
A0 A066 162 SIIIVERSITY OF SOUTItRN CALIFORNIA LOS ANGELES DEPT OF—ETC FIG q12
MULTIPROCESSOR ARCHITECTURES FOR CONCURRENT PROGRAMS. (U)
APR 76 P 8 HANSEN H00014—77—C—Ot1*

‘a.

me~e~

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __

END

O ~~ ~ 2.5
I. L “~~~~

___________ ~~

~ ~
~ j~j~2.O

IIH~UIH ‘ IIIIt~•~: ~~
4

M~CRJC OPY RESOLUTION TEST CF1~~T
N4flON~L 8U~EAU OF STAN DA RDS ~9A3 -?

•

. _

C.ntract
_ _

“~ / ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (‘
1_~ fL_ rL ___r~ J — — ,— J

FOR CCNCURRCNT PROGRA MS /
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ / 

7
- —-- ~~~~-~~~~- :‘~ ~~~J

~~, Per Brinch/Naneen !
• ——

Computer Science Department D D C
• Univers it y of Southern California

Las A ngeles , California ~OQO7 MAY 2 1979

JJ B Apr~~.~~~ 7S C

~bst This paper prapases a hierarchical multiprocessor
architecture far raai..- t ime programs written in a concurrent

~r qramniinq language. The use of prac~sses and ncnitars lea ds
to a multi~rocessar system in tihich each processor has a loca l

C-) stare dedicated to a single process. The processors share a
L~J common stare tha t contains the monitors. Ta avoid cancestian

in the common stare the processes and monitors are partit ioned
into subsystems tha t share a hierarchy cf common stores. The
math goal. is to develop a synthesis of an abstract. Language and
a computer architecture that match in an obvious ~aay .

Key ¶i~ords and Phrases: lanquage..directed. computer design ,- ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ -

multiprocessor architecture, hierarchical stares , r eal—time
applications, concurrent programming, processes, monitors

CR Categories: 4.2, 4.32, 6.2
-~-~~-------- ~~~~~~~~~~~~~~~~~~~~~

A+ 1~~t /C%I ‘7 ~ C0~ ~~~~~~~~ ~~~~, 
. C.,

~ec. 
4Ø~ 7~

This ear~c has been sup~ artad by the Of f i ce  of Naval Researon

under contract MR Q~~~~~
-5-. 0 ‘/1- C ‘/7 

‘--~
/ i.r pu~tic ~~~~~~ •

.~~~
• 
~~~h; ~~~

/) 1but~ n .ti un11~~t~~. -

-

79 1 3 16

/ .r j /

~/
1. Introduction I:~/ ~~~~~~~~

~~~~~~~~~~~~~~~~~ ~~~~~L J 1

This paper proposes tmc hierarchical 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

architectures f or reel—time applications mritten in an abstract
language f or concurrent programming.
Tb. proposal rests an the assumpt ion tha t simplicity,

reliability, and eff iciency are essential f or real-time
applications. Uiithout simplicit y one cannot expect to unde rstand
the purpos. and details of a large program. ~Mithaut reliability
one cannot seriously depend on it. And ieithaut efficiency .a
real~t ime progra m cannot keep pace mith its environment.

Alth ough efficienc y is important ‘a. mill not Let it ccmoromise
the v ital need for simplic ity. ~Uhere suc h a conf lict exists , ac
‘ai.U settle far a simple system tha t can handle ma ny (but not all)
real—time applicati ons .

These programming goals can be met by careful design of the
progra mming language, the compiler, and the computer architecture :

(1) Ta obtain simplicity real—time progra ms must be ~ir ittan in
an abstract language that supports modular programming.

(2) To make real—time programs reliable th. programming language
must permit extens ive compilation checks tha t ensure the intag:ity
of modules .

(3) To ma ke real—time programs efficient they must be
executed by a multiprocessor system in ~ahic h each processor is
dedicated to a singl. process.

