AD=AD78 706 UNIVERSITY OF SOUTHERN CALIFORNIA LOS ANGELES DEPT OF=-=ETC F/6 9/2
JOYCE. A LANGUAGE FOR COMPUTER NETWORKS. (U)
NOV 79 P BRINCH HANSEN NOOOIQ-T?-C-O?l&

UNCLASSIFIED

END
LMD
| 8@

7
O, /?) N
) / m
{: / / od DEC 15&73__
= P S S e R
O N
S
=~ JOYCE
Y

A LANGUAGE FOR COMPUTER NETWORKS

PER BRINCH HANSEN

NOVEMBER 1979
>
O
(@

ILE

Computer Science Department §
University of Southern California |
f
s

i il b andieiadind b pedis 4 unh o

A shabadin . snnbe dualh Do el o al. . de s

SECURITY CLASSIFITAYION GF Tw!S PAGE ‘When Data Fntered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE e READ INSTRUCTIONS
! REPORT NUMBER 2 GOVY ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER

¢ TITLE (and Subtitle) / /;1 ‘8. TYPE OF REPORT & PERIOD COVERED
JOYCF e A LANGUAGE FOR COMPUTER [[“/] ‘Technical Repart,
> - 5 g
v - r s ' 1 e J
w ¢ Y 6. PERFORMING ORG. REPORT NUMBER
85 [T ’
T AGINORY) T CONTRACT OR GRANT NUMBER(e)
T fPrinch fansen /C) N00014-77-C-0714
9 PERFORMING ORGANIZAYION NAME AND ADDRESS t0. ::gil.nu ERLEMENYI DROBJEE'tl:Y. TASK
Computer Science Department L
University of Southern California NR048-647

l.os Angeles, California 90007

CONTROLLING OFFICE NAME AND ADDRESS N 12. REPORY DATE

Office of Naval Research //J November 1979 /
Arlington, Virginia 22217 e RUM LT T —
41 .

T4 MONITORING AGENCY NAME 8 ADDRESS(If dilferent trom Controlling Otlice) | 8. SECURITY CLASS. (of thie report)

A

. A 2 Unclassified
ZaL7%

Sa. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

Not applicable

16

. DISTRIBUTION STATEMENT (of thia Report)

Unlimited . - :
| [Tus document toa teew opproved
for public rolraws and =cle; i3
i : {

ited.

17.

DISTRIBUTION STATEMENT (of the abatract entered in Block 20, il dilferent from Report)

18.

SUPPLEMENTARY NOTES

19

1

KEY WORDS (Continue on reverse side if necessary and identify by block number)

Joyce, Programming Language, Distributed Processes

20

is

This regort defines an experimental programming language called Joyce which

without common storage. The language includes distributed processes which
communicate and synchronize themselves by means of procedure calls and
guarded regions. he present version of the language is implemented on a
PDP 11 single-processor system. The compiler is not ilab istribu-
tion.

ABSTRACT (Continue on reverae aide ({ necessary and identity by block number)

intended for real-time applications controlled by microcomputer networks

fk\

DD ,"S%™, 1473 E0ITION OF 1 NOV 6515 OBSOLETE

JAN 73
S/N 0102-014-6601

/7] SECURITY CLASSIFICATION OF THIS PAGE (When Dera &nigmi:

N / .

! E———

JOYCE - A LANGUAGE FOR COMPUTER NETWORKS

Per Brinch Hansen

Computer Science Department
University of Southern California
Los Angeles, California 9¢gg7

November 1979

Abstract

This report defines an experimental programming language
called Joyce which is intended for real-time applications
controlled by microcomputer networks without common Storage.
The language includes distributed processes which
communicate and synchronize themselves by means of procedure
calls and guarded regions. The present version of the
language is implemented on a PDP 11 single-processor system.
The compiler is not available for distribution.

The development of Joyce has been supported by the Office of
Naval Research under contract NR@48-647.

| Heceliio

|
——emme -
NIIS Goadl L4
i\ DDC TAB -
; . \;:A.-ncu.xct‘d {_]
Copyright (:) 1979 Per Brinch Hansen ‘ {:fjvicntian-— PRSI

o e

| BY i

| pistribidl

i ——

~

o <]
.

10.

CONTENTS
INTRODUCTION 1
SYNTAX NOTATION 2
VOCABULARY 3
3.1. Character set 3
3.2. Symbols 3
Fae Names 4
BLOCKS 4
4.1. Declarations &
4.2. Statement lists 6
TYPES 6
5.1. Standard types 7
5.2. Process types 7
5.3. Type declarations
5.4. Record types 8
5.5. Array types 9
CONSTANTS 9
6l Numerals 10
6.2 Character constants 10
6.3 String constants
6.4. Constant declarations 11
RANGES L1
VARTIABLES g
8.1. Variable declarations 12
8.2. Variable selection 12
8.3. Whole variables 12
8.4. Field variables 13
8.5, Indexed variables 13
8.6. Type transfers 14 !
8.7. Variable retrieval 14
EXPRESS TONS 14 B
9.1. Type compatibility 16 , Accession For |
9.2. Type transfers 16 .Rfls ChART J
OPERATORS 17 DOC TAB
14.1. Relational operators 17 oo
10.2. Integer operators 18 tnsinounced
10.3. Boolean operators 19 Juastifieation

R e S T

kY.

12

13,
14.
15,
16.

CONTENTS

STATEMENTS 19

11.1. Skip statements 19
11.2. Assignments 19

11.3. Procedure calls 20
11.4. Create statements 21
11.5. Start statements 22
11.6. Conditional statements 22
13 i If statements 23
11.8. While statements 23
11.9. When statements 24
11.10. Cycle statements 24
PROCEDURES 24

12.1. Parameters 25

12.2. Local variables 25
12.3. Standard procedures 26
PROCESSES 26

PROGRAMS 29

SYNTAX SUMMARY 30

STORAGE AND SPEED 31
ACKNOWLEDGEMENT 32
REFERENCES 32

INDEX 33

W-. - '

1. INTRODUCTION

This report defines an experimental programming language
called Joyce which is intended for real-time applications
controlled by microcomputer networks without common storage.

It is based on the concurrent programming concept
distributed processes fl1] which unifies the monitor and
process concepts 2 3] and provides a structured

alternative to message communication in networks.

A Joyce program consists of a fixed number of concurrent
processes that are started initially and exist forever. Each
process can access i{ts own variables only. There are no
common variables.

A process can call procedures defined within other
processes. These procedures are executed when the other
processes are waiting for some conditions to become true.
This is the only form of process communication.

Processes are synchronized by means of guarded regions 14,
51

The data types and sequential statements in Joyce are
borrowed from the programming language Pascal 6]. The data
types are integers, booleans, characters, arrays, records,
and process types. Processes and procedures can be nested
arbitrarily and activated recursively.

In a microcomputer network without common storage each
processor can be dedicated to the execution of a single
process. When a process 1is waiting for some condition to
become true then its processor 1is also waiting until a
procedure call from another process makes this condition
true. Parameter passing between processes can be implemented
by input/output between separate stores. It is possible that
such a network will require a restricted subset of Joyce.

