
OPERATING SYSTEM

PRINCIPLES

Prentice-Hall
Series in Automatic Computation

AHO, editor, Currents in the Theory of Computing
AHO AND ULLMAN, Theory of Parsing, Translation, and Compiling,

Volume I: Parsing; Volume I I : Compiling
ANDREE, Computer Programming: Techniques, Analysis, and Mathematics
ANSELONE, Collectively Compact Operator Approximation Theory

and Applications to Integral Equations
ARBIB, Theories of Abstract Automata
hATES AND DOUGLAS, Programming Language/One, 2nd ed.
BLUMENTHAL, Management Information Systems
BRENT, Algorithms for Minimization without Derivatives
BRINCH HANSEN, Operating System Principles
COFFMAN AND DENNING, Operating-Systems Theory
CRESS, et al., FORTRAN IV with WATFOR and WATF1V
DANIEL, The Approximate Minimization of Functionals
DEO, Graph Theory with Applications to Engineering and Computer Science
DESMONDE, Computers and Their Uses, 2nd ed.
DESMONDE, Real-Time Data Processing Systems
DRUMMOND, Evaluation and Measurement Techniques for Digital Computer Systems
EVANS, el: al., Simulation Using Digital Computers
EIKE, Computer Evaluation of Mathematical Functions
EIKE, PL/1 for Scientific Programers
FORSYTHE AND MOLER, Computer Solution of Linear Algebraic Systems
GAUTHIER AND PONTO, Designing Systems Programs
GEAR, Numerical Initial Value Problems in Ordinary Differential Equations
GOLDEN, FORTRAN IV Programming and Computing
GOLDEN AND LEICHUS, 1BM/360 Programming and Computing
GORDON, System Simulation
HARTMANIS AND STEARNS, Algebraic Structure Theory of Sequential Machines
HULL, Introduction to Computing
JACOBY, et al., Iterative Methods for Nonlinear Optimization Problems
JOHNSON, System Structure in Data, Programs, and Computers
KANTER, The Computer and the Executive
KIVIAT, et al., The SIMSCRIPT H Programming Language
LORIN, Parallelism in Hardware and Software: Real and Apparent Concurrency
LOUDEN AND LEDIN, Programming the IBM 1130, 2nd ed.
MARTIN, Design of Man-Computer Dialogues
MARTIN, Design of Real-Time Computer Systems
MARTIN, Future Developments in Telecommunications
MARTIN, Programming Real-Time Computing Systems
MARTIN, Security, Accuracy, and Privacy in Computer Systems
MARTIN, Systems Analysis for Data Transmission
MARTIN, Telecommunications and the Computer
MARTIN, Teleprocessing Network Organization

MARTIN AND NORMAN, The Computerized Society
MATHISON AND WALKER, Computers and Telecommunications: Issues in Public Policy
MCKEEMAN, et al., h Compiler Generator
MEYERS, Time-Sharlng Computation in the Social Sciences
MINSKY, Computation: Finite and Infinite Machines
NIEVERGELT et al., Computer Approaches to Mathematical Problems
PLANE AND MCMILLAN, Discrete Optimization: Integer Programming and

Network Analysis for Management Decisions
PRITSKER AND KIVIAT, Simulation with GASP H: a FORTRAN-Based

Simulation Language
PYLYSHYN, editor, Perspectives on the Computer Revolution
RICH, Internal Sorting Methods: Illustrated with PL/1 Program
RUSTIN, editor, Algorithm Specification
RUSTIN, editor, Computer Networks
RUSTIN, editor, Data Base Systems
BUSTIN, editor, Debugging Techniques in Large Systems
RUSTIN, editor, Design and Optimization of Compilers
RUSTIN, editor, Formal Semantics of Programming Languages
SACKMAN AND CITRENBAUM, editors, On-line Planning: Towards

Creative Problem-Solving
SALTON, editor, The SMART Retrieval System: Experiments

in Automatic Document Processing
SAMMET, Programming Languages: History and Fundamentals
SCHAEFER, A Mathematical Theory of Global Program Optimization
SCHULTZ, Spline Analysis
SCHWARZ, et al., Numerical Analysis of Symmetric Matrices
SHERMAN, Techniques in Computer Programming
SIMON AND SIKLOSSY, Representation and Meaning: Experiments

with Information Processing Systems
STERBENZ, Floating-Point Computation
STERLING AND POLLACK, Introduction to Statistical Data Processing
STOUTEMYER, PL/1Programming for Engineering and Science
STRANG AND FIX, An Analysis of the Finite Element Method
STROUD, Approximate Calculation of Multiple Integrals
TAVISS, editor, The Computer'lmpact
TRAUB, lterative Methods for the Solution of Polynomial Equations
UHR, Pattern Recognition, Learning, and Thought
VAN TASSEL, Computer Security Management
VARGA, Matrix lterative Analysis
WAITE, Implementing Software for Non-Numeric Application
WILKINSON, Rounding Errors in Algebraic Processes
WlRTH, Systematic Programming: An Introduction

To Milena, Metre, and Thomas

for making it all worthwhile

OPERATING SYSTEM

PRINCIPLES

PER BRINCH HANSEN

California Institute of Technology

PRENTICE-HALL, INC., Englewood Cliffs, New Jersey

Library of Congress Cataloging in Publication Data

Brinch Hansen, Per,
Operating sYstem Principles.

Bibliography: P.
1. Time iharing computel systems' 2' Computer

programming management. I. Tit le''oeio.r.ez6
ob1.6'44'04 73-49r

rsBN O-13-637843-9

1 0 9 8 7 6 5 4 3 2 1

hinted in the United States of America

o 1973 by Prentice-Hall, Inc., Englewood Cliffs, N'J'

All rights reserved. No part of this book may be

repro;uced in any form, by mimeograph or any other

,rr"u*, without permission in writing from the publisher'

@ 2001 by Per Brinch Hanseu

PRENTICE-HALL INTERNATIONAL, INC'' London

PRENTICE-HALL OF AUSTRALIA, PTY' LTD', Svdnev

PRENTICE-HALL OF CANADA, LTD', Toronto

PRENTICE-HALL OF INDIA PRIVATE LIMITED' New Delhi

PRENTICE-HALL OF JAPAN, INC'' ?okYo

PREFACE

THE MAIN GOAL

This book tries to give students of computer science and professional
programmers a general understanding of operating systems--the programs
that enable people to share computers efficiently.

To make the sharing of a computer tolerable, an operating system must
enforce certain rules of behavior on all its users. One would therefore
expect the designers of operating systems to do their u tmost to make them
as simple, efficient, and reliable as possible.

A number of operating systems made in the early 1960's had these
characteristics; bu t in the late 1960's designers were of ten overambitious
and built enormous systems with poor performance.

I see no inherent reason why operating systems should not reach the
quality of program construction found in present compilers; this will
require an understanding of the principles common to all operating systems
and a consistent use of safe methods of designing large programs. It is my
hope that this book will give you a start in this direction.

I assume that you are familiar with the basic structure of computers
and programming languages and have some experience in writing and
testing non-trivial programs. In a few cases a knowledge of elementary
calculus and probabili ty theory is also needed.

THEMES

The main theme of the book is that operating systems are not radically
different from other programs. The difficulties encountered in the design of
efficient, reliable operating systems are the same as those one encounters in
the design of other large programs, such as compilers or payroll programs.

The historical importance of operating systems is that they led to the
discovery of new principles of resource sharing, multiprogramming, and"
program construction. These principles have a general validity beyond
operating systems, and I think that they should be taught as part of a core
of computer science courses, following courses on programming languages,
data structures, and computer structures.

vi i

viii PREFACE

The purpose of an operating system is to share computational resources
among competing users. To do this efficiently a designer must respect the
technological limitations o f these resources.

Present computers consist of a small number of components
(processors, store modules, and peripherals) which operate strictly
sequentially. It is possible to multiplex a single processor and a small
internal store (supported by a large backing store) among several
computations to create the illusion that they are executed concurrently and
have access to a large, homogeneous store. But these abstractions are not
supported by the underlying technology, and if they are carried too far, the
result is a total collapse of computational service known as thrashing.

One o f the difficulties o f operating systems is the highly unpredictable
nature o f the demands made upon them. Independent users submit jobs
with varying resource requirements at irregular intervals. An operating
system is expected to schedule this unpredictable mixture of jobs in such a
manner that the resources are utilized efficiently and the users can expect
response within reasonably predictable times!

The only way to satisfy these expectations is probably to put
restrictions on the characteristics of jobs so the designer can take advantage
o f the expected usage o f resources. This is certainly the main reason for the
success of small, specialized operating systems. It also gives a plausible
explanation of the failure of recent "general-purpose" operating systems
which try to handle a much greater variety of jobs (in some cases for a
variety of machine configurations as well).

Although most components of present computers are sequential in
nature, they can work simultaneously to some extent. This influences the
design of operating systems so much that the subject can best be described
as the management o f shared mult iprogramming systems.

The main difficulty of multiprogramming is that concurrent activities
can interact in a time-dependent manner which makes it practically
impossible to locate programming errors by systematic testing. Perhaps,
more than anything else, this explains the difficulty of making operating
systems reliable.

I f we wish to succeed in designing large, reliable mult iprogramming
systems, we must use programming tools which are so well-structured that
most t ime-dependent errors can be caught at compile time. It seems
hopeless to try to solve this problem at the machine level of programming,
nor can we expect to improve the situation by means of so-called
"implementation languages," which retain the traditional "right" of
systems programmers to manipulate addresses freely.

I use the programming language Pascal throughout the text to define
operating system concepts concisely by algorithms. Pascal combines the
clarity needed for teaching with the efficiency required for design. It is
easily understood by programmers familiar with Algol 60 or Fortran, but

PREFACE i x

Pascal is a far more natural programming tool than these languages,
particularly with respect to data structuring. As we go along, I extend
Pascal with a well-structured notation for multiprogramming.

STRUCTURE

The book contains eight chapters:
Chapter 1 is an overview of operating systems. It defines the purpose of

operating systems and outlines their historical development from early
batch processing to recent interactive systems. It also points out the
influence of technological constraints on the services offered by operating
systems.

Chapter 2 on sequential processes discusses the role of abstraction and
structure in problem solving and the nature of computations. It summarizes
structuring principles of data and sequential programs and gives an example
of hierarchal program construction.

Chapter 3 on concurrent processes emphasizes the role of reproducible
behavior in program testing and compares various methods of process
synchronization: simple and conditional critical regions, semaphores,
message buffers, and event queues. It concludes with an analysis of the
prevention of deadlocks by a hierarchal ordering of process interactions.

Chapters 2 and 3 present an abstract view of computational processes
and their representation in programming languages. The following Chapters,
4 to 6, discuss techniques of implementing processes on computers with
limited resources. This problem is mainly technological, and it seems
unrealistic to look for a unifying view of how different kinds of
components are used efficiently. I try to describe various techniques and
point out under which circumstances they are successful.

Chapter 4 on processor management discusses the short-term problems
of scheduling concurrent processes on a limited number of processors at the
lowest level of programming. It also explains the implementation of
synchronizing primitives and evaluates the influence of these abstractions
on the real-time characteristics of a system.

Chapter 5 on store management considers the short-term problems of
sharing an internal store of limited capacity among concurrent processes. It
summarizes current store technology and explains the influence of recursive
procedures, concurrent processes, and dynamic relocation on store
addressing. It ends with an analysis of placement algorithms and store
multiplexing.

Chapter 6 analyzes the performance of various medium-term scheduling
algorithms. It uses elementary queuing theory to derive analytical results
for the average response time to user requests in a single processor system
with these priority rules: first-come first-served, shortest job next, highest

x PREFACE

response ratio next, and round robin. Foregound-background scheduling is
discussed informally.

Chapter 7 is concerned with resource protection--the problem of
ensuring that physical resources and data are accessed by well-defined
operations within computations authorized to use them. This is a
fundamental problem of program design which should have been presented
earlier in the book, if only I understood it better. It is handled inadequately
in all present operating systems. As fragments of a solution I mention two
of the more systematic techniques used: the class concept in Simula 67 and
the capability concept.

It is important that a designer of operating systems understand the
underlying common principles. But the danger of this division of the
subject into separate chapters is that you may find it difficult to see how
they fit together into a working system and be unaware of the more subtle
interactions between, say, process communication, store management,
input/output, and preemptive scheduling.

I have therefore tried to describe a complete operating system in some
detail in Chapter 8. It is a case study of the RC 4000 multiprogramming
system. It is by no means an ideal system, but it is the only one I know in
detail, and is regarded as a consistent, simple, and reliable design which
illustrates the concepts and implementation of concurrent processes.

It should perhaps be explained why there are no chapters on input/
output and filing systems. For a particular operating system, considerations
about how these tasks are handled are highly relevant. But in this book I
have concentrated on the more elementary aspects of these complicated
tasks, namely process synchronization, store management, scheduling, and
resource protection.

VOCABULARY

In each chapter many words are first used intuitively to give you a
feeling for the subject. Later I return to these words and try to give
reasonably precise verbal definitions of their meaning. My use of a common
word may not always agree completely with the various shades of meaning
it has acquired elsewhere, but I hope to justify the usefulness of the
concept behind the word and show that it is possible to describe operating
systems in an informal but consistent terminology.

The most important terms are collected in a Vocabulary section at the
end of the book.

LITERATURE

This book is only one designer's view of operating systems. I urge you
to examine my viewpoints critically and compare them with other

PREFACE xi

literature on the subject. As a guide to such a study I have included an
annotated selective bibliography at the end of each chapter.

For the sake of completeness I have listed all references mentioned in
the text at the end of the book.

ACKNOWLEDGEM ENTS

Niels Ivar Bech and Poul Dahlgaard enabled me to gain valuable
experience in the design of the RC 4000 multiprogramming system at
Regnecentralen, Denmark. Alan Perlis and Joseph Traub made the writing
of this book possible by inviting me to visit Carnegie-Mellon University
from November 1970 to June 1972. The writing was supported in part by
the Advanced Research Projects Agency of the Office of the Secretary of
Defense (F44620-70-C-0107).

Parts of the manuscript have been published earlier under the titles:

RC 4000 software: multiprogramming system.
Regnecentralen, Copenhagen, Denmark, April 1969.
A comparison of two synchronizing concepts.
Acta Informatica 1, 3, 1972.
Structured multiprogramming.
Communications of the ACM 15, 7, July 1972.

Permissions to reprint excerpts from these papers have kindly been granted
by Regnecentralen, Springer-Verlag, and the Association for Computing
Machinery.

The idea of looking upon the management of shared computers as a
general data-processing problem was inspired by a similar attitude of Peter
Naur (1966) towards program translation. This viewpoint determined the
structure of the book since it was conceived in March 1970. It is also a
pleasure to acknowledge the influence of Tony Hoare on my attitude
towards multiprogramming.

Jim Homing and Alan Shaw gave helpful comments on the overall
structure of the manuscript. And many useful suggestions were made by
Giorgio Ingargiola and Howard Morgan. Finally, I wish to thank my wife,
Milena, for her patience and encouragement during the past two years. I
also thank her for an extremely careful reading of the manuscript which led
to numerous improvements in style.

California Institute of Technology
PER BRINCH HANSEN

CONTENTS

1 AN OVERVIEW OF OPERATING SYSTEMS 1

1.1. The Purpose of an Operating System 1

1.1.1. Resource Sharing 1
1.1.2. Virtual Machines 2
1.1.3. Operating Systems and User Programs

1.2. Technological Background 5

1.2.1.
1.2.2.
1.2.3.
1.2.4.

Computer and Job Profiles 5
Batch Processing Systems 6
Spooling Systems 10
Interactive Systems 14

1.3. The Similarity of Operating Systems 17

1.4. Design Objectives 18

1.4.1. Special Purpose Systems 18
1.4.2. General Purpose Systems 19

1.5. Literature 21

SEQUENTIAL PROCESSES 23

2.1. Introduction 23

2.2. Abstraction and Structure 24

2.3. Computations 26

2.3.1. Data and Operations 26
2.3.2. Processes 28
2.3.3. Computers and Programs 31

xiii

xiv CONTENTS

2.4. Data Structures 33

2.4.1. Primitive Data Types 33
2.4.2. Structured Data Types 35

2.5. Program Structures 36

2.5.1. Primitive Statements 36
2.5.2. Structured Statements 38

2.6. Program Construction 42

2.6.1. The Banker's Algorithm 42
2.6.2. A Hierarchal Solution 45
2.6.3. Conclusion 48

2.7. Literature 52

3 CONCURRENT PROCESSES 55

3.1. Concurrency 55

3.1.1. Definition 55
3.1.2. Concurrent Statements 57
3.1.3. An Example: Copying 58

3.2. Functional Systems 60

3.2.1. Program Verification 60
3.2.2. Time-dependent Errors 61
3.2.3. Disjoint Processes 64
3.2.4. The History Concept 68
3.2.5. A Closure Property 71
3.2.6. Non-functional Systems 75

3.3. Mutual Exclusion 77

3.3.1. Resource Sharing 77
3.3.2. Data Sharing 81
3.3.3. Critical Regions 83
3.3.4. Conclusion 87

3.4. Process Cooperation 89

3.4.1. Process Communication 89
3.4.2. Semaphores 93
3.4.3. Conditional Critical Regions 98
3.4.4. An Example: Message Buffers 100
3.4.5. An Example: Readers and Writers
3.4.6. A Comparison of Tools 114
3.4.7. Event Queues 116
3.4.8. Conclusion 121

106

CONTENTS

3.5. Deadlocks 122

3.5.1. The Deadlock Problem 122
3.5.2. Permanent Resources 123
3.5.3, Hierarchal Resource Allocation 126
3.5.4. Hierarchal Process Communication 127

3.6. Literature 130

XV

4 PROCESSOR MANAGEMENT 133

4.1. Introduction 133

4.2. Short-term Scheduling 134

4.2.1. Process Descriptions 135
4.2.2. A Basic Monitor 137
4.2.3. Process Implementation 138
4.2.4. Semaphore and Event Implementation 142
4.2.5. Processor Multiplexing 145
4.2.6. Timing Constraints 150
4.2.7. Conclusion 151

4.3. Literature 152

5 STORE MANAGEMENT 155

5.1. Store Technology 156

5.1.1. Store Components 156
5.1.2. Hierarehal Stores 158

5.2. Store Addressing 159

5.2.1. Program Segmentation 159
5.2.2. Single-segment Computations 161
5.2.3. Multi-segment Computations 164
5.2.4. Program Relocation 167
5.2,5. Conclusion 169

5.3. Placement Algorithms 169

5.3.1. Contiguous segments 170
5.3.2. Paged segments 173
5.3.3. Conclusion 178

5.4. Store Multiplexing 178

5.4.1. Demand Fetching 178
5.4.2. Process Behavior 182

xvi CONTENTS

5.4.3. Load Control 184
5.4.4. Refinements 188
5.4.5. Conclusion 190

5.5. Literature 191

6 sCHEDULING ALGORITHMS 193

6.1. Queuing System Model 194

6.1.1. The Arrival Pattern 195
6.1.2. The Service Pattern 197
6.1.3. Performance Measures 201
6.1.4. A Conservation Law 202

6.2. Non-preemptive Scheduling 204

6.2.1. First-come First-served 206
6.2.2. Shortest Job Next 208
6.2.3. Highest Response Ratio Next 209

6.3. Preemptive Scheduling 213

6.3.1. Round Robin Scheduling 214
6.3.2. Limited Swapping 221

6.4. Literature 224

7 RESOURCE PROTECTION 225

7.1. Introduction 225

7,2. Class Concept 226

7.3. Capabilities 232

7.4. Conclusion 234

7.5. Literature 234

8 A CASE STUDY: RC 4000 237

8.1. System Objectives 238

CONTENTS xvii

8.2.

8.3.

8.4.

8.5.

Basic Concepts 239

8.2,1. Programs and Internal Processes 239
8.2.2. Documents and External Processes 240
8.2.3. Monitor 241

Process Communication 241

8.3.1. Messages and Answers 241
8.3.2. Advantages of Message Buffering
8.3.3. Event Primitives 244

External Processes 247

8.4.1. Input/output 247
8.4.2. Mutual Exclusion 249
8.4.3. Process Identification 249
8.4.4. Replacement of External Processes

Internal Processes 251

8.5.1. Scheduling Primitives 251
8.5.2. Process Hierarchy 253

8.6. Resource Protection 254

243

8.7.

250

8.8.

8.9,

8.10.

8.6.1. Processor Allocation 255
8.6.2. Store Allocation 256
8.6.3. Message Buffers and Process Descriptions
8.6.4. Peripheral Devices 257
8.6.5. Privileged Operations 258

Monitor Features 258

8.7.1. Real-time Synchronization
8.7.2. Conversational Access 259
8.7.3. File System 260

259

Basic Operating System 263

8.8.1. Process Control 263
8.8.2. System Initialization 267

Size and Performance 268

Implementation Details 269

8.10.1. Process Communication 270
8.10.2. Process Scheduling 273
8.10.3. Preemption and Input/output 280
8.10.4. Interruptable Monitor Procedures 281

256

xviii CONTENTS

8.11. A Critical Review 281

8.11.1. System Advantages 282
8.11.2. System Disadvantages 283

8.12. Literature 285

EXERCISES 287

ANSWERS 309

VOCABULARY 335

INDEX TO VOCABULARY 341

REFERENCES 343

INDEX TO ALGORITHMS 351

INDEX 353

A N OVERVIEW OF OPERATING SYSTEMS

This chapter describes the purpose and technological background of
operating systems. It stresses the similarities of all operating systems and
points out the advantages of special-purpose over general-purpose systems.

1,1. THE PURPOSE OF AN OPERATING SYSTEM

1.1.1. Resource Sharing

An operating system is a set of manual and automatic procedures that
enable a group of people to share a computer installation efficiently.

The key word in this definition is sharing: it means that people will
compete for the use of physical resources such as processor time, storage
space, and peripheral devices; but it also means that people can cooperate
by exchanging programs and data on the same installation. The sharing of a
computer installation is an economic necessity, and the purpose of an
operating system is to make the sharing tolerable.

An operating system must have a policy for choosing the order in which
competing users are served and for resolving conflicts of simultaneous
requests for the same resources; it must also have means of enforcing this
policy in spite of the presence of erroneous or malicious user programs.

2 AN OVERVIEW OF OPERATING SYSTEMS Chap. 1

Present computer installations can execute several user programs
simultaneously and allow users to retain data on backing storage for weeks
or months. The simultaneous presence of data and programs belonging to
different users requires that an operating system protect users against each
other.

Since users must pay for the cost of computing, an operating system
must also perform accounting of the usage of resources.

In early computer installations, operators carried out most of these
functions. The purpose of present operating systems is to carry ou t these
tasks automatically by means of the computer itself. But when all
these aspects of sharing are automated, it becomes quite difficult for the
installation management to find out what the computer is actually doing
and to modify the rules of sharing to improve performance. A good
operating system will assist management in this evaluation by collecting
measurements on the utilization of the equipment.

Most components of present computer installations are sequential in
nature: they can only execute operations or transfer data items one at a
time. But it is possible to have activities going on simultaneously in several
of these components . This influences the design of operating systems so
much that our subject can best be described as the management of shared
multiprogramming systems.

1.1.2. Virtual Machines

An operating system defines several languages in which the rules of
resource sharing and the requests for service can be described. One of these
languages is the job control language, which enables users to identify
themselves and describe the requirements of computat ional jobs: the types
and amounts of resources needed, and the names of programs and data files
used.

Another language is the virtual machine language: the set of machine
operations available to a user during program execution. To maintain
control of a computer installation and isolate users from each other, an
operating system must prevent user programs from executing certain
operations; otherwise, these programs could destroy procedures or data
inside the operating system or start inpu t /ou tpu t on peripheral devices
assigned to other users. So the set of machine operations available to users
is normally a subset of the original machine language.

But users must have some means of doing input /output . The operating
system enables them to do so by calling certain standard procedures that
handle the peripherals in a well-defined manner. To the user programs,
these standard procedures appear to be extensions of the machine language
available to them. The user has the illusion of working on a machine that
can execute programs written in this language. Because this machine is

Sec. 1.1. THE PURPOSE OF AN OPERATING SYSTEM 3

partly simulated by program, it is called a virtual machine. So an operating
system makes a virtual machine available to each user and prevents these
machines from interfering destructively with each other. The simultaneous
presence of several users makes the virtual machines much slower than the
physical machine.

An operating system can make the programming language of the virtual
machine more attractive than that of the original machine. This can be
done by relieving the user of the burden of technological details such as the
physical identity of peripheral devices and minor differences in their
operation. This enables the user to concentrate on logical concepts such as
the names of data files and the transfer of data records to and from these
files. The virtual machine can also be made more attractive by error
correction techniques; these make the virtual machine appear more reliable
than the real one (for example, by automatic repetition of unsuccessful
input /output operations). In this way an operating system may succeed in
making a virtue out of a necessity.

Yet another language is the one used inside the operating system itself
to define the policy of sharing, the rules of protection, and so on. A certain
amount of bit ter experience with present operating systems has clearly
shown that an operating system may turn out to be inefficient, unreliable,
or built on wrong assumptions just like any other large program. Operating
systems should be designed so that they are simple to understand, and easy
to use and modify. Even if an operating system works correctly, there is
still a need for experimenting with its policy towards users and for adapting
it to the requirements of a particular environment, so it is important not
only to give users an attractive programming language, but also to design
good programming tools to be used inside the operating system itself. But
since the operating system is imposed on everyone, it is extremely
important that the language used to implement it reflect the underlying
machine features in an efficient manner.

1.1.3. Operating Systems and User Programs

Operating systems are large programs developed and used by a changing
group of people. They are of ten modified considerably during their
lifetimes. Operating systems must necessarily impose certain restrictions on
all users. But this should not lead us to regard them as being radically
different from other programs--they are just complicated applications of
general programming techniques.

During the construction of operating systems over the past decade, new
methods of multiprogramming and resource sharing were discovered. We
now realize that these methods are equally useful in other programming
applications. Any large programming effort will be heavily influenced by
the characteristics and amounts of physical resources available, by the

4 AN OVERVIEW OF OPERATING SYSTEMS Chap. 1

possibility of executing smaller tasks simultaneously, and by the need for
sharing a set of data among such tasks.

It may be useful to distinguish between operating systems and user
computat ions because the former can enforce certain rules of behavior on
the latter. But it is important to understand that each level of programming
solves some aspect of resource allocation.

Let me give a few examples of the influence of resource sharing on the
design of standard programs and user programs.

Store allocation. One of the main reasons for dividing a compiler into
smaller parts (called passes) is to allocate storage efficiently. During a
compilation, the passes can be loaded one at a time from drum or disk into
a small internal store where they are executed.

Job scheduling. A data processing application for an industrial plant can
involve quite complicated rules for the sequence in Which smaller tasks are
scheduled for execution. There may be a daily job which records details of
production; weekly and monthly jobs which compute wages; a yearly job
associated with the fiscal year; and several other jobs. Such long-term
scheduling of related jobs which share large data files is quite difficult to
control automatically. In contrast, most operating systems only worry
about the scheduling of independent jobs over time spans of a few minutes
or hours.

Multiprogramming. To control an industrial process, engineers must be
able to write programs that can carry out many tasks simultaneously, for
example, measure process variables continuously, report alarms to
operators, accumulate measurements of production, and print reports to
management.

Program protection. The ability to protect smaller components of a
large program against each other is essential in real-time applications (such
as banking and t icket reservation) where the service of reliable program
components must be continued while new components are being tested.

So the problems of resource sharing solved by operating systems repeat
themselves in user programs; or, to put it differently, every large
application of a computer includes a local operating system that
coordinates resource sharing among smaller tasks of that application. What
is normally called " the operating sys tem" is just the one that coordinates
the sharing of an entire installation among users.

When you realize that resource sharing is not a unique characteristic of
operating systems, you may wonder whether the simulation of virtual
machines makes operating systems different from other programs. But alas,
a closer inspection shows that all programs simulate virtual machines.

Computer programs are designed to solve a class of problems such as

Sec. 1.2. TECHNOLOGICAL BACKGROUND 5

the editing of all possible texts, the compilation of all possible Algol
programs, the sorting of arbitrary sets of data, the computat ion of payrolls
for a varying number of employees, and so on. The user specifies a
particular case of the class of problems by means of a set of data, called the
input, and the program delivers as its result another set of data, called the
output.

One way of looking at this flexibility is to say that the input is a
sequence of instructions written in a certain language, and the function of
the program is to follow these instructions.

From this point of view, an editing program can execute other
programs written in an editing language consisting of instructions such as
search, delete, and insert textstring. And an Algol compiler can execute
programs written in the Algol 60 language. The computer itself can be
viewed as a physical implementation of a program called the instruction
execution cycle. This program can carry out other programs written in a
so-called machine language.

If we adopt the view that a computer is a device able to follow and
carry out descriptions of processes written in a formal language, then we
realize that each of these descriptions (or programs) in turn makes the
original computer appear to be another computer which interprets a
different language. In other words, an editing program makes the computer
behave like an editing machine, and an Algol compiler turns it into an Algol
60 machine. Using slightly different words, we can say that a program
executed on a physical machine makes that machine behave like a virtual
machine which can interpret a different programming language. And this
language is certainly more attractive for its purpose than the original
machine language; otherwise, there would be no reason to write the
program in the first place!

From these considerations it is hard to avoid the conclusion that
operating systems must be regarded merely as large application programs.
Their purpose is to manage resource sharing, and they are based on general
programming methods. The proper aim of education is to identify these
methods. But before we do that, I will briefly describe the technological
development of operating systems. This will give you a more concrete idea
of what typical operating systems do and what they have in common.

1.2. TECHNOLOGICAL BACKGROUND

1.2.1. Computer and Job Profiles

We now go back to the middle of the 1950's to trace the influence of
the technological development of computers on the structure of operating
systems.

When many users share a computer installation, queues of computa-

6 AN OVERVIEW OF OPERATING SYSTEMS Chap. 1

tions submitted for execution are normally formed, and a decision has to
be made about the order in which they should be executed to obtain
acceptable overall service. This decision rule is called a scheduling
algorithm.

A computat ion requested by a user is called a job; it can involve the
execution of several programs in succession, such as editing fol lowed by
compilation and execution of a program written in a high-level language. A
job can also require simultaneous execution of several programs cooperat-
ing on the same task. One program may, for example, control the printing
of data, while another program computes more output .

In the following, I justify the need for automatic scheduling of jobs by
quite elementary considerations about a computer installation with the
following characteristics:

instruction execution time
internal store
card reader
line printer
magnetic tape stations

2/~sec
32 K words

1,000 cards/min
1,000 lines/min

80,000 char/sec

(1 ~ = 10-6 , and 1 K = 1024).
We will consider an environment in which the main problem is to

schedule a large number of small jobs whose response times are as short as
possible. {The response time of a job is the interval between the request for
its execution and the return of its results.) This assumption is justified for
universities and engineering laboratories where program development is the
main activity.

A number of people have described the typical job profile for this type
of environment (Rosin, 1965; Walter, 1967). We will assume that the
average job consists of a compilation and execution of a program writ ten in
a high-level language. The source text read from cards and listed on a
printer, is the major part of the input /output . More precisely, the average
job will be characterized by the following figures:

input time (300 cards) 0.3 min
ou tpu t time (500 lines) 0.5 min
execution time 1 min

1.2.2. Batch-processing Systems

For the moment we will assume that magnetic tape is the only form of
backing store available. This has a profound influence on the possible forms
of scheduling. We also impose the technological restriction on the computer
that its mode of operation be strictly sequential. This means that: (1) it can

Sec. 1.2. TECHNOLOGICAL BACKGROUND 7

only execute one program at a time; and (2) after the start of an
input /output operation, program execution stops until the transfer of data
has been completed.

The simplest scheduling rule is the open shop where users each sign up
for a period of, say, 15 min and operate the machine themselves. For the
individual user this is an ideal form of service: it enables him to correct
minor programming errors on the spot and experiment with programs
during their execution. Unfortunately, such a system leads to prohibitive
costs of idle machinery: for an average job, the central processor will only
be working for one out of every 15 min; the rest of the time will be spent
waiting for the operator. The situation can be characterized by two simple
measures of average performance:

processor utilization = execution t ime/total time

throughput = number of jobs executed per time unit

For the open shop, processor utilization is only about 7 per cent with a
throughput of no more than 4 jobs per hour, each requiring only one
minute of execution time(!).

Idle processor time caused by manual intervention can be greatly
reduced by even the most primitive form of automatic scheduling. Figure
1.1 illustrates an installation in which users no longer can interact with
programs during execution. They submit their jobs to an operator who
stacks them in the card reader in their order of arrival. From the card
reader, jobs are input directly to the computer, listed on the printer, and
executed one by one. This scheduling is done by an operating system which
resides permanently in the internal store.

Under this form of scheduling an average job occupies the computer for
1.8 min (the sum of input /output and execution times). This means that
processor utilization has been improved to 55 percent with a corresponding
throughput of 33 jobs per hour.

But even this simple form of automatic scheduling creates new
problems: How do we protect the operating system against erroneous user
programs? How can we force user programs to return control to the
operating system when they are finished, or if they fail to terminate after a

f I
Input Execution Output

Fig. 1.1 Automatic scheduling of a job queue input directly
from a card reader, executed, and output directly

on a line printer by a single processor.

8 AN OVERVIEW OF OPERATING SYSTEMS Chap. 1

period of time defined by the operating system? Early operating systems
offered no satisfactory solutions to these problems and were frequently
brought down by their jobs. We will ignore this problem at the moment and
return to it in the chapters on processor management and resource
protection.

This argument in favor of automatic scheduling has ignored the
processor time that is lost while the operator handles the peripheral
devices: inserting paper in the printer, mounting tapes for larger jobs, and
so forth. The argument has also ignored processor time that is wasted when
the operator makes a mistake. But these factors are ignored throughout the
chain of arguments and do not affect the trend towards bet ter utilization of
the processor.

The main weakness is that the argument did not include an evaluation
of the amount of processor time used by the new component - - the
operating system. The reason for this omission is that an operating system
carries out certain indispensable functions (input /output , scheduling, and
accounting) which previously had to be done elsewhere in the installation
by operators and users. The relevant factor here--the amount of processor
time lost by an inefficient implementation of the operating system--
unfortunately cannot be measured. But in any case, the figures given in the
following are not my estimates, but measurements of the actual
performance of some recent operating systems.

The bot t leneck in the previous simple system is the slow input /ou tpu t
devices; they keep the central processor waiting 45 per cent of the time
during an average job execution. So the next step is to use the fast tape
stations to implement a batch processing system as shown in Fig. 1.2. First,
a number of jobs are collected from users by an operator and copied from

I I I
I
I

Input on a
= small computer

I
I

Execution on a
main computer

•//•/J Output on a
small computer

Fig. 1.2 Batch processing of jobs in three phases: input of
cards to tape on a small computer; execution with tape
input/output on a main computer; and output of tape to

printer on a small computer.

Sec.l.2. TECHNOLOGICAL BACKGROUND 9

cards to magnetic tape on a small, cheap computer . This tape is carried by
the operator to the main computer , which executes the batch of jobs one
by one, delivering their ou tpu t to another tape. Finally, this ou tpu t tape is
carried to the small computer and listed on the printer. Notice that
although jobs are executed in their order of arrival inside a batch, the
printed ou tpu t of the first job is not available until the entire batch has
been executed.

During the execution of a batch on the main computer , the operator
uses the small computer to print the ou tpu t of an earlier batch and input a
new batch on tape. In this way the main computer , as well as the card
reader and printer, is kept busy all the time. Input /ou tpu t delays on the
main computer are negligible in this system, but another source of idle time
has appeared: the mounting and dismounting of tapes. This can only be
reduced by batching many jobs together on a single tape. But in doing so
we also increase the waiting time of users for the results of their jobs. This
dilemma between idle processor time and user response time can be
expressed by the following relation:

processor utilization =
batch execution time
batch response time

where

batch response time = batch mounting time + batch execution t ime

This can also be rewritten as follows:

batch response time =
batch mounting time

1 - processor utilization

Since there is a limit to the amount of idle processor time management
is prepared to accept, the net result is that response time for users is still
determined by the manual speed of operators! In the installation
considered a batch cycle typically proceeds as follows:

Delivery time of 50 jobs 30 min
Conversion of cards to tape 15 min
Mounting of tapes 5 min
Batch execution 50 min
Conversion of tape to printer 25 min
Manual separation of ou tpu t 15 min

Total batch cycle 140 min

With a tape mounting time of 5 min per batch, utilization of the main
processor is now as high as 50/55 = 90 per cent, and throughput has

10 AN OVERVIEW OF OPERATING SYSTEMS Chap. 1

reached 55 jobs per hour. But at the same time, the shortest response time
for any job is 140 min. And this is obtained only if the job joins a batch
immediately after submission.

We have also ignored the problem of the large jobs: When jobs requiring
hours for execution are included in a batch, the jobs following will
experience much longer response times. Most users are only interested in
fast response during working hours. So an obvious remedy is to let the
operators sort jobs manually and schedule the shorter ones during the
daytime and the longer ones at night.

If the operator divides the jobs into three groups, the users might
typically expect response times of the following order:

1-minjobs: 2-3 hours
5-min jobs: 8-10 hours
other jobs: 1-7 days

We have followed the rationale behind the classical batch-processing
system of the late 1950's (Bratman, 1959). The main concern has been to
reduce idle processor time, unfortunately with a resultant increase in user
response time.

In this type of system the most complicated aspects of sharing are still
handled by operators, for example, the scheduling of simultaneous
input/output and program execution on two computers, and the
assignment of priorities to user jobs. For this reason I have defined an
operating system as a set of manual and automatic procedures that enable a
group of people to share a computer installation efficiently (Section 1.1.1).

1.2.3. Spooling Systems

It is illuminating to review the technological restrictions that dictated
the previous development towards batch processing. The first one was the
strict sequential nature of the computer which made it necessary to prevent
conversational interaction with running programs; the second limitation
was the sequential nature of the backing store (magnetic tapes) which
forced us to schedule large batches of jobs strictly in the order in which
they were input to the system.

The sequential restrictions on scheduling were made much less severe
(but were by no means removed) by technological developments in the
early 1960's. The most important improvement was the design of
autonomous peripheral devices which can carry out input/output opera-
tions independently while the central processor continues to execute
programs.

The problem of synchronizing the central processor and the peripheral
devices after the completion of input/output operations was solved by the

Sec. 1.2. TECHNOLOGICAL BACKGROUND 11

interrupt concept. An interrupt is a timing signal set by a peripheral device
in a register connected to a central processor. It is examined by the central
processor after the execution of each instruction. When an interrupt occurs,
the central processor suspends the execution of its current program and
starts another program--the operating system. When the operating system
has responded properly to the device signal, it can either resume the
execution of the interrupted program or start a more urgent program (for
example, the one that was waiting for the input/output) .

This technique made concurrent operation of a central processor and its
peripheral devices possible. The programming technique used to control
concurrent operation is called multiprogramming.

It was soon realized that the same technique could be used to simulate
concurrent execution of several user programs on a single processor. Each
program is allowed to execute for a certain period of time, say of the order
of 0.1-1 sec. At the end of this interval a timing device interrupts the
program and starts the operating system. This in turn selects another
program, which now runs until a timing interrupt makes the system switch
to a third program, and so forth.

This form of scheduling, in which a single resource (the central
processor) is shared by several users, one at a time in rapid succession, is
called multiplexing. Further improvements are made possible by enabling a
program to ask the operating system to switch to other programs while it
waits for input /output .

The possibility of more than one program being in a state of execution
at one time has considerable influence on the organization of storage. It is
no longer possible to predict in which part of the internal store a program
will be placed for execution. So there is no fixed correspondence at
compile time between the names used in a program to refer to data and the
addresses of their store locations during execution. This problem of
program relocation was first solved by means of a loading program, which
examined user programs before execution and modified addresses used in
them to correspond to the store locations actually used.

Later, program relocation was included in the logic of the central
processor: a base register was used to modify instruction addresses
automatically during execution by the start address of the storage area
assigned to a user. Part of the protection problem was solved by extending
this scheme with a limit register defining the size of the address space
available to a user; any a t tempt to refer to data or programs outside this
space would be trapped by the central processor and cause the operating
system to be activated.

The protection offered by base and limit registers was, of course,
illusory as long as user programs could modify these registers. The
recognition of this flaw led to the design of central processors with two
states of execution: a privileged state, in which there are no restrictions on

12 AN OVERVIEW OF OPERATING SYSTEMS Chap. 1

the operations executed; and a user state, in which the execution of
operations controlling interruption, input /output , and store allocation is
forbidden and will be trapped if at tempted. A transition to the privileged
state is caused by interrupts from peripherals and by protection violations
inside user programs. A transition to the user state is caused by execution
of a privileged operation.

It is now recognized that it is desirable to be able to distinguish in a
more flexible manner between many levels of protect ion (and not just
two). This early protect ion system is safe, but it assigns more responsibility
to the operating system than necessary. The operating system must, for
example, contain code which can start input /output on every type of
device because no other program is allowed to do that. But actually, all that
is needed in this case is a mechanism which ensures that a job only operate
devices assigned to it; whether a job handles its own devices correctly or
not is irrelevant to the operating system. So a centralized protect ion
scheme tends to increase the complexity of an operating system and make
it a bot t leneck at run time. Nevertheless, this early protection scheme must
be recognized as an invaluable improvement: clearly, the more responsibil-
ity management delegates to an operating system, the less they can tolerate
that it breaks down.

Another major innovation of this period was the construction of large
backing stores, disks and drums, which permit fast, direct access to data
and programs. This, in combination with multiprogramming, makes it
possible to build operating systems which handle a continuous stream of
input, computat ion, and output on a single computer . Figure 1.3 shows
the organization of such a spooling system. The central processor is
multiplexed between four programs: one controls input of cards to a queue
on the backing store; another selects user jobs from this input queue and

Backing
store

Input
queue

Output
queue

Internal
store

Input
program

Scheduling
program

Output
program

User
program

Card I reader

Line
printer

Fig. 1.3 A spoolingsystem controlling continuous buffering
of input/output on backing storage and sequential

scheduling of user jobs.

Sec. 1.2. TECHNOLOGICAL BACKGROUND 13

starts their execution one at a time; and a third one controls printing of
output from the backing store. These three programs form the operating
system. The fourth program held in the internal store is the current user
program which reads its data from the input queue and writes its results in
an output queue on the backing store.

The point of using the backing store as a buffer is that the input of a
job can be fed into the machine in advance of its execution; and its output
can be printed during the execution of later jobs. This eliminates the
manual overhead of tape mounting. At the same time, direct access to the
backing store makes it possible to schedule jobs in order of priority rather
than in order of arrival. The spooling technique was pioneered on the Atlas
computer at Manchester University (Kilburn, 1961).

A very successful operating system with input /output spooling,
called Exec H, was designed by Computer Sciences Corporation (Lynch,
1967 and 1971). It controlled a Univac 1107 computer with an instruction
execution time of 4 psec. The backing store consisted of two or more fast
drums, each capable of transferring 10,000 characters during a single
revolution of 33 msec. The system typically processed 800 jobs per day,
each job requiring an average of 1.2 min. It was operated by the users
themselves: To run a job, a user simply placed his cards in a reader and
pushed a button. As a rule, the system could serve the users faster than
they could load cards. So a user could immediately remove his cards from
the reader and proceed to a printer where his output would appear shortly.

Less than 5 per cent of the jobs required magnetic tapes. The users who
needed tapes had to mount them in advance of program execution.

Fast response to student jobs was achieved by using the scheduling
algorithm shortest job next. Priorities were based on estimates of execution
time supplied by users, but jobs that exceeded their estimated time limits
were terminated by force.

Response times were so short that the user could observe an error,
repunch a few cards, and resubmit his job immediately. System
performance was measured in terms of the circulation time of jobs. This
was defined as the sum of the response time of a job after its submission
and the time required by the user to interpret the results, correct the cards,
and resubmit the job; or, to put it more directly, the circulation time was
the interval between two successive arrivals of the same job for execution.

About a third of all jobs had a circulation time of less than 5 min, and
90 per cent of all jobs were recirculated ones that had already been run one
or more times the same day. This is a remarkable achievement compared to
the earlier batch-processing system in which small jobs took a few hours to
complete! At the same time, the processor utilization in the Exec H system
was as high as 90 per cent.

The Exec H system has demonstrated that many users do not need a
direct, conversational interaction with programs during execution. Users

14 AN OVERVIEW OF OPERATING SYSTEMS Chap. 1

will often be quite satisfied with a non-interactive system which offers
them informal access, fast response, and minimal cost.

Non-interactive scheduling of small jobs with fast response is
particularly valuable for program testing. Program tests are usually short in
duration: After a few seconds the ou tpu t becomes meaningless due to a
programming error. The main thing for the programmer is to get the initial
ou tpu t as soon as possible and to be able to run another test after
correcting the errors shown by the previous test.

There are, however, also cases in which the possibility of interacting
with running programs is highly desirable. In the following section, I
describe operating systems which permit this.

1.2.4. Interactive Systems

To make direct conversation with running programs tolerable to human
beings, the computer must respond to requests within a few seconds. As an
experiment, try to ask a friend a series of simple questions and tell him to
wait ten seconds before answering each of them; I am sure you will agree
that this form of communicat ion is not well-suited to the human
temperament .

A computer can only respond to many users in a few seconds when the
processing time of each request is very small. So the use of multi-
programming for conversation is basically a means of giving fast response to
trivial requests; for example, in the editing of programs, in t icket
reservation systems, in teaching programs, and so forth. These are all
situations in which the pace is limited by human thinking. They involve
very moderate amounts of inpu t /ou tpu t data which can be handled by
low-speed terminals such as typewriters or displays.

In interactive systems in which the processor time per request is only a
few hundred milliseconds, scheduling cannot be based on reliable user
estimates of service time. This uncertainty forces the scheduler to allocate
processor t ime in small slices. The simplest rule is round-robin scheduling:
each job in turn is given a fixed amount of processor time called a time
slice; if a job is not completed at the end of its time slice, it is interrupted
and returned to the end of a queue to walt for another t ime slice. New jobs
are placed at the end of the queue. This policy guarantees fast response to
user requests that can be processed within a single time slice.

Conversational access in this sense was first proposed by Strachey
(1959). The creative advantages of a closer interaction between man and
machine were pointed out a few years later by Licklider and Clark (1962).
The earliest operational systems were the CTSS system developed at
Massachusetts Institute of Technology and the SDC Q-32 system built by
the System Development Corporation. They are described in excellent
papers by Corbato (1962) and Schwartz {1964 and 1967).

Sec. 1.2. TECHNOLOGICAL BACKGROUND 15

User
terminals

Backing Main Terminal
store Operating processor processor ~ I I

Job system
queue

Active
job

Fig. 1.4 An interactive system with low-speed user terminals
and swapping of jobs between internal and backing storage.

Figure 1.4 illustrates the SDC Q-32 system in a simplified form, ignor-
ing certain details. An internal store of 65 K words is divided between a
resident operating system and a single active user job; the rest of the jobs
are kept on a drum with a capacity of 400 K words.

The average time slice is about 40 msec. At the end of this interval, the
active job is transferred to the drum and another job is loaded into the
internal store. This exchange of jobs between two levels of storage is called
swapping. It takes roughly another 40 msec. During the swapping, the
central processor is idle so it is never utilized more than 50 per cent of the
time.

During the daytime the system is normally accessed simultaneously by
about 25 user terminals. So a user can expect response to a simple request
(requiring a single time slice only) in 25*80 msec = 2 sec.

A small computer controls terminal input /output and ensures that users
can continue typing requests and receiving replies while their jobs are
waiting for more time. A disk of 4000 K words with an average access time
of 225 msec is used for semi-permanent storage of data files and programs.

The users communicate with the operating system in a simple job
control language with the following instructions:

LOGIN: The user identifies himself and begins using the system.

LOAD: The user requests the transfer of a program from disk to
drum.

START: The user starts the execution of a loaded program or
resumes the execution of a stopped program.

STOP: The user stops the execution of a program temporarily.

DIAL: The user communicates with other users or with system
operators.

LOGOUT: The user terminates his use of the system.

16 AN OVERVIEW OF OPERATING SYSTEMS Chap. 1

The system has been improved over the years: Processor utilization has
been increased from 50 to 80 per cent by the use of a more complicated
scheduling algorithm. Nevertheless, it is still true that this system and
similar ones are forced to spend processor time on unproduct ive transfers
of jobs between two levels o f storage: Interactive systems achieve
guaranteed response to short requests at the price of decreased processor
utilization.

In the SDC Q-32 system with an average of 25 active users, each user is
slowed down by a factor of 50. Consequently, a one-minute job takes
about 50 min to complete compared to the few minutes required in the
Exec H system. So interactive scheduling only makes sense for trivial
requests; it is not a realistic method for computat ional jobs that run for
minutes and hours.

Later and more ambitious projects are the MULTICS system (Corbato,
1965) also developed at MIT, and the IBM system TSS-360 (Alexander,
1968). In these systems, the problem of store multiplexing among several
users is solved by a more refined method: Programs and data are transferred
between two levels of storage in smaller units, called pages, when they are
actually needed during the execution of jobs. The argument is that this is
less wasteful in terms of processor time than the crude method of swapping
entire programs. But experience has shown that this argument is no t always
valid because the overhead of starting and completing transfers increases
when it is done in smaller portions. We will look at this problem in more
detail in the chapter on store management. The paging concept was
originally invented for the Atlas computer (Kilburn, 1962).

Another significant contr ibut ion of these systems is the use of large
disks for semi-permanent storage of data and programs. A major problem in
such a filing system is to ensure the integrity of data in spite of occasional
hardware failures and protect them against unauthorized usage. The
integrity problem can be solved by periodic copying of data from disk to
magnetic tape. These tapes enable an installation to restore data on the disk
after a hardware failure. This is a more complicated example of the design
goal ment ioned in Section 1.1.2: An operating system should try to make
the virtual machine appear more reliable than the real one.

The protect ion problem can be solved by a password scheme which
enables users to identify themselves and by maintaining as part of the filing
system a directory describing the author i ty of users (Fraser, 1971).

Interactive systems can also be designed for real-time control of
industrial processes. The central problem in a real-time environment is that
the computer must be able to receive data as fast as they arrive; otherwise,
they will be lost. (In that sense, a conversational system also works under
real-time constraints: It must receive input as fast as users type it.)

Usually, a process control system consists of several programs which are
executed simultaneously. There may, for example, be a program which is
started every minute to measure various temperatures, pressures, and flows

Sec. 1.3. THE SIMILARITIES OF OPERATING SYSTEMS 17

and compare these against preset alarm limits. Each time an alarm
condition is detected, another program is started to report it to an
operator, and while this is being done, the scan for further alarms
continues. Still other programs may at the same time accumulate
measurements on the production and consumption of materials and energy.
And every few hours these data are probably printed by yet another
program as a report to plant management.

This concludes the overview of the technological background of shared
computer installations. I have tried through a series of simple arguments to
illustrate the influence of technological constraints on the service offered
by operating systems. Perhaps the most valid conclusion is this: In spite of
the ability of present computer installations to perform some operations
simultaneously, they remain basically sequential in nature; a central
processor can only execute one operation at a time, and a drum or disk can
only transfer one block of data at a time. There are computers and backing
stores which can c a r ~ out more than one operation at a time, but never to
the extent where the realistic designer of operating systems can afford to
forget completely about sequential resource constraints.

1.3. THE SIMILARITIES OF OPERATING SYSTEMS

The previous discussion may have left the impression that there are
basic differences between batch processing, spooling, and interactive
systems. This is certainly true as long as we are interested mainly in the
relation between the user service and the underlying technology. But to
gain a deeper insight into the nature of operating systems, we must look for
their similarities before we stress their differences.

To mention one example: All shared computer installations must
handle concurrent activities at some level. Even if a system only schedules
one job at a time, users can still make their requests simultaneously. This is
a real-time situation in which data (requests) must be received when they
arrive. The problem can, of course, be solved by the users themselves (by
forming a waiting line) and by the operators (by writing down requests on
paper); but the observation is important since our goal is to handle the
problems of sharing automatically.

It is also instructive to compare the batch-processing and spooling
systems. Both achieve high efficiency by means of a small number of
concurrent activities: In the batch processing system, independent
processors work together; in the spooling system, a single processor
switches among independent programs. Furthermore, both systems use
backing storage (tape and drum) as a buffer to compensate for speed
variations of the producers and consumers of data.

As another example, consider real-time systems for process control and
conversational programming. In these systems, concurrently executed

18 AN OVERVIEW OF OPERATING SYSTEMS Chap. 1

programs must be able to exchange data to cooperate on common tasks.
But again, this problem exists in all shared computer installations: In a
spooling system, user computat ions exchange data with concurrent
input /output processes; and in a batch processing system, another set of
concurrent processes exchanges data by means of tapes mounted by
operators.

As you see, all operating systems face a common set of problems. To
recognize these, we must reject the established classification of operating
systems (into batch processing, spooling, and interactive systems) which
stresses the dissimilarities of various forms of technology and user service.
This does not mean that the problems of adjusting an operating system to
the constraints of a particular environment should be ignored. But the
designer will solve them much more easily when he fully understands the
principles common to all operating systems.

1.4. DESIGN OBJECTIVES

The key to success in programming is to have a realistic, clearly-defined
goal and use the simplest possible methods to achieve it. Several operating
systems have failed because their designers started with very vague or
overambitious goals. In the following discussion, I will describe two quite
opposite views on the overall objectives of operating systems.

1.4.1. Special-purpose Systems

The operating systems described so far have one thing in common:
Each of them tries to use the available resources in the most simple and
efficient manner to give a restricted, but useful form of computat ional
service.

The Exec H spooling system, for example, strikes a very careful balance
between the requirements of fast response and efficient utilization. The
overhead of processor and store multiplexing is kept low by executing jobs
one at a time. But with only one job running, processor time is lost when a
job waits for input /output . So to reduce input /ou tpu t delays, data are
buffered on a fast drum. But since a drum has a small capacity, it becomes
essential to keep the volume of buffered data small. This again depends on
the achievement of short response t ime for the following reason: the faster
the jobs are completed, the less time they occupy space within the system.

The keys to the success of the Exec H are that the designers: (1) were
aware of the sequential nature of the processor and the drum, and
deliberately kept the degree of multiprogramming low; and (2) t o o k
advantage of their knowledge of the expected workload--a large number of

Sec. 1.4. DESIGN OBJECTIVES 19

small programs executed wi thout conversational interaction. In short, the
Exec H is a simple, very efficient system that serves a special purpose.

The SDC Q-32 serves a different special purpose: conversational
programming. It sacrifices 20 per cent of its processor time to give response
within a few seconds to 25 simultaneous users; its operating system
occupies only 16 K words of the internal store. This too is a simple,
successful system.

The two systems do not compete with each other. Each gives the users
a special service in a very efficient manner. But the spooling system is
useless for conversation, and so is the interactive system for serious
computat ion.

On the other hand, neither system would be practical in an
environment where many large programs run for hours each and where
operators mount a thousand tapes daffy. This may be the situation in a
large atomic research center where physicists collect and process large
volumes of experimental data. An efficient solution to this problem
requires ye t another operating system.

The design approach described here has been called design according to
performance specifications. Its success strongly suggests that efficient
sharing of a large installation requires a range of operating systems, each of
which provides a special service in the most efficient and simple manner.
Such an installation might, for example, use three different operating
systems to offer:

(1) conversational editing and preparation of jobs;

(2) non-interactive scheduling of small jobs with fast response; and

(3) non-interactive scheduling of large jobs.

These services can be offered on different computers or at different times
on the same computer . For the users, the main thing is that programs
written in high-level languages can be processed directly by all three
systems.

1.4.2. General-purpose Systems

An alternative method is to make a single operating system which offers
a variety of services on a whole range of computers. This approach has
often been taken by computer manufacturers.

The 0S/360 for the IBM 360 computer family was based on this
philosophy. Mealy (1966) described it as follows:

"Because the basic structure of 0S/360 is equally applicable to

20 AN OVERVIEW OF OPERATING SYSTEMS Chap. 1

batchedojob and real-time applications, it may be viewed as one of the first
instances of a second-generation operating system. The new objective of
such a system is to accommodate an environment of diverse applications
and operating modes. Although not to be discounted in importance, various
other objectives are not new--they have been recognized to some degree in
prior systems. Foremost among these secondary objectives are:

o Increased throughput

[] Lowered response time

[] Increased programmer productivity

[] Adaptability (of programs to changing resources)

[] Expandability

"A second-generation operating system must be geared to change and
diversity. System/360 itself can exist in an almost unlimited variety of
machine configurations."

Notice that performance (throughput and response) is considered to be
of secondary importance to functional scope.

An operating system that tries to be all things to all men naturally
becomes very large. 0S/360 is more than an operating system--it is a library
of compilers, utility programs, and resource management programs. It
contains several million instructions. Nash gave the following figures for the
resource management components of 0S/360 in 1966:

Data management 58.6 K statements
Scheduler 45.0
Supervisor 26.0
Utilities 53.0
Linkage editor 12.3
Testran 20.4
System generator 4.4

219.7 K

(Nato report, 1968, page 67).
Because of its size, the 0S/360 is also quite unreliable. To cite Hopkins:

"We face a fantastic problem in big systems. For instance, in 0S/360 we
have about 1000 errors each release and this number seems to be
reasonably constant" (Nato report, 1969, page 20).