(4) Ta make the language implementation straightfor~.ard the
multiprocessor architecture must support the language concepts
in an obvious ‘amy.

(5) To ma ke the multiprocessor inexpensive it must use
ivicroprocessor technology.

- - — - -

•
• 2

Initially, me looked at programming languages in which all
communication between concurrent processes takes place by
messages only. This approach seemed natural Far microprocessor
networks without common store modules, message systems with
completely deterministic input/output behavior have existed for
more than a decade. But a recent proposal has pointed out an

• occasional need F or nondetarministic process communication Ei].
S ince these ideas are still at a very early stage, me felt that
it woul d be sore appropr iate F or us to exper iment in only one
area at a time.

Now we do have several years of experience uiith the programming
language Concurrent Pascal that includes processes and monitors
[zJ . Sc as decided to lock f or a tsultiproceescr architecture tha t
supports a language of this type directly.

In any multiprocessor system , processes need to communicate to
cooperate on common tasks. each process uses some portion of the
transmission capacity of the communication lines (which may be
bus lines or common stores). As more processes are connected to

the same line , a point iS soon reached where that line becomes a
bottleneck.

So a key problem is to avoid congestion of the communication
lines. Ia do that one suet take advantage of the locality of
store references within a concurrent program. One nay, f or
example , observe the program during its execution to discover
patterns of stars references. Demand-paging systems and cache
stores are typical examples af this approach. Both require

complicated run~tia. mechanisms.
We mill, instead depend on the compiler to exploit the

Locality of references tha t is determined by the modularLty of
the programming language . Thi use of processes and monitors
naturally leads to a multiprocessor system in wh ich eacn processor

a local store dedicated to a singl. process and in which
ssve~al proosesors share a common store that contains the
monitors .

— --~~~-~~~ -- —•—- — -•- ----~- -•- •-—

~

- ••-••— -

~

— -.• — •--

3

Although performance measurements are scarce f or concurrent
programs preliminary estimates for Concurrent Pascal programs
suggest that each process refers to its own code and variables

• an order of magnitud. more of tan than it refers to the monitors .
Th. simplest architecture proposed here theref ore consists of
about 10 processors each with their own store and sharing a
single common stare.

For systems with up to 100 processors we propose a block-
structured programming language that maps directly onto a

• multiprocessor architecture with a hierarchy of common stores.

~iLe mould expect t hat mere general multiprocessor systems ,
such as the Cm , can be configurad to handle the special cases
presented here [3]. Our purpose , however , is to take
F ull advantage of th. characteristics of a concurrent programming

language and develop a synthesis of a language and an architecture
that match in an obvious way. This viewpctht leads to many
simplifying assumptions that should have a benef icial effect on
the cost and reliability of the hardware. It is cur vLcw that
the search f or utter simplicity and full generality are
complimentary (but often, conflicting) research goals. ~oth
approaches should be triad before any firm conclusions can be
made about their merits.