The present version of the language is implemented on a
PDP 11 microcomputer. The 1language 1includes several
machine-dependent features which are necessary to control
peripherals on the PDP 1l. Input/output is controlled by
direct manipulation of device registers without the wuse of
interrupts. The pur pose of the single-processor
implementation is to discover the algorithmic advantages and
limitations of distributed processes in concurrent programs.
Since the language is experimental in its present form no
attempt has been made to distinguish between its abstract
and machine-dependent parts. The compiler is not available
for distribution.

-l

-

2. Syntax Notation 2

2. SYNTAX NOTATION

The programming language consists of three parts: (1) a
vocabulary of words and special characters, called symbols;
(2) syntactic rules that define sequences of symbols, called
sencences; and (3) semantic rules that define the meaning of
sencences.

Sentences can be combined to form other sentences. A
program is a sentence that {s not contained in any other
sentence.,

A syntactic entity {is a class of sencences with common
properties that will be defined together. The definition of
a syntactic entity has the form

% S: E
where S 1s the name of the entity while E is a syntactic
expression that defines the class of sencences that S stands
for. The name S consists of one or more words. The first
word begins with an upper case letter followed by lower case
letters only. Any followinaga words consist of lower case
letters only.

A syntax expression has the form

TL § T2 § s # 3n
which stands for the wunion of the alternative sencences
defined by the syntax terms T1, T2, ..., Tn.

Each syntax term has the form

Bl B2 .:. En
which stands for concatenation of the sencences defined by
the syntax factors Fl, F2, ..., PFn.

Each syntax factor is one of the following:

(1) A symbol stands for itself (see 3.2).

(2) The name of a syntactic entity S stands for the

sencences defined by S.

(3) A factor [E) stands for Empty # E (where F is a syntax

expression).

(4) A factor [E]l* stands for Empty # E # EE & ...

Occurrences of the symbols %, [, 1, * in sencences are
denoted Number sign, Left bracket, Right bracket, Asterisk
fn the syntax expressions.

This syntax notation is a variant of the Backus-Naur form
(71.

Each sencence defined by a syntactic entity is constructed
by choosing one of the terms of the syntax expression and
replacing each of 1its factors by one of the symbols (or
sencences) which it stands for. If a factor includes other
expressions or refers to other syntactic entities by name
the sencence construction must be done recursively.

PSSR -

- ——

-

3. Vocabulary 3

3. VOCABULARY

Each sencence in the langquage is a finite sequence of
symbols chosen from a finite vocabulary. The symbols are
character sequences.

3.1. Character set

8 Character: Graphic # New line

L Gragﬁlg: Letter % Digit % Special character # Space
Bletter: adbdchabenrlfigthiit jiksld
m&ntodtptgtr¥sttdustviwihxity?dz

Digit: @ # 1 & 2 ¢ 3

Special character: "
: ¥ ; ¥ ¥ =% > # Numbe
Right bracket # Asterisk

6 % 7
) R+ % , - % . %/ H
ign # Left bracket #

* ax

Characters are used to form symbols (see 3.2).

The character set may be arbitrarily extended. In
particular, the 1letters may be represented in both upper
case and lower case with different fonts (roman, italic, or
boldface). These different representations of the same
letters are equivalent when the letter is part of a word
symbol (see 3.2) or a name (see 3.3).

3.2. Symbols

Symbol: Special symbol # Word symbol # Name # Numeral &
Character constant # String constant # Symbol Comment

Special symbol: + # - # / # = # O 4 < <=4 > % >= §
s= ¥ (®#)Y F . ¥ . % : % : % .. ¥ Left bracket %
Right bracket # Asterisk

Word symbol: and ¥ array # begin # const % create
cycle # do # else ¥ end # If ¥ not ¥ of &% or ¥
procedure # process ¥ record % skip # space # start #
type # val # var & when # while

Comment: Space ¥ New line

~ "Any sequence of characters without gquotes"

A symbol denotes a primitive concept of the language. It
is either a special symbol, a word symbol, a name (see 3.3),
a numeral (see f.1), a character constant (see K.2), or a
string constant (see 6.3).

The spccial symbols and the word symbols have fixed
meanings. In this report the word symbols are shown in
italics (see 3.1).

Any symbol followed by a sequence of comments stands for
the symbol itself. Two adjacent word symbols or names must
be separated by at least one comment.

N

3.3. Names A

3.3. Names

Name: Letter [Letter # Digit 1%
Standard name: boolean # char # false # integer
true # write

A name denotes either a constant (see 6.4), a data type
(see 5.3), a record field (see 5.4), a variable (see 8.1), a
procedure (see 12), a parameter (see 12.1), or a process
module (see 13).

In this report names are shown in italics when they occur
in syntax expressions and in roman type when they are used
in examples (see 3.1).

The standard names have predefined meanings. The meanings
of all other names must be defined by declarations (see
4.1). ¢

The word symbols (see 3.2) cannot be used as names.

Examples:
char
i
producer

Block: [Declaration 1* Body
anx: begin Statement list end

A program consists of entities called blocks. Each block
consists of declarations (see 4.1) that define named
entities and a body that defines operations on these
entities by means of a statement list (see 4.2).

Blocks may contain other blocks. If a block contains
another block, the blocks are said to be nested and the
latter is called an inner block of the former.

A program (see 14) is a block that is not contained in any
other block. The inner blocks of a program are parts of
procedures (see 12) and process modules (see 13),

The process of following the text of a block and
performing the operations defined by the body is called the
execution of the block. The person or device that performs
the execution is called a processor.

The execution of a block creates the entities defined by
the declarations and executes the body. The execution of the
body ends within a finite time (unless it fails or cycles).

The execution fails if the processor detects a meaningless
operation. The execution cycles if it continues forever.

N | S

n

4.1. Declarations

The entities declared within a block disappear again when
the execution of the block ends or fails.

Example:
const midnight = 14408 "minutes®
var due: integer

begin due:= (time + minutes) mod midnight;
when time = due do skip end
t’r\\l.

4.1. Declarations
¢ Declaration: cons
— v
1 <

é t Constant list # type Type list #
var Varlable 1is

t & Procedure #% Process module

Declarations introduce names (see 3.3) to denote constants
(see 6.4), data types (see 5.3), fields (see 5.4), variables
(see 8.1), procedures (see 12), parameters (see 12,1}, or
process modules (see 13).

With the exception of the standard names (see 3,3), all
names must be introduced by declarations before they are
used in the program text. The standard names are considered
to be predeclared at the beginning of a program.

That part of the program text in which a name can be used
with a single meaning is calied the scope of a name. The
name is said to be wvalid within 1its scope. The scope
generally extends from the declaration of the name to the
end of the block in which the declaration appears. This
block is known as the origin of the name.

A name is said to be local to its origin and global to the
inner blocks that are contained in its scope. The local and
qlobal names that are valid within a block must all be
different., A name can, however, be declared with different
meanings in blocks that are not nested.

The general scope rules are modified in three cases:

(1) A field name of a record type 1is wvalid within the
scope of the record type, but only when it is used to select
field wvariables. The field names of a record type must all
be different. The names can be redeclared outside the record
type (see 5.4).

(2) A procedure name, which is local to a process module,
is also valid within the scope of the process module, but
only when it is used in process calls (see 11.13).

(3) The scope of a variable or procedure name does not
include process modules that are inner blocks of its origin
(see 13).