This is actually a very low percentage of errors considering the size of
the system.

Sec. 1,5 LITERATURE 21

This method has been called design according to functional specifica-
tions. The results have been generally disappointing, and the reason is
simply this: Resource sharing is the main purpose of an operating system,
and resources are shared most efficiently when the designer takes full
advantage of his knowledge of the special characteristics of the resources
and the jobs using them. This advantage is immediately denied him by
requiring that an operating system must work in a much more general case.

This concludes the overview of operating systems. In the following
chapters, operating systems are studied at a detailed level in an a t tempt to
build a sound theoretical understanding of the general principles of
multiprogramming and resource sharing.

1.5. LITERATURE

This chapter owes much to a survey by Rosin (1969) of the
technological development of operating systems.

With the background presented, you will easily follow the arguments in
the excellent papers on the early operating systems mentioned: Atlas
(Kilburn, 1961; Morris, 1967), Exec II (Lynch, 1967 and 1971), CTSS
(Corbato, 1962), and SDC Q-32 (Schwartz, 1964 and 1967). I recommend
that you study these papers to become more familiar with the purpose of
operating systems before you proceed with the analysis of their
fundamentals. The Atlas, Exec H, and SDC systems are of special interest
because they were critically reevaluated after several years of actual use.

The paper by Fraser (1971) explains in some detail the practical
problems of maintaining the integrity of data in a disk filing system in spite
of occasional hardware malfunction and of protecting these data against
unauthorized usage.

CORBATO, F. J., MERWIN.DAGGETT, M., and DALEY, R. C., "An experimental
time-sharing system," Proc. AFIPS Fall Joint Computer Conf., pp. 335-44, May 1962.

FRASER, A. G., "The integrity of a disc based file system," International Seminar on
Operating System Techniques, Belfast, Northern Ireland, Aug.-Sept. 1971.

KILBURN, T., HOWARTH, D. J., PAYNE, R. B., and SUMNER, F. H., "The
Manchester University Atlas operating system. Part I: Internal organization,"
Computer Journal 4, 3, 222-25, Oct. 1961.

LYNCH, W. C. "Description of a high capacity fast turnaround university computing
center," Proc. ACM National Meeting, pp. 273-88, Aug. 1967.

LYNCH, W. C., "An operating system design for the computer utility environment,"
International Seminar on Operating System Techniques, Belfast, Northern Ireland,
Aug.-Sept. 1971.

22 AN OVERVIEW OF OPERATING SYSTEMS Chap. 1

MORRIS, D., SUMNER, F. H., and WYLD, M. T., "An appraisal of the Atlas
supervisor," Proc. ACM National Meeting, pp. 67.75, Aug. 1967.

ROSIN, R. F., "Supervisory and monitor systems," Computing Surveys 1, 1, pp. 15-32,
March 1969.

SCHWARTZ, J. L, COFFMAN, E. G., and WEISSMAN, C., "A general purpose
time.sharing system," Proc. AFIPS Spring Joint Computer Conf., pp. 397-411, April
1964.

SCHWARTZ, J. I. and WEISSMAN, C., "The SDC timesharing system revisited," Proc.
ACMNationalMeeting, pp. 263-71, Aug. 1967.

SEQUENTIAL PROCESSES

This chapter describes the role of abstraction and structure in problem
solving, and the nature of computations. It also summarizes the structuring
principles of data and sequential programs and gives an example of
hierarchal program construction.

2.1. INTRODUCTION

The starting point of a theory of operating systems must be a sequential
process--a succession of events that occur one at a time. This is the way our
machines work; this is the way we think. Present computers are built from
a small number of large sequential components: store modules which can
access one word at a time, arithmetic units which can perform one addition
at a time, and peripherals which can transfer one data block at a time.
Programs for these computers are written by human beings who master
complexity by dividing their tasks into smaller parts which can be analyzed
and solved one at a time.

This chapter is a summary of the basic concepts of sequential
programming. I assume you already have an intuitive understanding of
many of the problems from your own programming experience. We shall
begin by discussing the role of abstraction and structure in problem solving.

23

24 SEQUENTIAL PROCESSES Chap. 2

2.2. ABSTRACTION AND STRUCTURE

Human beings can think precisely only of simple problems. In our
efforts to understand complicated problems, we must concentrate at any
moment on a small number of properties that we believe are essential for
our present purpose and ignore all other aspects. Our partial descriptions of
the world are called abstractions or models.

One form of abstraction is the use of names as abbreviations for more
detailed explanations. This is the whole purpose of terminology. It enables
us to say "operating sys tem" instead of "a set of manual and automatic
procedures that enable a group of people to share a computer installation
efficiently."

In programming, we use names to refer to variables. This abstraction
permits us to ignore their actual values. Names are also used to refer to
programs and procedures. We can, for example, speak of " the editing
program." And if we understand what editing is, then we can ignore, for
the moment , how it is done in detail.

Once a problem is understood in terms of a limited number of aspects,
we proceed to analyze each aspect separately in more detail. It is often
necessary to repeat this process so that the original problem is viewed as a
hierarchy of abstractions which are related as components within
components at several levels of detail.

In the previous example, when we have defined what an editing
program must do, we can proceed to construct it. In doing so, we will
discover the need for more elementary editing procedures which can
"search," "dele te ," and " inser t" a textstring. And within these procedures,
we will probably write other procedures operating on single characters. So
we end up with several levels of procedures, one within the other.

As long as our main interest is the properties of a component as a
whole, it is considered a primitive component, but, when we proceed to
observe smaller, related components inside a larger one, the latter is
regarded as a structured component or system. When we wish to make a
distinction between a given component and the rest of the world, we refer
to the latter as the environment of that component .

The environment makes certain assumptions about the properties of a
component and vice versa: The editing program assumes that its input
consists of a text and some editing commands, and the user expects the
program to perform editing as defined in the manual. These assumptions
are called the connections between the component and its environment.

The set of connections between components at a given level of detail
defines the structure of the system at that level. The connections between
the editing program and its users are defined in the program manual. Inside
the editing program, the connections between the components "search,"

Sec. 2.2. ABSTRACTION AND STRUCTURE 25

"delete ," and "insert" are defined by what these procedures assume about
the properties and location of a textstring and by what operations they
perform on it.

Abstraction and recognition of structure are used in all intellectual
disciplines to present knowledge in forms that are easily unders tood and
remembered. Our concern is the systematic use of abstraction in the design
of operating systems. We will try to identify problems which occur in all
shared computer installations and define a set of useful components and
rules for connecting them into systems.

In the design of large computer programs, the following difficulties
must be taken for granted: (1) improved understanding of the problems
will change our goals in time; (2) technological innovations will eventually
change our tools; and (3) our intellectual limitations will often cause us to
make errors in the construction of large systems. These difficulties imply
that large systems will be modified during their entire existence by
designers and users, and it is essential that we build such systems with this
in mind. If it is difficult to understand a large system, it is also difficult to
predict the consequences of modifying it. So reliability is intimately related
to the simplici ty of structure at all levels.

Figure 2.1(a) shows a complicated system S, consisting of n compo-
nents SI , $2 , Sn. In this system, each component depends directly on
the behavior of all other components. Suppose an average of p simple steps
of reasoning or testing are required to understand the relationship between
one component and another and to verify that they are properly
connected. Then the connection of a single component to its environment
can be verified in (n - 1) p steps, and the complete system requires
n(n - 1)p steps.

This can be compared with the system shown in Fig. 2.1(b): There, the
connections between the n components are defined by a common set of
constraints chosen so that the number of steps q required to verify whether

P P

(a) (b}

Fig. 2.1 Two examples of system structures.

26 SEQUENTIAL PROCESSES Chap. 2

a component satisfies them is independent of the number of components n.
The p roof or test effort is now q steps per component and nq steps for the
whole system.

The argument is, of course, extreme, but it does drive home the
following point: If the intellectual effort required to understand and test a
system increases more than linearly with the size of the system, we shall
never be able to build reliable systems beyond a certain complexity. Our
only hope is to restrict ourselves to simple structures for which the effort
of verification is proport ional to the number of components .

The importance of precise documentation of system structure can
hardly be overemphasized. Quite often, a group of designers intend to
adopt a simple structure, but they fail to state precisely what the
assumptions are at each level of programming, and instead rely on informal,
spoken agreements. Inevitably, the result is that each member of the group
adds complexi ty to the structure by making unnecessary or erroneous
assumptions about the behavior of components designed by his colleagues.
The importance of making assumptions explicit is especially felt when an
initial version of a system must be modified; perhaps by a different group
of people.

2.3. COMPUTATIONS

In Chapter 1 the word computa t ion was used intuitively to refer to
program execution. In the following, this concept and its components data
and operations are defined explicitly.

2.3.1. Data and Operations

The exchange of facts or ideas among human beings by speech is based
on mutual agreement on the meaning of certain sounds and combinat ions
of sounds. Other conventions enable us to express the same ideas by means
of text and pictures, holes in punched cards, polarity of magnetized media,
and modula ted electromagnetic waves. In short, we communicate by means
of physical phenomena chosen by us to represent certain aspects of our
world. These physical representations of our abstractions are called data,
and the meanings we assign to them are called their information.

Data are used to transmit information between human beings, to store
information for future use, and to derive new information by manipulating
the data according to certain rules. Our most important tool for the
manipulation of data is the digital computer .

A da tum stored inside a computer can only assume a finite set of values
called its type. Primitive types are defined by enumeration of their values,
for example:

Sec. 2.3. COMPUTATIONS 27

type boolean = (false, true)

or by definition of their range:

type integer = - 8388608 . . 8388607

Structured types are defined in terms of primitive types, as is explained
later in this chapter.

The rules of data manipulation are called operations. An operation
maps a finite set of data, called its input, into a finite set of data, called its
output. Once initiated, an operation is executed to completion within a
finite time. These assumptions imply that the ou tpu t of an operation is a
time-independent function of its input, or, to put it differently: An
operation always delivers the same ou tpu t values when it is applied to a
given set of input values.

An operation can be defined by enumeration of its ou tpu t values for all
possible combinations of its input values. This set of values must be finite
since an operation only involves a finite set of data with finite ranges. But
in practice, enumeration is only useful for extremely simple operations
such as the addition of two decimal digits. As soon as we extend this
method of definition to the addition of two decimal numbers of, say, 10
digits each, it requires enumeration of 1 0 2 0 triples (x, y, x + y)!

A more realistic method is to define an operation by a computational
rule involving a finite sequence of simpler operations. This is precisely the
way we define the addition of numbers. But like other abstractions,
computat ional rules are useful intellectual tools only as long as they remain
simple.

The most powerful method of defining an operation is by assertions
about the type of its variables and the relationships be tween their values
before and after the execution of the operation. These relationships are
expressed by statements of the following kind: If the assertion P is true
before initiation of the operation Q, then the assertion R will be true on its
completion. I will use the notat ion

" P" Q " R "

to define such relationships.
As an example, the effect of an operation sort which orders the n

elements of an integer array A in a non-decreasing sequence can be defined
as follows:

"A: array 1 . .n of integer"
sort(A);

"for all i, j: 1 . .n (i ~ j implies A(i) ~ A(j))"

28 SEQUENTIAL PROCESSES Chap. 2

Formal assertions also have limitations: They tend to be as large as the
programs they refer to. This is evident from the simple examples that have
been published (Hoare, 1971a).

The whole purpose of abstraction is a b b r e v i a t i o n . You can often help
the reader of your programs much more by a short, informal s ta tement that
appeals to a common background of more rigorous definition. If your
reader knows what a Fibonacci number is, then why write

"F: array 0 . .n of in teger & j: O. .n &
for all i: 0 . . j (F(i) = if i < 2 then i else F(i - 2) + F(i - 1))"

when the following will do

"F(0) to F (j) are t he f i r s t j + 1 F i b o n a e c i n u m b e r s "

Definition by formal or informal assertion is an abstraction which
enables us to concentrate on what an operation does and ignore the details
of how it is carried out. The t y p e concept is an abstraction which permits
us to ignore the actual values of variables and state that an operation has
the effect defined for all values of the given types.

2.3.2. Processes

Data and operations are the primitive components of computations.
More precisely, a c o m p u t a t i o n is a finite set of operations applied to a
finite set of data in an a t tempt to solve a problem. If a computat ion solves

(a)

x1

3

(b)

Fig. 2.2 A precedence graph of (a) a sequential and (b) a
concurrent computation.

Sec. 2.3. COMPUTATIONS 29

the given problem, it is also called an algorithm. But it is possible that a
computat ion is meaningless in the sense that it does not solve the problem
it was intended to solve.

The operations of a computat ion must be carried out in a certain order
of precedence to ensure that the results of some operations can be used by
others. The simplest possible precedence rule is the execution of operations
in strict sequential order, one at a time. This type of computat ion is called
a sequential process. It consists of a set of operations which are totally
ordered in time.

Figure 2.2(a) shows a precedence graph of the process performed by an
operating system that schedules user computat ions one at a time. Each
node represents an instance of one of the following operations: r (read user
request), x (execute user computat ion) , and p (print user results). The
directed branches represent precedence of operations. In this case:

r l precedes x l ,
x l precedes p l ,
p l precedes r2,
r2 precedes x2,

Most of our computat ional problems require only a partial ordering of
operations in time: Some operations must be carried out before others, bu t
some of them can also be carried out concurrently. This is illustrated in Fig.
2.2(b) by a precedence graph of a spooling system (see Chapter 1, Fig. 1.3).
Here the precedence rules are:

r l precedes x l and r2,
x l precedes p l and x2,
p l precedes p2,
r2 precedes x2 and r3,

Partial ordering makes concurrent execution of some operations
possible. In Fig. 2.2(b), the executions of the following operations may
overlap each other in time:

r2 and x l ,
r3 and x2 and p l ,

In order to understand concurrent computations, it is often helpful to
try to partition them into a number of sequential processes which can be
analyzed separately. This decomposi t ion can usually be made in several
ways, depending on what your purpose is.

30 SEQUENTIAL PROCESSES Chap. 2

If you wish to design a spooling system, then you will probably
partition the computat ion in Fig. 2.2(b) into three sequential processes of a
cyclical nature each in control of a physical resource:

reader process:
scheduler process:
printer process:

r l ; r 2 ; r 3 ; . . .
x l ; x 2 ; x 3 ; . . .
p l ; p 2 ; p 3 ; . . .

These processes can proceed simultaneously with independent speeds,
except during short intervals when they must exchange data: The scheduler
process must receive user requests from the reader process, and the printer
process must be informed by the scheduler process of where user results are
stored. Processes which cooperate in this manner are called loosely
connected processes.

On the other hand, if you are a user, it makes more sense to recognize
the following processes in Fig. 2.2(b):

job 1: r l ; x l ; p l ;
job 2: r2; x2; p2;
job 3: r3 ;x3;p3;

Both decomposit ions are useful for a particular purpose, bu t each of
them also obscures certain facts about the original computat ion. From the
first decomposi t ion it is not evident that the reader, scheduler, and printer
processes execute a stream of jobs; the second decomposi t ion hides the fact
that the jobs share the same reader, processor, and printer. A decomposi-
t ion of a computat ion into a set of processes is a partial description or an
abstraction of that computat ion. And how we choose our abstractions
depends on our present purpose.

The abstractions chosen above illustrate a general principle: In a
successful decomposit ion, the connections between components are much
weaker than the connections inside components . It is the loose connections
or infrequent interactions between the processes above which make it
possible for us to s tudy them separately and consider their interactions
only at a few, well-defined points.

One of the recurrent themes of this book is process interaction. It is a
direct consequence of the sharing of a computer . Processes can interact for
various reasons: (1) because they exchange data, such as the reader,
scheduler, and printer processes; (2) because they share physical resources,
such as j o b l , job2, job3, and so on; or (3) because interaction simplifies our
understanding and verification of the correctness of a computat ion-- this is
a strong point in favor of sequential computations.

Concurrent computat ions permit bet ter utilization of a computer

Sec. 2.3. COMPUTATIONS 31

installation because timing constraints among physical components are
reduced to a minimum. But since the order of operations in time is not
completely specified, the ou tpu t of a concurrent computat ion may be a
t ime-dependent function of its input unless special precautions are taken.
This makes it impossible to reproduce erroneous computat ions in order to
locate and correct observed errors. In contrast, the ou tpu t of a sequential
process can always be reproduced when its input is known. This property
of sequential processes along with their extreme simplicity makes them
important components for the construction of concurrent computations.

The main obstacles to the utilization of concurrency in computer
installations are economy and human imagination. Sequential processes can
be carried out cheaply by repeated use of simple equipment; concurrent
computat ions require duplicated equipment.

Human beings find it very difficult to comprehend the combined effect
of activities which evolve simultaneously with independent speeds. Those
who have studied the history of nations in school, one by one--American
history, French history, and so on--recall how difficult it was to remember,
in connect ion with a crucial time of transition in one country, what
happened in other countries at the same time. The insight into our
historical background can be greatly improved by presenting history as a
sequence of stages and by discussing the situation in several countries at
each stage--but then the student finds it equally difficult to remember the
continuous history of a single nation !

It is hard to avoid the conclusion that we understand concurrent events
by looking at sequential subsets of them. This would mean that, even
though technological improvements may eventually make a high degree of
concurrency possible in our computations, we shall still a t tempt to
partition our problems conceptually into a moderate number of sequential
activities which can be programmed separately and then connected loosely
for concurrent execution.

In contrast, our understanding of a sequential process is independent of
its actual speed of execution. All that matters is that operations are carried
out one at a time with finite speed and that certain relations hold between
the data before and after each operation.

2.3.3. Computers and Programs

The idea of defining complicated computat ions rigorously implies the
use of a formal language to describe primitive data types and operations as
well as combinations of them. A formal description of a computat ion is
called a program, and the language in which it is expressed is called a
programming language.

Programs can be used to communicate algorithms among human beings,

32 SEQUENTIAL PROCESSES Chap. 2

Store

Processors

Fig. 2.3 A model of a computer installation.

but, in general, we write programs to solve problems on computers. We will
indeed define a computer installation as a physical system capable of
carrying out computations by interpreting programs.

Figure 2.3 shows a model of a computer installation. I t consists of a
store and one or more processors. The store is a physical component in
which data and programs can be retained for future use. I t is divided into a
finite set of primitive components called locations. Each location can store
any one of a finite set of data values.

A processor is a physical component which can carry out a sequential
process defined by a program. During its execution, a program is stored as a
sequence of data called instructions. An instruction consists of four
components defining an operation, its input and output , and a successor
instruction. Data used to identify store locations are called addresses.

The processors can work concurrently and share the common store.
Some of the processors are called terminals or peripheral devices; they are
dedicated to the transfer of data between the environment and the store.
Other processors are called central processors; they operate mainly on
stored data. For our purposes, the distinction between peripheral devices
and central processors is no t fundamental; it merely reflects various degrees
of specialization.

The rest of this chapter is a discussion of the fundamental abstraction,
sequential processes. It summarizes methods of structuring data and
sequential programs, and serves as a presentation of the programming
language used throughout the text, a subset of the language Pascal, created
by Wirth. The algorithmic statements of Pascal are based on the principles
and notat ion of Algol 60. But the data structures of Pascal are much more
general than those of Algol 60.

Pascal permits hierarchal structuring of data and program, extensive
error checking at compile time, and production of efficient machine code

Sec. 2.4. DATA STRUCTURES 33

on present computers. It combines the clarity needed for teaching the
subject with the efficiency required for designing operating systems. If you
are familiar with Algol 60, you will find it quite natural to adopt Pascal as
your programming tool.

The following is a brief and very informal description of a subset of
Pascal with the emphasis on the language features that make it different
from Algol 60. Although my summary of Pascal is sufficient for
understanding the rest of the book, I recommend that you study the
official Pascal report, which is written in clear, informal prose (Wirth,
1971a).

I have taken a few minor liberties with the Pascal notation. They are
not mentioned explicitly because my subject is not rigorous language
definition, but operating system principles.

2.4. DATA STRUCTURES

2.4.1. Primitive Data Types

Constants are denoted by numbers or identifiers. A definition of the
form:

c o n s t a l = c l , a 2 = c 2 , . . . , ak = ck;

introduces the identifiers a l , a2 , ak as synonyms of the constants c l ,
c2, . . . , ck, for example:

const e = 2.718281828;

Variables are introduced by declarations of the form:

vat v l , v2 , vk: < t y p e > ;

which associates the identifiers v l , v2 , vk with a data type.
A data t ype is the set of values which can be assumed by a variable. A

type can be defined either directly in the declaration of a variable or
separately in a type definition which associates an identifier T with the
type:

type T = < t y p e > ;

vat v l , v2, . . . , vk: T;

A pr imi t ive t ype is a finite, ordered set of values. The primitive types:

34 SEQUENTIAL PROCESSES Chap. 2

boolean
integer
real

are predefined for a given computer.
Other primitive types can be

successive values:
defined by enumeration of a set of

(a l , a2, . . . , ak)

denoted by identifiers a l , a2, . . . , ak, for example:

type name of month =

(January, February, March, April, May, June, July,
August, September, October, November, December);

A primitive type can also be defined as a range within another primitive
type:

cmin. . emax

where cmin and cmax are constants denoting the minimum and maximum
values in the range, for example:

type number of day = 1 . .31 ;
vat payday: number of day;

war summer month: June..August;

The first example is a variable payday, which can assume the values 1 to 31
(a subrange of the standard type integer). The second example is a variable
summer month, which can assume the values June to August (a subrange of
the type name of month defined previously).

The set of values which can be assumed by a variable v of a primitive
type T can be generated by means of the standard functions:

rain(T) max(T) succ(v) pred(v)

in ascending order:

v:= rain(T);
while v -~ max(T) do v:= succ(v);

or in descending order:

Sec. 2.4. DATA STRUCTURES 35

v: = max(T);
while v ¢ min(T) do v: = pred(v);

2.4.2. Structured Data Types

Structured types are defined in terms of primitive types or in terms of
other structured types using the connection rules of arrays and records.

The type definition:

array D of R

defines a data structure consisting of a fixed number of components of
type R. Each component of an array variable v is selected by an index
expression E of type D:

Examples:

v(E)

type table = array 1 . .20 of integer;
vat A : table; i: 1. •20;
. . . A (i) . . .

vat length o f month:
array name o f month of number o f day;

• . . length o f month (February) . . .

The type definition:

record f l : T1; f2: T 2 ; . . . ; fk: Tk e n d

defines a data structure consisting of a fixed number of components of
types T1, T 2 , . . . , Tk. The components are selected by identifiers f l ,
f2, . . . , fk. A component fj within a record variable v is denoted:

Example:

v . f i

type date = record
day: number o f day;
month: number o f month;
year: O. .2000;

end
vat birthday: date;
• . . b ir thday, m o n t h . . .

36 SEQUENTIAL PROCESSES Chap. 2

Good programmers do not confine themselves exclusively to the
structures defined by an available programming language. They invent
notations for abstractions that are ideally suited to their present purpose.
But they will choose abstractions which later can be represented efficiently
in terms of the standard features of their language.

I will occasionally do the same and postulate extensions to Pascal which
help me to stress essential concepts and, for the moment , ignore trivial
details.

As one example, I will assume that one can declare a variable s
consisting of a sequence of components of type T:

vat s: sequence of T

Initially, the sequence is empty. The value of a variable t of type T can
be appended to or removed from the sequence s by means of the standard
procedures

put(t , s) get(t, s)

The components are removed in the order in which they are appended to
the sequence. In other words, a sequence is a first-in, first-out store.

The boolean function

empty(s)

defines whether or not the sequence s is empty.
The implementation of sequences by means of arrays will be explained

in Chapter 3. For a more detailed discussion of the representation of
various data structures see Knuth (1969).

2.5. PROGRAM STRUCTURES

2.5.1. Primitive Statements

Operations and combinations of them are described by statements. The
primitive statements are exit statements, assignment statements, and
procedure statements.

The exit statement

exit L

is a restricted form of a go to statement. It causes a jump to the end of a
compound statement labeled L:

Sec. 2.5. PROGRAM STRUCTURES 37

l a b e l L b e g i n . . . e x i t L ; . . , end

This use o f jumps is an ef f ic ient way of leaving a c o m p o u n d s t a t em en t
in the excep t iona l cases when a so lu t ion to a p rob lem is f o u n d earlier than
expec ted , or when no solut ion exists. Bu t in con t ras t to the u n s t r u c t u r e d
go to s ta tement , the ex i t s t a t emen t simplifies the ver i f ica t ion of p rogram
correctness .

Suppose an assert ion P holds be fore a c o m p o u n d s t a t emen t Q is
execu ted . The re are n o w two cases to consider : E i the r Q is e x e c u t e d to
comple t ion , in which case an assert ion R is k n o w n to hold ; or an exi t is
made f r o m Q when an excep t iona l case S holds. So the e f fec t o f s t a t e m e n t
Q is the fol lowing:

" P " Q "R or S "

The ass ignment s t a t e m e n t

V : = E

assigns the value o f an express ion E to a variable v. The express ion mus t be
o f the same t ype as v. Express ions consist o f opera tors and func t ions
appl ied to cons tants , variables, and o the r expressions. The operators are:

a r i thmet ic : + - * / m o d
relat ional : = ~ < >
boo lean : & or n o t

The f u nc t i on designator

F (a l , a2, ak)

causes the evaluat ion o f a func t ion F wi th the actual pa ramete r s a l ,
a2, . . . , ak.

The procedure s t a t e m e n t

P (a l , a2, . . . , a k)

causes the execu t i on o f a p rocedu re P wi th the actual parameters a l ,
a2, . . . , ak.

The actual parameters o f func t ions and p rocedures can be variables and
expressions. Express ions used as parameters are evaluated be fo re a func t ion
or p rocedu re is execu ted .

38 SEQUENTIAL PROCESSES

I
I
I

Fig. 2.4

Chap. 2

A compound statement.

2.5.2. Structured Statements

Structured statements are formed by connecting primitive statements
or other s tructured statements according to the following rules:

(1) Concatenation of statements S1, $2, . . . , Sn into a compound
statement:

label L begin S1; $2; . . . ; Sn end

b e g i n S 1 ; S 2 ; . . . ;Sn end

(See Fig. 2.4).

(2) Selection of one of a set of s tatements by means of a boolean
expression B:

i f B then S1 else $2

if B then S

or by means of an expression E of a primitive type T:

Sec. 2.5. PROGRAM STRUCTURES

?
~ r

r

Fig. 2 .5 T h e i f a n d ca se s t a t e m e n t s .

t y p e T = (c l , c2 , cn);
. , •

case E o f
c l : S 1 ; c 2 : $2 ; . . . cn: Sn;
end

I f E = c] t hen s t a t e m e n t S] is e x e c u t e d (See Fig. 2.5).

(3)
t rue :

39

Repe t i t i on o f a s t a t e m e n t S while a b o o l e a n express ion B remains

while B d o S

or r epe t i t i on o f a sequence o f s t a t e m e n t s S1, $2 , . . . , Sn unt i l a boo l ean
express ion B b e c o m e s t rue :

r epea t 81 ; $2 ; . . . ; Sn unt i l B

(See Fig. 2.6) .
A n o t h e r poss ibi l i ty is to r epea t a s t a t e m e n t S wi th a success ion o f

pr imi t ive values assigned to a con t ro l var iable v:

fo r v:= E m i n to E m a x do S

40 Chap. 2 SEQUENTIAL PROCESSES

1

)

() ©

Fig. 2.6 The while and repeat statements.

(4) Recursion of a procedure P which calls itself:

p rocedumP(. . .);
begin . . . P; . . . end

(See Fig. 2.7.)
Notice that the analytical effort required to understand the effect of

these structures is proportional to the number of component statements.
For example, in the analysis of an if statement, we must first prove that a
certain assertion R will be true after execution of statement S1, provided
assertions B and P hold before $1 is initiated, and similarly for $2:

"B & P " S 1 " R " "no t B & P " S 2 " R "

From this we infer that

" P " i fB then S1 else $2 " R "

The repetition statements are understood by mathematical induction.
From

we infer that

"B & P" S " P "

"P" while B do S "not B & P"

Sec. 2.5. PROGRAM STRUCTURES 41

©

"l P
I

Fig. 2.7 A recursive procedure statement.

The aim is to f ind an invariant P--an assert ion which is t rue before the
i te ra t ion is s tar ted and remains t rue af te r each ex ecu t i o n of the s t a t m e n t S.

F o r records, the fo l lowing s t ruc tu red s t a t emen t can be used:

wi th v do S

I t enables the s t a t emen t S to re fe r to the c o m p o n e n t s of a r ecord variable v
by the i r ident if iers f l , f2, . . . , fk w i t h o u t qual ifying t h e m with the r ecord
ident i f ier v, fo r example :

wi th birthday d o
begin day:= 19; month:= April; year:= 1938 end

Final ly, we have the i m p o r t a n t abs t rac t ion o f assigning a name to a
sequence o f s ta tements $1 , $2, . . . , Sn by means o f procedure and
function declarations o f the fo rm:

procedure P (p l ; p2 ; . . . ; pk);
< local declarat ions >
b e g i n S 1 ; S 2 ; . . . ; S n e n d

func t i on F (p l ; p 2 ; . . . ; p k) : < r e s u l t t y p e > ;
< local declara t ions >
begin S1; $2 ; . . . ; Sn end

where p l , p2 , pk are declarat ions of formalparameters. The declara-
t ion p] of a cons tan t or variable pa rame te r vj of t y p e Tj has the fo rm:

cons t vj: Tj var vj: Tj

The preceding specifier can be o m i t t e d for cons t an t parameters .
A func t i on F compu te s a value t h a t mus t be o f a pr imit ive type . At

42 SEQUENTIAL PROCESSES Chap. 2

least one of its statements $1, $2, . . . , Sn must assign a result value to the
function identifier F

F:= E

where E is an expression of the result type.
The function statements must not assign values to actual parameters

and non-local variables. This rule simplifies program verification as will be
explained in Chapter 3.

The declarations of identifiers which are local to a procedure or
function are written before the begin symbol of the statement part. They
are written in the following order:

const <constant def ini t ions>
type < t y p e def ini t ions>
var <variable declarat ions>
<local procedure and function declarat ions>

A program consists of a declaration part and a compound statement.
Finally, I should mention that comments are enclosed in quotes:

"This is a commen t"

This concludes the presentation of the Pascal subset.

2.6. PROGRAM CONSTRUCTION

We design programs the same way we solve other complex problems: by
step-wise analysis and refinement. In this section, I give an example of
hierarchal program construction.

2.6.1. The Banker's Algorithm

The example chosen is a resource sharing problem first described and
solved by Dijkstra (1965). Although the problem involves concurrent
processes, it is used here as an example of sequential programming.

An operating system shares a set of resources among a number of
concurrent processes. The resources are equivalent in the sense that when a
process makes a request for one of them, it is irrelevant which one is
chosen. Examples of equivalent resources are peripheral devices of the same
type and store pages of equal size.

When a resource has been allocated to a process, it is occupied until the
process releases it again. When concurrent processes share resources in this

Sec. 2.6. PROGRAM CONSTRUCTION 43

manner, there is a danger that they may end up in a deadlock , a state in
which two or more processes are waiting indefinitely for an event that will
never happen.

Suppose we have 5 units of a certain resource, and we are in a state
where 2 units are allocated to a process P and 1 uni t to another process Q.
But both processes need two more units to run to completion. If we are
lucky, one of them, say Q, will acquire the last two units, run to
completion, and release all three of its units in time to satisfy further
requests from P. But it is also possible that P and Q both will acquire one of
the last two units and then (since there are no more) will decide to wait
until another uni t becomes available. Now they are deadlocked: P cannot
continue until Q releases a unit; Q cannot continue until P releases a unit;
and each of them expects the other to resolve the conflict.

The deadlock could have been prevented by allocating all units needed
by P (or Q) at the same time rather than one by one. This policy would
have forced P and Q to run at different times, and as we have seen in
Chapter 1, this is often the most efficient way of using the resources. But
for the moment, we will try to solve the problem without this restriction.

Let me define the problem more precisely in Dijkstra's terminology: A
banker wishes to share a fixed capital of f lorins among a fixed number of
customers. Each customer specifies in advance his maximum need for
florins. The banker will accept a customer if his need does not exceed the
capital.

During a customer's transactions, he can only borrow or return florins
one by one. It may sometimes be necessary for a customer to wait before
he can borrow another florin, but the banker guarantees that the waiting
time will always be finite. The current loan of a customer can never exceed
his maximum need.

If the banker is able to satisfy the maximum need of a customer, then
the customer guarantees that he will complete his transactions and repay
his loan within a finite time.

The current situation is safe if it is possible for the banker to enable all
his present customers to complete their transactions within a finite time;
otherwise, it is unsafe.

We wish to find an algorithm which can determine whether the banker's
current situation is safe or unsafe. If the banker has such an algorithm, he
can use it in a safe situation to decide whether a customer who wants to
borrow another florin should be given one immediately or told to walt. The
banker makes this decision by pretending to grant the florin and then
observing whether this leads to a safe situation or not.

The situation of a customer is characterized by his current loan and his
further claim where

claim = need - loan

[

44 SEQUENTIAL PROCESSES Chap. 2

C

P

Q

R

2

4 (4)

2(1)

2 (7)

(a)

C

P

R

4

4 (4)

2 (7)

(b)

R 2 (7)

(c)

8

C 10

(d)

Fig. 2.8 The banker's algorithm: a safe situation.

The situation of the banker is characterized by his original cap i ta l a n d

his current amount of cash where

cash = cap i ta l - s u m o f loans

The algorithm that determines whether the overall situation is safe or
not is quite simple. Let me illustrate it by an example: Fig. 2.8 shows a
situation in which three customers, P, Q, and R, share a capital of 10
florins. Their combined need is 20 florins. In the current situation, Fig.
2.8(a), customer Q has a loan of 2 florins and a claim of 1 florin; this is
denoted 2 (1). For P and R the loans and claims are 4 (4) and 2 (7)
respectively. So the available cash C at the moment is 10 - 4 - 2 - 2 = 2.

The algorithm examines the customers one by one, looking for one who
has a claim not exceeding the cash. In Fig. 2.8(a), customer Q has a claim
of 1. Since the cash is 2, customer Q will be able in this situation to
complete his transactions and return his current loan of 2 florins to the
banker.

After the departure of customer Q, the situation will be the one shown
in Fig. 2.8(b). The algorithm now scans the remaining customers and
compares their claims with the increased cash of 4 florins. It is now possible
to satisfy customer P completely.

This leads to the situation in Fig. 2.8(c) in which customer R can
complete his transactions. So finally, in Fig. 2.8(d) the banker has regained
his capital of 10 florins. Consequently, the original state Fig. 2.8(a) was
safe.

It is possible to go from the safe state in Fig. 2.8(a) to an unsafe
situation, such as the one in Fig. 2.9(a). Here, the banker has granted a
request from customer R for another florin. In this new situation, customer
Q can be satisfied. But this leads us to the situation in Fig. 2.9(b) in which
we are stuck: neither P nor R can complete their transactions.

If the banker's algorithm finds that a situation is unsafe, this does no t
necessarily mean that a deadlock will occur--only that it might occur. But
if the situation is safe, it is always possible to prevent a deadlock. Notice

Sec. 2.6. PROGRAM CONSTRUCTION 45

4 (4)

Q 2(1)

R 3 (6)

4 (4)

3 (6)

(a) (b)

Fig. 2.9 The banker's algorithm: an unsafe situation.

that the banker prevents deadlocks in the same way as we originally
proposed: by serving the customers one at a time; but the banker only does
so in situations where it is strictly necessary.

We will now program the banker's algorithm for the general case
considered by Habermann (1969), in which the banker's capital consists of
several currencies: florins, dollars, pounds, and so on.

2.6.2. A Hierarchal Solution

The first version of the banker's algorithm is trivial:

type S = ?

function safe(current state: S): boolean;

It consists of a boolean function safe with a parameter defining the current
state. The details of the function and the type of its parameter are as yet
unknown.

The first refinement (Algorithm 2.1) expresses in some detail what the

ALGORITHM 2. 1 The Banker's Algori thm

t y p e S = ?

function safe(current state: S): boolean;
vat state: S;
begin

state:= current state;
complete transactions(state);
safe: = all transactions completed(state);

end

46 SEQUENTIAL PROCESSES Chap. 2

function safe does: It simulates the complet ion of customer transactions as
far as possible. If all transactions can be completed, the current state is safe.

In the second refinement (Algorithm 2.2), the state is decomposed
into: (1) an array defining the claim and loan of each customer and
whether or not that customer's transactions have been completed; and (2)
two components defining the capital and cash of the banker. The exact
representation of currencies (type C) is still undefined.

The procedure complete transactions is now defined in some detail. It
examines the transactions of one customer at a time: If they have not
already been completed and complet ion is possible, the procedure simulates
the return of the customer 's loan to the banker. This continues until no
more transactions can be completed.

ALGORITHM 2.2 The Banker's Algorithm (cont.)

type S = record
transactions: array B of

record
claim, loan: C;
completed: boolean;

end
capital, cash: C;

end
B = 1. .number o f customers;
C = ?

procedure complete transactions(vat state: S);
vat customer: B; progress: boolean;
begin

with state do
repeat

progress:= false;
for every customer do
with transactions(customer) do
ff not completed then
if completion possible(claim, cash) then
begin

return loan(loan, cash);
completed: = true;
progress:= true;

end
until not progress;

end

Sec. 2.6. PROGRAM CONSTRUCTION 47

The statement

for every customer d o . . .

is equivalent to

for customer:= rain(B) to max(B) d o . . .

Algorithm 2.3 shows that the current state is safe if the banker
eventually can get his original capital back.

ALGORITHM 2.3 The Banker's AIgorithm (cont.)

function all transactions completed(state: S): boolean;
begin

with state do
all transactions completed := capital = cash;

end

In the third refinement (Algorithm 2.4), we define the representation
of a set of currencies as an array of integers and write the details of the
function completion possible, which shows that the transactions of a single
customer can be completed if his claim of each currency does not exceed
the available cash.

ALGORITHM 2.4 The Banker's Algorithm (cont.)

type C = array D of integer;
D = 1..number of currencies;

funct ion completion possible(claim, cash: C): boolean;
vat currency: D;
label no
begin

for every currency do
if claim(currency) > cash(currency)then
begin

completion possible:= false;
exit no;

end
completion possible:= true;

end

48 SEQUENTIAL PROCESSES Chap. 2

Algorithm 2.5 shows the final details of the banker's algorithm.

ALGORITHM 2.5 The Banker's Algorithm (cont.)

procedure return loan(var loan, cash: C);
vat currency: D;
begin

for every currency do
cash (currency): = cash (currency) + loan (currency);

end

To be honest, I do not construct my first version of any program in the
orderly manner described here. Nor do mathematicians construct proofs in
the way in which they present them in textbooks. We must all experiment
with a problem by trial and error until we understand it intuitively and
have rejected one or more incorrect solutions. But it is important that the
final result be so well-structured that it can be described in a step-wise
hierarchal manner. This greatly simplifies the effort required for other
people to understand the solution.

2.6.3. Conclusion

I have constructed a non-trivial program (Algorithm 2.6) step by step in
a hierarchal manner. At each level of programming, the problem is
described in terms of a small number of variables and operations on these
variables.

ALGORITHM 2.6 The Complete Banker's AIgorithm

type S = record
transactions: array B of

record
claim, loan: C;
completed: boolean;

end
capital, cash: C;

end
B = 1 . . number o f customers;
C = array D of integer;
D = 1 . . number o f currencies;

funct ion safe(current state: S): boolean;
vat state: S;

procedure complete transactions(vat state: S);
vat customer: B; progress: boolean;

Sec. 2.6. PROGRAM CONSTRUCTION

function completion possible(claim, cash: C): boolean;
var currency: D;
label no
begin

for every currency do
i f claim(currency) > cash(currency)then
begin

completion possible:= false;
exit no;

end
completion possible := true;

end

procedure return loan(var loan, cash: C);
var currency: D;
begin

for every currency do
cash(currency):= cash(currency) + loan(currency);

end

begin
with state do
repeat

progress:= false;
for every customer do
with transactions(customer) do
if not completed then
if completion possible(claim, cash) then
begin

return loan(loan, cash);
completed: = true;
progress: = true;

end
until not progress;

end

function all transactions completed(state: S): boolean;
begin

with state do
all transactions completed:= capital = cash;

end

begin
state:= current state;
complete transactions(sta te) ;
safe: = all transactions completed(state);

end

49

50 SEQUENTIAL PROCESSES Chap. 2

At the most abstract level, the program consists of a single variable,
current state, and a single operation, safe. If this operation had been
available as a machine instruction, our problem would have been solved.
Since this was not the case, we wrote another program (Algorithm 2.1),
which can solve the problem on a simpler machine using the operations
complete transactions and all transactions completed.

This program in turn was rewritten for a still simpler machine
(Algorithms 2.2 and 2.3). The refinement of previous solutions was
repeated until the level of detail required by the available machine was
reached.

So the design of a program involves the construction of a series of
programming layers, which gradually transform the data structures and
operations of an ideal, non-existing machine into those of an existing
machine. The non-existing machines, which are simulated by program, are
called virtual machines to distinguish them from the physical machine.

It was mentioned in Section 1.1.3 that every program simulates a
virtual machine that is more ideal than an existing machine for a particular
purpose: A machine that can execute the banker's algorithm is, o f course,
ideally suited to the banker's purpose. We now see that the construction of
a large program involves the simulation of a hierarchy o f virtual machines.
Figure 2.10 illustrates the virtual and physical machines on which the
banker's algorithm is executed.

At each level of programming, some operations are accepted as
primitives in the sense that it is known what they do as a whole, but the
details of how it is done are unknown and irrelevant at that level.
Consequently, it is only meaningful at each level to describe the effect of

Machine

1

2

Operations Data types

safe S

complete transactions S

all transactions completed

completion possible C

return loan

Pascal statements D

Machine language ! Machine types

Instruction execution cycle Registers

Fig. 2.10 The banker's algorithm viewed as a hierarchy of
virtual and physical machines.

Sec. 2.6. PROGRAM CONSTRUCTION 51

the program at discrete points in time before and after the execution of
each primitive. At these points, the state of the sequential process is
defined by assertions about the relationships between its variables, for
exam ple:

"all transactions completed =- capital = cash"

Since each primitive operation causes a transition from one state to
another, a sequential process can also be defined as a succession of states in
time.

As we proceed from detailed to more abstract levels of programming,
some concepts become irrelevant and can be ignored. In Algorithm 2.2, we
must consider assertions about the local variable, progress, as representing
distinct states during the execution of the partial algorithm. But at the level
of programming where Algorithm 2.2 is accepted as a primitive, complete
transactions, the intermediate states necessary to implement it are com-
pletely irrelevant.

So a state is a partial description of a computat ion just like the
concepts sequential process and operation. A precise definition of these
abstractions depends on the level of detail desired by the observer. A user
may recognize many intermediate states in his computation, but for the
operating system in control of its execution, the computat ion has only a
few relevant states, such as "wai t ing" or "running."

In order to test the correctness of a program, we must run it through all
its relevant states at least once by supplying it with appropriate input and
observing its output . I remarked in Section 2.3.1 that the definition of
operations by enumeration of all possible data values is impractical except
in extremely simple cases. The same argument leads to the conclusion tha t
exhaustive testing of operations for all possible input values is ou t of the
question.

If we were to test the addition of two decimal numbers of 10 digits
each exhaustively, it would require 1020 executions of a program loop of,
say 10/~sec, or, all in all, 3 * 107 years. The only way to reduce this t ime
is to use our knowledge of the internal structure of the adder. If we know
that it consists of 10 identical components, each capable of adding two
digits and a carry, we also know that it is sufficient to test each component
separately with 10 * 10 * 2 combinations of input digits. This insight
immediately reduces the number of test cases to 2000 and brings the total
test time down to only 20 msec.

Returning to the problem of testing the correctness of a program such
as the banker's algorithm, we must accept that such a test is impossible at a
level where it is only understood as a primitive: safe. We would have to
exhaust all combinations of various currencies and customers in every
possible state! But if we take advantage of the layered structure of our

52 SEQUENTIAL PROCESSES Chap. 2

programs (see Fig. 2.10), we can start at the machine level and demonstrate
once and for all that the machine instructions work correctly. This proof
can then be appealed to at higher programming levels independent of the
actual data values involved. At the next level of programming, it is proved
once and for all that the compiler transforms Pascal statements correctly
into machine instructions. And when we reach the levels at which the
banker's algorithm is programmed, it is again possible to test each level
separately, starting with Algorithm 2.5 and working towards Algorithm 2.1.

In this chapter, I have stressed the need for simplicity in programming.
I cannot accept the viewpoint that the construction of programs with a
pleasant structure is an academic exercise that is irrelevant or impractical to
use in real life. Simplicity of structure is not just an aesthetic pursuit--It is
the key to survival in programming! Large systems can only be fully
understood and tested if they can be studied in small, simple parts at many
levels of detail.

2.7. LITERATURE

This chapter has briefly summarized concepts which are recognized and
understood, at least intuitively, by most programmers.

The role of hierarchal structure in biological, physical, social, and
conceptual systems is discussed with deep insight by Simon (1962).

In the book by Minsky (1967) you will find an excellent and simple
presentation of the essential aspects of sequential machines and algorithms.
Homing and Randell (1972) have analyzed the concept "sequential
process" from a more formal point of view.

Hopefully, this book will make you appreciate the Pascal language. It is
defined concisely in the report by Wirth (1971a).

A subject which has only been very superficially mentioned here is
correctness proofs of algorithms. It was suggested independently by Naur
and Floyd and further developed by Hoare (1969).

The practice of designing programs as a sequence of clearly separated
layers is due to Dijkstra (1971a). He has successfully used it for the
construction of an entire operating system (1968). Eventually, this
constructive approach to programming may change the field from a
hazardous application of clever tricks into a mature engineering discipline.

DIJKSTRA, E. W., "The structure of THE multiprogramming system," Comm. ACM
11, 5, pp. 341-46, May 1968.

DIJKSTRA, E. W., A short introduction to the art of programming, Technological
University, Eindhoven, The Netherlands, Aug. 1971a.

HOARE, C. A. R., "An axiomatic basis for computer programming," Comm. ACM 12,
10, pp. 576-83, Oct. 1969.

Sec. 2.7. LITERATURE 53

HORNING, J. J. and RANDELL, B., "Process structuring," University of Newcastle
upon Tyne, England, 1972.

MINSKY, M. L., Computation: finite and infinite machines, Prentice-Hall Inc.,
Englewood Cliffs, New Jersey, 1967.

SIMON, H. A., "The architecture of complexity," Proc. American Philosophical Society
106, 6, pp. 468-82, 1962.

WIRTH, N., "The programming language Pascal," Acta Informatica 1, 1, pp. 35-63,
1971a.

CONCURRENT PROCESSES

This chapter is a study of concurrent processes. I t emphasizes the role
of reproducible behavior in program verification and compares various
methods of process synchronization: critical regions, semaphores, message
buffers, and event queues. It concludes with an analysis of the prevention
of deadlocks by hierarchal ordering of process interactions.

3.1. CONCURRENCY

The process concept was introduced in the previous chapter (see
Section 2.3.2). In the following, I will summarize the basic properties of
sequential and concurrent processes, and introduce a language notat ion for
the latter.

3.1.1. Definition

A process is a sequence of operations carried out one at a time. The
precise definition of an operation depends on the level of detail at which
the process is described. For some purposes, you may regard a process as a
single operation A, as shown on top of Fig. 3.1. For other purposes, it may be

55

5 6 CONCURRENT PROCESSES Chap. 3

Level of detail

A
I I

B C D E
II II I

I F I I G i i H II / I I J I I K I F-~-t M I I N I

• Time

Fig. 3.1 The same process viewed at different levels
of detail as a succession of operations A or B, C
or F, G , . . . in time.

more convenient to look upon the same process as a sequence of simpler
operations B, C, D, and E. And when you examine it in still more detail,
previously recognized operations can be partitioned into still simpler ones:
F, G, H, and so on.

If you compare this picture with the hierarchy of machines on which
the banker's algorithm is executed (see Fig. 2.10), you will see that as we
proceed to more detailed levels o f programming, a process is described in
terms of increasingly simpler operations which are carried out in increas-
ingly smaller grains o f time.

At all levels of programming, we assume that when an operation is
initiated, it terminates within a finite time and delivers output which is a
t ime-independent function of its input (see Section 2.3.1).

If the variables of a process are inaccessible to other processes, it is easy
to show by induction that the final output of a sequence of operations will
be a t ime-independent funct ion of the initial input. In this case, a process
can be regarded as a single operation, provided that it terminates.

But if one process can change the variables of another process, the
output of the latter may depend on the relative speed of the processes. In
this case, a process cannot be regarded as a single operation. I will describe
the problem of multiprogramming systems with time-dependent behavior
later and proceed here to describe the basic properties of concurrent
processes.

Processes are concurrent if their executions overlap in time. Figure 3.2
shows three concurrent processes, P, Q, and R.

P

Q
I I

R
I

• Time

' Fig. 3.2 Three concurrent processes P,
Q, andR.

Sec. 3.1. CONCUR RENCY 57

A B
Process P I I I I

C D
Process Q I I I I

• Time

* Fig. 3.3 Two concurrent processes P and Q consisting
of operations A, B and C, D which are partly interleaved,
partly overlapped in time.

Whether the individual operations of concurrent processes are
overlapped or interleaved in t ime, or both (as shown in Fig. 3.3), is
irrelevant. Whenever the first operat ion of one process is started before the
last operat ion of another process is completed, the two processes are
concurrent.

In an installation where several processors work simultaneously, the
machine instructions of concurrent processes can overlap in time. But if
one processor is mult iplexed among concurrent processes, the machine
instructions of these processes can only be interleaved in time. The logical
problems turn out to be the same in both cases; they are caused by our
ignorance of the relative speeds of concurrent processes.

3 . 1 . 2 . C o n c u r r e n t S t a t e m e n t s

The language nota t ion

cobegin S1; $2; . . . ; Sn coend

indicates tha t the statements $1, $2, . . . , Sn can be executed
concurrently. It was first proposed by Dijkstra (1965).

To define the effect of a concurrent statement, we must take into
account the statements SO and Sn+l, which precede and follow it in a
given program:

• Fig. 3.4 Precedence graph of a con-
current statement.

%

58 CONCURRENT PROCESSES Chap. 3

SO cobegin $1; $ 2 ; . . . ; Sn coend S n + l

This piece of program can be represented by the precedence graph shown in
Fig. 3.4. The desired effect is to execute SO first, and then execute S1,
$2 , Sn concurrently; when all the statements S1, $2, . . . , Sn have
been terminated, the following statement Sn +1 is executed.

Concurrent statements can be arbitrarily nes ted , for example:

cobegin
$1;
begin
$2;
cobegin $3; $4 coend
$5;

end
$6;

coend

This corresponds to the precedence graph shown in Fig. 3.5.

Fig. 3.5 Precedence graph of nested concurrent statements.

3.1.3. An Example: Copying

The use of the concurrent s ta tement is illustrated by Algorithm 3.1,
which copies records f rom one sequence to another.

Sec. 3.1. CONCURRENCY

ALGORITHM 3.1 Copying of a Sequence of Records

procedure copy (vaz f, g: sequence of T);
vat s, t: T; completed: boolean;
begin

if not empty(f) then
begin

completed:= false;
get(s, f) ;
repeat

t := s;
cobegin

put(t, g);
ff empty(f) then completed:= true

else get(s, f);
coend

until completed;
end

end

59

• Fig. 3.6 Precedence graph of
copying of a sequence of records.

the

60 CONCURRENT PROCESSES Chap. 3

The variables used are two sequences, f and g, of records of type T; two
buffers, s and t, each holding one record; and a boolean, indicating whether
or not the copying has been completed.

The algorithm gets a record from the inPut sequence, copies it f rom one
buffer to another, puts it on the ou tpu t sequence, and, at the same time,
gets the next record from the input sequence. The copying, output , and
input are repeated until the input sequence is empty.

Figure 3.6 shows a precedence graph of this computa t ion using the
operations: g (get record), c {copy record), and p (put record).

3.2. FUNCTIONAL SYSTEMS

In the following, we consider more precisely what t ime-independent or
functional behavior means, and under what circumstances multipro-
gramming systems have this property. As an introduct ion to this topic, we
will first examine our ability to verify the correctness of programs.

3.2.1. Program Verification

The ideal program is one which is known with absolute certainty to be
correct. It has been argued that this can be achieved by rigorous proofs
(Hoare, 1969 and 1971a). I believe that the use of p roof techniques
contr ibutes to the correctness of programs by forcing programmers to
express solutions to problems in two different ways: by an algorithm and
by a proof. But it must be remembered that a p roof is merely another
formal s tatement of the same size as the program it refers to, and as such it
is also subject to human errors. This means that some other form of
program verification is still needed, at least for large programs.

The next best thing to absolute correctness is immediate detection of
errors when they occur. This can be done either at compile time or at run
time. In either case, we rely on a certain amount of redundancy in our
programs, which makes it possible to check automatically whether
operations are consistent with the types of their variables and whether they
preserve certain relations among those variables.

Error detect ion at compile time is possible only by restricting the
language constructions; error detect ion at run time is possible only by
executing redundant statements that check the effect of other statements.
In practice, bo th methods are used, bu t there are limits to how far one can
go in each direction: At some point, severe language restrictions and
excessive run-time checking will make the system useless for practical
purposes.

This leaves a class of errors that is caught neither at compile t ime nor at
run time. It seems fair to say that these errors can only be located and

Sec. 3.2. FUNCTIONAL SYSTEMS 61

corrected if programs have functional behavior which enables the designer
to reproduce errors under controlled circumstances.

One can subject a sequential program to a fairly systematic initial
testing by examining its internal structure and defining a sequence of input
data which will cause it to execute all statements at least once.

Dijkstra once remarked that "program testing can be used to show the
presence of errors, but never their absence" (Nato report, 1969). Even a
systematically tested program may contain some undetected errors after it
has been released for normal use. If it has been subject to intensive initial
testing, the remaining errors are usually quite subtle. Often, the designer
must repeat the erroneous computat ion many times and print successive
values of various internal variables to find out in which part of the program
the error was made.

So program testing is fundamental ly based on the ability to reproduce
computations. The difficulty is that we must reproduce them under varying
external circumstances. In a multiprogramming system, several user
computations may be in progress simultaneously. These computations are
started at unpredictable times at the request of users. 8o, strictly speaking,
the environment of a program is unique during each execution. Even when
computations are scheduled one at a time, a programming error is fre-
quently observed by a user on one installation and corrected by a designer
on another installation with a different configuration.

This has the following consequences: (1) an operating system must
protect the data and physical resources of each computat ion against
unintended interference by other computations; and (2) the results of each
computat ion must be independent of the speed at which the computat ion
is carried out.

The protection problem is discussed in a later chapter. Here we are
concerned with the assumption of speed-independence. This assumption is
necessary because a computat ion has no influence on the rate at which it
proceeds. That rate depends on the presence of other computations and the
possibly dynamic policy of scheduling. It is also a highly desirable
assumption to make, considering our difficulty in understanding concurrent
processes in terms of their absolute speeds.

The next section illustrates the consequences of t ime-dependent
behavior of erroneous programs.

3.2.2. Time-dependent Errors

Consider again Algorithm 3.1, which copies records from a sequence f
to another sequence g. Initially, f contains a sequence of records 1, 2, . . . ,
m, while g is empty. We will denote this as follows:

f = (1 , 2 , . . . ,m) g = (n)

62 CONCURRENT PROCESSES Chap. 3

When the copying has been completed, g contains all the records in
their original order while f is empty:

f = (D) g = (1, 2 , m)

The repetition s tatement in Algorithm 3.1 contains three component
statements, which will be called COPY, PUT, and GET:

C O P Y _ = t:= s
PUT -~ put(t, g)
GET -= if empty(f) then completed:= true

else get (s, f)

They are used as follows:

repeat
COPY cobegin PUT; GET coend

until completed;

Now suppose the programmer expresses the repetit ion by mistake as
follows:

repeat
cobegin COPY; PUT; GET coend

until completed;

The copying, output , and input of a single record can now be executed
concurrently.

To simplify the argument, we will only consider cases in which the
statements COPY, PUT, and GET can be arbitrarily interleaved in time, bu t
we will ignore the possibility that they can overlap in time.

Suppose the first record is copied correctly f rom sequence f to g. The
computat ion will then be in the following state after the first execution of
the repetit ion statement:

s = 2 & f = (3 , . . . , m) & t = l & g = (1)

The following table shows the possible execution sequences of COPY,
PUT, and GET during the second execution of the repetit ion statement. It
also shows the resulting ou tpu t sequence g after each execution sequence.