2. Programming concepts
~~~ - - -—

mast complex systems in nature are organized hierareh~cally
as subsystems which in turn may be further subdivided [4]. In
such systems , each subsystem spends mast of its time performing
an autonomous function and uses much Lass time interacting with
a few other subsystems. The exact timing of events
in each subsystem is independent of the exact timing of other
subsys’~eme . In the short run the behavior of each subsystem is
indeoendent of other eub syetams . In the long run a subsystem is
influenced only by the average behavior of other subsystems.

I



• 4

In the design of a real—time computer system one can take
advantage of the hierarchi cal nature of the world by identifying
subtasks that are nearl y autonomous and which are loosely
connected to one another . The grea t adv~ntage of such systems is
tha t they can be designed , tested , and tuned piecemeal by
focussing th. attention on one subsystem at a time.

A reaj -.tj ie. application will be controlled by a concur rent
program that runs an a multiprocessor system dedicated to tha t
application. The subtaske mill, be performed by a fixed number
of asynchronous processes that are executad simultaneously. The
processes communicate by scans of a fixed number of mon~tcrs

Figure 1 shams an example of tmc processes tha t communicate by
means of a buffer monitor. The arrows indicate tha t these processes
have access to that monitor.

buffer monitor’

sander process receiver process

Fig. 1. A hierarchical subsystem

The following shows ham the buffer monitor can be programmed:



• _ _____________________________________

• 5

rncnitai’ buffer
var slot s message ; fuil s boalean

• 3?OC!dure ssnd (mi message)
• when not full s slat:2 m; full :~ true end

procedure receive ( var a: message )
- 
- J— —

when full s CS z slat e fUllt2 false end
—

begin F Uli.:2 false end

The monitor defines a common data structure consisting of a
message slot and a boolsan indica t ing whether or n~t ~t is ful l .
The monitor also def ines two operations, send and receive , on
the buffer and as, init ial, statement that makes ~,t empty to begin
with .
Processes can perform the send and receive operat~cns on the

buffer but cannot access the data structure directly. This is
guaranteed by the compiler.

‘The ocerations on a monitor take place strictly one at a time .
ghe n a process performs a monitor operation the computer will
delay further operations on the same monitor until the current
operation is fin ished. These short —ter m dela ys ar, implic it ~n
the monitor concept.

A monitor operation may, however , postpon. its own camcletion
until the common variables satisfy a certain condition. These
me~ium-term delays ar e expr essed irs the language by means of a
statement of the form

when boclean expression : statesrent end

This dela ys the execution of the next statement until a
baclean expression becomes true (as the result of another
monitor operation).

• •~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • •~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _ _ _



T ~~~~~~~~~~~~~~

5

ithen a monitor operation delays itself explicitly another
monitor operation can take place. The delayed operation is
resumed when its precondition is satisf ied and no other operation
is in progress.

The boolun expressions used • far synchronization are mare
elegant , but less efficient than the pueue var iables used in

Concurrent Pascal [2, 8]. The law cost of microprocessor
technology should, however , make the more elegant concept the
obv ious choice.

The exa mple below shams twa concurrent processes that
communicate by means of the monitor buffer :

process sender-
‘---I--

var x x  message
cycle pr odu cs(x) ; b uffer.s end (x) end

process receiver
var yt message
cycl. buffer .r.caive(y); ccnsume(y) end

Cach process def ines a local data structure consisting of a
single message and a cyclical statement that operates on it.
The var iables of one process are inaccessible to other
processes . This too is guaranteed by the compiler . The checking
of access rights during compilation makes a hardwere protection
system unnecessary [2] .

The processes are loosely connected if they spend float of
their’ time operating on their local data structures and very
little time an exchanging data.. Loosely coupled processes spend
only a fraction of the ir time within monitors.

A monitor can also be used to control the access to common
— resources , such as a peripheral dev ice. The simplest example

of a resource scheduler is shown below:

_ _ _ _ _ _ _ _ _ _ _ _  

—

~~~~~~~~~--~~~~~


r~- — ~~ ~~

monitor resource
~~~~~~~ L

free: baclean

~~~
cedy

~~
request

• when free : free :~ false end

• procedure release
begin fr eexa true end

begin ?re e:= true end
J•~~

_I, ~ ~~~

The resource is f ree to begin with. A request operation delays
the calling process until the resource is free and makes it

• available exclusively far that process. A release operat~an makes
the resou rce free aga in.

A study of three model operat ing systems written in Concurrent
Pascal shows that mast monitors either serve as buffers or as
schedulers [2]

In this discussion the details of the programming language are
not important . ~e mill just assume that a concurrent program
consists of a fixed set of monitors ~t follamed by a f ixed set of
processes P1 , P2 , ... ,. Prr. The monitors are initialized before
the processes are executed.