4.2. Statement lists A

Examples:
const midnight = 1440 "minutes"

type identifier = array 1..12 of char
var this: char; full: boolean
procedure signal begin s:= s + 1 end

process source(succ: sink)
var next: char
begin
<Eh§lg true do produce(next); succ.put(next) end
end

4.2. Statement lists

Statement list: Statement [; Statement *

A statement list denotes execution of a sequence of
statements (see 11).

The execution of a statement list causes the statements to
be executed one at a time in the order written.

Examples:
consume(this)
free:= false; r:= 1

5. TYPES

A program defines operations to be performed on data
values which are either simple or structured. A simple value
can only be operated upon as a whole. A structured value
consists of a finite sequence of other wvalues, called
subvalues; it can either be operated wupon as a whole or
subvalue by subvalue.

Data values are grouped into classes, called types, which
are either simple or structured.

A simple type determines a set of simple values. The
simple types integer, boolean, and character are predefined
standard types (see 5.1). Other simple types known as
process types are defined by declarations of process modules
(see 5.2).

A structured type determines a set of structured values.
The structured types are known as record types (see 5.4) and
array types (see 5.5). They are defined by means of type
declarations in terms of the (previously defined) types of
their subvalues.

5.1. Standard types 7
Every constant, variable or expression is of one and only
ne type. The types determine the possible values which
these entities may assume during program execution.
Every perator expects operands 5 f fixed types and
ielivers a result of a fixed type.

1
The types can be determined from the procram text without
executing it.

S.1. Standard types

The predefined types are called standard types. A standard
type determines a finite, ordered set of simple values.

e 1o 1o IDCEQgErsS

The standard type integer is denoted by the standard name
integer. The integer values are a finite set of successive
whole numbers in the range -3276R8..32767. Non-negative

integer values are denoted by decimal or octal numerals (see
.1} Negative integer values are denoted by octal numerals
or are computed by applying the sign inversion operator - to

operands with positive integer values (see 9).

5.1.2. Booleans

The standard type boolean is denoted by the standard name
boolean. The boolean values are the truth values denoted by
the standard names false and true (where false < true).

5« 13« Characters

The standard type character is denoted by the standard
name character. The character values are the ASCII
characters denoted by character constants (see &.2). The
ordering of character values is determined by their ordinal
values (see 9.2).

S«2+ Procedss types

A process type is denoted by the (previously declared)
name of a process module (see 13). The values of a process
type are called process references.

The creation of a process of type P assigns a process
reference to a variable of type P. The process reference
serves to identify the process (see 11.4).

5.3. Type declarations 8

5.3. Type declarations

Type list: Type declaration [; Type declaration |
Type decTaration: Record type # Array type

A type declaration defines a new structured type which is
either a record type (see 5.4) or an array type (see 5.5).

5.4. Record types

Record type: Type name = record Field list end
Field list: Field declaration [; Field declaration 1*
Field declaration: Field name : Field type
Txpe name: Name
leld name: Name

Field type: Type name

IE IE I I I

A record type introduces a name, called a type name, to
denote a set of structured values, called record values.
Each record value consists of a finite sequence of subvalues
known as fields. Each field is of some (previously defined)
type.

The record type includes a field 1list consisting of a
sequence of field declarations. Each field declaration
introduces a name to denote the field. The field type |is
given by a type name.

A record value contains one field for each field name of
the record type. The set of record values consists of all
the possible combinations of the possible field values.

Record values are computed by means of assignments to
record variables or field variables (see 8.4).

A record type cannot be used as a field type of itself.

Examples:

date = record
day: integer; month: integer; year: integer
end
attributes = record
protected: boolean;
address: inteqger
end

datafile = record id: identifier; attr: attributes end

GARAL KA A 2 Ap s Nk u)

- o ok m e ki S Ak i N e i &

—

5.5. Array types 9

3:5. Array types

Array type: Type name = array Range of Element type
Element type: Type name i

An array type introduces a type name to denote a set of
structured wvalues, called array wvalues. Each array value
consists of a finite sequence of subvalues known as
elements. The elements are of the same (previously defined)
type.

An element is given by its position in the array wvalue.
The positions are denoted by the successive values in a
range (see 7). The position of an element 1is called its
index value. The element type is given by another type name.

An array value contains one element for each value in the
index range. The set of array values consists of all the
possible combinations of of the possible element values.

Array values are computed by means of assignments to array
variables or indexed variables (see R.5).

An array type cannot be used as an element type of itself.

Examples:

row = array 1..100 of integer
matrix = array 1..100 of row
catalog = array 'a'..'z' of datafile

55«15 String types

An array type with n elements of type character is called
a string type of length n. The length must be even.

The string values are denoted by string constants (see
6s3) 0

Example:
identifier = array 1..12 of char

6. CONSTANTS

Constant: Numeral # Character constant

String constant # Constant name

A constant denotes a fixed value of a fixed type. It is
either a numeral (see K.1), a character constant (see (.2),
a string constant (see 6.3), or the name of a (previously
defined) constant (see 6.4).

L.

WY | o

.m__ml{:A___hu_m

6.1. Numerals 10

6.1. Numerals

Numeral: Decimal numeral # Octal numeral
Decimal numeral: Digit [Digit 1+

? Octal numeral: Number sign Octal digit [Octal digft 1+
dOctal digft: @ 41 # 2 43 44 45 4647

A numeral {s either decimal or octal. A decimal numeral
denotes a non-negative decimal wvalue. An octal numeral
denctes an octal value. Numerals are of type iInteger (see
5.1.1) and have their conventional meaning. The octal
numerals in the range #0 .. #A77777 correspond to the
decimal values P to 32767. The octal numerals in the range
2100000 .. #177777 correspond to the decimal values -1276R
to -1.

Examples:
A
Q14
1771342

6.2. Character caonstants

Character constant: ' Character symbol '
L] Chap@q}qr symhqf: Graphic & @& Numeral

A character constant denotes a value of type charvacter
(see 5.1.3). A character constant 'c' denotes the character
with the aqaraphic symbol ¢ (see 1.1). A character constant
'@n' denotes the character with the ordinal value n (see
D e

Examples:
‘bl
l“\l

rela’

6.1.»Strlngirqnsranrs

» Str
Ch

ng constant: ' Character strina '
acter string: Character symbol [Character symbol 1+

’;
L

A string constant with n character symbols denotes a value
of a string type of length n (see S.1.1). If the length of a

character string s {8 odd the string {is replaced by s8¢ (see
6.2).

Example:
'syntax error@l o’

h.4. Constant declarations 11

6.4. Constant declarations

Constant list:

Constant declaration [; Constant declaration 1*
Constant declaration: Constant name = Constant
Constant name: Name

A constant declaration introduces a name, called a
constant name, to denote a constant. The type of the
constant name is the type of the constant,.

A constant declaration cannot use its own constant name as
a constant,

The constant names false and true are standard names that
denote the values of type boolean (see 5.1.2).

Examples:
length = 512; nl 'e1@'; 1f = nl
error = 'end of file.*

'« RANGES

Range: Lower bound .. Upper bound
Lower bound: Constant
Upper bound: Constant

A range denotes a finite set of simple values from a lower
bound to an uppet bound, both included. The bounds are
denoted by constants of the same standard type (see 6). The
type of the range is the type of its bounds.