COPY; PUT; GET leads to g = (1, 2)
COPY; GET; PUT leads to g = (1, 2)
PUT; COPY; GET leads to g = (1, 1)

Sec. 3.2. FUNCTIONAL SYSTEMS 63

PUT; GET; COPY leads to
GET; COPY; PUT leads to
GET; PUT; COPY leads to

g=(1,1)
g = (1 , 3)
g = (1 , 1)

One of these sequences is shown below in detail:

" s = 2 & f = (3 , . . . , m) & t = l & g = (1) ' '
GET;

"s = 3 & f = (4 , . . . , m) & t = l & g = (1) ' '
COPY;

"s= 3& f = (4 m)& t= 3 & g = (1) ''
PUT;

" s = 3 & f = (4 , . . . , m) & t = 3 & g = (1 , 3) ' '

The erroneous concurrent statement can be executed in six different
ways with three possible results: (1) if copying is completed before input
and ou tpu t are initiated, the correct record will be output ; (2) if ou tpu t is
completed before copying is initiated, the previous record will again be
output ; and (3) if input is completed before copying is initiated and this in
turn completed before ou tpu t is initiated, the next record will instead be
output .

This is just for a single record of the ou tpu t sequence. If we copy a
sequence of 10000 records, the program can give of the order of 3 l°°°°
different results! It is therefore extremely unlikely that the programmer
will ever observe the same result twice.

If we consider the general case in which concurrent operations overlap
in time, we are unable even to enumerate the possible results of a
programming error without knowing in detail how the machine reacts to
at tempts to perform more than one operation simultaneously on the same
variable.

The actual sequence of operations in time will depend on the presence
of other (unrelated) computat ions and the scheduling policy used by the
operating system to share the available processors among them. The
programmer is, of course, unaware of the precise combination of external
events that caused his program to fail and is unable to repeat it under
controlled circumstances. When he repeats the program execution with the
same input, it will sometimes produce correct results, sometimes different
erroneous results.

The programmer's only hope of locating the error is to s tudy the
program text. This can be very frustrating (if not impossible) if the text
consists of thousands of lines and one has no clues about where to look for
the error.

It can be argued that such errors are perfectly reproducible in the
sense that if we had observed and recorded the behavior of all

64 CONCURRENT PROCESSES Chap. 3

computat ions and physical resources continuously during the execution
of a given computat ion, it would also have been possible to reproduce
the complete behavior of the computer installation. But this is a purely
hypothetical possibility. Human beings are unable to design programs
which take into account all simultaneous events occurring in a large
computer installation. We must limit ourselves to programs which can be
verified independently of other programs. So, in practice, events causing
t ime-dependent results are not observed and recorded, and must therefore
be considered irreproducible.

Concurrent programming is far more hazardous than sequential
programming unless we ensure that the results of our computat ions are
reproducible in spite of errors. In the example studied here, this can
easily be checked at compile time, as I will describe in the next section.

- 3.2.3. Dis jo in t Processes

The two concurrent processes in Algorithm 3.1

cobegin
put(t, g);
if empty(f} then completed: = true

else get(s, f);
coend

are completely independent processes which operate on disjoint sets of
variables (t, g) and (s, f, completed).

Concurrent processes which operate on disjoint sets of variables are
called disjoint or non-interacting processes.

In the erroneous version of Algorithm 3.1

cobegin
t :=s ;
put(t, g);
if empty(f) then completed:= true

else get(s,f);
coend

the processes are no t disjoint: The ou tpu t process refers to a variable t
changed by the copying process, and the copying process refers to a
variable s changed by the input process.

When a process refers to a variable changed by another process, it is
inevitable that the result of the former process will depend on the time at
which the latter process makes an assignment to this variable.

These t ime-dependent errors can be caught at compile t ime if the

Sec. 3.2. FUNCTIONAL SYSTEMS 65

following restriction on concurrent statements is made: The notat ion

cobeginS1;S2; . . . ;Sn c o e n d

indicates that statements S1, $2, . . . , Sn define disjoint processes which
can be executed concurrently. This means that a variable vi changed by a
statement Si cannot be referenced by another statement Sj {where j ¢ i).

In other words, we insist that a variable subject to change by a process
must be strictly private to that process; but disjoint processes can refer
to common variables not changed by any of them.

To enable the compiler to check the disjointness of processes, the
language must have the following property: It must be possible to
determine the identi ty of a statement 's constant and variable parameters by
inspecting the statement.

In Pascal this is certainly possible for assignment statements and
expressions involving variables of primitive types and record types only.

Components of arrays are selected by indices determined at run time
only. So, at compile time it is necessary to require that an entire array be
private to a single process within a concurrent statement.

Functions present no problems in Pascal since they cannot perform
assignment to non-local variables. But with procedures, it is necessary to
observe a certain discipline in the use of parameters.

The language notat ion must distinguish between constant and variable
parameters. Pascal already does this: A comparison of a procedure
statement

P(a, b)

with the corresponding procedure declaration

procedure P(const c: C; vat v: V)

immediately shows that the procedure statement will leave variable a
unchanged, but may change variable b.

To make a cleat distinction between constant and variable parameters,
we will not permit a variable to occur both as a constant and as a variable
parameter in the same procedure statement.

Without this rule one cannot make simple assertions about the effect of
procedures. Consider, for example, the following procedure:

procedure P(const c: integer; vat v: integer);
begin v := c + 1 end

If we call this procedure as follows:

P(a, b)

66 CONCURRENT PROCESSES Chap. 3

where a and b are in teger variables, we can make the assert ion t h a t u p o n
re tu rn f r o m the p rocedure , b = a + 1. Bu t this asser t ion leads to a
con t r ad i c t i on in the fo l lowing case:

P(a, a)

name ly a = a + 1.
A n o t h e r con t r ad i c t i on occurs if the same variable is used twice as a

variable p a r a m e t e r in a p r o c e d u r e s t a t emen t . F o r example , if a p rogram
conta ins the fo l lowing p rocedu re :

p ro ced u re P(var v, w: integer);
begin v: = 1; w: = 2 end

t h e n the call

P(a, b)

leads to the resul t a = 1 & b = 2. Bu t w h en the same assert ion is used fo r
the call

P(a, a)

it leads to the con t r ad i c t i on a = 1 & a = 2.
These con t r ad ic t ions can be avoided b y obey ing the fo l lowing rule: All

variables used as variable parameters in a p r o c e d u r e s t a t e m e n t mus t be
dist inct and canno t occur as cons tan t parameters in the same s t a t ement .

A Pascal p rocedu re can also have side effects : I t can change non- local
variables d i rec t ly , as is shown in the fo l lowing example :

var v: T;

p r o c e d u r e P;
begin . . . v:= E . . . end

or call o the r p rocedures which have side effects . So, it is n o t possible to
iden t i fy the variables involved b y simple inspec t ion o f a p r o c e d u r e
s t a t emen t and the cor responding p ro ced u re declara t ion .

One possibi l i ty is to specify all global variables re fe r red to wi th in a
p rocedu re P (and wi th in o t h e r p rocedures called b y P) expl ic i t ly in the
p rocedu re declara t ion:

vat v: T;

p r o c e d u r e P;
global v;
begin . . . v:= E . . . e n d

Sec. 3.2. FUNCTIONAL SYSTEMS 67

A more radical solution is to forbid side effects and check that a
procedure only refers to non-local variables used as parameters.

A final difficulty is the exit statement. Consider the following program:

label L
begin . . . label M

begin . . .
cobegin

• . . exit L;
. . . exit M;

coend

end

end

Here we have two processes trying to exit different compound statements
labeled L and M at the same time. But this is meaningless: First, we have
defined that a concurrent s tatement is terminated only when all its
processes are terminated; so a single process cannot terminate it by an exit
statement; second, it is possible for the program to continue as a purely
sequential process after the concurrent statement (this is indeed the case in
the above example), so the desire to continue the process simultaneously at
two different points is a contradiction.

We will therefore also forbid jumps out o f concurrent statements.
The rules presented here are due to Hoare (1971b). They enable a

compiler to identify the constant and variable parameters of every
statement by simple inspection and check the disjointness of concurrent
processes. This property also simplifies the analysis of programs by people
and should therefore be regarded as a helpful guideline for program
structuring--not as a severe language restriction.

When these rules are obeyed, the axiomatic properties of concurrent
statements become very simple. Suppose statements S1, $2, . . . , Sn
define disjoint processes, and each Si is an operation that makes a result Ri
true if a predicate Pi holds before its execution• In other words, it is known
that the individual statements have the following effects:

" P I " S1 " R I "
"P2" $2 " R 2 "
.

"Pn" Sn "R n"

(I assume that statements and assertions made about them only refer to
variables which are accessible to the statements according to the rule of
disjointness).

The concurrent s tatement

68 CONCURRENT PROCESSES Chap. 3

cobegin S1; $2; . . . ; Sn coend

can then be regarded as a single operation S with the following effect

"P" S " R "

where

P -= P i & P2 & . . . & Pn
R=- R I & R 2 & . . . & R n

As Hoare (1971b) puts it: "Each Si makes its contr ibution to the
common goal." The previous result can also be stated as follows:
Disjointness is a su f f ic ien t condi t ion for t ime - independen t behavior o f
concurrent processes.

The usefulness of disjoint processes is of course, limited. In some cases,
concurrent processes must be able to access and change common variables.
I will introduce language constructs suitable for process interactions of this
kind later in this chapter.

In the following we will derive a sufficient condition for time-
independent behavior of concurrent interacting processes. To do this, it is
first necessary to formulate the requirement of time-independence in a
slightly different way using the concept--the history of a computat ion.

3.2.4. The History Concept*

Consider a program which is connected to its e n v i r o n m e n t by a single
input variable x and a single o u t p u t variable y. During the execution of the
program, the input variable x assumes a sequence of values determined by
the environment:

x:= a0 ;x := a l ; . . . ;x := am;

and the output variable y assumes another sequence of values determined
by the program and its input:

y:= b0 ;y := b l ; . . . ; y : = bn;

Together, the inpu t sequence X = (a0, a l , . . . , am) and the o u t p u t
sequence Y = (bO, b l , bn) define the history of a computat ion. For
analytical purposes, the history can be represented by an array in which

*You may wish to skip this section and the following one on first reading. They
illustrate a more formal analysis of time-independent behavior. The practical utility of
this approach has yet to be demonstrated.

Sec. 3.2. FUNCTIONAL SYSTEMS 69

X

Y

ao a, . . l a m l
bO b l • i bn Fig. 3.7 The history of a computation

with two variables, x and y.

each row defines the sequence of values assumed by a given variable, as
shown in Fig. 3.7.

A history is simply a listing of the sequences of input and ou tpu t values
observed during a computat ion. It is a t ime-independent representation that
says nothing about the precise time at which these values were assigned to
the variables.

When a computat ion involves several variables, the history array
contains a row for each of them. We can divide the complete history into
the input history and the output history. Sometimes we will include the
history of internal variables in the ou tpu t history.

A program is functional if the output history Y of its execution always
is a time-independent function f of its input history X:

Y = f (x)

A functional program produces identical ou tpu t histories every time it is
executed with the same input history, independent of its speed of
execution.

As an example, let us again look at Algorithm 3.1 in which an input
sequence

f = (1 , 2 , . . . , m)

is copied to an (initially empty) ou tpu t sequence g.
Figure 3.8 shows the sequence of assignments made initially during the

execution of this algorithm.

c o m p l e t e d

$

t

false

1

1

I I ~ Time
2 3

Fig. 3.8 The initial sequence of assign-
ments made during the copying of a
sequence of records.

From these values (and the ones assigned during the rest of the
computat ion), we derive the history shown in Fig. 3.9.

The input history defines the sequence of assignments to the variable s;
the ou tpu t history comprises the variables completed and t.

Notice that the rows in a history array are not necessarily of the same

70 CONCURRENT PROCESSES Chap. 3

completed

S

t

false true [

1 2 " . m

1 2 " " m
Fig. 3.9 The history of the copying of
a sequence of records.

length because the number of assignments may be different for each
variable.

Notice also that the elements in a given column of a history array do
not necessarily define values assigned at the same time. A comparison of
Figs. 3.8 and 3.9 immediately shows that all values in the leftmost column
of the history array were assigned at different times. When a program
contains concurrent statements, the sequence in which assignments to
disjoint variables are made depends on the relative rates of the processes.

So, in general there are many different sequences in which a given
history can be produced in time. The functional requirement only says that
when the sequence of values is known for each input variable, it must be
possible to predict the sequence of values for each output variable,
independent of the rate at which they will be produced.

In some cases, we are still interested in observing actual rates of
progress. For this purpose, time is regarded as a discrete variable which is
increased by one each time an assignment to at least one of the variables
considered has been completed.

These instants of time are indicated explicitly in Fig. 3.8. In a history
array, an instant of t ime is defined by a line which crosses each row exactly
once. Such a time slice defines the extent of the history at a particular
instant.

Figure 3.10 shows the previous history with two successive time slices t l
and t2, which define the extent of the history after the first assignments to
the variables completed and s.

completed

$

t

fa lse[true 1

1 2

1 2

" ' ° m

• " ° m

false [true [

1 2 " . m

1 2 "°" m

t l t2

Fig. 3.10 A history with two successive time slices,
t l and t2.

A history H1 is called an initial part of another history H2 if H I is
contained in H2. More precisely, H1 and H2 must have the same number of
rows, and each row in H1 must be equal to an initial part of the
corresponding row in H2; but some rows in H I may be shorter than the
corresponding rows in H2. This relationship is denoted

Sec. 3.2. FUNCTIONAL SYSTEMS 71

H1 ~ H2

During a computat ion, every time slice t defines an initial part H(t) of
the final history H.

We will use the history concept to prove an important theorem by Patil
(1970).

3.2.5. A Closure Property

Consider again a program which communicates with its environment by
means of a set of distinct input and ou tpu t variables. We will observe the
execution of the program in two cases: In the first case, the environment
supplies an input history X, and the program responds by returning an
output history Y:

X ~ Y

In the second case, the observed input /ou tpu t relationship is:

Z t ~ y~

So far, nothing has been said about whether the program is functional.
If we repeat the execution with the input history X' the program may
possibly produce a different ou tpu t history, Y" ~ Y'.

But suppose we only consider programs which satisfy the following
requirement: If during its execution, a program is supplied with two
different input histories X and X', where X is contained in X', then the
same relationship will hold between the corresponding ou tpu t histories Y
and Y':

X ~< X' implied Y ~< Y'

This is called the consistency requirement. It is a sufficient condit ion
for functional behavior. If a consistent program is executed twice with the
same input, it delivers the same outpu t in both cases because

X = X' implies X ~ X' & X' ~ X
implies Y ~ Y' & Y' ~ Y
implies Y = Y'

Intuitively, the consistency requirement means that it is possible, at
every instant in time, to predict a port ion Y of the final output from the
observed input X. If a program in execution is supplied with more input X'

X, the additional input cannot affect the ou tpu t Y predicted earlier, but
can only extend it to Y' ~ Y.

72 CONCURRENT PROCESSES Chap. 3

X and X' refer to the input produced by the environment. This is no t
necessarily the same as the input consumed by the program. The
environment may assign new values to input variables, due to erroneous
synchronization, before previous values have been consumed by the
program. In that case, it is impossible to predict the final output f rom the
observed input. So the program is not consistent.

The consistency requirement is also violated if concurrent processes can
enter a deadlock state in which they are unable to respond to further input
under circumstances which depend on their speed of execution (see Section
2.6.1).

We now introduce an additional requirement of consistent programs:
Since the ou tpu t is a function of the input, a program in execut ion cannot
produce an ou tpu t value until the corresponding input value is present. This
cause-and-effect relationship can be expressed as follows: Suppose we
observe an input history at successive instants in time

X(0) ,X(1) , . . . ,X(t) , X

where t indicates the earliest time at which an initial part X(t) of the input
is available. Let the final input and ou tpu t histories be X and Y,
respectively. Now it is clear that an initial input history X(t) must be
contained in the final input history:

x(t) < x

Because the program is consistent, it is possible to predict part of the
ou tpu t history from the initial input history X(t). But in a physical system
it takes a finite t ime to produce this output ; so the earliest momen t at
which some or all of this ou tpu t can be available is the next instant of time
t + 1 where the ou tpu t history is Y(t + 1). The ou tpu t Y(t + 1), which is
predicted from an initial part of the input, must itself be an initial part of
the final ou tpu t Y. So we have

Y(t + 1) ~< Y

If we combine these two physical conditions, we get the so-called
dependency requirement:

X(t) ~ X implies Y(t + 1) ~< Y

In the following, we will consider programs for which the consistency
and dependency requirements hold unconditionally. They are called
unconditionally functional programs. We will prove the important closure
property, which states that any interconnection o f a finite number o f

Sec, 3.2. FUNCTIONAL SYSTEMS 73

u n c o n d i t i o n a l l y f u n c t i o n a l p r o g r a m s is u n c o n d i t i o n a l l y f u n c t i o n a l as a
w h o l e .

A system S consisting of a finite number of components S1, $2, . . . ,
S n can always be parti t ioned successively into smaller systems consisting of
two components each:

S = (S1, $2 ')
$2' = ($2, $3 ')
• • •

S n - l ' = (S n - l , Sn)

It is therefore sufficient to show that the interconnection of two
unconditionally functional programs, S1 and $2, also is an unconditionally
functional program S. The general theorem follows by induction.

The input and ou tpu t histories of S are called X and Y, as shown in Fig.
3.11. X in turn consists of two separate input histories, X1 and X2 for S1
and $2, respectively. Similarly, Y consists of two separate output histories,
Y1 and Y2 for S1 and $2, respectively. The histories of internal ou tpu t
produced by S1 for $2, and vice versa, are called J and K.

Fig. 3.11 Two programs S1 and $2,
connected to each other and to a
common environment by means of
input/output sequences X, Y, J, and
K.

We will s tudy the combined system S = (S1, $2) when it is supplied
with two different input histories X and X' where

X~< X'

and delivers the ou tpu t histories J, K, Y and J ' , K', Y'.
Consider first subsystem S1 and observe its input history X, K and the

74 CONCURRENTPROCESSES

--1 I J I IY,'
I I L _ _ _ J

Fig. 3.12 Program
shown in Fig. 3.11.

Chap. 3

S1 of the system

corresponding ou tpu t history J as shown in Fig. 3.12. (The ou tpu t history
Y1 is ignored for the moment .)

Suppose the following holds at time t:

X(t) ~ X' & K(t) < K'

This means that at t ime t during the first execution, the initial input history
to S1 is contained in its final input history of the second execution.

Now since S1 is uncondit ionally functional, it satisfies the dependency
requirement; so we have

X(t) ~ X' & K(t) ~ K' implies J(t + 1) ~ J '

By applying similar reasoning to subsystem $2, we find that

X(t) ~ X ' & J(t) ~ J' implies K(t + 1) ~ K'

These results can be combined into the following:

X(t) ~ X' & J(t) ~ J' & K(t) < K'
implies J(t + 1) ~ J ' & K(t + 1) ~ K'

We already assumed that X ~ X', so X(t) ~ X' holds at any instant of
time. Consequently, if the initial histories, J(t) and K(t), at t ime t are
contained in the final histories, J ' and K', then this is also the case at t ime
t + 1. This is trivially true at t ime t = 0 where J(t) and K(t) are empty. So it
holds throughout the execution that

X ~ X' implies J < J ' & K ~ K'

Sec. 3.2. FUNCTIONAL SYSTEMS 75

But since the subsystems satisfy the consistency requirement, this in turn
means that

X ~ X' implies Y ~ Y'

So the combined system S also satisfies the consistency requirement. And,
for physical reasons, it also satisfies the dependency requirement. (This can
be proved formally as well.)

The closure property enables a designer to verify that a large program is
functional by a step-wise analysis of smaller program components. The
functional behavior is ensured by local conditions (the consistency and
dependency requirements) which only constrain the relationship between a
program component and its immediate environment (represented by
input/output variables).

In actual systems, the consistency requirement seldom holds uncon-
ditionally. The functional behavior may depend on certain additional
requirements; for example, that the input is of a certain type and is not
delivered more rapidly than the system is able to consume it. A system
which satisfies the consistency and dependency requirements, provided that
additional constraints hold, is called conditionally functional. For such
systems, the closure property holds when the additional constraints hold.

I will conclude the present discussion with some examples of useful
systems in which time-dependent behavior is inherent and desired.

3.2.6. Non-functional Systems

I have stressed the importance of designing multiprogramming systems
which are functional in behavior. But it must be admitted that some
computational tasks are inherently time-dependent.

Consider, for example, priority scheduling according to the rule
shortest job next. This involves decisions based on the particular set of
computations which users have requested at a given time. If a scheduling
decision is postponed a few seconds, the outcome may well be different
because new and more urgent requests can be made in the meantime by
users. So priority scheduling depends not only on the order in which users
input their requests, but also on their relative occurrence in time.

In the spooling system shown in Fig. 1.3 there is a time-dependent
relationship between the stream of jobs input and the stream of printed
output. But the spooling system has one important property which makes
the time-dependent behavior tolerable: It maintains a functional relation-
ship between the input and output o f each job.

The user computations are disjoint; they could be carried out on
different machines. But, for economic reasons, they share the same
machine. And this can only be done efficiently by introducing a certain

(a)

CONCURRENT PROCESSES Chap. 3 76

(b)

Fig. 3.13 Two disjoint processes (a) without and (b) with a
common operation Q.

amount of time-dependent behavior on a microscopic time scale. However,
on a macroscopic time scale, the operating system hides the time-
dependency from the individual user and offers him a virtual machine with
perfectly reproducible behavior.

Figure 3.13 shows another example of the same principle: (a) shows
two disjoint processes consisting of the operations P, Q, R and S, Q, T; (b)
shows an equivalent system in which we have taken advantage of the
occurrence of a common operation Q in both processes. The processes now
share a single instance of operation Q, which can receive input from
operations P and S and deliver ou tpu t to operations R and T.

The equivalence of the two systems in Fig. 3.13(a) and (b) is based on
the assumption that requests received by Q from P have no effect on the
response of Q to requests received from S, and vice versa, and that Q
responds to any request within a finite time.

An example of a set of common operations shared by all user
computat ions is a filing system, which permits users to create and
manipulate data and programs on backing storage and maintain them over a
certain period of time.

The system in Fig. 3.13(b) is non-functional if we observe the input and
ou tpu t of the common operation Q because this is a t ime-dependent
merging of data values belonging to independent processes. But the system
is still functional if we only observe the relationship be tween the ou tpu t
f rom P and the input to R (or that between the ou tpu t from S and the
input to T).

So we come to the conclusion that functional behavior is an abstraction
just like the concepts operation, process, and state (see Section 2.6.3).
Whether or not a system is considered functional depends on the level of
description chosen by the observer.

Sec. 3.3. MUTUAL EXCLUSION 77

• 3.3. M U T U A L EXCLUSION

Much has been said about the role of disjoint processes and functional
behavior in multiprogramming systems. We must now deal with interacting
processes--concurrent processes which have access to common variables.

Common variables are used to represent the state of physical resources
shared by competing processes. They are also used to communicate data
between cooperating processes. In general, we will say that all common
variables represent shared objects called resources. Interacting processes can
therefore also be defined as processes which share resources.

To share resources, concurrent processes must be synchronized.
Synchronization is a general term for any constraint on the ordering of
operations in time. We have already met synchronizing rules which specify
a precedence or priority o f operations by constraints of the form
"operation A must be executed before operation B" and "an operation of
priority P must only be executed when all operations of higher priority
have been executed."

In this section, we will discuss process interactions in which the
constraint is of the form "operations A and B must never be executed at
the same t ime." This synchronizing rule specifies mutual exclusion of
operations in time.

3.3.1. Resource Sharing

We begin with an example in which two concurrent processes, P and Q,
share a single physical resource R. P and Q are cyclical processes which
every now and then wish to use R for a finite period of time, but they
cannot use it at the same time.

An example of a resource that can be accessed only by one process at a
time is a magnetic tape station. In this case, the requirement of mutual
exclusion is dictated by the physical characteristics of the resource: Since
we can only nhount one tape at a time on a magnetic tape station and access
its data strictly sequentially, it is impractical to let several processes use the
tape station at the same time. But, as we shall see, there is also a deeper
logical reason for the requirement of mutual exclusion of certain operations
in time.

We will follow a chain of arguments made by Dijkstra (1965) to
illuminate the nature of the mutual exclusion problem.

Let us first t ry the following approach: The resource R is represented
by a boolean, indicating whether it is free or occupied at the moment . Each
process goes through a cycle in which it first reserves the resource, then
uses it, and finally releases it again. Before reserving the resource, a process
waits in a loop until the resource is free. This leads to the following
program:

78 CONCURRENT PROCESSES Chap. 3

var free: boolean;
begin

free: = true;
cobegin
"P" repeat

repeat until free;
free: = false;
use resource;
free: = true;
P passive;

forever
"Q" repeat

repeat until free;
free:-- false;
use resource;
free:= true;
Q passive;

~ o r e v e r ~
coend

end

This program clearly violates the rules of concurrent statements laid
down in Section 3.2.3: Both processes change and refer to the variable free.
But let us ignore this for the moment.

Initially, free is true. It is therefore possible for P a~ld Q to refer to free
at the same time and find it true. Then, they will both in good faith assign
the value false to free and start using the resource. So this program does not
satisfy the condition that the resource can be used by at most one process
at a time.

Well, then we must try something else. In the next version, the boolean
free is replaced by another boolean, Pturn, which is true when it is P's turn
to use the resource and false when it is Q's turn:

vat Pturn : boolean;
begin

Pturn: = true;
cobegin
"P" repeat

repeat until Pturn;
use resource;
Pturn:= false;
P passive;

forever (cont.)

Sec. 3.3. MUTUAL EXCLUSION 79

" Q " repeat
repeat until not Pturn;
use resource;
Pturn:= true;
Q passive;

forever
coend

end

There are only two cases to consider: either Pturn is true or it is false.
When Pturn is true, only process P can start using the resource and release it
again. And when Pturn is false, only process Q can start using the resource
and release it again. So mutual exclusion of P and Q is indeed achieved. But
the solution is far too restrictive: It forces the processes to share the
resource in a strictly alternating sequence:

P , Q , P , Q , . . .

If one of the processes, say P, is s topped in its passive state after having
released the resource, the other process Q will also be s topped when it has
released the resource (by means of the assignment Pturn:= true) and then
tries to reserve it again.

This is quite unacceptable in an installation where P and Q could be
two independent user computat ions. We must require that a solution to the
problem make no assumptions about the relative progress of the processes
when they are not using the resource.

Another highly undesirable effect of the previous solution is the waste
of processing time in unproductive waiting loops. This is called the busy
form o f waiting.

Our third a t tempt uses two booleans to indicate whose turn it is:

vat Pturn, Qturn : boolean;
begin

Pturn : = false; Qturn : = false;
cobegin
"P" repeat

Pturn : = true;
repeat until not Qturn;
use resource;

Pturn := false;
P passive;

forever (cont .)

80 CONCURRENT PROCESSES Chap. 3

"Q" repeat
Qturn : = true;
repeat until not Pturn;
use resource;
Qturn := false;.
Q passive;

forever
coend

end

Assignment to variable Pturn is only made by process P. When P does
not use the resource, Pturn is false, so

not Pturn implies P passive

The two processes are completely symmetrical, so the assertion

not Pturn implies P passive
& not Qturn implies Q passive

must be invariant.
Process P waits until Qturn is false before it uses the resource, so

P active implies not Q turn
implies Q passive

Similar reasoning about process Q leads to the conclusion that

P active implies Q passive
& Q active implies P passive

is invariant.
Mutual exclusion is therefore guaranteed, and it is no t difficult to see

that stopping one process in its passive state does not influence the progress
of the other process. But it is a highly dangerous solution: The processes
can make the assignments

Pturn := true Qturn := true

' at the same time and then remain indefinitely in their waiting loops waiting
for one of the booleans to become false. In short, the solution can lead to a
deadlock.

We learn from our mistakes. The lesson of this one is that when
competing processes request the resource at the same time, the decision to
grant it to one of them must be made within a finite time.

Sec. 3.3. MUTUAL EXCLUSION 81

It is possible to continue along these lines and find a correct solution.
This was first done by Dekker and described by Dijkstra (1965). Dijkstra
solved the general case, in which n processes share a single resource. The
solution turns out to be far too complicated and inefficient to be of
practical value.

I have described these preliminary, incorrect solutions to make you
appreciate the subtlety of the mutual exclusion problem and discover a set
of criteria that a realistic solution must satisfy. Let me repeat these criteria:

(1) The resource in question can be used by one process at a t ime at
most.

{2) When the resource is requested simultaneously by several processes,
it must be granted to one of them within a finite time.

(3) When a process acquires the resource, the process must release it
again within a finite time. Apart from this, no assumption is made about
the relative speeds of the processes; processes may even be s topped when
they are not using the resource.

(4) A process should not consume processing time when it is waiting to
acquire the resource. ~ ~P,~ ,~¢K~

For the moment , we will leave the problem there and consider another
instance of it in which interacting processes are cooperating rather than
competing.

• 3.3.2. Data Shar ing

The second example of process interaction is taken from an actual
system that supervises an industrial plant. Among other things, this
real-time system measures the consumption of energy and the product ion
of materials in the plant continuously and reports it to management every
few hours.

Consumption and production are measured in discrete units (kilowatt-
hours and product units) and recorded in pulse registers connected to a
computer. The computer is multiplexed among a number of concurrent
processes. A cyclical process P inputs and resets the pulse registers every
few seconds and adds their values (0 or 1) to a corresponding number of
integer variables. Another cyclical process Q outputs and resets the integer
counters every few hours. Operators can change the frequency of execution
of P and Q independently. The processes therefore do not know their
relative rates.

Let us assume that the periodic scheduling of processes and the input/
ou tpu t are handled correctly by standard procedures. No generality is lost
by considering only one pulse counter v. As a first a t tempt , I suggest the
following solution:

82 CONCURRENT PROCESSES Chap. 3

var-v: i n t eger ;

begin
V : = 0;
cobegin
"P" repeat

d e l a y (l) ;
v:= v + i n p u t ;

forever
"Q" repeat

d e l a y (1 8 0 0 0) ;
o u t p u t (v) ;

v:= 0;
forever

coend
end

This program too violates the rules of concurrent statements because
process Q refers to a variable v changed by process P. But again we will
ignore this violation for the moment since it expresses the desired
interaction between the processes.

The intention is that a value of v ou tpu t at time t should define the
number of pulses accumulated over the past 18,000 seconds, or 5 hours,
prior to time t.

Now, in most computers, statements such as

v: = v + i n p u t o u t p u t (v)

are executed as a sequence of instructions which use registers, say r and s,
to hold intermediate results:

r:= i n p u t ; s: = v;
r: = r + v; o u t p u t (s) ;
V : = r;

A concurrent s tatement can therefore be executed as a sequence of
instructions interleaved in time. The operating system will ensure that the
instructions of each process are executed in the right order, but apart f rom
this, the system may interleave them in many different ways. In the system
considered here, the operating system switches from one process to another
every 20 msec to maintain the illusion that they are executed simultane-
ously. The actual interleaving of instructions in time is therefore a
t ime-dependent function of other concurrent processes not considered here.

One possibility is that the instructions of P and Q are interleaved as
follows:

Sec. 3.3. MUTUAL EXCLUSION 83

P:
Q:
P:
Q:

"v = p u l s e c o u n t "

r: = 1;
s: = v; o u t p u t (s) ;

r:= r + v;v: = r;

s: = 0; v: = 8;

"v = 0 & o u t p u t = p u l s e c o u n t "

Another possibility is the following:

P:
Q:

Q:
P:

"v = p u l s e c o u n t "

r: = l ; r : = r + v;

s:= v; o u t p u t (s) ;

S: = 0 ; V: = S;

v : = r;

"v = p u l s e c o u n t + 1 & o u t p u t = p u l s e c o u n t "

In the first case, the program measures an input pulse (r: = 1), but fails
to accumulate it (v = 0); in the second case, the program outputs the
current pulse count correctly, but proceeds to include it in the count over
the next five hours. The result should have been

"v = 1 & o u t p u t = p u l s e c o u n t "

o r

"v = 0 & o u t p u t = p u l s e c o u n t + 1"

depending on when the last pulse was measured.
The penalty of breaking the laws o f concurrent statements is

t ime-dependent erroneous behavior. The example shown here illustrates the
remark made in Section 3.1.1 about concurrent processes executed
simultaneously on several processors or on a single, multiplexed processor:
"The logical problems turn out to be the same in both cases; they are
caused by our ignorance of the relative speeds of concurrent processes."

It should be evident by now that our present programming tools are
hopelessly inadequate for controlling access to physical resources and data
shared by concurrent processes. A new tool is needed, and like our previous
tools it should be simple to understand, efficient to implement, and safe to
u s e .

• 3 .3 .3 . C r i t i ca l Reg ions

The erroneous behavior in the pulse counting program is caused by the
interleaving of concurrent statements in time. If we were sure that only one

I

84 CONCUR RENT PROCESSES Chap. 3

process at a time could operate on the common variable v, the previous
solution would work.

So let us postulate a language construction which has precisely this
effect. I will use the notat ion

vat v: shared T

to declare a common variable v of type T.
Concurrent processes can only refer to and change common variables

within structured statements called critical regions. A critical region is
defined by the notat ion

region v do S

which associates a s tatement S with a common variable v. This notat ion
enables a compiler to check that common variables are used only inside
critical regions.

Critical regions referring to the same variable v exclude one another in
time. More precisely, we make the following assumptions about critical
regions on a variable v:

(1) When a process wishes to enter a critical region, it will be enabled
to do so within a finite time.

(2) At most, one process at a time can be inside a critical region.

(3) A process remains inside a critical region for a finite time only.

Criterion 3 says that all statements operating on a common variable
must terminate.

Criterion 2 expresses the requirement of mutual exclusion in t ime of
these statements.

Criteria 1 and 2 put the following constraints on the scheduling of
critical regions associated with a given variable: (a) when no processes are
inside critical regions, a process can enter a critical region immediately; (b)
when a process is inside a critical region, other processes trying to enter
critical regions will be delayed; and (c) when a process leaves a critical
region while other processes are trying to enter critical regions, one of the
processes will be enabled to proceed inside its region; (d) these decisions
must be made within finite periods of time.

Finally, (e) the priority rule used to select a delayed process must be
fair: It must not delay a process indefinitely in favor of more urgent
processes. An example of a fair scheduling policy is first-come, first-served,
which selects processes in their order of arrival; an unfair policy is
last-come, first-served, which favors the latest request.

Sec. 3.3. MUTUAL EXCLUSION 85

Although we require that scheduling be fair, no assumptions are made
about the specific order in which processes are scheduled. This depends
entirely on the underlying implementat ion. As Dijkstra (1971b) puts it: " In
the long run a number of identical processes will proceed at the same
macroscopic speed. But we don ' t tell how long this run is." (See also
Dijkstra, 1972.)

Critical regions can be implemented in various ways. We are going to
consider some of them later.

• Critical regions referring to different variables can be executed
simultaneously, for example:

vat v: shared V; w: shared W;
cobegin

region v do P;
region w do Q;

coend

A process can also enter nested critical regions:

region v do
begin . . .

r e g i o n w d o . . . ;
. . .

end

0 In doing so, one must be aware of the danger of deadlock in such
constructions as:

cobegin
" P " region v do region w do . . . ;
" Q " region w do region v do . . . ;
coend

It is possible that process P enters its region v at the same time as
process Q enters its region w. When process P tries to enter its region w, it
will be delayed because Q is already inside its region w. And process Q will
be delayed trying to enter its region v because P is inside its region v. This is
a case in which correctness criterion 3 is violated: The processes do not
leave their critical regions after a finite time. A method of avoiding this
problem will be described later.

The concept critical region is due to Dijkstra (1965). The language
constructs which associate critical regions with a common variable are my
own (Brinch Hansen, 1972b). Similar constructs have been proposed
independent ly by Hoare (1971b).

r

86 CONCURRENT PROCESSES Chap. 3

With this new tool, common variables and critical regions, the solutions
to our previous problems become trivial. In the first problem, our only
concern was to guarantee mutual exclusion of operations on a physical
resource performed by concurrent processes. Algorithm 3.2 solves the
problem in the general case of n processes.

ALGORITHM 3.2 A Resource R Shared by n Concurrent Processes

vat R: shared boolean;
cobegin

"PI" repeat
region R do use resource;
P1 passive;

forever
• • • • •

"Pn" repeat
region R do use resource;
Pn passive;

forever
coend

The pulse counting problem is solved by Algorithm 3.3.

ALGORITHM 3.3 A Variable v Shared by Two Concurrent Processes

vat v: shared integer;
begin

v: = O;
cobegin

"P" repeat
delay(I);
region v do v:= v + input;

forever
"Q" repeat

delay(18000);
region v do begin

output(v);
V: = O;

end
forever

coend
end

Sec. 3.3. MUTUAL EXCLUSION 87

3.3.4. Conclusion

Critical regions provide an elegant solution to the resource sharing
problem. But how fundamental is this concept? After all, we succeeded in
one instance in solving the problem without introducing critical regions in
our language. I am referring to the algorithm in Section 3.3.1, which
permits a resource to alternate between two processes: P, Q, P, Q,
This solution may not be ideal, bu t it does ensure mutual exclusion wi thout
using critical regions--or does it?

In the analysis of its effect, I made the innocent statement: "There are
only two cases to consider: eitherPturn is true or it is false." These are the
only values that a boolean variable can assume from a formal point o f view.
But suppose the computer installation consists of several processors
connected to a single store as shown in Fig. 2.3. Then, it is quite possible
that the operations of processes P and Q can overlap in time. We must now
carefully examine what happens in this physical system when P and Q try
to operate simultaneously on the variable Pturn.

Suppose process P initiates the assignment

Pturn := false

This storage operation takes a finite time. We know that Pturn is true
before the operation is started and that Pturn will be false when the
operation is completed. But there is a transitional period, called the
instruction execution time, during which the physical state of the storage
cell is unknown. It is changing in a t ime-dependent manner, determined by
the characteristics of the electronic circuits and the storage medium used.

If process Q is allowed to refer to the same storage location while the
assignment is in progress, the resulting value (or more precisely, the bit
combination used to represent the value) is unpredictable. In other words,
process Q is performing an undefined operation.

The hardware designer solves this problem by connecting the
concurrent processors to a sequential switching circuit called an arbiter.
The arbiter ensures that, at most, one processor at a time can access a given
storage location. It is a hardware implementation of critical regions.

So our reasoning on the effect of the algorithm in Section 3.3.1 was
based on the implicit assumption that load and store operations on a given
variable exclude each other in time. The same assumption underlies
Dekker's solution to the resource sharing problem.

The load and store operations are proper critical regions at the short
grains of t ime controlled by hardware. But at higher levels of programming,
we must guarantee mutual exclusion in larger grains of time for arbitrary
statements. The language construct

88 CONCURRENT PROCESSES Chap. 3

region v do S

is introduced for this purpose.
Mutual exclusion is indeed one of the most fundamental concepts of

programming. Whenever we make assertions about the effect of any
operation on a certain variable, for example:

"A: array 1 . . n of integer"
sort(A);

"for all i,1: 1. . n (i ~ j imp l i e sA(i) ~ A(j))"

it is tacitly understood that this is the only operation performed at that
t ime on this variable. In the above example, it would indeed have been a
coincidence if the array A had been sorted if other processes were happily
modifying it simultaneously.

• In sequential computations, mutual exclusion is automatically achieved
because the operations are applied one at a time. But we must explicitly
indicate the need for mutual exclusion in concurrent computations.

I t is impossible to make meaningful statements about the ef fect o f
concurrent computations unless operations on common variables exclude
one another in time. So in the end, our understanding of concurrent
processes is based on our ability to execute their interactions strictly
sequentially. Only disjoint processes can proceed at the same time.

• But there is one important difference between sequential processes and
critical regions: The statements $1, $2, . . . , Sn of a sequential process are
totally ordered in time. We can therefore make assertions about its progress
from an initial predicate P towards a final result R :

" P " S1 " R i " $2 " R 2 " . . . " R n - l " Sn " R "

In contrast, nothing is specified about the ordering of critical regions in
t ime--they can be arbitrarily interleaved. The idea of progressing towards a
final result is therefore meaningless. All we can expect is tha t each critical
region leave certain relationships among the components of a shared
variable v unchanged. These relationships can be defined by an assertion I
about v which must be true after initialization of v and before and after
each subsequent critical region. Such an assertion is called an invariant.

When a process enters a critical region to execute a s tatement S, a
predicate P holds for the variables accessible to the process outside the
critical region, and an invariant I holds for the shared variable accessible
inside the critical region. After the completion of statement S, a result R
holds for the former variables and invariant I has been maintained.

So a critical region has the following axiomatic property:

Sec. 3.4. PROCESS COOPERATION 89

, ,p,,

region v do "P & I " S "R & I" ;

3.4. PROCESS COOPERATION

The interactions controlled by critical regions are rather indirect--each
process can ignore the existence and function of other processes as long as
they exclude each other in time and maintain invariants for common
variables.

We will now study more direct interactions between processes
cooperating on common tasks. Such processes are well aware of each
other's existence and purpose: Each of them depends directly on data
produced by other members of the community .

3.4.1. Process Communication

To cooperate on common tasks, processes must be able to exchange
data. Figure 3.14 shows the situation we will study. A process P produces
and sends a sequence of data to another process C, which receives and
consumes them. The data are transmitted between the processes in discrete
portions called messages. They are regarded as output by P and as input by
C.

Since either process can proceed at a rate independent of the other's, it
is possible that the sender may produce a message at a time when the
receiver is not yet ready to consume it (it may still be processing an earlier
message). To avoid delaying the sender in this situation, we introduce a

(a) (b) (c)

Fig. 3 .14 A producer P and a con-
sumer C connected by a buffer B
which can either be (a) full, (b) empty,
or (c) somewhere in between.

r

90 C O N C U R R E N T PROCESSES Chap. 3

temporary storage area in which the sender can place one or more messages
until the receiver is ready to consume them. This storage area is called a
buffer and designated B; its function is to smooth speed variations between
the processes and occasionally permit the sender to be ahead of the
receiver.

The communicat ion must be subject to two resource constraints: (1)
the sender cannot exceed the finite capacity of the buffer; and (2) the
receiver cannot consume messages faster than they are produced.

These constraints are satisfied by the following synchronizing rule: If
the sender tries to put a message in a full buffer, the sender will be delayed
until the receiver has taken another message from the buffer; if the receiver
tries to take a message from an empty buffer, the receiver will be delayed
until the sender has put another message into the buffer.

We also assume that all messages are intended to be received exactly as
they were sent--in the same order and with their original content. Messages
must not be lost, changed, or permuted within the buffer. These
requirements can be stated more precisely with the aid of Fig. 3.15.

0 1 2 S

r - - -

R L F/YYY// I I I I
0 1 2 . . . •

Fig. 3.15 A message sequence S sent by a producer and the
corresponding message sequence R received by a consumer.

The sequence S of messages sent by a producer P and the corresponding
sequence R of messages received by a consumer C are shown conceptually
as infinite arrays:

vat S, R: array 0..co of message

Two index variables s and r

v a t s , r : 0 . . c o

initialized to zero, define the number of messages sent and received at any
instant in time:

s > 0 implies S(1) to S(s) have been sent in that order

r > 0 implies R(1) to R(r) have been received in that order

Sec. 3.4. PROCESS COOPERATION 91

Our requirements are the following:

(1) The number of messages received cannot exceed the number of
messages sent

0 ~ r ~ s

(2) The number of messages sent, but not yet received, cannot exceed
the buffer capacity m a x

O ~ s - r ~ m a x

(3) Messages must be received exactly as they are sent

for i: 1 . . r (R(i) = S(i))

So, all in all, we have the following c o m m u n i c a t i o n invariant:

O ~ r ~ s ~ r + m a x &
for i: 1 . . r (R(i) = S(i))

I suggest the following notat ion for a language construct which satisfies
this requirement:

var B: buffer max of T

It declares a message buffer B, which can transmit messages of type T
between concurrent processes. The buffer capacity is defined by an integer
constant, max.

Messages are sent and received by means of the following standard
procedures:

send(M, B) receive(M, B)

where M is a variable of type T.
Since send and receive refer to a common variable B, we require that

these operations exclude each other in time. They are critical regions with
respect to the buffer used.

It is worth pointing out that with the synchronizing rules defined, a
sender and a receiver canno t be d e a d l o c k e d wi th respec t to a single message
buf fer . A sender can only be delayed when a buffer is full

s = r + m a x

and a receiver can only be delayed when a buffer is empty

92 CONCURRENT PROCESSES Chap. 3

s = r

A situation in which they are both delayed with respect to the same buffer
is therefore impossible if the buffer has a non:zero capacity max > O.

It is also interesting to notice that a message buffer (if properly used) is
uncondit ionally functional in the sense defined in Section 3.2.5.

If we observe a message sequence X going into a buffer, we expect that
a message sequence Y = X will eventually come out of it. And if we observe
two input sequences, X and X' , where the former is contained in the latter,
then we have trivially that

X ~ X' implies Y ~ Y'

So a message buffer satisfies the consistency requirement if all messages
sent are eventually received. And since send and receive cannot take place
at the same time, it takes a finite time for a message to pass through the
buffer. So the dependency requirement is also satisfied.

From the closure proper ty we conclude that a set o f unconditionally
functional processes connected only by message buffers is unconditionally
functional as a whole, provided there are only one sender and one receiver
for each buffer, and all messages sent are eventually received.

It is quite possible, with the synchronizing rules defined here, to
connect several senders and receivers to a single buffer, as shown in Fig.
3.16. But when this is done, the input to the buffer is a t ime-dependent
merging of messages from m different processes, and the ou tpu t is a
t ime-dependent splitting of messages to n different receivers. In that case,
there is no functional relationship be tween the ou tpu t o f each producer
and the input of each consumer.

The communicat ion primitives, send and receive, as proposed here will
transmit messages by value; that is, by copying them first from a sender
variable M into a buffer B, and then from B into a receiver variable M'. This
is only practical for small messages.

For larger messages, the data structures and primitives must be defined
such t ha t messages are transmitted by reference, that is; by copying an
address from one process to another. But in order to satisfy the

I I

B

Fig. 3.16 A message buffer B which
connects m producers and n con-
sumers.

Sec. 3.4. PROCESS COOPERATION 93

communication invariant, such a language construct must ensure that at
most one process at a time can refer to a message variable.

In the following, I will consider the simplest possible form of process
communication--the exchange of timing signals.

3.4.2. Semaphores

In some cases, a process is only interested in receiving a t iming signal
from another process when a certain event has occurred. But apart f rom
that, no other exchange of data is required.

A n example is Algorithm 3.3 where each process wishes to be delayed
until a certain interval of time has elapsed.

This can be regarded as a special case of process communicat ion in
which an empty message is sent each time a certain event occurs. Since the
messages are empty (and therefore indistinguishable), it is sufficient to
count them. The buffer is therefore reduced to a single, non-negative
integer, which defines the number of signals sent, bu t not ye t received.

Such a synchronizing variable is called a semaphore. It was first
proposed and investigated by Scholten and Dijkstra. A semaphore variable v
will be declared as follows:

vat v: semaphore

The corresponding send and receive primitives will be called

signal(v) wait(v)

(Dijkstra originally called them V and P.)
Since a semaphore is a common variable for its senders and receivers,

we must require that signal and wait operations on the same semaphore
exclude each other in time. They are critical regions with respect to the
semaphore.

Following Habermann (1972), a semaphore v will be characterized by
two integer components:

s(v)

r(v)

the number of signals sent

the number of signals received

Initially, s(v) = r(v) = O.
The communicat ion invariant defined in the previous section now

becomes:

0 ~ r(v) ~ s(v) ~ r(v) + max(integer)

94 CONCUR RENT PROCESSES Chap. 3

It means that: (1) a process can only send or receive some or no signals;
(2) signals cannot be received faster than they are sent; and (3) a semaphore
can only count to the upper limit of integers set by a given machine.

It is useful to permit an initial assignment to a semaphore before
process communication begins. So we will introduce a third semaphore
component:

c(v) the number of initial signals

and permit an assignment:

V : = C

to be made outside concurrent statements. But within concurrent state-
ments, the orily operations permitted on a semaphore v are still signal and
wait.

The semaphore invariant now becomes

0 ~ r(v) ~ s(v) + c(v) ~ r(v) + max(integer)

In most computers, the range of integers is much larger than the
number of unconsumed signals that can occur in practice. For example, in a
computer with 24-bit words, max(integer) = 8388607. We will therefore
ignore this constraint in the following and assume that an implementat ion
treats semaphore overflow as a programming error.

The synchronizing rules of semaphores are the following:

(1) If the operation wait (v) is started at a time when r(v) < s(v) + c(v),
then r(v) is increased by one and the receiver continues; but if r(v) = s(v) +
c(v), then the receiver is delayed in a process queue associated with the
semaphore v.

(2) The operation signal (v) increases s(v) by one; if one or more
processes are waiting in the queue associated with the semaphore v, then
one of them is selected and enabled to continue, and r(v) is increased by
one. The scheduling of waiting processes must be fair (see Section 3.3.3).

A critical region

vat R : shared T;
region R do S;

can be implemented by associating a semaphore mutex , initialized to one,
with the shared variable R and then surrounding the statement S by a pair
of wait and signal operations as shown in Algorithm 3.4.

Sec. 3.4. PROCESS COOPERATION 95

ALGORITHM 3.4 Mutual Exclusion Implemented With Semaphores

vat R: record content: T; mutex: semaphore end
begin

with R do mutex := 1;
cobegin

with R do
begin wait(mutex) ; $1; signal(mutex) end
• • .

with R do
begin wait(mu tex) ; Sn ; signal(mutex) end
o o o

c o e n d
end

To see that this implementation is correct, observe the following: Since
the processes always execute a wait operation before a signal operation on
mutex , we have

0 ~< s(mutex) ~< r(mutex)

When this is combined with the semaphore invariant, the result is

0 ~< s(mutex) ~ r (mutex) ~ s (mutex) + 1

From the structure of Algorithm 3.4, it is evident that the number of
processes n that are inside their critical regions at a given time are those
which have passed a wait operation at the beginning of these regions, but
have not as yet passed a corresponding signal operation at the end of the
regions. So

n(mutex) = r(mutex) - s (mutex)

This in turn means that

0 ~ n (mutex) ~ 1

In other words, one process at most can be inside its critical region at
any time. When no processes are inside their critical regions, we have

n(mutex) = 0

o r

r(mutex) = s(mutex)

96 CONCURRENT PROCESSES Chap. 3

Since r(mutex) < s(mutex) + 1, in this situation another process can
complete a wait operation and enter its critical region immediately.

So the correctness criteria for critical regions are satisfied provided each
of the statements $1 to Sn terminates.

It is an amusing paradox of critical regions that, in order to implement
one, we must appeal to the existence of simpler critical regions (namely,
wait and signal). In the next chapter, which explains an implementat ion of
wait and signal, I shall appeal to the existence of a storage arbiter--a
hardware implementation of still simpler critical regions, and so on, ad
infinitum. The buck ends at the atomic level, where nuclear states are
known to be discrete and mutually exclusive.

At this stage, it is tempting to conclude that there is no need for
extending a programming language with a construct for critical regions and
common variables. The problem can evidently be solved by wait and signal
operations on semaphores.

This conclusion is indeed valid in a world where programs are known to
be correct with absolute certainty. But in practice it is untenable. The
purpose of the language construct

• var v: shared T;
region v do S;

is to enable a compiler to distinguish between disjoint and interacting
processes, and check that common variables are used only within critical
regions.

If we replace this structured notat ion with semaphores, this will have
grave consequences:

(1) Since a semaphore can be used to solve arbitrary synchronizing
problems, a compiler cannot conclude that a pair of wait and signal
operations on a given semaphore initialized to one delimits a critical region,
nor that a missing member of such a pair is an error. A compiler will also be
unaware of the correspondence between a semaphore and the common
variable it protects. In short, a compiler cannot give the programmer any
assistance whatsoever in establishing critical regions correctly.

(2) Since a compiler is unable to recognize critical regions, it cannot
make the distinction be tween critical regions and disjoint processes.
Consequently, it must permit the use of common variables everywhere. So
a compiler can no longer give the programmer any assistance in avoiding
t ime-dependent errors in supposedly disjoint processes.

The horrors that this leads to have already been demonstra ted (see
Section 3.2.2).

As an example of the first problem, consider the programmer who by
mistake writes the following:

Sec. 3.4. PROCESS COOPERATION 97

wait(mutex); signal(mutex);
S; S;

wait(mutex); wait(mutex);

In the left example, the program will be deadlocked at the end of the
"crit ical" region; in the right example, the program will sometimes permit 3
processes to be inside a "critical" region simultaneously.

The advantage of language constructs is that their correctness can be

ALGORITHM 3.5 Periodic Scheduling of Concurrent Processes

vat schedule: array 1 . . n of
record deadline, interval: integer end

start: array 1 . .n of semaphore;
timer: semaphore;
task: 1 . . n; t: in teger;

begin
timer: = O; initialize(schedule, start);
cobegin

repeat "hardware timer"
t: = interval desired;
while t > O d o t : = t - 1 ;
signal(timer);

forever

repeat "scheduler"
wait(timer);
for every task do
with schedule(task) do
begin

deadline := deadline - 1;
if deadline ~ 0 then
begin

deadline: = interval;
signal(start(task));

end
end

forever

repeat "task i"
wait(start(i));
perform task;

forever
coend

end

98 CONCURRENT PROCESSES Chap. 3

established once and for all when the compiler is tested. The alternative is
to test each critical region separately in all user programs!

It is reasonable to use semaphores in a compiler to implement critical
regions. But at higher levels of programming, the main applicability of
semaphores is in situations in which processes exchange only timing signals.
This is the concept that semaphores represent in a direct, natural manner.

As an example, let us again consider the problem of scheduling a
number of processes periodically in a real-time system. In Algorithm 3.3,
the periodic scheduling was handled by a standard procedure that delays a
process until a certain interval of time has elapsed. We now want to show
how this delay can be implemented in terms of semaphores.

For each task process, we introduce a record defining the time interval
between two successive executions (called the interval), the time interval
until its next execution. (called the deadline), and a semaphore on which
the process can wait until its next execution starts.

The time schedule of all tasks is scanned by a central scheduling process
every second: In each cycle, the scheduler decreases all deadlines by one
and sends a start signal to the relevant tasks.

The scheduling process in turn receives a signal from a hardware timer
every second.

This scheme is shown in Algorithm 3.5.

3.4.3. Conditional Critical Regions

The synchronizing tools introduced so far:

critical regions
message buffers
semaphores

are simple and efficient tools for delaying a process until a special condit ion
holds:

mutual exclusion
message available (or buffer element available)
signal available

We will now study a more general synchronizing tool which enables a
process to wait until an arbitrary condition holds.

For this purpose I propose a synchronizing primitive await, which
delays a process until the components of a shared variable v satisfy a
condition B:

Sec. 3.4. PROCESS COOPERATION 99

var v: shared T
region v do
begin . . . await B; . . . end

The await primitive must be textually enclosed by a critical region
associated with the variable v. If critical regions are nested, the
synchronizing condition B is associated with the innermost enclosing
region.

The shared variable v can be of an arbitrary type T. The synchronizing
condition B is an arbitrary boolean expression which can refer to
components of v.

The await primitive can for example be used to implement conditional
critical regions of the form proposed by Hoare (1971b):

"Consumer"

region v do
begin await B; $1 end

"Producer"

region v do $2

Two processes, called the consumer and the producer, cooperate on a
common task. The consumer wishes to enter a critical region and operate
on a shared variable v by a statement $1 when a certain relationship B holds
among the components of v. The producer enters a critical region
unconditionally and changes v by a statement $2 to make B hold.

I will use this example and Fig. 3.17 to explain the implementat ion of
critical regions and the await primitive. When a process such as the
consumer above wishes to enter a critical region, it enters a main queue, Or,
associated with the shared variable v. From this queue, the processes enter

1

(a) (b)

Fig. 3.17 Scheduling of (a) simple and
(b) conditional critical regions V by
means of process queues Qv and Qe.

100 CONCURRENT PROCESSES Chap. 3

their critical regions one at a time to ensure mutual exclusion of operations
on v.

After entering its critical region, the consumer inspects the shared
variable v to determine whether it satisfies the condition B: In tha t case,
the consumer completes its critical region by executing the s tatement S1;
otherwise, the process leaves its critical region temporarily and joins an
event queue, Qe, associated with the shared variable.

Other processes can now enter their critical regions through the main
queue, Qv. These processes may either complete their critical regions
unconditionally or decide to await the holding of an arbitrary condition on
variable v. If their conditions are not satisfied, they all enter the same event
queue, Qe.

When another process such as the previous producer changes the shared
variable v by a s tatement $2 inside a critical region, it is possible that one or
more of the conditions expected by processes in the event queue, Qe, will
be satisfied. Consequently, when a critical region has been successfully
completed, all processes in the event queue, Qe, are transferred to the main
queue, Qv, to permit them to reenter their critical regions and inspect the
shared variable v again.

It is possible that a consumer will be transferred in vain between the
main queue and the event queue several times before its condition B holds.
But this can only occur as frequently as producers change the shared
variable. This controlled amount of busy waiting is the price we pay for the
conceptual simplicity achieved by using arbitrary boolean expressions as
synchronizing conditions.

In the case of simple critical regions, we expect that all operations on a
shared variable maintain an invariant I (see Section 3.3.4). Within
conditional critical regions, we must also require that the desired invariant
is satisfied before an await statement is executed. When the waiting cycle of
a consumer terminates, the assertion B & I holds.

In the following, we will solve two synchronizing problems using first
critical regions and semaphores, and then conditional critical regions. This
will enable us to make a comparison of these synchronizing concepts.