3, Single—processor system
- JL ~~~~~~~~~~~ J~~~ ~~~1tfl~~~ -

Me will describe three computer architectures far a
concurrent programming language. These computers siLl. use very
similar metho ds of store allocation, but mill gradually increase
the degree of multiprocessin g from I to 10 and , f ina l ly , to 100.

A single...processcr system that has already been implemented
is described first. Its purpose is to introduce the storage
allocation scheme and to characterize the performance of a
single processor programmed in Concurrent Pascal,.

On a singl, processor with a single store the code and
variables of all. monitors cars be stored in a single segment fl .
The code and variables of each process can be stared in single
segments P1 , P2, ... , Pn (F ig. 2).

i i

—

~~~~~~~~~~~~~~

8

0t

P1

P2 common store

•..

PU 
-

processor

Fig. 2 • Single processor systa w

The compiler ensures that procaesas~ only commun icats by means
of mon itors. So each process only needs access to a subset of
the wha l.a store. This is important on a processor with a short
ward length (15 bits.) . It makes it possible to extend the stars
beyond the addressing Limit by means of an address map that
enables each process to see a virtual stare consisting of the
common segment Ifi and its local segment Pi. This corresponds
closely to the implementation of Concurrent Pascal on the

POP 11/45 computer [2J.

On a single processor concurrent processes are simulated by means
of clock interrupts. A process has exclusive access to tiie common
segment as long as it performs a monitor operation without
delaying itself • This is ensured by dime bl~ng clock interrupts
temporar ily. Processes that are ready to continue or are waLtino
fa~ conditions to be satisf ied are rescheduled periodically in
round—robin order, This is the classical technique of processor
multiplexing.
The Concurrent Pascal compiler generates virtual code

~~~ a stack machine . This virtual code is interpreted by a
machine program of I K wards on the POP 11/45.

-~~~~~~~~~~~~~~~~~~~~~~~ -—-~~~~~~~~~~~~~~~~~~~

TT1~TT~~~~~~~~~ ~~~~

9

So far, three model operating systems have been written in
Concurrent Pascal. The largest one is the Solo system which
requires a stare of 39 K words [2]. The monitors occupy a
common segment of about 4 K wards while the process segments vary
from 200 wards to 20 K words each,

One of our main concerns will be to avoid congestion of the
common stares in a multiprocessor system. Ta illustrate the
problem u will. consider text processing as an example that
involves a fair amount of data transmission between processes
and a minimal amount of data processing. The processing of a
stream of input data is common in real—time applications (although

• the data items may represent measurements rather than characters).
In the Solo system, the internal speed of text processing is

about 1000 — 3000 char/sec f or lexical, analysis and Line—oriented
editing. In performing these tasks the system spends less tha n 10
per cent of its time on monitor operations. So the processes are
certainly loosely connected.