Ranges are used to define the index values of array types
(see 5.5).
Examples:

l.<108

false .. true

L LA ’\

8. VARIABLES

A variable is an entity that may assume any of the values
of a (previously defined) type. The value of a varfable may
be used in expressions (see 9) and may be changed by means
of assignments (see 11.2). g

Variables of simple and structured types see 5) are
called simple and structured vartables, respectively. A
structured variable consists of a set of other variables
known as subvariables. It contains a subvariable for each
subvalue of its type. A variable that is not a subvariable
of any other variable {s called a whole varfable.

8.1. Variable declarations 12

A processor records the values of the variables by means
of a device called a store.

B.1. Variable declarations

§ Variable list:
Variable Jeclaration ' ; Variable declaration 1*

P Variable declaration: Varfable name : Type name
Variable name: Name

A variable declaration introduces a name, called a
variable name, to denote a whole varfable of the type given
by the type name.

Other variables known as parameters are fintroduced by
parameter lists (see 12.1).

Examples:
maxno: integer; ok: boolean; c¢: chat
data: matrix; directory: catalog
now: date; name: identifier

8.2, Variable selection

? Variable: Whole variable [Type transfer 1 #

Subvariable I Type transfer |
Subvariable: Field varfable # Indexed variable

A variable denotes either a whole variable (see B,11) v a
subvariable. The latter is ecither a field variable (see 8.4)
or an indexed variable (see 8.5).

The execution of a variable denotation causes the
processor to locate the varifable in the store. This process
is called variable selection.

When a variable has been selected fte value can bhe
retrieved (see 8.7) or changed (see 11.2). The variable can
also be bound (see 12.1) to a parameter during the execution
of a procedure call (see 11.1%).

Variable selection is further explained in sections 8.3,
8.4, and 8.5.

8.3, Whole variables
Whole variable: Variable name

A whole varfable is a (previously declared) variable ou
parameter (see 12.1). It {s denoted by a variable name. The

type of a whole variable 18 afven by {ts declaration.
The selection of a whole varfable always ends.

| TP T - 1Y | nﬂ:ﬁm-‘"‘) il

8.4, Field variables 11

Examples:
now
director N

8.4, Field variables

§ Field variable: Record variable
? Record variahle: variable

. Field name

A variable of a record type (see 5.4) is called a record
variable. It contains a subvariahle correspondinga to each
field of its record value. The subvariables are known as
field variables.

A field variable is denoted by a record variable followed
by a field name. The type of a field variable is the
corresponding field type given by the record type.

A field variable is selected in two steps:

(1Y The record variable is selected.
(2) The field variable corresponding to the field name is
selected within the record variable.

The selection of the field variable ends {f the selection
of the record variable ends.

Examples:
now.day
directoryflcl.attr.address

8.5. Indexed variables

Indexed variable: Arvay variable

Left bracket Tndex expression Right bracket
Array variable: Variable
Tndex expression: Expression

A variable of an array type (see 5.5%) is called an array
variable. IR contains a subvariable corresponding to each
element of its array value. The subvariables are known as
indexed variables.

An indexed wvariable 1is denoted by an array variable
followed by an index expression. The index expression is an
expression (see 9) of the same type as the index range of
the array type. The type of an indexed variable 1{is the
element type of the array type.

An indexed variable is selected in three steps:

(1) The array varfable is selected.

(2) The index expression is evaluated to obtain an index
value.

() The indexed variable correspondina to the index value

wT . el

R.6. Type transfers 14

is selected within the array variable.

The selection of an indexed variable ends if the selection
of the array variable and the index expression both end with
an index wvalue within the index range. The selection fails
if the index value is outside the index range.

Examples:
name(i + 1)
datali) [
directorylcl.id i)

8.6. Type transfers

Type transfer: : Type name

A variable v of a type T! can be made compatible with an
operand (see 9) of another type T2 by using the notation
v: T2, where T2 is a type name.

The types T1 and T2 must be represented by the same number
of store locations.

A type transfer always ends.

Example:
c: integer

8.7. Variable retrieval

The use of a variable within an expression (see 9) denotes
the value of the variable.

During the evaluation of the expression the wvariable s g
first selected and then a copy of its value is obtained.
This process is called variable retrieval.

The retrieval ends if the selection ends.

3
9. EXPRESSIONS N

Expression: Simple Expression

- I RelTational operator Simple expression 1 |

L S{gg[g expression: Unary operator Term #

Simple expression Adding operator Term

Term: [Term Multiplying operator 1 Factor '
Factor: Simple factor [Type transfer |

Simple factor: Simple operand # (Expression)

An expression denotes a rule for computing a value of a
fixed type. An expressibn consists of subexpressions known
as operands and operations denoted by operators. Parentheses
may be used to explicitly define the order in which the

9, Expressifons 16

subexpressions arve executed. The type of an expression !s
the type aof tts value,
The execution of an expression {8 known as {ts evaluation.

Operand: Simple expression § Term
Factor # Simple factor # Simple operand
¢ Simple operand: Constant # Varlable

An operand denotes & value of a fixed type.

The evaluation of A& simple operand ylelds the value
denoted by a constant (see 6) or a varfable (see R,.7). The
evaluation of other Kinds of operands (s defined in the

tollowing.

Operator: Relational operator & Adding operator
Multiplying operator & Unary operatot

Relational operator: = § < § < & <= § > § >
Unary operator: $ not & va)
AddIng operator: ¢ Y
Mult '.p‘. yina operator: Asterisk # g mod & and
A unatry operatot denotes an operation on the value of a

single operand. The other operators denote operations on the
values of two operands.

The affect of executing the operators {is defined in
section 10,

An expression (or subexpression) may consist of an operand
only (possibly enclos

ied Iin parenthesex)

Operand
(Operand)

The type of such an expression {s the type of the opervand.
The expression value is obtained by evaluating the operand.

An expression (or subexpression) may alsoe consi af an

operator with one or two operands:
Operator Operand
Operand Operator Operand

The type of such an expression {8 the type of the operator
result (see 10V, The expression value {8 obtained by tirvst
evaluating the operand (8) one at a time and then performinag
the operation denoted by the operaton on the operand
value (s) .
Examples of simple operands:

|

free

.

. v«u“

9.1. Type compatibility 16

Examples of simple factors:
«es &all the examples above
(here = @)

Examples of factors:
<. all the examples above ..

c: integer

Examples of terms:
... all the examples above
not full
(time + minutes) mod midnight

Examples of simple expressions:
««. all the examples above ..
X =y + %2

Examples of expressions:
... all the examples above .
c <> em

9.1. Type compatibility

An operation can only be performed on two operands if
their data types are compatible, that is {f one of the
following conditions is satisfied:

(1) Both types have the same standard name or are defined
by the same type declaration (see 5.3) or process
module (see 5.2).

(2) Both types are string types of the same length (see
B0 5= 1)

9.2. Type transfers
Type transfer: : Type name

An operand x of a type Tl can be made compatible with an
operand of another type T2 by using the notation x: T2,
where T2 is a type name,

The types Tl and T2 must be represented by the same number
of store locations.

A type transfer always ends.

If x denotes a value of type inteqer and y denotes a value
of any standard type T then x = y:integer if and only {f y =
x:T. The values of x ar.y y are called corresponding values.
The value of x is alfo called the ordinal value of y.

For any integer v.lue x we have x:integer = x. The boolean
values Hhave the ordinal values false: integer = 0 and
true: integer = 1. The ordering of the characters 1in the
ASCII character set determines their ordinal values in the

1. Operators 17

range 0..127.