• 3.4.4. An Example: Message Buffers

We will implement the message buffer defined in Section 3.4.1 and
shown in Fig. 3.18.

The buffer consists of a finite number of identical elements arranged in
a circle. The circle consists of a sequence of emp ty elements tha t can be
filled by a producer and a sequence of full elements that can be emptied by
a consumer. The producer and consumer refer to empty and full elements
by means of two pointers, p and c. During a computat ion, both pointers
move clockwise around the circle without overtaking each other.

~Yi~o~ ~q c.vAy

Sec. 3.4. PROCESS COOPERATION 101

fu l l

c ~ . . J _ ~ x Fig. 3.18 A cyclical message buffer
with a producer pointer p and a

p consumer pointer c.

The sequence o f messages received

R (1) , R (2) , . . . , R (r)

mus t be con ta ined in the sequence o f messages sent

S (1) , S (2) , . . . ,S (s)

Le t the buf fe r and its poin ters be declared as fol lows:

buf fer : array 0 . . m a x - 1 o f T;
p , c: O. . m a x - l ;

T h e desired e f fec t is achieved if the fol lowing rules are observed:

(1) During a c o m p u t a t i o n , p o i n t e r s p and e mus t en u m era t e the same
sequence o f bu f f e r e lements :

buf fer (O): = S(1);
b u f f e r (l) : = S(2) ;
• * • • •

b u f f e r (p - 1 rood max) : = S(s);

R (1) := buf fer (O);
R(2) := b u f f e r (l) ;

, , . . .

R (r) : = b u f f e r (c - 1 rood max) ;

(2) The receiver mus t n o t e m p t y an e l emen t unt i l i t has been sent:

O~< r < s

(3) The sender mus t n o t f i l l an e l emen t unt i l i t has been received:

0 ~< s - r < m a x

The so lu t ion tha t uses condi t iona l critical regions is Algor i thm 3.6.
Init ial ly, poin ters p and c are equal and t h ey are m o v ed b y the same
func t ion p + 1 rood m a x and c + 1 m o d m a x . So, the poin ters en u m era t e
the same sequence o f buf fe r elements .

102 CONCURRENT PROCESSES

ALGORITHM 3.6 Process Communication With Conditional Critical Regions

type B = shared record
b u f f e r : array 0 . . m a x - 1 of T;
p, c: O. . m a x - l ;

f u l l : O. . m a x ;

end
" I n i t i a l l y p = c = f u l l = 0"

procedure send(m: T; vat b: B);
region b do
begin

await f u l l < m a x ;

b u f f e r (p) : = m ;
p:= (p + 1) mod m a x ;

fu l l : = f u l l + 1;
end

procedure r e c e i v e (v a t m : T ; b: B);
region b do
begin

await f u l l > 0;
m : = b u f f e r (c) ;
c: = (c + 1) mod m a x ;

f u l l : = f u l l - 1;
end

Chap. 3

The variable f u l l is initially zero. It is increased by one after each s e n d
and decreased by one after each rece i ve . So

f u l l = s - r

Receiving is only done when f u l l > 0 or s > r; sending is only done
when f u l l < m a x or s - r < m a x . The solution is therefore correct.

Now, let us solve the same problem with simple critical regions and
semaphores: We will use the pointers p and c exactly as before--so
condition 1 is still satisfied.

The delay of the receiver will be controlled by a semaphore f u l l in the
following way:

initially: f u l l : = 0

before receive: w a i t (f u l l)
after send: s i g n a l (f u l l)

When the semaphore is used in this way, we evidently have

Sec. 3.4. PROCESS COOPERATION 103

0 ~< r ~< number o f waits(full) &

0 ~< number o f signals(full) ~< s

The semaphore invariant defined in Section 3.4.2 ensures that, when
the initial number of full signals has been consumed by wait operations,
further wait operations cannot be completed faster than the corresponding
signal operations:

number o f waits(full) ~< number o f signals(full) + 0

Immediately before a wait operation is completed, the stronger con-
dition

number o f waits(full) < number o f signals(full) + 0

holds.
From this we conclude that before a message is received, the condition

0~< r < s

holds.
We have chosen to represent the condition r < s by the semaphore full.

But since timing signals are merely indistinguishable boolean events, we
cannot use the same semaphore to represent the other condition, s - r
max, which controls sending.

So we must introduce another semaphore, empty , and use it as follows:

initially:
before send:
after receive:

empty := max
wait(empty)
signal(empty)

By similar reasoning, we can show that before sending the following
holds:

0 ~< s ~< number o f waits(empty) &

0 ~< numberofs ignals(empty) ~< r &

number o f waits(empty) < number o f signals(empty) + max

o r

0~< s < r + m a x

The complete solution is Algorithm 3.7.

104 CONCURRENTPROCESSES

ALGORITHM 3.7 Process Communication With Semaphores

type B = record
v: shared record

buf fer: array O. .max-1 of T;
p, c: O. . m a x - l ;

end
full , e m p t y : semaphore ;

end
"Initially p = c = ful l = 0 & e m p t y = m a x "

procedure send(m: T; vat b: B);
begin

with b do
begin

w a i t (e m p t y) ;
region v do
begin

buf fer (p) := m;
p:= (p + 1) mod m a x ;

end
signal(full);

end
end

procedure receive(vat m: T; b: B);
begin

with b do
begin

wait(fu l l) ;
region v do
begin

m: = buf fer (c) ;
c: = (c +1) rood max;

end
s igna l (empty) ;

end
end

Chap. 3

This exercise has already given a good indication of the diffel'ence
between conditional critical regions and semaphores:

(1) A semaphore can only transmit indistinguishable timing signals; it
can therefore only be used to count the number of times a speci f ic e v e n t

has occurred in one process without being detected by another process.

Sec. 3.4. PROCESS COOPERATION 105

Consequently, it is necessary to associate a semaphore with each
synchronizing condition.

The first algorithm with conditional critical regions uses two syn-
chronizing conditions

full > 0 f u l l < max

but only one variable full.
In the second algorithm, these conditions are represented by two

semaphore variables

full empty

(2) Notice also that within conditional critical regions, the program
text shows directly the condition under which a region is executed. But in
the second algorithm, the association between a semaphore and a
synchronizing condition exists only in the mind o f the programmer. He
cannot deduct from the s tatement

wait(empty)

that full < max before sending wi thout examining the rest of the program
and discovering that full < max when

signal(empty)

is executed after receiving! When semaphores are used to represent general
scheduling conditions, these conditions can only be deduced from the
program text in the most indirect manner.

One can also explain the difficulty with semaphores in the following
way: If a process decided to wait on a semaphore inside a critical region, it
would be impossible for another process to enter its critical region and
wake up the former process. This is the reason that the wait operations in
Algorithm 3.7 are executed outside the critical regions.

However, it is dangerous to separate a synchronizing condition from a
successive critical region. The danger is that another process may enter its
critical region first and make the condition false again. If we split critical
regions in this way, we must introduce additional variables to represent
intermediate states of the form "I expect condition B to hold when I
enter my critical region." So, while a single variable full is sufficient in
Algorithm 3.6, we need two variables, full and empty, in Algorithm 3.7.

The elegance of Algorithm 3.6 makes it tempting to suggest that the
language constructs for message buffers suggested in Section 3.4.1 can be
replaced by conditional critical regions and common variables. But I wish

i

106 CONCURRENT PROCESSES Chap. 3

to point out that the arguments made earlier in favor of the language
construct for simple critical regions can also be made for message buffers.

In Section 3.4.1, we found that a system consisting of processes
connected only by buffers can be made functional as a whole. But this is
only true if the send and receive operations are implemented correctly and
if they are the only operations on the buffers. A compiler is unable to
recognize the data structure B in Algorithm 3.6 as a message buffer and
check that it is used correctly. So when message buffers are used
frequently, it may well be worth including them as a primitive concept in a
programming language.

We now proceed to the next problem, which is due to Courtois,
Heymans, and Parnas (1971).

3.4.5. An Example: Readers and Writers

Problem Definition

Two kinds of concurrent processes, called readers and writers, share a
single resource. The readers can use the resource simultaneously, but each
writer must have exclusive access to it. When a writer is ready to use the
resource, it should be enabled to do so as soon as possible.

The first step is to introduce a terminology which enables us to talk
about the problem in a meaningful manner. A process must declare its wish
to use the resource, and, since the resource may be occupied at that
moment , the process must then be prepared to wait for it. A process must
also indicate when it has completed its use of the resource.

So any solution to this kind of resource allocation problem must be of
the following nature:

request resource;
use resource;
release resource;

All processes must go through such a sequence of events, and I would
expect the solution to be symmetrical with respect to the readers and
writers. To simplify matters, I will start by solving a simpler problem in
which I do not bother to ensure that the writers exclude one another, but
only that they exclude all readers, and vice versa. They are thus more
symmetrical with the readers.

A process is called active from the moment it has requested the
resource until it has released the resource again. A process is called running
from the moment it has been granted permission to use the resource until it
has released the resource again.

Sec. 3.4.

The state of the
initialized to zero:

a r

1T

a w

r w

Correctness Criteria

PROCESS COOPERATION 107

system can be characterized by four integers, all

the number of active readers
the number of running readers
the number of active writers
the number of running writers

A solution to the simplified problem is correct if the following criteria
are satisfied:

(1) Scheduling o f waiting processes: Readers can use the resource
simultaneously and so can writers, but the number of running processes
cannot exceed the number of active processes:

O ~ rr ~ ar & O ~ rw ~ aw

This invariant will be called W.

(2) Mutual exclusion of running processes: Readers and writers cannot
use the resource at the same time:

n o t (r r > 0 & r w > O)

This invariant will be called X.

(3) No deadlock o f active processes: When no processes are running,
active processes can start using the resource within a finite time:

(rr = 0 & rw = O) & (ar > 0 or aw > O) implies

(IT > 0 or rw > O) within a finite time

(4) Writers have priority over readers: The requirement of mutual
exclusion means that the resource can only be granted to an active writer
when there are no running readers (rr = 0). To give priority to writers, we
make the slightly stronger condition that the resource can only be granted
to an active reader when there are no active writers (aw = 0).

Solution With Semaphores

This time we will solve the problem first by means of simple critical
regions and semaphores. Two semaphores, called reading and writing,

108 CONCUR RENT PROCESSES Chap. 3

enable the readers and writers to wait for the resource. They are both
initialized to zero. The solution is Algorithm 3.8.

ALGORITHM 3.8 The Readers and Writers Problem Solved With Semaphores

type T = record ar, rr, a w , rw: in teger end

vat v: shared T; reading, wr i t ing: s e m a p h o r e ;

"Initially ar = rr = a w = rw = reading = w r i t i ng = 0 "

cobegin
begin " r e a d e r "

region v do
begin

ar:= ar + 1;
gran t reading(v , reading);

end
wai t (read ing) ;

read;

region v do
begin

rr: = rr - I ;
ar:= ar - 1;
gran t wr i t ing (v , wr i t ing) ;

end
. ° •

end

beg in " w r i t e r "

region v do
begin

aw:= a w + 1;
gran t wr i t ing (v , wr i t ing) ;

end
wai t (wr i t i ng) ;

wr i t e ;

region v do
begin

rw:= rw - 1;
aw: = a w - 1;
gran t reading(v , reading);

e n d
. . .

end
. . .

coend

Sec. 3.4. PROCESS COOPERATION 109

A reader indicates that it is active by increasing ar by one. It then calls a
procedure, grant reading, which examines whether the resource can be
granted for reading immediately. Then the reader waits until it can use the
resource. Finally, it leaves the running and active states by decreasing rr and
ar by one and calls another procedure, grant writing, which determines
whether the resource should now be granted to the writers. The behavior of
a writer is quite symmetrical.

The scheduling procedures, grant reading and grant writing, are defined
by Algorithm 3.9.

ALGORITHM 3.9 The Readers and Writers Problem (cont.)

p r o c e d u r e grant reading(var v: T; reading: semaphore);
begin

with v do
i f a w = 0 t h e n
while rr < ar do
begin

rr:= rr + 1;
signal(reading);

end
end

procedure grant writing(var v: T; writing: semaphore);
begin

with v do
if rr = 0 t h e n
while rw < aw do
begin

rw:= rw + 1;
signal(writing);

end
end

The resource can be granted to all active readers (rr = ar) provided no
writers are active (aw = 0). And it can be granted to all active writers
(rw = aw) provided no readers are running (rr = 0).

I will now outline a correctness proof of this solution. The arguments
are explained informally to make them easy to understand, but a purist will
not find it difficult to restate them formally as assertions directly in the
program text.

Let us first verify that the components of variable v have the meaning
intended. Since ar and aw are increased by one for each request and
decreased by one for each release made by readers and writers, respectively,
we immediately conclude that they have the following meanings:

!

110 CONCURRENT PROCESSES Chap. 3

ar = n u m b e r o f act ive readers

aw = n u m b e r o f act ive wri ters

It is a little more difficult to see the meanings of the variables rr and rw.
Consider for example rr: It is increased by one for each signal on the
semaphore reading and decreased by one for each release made by a reader,
SO:

rr = n u m b e r o f signals(reading) - n u m b e r o f releases made by readers

From the program structure, it is also clear that the running readers are
those which have been enabled to complete a wai t on the semaphore
reading minus those which have released the resource again. So

n u m b e r o f running readers =

n u m b e r o f readers which can or has passed wait(reading) -

n u m b e r o f releases m a d e by readers

The semaphore invariant ensures that

n u m b e r o f readers which can or has passed wait(reading) =

n u m b e r o f signals(reading)

So we finally conclude that

rr = n u m b e r o f running readers

and similarly for writers that

rw = n u m b e r o f running writers

Consider now correctness criteria 1 and 2. We assume that the
assertions W and X hold immediately before a request by a reader. This is
trivially true after initialization when

0 = r r = a r & O = rw = aw

The increase of ar by one inside a request does not change the validity of W
and X, so we have:

"reader r e q u e s t "
region v do
begin "W & X "

ar:= ar + 1; (con t.)

Sec. 3.4. PROCESS COOPERATION 111

"W & X "
g r a n t r ead ing (v , read ing) ;

end

The proeedure g r a n t r ead ing either does nothing (when a w ~ 0 or rr =

ar) , in which ease W and X stin hold, or it increases the number of running
readers by one until

O < r r = a r & O = r w = a w

holds. This implies that W and X still hold:

? impfies W & X

Consider now a reader release. A release is only made by a running
process, so we have rr > 0 immediately before. Assuming that W and X
also hold initially, we have

" r e a d e r r e l e a s e "
region v d o
begin " W & X & rr > 0 "

rr: = rr - 1;
ar:= ar - 1;
,,??,,

g r a n t w r i t i n g (v , w r i t i n g) ;
,,???,,

end

Now W & X & rr > 0 is equivalent to 0 < rr ~ ar & 0 = r w ~ a w so

?? =- 0 ~< rr ~< ar & O = r w ~< a w

which in turn implies W & X.
The procedure g r a n t w r i t i n g either does nothing (when rr =/= 0 or r w =

a w) , in which case W and X still hold, or it increases the number of running
writers by one until

O=rr~< a r & O < r w = a w

holds. This implies that W and X still hold:

??? implies W & X

By similar arguments, you can show that the invariance of W and X is
maintained by a writer request and release.

112 CONCU R R ENT PROCESSES Chap. 3

The next thing we must show is the absence of deadlocks as required by
correctness criterion 3. When the resource is not used by any readers, it can
be shared by all active writers; and when the resource is neither used nor
desired by any writers, it can be shared by all active readers. It is not
difficult to show that this invariant

D =- (rr = 0 implies r w = a w) &

(a w = 0 implies rr = a t)

is maintained by the request and release operations defined by Algorithms
3.8 and 3.9.

If we assume that the resource is idle

I ~- r r = O & r w = O

then we find that

I & D implies a w = r w = 0

and also that

I & D & aw = 0 impliesar = rr = 0

In other words, a situation in which no process uses the resource (rr = 0

& r w = 0) is one in which no process desires to do so (ar = 0 & a w = 0) .

This completes the arguments for the correctness of the first solution to
the readers and writers problem. You will appreciate that the proof will be
far more tedious if it is formalized in detail. Although it is a well-structured
program and quite typical of the way in which semaphores can be used, it is
no t the sort of program which is self-evident at first glance. (Why, for
example, need a reader that releases the resource only worry about the
scheduling of writers and not about that of other readers?)

S o l u t i o n w i t h C o n d i t i o n a l C r i t i c a l R e g i o n s

It is tempting to conclude that the complexity of the previous solution
is caused by the intricate scheduling rules of readers and writers. But this is
no t true. For by using conditional critical regions, it is possible to write
down in a few lines a solution so simple that its correctness is almost
self-evident. This is Algorithm 3.10.

It is easy to see that

rr = n u m b e r o f r u n n i n g r e a d e r s

a w = n u m b e r o f a c t i v e w r i t e r s

Sec. 3.4. PROCESS COOPERATION

ALGORITHM 3. 10 The Readers and Writers Problem Solved
With Conditional Critical Regions

v a t v: shared record rr, a w : i n t e g e r end

" I n i t i a l l y rr = a w = 0 "

cobegin
begin " r e a d e r "

region v do
begin await a w = 0; rr:= rr + 1 end
read;

region v do rr:= rr - 1;
. . .

end
begin " w r i t e r "

region v do
begin a w : = a w + 1; await rr = 0 end
w r i t e ;

region v do a w := a w - 1;

, . •

end
o ° °

coend

113

The variables ar a n d r w are not used in this program, so we can simply
define that these identifiers denote the following:

ar = n u m b e r o f a c t i v e r e a d e r s

r w = n u m b e r o f r u n n i n g w r i t e r s

This establishes the meanings of the variables.
The program text also shows that each active process goes through a

waiting and running state in that order. Consequently

0 ~ r u n n i n g p r o c e s s e s ~ r u n n i n g a n d w a i t i n g p r o c e s s e s

This means that invariant W holds.
Assuming that W and X hold before a reader request, we find

region v do
begin "W X"

await a w = 0;
"W & X & a w = 0"
rr:= rr + 1;
' ' ~ ' '

end

114 CONCURRENT PROCESSES Chap. 3

Now W & a w = 0 implies r w = O. After the increase of rr , we still have
r w = 0, which implies that X holds. W has already been shown to be
maintained by all requests and releases, so

? implies W & X

And before a reader release, we have

region v do
"W & X & rr > 0" r r := rr - 1 "??" ;

Since X & rr > 0 implies r w = 0, it is evident that X also holds after the
release, and again W is also maintained.

By similar simple arguments, it can be shown that the invariance of W
and X is maintained by the writers.

To see that a deadlock cannot occur, consider the idle resource state rr

= 0 & r w = O. If there are active writers, they will be able to run within a
finite time since rr = 0. On the other hand, if there are no active writers,
but only active readers, the readers will be able to run within a finite time
since a w = O.

The o r i g i n a l p r o b l e m differs only from the simplified one by requiring
exclusive access by writers to the resource. Both solutions can be adapted
immediately to this requirement by forcing the running writers to use the
resource inside another critical region

vat w: shared b o o l e a n ;

• . • . •

region w do w r i t e ;

This solution shows that the mutual exclusion of writers is completely
irrelevant to the readers; it can be settled among the writers themselves.

3.4.6. A Comparison of Tools

It is time now to compare the two synchronizing methods and consider
why the use of semaphores introduces so much complexity for problems of
the previous type.

The root of the matter is that any synchronizing concept is an ideal,
direct means of expression for a particular type of process interaction, but
it fails miserably when applied to a totally different type of interaction.

The conditional critical region

region v do begin await B; S end

Sec. 3.4. PROCESS COOPERATION 115

is the most natural tool in a situation where a process wishes to wait until
the components of a shared data structure satisfy a certain condition.

Likewise, a wait operation on a semaphore is the most direct way of
expressing the wish to wait until a timing signal has been produced.

The difficulty is that the former situation is far more common in
realistic systems, and it can only be expressed by means of simple critical
regions and semaphores in a most indirect and obscure manner. The
programmer must associate a semaphore with each possible scheduling
condition B and express himself as follows:

region v do
if B then begin S; signal(sem) end

else indicate request(q);
wait(sem);

And all other processes which might make condition B true inside their
own critical regions, such as the following:

region v do R

must now take responsibility for activating the delayed processes as
follows:

region v do
begin

R;
f i B & request(q) then
begin

remove request(q);
S; signal(sern) ;

end
end

When this indirect way of expression is used to control resources, the
programmer is forced to separate the request, grant, and acquisition of
resources and introduce additional variables to represent the intermediate
states "resource requested, but not yet granted" and "resource granted, bu t
not yet acquired." The former state is represented by the condition
request(q) and the latter by the relation waits(sem) < signals(sem).

To make matters worse, the use of semaphores forces the programmer
to make very strong logical connections among otherwise independent
processes: Readers must be prepared to schedule writers, and vice versa. A
wait operation on a semaphore represents a synchronizing condition B,
which is stated elsewhere in the program at points where the corresponding

116 CONCURRENT PROCESSES Chap. 3

signal operations are carried out. So the programmer must now examine
not only the preceding request operation, but also all other release
operations to verify that a signal operation is performed only when
condition B holds and one or more processes are waiting for it.

3.4.7. Event Queues

The conceptual simplicity of simple and conditional critical regions is
achieved by ignoring details of scheduling: The programmer is unaware of
the sequence in which waiting processes enter critical regions and access
shared resources. This assumption is justified for processes that are so
loosely connected that simultaneous requests for the same resources
rarely occur.

But in most computer installations, resources are heavily used by a large
group of users. In these situations, operating systems must be able
to control the scheduling of resources explicitly among competing
processes.

The scheduling of heavily-used resources can be controlled by
associating a synchronizing variable with each process and maintaining
explicit queues of requests.

Since our purpose is not to study data structures, I will simply declare a
queue of elements of type T as follows:

var q: queue of T

and postulate that the standard procedures

enter(t, q) remove(t, q)

enters and removes an element t of type T from a given queue q according
to the scheduling policy desired.

The boolean function

empty(q)

determines whether or not a given queue q is empty.
A queue differs from a sequence in that the elements of the former are

not necessarily removed in the same order in which they are entered.
As an example of completely controlled resource allocation, we will

solve the following problem: A number of processes share a pool of
equivalent resources. When resources are available, a process can acquire
one immediately; otherwise, it must enter a request and wait until a
resource is granted to it.

Algorithm 3.11 is an at tempt to solve this problem by means of

Sec. 3.4. PROCESS COOPERATION

ALGORITHM 3. 1 1 Scheduling of Heavily Used Resources
With Conditional Critical Regions

type P = 1 . . number of processes;
R = 1. .number o f resources;

vat v: shared record
available: sequence o f R;
requests: queue of P;
turn: array P of boolean;

end

procedure reserve(process: P; vat resource: R);
region v do
begin

while empty(available) do
begin

enter(process, requests);
turn (process) := false;
await turn(process);

end
get(resource, available);

end

procedure release(resource: R) ;
vat process: P;
region v do
begin

put(resource, available);
if no t empty(requests) then
begin

remove(process, requests);
turn(process) := true;

end
end

117

conditional critical regions. Available resources are defined by a sequence
of indices of type R. Pending requests are defined by a queue of indices of
type P. A resource unit is granted to process number i by setting an element
turn(i) of a boolean array to true.

My first objection to this program is that it does not solve the problem
correctly, at least not under our present assumptions about critical regions.
When a process A tries to reserve a resource unit at a t ime when none are
available, the process enters its own identi ty in the queue of requests and
awaits its turn. When another process B releases a resource unit at a t ime

118 CONCURRENT PROCESSES Chap. 3

when other processes are waiting for it, the process selects one of the
waiting processes, say A, and makes its turn true. So when process B leaves
its critical region (within the release procedure), process A will reenter its
critical region (within the reserve procedure) and find that its turn is true;
process A then completes its critical region by removing the index of an
available resource unit.

The trouble is that the programmer does no t control the sequence in
which processes enter and reenter their critical regions from the main
queue, Qv associated with the shared variable v (see Fig. 3.17(b)).
Therefore, it is possible that when process B leaves its critical region after a
release, another process C enters its critical region on the same variable v
directly through the main queue and reserves the unit intended for process
A. So this algorithm does no t give us explicit control over the scheduling of
individual processes.

To solve the problem correctly with the present tools, we must
introduce a sequence of resources that have been granted to, but not yet
acquired by waiting processes.

However, rather than make this intermediate state explicit in the
program, I suggest that processes reentering their critical regions f rom event
queues take priority over processes entering critical regions directly through
a main queue. This ensures that resources granted to waiting processes
remain available to them until they reenter their critical regions.

In other words, we make the scheduling rules of critical regions
partially known to the programmer. The proposed priority rule is
reasonable because: (1) it simplifies explicit control of scheduling; and (2)
it ensures fair scheduling of conditional critical regions in the sense that it
gives processes waiting for events a chance to complete their critical regions
within a finite t ime (provided, of course, the events occur).

With this modification Algorithm 3.11 becomes at least logically
correct.

My second object ion to Algorithm 3.11 is that it is extremely
inefficient. The definition of conditional critical regions in Section 3.4.3
implies that all processes waiting for resources will be allowed to reenter
their critical regions as soon as a resource is granted to one of them; then,
all of them but one will reevaluate their boolean turn in vain. This is
inevitable because there is only one event queue associated with a given
shared variable and because the language does not permit the programmer
to identify individual processes and say "please, enable process A to reenter
its critical region."

To control scheduling explicitly, a programmer must be able to
associate an arbitrary number of event queues with a shared variable and
control the transfers of processes to and from them. In general, I would
therefore replace my previous proposal for conditional delays with the
following one:

Sec. 3.4. PROCESS COOPERATION 119

The declaration

var e: event v

associates an event queue e with a shared variable v declared elsewhere.
A process can leave a critical region associated with the variable v and

join the event queue e by executing the standard procedure

await(e)

Another process can enable all processes in the event queue e to reenter
their critical regions by executing the standard procedure

cause(e)

The await and cause procedures can only be called within critical
regions associated with the variable v. They exclude each other in time.

A consumer/producer relationship must now be expressed as follows:

"Consumer" "Producer"

region v do region v do
begin begin

while not B do await(e); $2;
S1; cause(e);

end end

Although less elegant than the previous notation:

region v do
begin await B; $1 end

region v do $2

the new one still clearly shows that the consumer is waiting for condition B
to hold.

We can now control process scheduling efficiently to any degree
desired. Algorithm 3.12 is an efficient version of the scheduling of
heavily-used resources: It associates an event variable with each process.

One more objection can be made to both Algorithms 3.11 and 3.12:
They violate the rules of procedures defined in Section 3.2.3 by their use of
side effects on the shared variable v. It would have been more honest to
pass v explicitly as a parameter to the reserve and release procedures.

My reason for not doing so is the following: There is no reason that
processes calling the reserve and release procedures should be concerned
about the existence and structure of the shared variable v used to

120 CONCURRENT PROCESSES Chap. 3

implement these procedures. All that matters to a process is that a call of
reserve eventually returns the identi ty of an available resource, and that a
call of release makes a resource available to other processes. Even the
scheduling algorithm used to grant a resource to a particular process is
irrelevant to the user processes in the sense that these processes usually
have little or no influence on this policy.

ALGORITHM 3. 12 Scheduling of Heavily Used Resources With
Simple Critical Regions and Event Variables

type P = 1 . .number of processes;
R = 1..number of resources;

var v: shared record
available: sequence of R;
requests: queue of P;
turn: array P of event v;

end

procedure reserve(process: P; vat resource: R);
region v do
begin

while empty(available) do
begin

enter(process, requests);
await(turn(process));

end
get(resource, available);

end

procedure release(resource: R);
var process: P;
region v do
begin

put(resource, available);
if not empty(requests) then
begin

remove(process, requests);
cause(turn(process));

end
end

For this reason, processes should not be forced to be aware of the
existence of the shared variable v and pass it as a parameter to the
resource scheduling procedures. Indeed, if the variable v were accessible to

J

Sec. 3.4. PROCESS COOPERATION 121

processes, they might be tempted to operate directly on it within their own
critical regions and perhaps override the scheduling rules of the installation
or cause the total collapse of service by making the variable v inconsistent
with the assumptions made about it by reserve and release.

So what we need is a language notat ion which associates a set of
procedures with a shared variable and enables a compiler to check that
these are the only operations carried out on that variable and ensure that
they exclude each other in time. I will no t t ry to bend Pascal in this
direction, but will present an example of such a notat ion in Chapter 7: a
simple case of the class concept in Simula 67.

I will use the term monitor to denote a shared variable and the set of
meaningful operations on it. The purpose of a monitor is to control the
scheduling of resources among individual processes according to a certain
policy.

In the previous example, the monitor consisted of a shared variable v
and two procedures reserve and release.

As we shall see in Chapter 4, most computers support the
implementation of a basic monitor, which controls the sharing of
processors, storage, and peripherals among computations at the lowest level
of programming.

This section has shown that the monitor concept is equally useful at
higher levels of programming and that one generally needs several
monitors--one for each shared variable. (One can, of course, combine all
shared variables into a single shared data structure. But this becomes an
unnecessary bottleneck due to the requirement of mutual exclusion of all
operations on it.)

3.4.8. Conclusion

We have now considered several methods of process synchronization:

critical regions
semaphores
message buffers
conditional critical regions
event queues

I find that they are all equivalent in the sense that each of them can be
used to solve an arbitrary scheduling problem from a logical point of view.
But for a given problem, some of them lead to more complicated and
inefficient programs than others. So they are clearly not equivalent from a
practical point of view.

Each synchronizing concept is defined to solve a certain kind of
problem in a direct, efficient manner:

122 CONCURRENT PROCESSES Chap. 3

synchronizing problem synchronizing tool

mutual exclusion
exchange of timing signals
exchange of data
arbitrary conditional delay
explicit process scheduling

critical region
semaphore
message buffer
conditional critical regions
event queues

If the programmer has a choice, he should select the tool that
conceptually corresponds most closely to the synchronizing problem he
faces. He will then find that his program becomes not only simple to
understand, bu t also efficient to execute.

The most general synchronizing tool considered is the event queue. But
it has the same deficiency as semaphores: It forces the Rrogrammer to be
explicitly aware of scheduling details. Therefore, it should only be used in
situations in which this awareness is necessary to control heavily-used
resources.

This concludes the discussion of synchronizing concepts. We will now
study the deadlock problem in some detail.

3.5. DEADLOCKS

3.5.1. The Deadlock Problem

A deadlock is a state in which two or more processes are waiting
indefinitely for condit ions which will never hold.

A deadlock involves circular waiting: Each process is waiting for a
condition which can only be satisfied by one of the others; bu t since each
process expects one of the others to resolve the conflict, they are all unable
to continue.

We have met the deadlock problem twice: in connection with the
banker 's algorithm and the mutual exclusion problem (see Sections 2.6.1,
3.3.1, and 3.3.3). In both cases, the occurrence of a deadlock depended on
the relative speed of concurrent processes. Deadlocks are serious,
t ime-dependent errors which should be prevented at all costs.

The deadlock problem was first recognized and analyzed by Dijkstra
(1965). But it had occurred of ten enough in earlier operating systems. In
1968, Havender said abou t 0S/360: "The original multitasking concept of
the operating system envisioned relatively unrestrained compet i t ion for
resources to perform a number of tasks concurrently But as the
system evolved, many instances of task deadlock were uncovered."

A similar observation was made by Lynch in 1971: "Several problems
remained unsolved with the Exec H operating system and had to be avoided

Sec. 3.5. DEADLOCKS 123

by one ad hoc means or another. The problem of deadlocks was not at all
understood in 1962 when the system was designed. As a result several
annoying deadlocks were programmed into the system."

It has been argued that deadlocks are not a problem of program
correctness, but an economic issue. An installation may deliberately take
the risk of deadlocks if they occur infrequently enough. When they occur,
the cheapest way of resolving them is by removing one or more jobs.

The difficulty with this point of view is that no methods are available at
the moment for predicting the frequency of deadlocks and evaluating the
costs involved. In this situation, it seems more honest to design systems in
which deadlocks cannot occur. This is also a vital design objective when
you consider how hopeless it is to correct erroneous programs with
t ime-dependent behavior (see Section 3.2.2).

So in the following we will concentrate on methods of deadlock
prevention.

3.5.2. Permanent Resources

Following Holt (1971), we distinguish between permanent and
temporary resources. A permanent resource can be used repeatedly by
many processes; a temporary resource is produced by one process and
consumed by another. Examples of permanent and temporary resources are
physical devices and messages, respectively.

We will first s tudy a system with a fixed number of permanent
resources of various types. Resources of the same type are equivalent from
the point of view of the processes using them.

A process is expected to make a request for resources before it uses
them. After making a request, a process is delayed until it acquires the
resources. The process can now use the resources until it releases them
again.

So a process follows the pattern:

request resources;
use resources;
release resources;

Coffman (1971) has pointed out that the following conditions are
necessary for the occurrence of a deadlock with respect to permanent
resources:

(1) Mutual exclusion: A resource can only be acquired by one process
at a time.

(2) Non-preemptive scheduling: A resource can only be released by the
process which has acquired it.

124 CONCURRENT PROCESSES Chap. 3

(3) Partial allocation: A process can acquire its resources piecemeal.

(4) Circular waiting: The previous conditions permit concurrent
processes to acquire part of their resources and enter a state in which they
wait indefinitely to acquire each other 's resources.

Deadlocks are prevented by ensuring that one or more of the necessary
conditions never hold.

The first possibility is to permit several processes simultaneous access to
resources (for example, read-only access to common data within disjoint
processes). But, in general, processes must be able to get exclusive access to
resources (for example, access to common data within critical regions). So,
to prevent deadlock by permitting simultaneous access to all resources is
unrealistic.

The second possibility is deadlock prevention by preemptive
scheduling--that is , by forcing processes to release resources temporari ly in
favor of other processes. It takes a finite t ime to transfer a resource from
one process to another. Preemption therefore leads to a less efficient
utilization of resources.

In present computers , preemption is used mainly to multiplex central
processors and storage between concurrent processes. As we will see later,
the resulting loss in the utilization of equipment can be quite significant
unless the f requency of preemption is carefully controlled.

Preemption is impractical for peripheral devices that require mounting
of private data media by operators (such as card readers, line printers, and
magnetic tape stations).

In THE multiprogramming system (Bron, 1971), a line printer is
nevertheless subject to preemptive scheduling. But this is done with great
restraint: The system will t ry to print the ou tpu t of one process
consecutively; only if a process threatens to monopolize the printer will the
system start to print forms for another process. In practice, very few files
are split, but it is doubt fu l whether this method would be practical for
larger installations.

The third possibility is to prevent deadlocks by a complete allocation of
all resources needed by a process in advance of its execution. This means
that the resource requirements of concurrent processes cannot exceed the
total capacity of the system.

The success of this method depends on the characteristics of the
workload--whether it is possible to find a combinat ion of jobs which can
utilize all resources concurrently in a disjoint manner.

The four th possibility is to prevent deadlocks by a sequential ordering
of requests, which prevents circular waiting.

The banker's algorithm does this by finding a sequence in which
concurrent processes can be completed one at a time if necessary. The
difficulty with this algorithm is that it is quite expensive to execute at run
time.

Sec. 3.5. DEADLOCKS 125

Consider a system with m resource types and n processes. Algorithm
2.6 determines whether the current situation is safe from deadlocks by
examining the m resource claims of each process until it finds a process
which can be completed. The algorithm repeats this examination until all n
processes are eliminated. In the worst case, the algorithm has an execution
time proportional to

m (n + n - l + n - 2 + . . . + l) = m n (n + l) / 2

In THE multiprogramming system, 2 resource types (plotters and paper
tape punches) and 5 user processes are controlled by a banker. This gives a
maximum of 30 iterations for each request. But in a system with 10
resource types and 10 concurrent processes, the maximum is 550 iterations
of, say, 1 msec, or 0.55 sec per request!

It is possible to write a more complicated algorithm with an execution
time proportional to mn (Holt, 1971). This algorithm avoids repeated
examination of the same processes by ordering the claims of each resource
type by size and associating with each process a count of the number of
resource types requested.

The main problem with the banker's algorithm is that it takes a very
pessimistic view of the resource requirements: Each process must indicate
its maximum resource requirements in advance; and, in determining
whether a situation is safe from deadlocks, the banker assumes that each
process may request all its resources at once and keep them throughout its
execution.

Consider the situation shown in Fig. 2.8(a) where three processes, P, Q,
and R, share 10 resources of the same type which at present are allocated as
follows:

cash = 2
Process: Loan: Claim:

P 4 4
Q 2 1
R 2 7

Suppose we have an installation with a single printer which is needed
by practically all processes for short periods of time. If the printer is also
controlled by the banker, Algorithm 2.6 will decide that in the above
situation, it is only safe to grant it to process Q (because Q is the only
process which can be completed with certainty). So the printer will remain
idle until Q decides to use it even though P and R could use the printer
meanwhile.

For this reason, the printer was excluded from the banker's domain in
THE multiprogramming system, as was the backing store. In doing so, the
design group, of course, took a risk of deadlocking the system. Operating

126 CONCUR RENT PROCESSES Chap. 3

experience has shown that a storage deadlock occurs about 5 times per
year. It is resolved by manual removal of user jobs.

In the following, I will discuss prevention of deadlocks by a hierarchal
ordering of requests.

3.5.3. Hierarchal Resource Allocation

In a hierarchal resource system, the request and release of resources of
various types are subject to a fixed sequential ordering.

A resource hierarchy consists of a finite number of levels L1, L2,
Lmax. Each level in turn consists of a finite number of resource types.

Resources needed by a process from a given level must be acquired by a
single request.

When a process has acquired resources at a level Lj, it can only request
resources at a higher level Lk, where k > j.

Resources acquired at a level Lk must be released before the resources
acquired at a lower level Lj, where k > j.

When a process has released all resources acquired at a given level, it can
make another request at the same level.

In short, resources can be partially requested level by level in one
direction, and partially released level by level in the opposite direction as
shown in Fig. 3.19.

Requests I

L1
L2

L m a x

Releases
Fig. 3.19 A hierarchy of resources
with levels L1, L2, . . . , Lmax. Re-
sources at low levels are requested
before resources at high levels. Re-
leases are made in the opposite order
of requests.

We assume that a process will release all resources acquired at a given
level Lj within a finite time unless it is delayed indefinitely by requests for
resources at a higher level Lk where k > j.

Under these assumptions, a deadlock cannot occur in a system with
hierarchal resource allocation. This is easily proved by induction.

Suppose that the resources requested by processes at the level Lj always
will be acquired and released within a finite t ime for j >i i. We will then
show that this also holds for] /> i - 1.

The previous hypothesis is clearly true at the highest level Lmax:
Processes here can never be delayed by requests for resources at higher
levels because such levels do not exist. And, since partial allocation within a
level is prevented, processes cannot be deadlocked with respect to resources
at level Lmax.

Sec. 3.5. DEADLOCKS 127

Consider now a process P that requests resources at the level Li-1.
Again, since partial allocation is prevented inside level Li-1 , processes
cannot be deadlocked with respect to resources at that level, provided they
are always able to release these resources within a finite time after their
acquisition. This release can only be delayed by requests for resources at a
higher level Lj, where j /> i. But, according to our hypothesis, such requests
(and subsequent releases} will always be made within a finite time. So
requests and releases at level Li- 1 are also made within a finite time.

It follows by induction that an indefinite delay of requests is impossible
at all levels L1 to Lmax.

An example of hierarchal resource allocation is a spooling system, as
shown in Fig. 2.2(b). In this case, there is only one level with three resource
types: a card reader, a central processor, and a line printer. The system
forces each user to use these resources strictly sequentially:

request reader; input;
request processor; execute;
request printer; output;

release reader;
release processor;
release printer;

As another example, consider a common variable v accessed by critical
regions. One can regard such a variable as a permanent resource for which a
request and release are made upon entry to and exit from each critical
region. From the previous theorem, it follows that deadlocks of nested
critical regions can be prevented by a hierarchal ordering of common
variables vl , v2, . . . , vmax and critical regions:

region vl do
region v2 do
. . . , .

region vmax do
. , * • . ~

We now turn to deadlock prevention for temporary resources. The
discussion will be restricted to systems with hierarchal process communica-
tion.

3.5.4. Hierarchal Process Communication

We will consider a system of processes connected only by message
buffers. Associated with each buffer is one or more senders and one or
more receivers.

It has already been shown in Section 3.4.1 that senders and receivers
cannot be deadlocked with respect to a single message buffer. But, if we

128 CONCURRENT PROCESSES Chap. 3

connect a circle of processes by message buffers, it is possible for them to
wait indefinitely for messages from each other.

To avoid this circularity, we will again resort to a hierarchal system.
Consider a system in which a fixed number of processes are organized as a
hierarchy with the levels L1, L2, . . . , Lmax . In this hierarchy, processes
at lower levels, called masters, can supply processes at higher levels, called
servants, with messages ("requests"). Servants can return answers
("replies") to their masters in response to messages.

So messages are sent in only one direction, and answers are sent in only
the opposite direction.

Even though the system is hierarchal, there is still a danger of
deadlocks. Figure 3.20 shows a situation in which two chains of buffers lead
from a master P to a servant S, (A directed branch from a process node P to
another process node Q indicates that P and Q are connected by a buffer,
with P as a sender and Q as a receiver.)

empty~ full Fig. 3.20 Four processes--P, Q, R, and
S--connected by unidirectional buffers
shown as directed branches.

The danger here is that P may be unable to send to R and R unable to
send to S because the buffers which connect them are both full; and, at the
same time, S may be unable to receive from Q, and Q unable to receive
from P because the buffers which connect them are both empty. So we
have a deadlock in which

P waits for R to receive,
R waits for S to receive,
S waits for Q to send, and
Q waits for P to send

This shows that when several communicat ion paths lead from one
process to another, a deadlock can occur even for monologues consisting
only of messages.

A deadlock can also occur for conversations consisting of messages and
answers. Figure 3.21 shows a master P and a servant Q. It is possible that P
and Q will be unable simultaneously to send a message and an answer,
respectively, because both buffers are full. Or they may be unable to

Sec. 3.5. DEADLOCKS 129

full (empty) full (empty)

Fig. 3.21 Two processes P and Q
connected by bidirectional buffers
shown as directed branches.

receive a message and an answer at the same time because both buffers are
empty. So we have a deadlock in which

P waits for Q to receive (or send), and
Q waits for P to receive (or send)

The ground rule of deadlock prevention is: Do not t ry to send a
message or answer unless someone will eventually receive it; and do not try
to receive a message or answer unless someone will eventually send it.

We will therefore make the following basic assumption: When a master
M sends a message to a servant S, the latter will eventually receive it, and (if
required) send an answer, unless it is delayed indefinitely by one of its own
servants.

Under this assumption, a deadlock cannot occur in a system with
hierarchal process communicat ion. This is again proved by induction.

Suppose that messages sent to processes at any level Lj always will be
received, consumed, and (if required) answered within a finite time for j
i. We will then show that this also holds for j t> i - 1.

According to our basic assumption, the previous hypothesis is true for
any process Pj at the highest level, j = max, because there are no servants to
delay it.

Consider now a process Pi-1 at the level Li -1 . Thanks to the basic
assumption, P/- 1 will satisfy the hypothesis if it is not delayed indefinitely
by a servant Pj at a higher level £4, where j t> i. There are two possibilities
of such delays:

(1) P/-1 may be unable to send a message to a servant Pj because a
buffer is full. But according to the hypothesis, the servant Pj at level Lj
(where j I> i) will eventually receive one of the messages and enable Pi- 1
to continue.

(2) Pi- 1 may be unable to receive an answer from a servant Pj because
a buffer is empty. Again, according to the hypothesis, the servant at level Lj
(where j /> i) will eventually receive the corresponding message and produce
the answer which enables Pi- 1 to continue.

130 CONCURRENT PROCESSES Chap. 3

So messages sent to processes at the level L i - 1 will always be received,
consumed, and (if required) answered within a finite time. It follows by
induction that this holds at all levels, L1 to Lmax.

The following conditions are sufficient to ensure that the basic
assumption about process communicat ion holds:

(1) There must be constant agreement be tween senders and receivers
about where the next message or answer will be delivered.

(2) Inside each process, all operations (other than send and receive)
that produce and consume messages or answers must terminate.

(3) Messages and answers must be complete in the following sense:
When a process has received a message or an answer, it needs no further
data f rom the sender to produce the corresponding answer or next message.

(4) A message requiring an answer must only be sent when there is an
empty buffer element in which the answer can be delivered immediately.

In THE multiprogramming system, the latter requirement is satisfied by
a strict alternation between messages and answers exchanged by two
processes: When a message is sent, the corresponding answer buffer is
always empty , and vice versa.

In the RC 4000 system, the same is achieved by permitting two
processes to exchange a message and an answer in the same buffer element
(Brinch Hansen, 1970).

The above conditions are well-suited to step-wise system construction:
They can be verified by examining each process and its senders and
receivers separately.

Hierarchal process communicat ion was first studied by Habermann
(1967) in connection with THE multiprogramming system.

The previous results also apply to conditional critical regions if the
words message and answer are unders tood in an abstract sense: A producer
sends a message (or an answer) by making a condition B true and causing
an event; a consumer receives it by awaiting the event and making the
condit ion false again.

This concludes our analysis of concurrent processes.

3.6. LITERATURE

No student of multiprogramming can afford to miss the monograph in
which Dijkstra (1965) gave the field a firm foundat ion by his analysis of
critical regions, semaphores, message buffers, and deadlocks.

A discussion of the use of message buffers for a step-wise construct ion
of multiprogramming systems is found in the paper by Morenoff and

Sec. 3.6. LITERATURE 131

McLean (1967). The RC 4000 scheme for process communicat ion is
unusual in the sense that it considers the sending of a message and the
return of an answer between two processes as a single interaction (Brinch
Hansen, 1970).

The paper by Hoare (1971b) contains a proposal for a restricted form
of conditional critical regions. It also clearly states the requirements of a
well-structured language notat ion for concurrent processes and resource
sharing.

The survey by Coffman, Elphick, and Shoshani (1971) is an excellent
guide to the literature on deadlocks.

I also recommend that you s tudy the synchronizing concept coroutines
invented by Conway (1963) and illustrated by Knuth (1969). I have not
included it here because it is mainly suited to a strictly interleaved exe-
cution of processes on a single processor. As such, it is a highly efficient and
conceptually simple tool for the simulation of concurrent processes.

In recent years, some efforts have been made to formalize the concepts
of concurrent computat ions. The monograph of Bredt (1970) summarizes
the works of Adams, Karp and Miller, Luconi, and Rodriguez. These
researchers have primarily studied the functional behavior and equivalence
of various computat ional models.

BREDT, T. H., "A survey of models for parallel computing," Stanford University, Palo
Alto, California, Aug. 1970.

BRINCH HANSEN, P., "The nucleus of a multiprogramming system," Comm. ACM 13,
4, 238-50, April 1970.

COFFMAN, E. G., ELPHICK, M. J., and SHOSHANI, A., "System deadlocks,"
Computing Surveys 3, 2, pp. 67-78, June 1971.

CONWAY, M. E., "Design of a separable transition-diagram compiler," Comm. ACM6,
7, pp. 396408, July 1963.

DIJKSTRA, E. W., "Cooperating sequential processes," Technological University,
Eindhoven, The Netherlands, 1965. (Reprinted in Programming Languages, F.
Genuys, ed., Academic Press, New York, New York, 1968).

HOARE, C. A. R., "Towards a theory of parallel programming." International Seminar
on Operating System Techniques, Belfast, Northern Ireland, Aug..Sept. 1971b.

KNUTH, D. E., The Art of Computer Programming, Volume 1, Chapter 1. Addison-
Wesley, Reading, Massachusetts, 1969.

MORENOFF, E. and McLEAN, J. B., "Inter-program communications, program string
structures and buffer files," Proc. AFIPS Spring Joint Computer Conf., pp. 175-83,
1967.

PROCESSOR MANAGEMENT

This chapter explains how concurrent processes and synchronizing
primitives can be implemented on a computer with one or more processors
and a single internal store. It concludes with an evaluation of the influence
of these abstractions on the real-time characteristics of the system.

4.1. INTRODUCTION

The previous chapter introduced language constructs for describing
concurrent processes and their interactions. We will now consider how
concurrent processes and synchronizing primitives can be implemented on
present computers.

The sharing of a computer installation by a group of users is an
economic necessity. It leads to a situation in which resources become
scarce--there are not enough physical processors and storage to simultane-
ously execute all processes requested by users. The available resources can
be shared among the processes either by executing them one at a time to
completion or by executing several of them in rapid succession for short
periods of time. In both cases, each processor must pause every now and
then and decide whether t o continue the execution of its present process or

133

134 PROCESSOR MANAGEMENT Chap. 4

switch to some other process instead. The rule according to which this
decision is made is called a scheduling algorithm.

To make the scheduling problem manageable, it is usually considered at
several levels of abstraction. The view of scheduling presented here
recognizes two main levels:

At the lower level, which may be called hardware management or
short-term scheduling, the objective is to allocate physical resources to
processes, as soon as they become available, to maintain good utilization of
the equipment. This level of programming simulates a virtual machine for
each process and a set of primitives which enable concurrent processes to
achieve mutual exclusion of critical regions and communicate with one
another.

At the higher level of scheduling, which may be called user management
or medium-term scheduling, the aim is to allocate virtual machines to users
according to the rules laid down by the installation management. Typical
tasks at this level are the establishment of the identi ty and authori ty of
users; the input and analysis of their requests, the initiation and control of
computat ions, the accounting of resource usage, and the maintenance of
system integrity in spite o f occasional hardware malfunction.

The decision to allocate a resource to a process inevitably favors that
process (at least temporarily) over other processes waiting for the same
resource. In other words, all levels of scheduling implement a policy
towards users and their computat ions. This is important to realize because
policies are among the first things installation managers will wish to modify
to satisfy users. Consequently, policies should be clearly separated from the
logical aspects of scheduling such as processor synchronization and store
addressing.

The present chapter on processor management discusses the short-term
problems of scheduling concurrent processes on a limited number of
processors connected to an internal store of practically unlimited capacity.

Chapter 5 on store management considers the short-term problems of
allocating an internal store of limited capacity to concurrent processes
using a larger, slower backing store.

Chapter 6 on scheduling algorithms analyzes the effect of various
medium-term policies on the average response times to user requests.

4.2. SHORT-TERM SCHEDULING

The aim of the following discussion is to explain how concurrent
processes are scheduled on a computer with one or more identical
processors connected to a single internal store, as shown in Fig. 2.3. The
number of concurrent processes can exceed the number of processors, bu t
the store is assumed to be large enough to satisfy all concurrent processes at
any time.

Sec. 4.2. SHORT-TERM SCHEDULING 135

We will take a "bo t t om-up" approach and show:

(1) how a basic monitor can be implemented by means of a storage
arbiter and simple machine instructions;

(2) how this moni tor can be used to implement scheduling primitives,
which initiate and terminate processes and transmit timing signals between
them; and

(3) how these primitives in turn can be used to implement concurrent
statements, critical regions, message buffers, and more general monitors.

The algorithms in this chapter are written in Pascal at a level of detail
that clarifies the main problems of process scheduling and suggests efficient
methods of implementation. These algorithms represent the machine code
that a compiler would produce to implement the concurrent statements
and synchronizing constructs defined in Chapter 3.

4.2.1. Process Descriptions

Figure 4.1 shows the process states which are relevant at the short-term
level of scheduling. Initially, a process is terminated or non-existent. When
a process is initiated, it enters a queue of processes which are ready to run.
When a processor becomes available, the process becomes running. In the
running state, a process may terminate itself or wait on a timing signal. In
the latter case, the process will return to the ready state when the signal is
produced by another process.

Also shown in Fig. 4.1 is a list of the primitives which cause the
transitions between the states. The following explains how these scheduling
primitives are implemented.

ready

6 1

waiting terminated

1. init iate process
2. run process
3. terminate process
4. preempt process
5. wait
6. signal

running

(a) (b)

° Fig. 4.1 The possible process states (a) and the primit ives
(b) that cause the transitions between them.

136 PROCESSOR MANAGEMENT Chap. 4

Our starting point is the trivial case in which each processor is dedicated
to perpetual execut ion of a single process. In other words, only the running
state is relevant.

We assume that all processes are represented in the common store by an
array called the process table. An entry in this table is called a process
description. It defines the initial values of the processor registers (including
the instruction counter) for a given process.

type P = 1 . .max imum number of processes;
process description = record

register state: R ;
end

var process table: array P of process description;

Each processor has a register containing the index of the process it runs.
The instruction execution cycle of a processor is as follows:

vat process: P; registers: R; store: T;
repeat

execute instruction (registers, store);
forever

The details of instruction execut ion are irrelevant here.
The next step is to consider a dynamic system in which processes are

initiated by other processes and terminated by themselves after a finite
time.

The number of processes can now vary. So we introduce a sequence
called terminated, which contains the indices of process descriptions no t
used at the moment :

• vat terminated: sequence of P;

It is possible that the number of processes sometimes exceeds the
number of processors. So we must also introduce a queue of processes tha t
are ready to run when a processor becomes available:

• vat ready: queue of P;

When a running process terminates itself, its processor can be assigned
to a process in the ready queue. It is possible for several processors to
become available simultaneously and t ry to refer to process descriptions in
the ready queue at the same time. Consequently, we must ensure mutual
exclusion of operations on process descriptions and the ready queue;
otherwise, the results of process initiation and terminat ion will be
unpredictable.

Sec. 4.2. SHORT-TERM SCHEDULING 137

Critical regions have been implemented in hardware for many years on
computers in which program execution and input /output can proceed
simultaneously. A sequential switching circuit, called an arbiter, guarantees
that at any instant in time either the central processor or a peripheral
device, but not both, can access the internal store to read or write a single
word. If processors try to overlap their access, the arbiter enables one of
them to proceed and delays the rest for the few microseconds it takes to ac-
cess the store. This technique has been called cycle stealing or interleaving.

So the machine instructions load and store are implemented as critical
regions:

, vat store: shared array index of word;
address: index; register: word;

region store do register:= store(address);
region store do store(address):= register

We will now assume that, apart from this hardware scheduling of access
to single store words, the computer also includes another arbiter to which
all processors are connected. This device along with two machine
operations enter region and leave region is a hardware implementation of
critical regions performed on process descriptions and queues. These will be
the only critical regions which use the busy form of waiting. To make this
tolerable, the duration of such regions must be short.

On top of this, we will construct primitives that enable processes to
establish other critical regions that use the non-busy form of waiting.

As an intermediate tool, we will first implement a basic monitor
concept which in turn can be used to implement specific operations on
process descriptions and queues.

• 4.2.2. A Basic Mon i t o r

Process descriptions and scheduling queues will be maintained by a
basic monitor which can be called by running processes.

A calling process is identified by the process register in its processor.
A monitor call is made by loading the relevant parameters in registers

and then executing a machine instruction:

monitor call(entry)

which has the following effect:

e n t e r region
process tab le (process).register state:= registers;
c a s e entry o f . . . e n d

138 PROCESSOR MANAGEMENT Chap. 4

It enters a critical region, stores the register values of the calling process in
its description, and jumps to a moni tor procedure.

The basic moni tor will always complete a call by executing a machine
instruction:

monitor exit(candidate)

which has the following effect:

q process := candidate;
registers: = process table (process).register state;
leave region

It assigns the value of a variable candidate to the process register, loads the
other registers from the corresponding process description, and leaves the
critical region.

We will use the following notat ion to define a basic moni tor procedure
Q, which operates on a shared variable v consisting of process descriptions
and queues:

var v: shared V;

procedure Q (. . .) ;
vat candidate: P;
region v do
begin

S; continue(candidate);
end

The value of the register which identifies a calling process is defined by
a standard function process:

funct ion process: P

This simplified moni tor concept will now be used to implement
scheduling primitives for concurrent processes.

4.2.3. Process Implementation

-: Once the system has been started, there must be at least one running
process which can accept requests from users and initiate their processes.

• So we assume that one of the processors initially runs this basic process.
The other processors will initially run" idling processes which continue

to call the basic moni tor until other processes (initiated by the basic
process) are ready to run:

Sec. 4.2. SHORT-TERM SCHEDULING 139

"idling process"
repeat run process forever

It is important that the idling is done by processes outside the monitor.
This permits the basic process to enter the monitor and initiate new
processes.

The basic monitor procedure run process, called by an idling process, is
defined by Algorithm 4.1. It examines the ready queue: If that queue is
empty, the idling process continues; otherwise, one of the ready processes
continues.

- A L G O R I T H M 4. 1 The Scheduling o f a Ready Process

const idling = rain(P);
vat v: shared

record
process table: array P of process description;
terminated: sequence of P;
ready: queue o f P;

end

, function process: P;

' procedure select(var candidate: P; ready: queue of P);
begin

if empty(ready) then candidate := idling
else remove(candidate, ready);

end

, procedure run process;
vat candidate: P;
region v do
begin

select(candidate, ready);
"continue(candidate);
end

As an example of process initiation, consider a concurrent statement
which is both preceded by and followed by sequential statements:

SO;
cobegin S1; $2; . . . ; Sn coend
Sn+ l;

This construct is implemented as follows: The process that executes

140 PROCESSOR MANAGEMENT Chap. 4

statement SO initiates the concurrent processes S1, $2, . . . , Sn by calling
a moni tor procedure, initiate process , n times and then calling another
moni tor procedure, delay process , which delays it until all the concurrent
processes are terminated. When the delayed process continues, it executes
s tatement Sn+ l :

SO;
for every Si do init iate process(ini t ial s tate);
delay process;
S n + l ;

The parameter to init iate process defines the initial register values of a
new process.