4. A two—level multiprocessor
~~~~~~~~~~~~~~~~~ r.~~f

Fiqur~~~3 shows a proposed ruulti~rccessar sy~tam with n
microprocessors and ii . i store modules. Each processor is
dedicated to the execution of a single process. When a process
delays itself its processor is also idle. A processor has a local
store that holds the code and variables of a single process. The

processors are connected to a single common stare that holds the
code and variables of all monitors.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ ~~~~~~~~ - - ~~~~~~~~ -- - ~~~~~~ —~~~~~~


_ _

10

I ~ 1 common store (monitors)

I _I 1
P1 f P2 ... [

~
iacai. store (processes)

processors

Fig. 1. A tixc4evel multiprocessor

The virtual address space of a single processor consists of its
local stare and the common stare. A processor can access its own
store directly (but no other processor can). Access to the common
store is controlled by a round—robin arbiter. Init ially, we will
assume that a processor has exclusive access to th~ common stor e
for the duration of a monitor opera t ion (or until, the operation
delays itself). This is achieved by request and release
micrainstructions an the common arbiter. From the point of view
of a processor , its local store and the common stare operate at
the same speed (say, 3 psac/wcrd).

A peripheral device can be attached either to the local stare
of a single processor or to the common stare. A processor remains
idle during an input/output operation. This makes input/output
appear to be an indivisible operation and eliminates the need
far interrupts.

Fast response to ext ernal events is guaranta~d by using
dedicated processors tha t respond immediately to these events.
As long as the common stare is used primarily f or internal
communication (but is not a c:Ltical factor in the immediate
response to real—time events) it is quite acceptable that it
is monopolized by a single processor dur tng a monitor operation.
Later we will relax things a bit and permit operations on
different monitors to take place simultaneously,

—~~~~~~~~~~~ .—-—~~-

11

To make an evaluation of such a system we will assume tha t the
processor and stare technology is comparable to that of the L5I
11 microcomputers. If’ the virtual code generated by the compiler
must be executed by an interpreter written in machine code then
each processor will be 3 times slower than the POP 11/45 [s]. 3ut ,
if the virtual code is executed directly by sicroprograms , then
it should be slightly faster than the interpreted code on the
PDP 11/45. We will assume the latter and use the known perf ormance
figures ? or Concurrent Pascal statements [2] reduce d somewhat to
take the absence of processor multiplexing into account ,
The send and receive operations on the buffer def ined earlier

will then take about (7~ + 3c) psec each, where c ~s the number
of characters per message. S~ it will take 0.7 rnsac to transmit
a block of 100 charactar9 from one process to another. If ’ the
common store is. used only f or transmitting blacks of thiz size
by means of monitors then it has a capacity of’ 135,000 char/sec.
To evaluate a case where the total traffic through the commcn

store ii high ac assume t hat all the processors operate ci~
c~,arsctars at the highest possible rate, Consider therefore a
machine with 10 processors and assume that each processor has a
throughput of 3000 char/sec — a total throughput of 30,300
char/sec. This means tha t each processor uses the common stare
only 2 per cent of the time while all of thee use it ror only
20 per cent of the time. It is this strong localization of
references ta the local stores which makes the two— level syst em
practical.

With a utilization factor of only 0.2 each processor will an
the average immediately get access to the common stare when it
needs it [Sj. Sthcs the common store only comprises 9 per cent
of the whale stare, its lam utii.~zatian does not matter.

In practice, it seems unlikely that an acplica t icn will make

~.t possible ? or 10 processors to operate cont inuously without
idle periods. Sc the common stare shoul d csrtaLniy h~v~
sufficient speed for such a system.

~~
—

~~~~
.-

~~
--—-- -

~~
- 

___

12

In some applications processes might interact mare often than
in the previous example. In that case , it may be necessary to
reduce the number of processes connected to a single common store
somewhat and use a hierarchy of common stores as described later.
However, if each process spends more than 10 per cent of its t ime
in a common stare, then we have a t iqht i.y coucled system which
the machine was not built ta handle.

Identical. processes that operate in unison on common arrays
is an important example of tight coupling. Another example is
a pipeline that perf orms very fast operations an a stream of
small data items. T hese special applications require a different
kind of’ computer architecture which say be highly specialized
if extreme speed is required [iaj. This paper concentrates on
computer architectures f or a wide variety of applications in
which different processes . operate asynchronously at medium
speeds. It may well be. fea sible to handle fast real-time
applications by connecting a general—purpose multiprocessor to
special-purpose processors for data reduction or synchronous
computation.