The type transfer of a value x from one standard type TI
to another standard type T2 satisfies the relation x:T2 =
x:integer:T2.

The type transfer of a value x from a non-standard type TI
to another type T2 yields a value of type T2 with the same
storage representation as the value x.

13. OPERATORS

Each operator applies to operands of a fixed type and
delivers a result of a fixed type. The type of an operator
is the type of its result.

When the same operator symbol applies to operands of
different types the symbol stands for several different
operations determined by the operand types.

13.1. Relational operators

The relational operators denote the following relations

equal

not equal
less

not greater
greater

not less

VvV VAANAI
" v

These operators generally apply to operands of any type as
defined in the following. They vyield a result of type
boolean (see 5.1.2).

18.1.1. Standard operands

The relational operators apply to operands of the same
standard type (see 5.1). These operators have their
conventional meaning for operands of type integer (see
5.1.1): they yield the value true if the operand values
satisfy the relations, and the value false if they do not.
If x and y are operands of another standard type T then x =
y means x:integer = y:integer, and similarly for the other
relations (see 9.2).

10.1.2. Process operands

The operators =, <> apply to operands x and y of the same
process type P (see 5.2). The relation x = y is true if x
and y are references to the same process, and false
otherwise. The relation x <> y means not (x = y).

180.2. Integer operators 18

16.1.3 PTecord operands

The operators =, <> apply to variables x and y of the same
type T = record fl: Tl; £2: T2; ...: £n: Tn end. The
relation x = y means (x.fl = y.f1) and (x.f2 = y.f2) ... and
(x.fn = y.fn), where fl, €2, ..., fn denote the fields of
the record type. The relation x <> y means not (x = y).

10.1.4. Array operands

The operators =, <> apply to operands x and y of the same
array type T = array il..in of Te. The relation x = y means
(x[il) = ylill) and (xli2) = yri2l) ... and (xfinl = yflinl)
where i1, i2, ..., In denote the successive index values of
the array type. The relation x <> y means not (x = y).

12.2. Integer operators

The inteager operators apply to operands of rype integer
and yield a result of type integer (see 5.1.1):

+ addition
— subtraction (or sign inversion)
* multiplication
/ division
mod modulus
These operators have their conventional meaning. When the
symbol - is used as a wunary operator it denotes sign
inversion.
If the result of one of these operators 1is outside the
range of integers the execution fails.
The operators

not negation
r conjunction
nd disjunction

[e]

l

o)

also apply to integer operands. The operations are performed
on all bits in the storage representation of the integer
values (see 10.3). The resulting bits are then considered to
be an integer result.

The unary operator val applies to an integer operand x and
yields the integer value of the device 1location with the
address x. The value of x must be even in the range #160000
.. #177776, otherwise the execution fails.

10.3. Boolean operators 19

10.3. Boolean operators

The boolean operators apply to operands x and y of type
boolean and yield a result of type boolean (see 5.1.2):

=

ot negation
r conjunction
nd disjunction

|

(o]

W

The results are defined as follows:

not false = true not true = false
x or false = x X or true = true
x and false = false x and true = ¥x

11. STATEMENTS

Statement: Simple statement # Structured statement

Simple statement: Skip statement # Assignment
Procedure call # Create statement # Start statement

Structured statement: If statement # While statement
When statement # Cycle statement

A statement denotes one or more operations and is either
simple or structured. A simple statement denotes an
elementary operation and is either a skip (see 11.1), an
assignment (see 11.2), a procedure call (see 11.2), a create
statement (see 11.4), or a start statement (see 11.5).

A structured statement consists of other statements,
called substatements. It determines (at least partially) the
order in which the substatements are to be executed. The
structured statements are called if statements (see 11.7),
while statements (see 11.8), when statements (see 11.9), and
cycle statements (see 11.10).

11.1. Skip statements

Skip statement: skip

The symbol skip denotes the empty operation. The execution
of a skip statement has no effect and always ends.

11.2. Assignments

Assignment: Variable := Expression

An assignment denotes assignment of a value given by an
expression (see 9) to a variable (see R.2). The variable and
the expression must be compatible (see 9.1).

T
)

RS-

11.3. Procedure calls 20

An assignment is executed in three steps:

(1) The variable is selected.
(2) The expression is evaluated to obtain a value.
(3) The value is assigned to the variable.

An assignment to a structured variable assigns a value to
all of its subvariables. An assignment to a subvariable of a
structured variable assigns a value to the given subvariable
without changing the rest of the subvariables.

Examples:
X=X = ¢
now.month:= 11
directorylcl.id:= 'spascaltext '

11.3. Procedure calls

Procedure call: Loca) call # Process call

Process call: Process variable . Local call

Process variable: Variable

Local call: Procedure name [(Argument list) 1
8 Procedure name: Name
#
#
i
#

Argument list: Argument [, Argument 1%
Ar%ument: Value arqgument # Variable argument
Value argument: Expression

Variable argument: Variable

A procedure call denotes execution of the block given by a
procedure name (see 12). It 1is either a local call or a
process call.

A local call is used by a process (see 13) to execute a
procedure that operates on the variables of the process. The
procedure must be declared within the innermost process
module that contains the call.

A process call is used by a process to execute a procedure
that operates on the variables of another process. The other
process is given by the value of a process variable of some
type P (see 5.2). The procedure must be declared within the
process module P.

The argument list denotes values and variables that may be
operated upon by the procedure block. The argument list must
contain one argument for each parameter name in the
parameter 1list of the procedure (see 12.1). The order in
which the arguments and the parameter names are written in
the argument 1list and the parameter list defines a one to
one correspondence between the arguments and the parameters.

Each argument is either a value argument or a variable
argument.

11.4. Create statements 21

A value argument corresponds to a value parameter. It must
be an expression (see 9) that {is compatible with the
corresponding parameter. An argument corresponding to a
value parameter of a string type (see 5.5.1) may, however,
be a string constant of any length.

A variable argument corresponds to a variable parameter.
It must be a variable (see 8.2) of the same type as the
corresponding parameter.

The parameter types are given by the parameter list of the
procedure.

The execution of a local call takes place in two steps:

(1) The arguments are evaluated one at a time in the order
written. A value aragument is evaluated by evaluating the
given expression to obtain a value which is then assigned to
the corresponding parameter. A variable argument is
evaluated by selecting the given variable and binding (see
12.1) the corresponding parameter to it.

(2) The procedure block is executed.

The execution of a process call is delayed until it can be
performed as an indivisible operation (see 13). It then
proceeds as a local call.

The execution of a procedure call ends when the execution
of the procedure block ends.

The execution of a process call fails if the given process
has not been created (see 11.4).

Examples:
finish
read (x, y)
timer.wait(15)
chainfl].put(Aril)

11.4. Create statements

Create statement:
create Process variable [, Process Variable 1#*

A create statement denotes the creation of one or more k\‘\
processes (see 13) and the assignment of references to these
processes to a list of process variables.

The execution of a create statement creates the processes
in the order in which the wvariables are written. If a
variable v is of a process type P then the operation
create v will <create a process of type P and assign a
reference to that process to the variable v.

The operation create v, v, ...v (where v occurs n times)
creates n processes of type P and assigns a reference to the
n'th process to v.

11.5. Start statements 22

Examples:
create consumer, producer
create ringl(i)

11.5. Start statements

Start statement:
start Process start [, Process start |+
Process start: Process varliable I (Arqument list) |}

A start statement denotes the starting of one or more
processes gqgiven by the values of a 1list of process
variables.