To implement these moni tor procedures, a process descr ip t ion is
extended to contain the following components:

° register s tate defines the register values of the given process.

• par en t defines the process which initiated the given process.

° chi ldren defines the number of processes initiated by the given
process, but not ye t terminated.

• de layed defines whether or not the given process is delayed
until all its children have been terminated.

The monitor procedure init iate process is defined by Algorithm 4.2. It
initializes a process description and enters its index in the ready queue.
Finally, it increases the number of children of the calling process by one
and continues that process.

The moni tor procedure delay process is defined by Algorithm 4.3. If
the number of children of the calling process is greater than zero, the
calling process is delayed and its processor is allocated to another process;
otherwise, the calling process continues.

Each of the children processes S1, $2, . . . , Sn within a concurrent
s tatement executes a s tatement Si and calls a moni tor procedure, t e rmina te
process:

Si;
t e rmina te process;

This moni tor procedure is defined by Algorithm 4.4. It releases the
description of the calling process and decreases the number of children of
its parent by one: If the number of children becomes zero and the parent is
delayed, the parent is then continued; otherwise, the processor is allocated
to another process.

Sec. 4.2. SHORT-TERM SCHEDULING

ALGORITHM 4.2 The Initiation o f a Child Process

type process description = reco rd
register state: R;
parent: P;
children: integer;
delayed: boolean;

end

procedure initiate process(initial state: R);
vat new: P;
region v do
begin

get(new, terminated);
with process table(new) do
begin

register state := initial state;
parent: = process;
children:= O;
delayed:= false;

end
enter(new, ready);
wi th process table(process) do
children := children + 1;
con tin ue(process) ;

end

141

A L GORI THM 4.3 The Delay of a Parent Process

• p r o c e d u r e delay process;
vat candidate: P;
reg ion v do
begin

wi th process table(process) do
f f children > 0 t h e n
begin

delayed := true;
select(candidate, ready);

end
else candidate := process;
con tin ue (cand ida re);

end

142 PROCESSOR MANAGEMENT

ALGORITHM 4.4 The Termination of a Child Process

procedure terminate process;
v a t candidate: P;
region v do
begin

candidate := process table(process), parent;
put(process, terminated);
with process table(candidate) do
begin

children: = children - 1;
if children = 0 & delayed then
delayed := false else
select(candida re, ready);

end
continue(candidate);

end

Chap. 4

4.2.4. Semaphore and Event Implementation

The basic moni tor can also be used to implement primitives for process
interaction. Since the basic moni tor uses the busy form of waiting (in
interactions with the arbiter), these primitives should be as simple as
possible.

As an example, we will implement the wait and signal operations for a
fixed number of semaphores. The semaphores are represented by an array
inside the basic monitor. Each semaphore consists of two components:

The first component is an integer counter, which defines the number of
signals sent, bu t no t ye t received. Its initial value defines the initial number
of signals. It is increased by one when a signal operation has been
completed and decreased by one when a wait operation has been
completed.

To satisfy the semaphore invariant, which states that signals cannot be
received faster than they are sent, the wait and signal operations must
ensure that the counter remains greater than or equal to zero (see Section
3.4.2).

The second component is a queue of processes waiting to receive signals
no t ye t sent. Initially, this queue is empty.

The monitor procedure wait is defined by Algorithm 4.5. If the
semaphore counter is greater than zero, it is decreased by one and the
calling process continues; otherwise, the calling process is delayed.

The monitor procedure signal is also defined by Algorithm 4.5. If one
or more processes are waiting in the semaphore queue, one of them is
transferred to the ready queue; otherwise, the semaphore counter is
increased by one. The calling process continues in any case.

Sec. 4.2. SHORT-TERM SCHEDULING

, ALGORITHM 4.5 The Semaphore Operations Wait and Signal

var v: shared record
. . .

semaphore: array S of
record

counter: integer;
waiting: queue of P;

end
end

procedure wait(s: S);
var candidate: P;
region v do
begin

with semaphore(s) do
if counter > 0 then
begin

counter: = counter - 1;
candidate := process;

end else
begin

enter(process, waiting);
select(candidate, ready);

end
continue(candidate);

end

procedure signal(s: S);
var candida te : P;
region v do
begin

with semaphore(s) do
ff not empty(waiting) then
begin

remove(candidate, waiting);
enter(candidate, ready);

end
else counter:= counter + 1;
continue(process);

end

143

' The wait and signal operations can be used to implement arbitrary critical
regions which use the non-busy form of waiting as defined by Algorithm
3.4.

144 PROCESSOR MANAGEMENT Chap. 4

Algorithm 4.6 shows the implementation of "event variables and the
operations await and cause event. An event variable consists of two

• ALGORITHM 4.6. The Event OperationsAwaitand Cause

vat v: shared record
o • •

event: array E o f
record
• reentry: S~ ~
• delayed: queue of P;
end

end

procedure await(e: E);
v a r candidate: P;
region v do
begin

with event(e) do
begin

enter(process, delayed);
with semaphore(reentry) do
if not empty(waiting) then
begin

remove(candidate, waiting);
en ter(candidate, ready);

end
else counter: = counter + 1;

end
select(candidate, ready);
continue(candidate);

end

procedure cause (e : E) ;
v a t candidate: P;
region v do
begin

with event(e) do
with semaphore(reentry) do
while not empty(delayed) do
begin

remove(candidate, delayed);
en ter(candidate, waiting);

end
con tin ue(process) ;

end

I

Sec. 4.2. SHORT-TERM SCHEDUL ING 145

components: a queue of processes waiting for an event and an index of a
semaphore on which these processes must wait to reenter their critical
regions after the occurrence of an event.

The await procedure enters the calling process in an event queue and
performs a signal operation on the associated semaphore to enable another
process to enter its critical region.

The cause procedure transfers all processes from an event queue to an
associated semaphore queue. As defined here, the processes are transferred
one at a time from one queue to the other; however, in practice, the whole
event queue would be detached from the event variable and linked to the
semaphore queue in one operation. The calling process, which is still inside
its critical region, continues.

The four primitives, wait, signal, await, and cause, permit the
implementation of conditional critical regions as defined in Section 3.4.7.
And conditional critical regions in turn can be used to implement other
synchronizing tools such as message buffers and arbitrary monitors, as
shown by Algorithms 3.6 and 3.12.

Without going into further detail, it should be clear that the
synchronizing concepts defined in Chapter 3 can be built on top of the
basic monitor.

There is just one problem that remains: How can we preempt running
processes which threaten to monopolize processors? This is discussed in the
following section.

4.2.5. Processor Multiplexing

In the previous discussion, we assumed that once a process has started
to run, it continues to do so until it explicitly releases the processor again
(by a terminate, delay, wait, or await operation). This is called
non-preemptive scheduling. It makes sense when one can rely on processes
to terminate themselves within a reasonable period of time after their
initiation. This assumption may be justified in dedicated systems with
highly reliable programs, but in general it is not realistic. In most cases, it
must be possible to force a process to terminate; otherwise, a programming
error might cause it to run forever.

Even when programs are reliable, it is still valuable to be able to
interrupt the execution of a process temporarily to allocate its processor to
a more urgent process and continue the interrupted process later when the
more urgent one terminates. This is called preemptive scheduling with
resumption. It is the subject of the following discussion.

In the design of Algorithms 4.1 to 4.6, we made the implicit
assumption that running processes take priority over ready processes: A
process in the ready queue is only run when a running process releases its
processor. This is quite acceptable as long as the number of processes does
not exceed the number of processors, because in that case, there is always

146 PROCESSOR MANAGEMENT Chap. 4

an idle processor ready to run a process when it is activated by some other
process. But, when the number of processes exceeds the number of
processors, scheduling must reflect the policy of management towards user
processes rather than their random order of arrival in the ready queue.

As a first improvement, we can assign a fixed priority to each process
and keep the scheduling queues ordered accordingly. Whenever a process is
activated by another process, the basic monitor should compare the
priorities of the two processes and continue the more urgent one after
transferring the other one to the ready queue.

The priorities divide the processes into a finite number of priority
groups numbered 1, 2, . . . , n, with small integers denoting high priority.
In a given queue, processes are scheduled in their order of priority;
processes of the same priority are scheduled in their order of arrival in the
queue.

A queue q of elements of type T divided into n priority groups can be
declared as follows:

type priority = 1. . n
var q: queue priority of T

The standard procedure

enter(t, p, q)

enters an element t of type T with the priority p in a queue q.
The standard procedure

remove(t, p, q)

removes the most urgent element t of type T from a queue q and assigns its
priority to a variable p.

We also need two boolean functions that determine whether or no t a
given queue q is empty or holds an element which is more urgent than
another one with a given priority p:

empty(q) urgent(p, q)

The priority of a process can be defined when it is initiated.
A further refinement is to permit dynamic priorities, priorities tha t

change in time. It would be ideal if each processor could evaluate the
priorities of its running process and all ready processes after each in-
struction executed to determine which process should run next. This
is, of course, impractical: Processors would then spend more time
evaluating priorities than running processes. This is the basic dilemma of

Sec. 4.2. SHORT-TERM SCHEDULING 147

preemptive scheduling: Preemption is necessary to give fast response to
urgent processes, but the amount of processor time required to evaluate
priorities and switch from one process to another sets a practical limit to
the frequency of preemption.

A reasonable compromise is to let priorities remain fixed over the
intervals of time considered at the short-term level of scheduling, but
permit them to vary slowly over the intervals of time considered at the
medium-term level of scheduling. In other words, priorities can only change
after reasonable periods of useful execution.

To achieve this effect, each processor is supplied with a timing device.
A timer is a counter that is decreased at a constant rate; when it becomes
zero, a signal is set in a register, and the timer starts another period of
counting:

~/~ var interrupt: shared boolean;
timer: integer;

repeat
timer:= interval desired;
repeat

timer: = timer - 1;
until timer = O;
region interrupt do interrupt:= true;

forever

The timing signal, which is called an interrupt, is examined by a
processor in each instruction execution cycle without any noticeable effect
on its speed of execution:

• vat interrupt: shared boolean;
process: P; registers: R; store: T;

repeat
region interrupt do
if interrupt then
begin

interrupt: = false;
o monitor call(preemptprocess);
end
execute instruction(registers, store);

forever

The processor responds to an interrupt by resetting the interrupt
register to false and calling a basic moni tor procedure, preempt process.

14.8 PROCESSOR MANAGEMENT Chap. 4

The monitor can now preempt the running process, rearrange the ready
queue according to a dynamic scheduling algorithm, and resume the most
urgent process:

' procedure preempt process;
vat candidate: P;
region v do
begin

en ter(process, ready);
rearrange (ready);
remove(candidate, ready);
continue(candidate);

end

This form of scheduling, whicl~ leads to frequent preemption and
resumption of running and ready processes, is called processor multi-
plexing. A simple form of processor multiplexing is the round-robin
algorithm described in Section 1.2.4.

The purpose of an interrupt is to replace a complicated scheduling
algorithm with the simplest possible algorithm: The evaluation of a single
boolean after each instruction execution. An interrupt is a signal to a
processor from its environment that indicates that priorities should be
reevaluated.

Although the previous instruction execution cycle looks plausible, it is
actually highly dangerous. Suppose a processor is inside a critical region

enter region . . . leave region

executing a basic monitor procedure. In the middle of this, an interrupt
may cause the processor to t ry to reenter the monitor:

entry := preempt process;
enter region

. • •

The result is a deadlock of the processor.
• This problem is solved by introducing two states of execution inside a

processor: the enabled state, in which interrupts are honored, and the
inhibited state, in which interrupts are ignored. Interrupts are inhibited
and enabled upon entry to and exit from the basic monitor, respectively.
This version of a central processor and a monitor call and exit is defined by
Algorithms 4.7 and 4.8.

If a computer has only a single processor which is multiplexed among

Sec. 4.2. SHORT-TERM SCHEDULING

ALGORITHM 4.7 The Instruction Execution Cycle of a
Processor With Interrupts

var interrupt: shared boolean; enabled: boolean;
process, initial process: P;
registers: R; store: T;

begin
region interrupt do
begin

in terrup t := false;
enabled: = true;
process := initial process;
registers: = process table(process).register state;

end
repeat

region interrupt do
if interrupt & enabled then
begin

interrupt: = false;
moni tor call(preempt process);

end
execute instruction(registers, store);

forever
end

149

ALGORITHM 4.8 A Monitor Call and Exit

"moni tor call(entry)"
enter region
enabled: = false;
process table(process).register state := registers;
case entry of . . . end

"moni tor exi t(candidate)"
process: = candidate;
registers := process tab le (process).register state;
enabled: = true;
leave region

concurrent processes, the operations enter region and leave region serve no
purpose. But the ability to inhibit interrupts is still necessary to ensure tha t
monitor calls exclude one another in time.

So far, we have only considered short-term scheduling of central

150 PROCESSOR MANAGEMENT Chap. 4

processors. Interrupts are also used to control short-term scheduling of
peripheral devices. Inpu t /ou tpu t between peripherals and internal storage
can be initiated by machine instructions executed within the basic monitor.
The peripherals signal the complet ion of data transfers by interrupts, which
enable the basic moni tor to continue processes Waiting for input /output .

So in practice, several interrupts are connected to a central processor:

type index = 1 . . m ;
vat interrupt: shared array index of boolean;

It is therefore necessary to extend the moni tor procedure preempt process
with an identification of the interrupt which caused the moni tor call:

procedure preempt process(cause: index)

Since the processors are identical and use the same
irrelevant which processor a given interrupt occurs on.

monitor , it is

4.2.6. Timing Constraints

Short-term scheduling as discussed here is an implementat ion of the
well-structured concepts of multiprogramming defined in Chapter 3. Above
this level of programming, the number of physical processors and the use of
interrupts are as irrelevant as the logic circuits used to implement an adder.

But while we gain conceptual clarity from this abstraction, we also lose
control of the finer details of scheduling at higher levels of programming.
So the scheduling decisions taken at the short-term level determine the rate
at which a computer is able to respond to real-time events.

To get an idea of how serious this problem is, we will assume that each
processor has 8 registers and that a store word can be accessed in 1 psec. An
outline of the machine code required to implement scheduling primitives
on a typical computer shows roughly the following execution times:

hardware level

store access (per word)

basic moni tor level

1 psec

interrupt 20 psec

process level

wait or signal 0.05-0.25 msec
arbitrary critical region 0.1 -0.5 msec

Process initiation a n d termination within a concurrent s ta tement
require about 0.5 msec per process (when store allocation time is ignored!).

Sec. 4.2. SHORT-TERM SCHEDULING 151

" It is evident that the bet ter the abstractions become, the more we lose
control of short-term scheduling. Within the basic monitor, it is possible to
respond to about 50,000 events per second. Above this level, guaranteed
response time to real-time events is increased by a factor between 12 and
25.

Although these figures are acceptable in most environments, there are
certainly applications which require response to more than 2000-4000
events per second (for example, speech recognition).

If priorities are dynamic, the scheduling decisions made after a timer
interrupt will take at least 0.25 msec for the simplest algorithm (such as
round-robin). So it is unrealistic to change priorities more frequently than,
say, every 10 msec (which means that 2.5 per cent of the processor time is
used to control processor multiplexing). If processors are mult iplexed at
this rate among ready processes by simple round-robin scheduling,
guaranteed response by processes to real-time events is suddenly reduced to
a multiple of 10 msec, or less than 100 events per second!

It was this drastic reduction of real-time response caused by short-term
scheduling that I had in mind when I made the s tatement in Section 4.1
that "all levels of scheduling implement a policy towards users and their
computations. This is important to realize because policies are among the
first things installation managers will wish to modify to satisfy users."

These figures can no doubt be improved somewhat by additional
hardware support . Nevertheless, the decisions made at the short-term level
of scheduling cannot always be ignored at higher levels of programming, so
a realistic designer must also be prepared to change this part of the system
for certain applications.

4.2.7. Conclusion

Our intellectual inability to analyze all aspects of a complex problem in
one step forces us to divide the scheduling problem into a number of
decisions made at different levels of programming. The criteria for a
successful decomposi t ion of the scheduling problem are no t well-
understood at the moment .

The danger of the abstraction achieved by short-term scheduling is that
the decisions which determine the efficiency of hardware utilization and
the rate at which the system is able to respond to external events are made
at a very low level of programming, which is hard to influence at higher
levels precisely because it hides the physical characteristics of the system.

Practical experience with operating systems has shown that some
short-term policies--in particular those which involve store multiplexing--
can have a disastrous effect on the system as a whole and make any a t tempt
to control the mode of operation at the management level futile. Part o f
the answer to this problem is that there must be a strong interaction

152 PROCESSOR MANAGEMENT Chap, 4

between the various levels of scheduling. A reasonable approach is to let the
medium-term scheduler assign priorities that are used by the short-term
scheduler to select candidates for available resources. At the same time, the
short-term scheduler can influence the decisions of the medium-term
scheduler by collecting measurements of the actual utilization of resources
and the waiting times of processes.

4.3. LITERATURE

The thesis by Saltzer (1966) is an excellent analysis of short-term
scheduling. Saltzer made a clear distinction be tween the hardware and user
management levels of scheduling. The recognition of the ready, running,
and waiting states is also due to him. Saltzer implemented basic critical
regions by means of two instructions, lock and unlock (which correspond
to enter region and leave region). Other process interactions were handled
by a fairly restrictive set of primitives, block and wakeup, which enable a
process to delay itself until another process wakes it up.

Wirth (1969) explains the implementation and application of the
scheduling primitives initiate process, terminate process, wait and signal
(which he calls fork, join, P, and V) in the algorithmic machine language PL
360. He points out the danger of forcing programmers to think in terms of
interrupts instead of well-structured primitives.

In the Venus operating system described by Liskow (1972), processor
multiplexing is handled almost exclusively by hardware: wait and signal are
available as machine instructions that maintain process queues ordered by
priority.

A paper by Lampson (1968) contains an interesting proposal to
centralize all scheduling decisions in a single, microprogrammed computer
to which all external interrupts are connected. The scheduler can send a
single interrupt to each of the other processors indicating that they should
preempt their running processes and resume ready processes of higher
priority. The use of small processors to perform specific operating system
tasks may well turn out to be more economical for multiprogramming than
the use of a system consisting of identical processors, each of medium or
large size.

Hoover and Eckhart (1966) describe the influence of extreme real-time
requirements in a telephone switching system on the choice of a short-term
scheduling strategy. Their scheduler differs from those which preempt less
urgent processes unconditionally in favor of more urgent processes in the
following way: The scheduler periodically examines all ready processes; a
scheduling cycle is divided into a number of phases, each dedicated to
non-preemptive execution of processes of a given priority. In each cycle, all
priority levels are served at least once, and high priority is achieved by
dedicating several phases to a given class of processes. In this way, excessive

Sec. 4.3. LITERATURE 153

delay of processes of lower priority is avoided. This strategy is realistic
when the processing time of each process is short compared to the response
times required.

Brinch Hansen (1970) describes the RC 4000 multiprogramming
system, which includes a set of scheduling primitives called create, start,
stop, and remove process. These primitives, implemented by a monitor,
enable processes to schedule other processes according to any strategy
desired at the medium-term level. This design is described and commented
on in detail in Chapter 8.

BRINCH HANSEN, P., "The nucleus of a multiprogramming system," Comm. ACM 13,
4, pp. 238-50, April 1970.

HOOVER, E. S. and ECKHART, B. J., "Performance of a monitor for a real-time
control system," Proc. AFIPS Fall Joint Computer Conf., pp. 23-25, Nov. 1966.

LAMPSON, B. W., "A scheduling philosophy for multiprocessing systems," Comm.
ACM 11, 5, pp. 347-60, May 1968.

LISKOW, B. H., "The design of the Venus operating system," Comm. ACM 15, 3,
pp. 144-59, March 1972.

SALTZER, J. H., "Traffic control in a multiplexed computer system," MAC-TR-30,
Massachusetts Institute of Technology, Cambridge, Massachusetts, July 1966.

WIRTH, N., "On multiprogramming, machine coding, and computer organization,"
Comm. ACM 12, 9, pp. 489.98, Sept. 1969.

STORE MANAGEMENT

This chapter describes techniques of sharing an internal store of limited
capacity among concurrent computat ions, with and wi thout the use of a
larger, slower backing store. It summarizes current store technology and
explains the influence of recursive procedures, concurrent processes, and
dynamic relocation on store addressing. It concludes with an analysis of
placement algorithms and store multiplexing.

Concurrent processes share two vital resources: processors and storage.
Processor management has already been discussed. The subject of this
chapter is store management--the techniques used to share an internal store
of limited capacity among concurrent computations.

Store management decisions are made at all levels of programming. We
will again distinguish between two main levels: medium-term and
short-term store management.

Medium-term store management implements the service policy towards
users. It maintains a queue of programs and data on a backing store and
decides when computat ions are initiated and terminated. It also preempts
and resumes computat ions during their execution to satisfy more urgent
user requests immediately.

Short-term store management transfers programs and data be tween a
backing store and an internal store and assigns processors to them as

155

156 STORE MANAGEMENT Chap. 5

directed by medium-term management. It tries to utilize the internal store
efficiently by: (1) limiting the frequency of data and program transfers; (2)
keeping computat ions in the internal store which can run while others are
waiting for input /output ; and (3) transferring data and programs to the
internal store only when computat ions actually need them.

In this chapter, we concentrate on short-term store management. To
share resources efficiently, a designer must depend on his knowledge of
their technology and expected usage. So we begin with two sections
on store technology and addressing. They are fol lowed by two sections on
placement algorithms and store multiplexing, describing how internal
storage is assigned to programs and data and how the latter are transferred
back and forth between internal store and backing store during execution.

5.1. STORE TECHNOLOGY

5.1.1. Store Components

A store is used to retain data and programs until they are needed during
execution. It is divided into a finite set of components called locations.
Each location can represent any one of a finite set of data values. These
values are recorded and obtained by write and read operations.

Following Bell and Newell (1971), we will characterize various store
types by the manner in which locations can be accessed efficiently.

A store with sequential access consists of locations which can only be
accessed in sequential order. The store is posi t ioned at its first locat ion by a
rewind operation. Read and write operations access the current location
and posit ion the store at its next location:

var store: file o f V; value: V;

rewind(store);
read(value, store);
write(value, store);

Sequential access is used mainly for large files stored on detachable
media such as paper tape, punched cards, printed forms, and magnetic tape.
It is the cheapest and slowest me thod of storage.

A store with direct access consists of locations which can be accessed in
arbitrary order by indexing:

vat store: array A of V; address: A; value: V;

value := store(address);
store(address) := value;

Sec. 5.1. STORE TECHNOLOGY 157

Most computers use two kinds of directly accessible stores:

(1) An internal store gives fast, direct access to locations called words.
It is used to hold data and programs during execution. The store medium is
usually fast magnetic cores. Integrated circuits are used to implement a
small set of very fast locations called registers.

In an internal store, the time required to access a location is
independent of the location's physical position. This is called random access.

(2) A backing store gives slower, direct access to locations consisting of
blocks of words. It is used to hold data and programs until computat ions
need them in the internal store. The store medium is usually slow magnetic
cores or rotating magnetic surfaces such as drums and disks.

In a rotating store, a block can only be accessed when the rotat ion of
the medium brings it under an access head. This is called cyclic access.

On some disks, the access heads can move linearly across the rotating
surface. This is called sequential-cyclic access.

The stores ment ioned can be characterized more precisely by the
following physical properties:

store capacity the number of locations
location length the number of bits per location
access time the average time required to read

or write the value of a location

The figures below are typical for present computers. I have bhosen a
representative word length of 32 bits and a block length of 1 K words.

store medium capacity access time

(K words) (msec/K words)

integrated circuits 0.01-1 0.1
core 10-1000 1-5
drum 1000-10,000 10-30
disk 10,000-100,000 100-1000
magnetic tape 10,000-100,000 1000-100,000

For stores with sequential and cyclic access, the access time consists of
a waiting time required to position an access head in front of a block and a
transfer time required to transfer the block to or from the store.

store medium waiting time transfer time

(msec) (msec/K words)

drum 2-10 5-20
disk 100-1000 5-20
magnetic tape 1000-100,000 20-100

158 STORE MANAGEMENT Chap. 5

5.1.2. Hierarchal Stores

The store in present computers is usually a hierarchy o f store
components of different types. An example is shown in Fig. 5.1. At the
bo t tom of the hierarchy is a fast internal store of moderate capacity. Above
this level, we find a slower, larger backing store. And, on top of this, a still
slower and much larger file store.

File Magnetic tape
store Disk

Backing Drum
store Slow cores

11
I

Internal I Fast cores
store I Integrated circuits

Fig. 5.1. A store hierarchy.

The motivation for this variety of store components is economic: The
cost of storage is roughly proport ional to the store's capacity and access
rate. It would be prohibitively expensive to maintain all user programs and
data permanently in an internal store. Instead, users and operating systems
try to distribute programs and data at various levels in the store hierarchy
according to their expected frequency o f usage.

An example of hierarchal storage was ment ioned in connection with the
SDC Q-32 system (Section 1.2.4): A disk of 4000 K words with an average
access t ime of 225 msec is used to hold data and program files between
computat ions. When a user wishes to execute a program, it is transferred
from the disk to a drum of 400 K words with an average access t ime of 40
msec. From the drum, the program is periodically transferred to a core
store of 65 K words to receive short slices of processor time.

Some people have expressed the hope that it may eventually become
economical to build internal stores that are an order of magnitude larger
than present core stores and therefore eliminate the need for backing
stores. I believe that, although internal stores may become as large as that,
it will always be economically attractive to use still larger and slower
backing stores to hold less frequently used data. The hierarchal structure of
stores is no t caused by inadequate technology--i t is a sound principle for
efficient resource utilization.

Sec. 5.2. STORE ADDRESSING 159

5,2. STORE ADDRESSING

Store management raises three basic questions:

. \
(1) What is the appropriate unit of store assignment to computat ions?

(2) How are these units placed in an internal store prior to their use?

(3) How are they referenced by computat ions during execution?

The following discussion of program segmentation and store addressing
gives some of the answers to questions (1) and (3). Subsequent sections on
placement algorithms and store multiplexing deal with question (2).

I assume that programs are written in a well-structured language which
enables a compiler and an operating system to take advantage to some
extent of predictable store requirements. I also expect a compiler to assign
store addresses correctly to programs so that there is no need to check
them during execution.

5.2.1. Program Segmentation

To the user of a high-level programming language, a virtual store
consists of data identified by textstrings called identifiers. It is a mapping
of identifiers into values:

virtual store: identifier ~ value

To the designer of computer systems, a real store consists of locations
identified by consecutive numbers called addresses. It is a mapping of
addresses into values:

real store: address ~ value

Before a program is executed, locations must be assigned to it in the real
store. This so-called store allocation defines the intermediate mapping of
identifiers into addresses:

store aUoca tion : identifier ~ address

Store allocation is performed partly by a compiler, partly by an
operating system.

Practical methods of store allocation try to achieve two conflicting
goals: (1) to access a store as fast as possible during execution; and (2) to
share it among concurrent jobs.

160 STORE MANAGEMENT Chap. 5

The fastest access is achieved by a f ixed allocation of storage to
programs at compile time. This enables programs to access locations
directly during execution.

But, when a store is shared by jobs requested and terminated at
unpredictable times, it is impossible to know the location of available
storage in advance of program execution. So sharing requires a dynamic
allocation of storage at run time.

To make sharing possible and still get reasonably fast access, the
following compromise is made:

Programs and data are divided into a few large segments. Each segment
consists of related data which can be placed anywhere in the store and
addressed relative to a common origin, as shown in Fig. 5.2. The origin and
number of locations of a segment are called its base address and length,
respectively.

Length I

Base address v b P

~/// / / / / / /~ • elative address

Fig. 5.2. A segment identified by a base address and a
length, and a location within the segment identified by a

relative address.

Base addresses are unique within the entire store, but relative addresses
are only unique within segments. They are called real and virtual addresses,
respectively.

The division of programs into segments and the replacement of
identifiers by relative addresses is done by a compiler. When segments are
needed during program execution, an operating system assigns locations to
them and defines their base addresses.

The number of base addresses can be kept small if the segments are
kept suffi.~iently large. This makes it practical to store base addresses in
directly accessible locations or registers during execution in order to ensure
fast access. When a compiled program refers to a segment locat ion by its
relative address, a central processor automatically adds the base address of
the segment and accesses the location directly.

So efficient sharing of an internal store with direct access requires
segmentation of programs at compile t ime and address mapping at run
time:

virtual store: identifier ~ virtual address ~ real address -~ value

This is the main idea behind current techniques of store allocation.

Sec. 5.2. STORE ADDRESSING 161

Since each instruction requires address mapping, the latter should
obviously be made as simple as possible. To cite Wirth (1971b): "The
efficiency of a system stands or falls with the efficiency of the address
calculations."

We will discuss three independent computational requirements which
lead to increasingly complicated forms of addressing:

recursive procedures
concurrent processes
dynamic relocation

The first two requirements should be well-known to you, but the third
one may be new. So far, we have only considered the need to assign storage
to segments immediately before execution starts. An extension of this
technique is needed when an internal store is multiplexed among several
computat ions by transferring segments back and forth between internal
store and backing store: It must now be possible to place segments in
different locations and redefine their base addresses during execution. This
is called dynamic relocation.

5.2.2. Single-segment Computations

The simplest case is a computat ion which only requires a single
segment.

Sequential, Non-recursive Computations

Consider the following program:

procedure R ;
procedure S;
begin . . . end

begin , . . S; . . . end

label Q begin . . . R; . . . end

It consists o f a s tatement Q, which calls a procedure R; R in turn calls
another procedure S.

The natural units of segmentation are: (1) the statements which can be
compiled into invariant machine code; and (2) the variables declared inside
a procedure.

Storage for the program segment is needed throughout the computa-
tion. Storage for a data segment is needed only while the computa t ion is
executing the corresponding procedure.

162 STORE MANAGEMENT Chap. 5

Stack

S

R

Q

P

Word index

Base address ~7 b
P

Data segment

Data segment

Data segment

Program segment

Fig. 5.3. Store allocation for a sequential, non-recursive
computation.

Since procedures are called sequentially, storage for data segments will
be allocated and released strictly in last-in, first-out order. Program and
data segments can therefore be combined into a single segment which varies
in length according to the number of procedures called. A store used in this
manner is called a stack.

Figure 5.3 shows the extent of the stack when the previous computa t ion
is inside procedure S. The stack is addressed by word indices relative to its
base address.

A slight complication arises if a procedure is called in different
contexts, for example:

procedure S;
b e g i n . . , end

procedure R;
begin . . . S ; . . . end

label Q
begin . . . R ; . . . S ; . . . end

Here, procedure S is called inside bo th s ta tement Q and procedure R. The
extent of the stack prior to a call of S is different in each case. But a
compiler can calculate the maximum extent of the stack prior to any call o f
the procedure and can always place its data segment at that point. This is
illustrated by Fig. 5.4. In the worst case, a data segment will be allocated
permanently for each procedure.

Since the maximum extent of the stack can be determined at compile
time, an operating system can regard it as a fixed-length segment at
execution time.

Sec. 5.2.

Stack

S

R

Q

P

(a)

STORE ADDRESSING

Stack

S

Q

P

(b)

163

Fig. 5.4. Store allocation for a nonrecursive procedure S
called in different contexts (a) and (b).

So, in general, a sequential, non-recursive computat ion requires only a
single segment of fixed length addressed by word indices. Fast addressing is
achieved by keeping the base address in a register.

Base register Ib~I

"1

Segment

T
Word index

~> Value

Fig. 5.5. A virtual store consisting of a single relocatable
segment.

This type of virtual
symbols:

store

base address
(or data value)

is shown in Fig. 5.5 using the fol lowing

relative address segment

The virtual addresses used by a computat ion (word indices) are
independent of the location of its segment in the store. Dynamic relocation
therefore only requires a change of the base register value.

164 STORE MANAGEMENT Chap. 5

Examples of computers of this type are the IBM 7094 H (Bell and
Newell, 1971), the CDC 6600 (Thornton, 1964), and the Atlas (Kilburn,
1962).

5.2.3. Multi-segment Computations

The next case to consider is a computat ion which requires several
segments.

Sequential, Recursive Computations

Consider the following program:

procedure R;
begin . . . i f C t h e n R ; . . . end

label Q begin . . . R; . . . end

Procedure R calls itself repeatedly while condit ion C holds. Each call
creates an instance R1, R2, . . . , Rn of the variables declared inside the
procedure as shown in Fig. 5.6.

In this case, a compiler cannot predict the extent of the stack prior to
an instance of a procedure call. Consequently, programs must be compiled
for an array of data segments.

Display /

Segment index

Data segments

I
!
I

R2

l q

v

index

• Fig. 5.6. Store allocation for a sequential, recursive compu-
tation.

Sec. 5.2. STORE ADDRESSING 165

At compile time, an identifier is replaced by a virtual address consisting
of a segment index and a word index The segment index is equal to the
number of procedures which enclose the identifier in the program text; it is
often called the level o f procedure nesting. The word index is the relative
address of a location within the given segment.

At execution time, the currently accessible data segments are defined
by an array o f base registers, the display.

When a procedure with segment index s is called, a new display is
created. It consists of the entries 0 to s - 1 of the previous display and an
entry s defining the origin of a new data segment for the procedure called.
Upon return from the procedure, the previous display becomes valid again.
The displays can be stored as part of the data segments and linked together
in their order of creation as shown in Fig. 5.7.

Current display

I
I

Fig. 5.7. A stack consisting of data segments and displays
l inked in their order o f creation.

This brief presentation assumes that you already are familiar with the
implementation of recursive procedures. RandeU and Russell (1964)
explain this in detail in their book on the KDF 9 Algol 60 compiler.

I conclude that a sequential, recursive computation requires a virtual
store consisting of segments of fixed length addressed by segment and word
indices. This type of store is shown in Fig. 5.8. The segment index is used
to select a base address in the current display; this is added to the word
index to get the real address of a segment word. Fast access is achieved by
keeping the current display (or its most recently used entries) in registers.

It is no t clear how many display registers one needs to execute
programs efficiently. For example, the B6700 computer has 32 display
registers (Organick and Cleary, 1971). This is much more than most

166 STORE MANAGEMENT Chap. 5

Base array Current segment
(Current display)

Segment index Wor(index

Fig. 5.8. A virtual store consisting of
non-relocatable segments.

programs need. Wirth (1971b) reports that a Pascal compiler for the CDC
6400 computer only uses 3 display registers and that Pascal programs are
limited to 5 levels of procedure nesting.

Concurrent Computations

Consider the following program, which includes concurrent statements,
but no recursive procedures:

procedure R;
begin . . . end

procedure S;
procedure T;
begin . . . end

cobegin R; T coend

label Q cobegin R; S coend

At some point in the execution of this program, the tree of parent and
child processes may look like that shown in Fig. 5.9. The processes are
shown as nodes linked to their parents. Process S, for example, is the child
of process Q and also the parent of processes R 2 and T.

Since concurrent processes can create data segments at the same time, it
is necessary to have a separate stack branch for each process. The
computat ion as a whole therefore builds up a tree-structured stack
corresponding to Fig. 5.9.

Although the stack is tree-structured, each process can only access tha t
part of it which lies on a directed path from the process itself through its
ancestors to the root of the tree. In the previous example, process T can
access its own data and those of processes S and Q. So the virtual store of
each process is still a linear array of data segments.

Sec. 5.2. STORE ADDRESSING 167

Fig. 5.9. A concurrent computation consisting of child
processes linked to parent processes.

Each procedure is non-recursive, but can be called by more than one
process. (An example is procedure R in the previous program.) This makes
it impossible to assign a fixed position in the stack to variables declared
within a given procedure. A display is therefore needed to define the origins
of data segments currently accessible to a given process. When a process is
created, a new stack branch and a display are also created. The child display
is identical to the parent display.

So the virtual store required by a single process is a linear array of
fixed-length segments, as shown in Fig. 5.8. Evidently, it makes no
difference whether or not a concurrent computat ion includes recursive
procedures--the addressing schemes are the same.

5.2.4. Program Relocation

In a concurrent computat ion, a given variable may be accessible to
several processes within various procedures. So the base address of a given
data segment may be stored in several displays. If the segment is relocated
during execution, it is necessary to follow the chain of displays for each
process and change the corresponding base address wherever it is
found.

From a practical point of view, it is clearly preferable that relocation of
a segment only require an assignment to a single base register. The
addressing scheme shown in Fig. 5.8 can therefore only be recommended
for non-relocatable segments.

To make dynamic relocation practical, the base addresses of all
segments belonging to a computat ion must be kept in a single table called
the segment table. When a process creates a data segment, its base address is
placed in an empty location in the segment table and its index in this table
is placed in the current display of the process.

This type of virtual store is shown in Fig. 5.10. Address mapping is now
done in three steps: (1) a segment index assigned at compile time is used to
select a segment table index from the current display; (2) this index in turn

168 STORE MANAGEMENT Chap. 5

Index array Base array
(Current display) (Segment table)

, I

Segment index

Current segment

h.J " ~ ' - - ~ > Value

Word index

• Fig. 5.10. A virtual store consisting of relocatable seg-
ments.

is used to select a base, address from the segment table; and finally, (3) the
base address is added to a word index to get a real address.

The length of segment tables varies considerably in present computers:
In the IBM 360/67 computer, each computation is limited to 16

segments defined by base registers (Comfort, 1965).
The B5000 computer allows a maximum of 1024 segments within each

computation. The segment table is therefore kept in the internal store as an
initial part of the stack and only its most recently used entries are kept in
registers (Lonergan and King, 1961).

The B8500 computer keeps the indices and origins of the 16 most
recently used segments in a very fast store. When a segment is referenced,
an attempt is made to find its base address in this store using its index as a
search key. If this search fails, the base address is obtained from the
segment table in the slower internal store and entered in the fast store
together with its index. Because the fast store associates a value (a base
address) with a key (a segment index), it is called an associative store
(McCullough, 1965).

The GE 645 computer used in the Multics system is rather extreme: It
permits a maximum of 256 K segments per computation (Glaser, 1965).
The argument originally made in favor of this design was that it makes it
possible to assign unique virtual addresses to all program and data files in
the entire installation and thereby facilitates the sharing of these during
execution (Dennis, 1965).

This argument does not seem plausible to me. In practice, dynamic
relocation requires that each computation use a separate segment table and
assign indices to segments when they are first referenced. And, as Daley and
Dennis (1968) point out in a later paper: "An immediate consequence of
this is that the same segment will, in general, be identified by different
segment indices in different computations." Consequently, the range of
segment indices need only be large enough to enable a computation to
distinguish among the segments it actually uses.

At this point, a general remark about dynamic relocation might be

Sec. 5.3. PLACEMENT ALGORITHMS 169

helpful: When segments are relocatable during execution, it must be
ensured that references to them by computat ions and their operating
systems exclude one another in time.

This can be done by preempting a computat ion completely while one
or more of its segments are being relocated. This method is simple to
implement in a single-processor system in which at most one process at a
time can refer to the store.

Another possibility is to relocate a segment while the computat ion
involved continues to run. This is done in three steps: (1) make the base
address invalid; (2) move the segment to its new location; and (3) redefine
the base address. If a process refers to the segment during this critical
region, its processor will recognize the invalid base address and interrupt
the process.

In a multiprocessor system, a computat ion and its operating system
may run on different processors. It is also possible that the computat ion
itself consists o f concurrent processes which run on different processors,
but have access to the same segments. Consequently, dynamic relocation
requires that base addresses be kept in store locations or registers accessible
to all processors.

It should also be ment ioned that input~output can interfere with
program relocation. Most peripheral devices are built to transfer a block of
data to or from an internal store without interruption. Consequently, a
segment cannot be relocated before all input /output operations on it are
completed.

5.2.5. Conclusion

In a survey of store management techniques, Hoare and McKeag
(1971c) emphasize that " the designer of software systems should not
always strive after the greatest generality and its at tendant complexity, but
should use his best judgement in selecting the simplest technique which is
sufficient for his current purpose."

This is particularly true of store addressing where the price of
unnecessary complexity is paid for every instruction executed. To use an
addressing scheme that caters to relocatable, concurrent, recursive jobs
(Fig. 5.10) in an installation that only runs non-relocatable, sequential,
non-recursive jobs (Fig. 5.5) serves no useful purpose, bu t will certainly
complicate the operating system considerably and reduce performance.

5.3. PLACEMENT ALGORITHMS

I have described the motivation for program segmentation and have
shown how segments are accessed during execution. We must now decide

170 STORE MANAGEMENT Chap. 5

where in available internal storage these segments should be placed prior to
their use. This decision rule is called a placement algorithm.

Placement is complicated by three characteristics of segments: (1) they
are created and deleted at unpredictable times; (2) they have different
lengths; and (3) they must be placed in a linear store.

5.3.1. Contiguous Segments

The most direct approach is to place a segment in contiguous locations
in the real store (or more precisely, in locations with contiguous real
addresses). When this method is used, the effect of unpredictable creation
and deletion is to divide the store into a random pattern of segments of
different lengths mixed with holes of available storage also of different
lengths. This is illustrated by Fig. 5.11.

Hole

Segment

Segment

Hole

Segment

Hole
Fig. 5.11. Contiguous allocation of
segments in a linear store.

If the length of a segment is fixed during its lifetime, the following
placement algorithms suggest themselves:

First fit: a segment is placed in the first hole large enough to hold it.
Best fit: a segment is placed in the smallest hole large enough to hold it.
Intuitively, one would expect the best fit algorithm to increase the

probability of being able to satisfy subsequent store requests compared to
the first fit algorithm, which tends to split larger holes into smaller ones.
But in simulation experiments Knuth (1969) found that in practice first fit
appears to be superior. Since it is also the simpler algorithm, it can be
recommended. It is used, for example, in the Master Control Program for
the B5500 computer (McKeag, 1971a).

If the search for the first hole that fits always starts at one end of the
store, the smaller holes tend to accumulate at that end and increase
the search time for the larger holes. This effect can be avoided by searching
the store cyclically, starting from a different hole each time. The starting
point can itself be selected cyclically.

Sec. 5.3. PLACEMENT ALGORITHMS 171

The main problem with contigous segments is that they split the
available storage into holes of different lengths. It may therefore be
impossible at some point to find a hole for a segment, although it requires
less than the total amount of available storage.

The cures that have been used are: (1) dynamic relocation; and (2)
complete initial allocation.

Compacting

One method of dynamic relocation is to move all segments to one end
of the store, thus combining all holes at the other end. This compacting
technique illustrated by Fig. 5.12 is used in the Scope operating system for
the CDC 6600 computer (Wilson, 1971a).

A
_ J

B J

Before compacting

J A

After compacting

Fig. 5.12. Compacting of segments.

When a good placement strategy (such as first fit) is used, the need for
relocation only arises when most of the store is occupied. Knuth (1969)
found that 90 per cent of a store could be filled without relocation when
segments were small, say 10 per cent of the store capacity each.
Measurements made by Batson (1970) on a B5500 university installation
showed that most segments were indeed quite small: Segments were limited
to a maximum of 1 K words each, but 60 per cent of them actually
contained less than 40 words. When the system was operating in a steady
state, the segments in use occupied about 80 per cent of a store of 28 K
words.

So, when compacting is needed, a large part of the store (80-90 per
cent) must be copied. This can be quite time-consuming: If a word is
copied in 2 #sec, 80 per cent of a store of 64 K words can be compacted in
about 100 msec.

172 STORE MANAGEMENT Chap. 5

In a well-designed system, compacting occurs so rarely that the
processor t ime spent on relocation is negligible (except in real-time systems,
which must guarantee response to external events in less than 100 msec
under all circumstances). But it hardly seems worthwhile to complicate
addressing and store allocation just to utilize the last 10-20 per cent of the
store in rare circumstances.

The real problem, however, is not processor and store utilization, but
the danger of deadlock. If nothing is done about it, processes may be
unable to continue even though their combined need does no t exceed the
available storage. Such a system cannot deliver reliable, long-term service.
According to McKeag (1971a), a survey of eleven B5500 installations
showed that 9 per cent of all system failures (about one a week) were store
deadlocks caused by non-relocatable segments.

Store Multiplexing

Segments can also be relocated as part o f store multiplexing: Instead of
all segments being compacted, some of them are transferred temporari ly
from the internal store to a backing store and replaced by other segments.
This is a good example of deadlock prevention by preemption (Section
3.5.2). It is discussed in detail in Section 5.4 on store multiplexing.

Complete Initial Allocation

A much simpler method of deadlock prevention is to allocate the
maximum storage needed by a computat ion in advance of its execution.

A single segment of fixed length is assigned to a sequential
computation. This segment contains the machine code and a linear stack.
During its execution, the sequential computat ion can create and delete its
own data segments in last-in, first-out order within the stack, as shown in
Fig. 5.3. It can also use recursive procedures as long as the stack does no t
exceed its maximum extent.

Under special circumstances, complete initial allocation can also be
used for concurrent computations. The definition of concurrent s tatements
in Section 3.1.2 implies that parent processes neither create nor delete data
segments while child processes exist (because parents must wait until all
their children are terminated). In other words, only the leaves of a stack
tree vary in length. In Fig. 5.13(a), the leaves are C, D, E, G, and H.

Suppose also that the maximum extent of a stack branch is known
before the process using that branch is created. These two restrictions on
concurrent processes make it possible to store a stack tree as nested
segments, as shown in Fig. 5.13(b).

The spooling system shown in Fig. 1.3 is an example of concurrent
processes that use one level of segment nesting. The RC 4000

Sec. 5.3. PLACEMENT ALGORITHMS 173

A D

E

B
G

F
H

C

(a) (b)

Fig. 5.13. A tree of concurrent processes (a) using nested
segments (b).

multiprogramming system (Brinch Hansen, 1970) permits arbitrary nesting
of processes within a single segment.

The disadvantage of using such large contiguous segments is that the
store is utilized less efficiently: A hole may be fairly large, but not large
enough to hold a complete computat ion.

Finally, it should be ment ioned that the deadlock problem of
contiguous segments repeats itself on a more serious time scale on backing
stores.

5.3.2. Paged Segments

A system using contiguous segments is constantly fighting "pol lu t ion"
of its resources: Gradually, jobs will partition the store into an
unpredictable mixture of non-equivalent holes until drastic measures must
be taken to avoid disaster.

Paging is a radical solution to the placement problem. It treats the
stores consistently as pools of equivalent resources. Stores are divided into
storage units of equal length, called page frames, and segments are divided
into data units of the same length, called pages. During execution, a page
can be placed in any available page frame. A program still refers to segment
locations by contiguous virtual addresses, but in the real store a segment
may be placed in disjoint page frames as shown in Fig. 5.14.

Within a segment, a location is identified by page and word indices. The
page index is used to select the base address of a page frame from a
so-called page table; this is added to the word index to get a real address.

174 STORE MANAGEMENT Chap. 5

CI ."
Real store

(a) (b)

Fig. 5.14. A segment (a) consisting of three pages A, B, C,
and its placement (b) in the real store.

One of the alms of segmentation is to make programs insensitive to
their placement in the store. It is therefore common to choose the page
length as a power of two:

p = 2 m

where p is the number of words per page and m is a positive integer.
Programs can then use contiguous relative addresses within a segment:

n bits [

relative address

These are interpreted by processors as consisting of a page index (the most
significant bits) and a word index (the least significant bits):

r n 'm bits I mb i t s I

page index word index

Notice that there is no difficulty in handling paged segments which vary
in length during their lifetime as long as the total number of pages used
does not exceed the number of page frames.

The placement algorithm is now trivial, but this has been achieved only
by increasing the complexity of addressing. Figure 5.15 illustrates the
difference between contiguous and paged segments in this respect.

Sec. 5.3. PLACEMENT ALGORITHMS

Segment
Ba Value

Base array
(Page table)

P
A

Page
Value

175

Word index Page index Word index

(a) (b)

Fig. 5.15. Addressing of (a) a contiguous segment, and (b)
a paged segment.

Thus, if segments are paged, the symbol Fig. 5.15(a) should be replaced
by (b) in Figs. 5.5, 5.8, and 5.10.

The first computer to use paging was the Atlas, designed at the
University of Manchester in England. It has a core store of 16 K words
divided into page frames of 512 words each. An associative store with 32
locations performs fast mapping of page indices into page frames.

Contiguous segmentation leaves about 10 to 20 per cent of an internal
store unused. Randell (1969) calls this phenomenon external frag-
mentation--storage wasted between segments.

Theoretically, external fragInentation can be avoided altogether by
paging. But paging decreases the utilization of storage in other ways: (1) by
using additional storage for page tables; and (2) by rounding up storage
requests to an integral number of pages. Randell calls this internal
fragmentation--storage lost within segments.

Small pages increase the length of page tables, but reduce the effect of
rounding; large pages have the opposite effect. So there must exist a page of
medium size that minimizes internal fragmentation.

Let p and s denote the page length and the average segment length in
words, respectively. Then a segment requires a page table with approxi-
mately sip entries of one word each, and wastes roughly p/2 words within
its last page (the latter approximation is only justified when p < < s).

When all page frames are occupied, the fraction of storage lost by
internal fragmentation is therefore:

I + P f = ~- -~- (5.1)-

df
By setting ~ = 0, we find the optimum page length Po and the

minimum internal fragmentation fo :

176 STORE MANAGEMENT Chap. 5

P0 = ~/2s (5.2) °

= ~ (5 .3) , f0 V s

Conversely, there is an opt imum segment length s o for a given page
length p. Table 5.1 shows s o and f0 for various page lengths p, which are
powers of two.

TABLE 5.1. The optimum segment length s o

and the minimum internal fragmentation f o
for various page lengths p.

P so f0
(words) (words) (per cent)

8 3 2 25
16 128 13
32 512 6
64 2 K 3

1 2 8 8 K 1.6
256 32 K 0.8
512 128 K 0.4

1024 512 K 0.2

The general trend is that store fragmentation decreases when segments
(and pages) increase in length.

The average segment length measured in the B5500 installation at the
University of Virginia was about 50 words. So, if we were to place each data
segment created by a procedure call in a separate set of page frames, the
best choice would be a page length of 8 words. This would make the
internal fragmentation approximately 25 per cent.

An alternative is to assign a single large segment to each process and let
the process create and delete its own data segments within it, as shown in
Fig. 5.3. Small user programs in a B5500 installation typically occupy 2 to
3 K words of core store each (McKeag, 1971a). For s = 2500, the best page
length would be p = 64 words. Putting this into equation (5.1) gives f = 3
per cent.

So, while contiguous segments should be small to reduce external frag-
mentation, paged segments should be large to reduce internal fragmentation.

User programs of 2 to 3 K words are probably exceptionally small.
Other installations have measured typical programs of 16 to 32 K words

Sec. 5.3. PLACEMENT ALGORITHMS 177

each (see for example, Arden and Boettner, 1969). In this case, a page
length of 256 words would minimize store fragmentation.

Most computers, however, use larger pages of 512 words (Atlas) or
1024 words (IBM 360/67 and GE 645) to reduce the processing time
needed to initiate and complete page transfers between a backing store and
an internal store.

Figure 5.16 shows the effect of large pages on store fragmentation for
various segment lengths. It also shows the minimum fragmentation that can
be achieved by an opt imum choice P0 of the page length for a given
segment length.

5 0 - A4°
3o

0 I I ----T ~
2 4 8 16 32

s (K words)

Fig. 5.16. Store fragmentation f as a function of the
average segment length s for various page lengths p.

With pages of 1 K words, store fragmentation is 2 to 6 per cent for
segments of 8 to 32 K words. Although this exceeds the theoretical
minimum of 1 to 2 per cent, it is still bet ter than the 10 to 20 per cent
wasted by contiguous segments.

Randell (1969) reaches the opposite conclusion, that internal frag-
mentation is more serious than external fragmentation. But his assumption
is that the average segment only occupies 1 K words. As I pointed out
earlier, internal fragmentation can be reduced by allocating much larger
segments for complete computations.

Finally, it is worth mentioning that paging has been successfully

178 STORE MANAGEMENT Chap. 5

implemented by program alone on at least two small machines: the GIER
(Naur, 1965) and the Electrologica X8 (McKeag, 1971b).

5.3.3. Conclusion

Contiguous placement is well-suited to segments of fixed-length, which
are small compared to the internal store. It simplifies addressing, but
complicates placement. Complete initial allocation of storage or dynamic
replacement of segments is necessary to prevent deadlock; the former
method is recommended for nested segments, the latter for disjoint
segments. Compacting is of doubtful value. Contiguous placement seems to
be the most efficient technique for small, sequential computations.

Paging is best suited to large segments that may vary in length during
execution. It complicates addressing, but makes placement trivial. Properly
used, paging appears to utilize storage better than contiguous placement. It
is ideal for concurrent computations if users can specify reasonable storage
limits for every computation (to avoid a deadlock of unrelated computa-
tions) without predicting the precise requirements of single processes.

From time to time, it is suggested that it might be worthwhile to use
more than one page length within a given system. It seems to me that this
combines the worst aspects of contiguous and paged placement; the danger
of deadlock and the complexity of addressing.

5.4. STORE MULTIPLEXING

We will finally examine systems which deliberately initiate more
computations than the internal store can hold. In these systems, segments
are kept on a backing store and transferred to an internal store on demand;
when the internal store is full, some of its segments are removed to the
backing store to make room for others. This is called store multiplexing.

The medium-term objective of store multiplexing is to give fast
response to short computations by preempting longer ones temporarily.

The short-term objective of store multiplexing is to increase utilization
of the internal store by only keeping available those segments that
computations actually use.

5.4.1. Demand Fetching

We will mainly study store multiplexing among paged segments, but the
results apply qualitatively to contiguous segments as well. So wherever I
use the word "page" in the following discussion, I might just as well have
used the term "contiguous segment."

Sec. 5.4. STORE MULTIPLEXING 179

I assume that pages are only brought into the internal store when
processes refer to them. This is called demand fetching.

The presence or absence of a page in the internal store is defined by a
boolean in its page table entry. If a page is present, a processor can refer to
it directly; if a page is absent, a reference to it provokes a call of a
procedure, which then fetches the page from the backing store.

When the internal store is full, one of the pages already present must be
replaced. The victim of replacement may be a copy of a page on the
backing store. In this case, it is simply overwritten in the internal store.
But, if the victim contains original data, it must be transferred to the
backing store before it is replaced by another page in the internal store.

This decision is based on another boolean in the page table entry of the
victim: It is set to false when the page is placed in the internal store and
becomes true after an assignment to any of its locations.

In the following, I explain a simplified algorithm for demand fetching
of pages from a drum to a core store. I make the following simplifying
assumptions:

(1) Each computat ion can only access a single paged segment.

(2) Each computat ion is assigned a fixed set of page frames in core and
on drum.

(3) Each page is associated with a fixed page frame on drum, but its
page frame in core varies during execution.

(4) A computat ion selects a victim of replacement from its own core
page frames.

Algorithm 5.1 shows the data structures used by a computat ion to
describe the state of its pages and page frames.

Pages are identified by indices of type P, while page frames in core and
on drum are identified by indices of types C and D.

The segment of a given computat ion is defined by a page table with an
entry for each page.

The page frames assigned to the computat ion in core are defined by a
core table, which contains a sequence of free page frames (identified by
core page frame indices) and a queue of used page frames (identified by
page indices).

Algorithm 5.1 also shows how a page is accessed: If the page is not
present, a victim is selected and the page is transferred to its core frame;
then, the page is marked as present, but not original, and its index is
entered in the set of used pages.

Algorithm 5.2 defines the selection of a victim: If the computat ion has
a free core page frame, that page frame becomes the victim; otherwise, one

180 STORE MANAGEMENT Chap, 5

of the used pages is selected, and, if it is an original, it is transferred to its
frame on drum. Finally, the victim is marked as not present.

The criteria for selecting a specific victim for replacement are irrelevant
here. We will return to this question later.

A L GORI THM 5.1 Demand Paging

type C = 1 . . number o f core page frames;
D = 1 . . n u m b e r o f drum page frames;
P = 1 . . n u m b e r o f pages;

var page table: array P of
shared record

presen t, original: boolean;
core frame: C;
drum frame: D;

end

core table: shared record
free: sequence of C;
used: queue of P;

end

procedure access(page: P);
const to core = true;
region page table(page) do
if not present then
begin

select victim(core frame);
transfer(core frame, drum frame, to core);
present: = true;
original: = false;
enter(page, used);

end

Drum transfers are controlled by a drum process. It uses the data
structure shown in Algorithm 5.3 which contains a queue of user processes
waiting for page transfers. When a user process needs a page transfer, it
defines the transfer in a process table entry and enters its index in the
queue. Then, it activates the drum process by causing a request event and
waits for a response event associated with its process table entry.