5. The overhea d of synchronization
~~~~~~~w~~wL - — -~~~~~~~~~ r ~~~~~~~~~ - 

—

So far ac have ignored the problem of the periodic evaluation
of a baclean expression B within a delayed monitor opera t ion.
When a process attempts ta execute the synchronization
statement

when B : S end

the process is in the middle of a monitor’ oparatian~and has
exclusive access to the common store. The code generated f or
the when statement will therefore be equivalent to the following
program piece

while not B: release; request end-
~~~~~~~~~~ —

S

This code sequence evaluates the boolean expression , As long as
it is false the processor releases the common stcre aga in and



__

13

wa its f or another turn. When another process has completed a
monitor operation that makes the expression true, the statement
S will be executed. The request and release operations refer to
the arbiter that. gives a processor exclusive access to the

• common store.
Typical synchronizing conditions , such as

not fuil  length < wa x user in turn

will take 30—100 peso each t ime they are reevaluated.
Prev iously, we considered the extreme case in which 10

• processors acre running continously without delay. We will, now
examine the other extreme case in which 9 processes are waiting
f or different condit ions to be satisfied, When the last process
executes a send. operation on a buffer it becomes possible far
one of the waitin g processes to complete a receive operation.
In tha t case , the send and receive operations can now both be
delaye.d by the reevaluation of 8—9 conditions of 100 psec each.
This Lncreases the response time of the ~ntaracticn from 0.7 tà
2.4 mccc in the worst case, However, at the processing rate of
3000 char/eec, the exchange of a block of 100 characters only
takes place every 33 nsec. The only effect of the 2.4 mccc is
to slow the processes dawn by 7 per cent .

Since the arbiter interleaves the reevaluation of conditions
with new monitor calls in round—robin order, the amount of
reevaluation is automatically reduced shin the t r a f f i c  intensity
increases.

Nevertheless, the reevaluation still has several undesirable
consecuences: ( 1) it sakes the coupling of interactLng processes
unnecessarily tight at times ; (2) it slows all other monitor
operations dawn ; and (3) it farces the programmer to use only
the simplest possible conditions (rather than the most natural
ones). It would therefore be desirable to limit the eff~ct~ of
reevaluation. 

——--
~~~~~~ —,~~- -~~~-~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


• 14

A ra dical (but expensive) solution to the problem of
reevaluation is to use a common store that is 10 times faster
than a local store and use local buffer registers to interleave
references to single war ds in the common stare . If we restrict
the machine to 10 processors , the common store will always
appear to be as fast as the local store of each processor. Sc
the effect of reevaluation disappears.

Since se are now interleaving operations on different monitors
simu ltaneously, se need a separate arbiter for each monitor. each
arbiter will be represented by a pate variable ii, the common
store. Thu lack and unlock operations an a gate’ variable will be
perf creed by eicraprograrns. These operations are made indivisible
by means of request and release operations err the single hardware
arbiter :

lock(gate) : request.
while gate ~ 0: release; request end.r~ mj~ ____

gate22 U
release

unlock(gata) : request; gata: 1; release

I? the common and local stores have the same access times the
