarnia, Los Angelss,

< The challenge of
8r, New York, NY, 1

avaluation,

guthern
California, Jan, 1578,

Stone, H.S5, (ed.), Introduction tao computar architscturs.
Scisnca Research Asscciates, Ehicagn, ILL, 1975,

Appendix: Languags syntax

This is an cutline of the syntax of a cancurrsnt programming
lanquage with nestsd subsystams cantaining monitasrs and procasses.

' O m
——in SYSLEM

systsm
—— S YSLAM P

s CONSE == {d «=pn = —.ccnstantJ |

7
|

Lyps —s=id —e s-.-typ-_[|

'

'

monitor—o= {d—0shlocik — '

FEEERSCECT —— !

1

PrOCeSS —p» id —peblock |

SRS

!
STEM comed 1

var ~—{—'-id—-: i LYDE — |
Enucndvr- o= id —s= parametars —s= block —-l

PR

statament —e»

i
|
i

i