The index of the calling process is defined by a standard function:

funct ion process: Q

Sec. 5.4. STORE MULTIPLEXING

ALGOR/THM 5.2 Demand Paging (cont.)

procedure select victim(var core location: C);
const to drum = false;
var victim: P;
region core table do
f f empty(free) then
begin

remove(victim, used);
region page table(victim) do
begin

if original then
transfer(core frame, drum frame, to drum);
present: = false;
core location := core frame;

end
end
else get(core location, free);

ALGOR/THM 5.3 Demand Paging (cont.)

type Q = 1 . . number o f processes;

var v: shared record
waiting: queue of Q;
process table: array Q of

record
core frame: C;
drum frame: D;
fetch: boolean;
response: event v;

end
request, completion: event v;

end

procedure transfer
(core location: C; drum location: D; to core: boolean);
region v do
with process table(process) do
begin

core frame:= core location;
drum frame := drum location;
fetch: = to core;
enter(process, waiting);
cause(request);
a wait(response);

end

181

182 STORE MANAGEMENT Chap. 5

The drum process is defined by Algorithm 5.4. It waits until a request is
made for a page transfer. Then, it removes the index of a calling process
and starts a transfer from drum to core, or vice versa. After the completion
of a transfer, it signals a response to the waiting process and repeats its
cycle.

ALGOR/THM 5.4 Demand Paging (cont.)

"Drum process"
var customer: Q;
region v do
repeat

while empty(waiting) do await(request);
remove(customer, waiting);
with process table(customer) do
begin

start input output(core frame, drum frame, fetch);
await(completion);
cause(response);

end
forever

Demand fetching of contiguous and paged segments was pioneered on
the B5000 and Atlas computers, respectively.

5.4.2. Process Behavior

To evaluate the consequences of demand fetching, we need a model of
process behavior. We will first s tudy the execution of a single, sequential
program which exceeds the capacity of the internal store.

The available store is characterized by three parameters:

t the access t ime to a word in the internal store
T the access time to a page on the backing store
s the fraction of the program and its data that is

kept in the internal store

The process is characterized by the following function:

p(s) the average number of page transfers per store reference
as a function of the available internal store s

The effect of demand fetching is to increase the access t ime per word
from t to t + p(s)T.

Sec. 5.4. STORE MULTIPLEXING 183

If a process referred evenly to all its pages, the probabil i ty of its
referring to an absent page would be:

p(s) = 1 - s (5.4)

This pattern of random references is shown in Fig. 5.17. The access
t ime varies linearly between t + T (when every reference causes a page
transfer) and t (when the program is kept entirely in the internal store).

In practice, processes behave quite differently: They tend to refer
heavily to a subset of their pages over a period of time. This pattern of
localized references is also shown in Fig. 5.17. I believe it was first
described by Naur (1965).

1 ~ Random

0 1

• Fig. 5.17. The page transfer probability per store reference
p as a function of the fraction of a progra~n s kept in the

internal store.

Locality is caused by sequential execu t ion of statements stored in
consecutive locations, by repeti t ive execu t ion of statements stored within
a few pages, and by procedures which operate mainly on local variables and
parameters also stored within a few pages.

In an analysis o f existing programs, Fine (1966) found that a jump
from one program page to another occurred after the execution of an
average of 100 instructions. During such a sequence of references to the
same program page, only a few data pages were referenced.

Locali ty makes it possible to keep only a fraction of a program internal
and still have it executed with tolerable speed. Demand fetching exploits
this statistical proper ty of programs.

Measurements o fp (s) made by Coffman and Varian (1968b) for various
programs suggest that its tail can be approximated by

184

where

STORE MANAGEMENT

p (s) = a e - b s

0 < a < 1 < b and a e - b T < < t

Chap. 5

(5.5)

5.4.3. Load Control

The previous model enables us to make certain predictions abou t the
effect of demand fetching on a multiprogramming system. To simplify the
argument, I assume that:

(1) the internal store is shared evenly among processes with the same
statistical behavior;

(2) the processes run wi thout interruption until they demand page
transfers;

(3) the processor utilization is only degraded when all processes are
waiting for page transfers; and

(4) the program execution and page transfers overlap in time.

Assumption (1) implies that s and p(s) are identical for all processes; (2)
implies that we ignore idle processor t ime caused by peripheral devices
other than the backing store; and (3) and (4), that we ignore the overhead
of processor and store multiplexing.

A demand fetching system can be viewed as a queuing system in which
processes circulate between a ready queue, waiting for execution, and a
page queue, waiting for data transfers. This is shown in Fig. 5.18.

Backing store Page queue

I .o
Ready queue Processor

Fig. 5.18. Demand fetching viewed as a circular queuing
system.

Sec. 5.4. STORE MULTIPLEXING 185

D

The backing store can supply at most one page every T seconds. The
processor will demand at most one page every tip(s) seconds. The system
can therefore be in one of three possible states:

" (1) Idle backing store: p(s) < t/T.
If pages can be supplied faster than they are demanded, the processes

will end up waiting for the slowest server--the processor. This keeps the
processor fully utilized and the backing store poorly utilized. Since the
backing store is inexpensive compared to the processor, this is not a serious
problem.

• (2) Idle processor: p(s) > t/T.
If pages are demanded faster than they can be supplied, the processes

will again end up waiting for the slowest server--the backing store. The
backing store is now constantly busy and the processor is idle most of the
time. This situation, which causes a total collapse of computing service, is
called thrashing. °

• (3) Balanced system: p(s) = t/T.
Between these extremes there is a state in which the processor and the

backing store are both fully utilized. This is obviously the most desirable
state of operation. The question is: How can an operating system maintain
this balance?

The access times, t and T, are largely fixed by the hardware, and the
reference pattern p(s) is a function of the given program structure. During
execution, thrashing can therefore only be avoided by regulating the
computat ional load represented by s.

The minimum amount of internal storage that a process needs to
prevent thrashing is called its'working set w. It is determined by the follow-
ing equation

t p(w) = ~ (5.6)

Using the approximation defined by equation (5.5}, we find

where

1 In ~ (5.7) W = b r

t
r - - -

aT

is the so-called access ratio. Equation (5.7) shows that the slower the

186 STORE MANAGEMENT Chap. 5

backing store is compared to the internal store, the larger the working set
becomes.

A typical numerical example is

t = 1 psec

a = 0.1

b = 1 0

" For disks, drums, and slow core stores, the access ratios and working
sets are of the following order of magnitude:

backing store T (msec) r w (per cent)

disk 100 10-4 96
drum 10 10 -3 69
slow core 1 10-2 46

The disk is useless as a paging device since practically all pages must be
kept internal to maintain high processor utilization. The drum and the slow

2 core store are much better , but still require tha t ½ to ~ of all pages be kept
internal.

In o ther words, al though demand fetching simulates a virtual store
with a capacity as large as the backing store, all computa t ions must be
assigned a substantial amount of real store to run efficiently.

In our idealized model, the processor is utilized 100 per cent as long as
all processes have their working sets in the internal store (s ~ w). Below the
balance point (s < w), one process at most is running at a time, while all the
others are waiting for page transfers. The running process joins the page

! ebSt seconds; the processor is then idle until queue after an average of a

the complet ion of a page transfer af ter T seconds enables another process
to run. So the processor utilization ~7 is

~7 = r e b' (s ~ w ~ 1) (5.8)

This equat ion shows that when the internal store s of processes is
reduced below their working sets w, processor utilization decreases
exponent ia l ly with s. The small access ratio r = 10 -4 to 10 -2 contr ibutes to
the drastic reduction.

The fraction of the working set kept in the internal store is

S
X _ - m

W

Sec. 5.4. STORE MULTIPLEXING 187

By inserting this in equation (5.8) and using equation (5.7), we find

= r e b w x = r e x I n (t - 1) = r e l n (r - x)

o r

r /= r 1-x (0 ~< x ~ 1) (5.9)

This equation expresses the processor utilization ~ as a funct ion of the
access ratio r and the fraction 1 - x by which the internal store available to
a process is reduced below its working set.

Figure 5.19 illustrates this relationship. The drastic reduction of proc-
essor utilization, which characterizes thrashing, is apparent. As an example,
suppose an internal store of 128 K words is divided evenly among the
working sets of 9 processes. If we now initiate one more process, the
internal store of each process is reduced by ~6 of its working set. This also
reduces processor utilization from 100 per cent to 30 to 65 per cent,
depending on the type of backing store used.

1 0 0 ~ 9 0 r= 10-n

70
A

60

~ 5o

~ 40

30

20

10

0 10 20 30 40 50

1 -- x (per cent)

° Fig. 5.19. Processor ut i l izat ion r / a s a func t ion o f the
fraction 1 - x, by which the internal s tore o f each process is

reduced be low its work ing set for various access ratios r.

° The only effective remedy against thrashing is to limit the number of
processes competing for internal storage. Users cannot easily predict the

188 STORE MANAGEMENT Chap. 5

dynamic behavior of their programs, so the size of their working sets must
be evaluated during execution. This can be done as follows: The short-term
scheduler starts computations in the order defined by the medium-term
scheduler. When thrashing occurs, the short-term scheduler preempts one or
more computations with low priorities until a balance point is reached.
These computations are resumed when those of higher priority have been
completed. This technique is called load control.

Variants of load control in paging systems are described by Denning
(1968), Oppenheimer and Weizer (1968), DeMeis and Weizer (1969), and
Alderson (1971). Wulf (1969) describes an algorithm used to prevent
thrashing of contiguous segments in the B5500 system. In THE
multiprogramming system, the operator is expected to observe thrashing
and reduce the computational load manually.

5.4.4. Refinements

Demand fetching systems can be improved in various ways. Here we
will briefly evaluate the influence of three factors:

replacement algorithms
transfer algorithms
program structure

Replacement Algorithms

When a page must be fetched into a full internal store, one of those
already present must be replaced. The rule used to select the victim is called
a replacement algorithm.

A replacement algorithm should try to minimize the number of page
transfers. The ideal algorithm would be one that replaces that page which
will remain unreferenced for the longest period. But, in practice, the
replacement algorithm does not know the future pattern of references; it
can only try to predict it from past behavior.

The simplest replacement algorithm is first-in, first-out, which is used in
the B5500 system. As Belady (1966) has shown, it performs quite well
under most circumstances. But sometimes it has the peculiar effect of
increasing the number of page transfers when the internal store available to
a computation is increased (Belady, 1969).

The replacement algorithm least recently used does not have this
defect. If the internal store available to a computation is increased from f
to f + 1 page frames, the algorithm will maintain the f + 1 most recently
used pages internally. Since this set includes the f most recently used pages,

Sec. 5.4. STORE MULTIPLEXING 189

the number of page transfers cannot be higher than before. Algorithms
which have this property are called stack algorithms.

THE multiprogramming system uses the least recently used algorithm.
Unfortunately, it is expensive to implement since it requires that a time
variable be stored in every page table entry and updated every time the
page is referenced. As an approximation to it, some computers associate a
boolean with every page: It is set to true after every reference and to false
after a reasonable period of time.

Belady (1966) found that in most cases realizable algorithms, such as
first-in, first-out and approximations to least recently used, cause only 2 to
3 times as many page transfers as the ideal, but unrealizable algorithm. This
has been confirmed by Coffman and Varian (1968b).

In our model, the effect of improving the replacement algorithm is
roughly to divide the constant a in equation (5.5) by a factor c of 2 to 3.
This is again equivalent to multiplying the access ratio r by c.

According to equation (5.7), this reduces the working set by the
following fraction:

h w = In c {5.10)

w In ~
r

For r = 10 -4 to 10 -2 and c = 3, the reduction of w amounts to 12 to 24
per cent.

Figure 5.19 shows that in a thrashing situation, an increase of r by a
factor of 3 only improves processor utilization by a few per cent. So a good
replacement algorithm cannot by itself prevent thrashing.

Transfer Algorithms

For rotating backing stores, the access time T depends to some extent
on the order in which page transfers are made. The rule used to select the
next page to be transferred to or from the backing store among those
waiting to be transferred is called a transfer algorithm.

Consider, for example, a drum which can transfer a maximum of M
pages during one revolution of R seconds.

If requests for page transfers are honored in first-come, first-served
order, it will take an average of R/2 seconds to position the access head in
front of a given page frame and another R]M seconds to transfer the page.
So we have

1 1
T = (~- + ~) R (5.11)

I

190 STORE MANAGEMENT Chap. 5

A better solution is to associate a page queue with each of the M drum
sectors and serve them according to the rule shortest access time next. This
can (at most) reduce the access time T to R/M.

The effect of this improvement is to multiply the access ratio r by a
constant

M
c = 1 + -~- (5.12)

Thus, if a drum surface is divided into 2 to 8 sectors, c will be 2 to 5.
This is comparable to the effect o f improving the replacement algorithm.

The same result can be achieved by using c backing store devices
simultaneously.

Notice, that the use of multiprocessors can only make thrashing more
likely by reducing the average time t between references to the internal
store.

Program Structure

A wise programmer will organize his program to utilize a backing store
with sequential or cyclic access efficiently. The principal aim is to divide a
large program and its data into smaller parts which are executed and
accessed strictly sequentially to avoid random reference to the backing
store.

An excellent example is the GIER Algol compiler described by Naur
(1963). It is divided into 10 parts, each of which performs a single,
sequential scanning and transformation of a source program text.

Experiments by Comeau (1967) showed that the number of page
transfers in typical programs could be reduced by 50 per cent just by
rearranging the program text so that dynamically related procedures would
be placed within the same pages.

A simple device to assist the programmer in this task is included in the
RC 4000 Algol compiler: A standard variable, which can be referenced and
reset by an Algol program, is increased by one for each page transfer caused
by the program during its execution.

5.4.5. Conclusion

The most important rule of short-term store allocation is to assign
reasonable amounts of internal storage to computat ions to enable them to
run efficiently. When thrashing occurs, the computat ional load on the
internal store must be reduced by preemption.

Less important are efficient replacement and transfer algorithms to
reduce the frequency and waiting time of page transfers. The programmer

Sec. 5.5. LITERATURE 191

can contribute to this reduction by a sensible structuring of program and
data.

In the previous analysis we ignored the processor time used to control
page transfers. It is worth remembering that in practice, store multiplexing
reduces processor utilization even under balanced conditions.

Suppose the internal store consists of a single physical module with an
access t ime t per word. The transfer of a page containing m words therefore
"steals" m store cycles from the processor; the initiation and completion of
this transfer by the processor consume another n store cycles. Under these
circumstances, processor utilization cannot exceed

t
rim,x = 1 - (m + n) ~ -

For m = n = 1000 and t / T = 10 -4 , we find ~max = 0.8.

5.5. L I T E R A T U R E

The book by Bell and NeweU (1971) contains reprints of original papers
on the structure of the I B M 7094 H, CDC 6600 , B 5 0 0 0 , and At las
computers.

Denning (1970) wholeheartedly supports demand paging. Hoare and
McKeag (1971c) take a more conservative view of store management.

THE multiprogramming system is an example of a demand paging
system delicately balanced between input /output processes and user
computations. It is described in some detail by McKeag (1971b) and Bron
(1971).

BELL, G. and NEWELL, A., Computer Structures: Readings and Examples.
McGraw-Hill Book Company. New York, 1971.

BRON, C., "Allocation of virtual store in THE multiprogramming system,"
International Seminar on Operating System Techniques, Belfast, Northern Ireland,
Aug.-Sept. 1971.

DENNING, P. J., "Virtual memory," Computing Surveys 2, 3, pp. 153-89, Sept. 1970.

HOARE, C. A. R. and McKEAG, R. M., "A survey of store management techniques,"
International Seminar on Operating System Techniques, Belfast, Northern Ireland,
Aug.-Sept. 1971c.

McKEAG, R. M., "THE Multiprogramming System," The Queen's University of Belfast,
Northern Ireland, 1971b.

SCHEDULING ALGORITHMS

This chapter analyzes the effect of various medium-term scheduling
algorithms on the average response time to user requests in single processor
systems.

In this chapter we will s tudy medium-term scheduling of a single processor
by means of elementary queuing theory.

Medium-term scheduling decisions are made at various levels: at the
management level by defining the relative importance of users; at the
operator level by running certain types of jobs at prescribed times of day;
and at the machine level by the final allocation of resources to jobs.

The ideal objective of scheduling is to minimize the total cost of
computer service and user waiting time. In practice, the two problems are
often approached separately.

Service t ime can be reduced by paying at tention to the processor time
lost by operator intervention, slow peripherals, and resource multiplexing.
Changes in this direction usually have a drastic influence on the mode of
operation offered to all users. The classical batch-processing system is an
example of extreme concern about processor utilization with total neglect
of user response time. On the other hand, an interactive system responds
instantly to users at a considerable cost of resource multiplexing. A

193

194 SCHEDULING ALGORITHMS Chap. 6

spooling system is somewhere in between: It tries to reduce user waiting
time to a few minutes without degrading equipment utilization seriously.

The cost of user waiting time is difficult to evaluate. Programmers may
be unable to proceed with their work until the results of program tests are
available; the installation may be obliged to pay penalties after certain
deadlines; delayed results may lose their value completely in real-time
environments; and, finally, impatient customers may turn to a competing
system.

The question of which customers an installation wants to favor is a
political one. Bright (1962) mentions an early system in which the priority
of a job was proportional to the business the user gave the computing
center per month! In environments where many people are engaged in
program development and testing, it is often assumed that the cost per time
unit of waiting for response is the same for all users. In this case, the
problem is to minimize the sum of user waiting times. Any job will, during
its execution, delay all other jobs following it in the queue, so the
important thing is to keep the number of waiting jobs at a minimum. We
find therefore that most of the scheduling disciplines considered here give
high priority to jobs with short execution times at the expense of jobs with
longer ones.

We begin with a summary of the queuing theory needed for our
purpose and proceed to derive analytical results for the average waiting
times of jobs under the scheduling algorithms first-come first-served,
shortest job next, highest response ratio next, and round-robin.
Foreground-background scheduling is discussed informally. The
assumptions behind these models are not always in agreement with reality,
but they do give valuable insight into the behavior of particular scheduling
algorithms and enable the designer to compare their merits qualitatively.

6.1. QUEUING SYSTEM MODEL

Figure 6.1 shows a queuing system model of a single processor.
Jobs arrive at the system when they are submitted for execution. They
walt in a queue until they can be served by the processor and depart after
completion of their execution.

Preemptions

Arrivals Departures

Queue Server

Fig. 6.1. Queuing model of a single processor system.

Sec. 6.1. QUEUING SYSTEM MODEL 195

In a non-preemptive system, jobs are executed one at a t ime to
completion. The processor will only start the service of a low priority job if
no jobs of higher priority are present. But once the processor has selected a
job, it is commit ted to serve that job to complet ion even if jobs of higher
priority arrive during its service. Non-preemptive scheduling has the virtue
of simplicity of implementation and good utilization of machinery.

In a preemptive system, several jobs can be in various stages of
execution. At any moment , the processor is serving a single job; bu t upon
arrival of a job with higher priority, the job in service is interrupted and
returned to the queue. Service of the higher priority job is then started. The
interrupted job will be resumed later when no jobs of higher priority are
present. Preemptive scheduling gives fast response to urgent jobs at the
price of increased complexi ty and overhead.

In a shared computer system, jobs of varying service time arrive
irregularly. From time to time jobs are submit ted faster than they can be
executed. So a queue is formed even though the processor has sufficient
capacity to serve all users in the long run. As Cox (1961) remarks,
congestion in a system depends on its irregularities and no t just on its
average properties.

In mathematics, irregularities are described in terms of probabil i ty
distributions. The aim of the following is to use elementary probabil i ty
theory (for example, see Feller, 1957) to predict average waiting times on
the basis of the following knowledge about a single-server queuing system:

the arrival pattern
the service pattern
the scheduling algorithm

6.1.1. The Arrival Pattern

The arrival of jobs will be regarded as independent, random events.
When jobs are submit ted by a large populat ion of independent users, it is
reasonable to make the following assumptions:

(1) The number of arrivals during a given interval of time depends only
on the length of the interval and not on the past history of the system.

(2) For any small t ime interval (t, t + dt), the probabil i ty of a single
arrival is Xdt, where X is a constant, while the probabil i ty of more than one
arrival is negligible.

These assumptions lead to a Poisson distribution of arrivals. (Examples
of arrivals which do not follow this pattern are customers who are
discouraged by the sight of a long queue and decide not to join it; and jobs
that arrive in batches instead of one at a time.)

196 SCHEDULING ALGORITHMS Chap. 6

Under the above assumptions, the probability Po(t+dt) that no arrivals
occur during a time interval of length t + d t is equal to the product of the
probability P0(t) tha t no arrivals occur during the interval t and the
probability 1 - k d t that no arrivals occur during the following interval dt:

P o (t + dr) = Po(t) (1 - k dt)

o r

dP° = - k Po (t)
d t

which has the solution

Po(t) = e -x t (6.1)

since P0 (0) = 1.
The time between two successive arrivals is called the interarrival t ime;

the constant X is the arrival rate.
The probability dF(t) that the interarrival time is between t and t + d t

is

d F (t) = Po(t) k d t = X e -X td t (6.2)

The dis t r ibu t ion f u n c t i o n F (t) is defined as the probability that the
interarrival time is less than or equal to t

F(t) = f : d F (x) = 1 - e - x t (6.3)

This equation shows that the interarrival time follows an exponential
distribution with the mean value:

!
E(t) = r i o t dF(t) (6.4)

The expected number of arrivals during a period of time T is kT.
Coffman and Wood (1966) measured interarrival times in the S D C Q-32

system. They found that the assumption of independent arrivals is
reasonably justified. The interarrival time distributions all looked more or
less exponential, but the observed data showed more short interarrival
times than did an exponential curve with the same mean.

A much more satisfactory approximation to the data was obtained with
a h y p e r e x p o n e n t i a l d i s t r ibu t ion

F (t) = 1 - a e - b k t - (1 - a) e -cxt (6.5)

Sec. 6.1. QUEUING SYSTEM MODEL 197

where l f h is the observed mean while a, b, and c are constants constrained
as follows

0 < a < 1 0 < b < 1 < c

By using equation (6.5) to derive the mean l/X, we find the relation

a 1 - a
~ - + - - = 1 (6.6)

C

Figure 6.2 shows the hyperexponential distribution which Coffman and
Wood used to fit their average observations. The constants are a = 0.615,
b = 0.69, and c = 3.5. The interarrival time is expressed in units of its mean
l/X, which was actually 23 sec. The figure also shows an exponential
distribution with the same mean.

1.0

0.8

0.6

0.4

0.2

Hyperexponential

Exponential

F I I I i ~ I
0 0.5 1 1.5 2 2.5 3

Xt

Fig. 6.2. Distribution of normalized interarrival time (after
Coffman and Wood, 1966).

The conclusion must be that the assumption of Poisson arrivals is a very
crude approximation which underestimates the frequency of short
interarrival times. Unfortunately, it is only for completely random
(Poisson) and regular arrivals patterns that general mathematical solutions
have been obtained.

6.1.2. The Service Pattern

The service times required by jobs will also be regarded as random,
independent variables. The assumption is often made that they follow an
e x p o n e n t i a l d i s t r ibu t ion . When this is the case, the probability d F (t) tha t
the service time of a job is between t and t + d t can be expressed as

d F (t) = Iz e -ut dt (6.7)

198 SCHEDULING ALGORITHMS Chap. 6

The probability F(t) that service time is less than or equal to t is then

F(t) = . f : dF(x) = 1 - e -at (6.8)

The constant # is called the service rate; its reciprocal l i p is the mean
service time. The variable/~t measures the actual service time t in units of
the mean service time.

The fraction of processor time consumed by jobs with service t ime not
exceeding t is

G(t) = f : # x dF(x) = 1 - (1 + #t) e -a t (6.9)

The exponential distribution is shown in Figs. 6.3 and 6.4. It
characterizes an installation in which most jobs are short. But, although
there are very few large jobs, they use a significant amount of the processor
capacity.

1.0

0.8

0.6

0.4

0.2

yperexponential

' ~ Exponential

• Observations from Univ. o f Michigan

I I I I I I I I I]
0 1 2 3 4 5 6 7 8 9 10

pt

Fig. 6.3. Distribution of normalized service time (after
Rosin, 1965).

The mathematical attraction of the exponential distribution is its
memoryless property, which can be stated as follows:

(1) The probability that a job terminates during a small time interval
dt is independent of the amount of service time T consumed by the job
before that interval.

(2) If a job is interrupted after T seconds of service, its remaining
service time, t - T, will be exponentially distributed with the same mean
l i p .

The first assertion is proved by deriving the conditional probability of

Sec. 6.1. QUEUING SYSTEM MODEL 199

A

1.0

0.8

0.6

0.4

0.2

0
I I I I I I
5 10 15 20 25 30

Fig. 6.4. The fraction of processor time used by jobs with
service times not exceeding t.

job termination during the interval (T, T + dt), assuming that the service
time has exceeded T:

Prob(remaining service time ~ dt) =

Prob(T < t ~ T + d t) = I~ e-UT dt
Prob(t > T) e-lZT

= g d t (6 . 1 0)

To prove the second assertion, we need the probabil i ty distribution of
the remaining service time, t - T, assuming that the service t ime has
exceeded T:

Prob(remaining service time ~ A t) =

Prob(T < t ~ T+ A t) e - U T _ e - u (T + A t)

Prob(t > T) e -uT

= 1 - e -uAt (6.11)

The implication of the memoryless property is that a scheduling
algorithm is unable to predict the remaining service time of jobs on the
basis of their elapsed service time. Consequently, priority scheduling must
be based either on reliable estimates of service times supplied by users in
advance or on periodic adjustment of priorities during execution as a
function of elapsed service time. The latter technique, which requires
preemption of running jobs, is called quantum controlled scheduling or
time slicing.

Rosin (1965) and Walter (1967) analyzed more than 10,000 jobs run at
a batch-processing installation at the University of Michigan. Figure 6.3 shows

200 SCHEDULING ALGORITHMS Chap. 6

some points from these observations. Student runs are excluded from the
data to make the distribution more like those found in other service centers
engaged in program development and production runs. The average
execution time was 1.19 min. This does not include compilation time (0.24
min), loading time {0.14 min), and operating system time (0.18 rain).

These results confirm the exponential tendency of service times, but
again, as Fife (1966) has pointed out, the distribution is more h y p e r -
e x p o n e n t i a l . Figure 6.3 also shows a hyperexponential approximation

F (t) = 1 - a e -bu t - (1 - a) e -cu t (6.12)

to the observations of Rosin. The constants used are a = 0.11, b = 0.21, and
c = 1.88.

The hyperexponential distribution can be interpreted as a mixture of
two exponential distributions with different means:

F (t) = a (1 - e - b u t) + (1 - a) (1 - e - cu t)

The combined effect is that many jobs of short service time are mixed with
a few jobs of extremely long service time. Consequently, the tail of the
distribution is prolonged considerably compared to an exponential
distribution with the same mean.

This is illustrated most dramatically by the curves in Fig. 6.4, which
define the fraction of processor time G(t) demanded by jobs with service
times not exceeding t:

G(t) = f : # x d F (x)

1 - a = ~ (1 - (1 + b p t) e - b u t) +
o C

(1 - (1 + clat) e - cu t)

(6.13)

When the distribution is exponential, we can ignore the load
contributed by jobs with service times greater than 6 times the mean service
time. But a hyperexponential distribution forces us to be concerned about
jobs with 20 to 30 times the mean service time. Another way of putt ing
this is to say that 80 per cent of all jobs are shorter than the mean service
time, but require only 30 per cent of the processor capacity. On the
other hand, the 2 per cent longest jobs account for 25 per cent of the
load.

As we shall see later, the more dispersed the distribution of service time
is, the longer the average waiting times become.

Sec. 6.1. QUEUING SYSTEM MODEL 201

6.1.3. Performance Measures

In a single-server queuing system with Poisson input and an arbitrary
service time distribution F(t), the mean number of arrivals during the
service t ime of a single job is

p = f ~ k t dF(t) = ~ (6.14)
0

As long as p < 1, the mean number of arrivals is less than the mean
number of departures, and the server can handle the load. But, if p > 1, the
queue will increase indefinitely in time.

The queuing processes considered here will always reach a steady state
in which the probability distributions are time-independent, provided that
the system has been in operation for some time with p < 1.

If a queuing system is in a steady state over a period T, it receives an
average of XT jobs, which are served in an average of kT(1/p) = pT sec. The
utilization factor p thus represents the average fraction of t ime during
which the server is busy.

We will use the following performance measures for a queuing system:
The mean queue length L is the mean number of jobs waiting in the

system. It does not include the job in service. L is a measure of the backing
store capacity required to hold arriving jobs.

The mean waiting time W is the mean time spent by a job in the queue.
Little (1961) has proved the following relation between the mean

queue length and the mean waiting time in a queuing system in a steady
state

L = XW (6.15)

This theorem says that during the average time W that a job requires to pass
from one end of the queue to the other, the average queue length L remains
constant due to the number of arrivals XW during that interval.

Two other measures of performance are:
The waiting ratio W/t of a job--the ratio of its mean waiting t ime W to

its actual service time t.
The response ratio R / t of a job--the ratio of its mean response time R

to its actual service time. Since R = W + t, the response ratio is equal to the
waiting ratio plus 1. It represents the degradation of processor speed
experienced by a given job as a result of the presence of other jobs and the
scheduling algorithm used.

202 SCHEDULING ALGORITHMS Chap. 6

6.1.4. A Conservation Law

Scheduling algorithms differ only in their choice of the users to be
given preferential treatment. If preemption is used sparingly, the processing
capacity is practically uninfluenced by such manipulation of service, and
one would expect some overall measure of waiting times to remain
constant. In the following, we derive a conservation law that is applicable
to a large class of scheduling algorithms with limited preemption.

The conservation law says that for given arrival and service time
patterns, a particular weighted sum of average waiting l~imes for all jobs is
invariant to the scheduling algorithm used (Kleinrock, 1965). This means
that scheduling can only improve the response time of some users at the
expense of other users.

We make the following assumptions about the queuing system:

(1) It contains a single processor which is constantly available and busy
as long as there are jobs in the system.

(2) All jobs remain in the system until their service has been
completed.

(3) Preemption (if used) does not degrade processor utilization.

(4) The arrival pattern is a Poisson process.

(5) The service pattern can be arbitrary in non-preemptive systems, but
must be exponential in preemptive systems.

(6) Arrival and service times are independent random variables.

(7) The system is in steady state equilibrium.

Assumption (2) implies that preempted jobs are always resumed later
and that impatient customers do not withdraw their requests. Assumption
(5) and the memoryless property of the exponential distribution ensure
that the service pattern is uninfluenced by preemption and resumption.

As a measure of the amount of incomplete work present in the system
at a given time t, we introduce the load function u(t). It is defined as the
time it would take the processor to empty the system of all jobs present at
time t if no new jobs arrived after that time.

Each arriving job instantly causes the load function to jump by the
amount of service time required by that job. Between arrivals, the load
function decreases linearly by one second (of processing time) per second
(of real time) until it reaches zero.

Since jobs are served continuously to completion with negligible use of
preemption, the scheduling algorithm cannot influence the constant rate of

Sec. 6.1. QUEUING SYSTEM MODEL 203

decrease of the load between arrivals. So the load function u(t) depends
only on the arrival and service patterns, not on the particular scheduling
algorithm used.

Let the arrival rate be k and let the service time distribution be F(t)
with the mean 1//a. We will now observe the system immediately after the
arrival of a job which we will call the "tagged job." At this point, the
expected load U is equal to the expected time W 0 required to finish the job
already in service plus the sum of the expected service times of all waiting
jobs.

Consider the group of waiting jobs which have service times between t
and t + dt. During their expected waiting time Wt, the expected number of
arrivals within the same group is k W t d F (t) . According to Little's law,
equation (6.15), this is also the expected number of jobs waiting in this
group. The expected service time required to complete them is therefore kt
Wt d F (t). By integrating over the entire range of service times, we find:

U = W o + fo °° ktWt dF(t) (6.16)

If the tagged job arrived while a job of service time t was being
executed, its expected arrival time would be in the middle of this interval
with t/2 of the service time to be completed. Since the probability that the
tagged job arrived under such circumstances is kt dF(t), the mean value of
the remaining service time must be:

~k oo 2
W° ='2 fo t dF(t) (6.17)

Notice that W 0 is independent of the scheduling algorithm. This is
intuitively reasonable since the processor can be engaged with a job from
any group upon arrival of another job.

Since the load function is independent of the scheduling algorithm, we
can find its mean U by considering the simplest possible algorithm
first-come, first-served. Under this rule, the expected waiting time for any
job is equal to the expected amount of unfinished work U present when the
job arrives. By substituting Wt = U in equation (6.16) and using equation
(6.14), we find

U = W o + p U

o r

W0
U = 1 - p (6.18)

204 SCHEDULING ALGORITHMS Chap. 6

Using this result once again in equation (6.16), we find Kleinrock's
conservation law:

o o pWo (6.19) f~ X t W t d F (t) = 1 - p

It states t h a t the sum of average waiting times for all jobs weighted by
the fraction of processor time required by jobs in each group is invariant to
the scheduling algorithm. This holds for any queuing system which satisfies
assumptions (1) to (7).

The conservation law can also be written as follows:

P E(t2) (6.20)
fo ~ t Wt dF(t) = l _ p 2

This shows more clearly that the overall mean waiting time depends on the
utilization factor p and on the second moment E(t 2) of the service time
distribution.

The last factor is particularly interesting: It enables us to evaluate the
influence of the shape of the service time distribution on the average
waiting times. E(t 2) is a measure of the dispersion of service times.

For hyperexponential service times, equation (6.12), we find

½ =A. E(t2) ~2

where

d = ~ 2 + 1 - a c-~--- (6.21)

Using the parameters a = 0.11, b = 0.21, and c = 1.88 (as in Fig. 6.3),
we find d = 2.75. Freeman (1968) estimates a similar factor of 3.05 for
service times observed at the Triangle Universities Computat ion Center.

If we had used the assumption of exponential service times--
a = b = c = d = 1--the analytical model would have underest imated the
average waiting times by a factor of 3. This illustrates the point made
earlier tha t congestion depends on the irregularities of arrival and service
times, and not just on their average values.

6.2. NON-PREEMPTIVE SCHEDULING

With this background, we will analyze specific scheduling algorithms
divided into two mare classes: non-preemptive and preemptive. In

Sec. 6.2. NON-PREEMPTIVE SCHEDULING 205

preemptive systems, more than one job can be in a state of execution at a
given time. This influences the design so much that it seems reasonable to
stress the distinction between systems with and without preemption.

Besides this main classification criterion, there are others, for example,
whether priorities can be based on reliable estimates o f service time
supplied by users or whether they must be evaluated as a funct ion of the
actual behavior of jobs during their execution.

One would expect users to be able to make realistic estimates of the
processor time required by non-trivial programs, especially if they are used
repeatedly. In a system that gives high priority to jobs with short estimated
run times, the normal policy is to terminate jobs which exceed their
estimated limits; otherwise, users would soon ruin the scheme. In this
situation most users prefer to make a conservative guess. Morris (1967)
found that users overestimated their storage requirements by 50 per cent
and says that "compute time estimates are much worse than this." Rosin
(1965) reports that approximately 6 per cent of all jobs exceeded their
t ime estimates. Finally, Walter (1967) remarks that users tend to estimate
"nice" values (0.5, 1, 2, . . min). This may seem discouraging, bu t Lynch
(1967) has shown that even with a partial indication of service time, it is
possible to improve response times considerably for small jobs. Over-
estimation effectively reduces the loss of processor time caused by
termination of unsuccessful jobs.

In systems where the users interact with running programs in an
experimental manner, the typical demand of processor time per interaction
is only a fraction of a second. Here, it would be unrealistic to expect a user
to evaluate his need of computing time; quite often, he is completely
unaware of the structure and speed of the programs involved. The reaction
of the scheduler to this uncertainty is to allocate processor time piecemeal
to jobs to see how long they actually are. Each job is given a finite slice of
time. If it completes service during this slice, it departs from the system;
otherwise, the scheduler interrupts the job and returns it to the queue with
a lower priority. Here it will wait for another time slice. So the choice of
preemptive scheduling in interactive systems is a consequence of the
uncertainty about service time. The price for this uncertainty is increased
overhead of processor and store multiplexing.

Scheduling models also differ in their assumptions about the number of
input channels. An interactive system with a small number of user terminals
is an example of a system with a finite input source. Each user occupies a
terminal as long as he is using the system. Normally, he will issue one
command at a time, wait for response, think for a while and then make
another request. This means that the arrival rate becomes zero in situations
where all terminal users are waiting for response. On the other hand,
non-interactive systems usually do not limit the rate at which users can
submit jobs, so the assumption about an infinite input source is valid there.

From a scheduling point of view, the difference between present

206 SCHEDULING ALGORITHMS Chap. 6

interactive and non-interactive systems can be
following list of assumptions:

non-interactive system

preemption: limited
priority source : estimated service time
input source: infinite

characterized by the

interactive system

frequent
elapsed service time
finite

The following is a study of non-preemptive scheduling of Poisson input
from an unlimited source with an arbitrary service time distribution based
on perfect estimates of service times. It is assumed that the system includes
a backing store with direct access and sufficient capacity to hold all waiting
jobs and that spooling eliminates idle processor time during program
execution.

6.2.1. First-come, First-served

The first-come, first-served algorithm (FCFS) executes jobs in their
order of arrival. It is a discipline that favors the longest waiting job
irrespective of the amount of service time demanded by it. The mean
waiting time for jobs scheduled by this algorithm has already been derived,
equation (6.18). I prefer to repeat it in the present context:

W0
W = - - (6.22)

1 - p

Using d = 2.75, the waiting time #W is plot ted in Fig. 6.5 for two values
of the utilization factor: p = 0.7, corresponding to a moderate load; and
p = 0.93, representing a fairly heavy load. The latter case is probably the
most realistic. Freeman (1968) observed p = 0.92 as a typical value for the
central computer in the Triangle Universities Computat ion Center.

The sharp increase in waiting time as p approaches 1 is evident. If the
mean service time is assumed to be 1 minute, jobs wait an average of 6
minutes when p = 0.7, but 36.5 minutes when p = 0.93.

Figure 6.5 also shows the waiting ratio W/t. If this is taken as a measure
of performance, we must conclude that first-come, first served scheduling
favors the longer-running jobs at the expense of the shorter-running ones.
Eighty per cent of all jobs (those shorter than the mean service time) are
delayed more than 36.5 times their service time on the average.

The expected number of jobs in the queue is XW, or

p2
L = d (6.23)

1 - p

Sec. 6.2.

20

15

~ 1 0

NON-PREEMPTIVE SCHEDULING

p=0.7 /

I I I I I
8 16 2 4 3 2 4 0

pt

p=0.7

4

. SJN

2 ~ ~ . H R N

I I ~ I I
0 8 16 24 32 40

#t

207

: :L

500

400

3 0 0

200

100

p = 0 . 9 3 / / S J N

/

8 16 24 32 40

16

12

p = 0 . 9 3

F C F S H R N

I I I I I
8 16 24 32 40

#t p.t

Fig. 6.5. The expected waiting time Wt and the waiting
ratio Wt/t as a function of normalized service time pt for

the first-come, first-served (FCFS), shortest job next (SJN),
and highest response ratio next (HRN) scheduling

algorithms.

In the present example wi th p = 0 .93 and d = 2 .75 , this means that an
average o f 34 jobs are wait ing on the backing store. With an average data
vo lume o f 3 0 0 input cards and 500 o u t p u t lines per job (see Sec t ion 1 .2 .1) ,
the input and o u t p u t queues must on the average ho ld close to 2 mi l l ion
characters (assuming that the t w o queues ho ld the same number o f
jobs) .

208 SCHEDULING ALGORITHMS Chap. 6

6.2.2. Shortest Job Next

Consider now an algorithm that selects the job with the shortest
estimated service t ime as the next one to receive service.

We will derive the mean waiting t ime Wt for a tagged job with service
time t, scheduled according to the shortest job next algorithm (SJN). Wt is
equal to the mean t ime Ut required to serve all jobs present in the system
with service times less than or equal to t when the tagged job arrives, plus
the sum of the service times of all jobs that arrive with higher priority
during the waiting t ime Wt.

It should be clear from the proof of the conservation law that Ut is
simply the mean system load of jobs with service t ime x ~< t. So we find
from equations (6.14) and (6.18):

W° (6.24)
Ut = 1 - Pt

where

Pt = f : kxdF(x) (6.25)

During the expected waiting t ime of the tagged job, the expected
number of arrivals of jobs with service times between x and x + dx is XWt
dF(x). If x < t, these jobs are served before the tagged one and thus
increase its expected waiting time by Xx WtdF(x) . All in all, these later
arrivals increase Wt by the following amount :

fo t ~xWtdF(x) = W t P t

So we find

or

Wt = Ut + Wt Pt

W0
Wt = (1 - pt) 2 (6.26)

This equation was first derived by Phipps (1956).
Using equations (6.13) and (6.25), we can also express Pt as follows:

Pt = G(t) p

where G(t) is the amount of processor t ime used by jobs with service times
no t exceeding t.

Sec. 6.2. NON-PREEMPTIVE SCHEDULING 209

Phipps' equation shows that jobs with a given service time t must pay
for the improved service given to all jobs with higher priority. And, whereas
lvaiting times only increase proportionally to (1 - p)-i for first-come,
first-served scheduling, the rate of increase is now (1 - pt) -2, which
becomes very steep as Pt approaches 1.

These points are illustrated in Fig. 6.5, which also gives a direct
comparison of the shortest job next and the first-come, first-served
algorithms. Even under heavy load (p = 0.93), jobs requiring less than the
mean service time of 1 minute now walt less than 4.5 minutes on the
average. Jobs between 1 and 10 minutes wait less than 4.5 times their
service time. Response is bet ter than first-come, first-served for jobs up to
10 minutes. Figure 6.3 shows that this represents 99 per cent of all jobs.

The main difficulty with the shortest job next algorithm is the
long-running jobs. A glance at Fig. 6.4 shows that the longest 1 per cent of
the jobs cannot be ignored because they require 20 per cent of the total
processor time. Unfortunately, shorter jobs can effectively prevent longer
ones from receiving service. With p = 0.93, a job of 30 minutes must wait
6.8 hours before it can start. Furthermore, since preemption is not used, a
long-running job, once started, will keep all other jobs waiting for as long as
it runs.

6.2.3. Highest Response Ratio Next

First-come, first-served and shortest job next algorithms bo th take a
rather one-sided view of scheduling. The first algorithm is concerned solely
with the actual waiting time of jobs and completely ignores their estimated
service time; the other one does exactly the opposite. In the following, we
will analyze an algorithm which strikes a balance between these extremes.

The effect of sharing a single processor among many users is to make
the response times of jobs considerably longer than their service times.
From the point of view of the individual user, the processing rate of the
machine appears to be reduced by a factor equal to

response time
service time

This is called the response ratio of a job.
It can be argued that all users should experience the same virtual

processing speed as a result of their sharing the system. This policy is called
equitable sharing. It is well-known in preemptive systems with round-robin
scheduling. For non-preemptive scheduling, the relation between virtual
and actual machine speeds suggests an algorithm which selects the job with
the highest response ratio next (HRN) for service. This algorithm favors
short jobs, but it also limits the waiting time of longer jobs: If a job remains

210 SCHEDULING ALGORITHMS Chap. 6

in the system long enough, it will eventually achieve a priority so high that
it will be served before any other job.

I have analyzed and simulated this algorithm elsewhere (Brinch Hansen,
1971a). Here, I will derive an approximation to the average waiting times of
short and long jobs.

Consider first a short job with a service time t and an expected waiting
t ime Wt. The priority of an extremely short job increases so rapidly in time
that it can expect to be served as soon as the job found in service upon its
arrival is completed. In other words

W t "-* W o as t --> 0

For short jobs of slightly longer duration, we would expect that the
effect o f response ratio scheduling is to make the increase of the waiting
t ime approximately proport ional to the service time. So we make the
assumption that

W t ~ W o + h t for smal l t

where k is a constant.
We will also assume that the service time distribution F(t) is a rapidly

decreasing funct ion of the service t with the mean 1//g. More precisely, F(t)
must be decreasing so rapidly with t that the error introduced by using the
linear approximation of Wt in the conservation law, equation (6.19), is
small. So we may assume that

f o~XtWtdF(t) ~ f ~ ° X t (W o + k t) d F (t)

o r

P W0
~ p W 0 + 2 k W 0 1 - p

By solving for k, we find the approximate mean waiting time for small
jobs:

p2 t
Wt ~ W0 + 1 - p 2 for small t (6.27)

Now consider a very long job with service time t. Since its priority
increases very slowly, it must wait until practically all earlier arrivals have
been served. In other words, it must wait at least an amount of t ime equal
to the mean system load U defined by equation (6.18).

In addition, a long job can be delayed by shorter ones arriving later. For

Sec. 6.2. NON-PREEMPTIVE SCHEDULING 211

o_

Slope 1/x

Time

i TM ~1 ~

I ~ W t

Fig. 6.6. Priority diagram of later arrivals.

a job with a service time x < t and an expected waiting time Wx < Wt, the
latest possible arrival time after the arrival of a long job with the service
time t is A=, as shown in Fig. 6.6. If the shorter job arrived later than this,
its priority would not reach the priority of the longer job during its
expected waiting time Wx.

From this diagram, the following relations are derived

Wx=W..A
A x + W x = W t x t

o r

X
Ax = Wt (1 - } -)

The expected number of jobs with service times between x and x + dx
arriving during the interval A= is kA=dF(x) . They will delay the long job
by the expected amount kxA~dF(x) . All in all, later arrivals will delay the
long job by the amount:

X
W t f ; ~x (1 - 7) dF(x)

For large values of t, this is approximately the same as

~o x 2 W o
Wtfo k x (1 - T) d F (x) = Wt (p - -~- ' -)

By adding the delays caused by earlier and later arrivals, we find for
very large jobs:

212 SCHEDULING ALGORITHMS Chap. 6

W 0 2 W 0
w, i - : - + w, (p - - 7 - - -)

or

W0
Wt ~ 9 w ^ for large t (6.28)

(1 - p) (1 - p + -~--~-)

Closer inspection shows that the linear approximation, equation (6.27), is
a tangent to the non-linear approximation, equation (6.28), in t = 2 Wo/P,
where they both have the value Wt = W0/(1 - P). This is the same as the
expected waiting t ime for the first-come, first-served algorithm.

I have simulated the highest response ratio next algorithm using the
hyperexponential distribution of service t ime shown in Fig. 6.3 (Brinch
Hansen, 1971a). The results indicate that it is an excellent approximation
to use equation (6.27) for t ~ 2Wo/p and equation (6.28) for t > 2Wo/P.
The accuracy of this approximation seems to improve with increasing
values of the utilization factor p.

Notice that for extremely large jobs (t ~ ¢¢), the average waiting time
approaches the limit of the shortest job next algorithm: Wt = Wo/(1 - p)2.

The overall mean waiting t ime is approximately

W ~ fo ~ (W o + kt)dF(t)

p2 1
=Wo+ 1 - p 2F

(6.29)

which is the value obtained for t = 1/p in equation (6.27). The mean queue
length is kW.

The approximate waiting time is shown in Fig. 6.5 for a hyper-
exponential distribution of service t ime with d = 2.75. The highest response
ratio next algorithm is better than the first-come, first-served algorithm for
jobs up to 5.5 times the average job of 1 min. This represents 96 per cent of
all jobs. Jobs that run less than 1 min walt up to 9 min, compared to 4.5
min with the shortest job next algorithm and 36.5 min with the first-come,
first-served algorithm under heavy load, p = 0.93. Response ratio scheduling
is quite effective in limiting the waiting time of longer jobs: a job of 30 rain
waits an average of 2.4 hours compared to 6.8 hours with the shortest job
next algorithm. Under response ratio scheduling, sharing is practically
equitable for jobs requiring from 2 to 30 min. Over this range of service
times, the waiting ratio Wt/t only varies from 7.5 to 5. For p = 0.93, the
average queue has been reduced to 8 jobs, compared to 34 jobs in the
first-come, first-served system.

Sec. 6.3. PREEMPTIVE SCHEDULING 213

All in all, response ratio scheduling is an attractive alternative to
first-come, first-served and shortest job next scheduling in non-preemptive
systems. It gives fairly rapid response to small jobs while effectively limiting
the delay of longer jobs.

6.3. PREEMPTIVE SCHEDULING

Non-preemptive scheduling can give fast average response to short jobs
by using priority rules. In doing so, it relies completely on user estimates of
service time. The main problem is the long-running jobs, which can
monopolize the system for hours while they run to completion.

Preemptive systems, which can interrupt a running job and suspend its
service while a job of higher priority is being done, do not have this
problem. Preemption makes it possible to achieve guaranteed response to
short jobs at the price of increased overhead. Preemption complicates the
design of an operating system considerably, since the system must now
keep track of several jobs that are in various stages of execution.

Although several jobs are in a state of execution simultaneously, a
single processor can still only serve one of them at a time. It is therefore
uneconomic to let jobs occupy part of the internal store during their idle
periods. So preemption must be combined with store multiplexing. When
the current job is interrupted, it is transferred to the backing store and the
job with the highest priority is placed in the internal store. This exchange
of jobs in store is called swapping; it is the main source of overhead in
preemptive systems.

When reliable estimates of service times are available, preemption can
be used to improve the performance of the shortest job next algorithm as
follows: A running job is interrupted when a job arrives with a service
requirement less than the remaining service of the running job. A somewhat
simpler scheme to administer is one that limits the number of preempted
jobs to one: A job with a service time below a certain threshold is placed in
a foreground queue, while longer jobs enter a background queue. Within
each queue service is non-preemptive according to the rule shortest job
next, but jobs in the foreground queue preempt jobs in the background
queue. Hume (1968) suggests a variant of this scheme in which the
threshold varies dynamically. In periods of heavy utilization, the threshold
moves towards smaller jobs, but when the load diminishes, longer jobs are
allowed in the foreground queue. The purpose of this is to guarantee
response within 5 min in the foreground queue.

Another scheme for obtaining fast response to non-interactive jobs was
used by Irons (1965). His system tries to share a processor equally among
all jobs being executed. To accomplish this, it allocates the next time slice
to the job with the shortest elapsed service time. The time slice is varied in

214 SCHEDULING ALGORITHMS Chap. 6

proportion to the amount of swapping time required at any moment to
keep the overhead below a preset limit of 10 per cent.

I mention these systems as examples of the use of preemption in
non-interactive systems. In the following, however, the discussion is limited
to interactive systems.

6.3.1. Round-robin Scheduling

We will analyze round-robin scheduling of interactive requests. We
assume that the number of user terminals n is finite, as shown in Fig. 6.7. A
user will input one request at a time, wait for response, and examine the

Terminals Queue Server

Fig. 6.7. Queuing model of a single processor with a finite
number of user terminals (compare with Fig. 6.1).

result before making his next request. So the user alternates between a
thinking state, in which he prepares the next request, and a waiting state, in
which he waits for response. These states correspond to the interarrival and
response times:

user state time interval

thinking interarrival time
waiting response time

The interarrival t ime will include the time used to input a request and
output the response at a terminal.

We assume tha t the interarrival and service times of requests are
exponentially distributed with mean values 1/k and 1//~. For the CTSS
system, Scherr (1965) observed a mean interarrival time of 35 sec and a
mean service time of approximately 1 sec per request. He found that the
day-to-day characteristics of users changed very little. Coffman and Wood

Sec. 6.3. PREEMPTIVE SCHEDULING 215

(1966) measured a mean interarrival t ime of 23 sec in the SDC Q-32
system. For the same system, Schwartz (1967) repor ted that approximately
84 per cent of all requests required less than 1.8 sec of processor time. The
access t ime o f the internal store was about 2 #sec in bo th systems. Shemer
(1969) found l f h = 15 and 1/# = 0.3 seconds in the SDS Sigma 7 system
with a store access t ime of 0.85 ~sec.

Here we will use:

mean interarrival t ime 1 = 15 sec

1
mean service t ime -- = 0.5 sec

as typical values.
In the first analysis of this model, the overhead of swapping is assumed

to be negligible. This is probably only realistic in a very large machine
which can hold all jobs in its internal store simultaneously. I do no t
propose it as a realistic model of present interactive systems. It serves as a
standard which sets an upper limit to obtainable performance.

Due to the memoryless proper ty of the exponential distribution, we
can also ignore the effect of the size of the time quantum used. I am
referring to Section 6.1.2, in which it was shown that the remaining service
t ime of jobs which have received Q seconds of service is exponential ly
distributed with the original mean l / p , independent of the length o f Q.

The system can be in n + 1 states since 0, 1, 2, . . . , n terminals can be
waiting for response. The steady state probabilities of these states are
denoted P0, P l , P2, • • •, P , - We now look at the system during a small
t ime interval dt. The state of the system can be changed by an arrival or a
departure; the probabil i ty o f more than one arrival or departure is
negligible under the present assumptions. The probabil i ty tha t a job
(" reques t") terminates and departs during this interval is ~dt, according to
equation (6.10). The probabil i ty that a user in the thinking state generates
a request in the same interval is kd t (see Section 6.1.1, assumption 2). So
the overall probabil i ty of an arrival in s t a te] - 1 is (n - J + 1) kd t s i n c e / - 1
terminals are already waiting for response. Finally, the probabil i ty tha t
neither an arrival nor a departure will occur in state j is 1 - ((n - j)k + p)dt .
This leads to the following relations between the steady state probabilities:

P0 = P0 (1 - n X d t) + p l p d t

P1 = P j-1 (n - j + 1) X dt +p/ (1 - ((n - j)X + I~)dt) + Pj+z p d t

O < j < n

P , = P , - i Xdt + p , (1 - lzdt)

216 SCHEDULING ALGORITHMS Chap. 6

By solving this set of equations, we find

= n , (~)J
P~ (n - j)! Po

Since the sum of the probabilities is 1

Po +P l 4- . . . + p ,

O < / < n

= 1

(6.30)

the probability that no terminals are waiting is

Po = j=~o (n--1)! (6.31)

We can now use this result to find the expected response time R. The
fraction of t ime during which a user is thinking is the ratio of the average
interarrival time 1/k to the circulation time 1/k + R. The circulation time is
the average interval between two successive requests from the same
terminal. Each of the n terminals generates requests at a rate of k per
second provided the user is in the thinking state. So the average input rate
of requests to the system is

1
X

nX
1_+ R
X

The average rate at which requests depart from the system is g per
second when the processor is busy. Since the probability that the processor
is busy is 1 - P0, the average output rate of responses must be

U(1 - p 0)

In the steady state, the average input and output rates are equal, which
means that

= n 1 . (6.32)
R /~ (1 -p0) k

This queuing model was originally used to describe the servicing by a
single repairman of n machines which break down individually after a mean
of 1/k time units and require a mean repair time of 1/# units each (Cox,
1961). It was later used by Scherr (1965) to describe an interactive
computer system with a limited number of terminals.

Sec. 6.3. PREEMPTIVE SCHEDULING 217

10

8

6

~: 4

• = 0.5 sec /

~ -- -- -- "3 "I" Jll I I
10 20 30 40 50

• Fig. 6.8. The average response time R as a function of the
number of active terminals n.

Figure 6.8 shows the average response time R as a function of the
number of active terminals n, assuming that the average user generates a
request for 0.5 sec of processor time after 15 sec of thinking.

Although the response time increases with the overall load, there is no
point at which the system becomes unstable as a system with an infinite
input source does when the utilization factor approaches 1. The present
system is self-regulating because the input rate decreases in proportion to
the number of terminals waiting for response. When all terminals are
waiting, the input rate becomes zero.

As an alternative measure of system'saturation, Kleinrock (1968) has
proposed the following. Suppose we replace each service time by its average
1/g and schedule the arrivals to occur uniformly in time with interarrival
intervals of exactly 1/X sec. As long as the system gives immediate response,
each user will require 1//~ sec of processor time every 1/g + 1/X sec; so the
maximum number of terminals n* is given by

1 1 +

n* P ~ = 1 = I + x (6.33)

P

When this definition is substituted into equation (6.32), we find

n n* + 1 (6.34)
pR = 1 - P 0

In the example shown in Fig. 6.8, the saturation point n* is
1 + 15/0.5 = 31 users. For n ~ n*, the response time is short because it is
rare for more than one request to be inside the system. Queuing can

218 SCHEDULING ALGORITHMS Chap. 6

nevertheless occur in this region due to the irregularities of arrival and
service times.

In the vicinity of the saturation point, the response time begins to
increase sharply. For a large number of terminals n >> n*, the processor is
practically always busy, so p 0 ~ 0 and the response time approaches the
asymptote

/aR ~ n - n* + 1 (6.35)

In a saturated system, each additional user increases the response ratio pR
by1.

We will now consider the effect of mixing trivial interactive requests
with longer computat ional requests in a saturated system. I define a trivial
request as one tha t can be completed during a single time quantum Q. The
effect of the longer requests is to increase the mean service time to
1/u > Q.