f allowing scheme will limit the overhead of synchronization. each
monitor is now represented by two common variables, called the
qat. and the clock. The gate variable controls arbitration by means
of lock and unlock operations as before, The clack is Lncremented
cyclically by one every time an operation has changed the monitor
variables. The clock need only be ~ncre~sented at the beginning of
each when statement and at the end of each monitor procedure.
Instead of reevaluating a complicated boalean expression ~

repeatedly a process can now simply look at the monitor clock
until it changes its value. Only then is it necessary to evaluate
the boolean expression again. This leads to the following cod.
sequence for a when statement :

~

- , - - -- - • . -~ .— .- - ---- --- -. -•~~~~~~~ - - - . - - ----— — -- — ~~~ —.---• --~- •‘— --.-- - .--——. —.~~-~~~. - ~~~.— --- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _.4lil

_ _ _ _

— ___

15

thcrement(clcck)
- while not 8:

unlack(gata)
awaitchenge(clack)
lcck(gate)

end
S

A delayed process stores the current value of the clock in a
local register and compares it with the clock variable every 100
asic. Sc the awaitchanqe instruction is microprogrammed as
foUces

register sa clock
while register a clock: idla(100) end

If we assume that load and store operations on the common store
take place one at a time (thanks to the har dware arbi ter) , then
it is not necessary f or a delayed process to lock the gate variable
Just to lack at the clock value. Consequently, the idling and
reexamination of the clock variable only requires one cycle cf the
common store (or 3 peec) every 100 usec.

As long as the state of a monitor is unchanged a delayed process
can at most consume 3 per cant of the common store cycles. The
reevaluation of a synchronizing condition B only takes place when
another process changes the state of a monitor (and its clock). In
the text processing example considered earl~ar an expression is
evaluated in ICC Jasec every 33 mccc — an overhead of only 0.3 per
cent. IJ~ithin certain limits the overhead of synchronization is now
influenCed very little by the complexity of the expressions used.
The existence of the gate and clock variables is hidden from the
programmer.

The interleaving of common store references also makes it
practical to connect a small, number of shared peripherals to the
common store (although we expect tha t most devices will be
connected to the local store of a inicroproceescr).

I
, - - -

fl i~~
16

6, A hierarchical isultiptacussor
r ~~r r LJ1~~~~~~~ ~~~ ~~~~

Far rsal~t~me applications that require mare than 10
processors me propose a block-atzuctured programming language

in which subsets of processes and monitors can be grouped into
a hierarchy af subsystems .

A concurrent progra m now consists of nested subsystems (Fig. 4~.
each subsystem in turn conta ins a set of monitors and processes .
A process can us. only those monitors tha t an, within its
own subsyste. and within the subsystems that enclose it. In
figure 4 the outer subsystem consists of the set of monitors ~O.
Th. first inner subsystem consists of the set of monitors ~i
and the processes Pa? , P2, .. , Pm . These processes can use t~ie
local monitors lIP? and the globa l monitors 110. Similarly, a
process Qi in the other inner subsystem can use its local
monitors M2 and the global monitors MO. But a process within
one of the inner - subsystems cannot use a monitor within the
other inner subsystem.

I~?0

Ml
P1.. .

• Pm

an

Fig. 4, A hierarchy of subsystems

A ~~~~~~~~~~~~~~~~~~ .

L. - ---
~ ~

- -~~ — —
~~~