Fach argument 1list denotes values that may be operated
upon by a single process. The rules of the argument list are
the same as those defined for procedure calls (see 11.13).

The execution of a start statement starts the processes in
the order in which the process variables are written. Fach
process is started in two steps:

(1) The arquments are evaluated one at a time in the order
written and their values are assigned to the corresponding
process parameters.

(2) The execution of a process given by the wvalue of a
process variable begins.

| When a process has been started by another process the two
processes continue to operate simultaneously.

A process must be created (see 11.4) before it is started,
and can only be started once. Otherwise the start operation
fails.

Examples:
start consumer, producer (consumer)
start ringflfi] (ringli = 11, ringli + 11)

11.6. Conditional statements

Conditional statement 1list:
f Conditional statement [else Conditional statement 1%
Conditional statement: Expression do Statement 1ist

1 A conditional statement 1ist denotes the execution of one
3 of several conditional statements (or none of them).

Each conditional statement consists of an expression (see
9) of type boolean and a statement list (see 4.2).

The execution of a conditional statement 1ist evaluates
the expressions one at a time in the order written until one
of them yields the value true or until all of them yield the
value false. If the wvalue true is obtained from an
* expression then the statement 11ist that follows the

11.7. TIf statements 23

expression 1is executed; otherwise, none of the statement

lists are executed. In the former case, one of the ! |
conditional statements is said to be executed, while in the
latter case all of them are said to be skipped. This ends
the execution of the conditional statement 1ist. |

Examples:
¢ <> em do read(c)

free do free:=false; r:= 1 else

r >0 do r:=r + 1

op = 1 do create else

op = 2 do delete else e |
op = 3 do rename

11.7. 1f statements

¥ If statement: if Conditional statement 1ist end

An 1€ statement denotes a single execution of a
conditional statement list (see 11.6).

The execution of an if statement executes the conditional
statement list once.

Examples:
if eof do formfeed; eof:=fal se end

if op = 1 do create
else op 2 do delete

else op = 3 do rename end

11.8. While statements

While statement: while Conditional statement 1ist end

A while statement denotes one or more executions of a \\\
conditional statement list (see 11.6).

The execution of a while statement executes the
conditional statement 1ist repeatedly until all the

conditional statements are skipped.
If the conditional statements continue to be executed
forever the execution cycles.

Examples:
while ¢ <> em do read(c) end

while x > y do xt= x - y
else y > x do yt= y - % end

11.9., When statements 24

11.9, When statements
When statement: when Conditional statement list end

A when statement denotes one or more executions of a
conditional statement list (see 11.6).

The execution of a when statement executes the conditional
statement 1ist repeatedly until one of its conditional
statements has been executed.

As long as the conditional statements are skipped the when
statement is said to be blocked; otherwise it is said to be
feasible.

When a process (see 13) attempts to execute a blocked
statement it can only become feasible if another process ot
a peripheral device <changes the variables of the given
process by a process call or by an input/output operation
(see 11.3).

I1f the when statement continues to be blocked the
execution cycles.

Examples:
when r + w = 0 do w:= 1 end

when free do free:=false; r:= 1
else r > @ dor:=1r + 1 end

11.10. Cycle statements
(‘yclv statement: cycle Conditional statement 1ist end

A cycle statement denotes the repeated execution forever
of a conditional statement 1ist (see 11.6).

The execution of a cycle statement executes the
conditional statement list forever.

As long as the conditional statements are skipped the
cycle statement is said to be blocked; otherwise it is said
to be feasible (see 11.9),

Examples:
ryrlv full do consume(this); full:= false end

cycle here = 2 do transmit
else (here = 2)Y and (rest >) do receive end

12. PROCEDURES

Procedure: procedure Procedure name

f (Parameter 1ist Y 1 Procedure block
8 Procedure name: Name
Procedure bloack: Block

i e JR

12.1. Parameters 25

A procedure introduces a name, called a procedure name, to
denote a parameter list (see 12.1) and a block (see 4) which
is known as a procedure block.

The execution of a procedure is caused by a procedure call
(see 11.3). Tt creates the entities defined by the parameter
list and executes the block.

A procedure may call itself recursively.

Example:
procedure wait(minutes: integer)
const midnight = 1449 "minutes"
var due: integer

begin due:= (time + minutes) mod midnight;
when time = due do skip end
end

12.1. Parameters

Parameter list:

" Parameter declaration [; Parameter declaration 1*
Parameter declaration:

“Value parameter ¥ Variable parameter

Value parameter: Variable declaration

Variable parameter: var Variable declaration

3

A parameter declaration introduces a variable (see 8.1)
which is called a value parameter or a variable parameter.

A value parameter is a variable that is assigned the value
of an argument (see 11.3) before the procedure block is
executed.

A variable parameter denotes a variable argument (see
11.3) which {s selected before the procedure block 1is
executed. During the execution of the procedure block all
operations performed on the variable stand for the same
operations performed on the variable argument. The variable
parameter is said to be bound to the wvariable argument
during the given execution of the procedure block.

Exampl es:
minutes: integer
var value: char
pred: node; succ: node

12.2. Local variables

The scope of the names declared within a procedure extends
from their declarations to the end of the procedure block.
The names are therefore said to be local to the procedure
(see 4.1).

12.3. Standard procedures 26

Each execution of a procedure block creates a fresh
instance of the parameters and local wvariables. This |is
known as a procedure instance. When the execution of the
procedure block begins the values of the parameters are
determined by the arguments of a procedure call. The initial
values of the local wvariables are undefined and must be
defined by assignments (see 11.2) before they are used
within the procedure block.

When the execution of the procedure block ends the
procedure instance disappears and the execution of the
calling process (see 13) continues with the statement that
follows the procedure call in the program text.

12.3. Stendard procedures
The following procedure is considered to be predeclared at
the beginning of each process module:

procedure write(address: integer; value: integer)

When this procedure is called it assigns an integer wvalue
to a device location with a given address. The address must
be an even integer in the octal range #160000 .. L 777765
otherwise, the execution fails.

13. PROCESSES

Process module:

process Process name [(Parameter list)]

Space reservation Process block
Process name: Name
Process block: Block

Space reservation: space Constant

A process module introduces a name, called A process name,
to denote a parameter list (see 12.1) and a block (see 4)
which is known as a process block.

The parameter list must only contain value parameters of
simple types (see 5).

The 1local variables and procedures declared within a
process module are called communication variables and
communication procedures.

The body of the process block is called the initial
statement of the process block. The initial statement and
the bodies of the communication procedures are known as the
main statements of the process block.

A process block can be executed simultaneously by several
processors as long as they operate on different instances of
the communication variables.

13. Processes 27

Each execution of a process block is called a process and
the variable instances on which the process operates are
called its context.

The execution of a create statement (see 11.4) creates a
process with a empty context.