It is important to notice that the average time quantum q can be
considerably smaller than the max imum time quantum Q since the response
to requests may be completed in the middle of a quantum. The probability
that the quantum will be less than or equal to t is

= t 1 - e -~t t ~< Q
F(t)

! 1 t > Q
(6.36)

The mean value of this truncated exponential distribution is

1
q = ~ (1 - e -uQ) (6.37)

The average response time Rq for a trivial request is approximately
equal to the average t ime quantum q multiplied by the response ratio/JR.
So, from equations (6.33) and (6.35), we find

Rq = (n - k ~) q (6.38)

The maximum quantum Q needed by a trivial request depends mainly
on the processor speed and the characteristics of interactive programs. The
maximum tolerable response t ime Rq m a= and the average thinking time
1/k are psychological characteristics of the users. It is therefore reasonable
to consider the parameters Q, Rq m a=, and 1/k as fixed for a given
installation. Consequently, the maximum number of interactive users nm ~=
that a system can support is primarily a funct ion of their average service
time requirement l /p :

Sec. 6.3. PREEMPTIVE SCHEDULING 219

Rq m a x [d
n m - - - + - - (6.39) o= q X

This relationship is shown in Fig. 6.9 using the values Q = 0.1 sec,
Rq m ax = 2.5 sec, and 1/k = 15 sec.

nmax

180

160

140

120

100

80

60

40

20

0
0.1

Q 0.1 sec

Rq max = 2 . 5 sec

} : :00 ::c
p = 20 m s e c

~ ~ ~ No swapping

k ~ / ~ Overlapped swapping • a p p e d s w a p p i n g

I I [I I I ! (sea)
0.3 1 3 10 30 100

Fig. 6.9. The maximum number of interactive users nma x
as a function of the average service time per request l i p .

The effect of mixing trivial requests with longer computations (l i p >
Q) is a sharp decrease of nmax. For 1/p > 10 Q, we have approximately
n m ax ~ R q m a = / Q = 25. At this point, the number of interactive users is
determined only by human nature (Rq max) and processor speed (Q). And
as Simon (1966) aptly remarks, "No scheduling magic can relax this Iron
law."

The non-trivial jobs experience a response ratio of 25. Under response
ratio scheduling with 1/~ = 60 sec, they would be delayed by a factor of 10
at most under heavy loading, as shown in Fig. 6.5. This supports the
statement made earlier that interactive systems are able to give fast
response to trivial requests, but are not suitable for fast and efficient
processing of non-trivial jobs (Section 1.2.4).

We will now include the effect of s w a p p i n g in our analysis. Swapping
reduces processor utilization from 100 per cent to a fraction, 77. We can
account for this approximately by making the following corrections in the
previous equations:

220 SCHEDULING ALGORITHMS Chap. 6

Scherr found that with this correction, the predictions of equation
(6.32) were in excellent agreement with actual measurements and
simulation of the CTSS system. This is very encouraging considering that
the introduction of overhead violates the assumption of exponential service
times.

The overhead of swapping saturates the system with fewer users and
increases the slope of the response curve (Fig. 6.8).

The CTSS system uses contiguous segments. Similar response curves
have been observed for systems with paged segments (DeMeis, 1969).

The overhead of swapping can be characterized by two parameters: the
average swap time s required to transfer a job to the backing store and place
another job in the internal store; and the average processor time p spent on
scheduling and swapping during a time quantum.

Suppose, for example, that we have a drum with a waiting time of 10
msec and a transfer t ime of 5 msec/K words. If an average job consists of a
single contiguous segment of 8 K words, the average swap time is s = 2
(10 + 5 * 8)= 100 msec. (In a paging system, s is the time required to
exchange two working sets.)

If the access t ime to the internal store is 1 ~sec/word, the swapping of
16 K words will require 16 msec of store time. To this must be added the
processor t ime used to control the drum, select the next job, and so on. A
reasonable estimate would be an average processor time p = 20 msec per
t ime quantum.

In the CTSS system studied by Scherr, only one job at a time is placed
in the internal store. Swapping and processing are non-overlapped, that is,
the processor is idle during the swap interval s. The processor utilization
is therefore

W = ~ (6 . 4 0) q + s

Figures 6.9 and 6.10 show nm ax and ~ as a function of the average
service time 1/p using the previous values of Q, Rq max, l / k , s, and p. With
non-overlapped swapping, processor utilization cannot exceed 50 per cent.

Performance can be improved considerably by using overlapped
swapping and processing: The internal store is divided into two areas; while
a job is processed in one area, another job is swapped into the other area; at
the end of a t ime quantum the roles of the two areas are exchanged. To
utilize this technique fully, the machine must be equipped with facilities
for dynamic relocation. You can easily see this if you consider cyclical
swapping of an odd number of jobs in two areas.

When the average processor t ime p + q used by the operating system

Sec. 6.3. PREEMPTIVE SCHEDULING 221

1.0

0.8

0.6

0.4

0 . 2 -

0
0.1

No swapping

Overlapped swapping

ort-overlapped swapping

I I I I i J 1_ (sec)
0.3 1 3 10 30 100 P

Fig. 6.10. Processor utilization 77 as a function of the
average service time per request 1/p.

and its current job during a t ime quantum is less than the average swap time
s, the system is swap limited, and we have

~7 = q- P ~< P + q ~< s (6.41)
S

When the average processor time used during a time quantum exceeds
the average swap time, the system is processor limited, and we find

q
~ ? = - - p ~< s ~< p + q (6.42) p + q

The performance of overlapped swapping is also shown in Figs. 6.9 and
6.10. In the processor limited region (1/p > 0.3 sec), processor utilization is
about 83 per cent. The maximum number of users is reduced correspond-
ingly compared to the idealized case with no swapping.

6.3.2. Limited Swapping

Even when swapping and program execution overlap each other in time,
round-robin scheduling still reduces processor utilization considerably
(about 20 per cent in the example considered previously). The following is
an informal discussion of methods which limit swapping wi thout degrading
interactive response to trivial requests.

The following methods will be considered:

dedicated response programs
multiple-level scheduling
improved store management

222 SCHEDULING ALGORITHMS Chap. 6

In his observation of the C T S S system, Scherr (1965) found that about
50 per cent of all user requests could be classified as file manipulation,
program input, and editing. An interactive system that does no t distinguish
between these standard tasks and other user tasks will spend a considerable
amount of time swapping copies of the same programs for different jobs.
An effective solution is to set aside a permanent store area for dedica ted
programs which can respond to the most frequent file handling and editing
commands wi thout swapping.

Swapping of non-trivial jobs can be reduced if a job is given a larger and
larger t ime quantum each time it is served, thus decreasing the number of
passes the job must make through the scheduling queue. The simplest
algorithm uses two priority levels: Upon arrival, a job is placed at the end
of a foreground queue with round-robin service; The job may receive up to
N - 1 t ime quanta of Q seconds each in this queue. If the service time
exceeds this limit, the job is placed at the end of a background queue ,
which is served either by round-robin scheduling with a large quantum or
simply by f irst-come, first-served scheduling to completion. The foreground
queue preempts the background queue at the end of a t ime quantum.
Background service is only resumed when the foreground queue is empty.

If a background job is served to completion, it can be swapped N times
at most. So the average number of swaps per job is

KN = P r o b (t > O) + P r o b (t > Q) +

= 1 + e -~0 + . . . + e -#(N-1)Q

_ 1 - e -~NQ

1 - e - # °

. . . + P r o b (t > (N - 1)Q)

(6.43)

Simple round-robin scheduling corresponds to N ~ oo. If we choose N Q
= 1/#, then

KN
- - = l - e - 1 = 0 . 6 3
K~

--a reduction of 37 per cent.
In the SDC Q-32 system, the simple round-robin scheduling with

non-overlapped swapping and execution used in the original version was
later replaced by foreground-background scheduling with three priority
levels: At level 1, each request can receive three t ime quanta, each of 0.6
sec; at level 2, only a single time quantum of 3.6 sec can be obtained; still
longer requests are given an unlimited number of t ime quanta, each of 1.2
sec at level 3. This algorithm reduced average swap time by 50 per cent
{Schwartz, 1964 and 1967).

Sec. 6.3. PREEMPTIVE SCHEDULING 223

A more complicated foreground-background scheduler was proposed by
Corbato (1962) and used in the CTSS system. In this system, the quantum
size increases exponentially with the priority level i

Q i= 2 H Q i = 1 , 2 , . . . , 9

where Q = 0.5 sec. The initial priority j assigned to a job upon arrival
depends on the time S required to swap the job in and ou t of the internal
store as follows

S = (2 j-1 - 1) Q

When a job has been pushed down to level j + k, the ratio of its swap time
to its current time quantum is

S - (1 - 2-q.-I))2 -k
~j+k

This equation shows that a job is always executed for a time greater than or
equal to its swap time. Furthermore, the relative swap time of long jobs
decreases steadily.

Shorter jobs may delay longer ones excessively. The CTSS scheduler
compensates for this by moving a job to the next higher priority level when
it has waited more than 1 minute for service.

Corbato 's scheduler has proved difficult to analyze, but Scherr (1965)
has demonstrated its advantage over round-robin scheduling by simulation.
The introduction of this algorithm, which gives low priority to users with
large storage requirements, had a drastic influence on the behavior of users:
Within three months the average program size dropped from 9000 to 6000
words! This is an example of the countermeasures that users can and will
use to improve their priority. Although this tends to defeat any scheduling
algorithm in the long run, it can also be used as an effective means of
changing the characteristics of jobs deliberately. When longer jobs are split
into shorter ones which can be scheduled individually, the processor time
wasted by unsuccessful runs is normally reduced.

Swapping can also be reduced by various methods of store manage-
ment. The solution used in CTSS and in Irons's system is to allocate
internal store in such a way that the overlapping regions of jobs are
minimal. During a swap, only as much of the internal store is transferred to
the backing store as is required to make room for the incoming job.

Another possibility is to use as backing store a large, slow core store
which is directly addressable in continuation of the smaller and faster
internal store. The long-running jobs can be executed efficiently in the

224 SCHEDULING ALGORITHMS Chap. 6

internal store, while trivial requests can be executed directly in the slow
core store without swapping. This is the approach taken by Carnegie-Mellon
University on its IBM 360 /67 system (Vareha, 1969).

6.4. LITERATURE

Scheduling methods and their countermeasures is the theme of a paper
by Coffman and Kleinrock (1968a).

Two excellent papers, Estrin and Kleinrock (1967) and McKinney
(1969), survey various analytical models of interactive systems with infinite
input sources.

For a much more complete discussion of scheduling, see the book by
Conway, Maxwell, and Miller {1967).

COFFMAN, E. G. and KLEINROCK, L., "Computer scheduling methods and their
countermeasures," Proc. AFIPS Spring Joint Computer Conf., pp. 11-21, April 1968a.

CONWAY, R. W., MAXWELL, W. L., and MILLER, L. W., Theory of Scheduling.
Addison-Wesley, Reading, Massachusetts, 1967.

ESTRIN, G. and KLEINROCK, L., "Measures, models and measurements for
time-shared computer utilities," Proc. ACM National Meeting, pp. 85-96, Aug. 1967.

McKINNEY, J. M., "A survey of analytical time-sharing models," Computing Surveys 1,
2, pp. 105-16, June 1969.

RESOURCE PROTECTION

This chapter discusses the use of automatic methods to control access
to resources. The main techniques considered are the class concept of
Simula 67 and the capability concept.

7.1. INTRODUCTION

The last problem that will be discussed in this book is the question of
how an installation protects shared resources against unauthorized usage.

The word resource covers physical components, processes, procedures,
and data structures; in short, any object referenced by computations.
Physical resources and processes will always be represented by data within
the system defining their identity and state as well as the rights of
computations to use them, and by procedures defining meaningful
operations on them. So the protection problem boils down to the following
question: How can an installation protect data and procedures against
unauthorized usage? I will therefore define resource protect ion as
automatic methods which ensure that data and procedures are accessed
properly.

The protection problem is not well-understood at the moment. Various
aspects of it are solved by seemingly ad hoc methods in present systems.

225

226 RESOURCE PROTECTION Chap. 7

Rather than give a detailed description of these, I prefer to give a brief
indication of the nature of a more systematic approach. But I can only
present fragments of a solution.

Since only users and installation management can define the forms of
access they wish to enforce for particular resources, we shall look in vain
for a general complete solution to our protect ion problems. Still, we can
hope to solve some aspects of them in a uniform, efficient manner. I will
discuss two aspects of protection: type checking, which ensures that data
are accessed by well-defined operations, and security checking, which
ensures that these operations are carried ou t by user computa t ions
authorized to do so.

As an example of this distinction, consider a sequential file: The
meaningful operations on the file may be rewind, read, and write; but if the
file contains valuable (perhaps confidential) data, permission to carry out
these operations may no t be granted to every computat ion.

Resource protect ion is achieved by: (1) identifying a user and
establishing his authori ty to access data; (2) creating an environment which
identifies the resources available to his particular computa t ion; and (3)
checking that the computa t ion remains within its proper environment.

I shall no t discuss the problem of user identification in any detail. It is
often the weakest part o f a protect ion system since it depends on
identification supplied by the users themselves. Many present file systems
maintain a directory for each user (or group of users) defining his
ownership of private files and access rights to public files. A user's identi ty
is of ten established by quotat ion of a password which is selected by the
user himself and can be changed as of ten as desired. Another technique is
to associate access rights with particular terminals. Both techniques are
used in the Cambridge file system (Fraser, 1971).

In the following, I will concentrate on methods of representing
computat ional environments and checking access to them. Two methods
will be described: the use of a class concept to check resource access at
compile t ime; and the use of capabilities to check resource access at run
time.

7.2. CLASS CONCEPT

We will first discuss the close relationship between data and operations
and use it to define a very important form of protection.

If we consider variables of primitive types such as integer and boolean,
it is quite possible that values of different types will be represented .by
identical bit strings at the machine level. For example both the boolean
value true and the integer value 1 might be represented by the bit string

Sec. 7.2. CLASS CONCEPT 227

000 . . . 001

in single machine words.
So data of different types are distinguished not only by the

representation of their values, but also by the operations associated with
the types. An integer, for example, is a datum subject only to arithmetic
operations, comparisons, and assignments involving other data subject to
the same restrictions.

Now consider structured types. Take for example the variable b in
Algorithm 3.6. It represents a message buffer that contains a sequence of
messages sent, but not yet received. A static picture of process
communication can be defined by assertions about the relationships of the
components of the message buffer. But to understand how and when
messages are exchanged dynamically, one must also s tudy the send and
receive procedures defined for a message buffer. These operations in turn
are only meaningful for the particular representation of the message buffer
chosen and can only be unders tood precisely by studying its type
definition.

These examples illustrate the point made by Dahl (1971): "Data and
operations on data seem to be so closely connected in our minds, that it
takes elements of both kinds to make any concept useful for understanding
computing processes."

Simon (1962) has pointed out that the search for state and process
descriptions of the same phenomenon is characteristic of problem solving:
"These two modes of apprehending structure are the warp and weft of our
experience. Pictures, blueprints, most diagrams, chemical structural
formulae are state descriptions. Recipes, differential equations, equations
for chemical reactions are process descriptions. The former characterize the
world as sensed; they provide the criteria for identifying objects, often by
modeling the objects themselves. The latter characterize the world as acted
upon; they provide the means for producing or generating objects having
the desired characteristics.

"The distinction between the world as sensed and the world as acted
upon defines the basic condition for the survival of adaptive organisms. The
organism must develop correlations between goals in the sensed world and
actions in the world of process."

In Section 2.6 on program construction, I have illustrated this
alternation between a refinement of data (representing states) and program
(representing processes). The essence of this form of problem solving is the
following:

When a programmer needs a concept such as process communicat ion,
he first postulates a set of operations (in this case, send and receive) that
have the desired effect at his present level of thinking. Later, he chooses a

228 RESOURCE PROTECTION Chap. 7.

specific representation of a data structure (a message buffer), that enables
him to implement the operations efficiently on the available machine.

When the programmer is trying to convince himself of the correctness
of a program (by formal proof or testing), he will tacitly assume that these
operations (send and receive) are the only ones carried out on data
structures of this type (message buffers).

If other statements in his program are able to operate on message
buffers, he cannot make this assumption. The most extreme case is
unstructured machine language, which potentially permits each statement
to influence any other statement, intentionally or by mistake. This makes
program verification an endless task since one can never be sure, when a
new component is added to a large program, how this will influence
previously tested components.

If, on the other hand, the previous assumption is justified, the
programmer can convince himself of the correctness of process communica-
tion by studying only the type definition of a message buffer and the
procedures send and receive. Once this program component has been shown
to be correct, the designer can be confident that subsequent addition of
other components will not invalidate this proof. This makes the task of
verification grow linearly with the number and size of components--an
essential requirement for the design of large, reliable programs.

According to the previous definition, it is an obvious protection
problem to check that data are accessed by operations consistent with their
type. To what extent do the structures of present high-level languages
enable a compiler to check this?

A decent compiler for an algorithmic language such as Fortran, Algol
60, or Pascal will check the compatibility of data and operations on them
for primitive types (Naur, 1963). The compiler can do this because the
permissible operations on primitive types are part of the language
definition.

But in the case of structured types, only the most rudimentary kind of
checking is possible with these languages. All the compiler can check is that
data in assignment statements and comparisons for equality are of the same
type. But, since the languages mentioned do not enable the programmer to
associate a set of procedures with a type definition, the compiler cannot
check whether the operations on a message buffer are restricted to send and
receive procedures as intended by the programmer. This is a serious
deficiency of most programming languages available today.

An exception is the Simula 67 language (Dahl, 1968), an extension of
Algol 60 originally designed for simulation. In Simula 67, the definition of
a structured data type and the meaningful operations on it form a single
syntactical unit called a class.*

*Readers of the Pascal repor t by Wirth (1971a) should notice that the Simula class
concept is completely unrelated to the Pascal class concept.

Sec. 7.2. CLASS CONCEPT 229

I will briefly describe a simplified, restricted form of the Simula 67
class concept in a Pascal-inspired notation.

The notat ion

c l a s s T = v l : T 1 ; v 2 : T 2 ; . . . ; v m : T m ;

procedure PI (. . .) begin $1 end
. ° •

procedure Pn(. . .) begin Sn end

begin S0 end

defines: (1) a data structure of type T consisting of the components v l ,
v2, . . . , vm of types T1, T2, . . . , Tin; (2) a set of procedures (or
functions) P1, P2, . . . , Pn that can operate on the data structure; and (3)
a statement SO that can define its initial value.

A variable v of type T is declared as usual:

vary: T

Upon entry to the context in which the variable v is declared, storage is
allocated for its components vl , v2, vm, and the initial s tatement SO
is carried out for this variable.

A call of a procedure P / o n the variable v is denoted:

v . P i (. . .)

Procedure P/ can refer to the components v l , v2, . . . , vrn of v, to its own
local variables, and to the parameters of the given call. The operations P1,
P2, . . . , Pn are the only ones permitted on the variable v.

An obvious idea is to represent critical regions by the concept shared
class, implying that the operations P1, P2, . . . , Pn on a given variable v of
type T exclude one another in time.

The concept message buffering is defined as a shared class in Algorithm
7.1. Compare this with Algorithm 3.6. A buffer variable b and a message
variable t are declared and accessed as follows:

vat b: B; t: T;
b . s e n d (t) ; . . , b.receive(t);

Strictly speaking, assignment to a message parameter m can only be
made within the class B if its type T is primitive. But it seems reasonable to
retain the simple type definition

type T = < t y p e >

to indicate that variables of this type can be accessed directly.

230

ALGORITHM 7.1

RESOURCE PROTECTION

Representation of a Message Buffer
by a Shared Class.

shared class B =

bu f f e r : array 0 . . m a x - 1 of T;
p , c : O. . m a x - l ;
ful l : O. . m a x ;

procedure s e n d (m : T) ;
begin

await f u l l < m a x ;
b u f f e r (p) : = m ;
p := (p + 1) rood max;
fu l l : = fu l l + 1;

e n d

procedure r e c e i v e (v a t m : T);
begin

await f u l l > 0;
m := b u f f e r (c) ;
c: = (e + 1) rood m a x ;
fu l l : = fu l l - 1;

e n d

begin p := 0; c: = 0; fu l l := 0 e n d

Chap. 7

The class concept in Simula 67 has several other aspects, among them a
mechanism for defining a hierarchy of classes (Dahl and Hoare, 1971). My
main purpose here is to show a nota t ion which explicitly restricts
operations on data and enables a compiler to check that these restrictions
are obeyed. Although such restrictions are not enforced by Simula 67, this
would seem to be essential for effective protection.

Many computers support a restricted form of shared class at the
machine level of programming. I am referring to the basic m o n i t o r
procedures and data structures which control the sharing of processors,
storage, and peripherals at the lowest level of programming, as described in
Section 4.2.2. This class concept enforced at run time is implemented as
follows: The address mapping performed by a central processor prevents
computat ions from referring directly to data structures belonging to the
basic monitor, but permits them to call a well-defined set of moni tor
procedures. Mutual exclusion in time of such calls is achieved by means of
an arbiter and by delaying interrupt response. To prevent computa t ions
from bypassing the moni tor and referring directly to physical resources, the
central processor recognizes two states of execution: the pr iv i l eged s t a t e , in

Sec. 7.2. CLASS CONCEPT 231

which all machine instructions can be executed; and the user state, in which
certain instructions cannot be executed (those that control program
interruption, input /output , and address mapping). The privileged state is
entered after a monitor call; the user state is entered after a moni tor return.

In Section 1.2.3 I said, " I t is now recognized tha t it is desirable to be
able to distinguish in a more flexible manner between many levels of
protection (and not just two) ." We have seen that it is indeed desirable to
be able to enforce a separate set of access rules for each data type used. The
class concept is a general structuring tool applicable at all levels of
programming, sequential as well as concurrent.

The class concept was introduced here to protect local data structures
within a program against inconsistent operations. But the concept is
applicable also to data structures which are retained within the computer
after the termination of computations.

One example of retained data structures are those used within an
operating system to control resource sharing among unrelated compu-
tations. These data structures must be accessed only through well-defined
procedures; otherwise, the operating system might crash. So an operating
system defines a set of standard procedures which can be called by
computations. Since these procedures remain unchanged over reasonable
periods of time, a compiler should be able to use a description of them to
perform type checking of calls of them within user programs in advance of
their execution.

We are thus led to the idea of maintaining data structures defining
environments o f compilation and execution. An environment defines a set
of retained data structures and procedures accessible to a given
computation.

Another example of retained data structures are files stored semi-
permanently on backing stores. In most present file systems, a computat ion
can either be denied access to a given file or be permitted to read, write, or
execute it. This seems a rather crude distinction. In most cases, a data file is
intended to be used only in a particular manner; for example, a source text
of a program is intended to be edited or compiled by a particular compiler;
most other operations on it may be entirely meaningless from the user's
point of view. To maintain the integrity of a file, its creator should
therefore be able to associate it with a set of procedures through which it
can be accessed in a meaningful manner. This is possible, for example, in
the file system for the B5500 computer (McKeag, 1971a).

Assuming that this set of procedures remains unchanged over
reasonable periods of time, it would again be possible to check the
consistency of references to files within user programs at compile time. The
basic requirement is that the access rules remain fixed between compilation
and execution of programs.

Such a system differs from present ones in two aspects: (1) a program is
compiled to be executed in a particular environment; and (2) a compiled

232 RESOURCE PROTECTION Chap. 7

program may become invalid if its environment changes. This is acceptable
only if most programs are compiled shortly before execution or if they
operate in a fairly constant environment. The benefits of this approach
would be an early detect ion of program errors and a more efficient
execution because fewer protect ion rules would have to be checked
dynamically.

7.3. CAPABILITIES

Certain access decisions can only be made at run time. Consider, for
example, a pool of identical resources, say line printers. At compile time we
can check that printers are accessed only by well-defined standard
procedures. But the sequential nature of printers also makes it necessary to
ensure that each of them is used by at most one computat ion at a time. So
at run t ime we must keep track of the ownership of individual printers.

In general, this means that the system must represent computat ional
environments by data structures at run time. Dennis and Van Horn (1966)
have suggested the following technique for doing this: At any momen t the
access rights of a process are defined by an array of data elements called
capabilities. Each capability identifies a resource accessible to the process
and a set o f permissible operations on it.

One can regard capabilities as parameters associated with a process and
made available to standard procedures controlling resources when the
process at tempts to access these resources. Capabilities are t reated
differently from other parameters to prevent processes from exceeding
their authority.

As an example, the address mapping in most computers forces a process
to remain within a given set of segments. Each segment is represented by a
capability consisting of a base address and a length, as explained in Chapter
5. Some computers also associate a set of access rights with each segment
(for example, permission to read, write, or execute it). The safety of this
scheme is guaranteed by the inability of processes to refer directly to
address maps.

Another example of capabilities is the data structures used within a
monitor to keep track of resources assigned to individual processes (such as
the loans granted to customers by the banker in Algorithm 2.6).

The environment of a process changes dynamically as i t acquires and
releases resources. If we consider local data as resources, we find that, in
general, the environment changes every time the process calls a procedure
or returns from one.

A process may, for example, access shared data structures inside a
moni tor procedure, but no t outside it. This dynamic change of access rights
is supported in a very minimal sense by computers which distinguish
between two states of execution: privileged and unprivileged.

Sec. 7.3. CAPABI LITI ES 233

A somewhat more flexible scheme is used in Multics (Graham, 1968),
which distinguishes eight levels o f protect ion. The access rights of a process
executing at a given level of protect ion are a subset of the access rights
granted at lower levels. Each data and procedure segment is associated with
a range of protect ion levels. A segment can directly access other segments
at its own or higher levels, bu t segments at lower levels can only be accessed
through well-defined procedures. A similar system has been implemented
on the H I T A C 5020 computer (Motobayashi, 1969).

A practical evaluation of this technique will require publication of
performance measures for these systems. The implementation in Multics
seems to be quite complex (Schroeder, 1972). The scheme requires
extensive parameter checking (because addresses can be passed as
parameters from higher to lower levels of protect ion) as well as parameter
copying (because segments can be shared with other computat ions which
might modify parameters after the validity checking).

Capabilities are also used in the RC 4000 system in which a hierarchy
of processes share a set of moni tor procedures. These procedures enable
processes to schedule other processes and communicate with them by
means of message buffers. Each process operates in a certain environment
defined by capabilities stored within the monitor. A process can invoke
operations at other levels of protect ion by moni tor calls (executed in the
privileged state) and by messages sent to other processes (executed in the
user state with different capabilities).

It is appealing that this system permits both complete isolation and
interaction between different levels of protect ion (represented by different
processes). But, in practice, it is cumbersome that these interactions require
transmission of messages by value.

In general, the environment of a process is established by another
process (an operating system). In the RC 4000 system, there is initially
only one process, the basic operating system. Upon request from terminals,
this process will call the moni tor and initiate other processes. These are
described within the moni tor as children of the basic operating system, and
these processes in turn can create their own children. Thus, a process tree is
built.

The question of process authority is solved by the simple rule that a
process can only schedule its own children and allocate a subset o f its own
resources to them. Initially, all resources are assigned to the basic operating
system at the root of the tree.

When a process receives a message from another process, the moni tor
supplies the former process with a unique identification of the latter. In
theory, this should enable the receiving process to decide whether or not
the sending process has the authori ty to request a given operation. But, in
practice, it is difficult to establish the authori ty of processes because the
system does not have a uniform concept of user authority.

234 RESOURCE PROTECTION Chap. 7

In most implementations (including the RC 4000 system), the
environment of a process seldom changes. But conceptually, the following
viewpoint is more general: When a process calls a procedure, the current
environment of the process is replaced by a set of capabilities which apply
within that procedure. Upon return from the procedure, the previous set of
capabilites apply again. Thus, capabilities become part of the stack of a
process.

7.4. CONCLUSION

We have considered the use of the class concept at compile time and the
use of capabilities at run time to check that resources are accessed properly
by computat ions. The essential properties of these protect ion mechanisms
are the following:

A process operates in an environment which defines the set of resources
available to it. These resources consist of data and procedures which are
directly accessible to the process, and data and procedures which are '
indirectly accessible to it (through calls of directly accessible procedures
with directly accessible data as parameters).

Access rights are primarily associated with procedures to ensure the
consistency of data structures, bu t the overall author i ty of a computation
can be restricted merely by restriction of its initial environment.

These relationships between users, procedures, and data should be
reflected in the structure of the file system and in the structure of
individual programs. Efficient use of these concepts will require a language
in which the programmer can express the intended protect ion rules so they
can be recognized and checked automatically.

The machine language interpreted by processors during execut ion can
only represent high-level structure in the crudest manner. Some at tempts
have been made to refine protect ion mechanisms at the machine level (as in
Multics), but, on the whole, I am skeptical abou t a t tempts to solve
high-level structuring problems by brute force at the lowest levels of
programming.

I expect to see many protect ion rules in future operating systems
enforced in the cheapest possible manner by type checking at compile time.
However, this will require exclusive use of efficient, well-structured
languages for programming.

7.5. LITERATURE

The use of the class concept in Simula 67 for program construct ion is
illustrated in a paper by Dahl and Hoare (1971).

The idea of associating procedures with data structures is also used in

Sec. 7.4. CONCLUSION 235

the AED-O language designed by Ross (1969), but the unrestricted use of
pointers in this language makes it impossible to check the correspondence.

The use of capabilities was originally suggested by Dennis and Van
Horn (1966) and later developed by Lampson (1969 and 1970).

The security checks in the Cambridge file system are described by
Fraser (1971).

The model of computational structures presented by Vanderbilt (1969)
is most closely related to the view of protection presented here.

DAHL, O.-J. and HOARE, C. A. R., "Hierarchal program structures," Unpublished
draft, 1971.

DENNIS, J. B. and VAN HORN, E. C., "Programming semantics for multiprogrammed
computations," Comm. ACM 9, 3, 143-55, March 1966.

FRASER, A. G., "The integrity of a disc based file system," International Seminar on
Operating System Techniques, Belfast, Northern Ireland, Aug.-Sept. 1971.

LAMPSON, B. W., "Dynamic protection structures," Proc. AFIPS Fall Joint Computer
Conf., pp. 27-38, 1969.

LAMPSON, B. W., "On reliable and extensible operating systems," Infotech State of the
Art Proceedings, 1970.

ROSS, D. T., "Introduction to software engineering with the AED-0 language,"
Massachusetts Institute of Technology, Cambridge, Massachusetts, Oct. 1969.

VANDERBILT, D. H., "Controlled information sharing in a computer utility." MAC-
TR-67, Massachusetts Institute of Technology, Cambridge, Massachusetts, Oct. 1969.

A CASE STUDY: RC 4 0 0 0

This chapter describes the phi losophy and structure of the RC 4000
multiprogramming system which can be extended with a hierarchy of
operating systems to suit diverse requirements of process scheduling and
resource allocation. The system nucleus simulates an environment in which
program execution and inpu t /ou tpu t are handled uniformly as concurrent,
cooperating processes. A set of primitives allows dynamic creation and
control of a hierarchy of processes as well as communication among them.

We have discussed at length various aspects of concurrent processes and
resource management. I will now describe a complete multiprogramming
system in some detail to give you an idea of how the various pieces fit
together in a coherent design.

The system I have chosen was designed for the RC 4000 computer
manufactured by Regnecentralen in Denmark. Work on the system began
towards the end of 1967, and a well-documented reliable version of it was
running in the spring of 1969. The conceptual part of the design was due to
J~rn Jensen, S~ren Lauesen, and myself. We spent almost a year with daily
discussions trying to formulate objectives, concepts, and overall structure.
A presentation of our proposal was written before its implementation. It
corresponded closely to the paper published after its complet ion (Brinch
Hansen, 1970). Having reached a clear understanding of the problem, we

237

238 A CASE STUDY: RC 4000 Chap. 8

found that it was an almost trivial task to write and test the system in
machine language. It was done in half a year by Leif Svalgaard and myself.

I will first describe the RC 4000 system as we looked upon it at that
t ime and then take a critical look at it in the light of my present thinking.
What follows then is a slightly edited version of the system manual (Brinch
Hansen, 1969). The presentation is made as self-contained as possible and
will sometimes repeat ideas ment ioned in earlier chapters.

8.1. SYSTEM OBJECTIVES

The multiprogramming system for the RC 4000 computer is a tool for
the design of operating systems. It allows dynamic creation of a hierarchy
of processes in which diverse medium-term strategies of process scheduling
and resource allocation can be implemented.

For the designer of advanced information systems, a vital requirement
of any operating system is that it allow him to change the mode of
operation it controls; otherwise, his f reedom of design can be seriously
limited. Unfortunately, this is precisely what many operating systems do
no t allow. Most of them are based exclusively on a single mode of
operation such as batch processing, spooling, real-time scheduling, or
conversational access.

When the need arises, the user of ten finds it hopeless to modi fy an
operating system that has made rigid assumptions in its basic design about a
specific mode of operation. The alternative--to replace the original
operating system with a new one--is in most computers a serious, if no t
impossible, mat ter because the rest of the software is intimately bound to
the conventions required by the original system.

This unfor tunate situation indicates that the main problem in the
design of a multiprogramming system is no t to define functions that satisfy
specific operating needs, but rather to supply a system nucleus that can be
extended with new operating systems in an orderly manner. This is the
primary objective of the RC 4000 system.

The basic a t t i tude during the designing was to make no assumptions
about the particular medium-term strategy needed to optimize a given type
of installation, bu t to concentrate on the fundamental aspects of the
control of an environment consisting of cooperating, concurrent processes.

The first task was to assign a precise meaning to the process concept ;
that is, to introduce unambiguous terminology defining what a process is
and how it is implemented on the actual computer .

The next step was to select primitives for the synchronization and
transfer of data between concurrent processes.

The final decisions concerned the rules for dynamic creation, control,
and removal of processes.

The purpose of the system nucleus is to implement these fundamental

Sec. 8.2. BASIC CONCEPTS 239

concepts: simulation of processes; communication between processes; and
creation, control, and removal of processes.

8.2. BASIC CONCEPTS

This section opens a detailed description of the RC 4000 system. A
multiprogramming system is viewed as an environment in which program
execution and input /output are handled uniformly as cooperating,
concurrent processes. The purpose of the nucleus is to bridge the gap
between the actual hardware and the abstract concept of multi-
programming.

8.2.1. Programs and Internal Processes

As a first step, we shall assign a precise meaning to the process concept.
We will distinguish between internal and external processes, roughly
corresponding to program execution and input /output , respectively.

More precisely, an internal process is the execution of one or more
interruptable programs in a given store area. An internal process is
identified by a unique process name. Thus, other processes need not be
aware of the actual location of an internal process in store, but can refer to
it by name.

Figure 8.1 illustrates the allocation of the internal store to a monitor (the
system nucleus) and three internal processes, P, Q, and R.

Monitor

Internal
process P

Internal
process Q

Internal
process R

Fig. 8.1. Allocation of store to the
monitor and three intemM processes.

Later it will be explained how internal processes are created and how
programs are placed in their store areas. At this point, it should only be
noted that an internal process occupies a contiguous segment with a fixed
base address during its lifetime. The monitor maintains a process
description of each internal process: It defines the name, store area, and
current state of the process.

At the short-term scheduling level, processor time is shared cyclically
among all active internal processes. Typically, the monitor allocates a
maximum time slice of 25 msec to each internal process in turn. At the end

240 A CASE STUDY: RC 4000 Chap. 8

ready

runn~
Fig. 8.2. The ready and running states
of an internal process.

of this interval, the process is interrupted and its register values are stored
in the process description. Following this, the monitor allocates 25 msec to
the next internal process, and so on. The queue of internal processes
waiting to run is called the ready queue. Figure 8.2 shows the ready and
running states of internal processes and the transitions between them.

A sharp distinction is made between the concepts program and internal
process. A program is a collection of instructions describing a process, and
an internal process is the execution of these instructions in a given store
area.

An internal process such as P can involve the execution of a sequence of
programs; for example, editing followed by translation and execution of
an object program. Copies of the same program (for example, an Algol
compiler) can also be executed simultaneously by two processes, Q and R.
These examples illustrate the need for a distinction between programs and
processes.

8.2.2. Documents and External Processes

In connection with input /output , the monitor distinguishes between
peripheral devices, documents, and external processes:

A peripheral device is an item of hardware connected to a data channel
and identified by a device number.

A document is a collection of data stored on a physical medium, for
exam ple:

a roll of paper tape
a deck of punched cards
a printer form
a reel of magnetic tape
an area on the backing store

An external process is the input /ou tput of a given document identified
by a unique process name. This concept implies that once a document has
been mounted, internal processes can refer to it by name without knowing
the actual device it uses.

Sec. 8.3. PROCESS COMM UN I CATI ON 241

For each external process, the monitor maintains a process description
defining its name, kind, device number, and current state. The process kind
is an integer defining the type of peripheral device on which the document
is mounted.

For each kind of external process the monitor contains a procedure
that can start and complete input /output on request from internal processes.

8.2.3. Monitor

Multiprogramming and communication between internal and external
processes are coordinated by the system nucleus--a monitor with complete
control of input /output , store protection, and interrupt response. I do not
regard the monitor as an independent process, but rather as a software
extension of the hardware structure that makes the computer more
attractive for multiprogramming. Its function is to implement the process
concept and the primitives that processes can call to create and control
other processes, and communicate with them.

After system initialization, the monitor resides permanently in the
internal store. It is the only program which executes privileged instructions
in an uninterruptable processor state.

So far, I have described the multiprogramming system as a set of
concurrent processes identified by names. The emphasis has been on a clear
understanding of the relationships between resources (store and periph-
erals), data (programs and documents), and processes (internal and
external).

8.3. PROCESS COMMUNICATION

The following explains the monitor procedures for the exchange of data
between concurrent processes.

8.3.1. Messages and Answers

Two concurrent processes can cooperate by sending messages to each
other. A message consists of eight machine words. Messages are transmitted
from one process to another by means of message buffers selected from a
common pool within the monitor.

The monitor administers a message queue for each process. Messages are
linked to this queue when they arrive from other processes. The message
queue is part of the process description.

Normally, a process serves its queue in first-come, first-served order.
After the processing of a message, the receiving process returns an answer
of eight words to the sending process in the same buffer.

242 A CASE STUDY: RC 4000 Chap. 8

Communicat ion between two independent processes requires tha t they
be synchronized during a transfer of data. A process requests synchroni-
zation by executing a wait operation; this causes a delay of the process
until another process executes a send operation.

The term delay means that an internal process is removed temporarily
from the ready and running states; the process is said to be activated when
it is again linked to the ready queue.

The following monitor procedures are available for communicat ion
between internal processes:

send message(receiver, message, buffer)
wait message(sender, message, buffer)
send answer(result, answer, buffer)
wait answer(result, answer, buffer)

Send message copies a message into an available buffer selected from
the pool and delivers it in the queue of a given receiver. The receiver is
activated if it is waiting for a message. The sender continues after being
informed of the address of the message buffer.

Wait message delays the calling process until a message arrives in its
queue. When the process is being allowed to proceed, it is supplied with the
name of the sender, the contents of the message, and the address of the
message buffer. The buffer is removed from the queue and is now ready to
transmit an answer.

Send answer copies an answer in to a buffer in which a message has been
received and delivers it in the queue of the original sender. The sender of
the message is activated if it is waiting for this particular answer. The
answering process continues immediately.

Wait answer delays the calling process until an answer arrives in a given
buffer. On arrival, the answer is copied into the process and the buffer is
returned to the pool. The result specifies whether the answer is a response

ready

• or 3

wait ing

or 4

running

1 : send message
2: wait message
3: send answer
4: wait answer

(a) (b)

Fig. 8.3. (a) The process states ready, running, and waiting;
and (b) the primitives that cause the transitions between

them.

Sec. 8.3. PROCESS COMMUNICATION 243

from another process or a dummy answer generated by the moni tor in
response to a message addressed to a non-existent process.

Figure 8.3 shows the transitions of internal processes between the ready,
running, and waiting states. The monitor distinguishes between two
possible waiting states for a process: awaiting message and awaiting answer.
In the latter case, the monitor also remembers the buffer in which an
answer is expected.

empty

sent

received

returned

I : send message
2: wait message
3: send answer
4: wait answer

(a) (b)

Fig. 8.4. (a) The possible states of a message buffer; and
(b) the primitives that cause the transitions between them.

Figure 8.4 shows the life cycle of a message buffer: It begins as an empty
buffer in the pool. When a message is sent in the buffer, it enters the
message queue of the receiver. When the message is received, the buffer is
removed from the queue. When an answer is returned in the buffer, it
enters the message queue of the original sender. Finally, when the answer is
received, the buffer returns to the pool in the empty state.

8.3.2. Advantages of Message Buffering

The design of the communication scheme reflects that the multi-
programming system is a dynamic environment in which some of the
processes may turn out to be black sheep.

The system is dynamic in the sense that processes can appear and
disappear at any time. Therefore, in general, a process does no t have a
complete knowledge of the existence of other processes. This is reflected in
the procedure wait message, which makes it possible for a process to be
unaware of the existence of other processes until it receives messages from
them.

On the other hand, once a communication has been established
between two processes (by means of a message), they need a common
identification of it in order to agree on when it is completed (by means of
an answer). So we can properly regard the selection of a buffer as the
creation of an identification of a conversation. This also enables two
processes to exchange more than one message at a time.

244 A CASE STUDY: RC 4000 Chap. 8

We must be prepared for the occurrence of erroneous or malicious
processes in the system (undebugged programs). This is tolerable only if the
monitor ensures that no process can interfere with a conversation between
two other processes. This is done by storing the identi ty of the sender and
receiver in each buffer, and checking it whenever a process at tempts to send
or wait for an answer in a given buffer.

Efficiency is obtained by the queuing of buffers, which enables a
sending process to continue immediately after delivery of a message or an
answer regardless of whether the receiver is ready to process it or not.

To make the system dynamic, it is vital that a process can be removed
at any time--even if it is engaged in one or more conversations. When a
process is being removed, the monitor leaves all messages from it
undisturbed in the queues of other processes. When these processes
terminate their actions by sending answers, the monitor simply returns the
buffers to the common pool.

The reverse situation is also possible: During the removal of a process,
the monitor may find unanswered messages sent to the process. These are
returned as d u m m y answers to the senders. A special instance of this is the
generation of a d u m m y answer to a message addressed to a process tha t
does not exist.

The main drawback of message buffering is that it introduces yet
another resource problem since the common pool contains a finite number
of buffers. If a process were allowed to empty the pool by sending messages
to ignorant processes which do not respond with answers, further
communication within the system would be blocked. We have therefore set
a limit to the number of messages a process can send simultaneously. By
doing this and by allowing a process to transmit an answer in a received
buffer, we have placed the entire risk of a conversation on the process tha t
opens it.

8.3.3. Event Primitives

The message scheme described so far has certain practical limitations as
we shall see later, but it is conceptually consistent. Far more dubious are
the following procedures introduced as an ad hoc solution to a specific
programming problem: the design of that part of an operating system
which communicates with operators through terminals. The original
motivation was the following:

The communicat ion procedures enable a conversational process to
receive messages simultaneously from several other processes. To avoid
becoming a bott leneck in the system however, a conversational process
must be prepared to be engaged in more than one conversation at a time.
As an example, th ink of a conversational process that engages itself, on
request from another process, in a conversation with one of several
operators asking him to perform a manual operation (for example,

Sec. 8.3. PROCESS COMMUNICATION 245

mount ing a magnetic tape). If we restrict a conversational process to
accepting only one message at a t ime and to completing the requested
action before receiving the next message, the consequence is tha t o ther
processes (including operators at terminals) can have their requests for
response delayed for a long time.

As soon as a conversational process has started a lengthy action by
sending a message to some other process, it must be able to receive fur ther
messages and start o ther actions. It will then be reminded later of the
complet ion of earlier actions by means of normal answers.

In general, a conversational process is now engaged in several requests at
one time. This introduces a scheduling and resource problem: When the
process receives a request, some of its resources (storage and peripherals)
can be tied up by already initiated actions. So in some cases the process will
no t be able to honor new requests before old ones have been completed. In
such cases, the process wants to postpone the reception of some requests
and leave them pending in the queue, while examining others.

The procedures wait message and wait answer, which force a process to
serve its queue in strict order of arrival and delay itself while its own
requests to o ther processes are completed, do not fulfill the above
requirements.

Consequently, we int roduce two communicat ion procedures tha t
enable a process to wait for the arrival of the next message or answer and
serve its queue in any order:

wait event(previous buffer, next buffer, result)
get event(buffer)

The term event denotes a message or an answer. In accordance with
this, the queue of a process f rom now on will be called the event queue.

Wait event delays the calling process until either a message or an answer
~xrives in its queue after a given, previously examined buffer. The process is
supplied with the address of the next buffer and a result indicating whether
it contains a message or an answer. If the previous buffer address was zero,
the queue is examined f rom the start. The procedure does no t remove any
buffer f rom the queue or in any other way change its status.

As an example, consider an event queue with two pending buffers A
and B which arrived in that order:

The moni tor calls

and

queue = (buffer A, buffer B)

wait event(O, buffer)

wait event(A, buffer)

246 A CASE STUDY: RC 4000 Chap. 8

will cause immediate return to the process with buffer equal to A and B,
respectively. But the call

wait event(B, buffer)

will delay the process until another message or answer arrives in the queue
after buffer B and will then supply the address of the newly arrived buffer
C.

Get event removes a given buffer from the queue of the calling process.
If the buffer contains a message, the buffer is made ready for the sending o f
an answer. If the buffer contains an answer, it is returned to the common
pool. The copying o f the message or answer from the buffer must be done
by the process itself before get event is called (a shortcut which reveals the
ad hoc nature of this proposal).

Algorithm 8.1 illustrates the use of event procedures within a
conversational process.

The process starts by examining its queue: If it is empty, the process
awaits the arrival of the next event. If it finds a message, the process checks

AL GORITHM 8. 1 The Basic Cycle of a Conversational Process

vat buffer, previous buffer: B; result: (message, answer);

repeat
buffer:= O;
repeat

previous buffer:= buffer;
wait event(previous buffer, buffer, result);

until result = message & resources available(buffer)
or result = answer;

get event(buffer);
f f result = message then
begin

reserve resources;
start action;
send message to some other process;
save state o f action;

end else
begin "result = answer"

restore state o f action;
complete action;
release resources;
send answer to original sender;

end
forever

Sec. 8.4. EXTERNAL PROCESSES 247

whether it has the necessary resources to perform the requested action; if
not , it leaves the message in the queue and examines the next event.
However, if the process does possess the necessary resources, it accepts the
message, reserves the resources, and starts the requested action. As soon as
this involves the sending of a message to some other process, the
conversational process saves data about the state of the incomplete action
and proceeds to examine its queue from the start to engage itself in another
action.

Whenever the process finds an answer in its queue, it immediately
accepts it and completes the corresponding action. It can now release the
resources used and send an answer to the original sender that made the
request. After this, it examines the entire queue again to see whether the
release of resources has made it possible to accept pending messages.

An example of a process operating in accordance with this scheme is
the basic operating system S, which creates internal processes on request
from typewriter terminals. S can be engaged in conversations with several
terminals at the same time. It will only postpone an operator request if its
store area is occupied by other requests in progress or if it is already in the
middle of an action requested from the same terminal.

8.4. EXTERNAL PROCESSES

This section clarifies the meaning of the external process concept. It
explains the initiation of input /output by means of messages from internal
processes, dynamic creation, and removal of external processes, as well as
exclusive access to documents by means of reservation and releasing.

8.4.1. Input/Output

Consider the situation shown in Fig. 8.5, in which an internal process P
inputs a data block from an external process Q (say, a magnetic tape).

. . . . t ~ Input First address

block / Last address

1
External Internal

process Q process P

Fig. 8.5. Input from an external process Q to an internal
process P.

248 A CASE STUDY: RC 4000 Chap, 8

P starts input by sending a message to Q:

send message(Q, message, buffer)

The message defines an input /ou tpu t operation and the first and last
addresses of a store area within process P:

message: operation
first store address
last store address

The moni tor copies the message into a buffer and delivers it in the queue of
process Q. Following this, the moni tor uses the kind parameter in the
process description of process Q to switch to a piece of code common to all
magnetic tapes. If the tape station is busy, the message is merely left in its
queue; otherwise, input is started to the given store area. On return,
program execution continues in process P.

When the tape station completes the input by means of an interrupt,
the moni tor generates an answer and delivers it in the queue of process P
which in turn receives it by calling

wait answer(result, answer, buffer)

The answer contains status bits sensed from the device and the actual
length of the block input:

answer: status bits
block length

After delivery of the answer, the moni tor examines the queue of the
external process Q and starts its next operation (unless the queue is empty) .

Essentially all external processes follow this scheme, which can be
defined by the following algorithm:

"external process"
repeat

wait message;
ff message acceptable then
begin

start input output;
await interrupt;

end
produce answer;
send answer;

forever

Sec. 8.4. EXTERNAL PROCESSES 249

With low-speed, character-oriented devices, the monitor repeats the
input /ou tput for each character until a complete block has been
transferred. (While this is taking place, the time between interrupts is, of
course, shared among internal processes.) Internal processes can therefore
regard all input /output as block-oriented.

8.4.2. Mutual Exclusion

The use of message buffering provides a direct way of sharing an
external process among a number of internal processes: An external process
can simply accept messages from any internal process and serve them in
their order of arrival. An example of this is the use of a single typewriter
for the output of messages to a main operator.

This method of sharing a device ensures that a block of data is input or
output as an indivisible enti ty. But when sequential media, such as paper
tape, punched cards, or magnetic tape, are used, an internal process must
have exclusive access to the entire document. This is obtained by calling the
following monitor procedure:

reserve process(name, result)

The result indicates whether or not the reservation has been accepted.
An external process that handles sequential documents rejects messages

from all internal processes except the one that has reserved it. Rejection is
indicated by the result of wait answer.

During the removal of an internal process, the monitor removes all
reservations the process has made. Internal processes can, however, also do
this explicitly by means of the monitor procedure:

release process(name)

8.4.3. Process Identification

From the operator's point of view, an external process is created when
he mounts a document on a device and names it. The name must, however,
be communicated to the monitor by means of an operating system--an
internal process that controls the scheduling of other internal processes. So
it is more correct to say that external processes are created when internal
processes assign names to peripheral devices. This is done by means of the
monitor procedure

create peripheral process(name, device number, result)

The monitor has no way of ensuring whether a given document is

250 A CASE STUDY: RC 4000 Chap. 8

mounted on a device. There are also some devices, such as the real-time
clock, which operate wi thout documents .

The name of an external process can be explicitly removed by a call of
the moni tor procedure

remove process(name, result)

It is possible to implement an automatic removal of a process name
when the moni tor detects operator intervention in a device. This is done for
magnetic tapes.

8.4.4. Replacement of External Processes

The decision to control inpu t /ou tpu t by means of interrupt procedures
within the monitor, instead of using dedicated internal processes for each
peripheral device, was made to achieve immediate start of inpu t /ou tpu t
after the sending of messages. In contrast, the activation of an internal
process merely implies that it is linked to the ready queue; after activation,
several t ime slices can elapse before the internal process actually starts to
execute instructions.

The price paid for the present implementat ion of external processes is a
prolongation of the t ime spent in the uninterruptable state within the
monitor. This limits the system's ability to cope with real-time events--data
that are lost unless they are input and processed within a certain time.

An important consequence of the uniform handling of internal and
external processes is that it allows one to replace any external process with
an internal process of the same name; other processes that communicate
with it are quite unaware of this replacement.

Replacement of external processes with internal processes makes it
possible to enforce more complex rules of access to documents. In the
interest of security one might, for example, want to limit the access of an
internal process to one of several files recorded on a particular magnetic
tape. This can be ensured by an internal process that receives all messages
to the tape and decides whether they should be passed on to it.

As another example, consider the problem of testing a real-time system
before it is connected to an industrial plant. A convenient way of doing this
is to replace analog inputs with an internal process that simulates relevant
values of the actual measuring instruments.

The ability to replace any process in the system with another process is
a very useful tool.

(I am still presenting the system as we looked upon it in 1969.
Replacement of external processes has indeed been used since, but , as I will
point ou t later, there are severe practical restrictions on its usefulness.)

Sec. 8.5. INTERNAL PROCESSES 251

8.5. INTERNAL PROCESSES

This section explains the creation, control, and removal of internal
processes. The emphasis is on the hierarchal structuring of internal
processes, which makes it possible to extend the system with new operating
systems. The dynamic behavior of the system is explained in terms of
process states and the transitions between these.

8.5.1. Scheduling Primitives

Internal processes are created on request from other internal processes
by means of the moni tor procedure:

create process(name, resources, result)

The monitor initializes the process description of the new internal process
with its name and a set of resources selected by the parent process. A part
of the resources is a store area, which must be within the parent 's own area
as shown in Fig. 8.6. Also specified by the parent is a protect ion key, which
must be set in all store words of the child process before it is started.

Parent
process

Child
process

Fig. 8.6. Store allocation to a child
process within its parent process.

After creation, the child process is simply a named store area described
within the monitor. It has no t ye t been linked to the ready queue.

The parent process can now load a program into the child process by
means of an input /ou tpu t operation. Following this, the parent can
initialize the registers of its child using the moni tor procedure:

modify process(name, registers, result)

The register values are stored in the process description until the child
process is being started. As a standard convention adopted b y parent
processes (but not enforced by the monitor), the initial register values
inform the child process about its own process description, its parent, and
the typewri ter terminal it can use for operator communication.

Finally, the parent can start the execution of its child by calling:

252 A CASE STUDY: RC 4000 Chap. 8

start process(name, result)

which sets the protect ion keys within the child and links it to the ready
queue. The child now shares time slices with other active processes,
including its parent.

On request from a parent process, the moni tor waits for the complet ion
of all inpu t /ou tpu t initiated by the child and stops it by removing it f rom
the ready or running state:

stop process(name, buffer, result)

The purpose of the message buffer will be made clear in Section 8.10.3.
In the s topped state, a child process can either be started again or

completely removed by the parent process:

remove process(name, result)

During the removal, the monitor generates dummy answers to all messages
sent to the child and releases all external processes used by it. Finally, the
protect ion keys are reset to the value used within the parent process. The
parent can now use the store area to create other child processes.

Figure 8.7 shows the process states and the operations that cause the
transitions between them.

removed

ready ~i) stopped
i waiting

running

1 : create process
2: remove process
3: start process
4: stop process
5: wait message (or answer)
6: send message (or answer)

(a) (b)

Fig. 8.7. (a) The states of an interns] process; and (b) the
primitives that cause the transitions between them.

According to our philosophy, processes should have complete f reedom
to choose their own medium-term strategy of child scheduling. The
moni tor only supplies the essential primitives for the initiation and control
of processes. Consequently, the concepts, program loading and swapping,
are not part o f the nucleus.

However, multiplexing of a common store area among child processes

Sec. 8.5. INTERNAL PROCESSES 253

by swapping is possible because the moni tor does not check whether
internal processes overlap one another as long as they remain within the
store areas of their parents. Swapping from a process A to another process
B can be implemented in a parent process as follows:

stop(A);
output(A);
input(B);
start(B);

8.5.2. Process Hierarchy

The purpose of the monitor is to simulate an environment in which
program execution and input /ou tpu t are handled uniformly as cooperating,
concurrent processes. A set of moni tor procedures allows dynamic creation
and control of processes as well as communicat ion between them.

For a given installation we still need, as part of the system, programs
that control medium-term strategies for operator communication, process
scheduling, and resource allocation. But it is essential for the orderly
growth of the system that these operating systems be implemented as other
programs. Since the main difference between operating systems and user
computat ions is one of jurisdiction, this problem is solved by arranging the
internal processes in a hierarchy in which parent processes have complete
control over child processes.

This is illustrated in Fig. 8.8. After system initialization, the internal
store contains the moni tor and an internal process S, which is the basic
operating system. S can create concurrent processes A, B, C , . . . on request

S

Monitor

At° E

B FIG
H

(a) (b)

Fig. 8.8. (a) A family tree of internal processes; and (b) the
corresponding store allocation.

254 A CASE STUDY: RC 4000 Chap. 8

from terminals. These processes can in turn create other processes D, E,
F, Thus, while S acts as a primitive operating system for A, B, and C,
they in turn act as operating systems for their children, D, E, and F.

This family tree of processes can be extended to any level, subject only
to a limitation of the total number of processes. The maximum number of
internal processes is 23, including the basic operating system S. The store
protect ion system of the RC 4000 computer provides mutual protect ion of
8 independent processes. When this number is exceeded, one must rely on
some of the processes being error-free or use swapping to prevent them
from being active at the same time.

In this multiprogramming system, all procedures executed in the
privileged processor state are implemented within the monitor. The latter
embodies a fixed, short-term policy of processor multiplexing. Medium-
term scheduling policies can be introduced at higher levels at which each
process can control the scheduling and resource allocation of its own
children.

The only protect ion rules enforced by the moni tor are the following: A
process can only allocate a subset of its own resources (including storage)
to its children; and a process can only modi fy , start, stop, and remove its
own children.

The structure of the family tree is defined in the process descriptions
within the monitor. I emphasize that the only funct ion of the tree is to
define the basic rules of process control and resource allocation. Time slices
are shared evenly among active processes regardless of their posit ion in the
hierarchy, and each process can communicate with all other processes.

For the development of operating systems, the most important
properties of the system are the following:

(1) N e w operating systems can be implemented as other programs
without modification of the monitor. The Algol and Fortran languages for
the RC 4000 computer contain facilities for calling the moni tor and
starting concurrent processes. So it is possible to write operating systems in
high-level languages.

(2) Operating systems can be replaced dynamically, thus enabling an
installation to switch among various modes of operation; several operating
systems can actually be active simultaneously.

(3) Standard programs and user programs can be executed under
different operating systems without modification, provided communicat ion
between parents and children is standardized.