—.---—
~~~~

--- - --
~~

—-———-— — - k. ‘ ‘
~~~

17

U~. assume that each subsystem uses its own monitors an order of
magnitude sore fre quently than it uses the globa l monit ors ,

Programs written in such a language can be executed by a
multipracassar sith.s hierarchy of common stares (Fig. 5).

I “°I common store

F- I
111 1 ~ f M2 common stores

I I
F~I1 ~~

“ I~1 [
~ I ••

~~~ 
[]
~

local stares

a processors

Fig . 5, A hierarchical multiprocessor

Although the horizontal lines can be interpreted as bus lines,
fig. 5 is ~~~ a dia gram of the connections of Pm r dmar e modules to
bus lines. It is a diagram at the access rights of processors to
stare modules,
The virtual star. of each processor consists of its local stare

and all, the common stores that Lie on a path from the procssaar
to the root of the storag. tree. Far process P1 the common stores
are Ml and MO. Mhen P1 refers to MO it has exclus ive access to
bath MI and MO . The hierarchical usage of arbiters prevents same
deadlocks [5].
Although the multiprocessor in Fig. 5 seems to be tailored to

the program sketched in Fig . 4, it should really be viewe d as a
general-purpose machine that can execute any concurrent program

—-

~

_-—

~

-

~

__ --

~

- - ~-~~ •~~~~~~~~~ - -~~~~~

r ~~~~
_

18

with one or tea subsystems which in turn are divided into no more
than 10 processes each.

Fo~ a 16 bit processor it seems reasonable to have a three~ leve l
• machine where the common stares contain 8 K words each and the

local stares conta in 16 K wards each. Such a machine could
include a total of 100 processors and 1.6 III words. A 32 bit
processor system could have ware processors and more store levels.
It seems likely, however , that special-purpose machines are
needed to utilize a such higher degree of concurrenc y
efficiently.

7. Final remarks -
• LrL Lr- .

The recent reduction of hardware costs f or microprocessors twill
scan put great pressure an software designers to reduce their costs
as well . Th. only way to do that is to writs all software in
abstract programming languages that hide the irrelevant details of
computers. Ta make an abstract language effLcient enough for
real—time applications one must design a computer architecture that
supports the language features directly.

Ten years ago this approach led to the development of stack
machines f or sequentia l programming languages. This paper suggests
tha t a multiprocessor system with hierarchical storage will
support a concurrent programming language with processes and
monitors efficiently, Machines with stacks and tree—structured
storage exploit the scope rules of the programming language to
share storage efficiently among program modules .
The paper describes a reasonably simple way of limiting the

reevaluation of synchronizing expressions within monitc~s. It
also proposes a black~etructured language concept (caLled a
subsystem) which enables the programmer to partition the data
structures of a concurrent program hierarchically among
asynchronous processes.

It needs to be stressed aga in tha t this paper is only a
proposal f or a multiprocessor system that has not been built
yet.

- - — — — — -~~~~~~~~~~ •——
i_
~

_ • — - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~

r~ ~~

- _

19

Acknowledgement
d

This work has been supported by the Office of Naval R esearch
under contract NR049—415. It is a pleasur. to acknow ledge the
helpful comments of Wolfgang Franzen , Charles Hayden , and
J~rqen Staunstzup.

Ref ereness
-

1, scare , C.A .R., Communicat ing sequential processes.
Ta appear in Comm. ACM.

2. Sr-inch Ha nsen , P ., The architecture of concurrent aro~rams,Prsn t ics..Ha 13., ~nglewccd Cliffs, NJ , July 1977.
3. Swan, R..J., at al., Cm — a modular multi-micropracassar.*rt ~s Com~utsr Conference 1977, 638~44,

4. Pattee , l ,H , (ed.), Hierarchy theory — The hallenoe of
comd ex systems, George Srazi.lJ,er, New ~1ark, ~4Y, 1973,

5, Sr-inch Hansen, 2,, Casratina system crirecjales.
Prentica—1Ial]., ~nqi,secod Cli#fs, 4.J, July 1973.

s. Hasre , C.A .R,, Monitors: an operating system structur ing
concept. Comm. AC~ 17, 10 (Oct. 1974), 549..57,

7 , Hoare , C.A .R ., Towards a theory of parallel programming.
In Ocer-atinc syetsme tachni~uas, Academic Press, New Yo~ ic ,
NY , 1973.

8. 8rirsch Hansen, P ., Structured multiprogramming,Comm. AC1~~15, 7 (July 1972), 574—78.
9. Sr-inch Hansen , 2,, and Hayden , C. Microcomouter evaluation,Computer Science Department , University of SautnernCalifornia, Los Angeles , California, Jan, 1978,

10. S tone , 4.5. (ad.), tntrãdu~~ Làn to comauter architecture.
Science Research A ssociates , Chicago , ILL, , 1975.

__ -•-• - ~~~~~~— • --

r~~~~
-

~~~~~~~~~ 

_ _  __

20

Appen dix, Lanpuage syntax
- 

~~~~~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~

This is an outline of the syntax of a concurrent progra mming
languag. with nested subsysteme containing monitors and processes,

prapram

~~L systam ~~

-

~~~~~ system -

~ ~~~~,. _ 
~~~~L_

- —e” canat m” id ’..’m. z —,i canstant

~~~~~~ypa —~ Id ~~ type

—~~manitar -
~~~~~ Id —

~~~~~ block

—~~ praces s -~~id— ~~black

-
~~~ ~~g—~ —~~systasw

block

1 ~~ !3 A
T

~~crocedure
-

~~~~~~~~ Id —mi’ parameters —~~~~ block
—u” etatament —~~~~

L _ _  1 
_  _ _