The execution of a start statement (see 11.5) adds a fresh
instance of the communication variables to the context and
initializes the parameter values. It then begins the
execution of a process block. 4

A process can operate on its own communication wvariables | g
by means of 1local calls of procedures declared within the
process module. When a process begins the execution of a
local call a fresh instance of the procedure variables is
added to 1its context, and when the execution of the
procedure ends these variables are removed from its context. 1

A process can operate on the communication variables of
another process by means of process calls on communication y

e i i

e %)

procedures declared within the process module of the other 4
process. When a process begins the execution of a process
call the (already existing) instances of the given

communication variables are added to the context of the
process. The execution of the procedure then proceeds as a
local call. When the execution of the procedure ends (and
its 1local variables have been removed from the context) the
communication variables are also removed from the context.
The above defines the dynamic change of the context of a
process. When a process refers to a whole variable by its |
name, this selects the most recent instance of that variable |
in the current context of the process.
All operations on the variables of a process are
indivisible in the sense that they are performed one at a
time as explained below:
An indivisible operation begins when a process begins the
execution of a main statement (or a feasible when or cycle
statement) .
An indivisible operation ends when a process ends the
execution of a main statement (or reaches a blocked when or
cycle statement). “\\h
If several processes attempt to operate on the same
variable instances during the same interval of time the
indivisible operations on these variables will be performed
one at a time in unspecified order.
The first 1indivisible operation on the variables of a
process begins when the process is started.
When this initial operation ends the original process may
perform another indivisible operation (if it 1is now
feasible), or another process may either begin a process
call or continue one by performing an indivisible operation
that has become feasible within a communication procedure.

'™ .

13. Processes 2R

This interleaving of indivisible operations on the
variables of a process continues forever. If the process
reaches the end of the process block other processes can
still continue to operate on the communication variables by
means of process calls.

A process module may create and start instances of itself
recursively.

A process module that is contained within another process
module cannot refer to the variables and procedures that are
declared on the outer module (see 4.1).

The compiler determines the storage space required for
each process under the assumption that all procedures are
non-recursive. The number of additiona) bytes of storage
locations required for the variables of recursive procedures
must be defined by an integer constant following the symbol
space.

Example:
process sink
var this: char; full: boolean

g(occdurv put{(c: char)
eqin

when not full do this:= c; full:= true end
end

begin full:= false
cycle full do continue(this); full:= false end
end i

Example:

process source(succ: sink)

var next: char

begin

‘while true do produce(next); succ.put(next) end

end " .
Example:

process semaphore

var s: integer

procedure wait
hegin when s > @ do s:= s - 1 end end

procedure signal
begin s:= s + 1 end

begin s:= @ end

14, Programs 29

14. PROGRAMS

Program: Block

A program is a block (see 4) that is not contained in any

other block.
The execution of a program
as a process (see 13) called
The execution of a program
fails.

Example:

process sink ... begi - etie

process source(succ: sink)

causes the block to be executed
the initial process.
never ends. It either cycles or

end

... begin ... end

var consumer: sink; producer: source
begin create consumer, producer;

start consumer, producer(
end.

Example:

consumer)

Erocess node(pred: node; succ: node) ...
egin ... end

type nodes = array @..9 of node

var ring: nodes; i: integer
begin i:= @;

while i <= 9 do create ringlil; i:= 1 + 1 end;

1:=0;

while i <= 9 do
start ring(i7 (ringf (i +
ringf (i + 1) mod 121)
is= § 41 A
end

Example:
process tree(level: integer
var left: tree; right: tree
begin
ii level < maxlevel do
create left, right;

9) mod 101,

.
’

; maxlevel: integer)

start left(level + 1, maxlevel),
right(level + 1, maxlevel)

end
end;

var root: tree

begin create root; start root(l, 4) end.

15

LB B

> W

W W™

R

» =

- . W

1 ¢

o Syntax summary
Y)

. SYNTAX SUMMARY

Name: Letter [Letter &% Digit 1*

Numeral: [Number sign 1 Digit ' Digit 1#
Character symbol: Graphic # @ Numeral
Constant: Numeral # Constant name #

" Character symbol [Character symbol | *
Constant de‘1axatlon. Constant name = Constant
Constant list:

Constant declaration I ; Constant declaration 1*
New type: record Field list end #

artay Constant .. Constant of Type name
Field list: Field declaration [; Field declaration
Field declaration: Field name : Type name
T)pv do\laxarlon- Type name = New type
T)pv 1ist: Type declaration [; Type declaration 1*
Variable dec) aration: Variable name : Type name
Variable Tist:

- Variable declaration [; Variable declaration 1*
Declaration: const Constant list # type Type list #
var Variable list # Procedure # Process module

Variable: vVariable name

1

*

. Field name & Left bracket Expression Right bracket

[: Type name)
Simple factor: Constant # Variable # (Expression)
Factor: Simple factor [: Type name)
Term: Factor [Multiplying operator Factor |

Multlp1)1nq oporafnr- Asterisk # / &% mod # and
Simple expression: 2
[- # not ¥ val) Term [Adding operator Term)*
Adding opoinror + & - # or

Expression: Simple expression
"Relational operator Simple expression |
Relational operator: = O R R <=8 D> 8 =
‘twrpmont skip ¥ Variable := Expression #
Procedure call #
create Process variable [, Process variable 1* §
start Process start [, Process start 1+ §
if Conditional statement list end #
while Conditional statement l1ist end #
when Conditional statement 1ist end #
cycle Conditional statement list end
Procedure call: [Process variable . 1
Proc vdllx» name [(Argument list))
Argument list: Arqument [, Arqument 1*
Arqumont Fxpression # Variable
Process start: Process variable I (Argument 1list)
Conditional statement list:
Conditional statement ! else Conditional statement

1

1 *

16. Storage and speed 31

Conditional statement:
Expression do Statement 1 ist
Statement list: Statement [; Statement 1*
Procedure:
~ procedure Procedure name [(Parameter list) 1 Block
Parameter Jist:
Parameter declaration [; Parameter declaration)*
Parameter declaration: [var 1 Variable declaration
Block: [Declaration 1* begin Statement 1list end
Process module: process Process name e
- T ({ Parameter list Y]| [space Constant 1 Block
* Program: Block .

16. STORAGE AND SPEED

Each integer, boolean, character, or process reference
value requires 2 bytes of storage.

A string value of length n requires n bytes of storage.

The storage requirement of a record or array value is the
sum of the storage required for each of its subvalues
(fields or elements).

The following is the evaluation times of operands and the
execution time of operators and statements in microseconds
(measured on an LST-11 with MOS memory.) In the following n
stands for the number of simple values in the operands, v
stands for the time to select a variable, E and S stand for
the time to evaluate an expression and execute a statement
list respectively, while m stands for the number of times a
conditional statement list is executed in a while statement.

constant ¢ 1S
whole variable v 25
field variable v.f 25+v
indexed variable vIE) B8S+E+v
i = 15%n

= (> < <= > >= 15415*n
and 25

or not 105

P 20

* A0

/ mod 12@

val 20
write(E,E) 2S+E+E
If E do S end 25+E+S
while E do S end 254E+ (25+4E+4S) *m
when E do S end 1254E+S
procedure call p 175
procedure call v.P 220+4v

Acknowl edgement 32

In this implementation, the processor executes one
indivisible operation at a time, and then switches to
another ©process. The switching among processes is cyclic,
but the precise order of execution of processes is generally
unpredictable. The time to switch from one process to
another (120 microseconds) 1is usually small compared with
the time required to execute an indivisible operation.

ACKNOWLEDGEMENT

The programming language is named after the author James
Joyce. Charles Hayden wrote the compiler in Sequential
Pascal and the code interpreter for the LSI~11
microcomputer. Hayden's Ph.D. thesis explains the process
implementation and discusses several Joyce programs (8]. The
work has been supported by the Office of Naval Research
under contract NR@48-647,

REFERENCES

1. Brinch Hansen, P., Distributed processes: a concurrent
programming concept. Comm. ACM 21, 11 (Nov. 1978),
934-941.

2., ' Operating system principles. Prentice-Hall,
Englewood Cl11ffs, NJ, July 1973.

3. Hoare, C.A.R., Monitors: an operating system structuring
concept. Comm. ACM 17, 1@ (Oct. 1974), 549-57.

4. , Towards a theory of parallel programming. 1In
Operating systems techniques, Academic Press, New York,
N¥y 19720

5. Brinch Hansen, P., and Staunstrup, J., Specification and
implementation of mutual exclusion. TIEEE Trans. on
Software Engineering 4, 5 (Sept. 1978), 365-70.

6. Wirth, N., The programming language Pascal (Revised
report) . ETH, Zurich, Switzerland, July 1973.

7. Naur, P. (ed.), Revised report on the algorithmic
language ALGOL 60, Comm. ACM A, 1 (Jan 1963).

8. Hayden, C. Distributed processes: experience and
architectures. Computer Science Department, University
of Southern California, Los Angeles, CA, 1979,

—

Index 33

INDEX

The names of syntactic entities are shown in italics while
semantic terms are shown in roman type. The entries refer to
section numbers of the report.

Adding operator 9
Addition 18.2

And 10.3

Argument Ik 3
Arqument Jist L1.3
Array type 5.5
Array value 55
Array variable 8.5

Assignment YEo 2
Asterisk 2

Binding O]

Block 4

Blocked statement 11.9

Bod¥ 4
Boolean operator 18.3

Boolean type LT
Charecter 3l
Character constant
Character string 6.
Character symbol 6l
Character type Sl
Comment 3.2
Co~munication procedure 13
Communication variable 13
Compatible types 9l
Conditional statement b I A1
Conditional statement list 1L.6
Constant A

Constant declaration 6.4
Constant list 6.4

Constant name 6.4

Context 3

Corresponding values 9.2
Create statement 11.4

Cycle statement 11,19

Cycling 4

Decimal numeral 6.1

Declaration a5l

Digit 3e 1
Division 18.2
Element S50
Element type 5:5
Entity 2
Evaluation 9
Execution 4

D D
.
N

w N

ITndex 34

Execution time 16
Expression 9

Factor 9

Failure 4

Fal se e la2

Feasible statement 11.9
Field 5.4

Field declaration 5.4
Field 1ist 5
Fleld name
Field type
Field variable 8.4
Global name 4.1

Graphic 31

If statement 17
Indexed variable 8.5
Index expression B.S
Index value 5.5
Indivisible operation 13
Initial statement 13
Initial value 12.2

Inner block 4

Integer operator 16,2
Integer type Sigdia

Left bracket 2
Letter = 3.1

Local call 13143

Local name 4.1

Local variable 12: %
Lower bound 7

Main statement i

Module 10.2
Multiplication 16.2
Multiplying operator 3
Name 3.3

Nested blocks 4

New line 3.1

Not 18.3

Number >ign 2

Numeral 6.1

Octal digit 6.]

Octal numeral 6.1
Operand 9

Ogeratgl 9

Or 10.3

Ordinal value O 2

Origin 4.1

Parameter declaration Il 3
Parameter list 121
Procedure 12

Procedure block 12

|

CARCLS, |
LHobh o

Index

Procedure call 2.3
Procedure instance 12 2
Procedure name 11.3
Process B 1!

Process block 13
Process call 11.3
Process creation 11.4
Process module 13
Process name 13
Processor 4

Process reference 5.2
Process start) 5
Process type 5162
Process variable 11.3

Program 14

Range 7

Record type 5.4
§€E€?H"V§Fﬁe 5.4
Record variable 8.4
Recursion 25 013
Relational operator 9
Right bracket 2
Scope 4.1

Sentence 2

Simple expression 9
Simple factor 9
Simple operand 9
Simple statement 11
Simple type 5

Simple value 5
Simple variable 8
Sian inversion 10.2
Skip statement Ilel
Space 3.1

Space reservation 13
Special character 351

Special symbol Je 2
Spee

Standard name 3.3
Standard procedure k26 3
Standard type 5

Start statement 3 LeD
Statement b

Statement list 4,2
Storage requirement 16
Store 8

String constant 6.3
String type 5+5:1
Structured statement 1 |
Structured type 5
Structured value S

35

Index 16

Structured variable 8
Subexpression 9
Substatement V)
Subtraction 10.2
Subvalue LS
Subvariable B.2
Symbol 1.2
Syntactic entity 2
Syntax expression
Syntax factor 2
Syntax term 2

Term 9

Tr ue 5.1.2

Type 5

Type compatibility 9.1
Type declaration 523
Type list SRR
Type name e
Type transfer 8.6, 9,
Unary opv[qtor 9
Upper bound 7

val 10.2

vValid name 4.1

Value 5

Value argument e
Value parameter 12,0
Variable — 8&.2
Variable arqument 113
Variable declaration 8.1
Varlable IIst 8.1
Variable name 8.
Variable parameter 12.
Variable retrieval 8.7
Variable selection 8.2
Variable value Ble
Vocabulary 3

When statement 1l 9
While statement 11 . 8
whole varfable f.3 o
wof3“§Ymbd1 ¥o

Write e

0]

N

o

DISTRIBUTION LIST
FOR THE TECHNICAL, ANNUAL, AND FINAL REPORTS

FOR CONTRACT N00014-77-C-0714

Defense Documentation Center 12 copies
Cameron Station
Alexandria, VA 22314 :

Office of Naval Research 2 coples

Information Systems Program
: Code 437
3 Arlington, VA 22217
Of fice of Naval Research 6 copies
: Code 715LD 3
] Arlington, VA 22217 1
Office of Naval Research 1 copy]
_ Code 200 4
3 Arlington, VA 22217
Office of Naval Research 1 copy
Code 455
Arlington, VA 22217
Office of Naval Research 1 copy
Code 458

Arlington, VA 22217

Office of Naval Research 1 copy
Branch Office, Boston

495 Summer Street

Boston, MA 02210

Office of Naval Research 1 copy
Branch Office, Chicago

536 South Clark Street

Chicago, Illinois 60605

A

Office of Naval Research 1 copy
Branch Office, Pasadena

1030 East Green Street

Pasadena, CA 911006

Office of Naval Research 1 copy
New York Area Office

715 Broadway - 5th Floor

New York, NY 10003

Naval Research Laboratory 6 copies
Technical Information Division

Code 2627
Washington, D. C. 20375

Dr. A. L. Slafkosky I copy
Scientific Advisor
Commandant of the Marine Corps
(Code RD-1)
Washington, D. C. 20380

Naval Ocean Systems Center I copy
Advanced Software Technology Division

Code 5200

San Diego, CA 92152

Mr. E. H. Gleissner 1 copy
Naval Ship Research & Development

Center
Computation and Mathematics Depa rtment
Bethesda, MD 20084

Captain Grace M. Hopper 1 copy
NAICOM /MIS Planning Branch (OP-916D)
Office of Chief of Naval Operations
Washington, D. C. 20350

Mr. Kin B. Thompson 1 copy
NAVDAC 33

Washington Navy Yard

Washington, D.C. 20374