8.6. RESOURCE PROTECTION

This section describes a set of moni tor rules that enable a parent
process to control the allocation of resources to its children.

Sec. 8.6. RESOURCE PROTECTION 255

In the system, internal processes compete for the following resources:

processor t ime
internal storage and protection keys
message buffers and process descriptions
peripheral devices
backing storage

Initially, the basic operating system S owns all resources. As a basic
principle enforced by the monitor, a process can allocate only a subset of
its own resources to a child process. These are returned to the parent
process when the child is being removed.

8.6.1. Processor Allocation

All active processes are allocated time slices in a cyclical manner.
Depending on the interrupt frequency of the hardware interval timer, the
length of a t ime slice can vary between 1.6 and 1638.4 msec. A reasonable
value is 25.6 msec. With shorter intervals, the fraction of processor time
consumed by timer interrupts grows drastically; with longer intervals, the
delay between the activation and execution of an internal process increases.

In practice, internal processes often start input /ou tput and wait for it in
the middle of a time slice. This creates a scheduling problem when internal
processes are activated by answers: Should the monitor link processes to
the beginning or to the end of the ready queue? Linking processes to the
beginning ensures that processes can use peripherals with maximum speed,
but there is a danger that a process might monopolize the processor by
communicating frequently with fast devices. Linking them to the end
prevents this, but introduces a delay in the ready queue which slows down
peripherals.

We introduced a modified form of round-robin scheduling to solve this
problem. As soon as a process leaves the running state, the monitor stores
the actual value of the time quantum used by it. When the process is
activated again, the monitor compares this quantum with the maximum
time slice: As long as this limit is not exceeded, the process is linked to the
beginning of the queue; otherwise, it is linked to the end of the queue, and
its time quantum is reset to zero. The same test is applied when the interval
timer interrupts a running process.

This short-term policy at tempts to share processor time evenly among
active internal processes regardless of their position in the hierarchy. It
permits a process to be activated immediately until it threatens to
monopolize the central processor; only then is it pushed into the
background to give other processes a chance. This is admit tedly a built-in
strategy at the short-term level. Parent processes can only control the
allocation of processor time to their children in larger portions (on the

256 A CASE STUDY: RC 4000 Chap. 8

order of seconds) by means of the procedures start process and stop
process.

For accounting purposes, the monitor collects the following data for
each internal process: the time at which the process was created and the
sum of t ime quanta used by it; these quantities are called the start t ime and
the run time, respectively.

8.6.2. Store Allocation

An internal process can only create child processes within its own store
area. The monitor does not check whether the store areas of child processes
overlap one another. This freedom can be used to implement multiplexing
of a common store area among several processes, as described in Section
8.5.1.

The RC 4000 computer has a rather cumbersome store protection
mechanism. Each store word contains a protection key of 3 bits. This
makes it possible to distinguish between eight different store areas which
can be protected against one another.

A protect ion register of eight b i t s defines the store areas accessible to
the running process. In store and jump operations, the protection key of
the addressed word is used as an index to select a bit within the protection
register. This bit defines whether or not the store word is protected against
the running process. An a t tempt to violate store protection will cause a call
of an error procedure within the monitor.

Before the creation of an internal process, the parent must specify the
values of the protection register and the protection key to be used by the
child. When the child process is started, the monitor sets the corresponding
key in all its store words. (This cannot be done during process creation
because the store area may be multiplexed among children and their
descendants using different keys.)

A parent process can only allocate a subset of its own protection keys
to a child but it has complete freedom to allocate identical or different
keys to its children. Store areas with these keys remain accessible to the
parent after the creation of a child.

8.6.3. Message Buffers and Process Descriptions

The monitor has room for only a finite number of message buffers and
tables describing internal processes and the so-called area processes (files on
the backing store used as external processes). A message buffer is selected
when a message is sent to another process; it is released when the sending
process receives an answer. A process description is selected when an
internal process creates another internal process or an area process and
released when the process is removed.

Sec. 8.6. RESOURCE PROTECTION 257

Message buffers and process descriptions only assume an identi ty when
they are used. As long as they are unused, they can be regarded as
anonymous pools of resources. Consequently, it is sufficient to specify the
maximum number of each resource that an internal process can use: The
so-called buffer claim, internal claim, and area claim are defined by the
parent when a child process is created. The claims must be a subset of the
parent's own claims, which are diminished accordingly; they are returned to
the parent when the child is being removed.

The buffer claim defines the maximum number of messages that an
internal process can exchange simultaneously with other internal and
external processes. The internal claim limits the number of children an
internal process can have at one time. The area claim defines the number of
backing store areas that an internal process can access simultaneously.

The monitor decreases a claim by one each time a process uses one of
its resources, and increases it by one when the resource is released again. So
at any moment , the claims define the number of resources tha t are still
unused by the process.

8.6.4. Peripheral Devices

A distinction has been made between peripheral devices and external
processes. An external process is created when a name is assigned to a
device. So it is also true that peripheral devices only assume an identi ty
when they are actually used for input /output . Indeed, the whole idea of
naming is to give the operator complete freedom in allocating devices. It
would therefore seem natural to control allocation of peripheral devices to
internal processes by a complete set of claims--one for each kind of device.

In an installation with remote peripherals however, it is unrealistic to
treat all devices of a given kind as a single, anonymous pool. An operating
system must be able to force its jobs and operators to remain within a
certain geographical configuration of devices. The concept configuration
must be defined in terms of physical devices, and not in terms of external
processes since a parent normally does not know in advance which
documents its children are going to use.

Configuration control is exercised as follows: From the point of view of
other processes, an internal process is identified by a name. Within the
monitor however, an internal process is also identified by a single bit in a
machine word. A process description of a peripheral device includes a word
in which each bit indicates whether the corresponding internal process is a
potential user of the device. Another word indicates the current user that
has reserved the device to obtain exclusive access to a document.

The basic operating system S is a potential user of all peripherals. A
parent process can include or exclude a child as a user of any device,
provided the parent is also a user of it:

258 A CASE STUDY: RC 4000 Chap. 8

include user(child, device number, result)
exclude user(child, device number, result)

During removal of a child, the monitor excludes it as a user of all devices.
All in all, three conditions must be satisfied before an internal process

can start input /output :

(1) The device must be an external process with a unique name.

(2) The internal process must be a user of the device.

(3) If the external process controls a sequential document , the internal
process must have reserved it.

8.6.5. Privileged Operations

Files on the backing store are described in a catalog, which is also kept
on the backing store. Clearly, there is a need to be able to prevent an
internal process from reserving an excessive amount of space in the catalog
or on the backing store as such. It seems difficult, however, to specify a
reasonable rule in the form of a claim that is defined when a child process is
created. The main difficulty is that catalog entries and data areas can
survive the removal of the process that created them; so backing storage is a
resource a parent process can lose permanently by allocating it to its
children.

As a half-hearted solution, we introduced the concept privileged
monitor procedures. A parent process must supply each of its children with
a procedure mask, in which each bit specifies whether the child is allowed
to call a certain moni tor procedure. The mask must be a subset of the
parent's own mask.

The privileged operations include all moni tor procedures that

(1) change the catalog on the backing store;

(2) create and remove the names of peripheral devices; and

(3) change the real-time clock.

8.7. MONITOR FEATURES

This section is a survey of specific monitor features such as real-time
synchronization, conversational access, and backing store files. Although
these are not essential primitive concepts, they are indispensable features of
practical multiprogramming systems.

Sec. 8.7. MONITOR FEATURES 259

8.7.1. Real-time Synchronization

Real t ime is measured by an interval t imer which interrupts the central
processor regularly (normally, every 25 msec). The interval t imer is used to
control processor multiplexing and to implement an external process that
permits the synchronization of internal processes with real time. All
internal processes can send messages to this c lock process . At the end of the
t ime interval specified in the message, the clock process returns an answer
to the sender. To avoid a heavy overhead of clock administration, the clock
process only examines its queue every second.

8.7.2. Conversational Access

A multiprogramming system encourages a conversational mode of
access in which users interact directly with internal processes f rom
typewriter terminals. The external processes for terminals are designed to
make this possible.

Initially, all program execution is ordered by operators communicating
with the basic operating system. It would be very wasteful if the operating
system had to examine all terminals regularly for possible operator
requests. Therefore, our first requirement is that terminals be able to
activate internal processes by sending messages to them (other external
processes are only able to receive messages).

It must of course also be possible for an internal process to open a
conversation with a terminal.

And, finally, a terminal should be able to accept messages simultane-
ously from several internal processes. This will enable an operator to
control more than one internal process from the same terminal. This is
valuable in a small installation.

In short, terminals should be independent processes that can open
conversations with any internal process, and vice versa. A terminal should
assist the operator with the identification of the internal processes using it.

An operator opens a conversation by depressing an interrupt key on the
terminal. This causes the moni tor to assign a line buffer to the terminal.
The operator must then identify the internal process to which his message
is addressed. Following this, he can input a message of one line, which is
delivered in the queue of the receiving process.

A message to the basic operating system S can, for example, be typed as
follows:

to S
n e w p b h run

(The word in bold face type is ou tpu t by the terminal process in response
to the key interrupt.)

260 A CASE STUDY: RC 4000 Chap. 8

An internal process opens a conversation with a terminal by sending a
message to it. Before the inpu t /ou tpu t is started, the terminal identifies the
internal process to the operator . This identification is suppressed after the
first o f a series of messages f rom the same process.

In the following example, two internal processes, A and B, share the
same terminal for input /ou tpu t . Process identifications are in bold face
type:

t o A
first input line to A
second input line to A
f rom B
first ou tpu t line f rom B
second ou tpu t line f rom B
f rom A
first ou tpu t line f rom A

These processes are unaware of their sharing the same terminal. F rom
the point of view of internal processes, the identif ication of user processes
makes it irrelevant whether the installation contains one or more terminals.
(Of course, one cannot expect operators to feel the same way abou t it.)

8.7.3. File System

The moni tor supports a semi-permanent storage of files on a backing
store consisting o f one or more drums and disks. The moni tor makes these
devices appear to be a single backing store with blocks of 256 words each.
This virtual backing store is organized as a collection of named data areas.
Each area occupies a number of consecutive blocks on a single backing
store device. A fixed part of the backing store is reserved for a catalog
describing the names and locations of data areas.

Data areas are t reated as external processes by internal processes.
Inpu t /ou tpu t is started by messages sent to the areas specifying the desired
operations, internal store areas, and relative block numbers within the data
areas. The identification of a data area requires a catalog search. To reduce
the number of searches, i npu t /ou tpu t must be preceded by an explicit
creation of an area process description within the monitor .

Catalog Entries

The catalog is a f ixed area on the backing store divided into a number
of entries identified by unique names. Each ent ry is o f fixed length and
consists of a head, which identifies the entry, and a tail, which contains the

Sec. 8.7. MONITOR FEATURES 261

rest of the data. The monitor distinguishes between entries describing data
areas on the backing store and entries describing other things.

An entry is created by calling the monitor procedure:

create entry(name, tail, result)

The first word of the tail defines the size of an area to be reserved and
described in the entry; if the size is negative or zero, no area is reserved.
The rest of the tail contains nine optional parameters, which can be
selected freely by the internal process.

Internal processes can look up, change, rename, or remove existing
entries by means of the procedures:

look up entry(name, tail, result)
change entry(name, tail, result)
rename entry(name, new name, result)
remove entry(name, result)

The catalog describes itself as an area in an entry named catalog.
The search for catalog entries is minimized by using a hashed value of

names to define the first block to be examined. Each block contains 15
entries so most catalog searches only require the input of a single block
unless the catalog has been filled to the brim.

The allocation of data areas is speeded up by keeping a bit table of
available blocks within the monitor. In practice, the creation or
modification of an entry therefore only requires input and ou tput of a
single catalog block.

Catalog Protection

Since many users share the backing store as a common data base, it is
vital that they have means of protecting their files against unintentional
modification or complete removal. The protection system used is similar to
the store protection system.

The head of each catalog entry is supplied with a catalog key. The rules
of access within an internal process are defined by a catalog mask set by its
parent process. Each bit in this mask corresponds to one of 24 possible
catalog keys: If a bit is one, the internal process can modify or remove
entries (and the associated areas) with the corresponding key; otherwise,
the process can only look up these entries. A parent can only assign a
subset of its own catalog keys to a child process. Initially, the basic
operating system owns all keys.

To prevent the catalog and the rest of the backing store from being
filled with irrelevant data, the concept temporary entry is introduced. This
is an entry that can be removed by another internal process as soon as the

262 A CASE STUDY: RC 4000 Chap. 8

internal process that created the entry has been removed. Typical examples
are working areas used during program translation and data areas created,
but not removed, by erroneous programs.

This concept is implemented as follows: During the creation of an
internal process, the monitor increases a creation number by one and stores
it within the new process description. Each time an internal process creates
a catalog entry, the monitor includes its creation number in the entry head
indicating that it is temporary. Internal processes can at any time scan the
catalog and remove all temporary entries, provided the corresponding
creators no longer exist within the monitor.

So, in accordance with the basic philosophy, the monitor only provides
the necessary mechanism for the handling of temporary entries and leaves
the actual strategy of removal to the hierarchy of processes.

To ensure the survival of a catalog entry, an internal process must call
the privileged monitor procedure:

permanent entry(name, catalog key, result)

to replace the creation number with a catalog key. A process can, of course,
only set one of its own keys in the catalog; otherwise, it might fill the
catalog with highly protected entries tha t could be difficult to detect and
remove.

Area Processes

Before it is used for input /output , a data area must be looked up in the
catalog and described as an external process within the monitor by a call of
the procedure:

create area process(name, result)

The area process is created with the same name as the catalog entry.
Following this, internal processes can send messages with the following

format to the area process:

message: input output operation
first store address
last store address
first block number

The tables used to describe area processes within the moni tor are a
limited resource controlled by area claims defined by parent processes (see
Section 8.6.3).

The backing store is a direct access medium serving as a common data

Sec. 8.8. BASIC OPERATING SYSTEM 263

base. To utilize this property fully, internal processes should be able to
input simultaneously from the same area (for example, when several copies
of an Algol compiler are executed simultaneously). On the other hand, the
access to an area must be exclusive during ou tpu t when its content is
undefined from the point of view of other processes.

Consequently, we distinguish between internal processes that are
potential users of an area process and the single process that may have
reserved the area for exclusive use. This distinction was also made for
peripheral devices (Section 8.6.4), but the rules of access are different here.
An internal process is a user o f an area process after its creation. This
enables the internal process to perform input from the area as long as no
other process reserves it. An internal process can reserve an area process if
its catalog mask permits modification of the corresponding catalog entry.
After reservation, the internal process can perform both input and output .

Finally, it should be mentioned that the catalog is permanently
described as an area process within the monitor. This enables internal
processes to input and scan the catalog sequentially; for example, during
the removal of temporary entries. Only the monitor and the basic operating
system can, however, perform output to the catalog. And the basic
operating system only does this during system initialization.

8.8. BASIC OPERATING SYSTEM

This section illustrates by means of examples the functions of the basic
operating system that can create and control the execution of concurrent
processes on request f rom typewri ter terminals.

8.8.1. Process Control

After system initialization, the internal store contains the moni tor and
the basic operating system S. S enables independent operators to create and
control internal processes from typewri ter terminals. In addition to this, S
can name peripheral devices and keep track of the date and time.

S is the "pater familias" of the family tree of internal processes.
Initially, it owns all system resources such as storage, protect ion keys,
peripherals, message buffers, and process description tables. Apart f rom
being a permanent process in the system, S has no special status; it is
treated by the monitor like any other internal process. In particular, S does
not execute privileged machine instructions or modify process descriptions
within the monitor. So it is possible to replace S with another basic
operating system during system initialization.

In the following, the creation and control of internal processes f rom
terminals is explained. An operator sends a message to the operating system

264 A CASE STUDY: RC 4000 Cha.o. 8

S by depressing the interrupt key on a terminal and typing the name S
followed by a command line.

A message, such as the following:

to S
new pbh run

causes S to create an internal process with the name pbh, load a standard
program into it from the backing store, and start its execution. Following
this, S outputs the response:

ready

In this case, the process was created with a standard set of resources,
which enables it to execute systems programs such as the editor, assembler,
or Algol compiler. The program loaded into the process was one which will
input and interpret further job control statements (the meaning of these is
irrelevant to the basic operating system).

The operator can also explicitly specify the resources he wants; for
example, the size of the store area, the number of message buffers, and the
program to be loaded:

t o S
new pbh size 16000 bur 18 prog 0S4000 run

Resources not mentioned (such as the number of area processes) are still
given standard values.

Normally, S chooses the actual location of storage and the values of
protect ion keys. The operator can, however, specify these absolutely:

t o S
new pbh addr 13500 pr 2, 3, 4 p k 2 run

This will assign the base address 13500 to the process, set the bits 2, 3, and
4 in its protect ion register to 1, and set the protect ion key to 2 within its
store area. But S will check that this does no t conflict with store and
protect ion keys assigned by it to other processes.

After creation and start, a user process can communicate with the
terminal according to its own rules:

from pbh
. . • • •

When the operator wants to s top program execution temporari ly within
his process, he types:

Sec. 8.8 BASIC OPERATING SYSTEM 265

t o S
s t o p

He can start it again at any time by the command:

t o S
s tart

If the user process sends a message to operating system S, the process is
stopped by S, and the following message is output :

from S
pause pbh

At this point, the operator has the choice of starting the process again
or removing it completely from the system:

t o S
re m o ve

It is possible to create and control more than one process from the
same terminal, for example:

t o S
n e w j j run n e w p b h run

But in this case the operator must preface subsequent commands with the
name of the process he is referring to:

t o S
p r o c j j s t o p

Actually, the operating system remembers the name of the last process
referred to from a terminal. It is therefore only necessary to mention the
process name explicitly each time the operator refers to a new process.

After its creation, an internal process is included as a user of a standard
configuration defined within S; but the operator can also explicitly i nc lude
or e x c l u d e his process as a user of other devices as well:

t o S
inc lude 7, 9, 13 e x c l u d e 5, 4

where the integers denote device numbers.
After mounting documents, the operator

peripherals, for example:
can assign names to

266 A CASE STUDY: RC 4000 Chap. 8

t o 8
call 5 = p r i n t e r , 8 = m a g t a p e

The operating system prints an error message when it is unable to honor
a request, for example:

t o 8
n e w p b h s i z e 20000 r u n
n o core

In this situation, the operator can ask 8 to list the m a x i m u m number of
each resource available at present:

t o 8
m a x

max 18000 18 14 2 6

In this example, the largest available store area has a length of 18,000
locations; whereas the number of message buffers, area process descrip-
tions, internal process descriptions, and protect ion keys available are 18,
14, 2, and 6, respectively.

Finally, the operating system can ou tpu t a list of all internal processes
created by it. They will be listed in the order in which their store areas
fol low one another f rom low toward high addresses. Each process is
described by its name, first store address, size of store area, and the
protect ion key set within the area:

t o 8
l is t
jj 12216 10000 3
pbh 22216 6000 1

Commands from a terminal are obeyed in their order of arrival. The
monitor permits simultaneous input of messages f rom all terminals. The
basic operating system can, however, only respond simultaneously to a
limited number of messages. For each simultaneous conversation, 8 uses a
working area to process a command line. When 8 must wait for console
output , the current value of its registers and the address of the message
buffer involved are stored in a working area before S inspects its event
queue for other messages or answers. An answer to 8 causes a retrieval of
the corresponding working area and a continuation of the interrupted
action.

A message to S is only processed when a working area is available and
all previous messages f rom the same console have been served (see
Algorithm 8.1).

Sec. 8.8 BASIC OPERATING SYSTEM 267

The main function of the basic operating system is to receive requests
from typewri ter terminals, call the corresponding monitor procedures

create process
start process
stop process
remove process

and transfer programs from the backing store to the internal store.
The operating system obeys these requests unconditionally as long as

resources are available. Thus, it is no t a realistic operating system, bu t only
a means of activating other operating systems after system initialization.

8.8.2. System Initialization

The system is delivered as a binary paper tape that can be input to the
internal store by placing it in a paper tape reader and depressing an
autoload key on the computer . After loading, the monitor initializes
process descriptions of all peripheral devices, links all message buffers to
the common pool, assigns all resources to the basic operating system, and
starts it.

First, the basic operating system executes a program which can
initialize the backing store with catalog entries and binary programs input
from paper tape or magnetic tape.

These input tapes consist of commands and programs with a format
such as the following:

newcatalog
create editor, 10
load editor
<edi tor program>
o . • • •

end

The command newcatalog causes the creation of an empty catalog on
the backing store. This is done by sending ou tpu t messages to a standard
area process called catalog defined within the monitor. Only the basic
operating system is permitted to use this area process and will only do so
during system initialization.

The command create makes the basic operating system call the
monitor, create a catalog entry named editor, and associate a backing store
area of 10 blocks with it.

The command load is obeyed as follows: First, the basic operating
system calls the monitor to create an area process from the catalog entry
named editor; then, the basic operating system inputs the editor program

268 A CASE STUDY: RC 4000 Chap. 8

from the input tape and outputs it to the backing store area; and, finally,
the basic operating system calls the monitor to remove the area process
again.

Other commands reflect the remaining monitor procedures for files. In
this way, the file system can be initialized with a sequence of standard
programs. The end command terminates the initialization of the catalog.
The basic operating system is now ready to receive operator requests f rom
terminals.

If one wishes to load the moni tor and the basic operating system
without changing an existing catalog, the initializing tape need only contain
the commands:

oldcatalog
end

8.9. SIZE AND PERFORMANCE

The R C 4 0 0 0 is a 24-bit binary computer with typical instruction
execution times of 4 ~sec. It permits a practically unlimited expansion of
the internal store and a standardized connection of all kinds of peripherals.
Multiprogramming is facilitated by program interruption, store protection,
and privileged instructions.

The implementation of the system described here makes multi-
programming feasible with a minimum store of 32 K words, backed by a
fast drum or disk. The monitor includes external processes for a real-time
clock, typewriters, paper tape readers and punches, line printers, magnetic
tapes, and files on the backing store. The size of the monitor and the basic
operating system is as follows:

primitives
code for external processes
process descriptions and buffers

words

2400
1150
1250

monitor 4800
basic operating system 1400

6200

The communicat ion primitives are executed in the uninterruptable state
within the system nucleus. The execut ion time of these sets a limit on the
system's response to real-time events:

msec

send message 0.6
wait message 0.4
send answer 0.6
wait answer 0.4

Sec. 8.9. SIZE AND PERFORMANCE 269

An analysis shows that the 2 msec required by a complete conversation
(the sum of the four primitives) are used as follows:

per cent

validity checking 25
process synchronization 45
message buffering 30

The primitives for the creation, start, stop, and removal of processes are
implemented in an anonymous internal process within the system nucleus
to avoid intolerably long periods in the uninterruptable state. Typical
execution times for these are:

msec

create process 3
start process 26
s top process 4
r emov e process 30

The excessive times for the start and removal of an internal process are
due to the peculiar store protection system of the R C 4000 computer,
which requires the setting of a protection key in every store word of a
process. If the machine had been equipped with base and limit registers,
start process and r e m o v e process would only have taken 2 and 6 rnsec,
respectively.

There were never more than three people involved in the design
simultaneously. The total effort of structural design, programming, testing,
and documentat ion was about 4 man-years.

8.10. IMPLEMENTATION DETAILS

The following is an algorithmic definition of a s impl i f i ed version of the
monitor procedures for process communication and scheduling. It omits
the following details:

process names
external processes
dummy answers
error reactions
event primitives
processor multiplexing
resource protection (except for message buffers)

I have also simplified the removal of a process as follows: All message
buffers sent by a process are immediately returned to the pool upon
removal of the process.

270 A CASE STUDY: RC 4000 Chap. 8

The simplified algorithms have not been tested and may contain minor
errors. Their main purpose is to illustrate implementation techniques.

8.10.1. Process Communication

Algorithm 8.2 shows the data structure used within the monitor.
Internal processes and message buffers are represented by two arrays; the
buffer pool, by a sequence of buffer indices.

ALGORITHM 8.2 The Monitor Data Structure

type P = 1 . . max number o f processes;
B = 1 . . m a x number o f buffers;
C = array 1 . . 8 of integer;

var v: shared
record

process: array P o f
record

state: (removed, started, . . .);
claim: O. .max number of buffers;
queue: sequence of B;
arrival: event v;

end
buffer: array B of

record
state: (empty, sent, received, returned);
content: C;
to, from: O. . max number o f processes;

e n d
pool: sequence of B;

e n d

funct ion running: P;
begin . . . e n d

Each process description defines a state, a buffer claim, a message
queue, and an event variable on which the given process can await the
arrival of the next message or answer.

Each message buffer contains a state, a content (message or answer),
and an identification of the processes to and from which the content is
sent.

Initially, all process descriptions (except the one representing the basic

Sec. 8.10. IMPLEMENTATION DETAILS 271

operating system) are set in the removed state with zero claims and empty
queues; and all buffers are entered in the pool in the empty state with to
and from equal to zero.

A standard function, running, identifies the internal process that calls
the monitor.

Algorithm 8.3 defines the moni tor procedure send message. If the
receiving process exists and the calling process can claim another message
buffer, one is selected from the pool and initialized with the indices of
sender and receiver, as well as with the message itself, and the state is set to
sent. Finally, the index of the buffer is entered in the queue of the receiver
and an arrival event is caused (unless the receiver is stopped).

ALGORITHM 8.3 The Monitor Procedure Send Message

procedure send message
(receiver: P; message: C; vat index : B);

region v do
bagin

with process(running) do
i f process(receiver).state ~ removed & claim > 0 then
begin

claim:= claim - 1;
get(index, pool);
with buffer(index) do
begin

state: = sent;
content: = message;
to := receiver;
from := running;

end
with process(receiver) do
begin

put(index, queue);
if state = started then cause(arrival);

end
end

end

Algorithm 8.4 defines the monitor procedure wait message. As long as
the queue of the calling process is empty, it waits for an arrival. Following
this, a message buffer is removed from the queue and set in the state
received after making its content available to the calling process.

272

ALGORITHM 8.4

A CASE STUDY: RC 4000

The Monitor Procedure Wait Message

procedure wait message
(vat sender: P; message: C; index: B);

region v do
begin

with process(running) do
begin

while empty(queue) do await(arrival);
get(index, queue);

end
with buffer(index) do
begin

state: = received;
message: = content;
sender:= from;

end
end

Chap. 8

Algorithm 8.5 defines the moni tor procedure send answer. It checks
whether the calling process has received a message in the given buffer; if it
has, the answer is placed in the buffer and its state is set to returned.
Finally, an arrival is caused for its original sender (unless it is stopped).

Algorithm 8.6 defines the monitor procedure wait answer. It checks
whether the calling process has sent a message in the given buffer. As long

ALGORITHM 8.5 The Monitor Procedure Send Answer

procedure send answer
(answer: C; index: B);

region v do
begin

with buffer(index) do
if state = received & to = running then
begin

state := returned;
content:= answer;
to: = O;
with process(from) do
if state = started then cause(arrival);

end
end

Sec. 8.10. IMPLEMENTATION DETAILS 273

as no answer has been returned in the buffer, the calling process waits for
an arrival. Following this, the buffer claim of the calling process is increased
by one, and the buffer is returned to the pool in the empty state after
having made its content available to the calling process.

ALGORITHM 8.6 The Monitor Procedure Wait Answer

procedure wait answer
(vat answer: C; const index: B);

region v do
begin

with buffer(index) do
if from = running then
begin

while state ¢ returned do
a wait(process(running), arrival);
state:= empty;
answer: = content;
from:= 0;
put(index, pool);
with process(running) do
claim := claim + 1;

end
end

8.10.2. Process Scheduling

More complex are the algorithms which stop and start processes. To
explain this I refer once more to the family tree shown in Fig. 8.8.

Suppose process B wants to stop its child F. The purpose of doing this
is to ensure that all program execution within the store area of process F is
stopped. Since a part of this area has been assigned to children of F, it is
necessary to stop not only the child F, but also all descendants of F.
However, it is possible that some of these descendants have already been
stopped by their own parents. In the present example, process G may still
be active, while process H may have been stopped by its parent F.
Consequently, the monitor should only stop processes F and G.

Consider now the reverse situation in which process B starts its child F
again. The purpose is to establish the situation exactly as it was before
process F was stopped. So the monitor must be very careful to start only
those descendants of F that were stopped along with it. In our example, the
monitor must start processes F and G, but not H; otherwise, we will
confuse F, which still relies on its child H being stopped.

274 A CASE STUDY: RC 4000 Chap. 8

To do this correctly, the moni tor must distinguish between processes
that are s topped by their parents and those s topped by their ancestors. The
corresponding process states are called stopped directly and stopped
indirectly, respectively.

To identify the descendants which should be s topped or started along
with a given child, the moni tor must scan the process tree in hierarchal
order f rom the root toward the leaves.

When a process is being created, a search is made for the first available
entry in the table of process descriptions. This entry again becomes
available when the process has been removed. The order in which processes
are created and removed is unpredictable; so the order in which processes
are arranged in this table does no t reflect the structure of the process tree.

We therefore introduce another table which contains the indices of
existing processes in hierarchal order. In this table, the index of a parent
process always precedes the indices of its child processes. When a child
process is created, its index is placed at the end of this table. When a child
process and its descendants have been removed, their indices are removed
from this table by compacting the remaining indices.

In the previous example (Fig. 8.8), the processes could have been
arranged in the two tables in the order shown in Fig. 8.9.

Process
descriptions Process

S hierarch,

F B

A A
C E

G F

D G

B C

H I o
E H

Fig. 8.9. An example of the ordering of processes within
the table of process descriptions and the table defining

the process hierarchy corresponding to Fig. 8.8.

Algorithm 8.7 defines the data structures needed to control process
communicat ion and scheduling. Each process description has been
extended with the identi ty of the parent process and a boolean indicating
whether the given process is a candidate for starting, stopping, or removal.
(Initially, this boolean is false.)

The basic operating system S is assumed to have process index 1. Since
S is never a candidate for starting, stopping, or removal, it is excluded f rom
the hierarchy table.

Sec. 8.10. IMPLEMENTATION DETAI LS 275

ALGORITHM 8.7 The Extended Monitor Data Structure

type P = 1 . . max number o f processes;
H = 2 . . max number o f processes;
B = 1 . . m a x number o f buffers;
C = array 1 . . 8 of integer;

var v: shared
record

process: array P of
record

state: (removed, started,
s topped directly, s topped indirectly);

parent: O. . max number o f processes;
candidate: boolean;
claim: O. . max number o f buffers;
queue: sequence of B;
arrival: event v;

end
hierarchy: array H of P;
buffer: array B of

record
state: (empty , sent, received, returned);
content: C;
to, from: O. .max number o f processes;

e n d
pool: sequence of B;

e n d

funct ion running: P;
b e g i n . . , e n d

Algorithm 8.8 defines the monitor procedure create process. It checks
whether the calling process has the resources it wants to assign to its child
(including a process description). To omit trivial details, the only resource
mentioned explicitly here is the buffer claim. Following this, an empty
process description is assigned to the child, and initialized with the parent
index and the resources mentioned while the state is set to stopped
directly. Finally, the hierarchy table is extended with the child index. (This
trivial operation is considered a primitive here.)

Algorithm 8.9 defines the monitor procedure start process. It checks
whether the calling process is the parent of the given child and whether the
child is in the state stopped directly; if it is, all existing processes are
scanned in hierarchal order to identify the candidates for starting: They are
the child process itself and all processes in the state stopped indirectly

276

A LGORITHM 8.8

A CASE STUDY: RC 4000

The Monitor Procedure Create Process

procedure create process
(vat child: P; const resources: B);

region v do
begin

with process(running) do
if claim t> resources then
label done
begin

claim := claim - resources;
for every child do
with process(child) do
if state = removed then
begin

state:= s topped directly;
parent: = running;
claim := resources;
ex tend hierarchy(child);
exit done;

end
end

end

Chap. 8

ALGORITHM 8.9 The Monitor Procedure Start Process

procedure start process
(child: P);

vat h: H;p: P;

region v do
begin

with process(child) do
i f parent = running & state = stopped directly then
for every h do
begin

p := hierarchy(h);
with process(p) do
if p = child
or state = stopped indirectly &

process(parent), candidate then
begin

state: = started;
candidate:= true;

Sec. 8.10. IMPLEMENTATION DETAI LS

resume(p, arrival);
end
else candidate: = false;

end
end

277

whose parents are themselves candidates. When a candidate has been
recognized, it is resumed in the state started. Since we have already
discussed details of processor multiplexing in Chapter 4, the operation
resume is considered a primitive here. If the process is waiting for an arrival,
resume will cause one; otherwise, it will return the process to the ready
queue.

Algorithm 8.10 defines the monitor procedure stop process. It checks

ALGORITHM 8.10 The Monitor Procedure Stop Process

procedure stop process
(child: P);

va rh : H; p : P;

region v do
begin

with process(child) do
i f parent = running & state ~ stopped directly then
for every h do
begin

p: = hierarchy (h);
with process(p) do
i f p = child then
begin

state := stopped directly;
candidate := true;
preempt(p);

end else
if state ~ stopped directly &

process(parent), candidate then
begin

state := stopped indirectly;
candidate:= true;
preempt(p);

end
else candidate:= false;

end
end

278 A CASE STUDY: RC 4000 Chap. 8

whether the calling process is the parent of the given child and whether the
child has not already been stopped directly; if it is not, all existing
processes are scanned in hierarchal order to identify the candidates for
stopping: They are the child process itself and all processes that are not in
the state stopped directly and whose parents are themselves candidates.
When a candidate has been recognized, it is preempted from the ready
queue (if it is in that queue). The short-term scheduling primitive preempt
is considered a primitive here.

ALGORITHM 8.11 The Monitor Procedure Remove Process

procedure remove process
(child: P);

vat h: H;p: P;
index: B; resources: O. .max number o f buffers;

region v do
begin

with process(child) do
i f parent = running & state = stopped directly then
begin

resources:= O;
for every h do
begin

p := hierarchy(h);
with process(p) do
i f p = child
or process(parent), candidate then
begin

state := removed;
candidate:= true;
scan buffers;
resources:= resources + claim;
parent: = O;
claim:= O;
reset(arrival);

end
else candidate: = false;

end
with process(running) do
claim := claim + resources;
compact hierarchy;

end
end

Sec. 8.10. IMPLEMENTATI ONDETAI LS 279

Algorithm 8.11 defines the moni tor procedure remove process. It
checks whether the calling process is the parent of the given child and
whether the child is in the state stopped directly; if it is, all existing
processes are scanned in hierarchal order to identify the candidates for
removal: They are the child process itself and all processes whose parents
are themselves candidates. When a candidate has been recognized the
following is done: All message buffers are scanned as shown in Algorithm
8.12. If a buffer was sent by the candidate, it is removed from the queue of

ALGORITHM 8.12 The Monitor Procedure Remove Process (cont.)

"scan buffers"

for every index do
with buffer(index) do
ff state -~ empty then
begin

if from = p then
begin

claim := claim + 1;
ff state -~ returned then
with process(to) do remove(index, queue);
state:= empty;
from:= 0; to: = 0;
put(index, pool);

end else
if to = p then
begin

remove buffer(index, queue);
state:= returned;
content:= dummy answer;
to: = 0;
with process(from) do
i f state = started then cause(arrival);

end
end

the receiver and returned to the pool. If a buffer was sent to the candidate,
it is removed from the queue of the latter and returned to the sender with a
dummy answer. Following this, the process description of the candidate is
made available for future creation. Finally, all resources assigned to the
child and its descendants are returned to the calling process and the
hierarchy table is compacted (the latter operation is considered a primitive
here).

280 A CASE STUDY: RC 4000 Chap. 8

8.10.3. Preemption and Input/Output

So far, we have only considered internal processes. In the actual system,
preemption is complicated by input /ou tpu t f rom external processes. This is
handled as follows:

When a parent wants to s top a child, the state of the child is changed to
awaiting direct stop, and all started descendants of the child are described
as awaiting indirect stop. At the same time, these processes are removed
from the ready queue.

What remains to be done is to ensure that all inpu t /ou tpu t started by
these processes is terminated. To control this, each internal process
description contains an integer called the stop count. The stop count is
initialized to zero and increased by one each time the internal process starts
input /output . On arrival of an answer f rom an external process, the
monitor decreases the stop count by one and examines the state of the
internal process. If the stop count becomes zero and the process is awaiting
stop (directly or indirectly), its state is changed to s topped (directly or
indirectly).

The call of stop process is completed only when all involved processes
have been stopped. This can last for some time and it may no t be
acceptable to the parent (being an operating system with many other
duties) to be inactive for so long. For this reason, the stop operat ion is split
in two parts. The s top procedure

stop process(name, buffer, result)

only initializes the stopping of a child and selects a message buffer for the
parent. When the child and its descendants have been completely stopped,
the moni tor delivers an answer to the parent in this buffer. So the parent
can use the procedures wait answer or wait event to wait for the
complet ion of the stop.

In principle, an internal process cannot be s topped until all
input /ou tpu t requested by it has been completed. This requirement is
inevitable for high-speed devices such as a drum or a magnetic tape station,
which are beyond program control during input /output . But it is not
strictly necessary to enforce this for low-speed devices controlled by the
monitor on a character-by-character basis. In practice, the moni tor handles
the stop situation as follows:

Before an external process starts high-speed input~output, it examines
the state of the sending process. If the sender is s topped (or waiting to be
stopped), the inpu t /ou tpu t is not started; instead, the external process
returns an answer indicating a block length of zero. The sender must then
repeat the inpu t /ou tpu t after being restarted. If the sender has no t been
stopped, its s top count is increased and the input /ou tpu t is started. Note
that if the stop count were increased immediately after the sending of a

Sec. 8.11. A CRITICAL REVIEW 281

message, the sending process could only be s topped after the complet ion of
all previous operations pending in external queues. By delaying the increase
of the stop count as much as possible, we ensure that high-speed peripherals
at most prevent the stopping of internal processes during a single block
transfer.

Low-speed devices never increase the stop count. During output , an
external process fetches one word at a time from the sending process and
outputs it character-by-character regardless of whether the sender is
s topped meanwhile. Before fetching a word, the external process examines
the state of the sender. If it is s topped (or waiting to be stopped), the
output is terminated by an answer defining the actual number of characters
output ; otherwise, the ou tpu t continues. During input, an external process
examines the state of the sender after each character. If the sender is
s topped (or waiting to be stopped), the input is terminated by an answer;
otherwise, the character is stored and the input continues. Low-speed
devices therefore never delay the stopping of a process.

8.10.4. Interruptable Monitor Procedures

Some monitor procedures are too long to be executed entirely in the
uninterruptable state; in particular, those which update the catalog on the
backing store and create, start, stop, and remove processes. They are called
as other monitor procedures, but behind the scenes they are executed by an
anonymous internal process that only operates in the uninterruptable state
for short intervals while updating monitor tables; otherwise, the anony-
mous process shares processor time with other internal processes.

When an internal process calls an interruptable moni tor procedure, the
following takes place: The state of the calling process is changed to
awaiting monitor response. At the same time, its process description is
linked to the event queue of the anonymous process. The anonymous
process serves the calling processes one by one and returns them to the
ready queue after completion of their calls.

So monitor calls of long duration (3 to 30 msec) are interruptable as
other internal processes. From the point of view of a calling process
however, these monitor procedures are still indivisible primitives since: (1)
they are executed only by the anonymous process one at a time in their
order of request; and (2) the calling processes are delayed until their
requests are honored.

8.11. A CRIT ICAL REVIEW

I conclude the case s tudy of the RC 4000 multiprogramming system
with a critical review of its advantages and disadvantages.

282 A CASE STUDY: RC 4000 Chap. 8

8.1 1.1. System Advantages

Among the more attractive attributes of the system are the following:

(1) Well-defined objectives. It implements a nucleus which can be
extended with a variety of operating systems. It has been successfully used
to design a spooling system and a number of real-time systems which
supervise industrial plants.

(2) Simple structure. The monitor implements about 30 operations.
The concepts involved and their relationships are fully explained in a
manual of 160 pages. Compared to the actual machine language
implementation, the manual omits only trivial programming details.

(3) Moderate size. A monitor of 4800 words and a basic operating
system of 1400 words is reasonably small by most standards.

(4) Reliability. Although the monitor was written in machine language,
its simplicity and moderate size made it possible to develop a set of
programs which were executed as internal processes and tested the monitor
systematically, starting with processor multiplexing, followed by process
communication, and ending with process scheduling. The monitor was
extended with a procedure of about 20 instructions which would stop the
system temporarily and output one or two monitor variables (addresses of
process descriptions or message buffers) in the uninterruptable state each
time a significant event occurred (such as a preemption or resumption of a
process, or a change of a message buffer state). This simple test mechanism
ensured that the response to and recording of an event was executed as a
critical region. By careful design of the test programs, it was ensured
that they would be executed as reproducible, concurrent processes. As a
result, the monitor was practically error-free after a test period of one
month (Brinch Hansen, 1973).

(5) Readable documentation. A report entitled "An Undergraduate
Course on Operating Systems Principles," published by the National
Academy of Engineering (Cosine report, 1971) recommends that the study
of operating system concepts be accompanied by a detailed study of a
particular system embodying these concepts. The report emphasizes that
"the system should be documented adequately, so that recourse to the
operating system code is not necessary for a detailed understanding of its
implementation" and further states that "the committee is aware of only a
few systems that meet these requirements." One of the three systems
mentioned in the report is the RC 4000 multiprogramming system.

Sec. 8.11. A CRITICAL REVIEW 283

8.1 1.2. System Disadvantages

Although our at t i tude toward program design was guided by reasonably
sound principles, our particular solution to the problem at hand was far
from ideal. The system nucleus is unsatisfactory in the following respects:

(1) Error detection. Today I question the most basic assumption of the
system: That it tries to make multiprogramming safe at the machine level
of programming. The monitor defines a set of language primitives for
multiprogramming that may be called by correct or incorrect programs
written in machine language. We had to make this assumption when the
system was built because no high-level language available at that t ime was
both sufficiently well-structured and efficient for general programming.
The resulting lack of structure in user programs makes it impossible to
detect multiprogramming errors at compile time; the moni tor therefore
spends a considerable amount of processor time verifying the validity of
calls at run time. Unfortunately, this checking only catches simple errors of
parameter values or violations of protect ion rules, but gives no assistance
whatsoever in the detect ion of t ime-dependent errors.

(2) Concurrent processes. In retrospect, I realize that the event
primitives were introduced as an ad hoc means of simulating concurrent
activities within a common store area. This enables the basic operating
system to be engaged in conversations with several terminals at the same
time. It was also used in the implementation of a spooling system. It would
have been conceptually more clear to have designed these operating systems
as a set of cooperating, internal processes. But the designers of these
operating systems felt that it would have been too expensive (in terms of
system resources) to establish several internal processes and too
cumbersome to share large data structures among them (for reasons
explained in the following paragraphs).

(3) Mutual exclusion. The data structure controlled by the monitor
(consisting of process descriptions and scheduling queues) is a global shared
variable. The monitor ensures mutual exclusion of operations on it by the
crude method of interrupt inhibition. This means that all process
interactions (including the synchronization of input /output) exclude one
another in time. Since some of them last several milliseconds, this makes
the moni tor a bott leneck. To alleviate this problem, we resorted to an ad
hoc solution by introducing an anonymous internal process which permits
processor multiplexing to continue during the most extensive moni tor calls.
But the real problem was that we did no t realize the need to establish
critical regions for an arbitrary number of shared variables and, therefore,
we did not solve that problem. This is also evident at higher levels of

284. A CASE STUDY: RC 4000 Chap. 8

programming: The only way a set of cooperating, internal processes can
achieve mutual exclusion of their access to a shared data structure is by
placing the data structure within one of the processes and accessing it by
sending messages to that process--a safe, but very expensive method since
each communicat ion requires 2 msec of moni tor time.

(4) Process communicat ion. Our desire to solve protect ion problems at
the machine language level made it necessary to implement a fairly
restrictive mechanism for process communicat ion within the monitor. This
created an artificial resource restriction (a finite number of message buffers
shared by all processes), an artificial data structure restriction (a fixed
message length of eight words for all processes), and an inefficient
implementation (physical copying of messages). The problem was simply
that we had no clear understanding of the need for establishing arbitrary
rules of process synchronization.

So the language features for multiprogramming implemented by the
nucleus--create, start, stop, and remove process, as well as send and wait
message--are unstructured and somewhat impractical. It would have been
far more natural to program operating systems in terms of concurrent
statements, shared variables, and critical regions (simple and conditional) as
proposed in this book. But this was by no means obvious when the system
was built.

(5) Medium-term scheduling. We saw the advantages of being able to
use an internal process to simulate an external process, bu t we did not
make it practical to do so. To avoid transmitting large data blocks as a
sequence of small messages, input /ou tpu t is handled by communicating
addresses to peripheral devices, which then transfer blocks directly to or
from the store through a high-speed data channel. The problem of
preventing process preemption and reassignment of the store while
input /ou tpu t is in progress is solved correctly by means of the s top count
for external processes. But, when an internal process A sends an address to
another internal process B to enable the latter to access a large data block
directly within the former, there is no guarantee that the operating system
of process A will no t preempt it f rom the store while this is being done
(unless the operating system is process B). Again, this shows that the
mutual exclusion problem is unsatisfactorily solved in general. Further-
more, medium-term scheduling is complicated considerably by our use of
unstructured multiprogramming features: This forces the moni tor to
examine all process descriptions and sometimes also all message buffers
before an internal process can be started, s topped, or removed.

(6) Short-term scheduling. At an early stage in the design, a distinction
was made between processes that control inpu t /ou tpu t and those that
perform computat ions. This distinction between external and internal
processes was based on differences in process scheduling and store

Sec. 8.12. L I TE RATU R E 285

addressing. It had a drastic influence on the real-time characteristics of the
system. On the one hand, input /output processes could be activated
immediately by interrupts and run without preemption for several
milliseconds. On the other hand, due to the use of fixed round-robin
scheduling, computat ional processes could only respond to urgent, external
events within 10 to 100 msec. The maintenance of the system was also
strongly affected by this decision. The input /ou tpu t processes enjoyed
privileges of addressing which enabled them to enter global critical regions
and execute shared procedures within the nucleus. But the smallest
modification of any of them required reassembly and testing of the entire
nucleus. In contrast, computat ional processes were unable to share
procedures, but were easy to implement and test separately. The system
nucleus was indeed built to create and execute computat ional processes
dynamically. We should have treated all processes uniformly at the
short-term level of scheduling and made it possible to assign priorities to
them when they were started.

(7) File system. The difficulty of establishing arbitrary critical regions
within processes and exchanging arbitrary data structures between them led
to the inclusion of too many functions in the system nucleus--among
others, the file system. The file system itself has several limitations: It
requires that file names be unique throughout the installation (which is
impractical); it uses contiguous allocation of backing storage, (which makes
it almost impossible to prevent a deadlock of unrelated computations); and
it does not prevent the loss of data in the case of hardware malfunction.
Since the file system is a part of the system nucleus, its replacement
requires reassembly and testing of the nucleus.*)

It is, however, to the credit of the system that all these deficiencies are
apparent to a keen reader of the system manual and not hidden as
undocumented implementation details.

8.12. LITERATURE

The following is a list of literature describing a number of excellent
operating systems in some detail.

The Scope operating system for the CDC 6600 computer is a
remarkably simple operating system for one of the fastest machines in the
world. It permits concurrent execution of up to seven non-interactive jobs
at a time. It is described by Thornton (1964) and Wilson (1971a).

The Master control program for the B5500 computer is also a system

*A later version of the system has removed some of the limitations of the file
system (Andersen, 1972).

286 A CASE STUDY: RC 4000 Chap. 8

for concurrent execution of non-interactive jobs. An unusual aspect of this
system is that it was written in extended Algol 60. It is described by
Lonergan (1961) and McKeag (1971a).

The Titan supervisor, designed at Cambridge University in England and
described by Fraser (1971) and Wilson (1971b), permits conversational
access from 26 terminals simultaneously. It is also noteworthy for its
simple file system.

Most multiprogramming concepts discussed in this book evolved during
the design of THE multiprogramming system at the Technological
University of Eindhoven, The Netherlands; that is, critical regions,
semaphores, deadlock prevention, and hierarchal program design. Various
aspects of this system are described by Bron (1971), Dijkstra (1965 and
1968), and McKeag (1971b).

The Multics system is a large interactive system which can serve about
50 users simultaneously. Its development has required 200 man-years. It is
described in great detail by Organick (1972).

BRON, C., "Allocation of virtual store in THE multiprogramming system,"
International Seminar on Operating System Techniques, Belfast, Northern Ireland,
Aug.-Sept. 1971.

DIJKSTRA, E. W., "Cooperating sequential processes," Technological University,
Eindhoven, The Netherlands, 1965. (Reprinted in Programming Languages, F.
Genuys, ed., Academic Press, New York, New York, 1968).

DIJKSTRA, E. W., "The structure of THE multiprogramming system," Comm. ACM
11, 5, pp. 341-46, May 1968.

FRASER, A. G., "The integrity of a disc based file system." International Seminar on
Operating System Techniques, Belfast, Northern Ireland, Aug..Sept. 1971.

LONERGAN, W. and KING, P., "Design of the B5000 system," Datamation 7, 5, pp.
28-32, May 1961.

McKEAG, R. M., "Burroughs B5500 Master control program," The Queen's University
of Belfast, Northern Ireland, 1971a.

McKEAG, R. M., "THE Multiprogramming system," The Queen's University of Belfast,
Northern Ireland, 1971b.

ORGANICK, E. I., The Multics System: An Examination of its Structure. MIT Press,
Cambridge, Massachusetts, 1972.

THORNTON, J. E., "Parallel operation in the Control Data 6600," Proc. AFIPS Fall
Joint Computer Conf., pp. 33-40, 1964.

WILSON, R., "CDC Scope 3.2," The Queen's University of Belfast, Northern Ireland,
1971a.

WILSON, R., "The Titan supervisor," The Queen's University of Belfast, Northern
Ireland, 1971b.

Sec. 8.4. EXTERNAL PROCESSES 247

whether it has the necessary resources to perform the requested action; if
not , it leaves the message in the queue and examines the next event.
However, if the process does possess the necessary resources, it accepts the
message, reserves the resources, and starts the requested action. As soon as
this involves the sending of a message to some other process, the
conversational process saves data about the state of the incomplete action
and proceeds to examine its queue from the start to engage itself in another
action.

Whenever the process finds an answer in its queue, it immediately
accepts it and completes the corresponding action. It can now release the
resources used and send an answer to the original sender that made the
request. After this, it examines the entire queue again to see whether the
release of resources has made it possible to accept pending messages.

An example of a process operating in accordance with this scheme is
the basic operating system S, which creates internal processes on request
from typewriter terminals. S can be engaged in conversations with several
terminals at the same time. It will only postpone an operator request if its
store area is occupied by other requests in progress or if it is already in the
middle of an action requested from the same terminal.

8.4. EXTERNAL PROCESSES

This section clarifies the meaning of the external process concept. It
explains the initiation of input /output by means of messages from internal
processes, dynamic creation, and removal of external processes, as well as
exclusive access to documents by means of reservation and releasing.

8.4.1. Input/Output

Consider the situation shown in Fig. 8.5, in which an internal process P
inputs a data block from an external process Q (say, a magnetic tape).

. . . . t ~ Input First address

block / Last address

1
External Internal

process Q process P

Fig. 8.5. Input from an external process Q to an internal
process P.

248 A CASE STUDY: RC 4000 Chap, 8

P starts input by sending a message to Q:

send message(Q, message, buffer)

The message defines an input /ou tpu t operation and the first and last
addresses of a store area within process P:

message: operation
first store address
last store address

The moni tor copies the message into a buffer and delivers it in the queue of
process Q. Following this, the moni tor uses the kind parameter in the
process description of process Q to switch to a piece of code common to all
magnetic tapes. If the tape station is busy, the message is merely left in its
queue; otherwise, input is started to the given store area. On return,
program execution continues in process P.

When the tape station completes the input by means of an interrupt,
the moni tor generates an answer and delivers it in the queue of process P
which in turn receives it by calling

wait answer(result, answer, buffer)

The answer contains status bits sensed from the device and the actual
length of the block input:

answer: status bits
block length

After delivery of the answer, the moni tor examines the queue of the
external process Q and starts its next operation (unless the queue is empty) .

Essentially all external processes follow this scheme, which can be
defined by the following algorithm:

"external process"
repeat

wait message;
ff message acceptable then
begin

start input output;
await interrupt;

end
produce answer;
send answer;

forever

Sec. 8.4. EXTERNAL PROCESSES 249

With low-speed, character-oriented devices, the monitor repeats the
input /ou tput for each character until a complete block has been
transferred. (While this is taking place, the time between interrupts is, of
course, shared among internal processes.) Internal processes can therefore
regard all input /output as block-oriented.

8.4.2. Mutual Exclusion

The use of message buffering provides a direct way of sharing an
external process among a number of internal processes: An external process
can simply accept messages from any internal process and serve them in
their order of arrival. An example of this is the use of a single typewriter
for the output of messages to a main operator.

This method of sharing a device ensures that a block of data is input or
output as an indivisible enti ty. But when sequential media, such as paper
tape, punched cards, or magnetic tape, are used, an internal process must
have exclusive access to the entire document. This is obtained by calling the
following monitor procedure:

reserve process(name, result)

The result indicates whether or not the reservation has been accepted.
An external process that handles sequential documents rejects messages

from all internal processes except the one that has reserved it. Rejection is
indicated by the result of wait answer.

During the removal of an internal process, the monitor removes all
reservations the process has made. Internal processes can, however, also do
this explicitly by means of the monitor procedure:

release process(name)

8.4.3. Process Identification

From the operator's point of view, an external process is created when
he mounts a document on a device and names it. The name must, however,
be communicated to the monitor by means of an operating system--an
internal process that controls the scheduling of other internal processes. So
it is more correct to say that external processes are created when internal
processes assign names to peripheral devices. This is done by means of the
monitor procedure

create peripheral process(name, device number, result)

The monitor has no way of ensuring whether a given document is

250 A CASE STUDY: RC 4000 Chap. 8

mounted on a device. There are also some devices, such as the real-time
clock, which operate wi thout documents .

The name of an external process can be explicitly removed by a call of
the moni tor procedure

remove process(name, result)

It is possible to implement an automatic removal of a process name
when the moni tor detects operator intervention in a device. This is done for
magnetic tapes.

8.4.4. Replacement of External Processes

The decision to control inpu t /ou tpu t by means of interrupt procedures
within the monitor, instead of using dedicated internal processes for each
peripheral device, was made to achieve immediate start of inpu t /ou tpu t
after the sending of messages. In contrast, the activation of an internal
process merely implies that it is linked to the ready queue; after activation,
several t ime slices can elapse before the internal process actually starts to
execute instructions.

The price paid for the present implementat ion of external processes is a
prolongation of the t ime spent in the uninterruptable state within the
monitor. This limits the system's ability to cope with real-time events--data
that are lost unless they are input and processed within a certain time.

An important consequence of the uniform handling of internal and
external processes is that it allows one to replace any external process with
an internal process of the same name; other processes that communicate
with it are quite unaware of this replacement.

Replacement of external processes with internal processes makes it
possible to enforce more complex rules of access to documents. In the
interest of security one might, for example, want to limit the access of an
internal process to one of several files recorded on a particular magnetic
tape. This can be ensured by an internal process that receives all messages
to the tape and decides whether they should be passed on to it.

As another example, consider the problem of testing a real-time system
before it is connected to an industrial plant. A convenient way of doing this
is to replace analog inputs with an internal process that simulates relevant
values of the actual measuring instruments.

The ability to replace any process in the system with another process is
a very useful tool.

(I am still presenting the system as we looked upon it in 1969.
Replacement of external processes has indeed been used since, but , as I will
point ou t later, there are severe practical restrictions on its usefulness.)

EXERCISES

The purpose of these exercises is to:

(1) bring to your attention practical problems encountered in most operating
systems;

(2) give you some experience in using the techniques presented in the text;

(3) give you the pleasure of deriving additional theoretical results; and

(4) suggest research projects which will increase our understanding of operating
system concepts.

CHAPTER 1

1.1. Study the manual of an operating system for a computer to which you have
access and ask yourself the following questions:
Is the manual easy to read7
How many pages must I read to understand the system well enough to use it
efficiently?
Does the manual clearly explain: the purpose of the system; the effect of its
operations; the cost of these operations (in terms of storage and execution time);
the overall internal structure; and the system's main limitations?
Find out from the operators how frequently the system crashes and for what
reasons. Start to think about how you would design and document a better
system.

1.2. The classical batch-processing system completely ignores the cost of increased
waiting time for users. Consider a single batch characterized by the following
parameters:

M
T
N
S
W

average mounting time
average service time per job
number of jobs
unit price of service time
unit price of waiting time per user

287

288

1.3.

1.4.

EXERCISES

(a) Show that the optimal batch size which minimizes the cost of service time and
waiting time per user (within a single batch) is

• --TM S
Nopt = W

(b) In an installation in which M ffi 5 rain, T = 1 min, and S ffi $300/hour, the
operators choose N = 50. Assuming that this is an optimal choice, find the unit
cost of user waiting time W?

The operating systems of some computers in the 1960's were protected against
destruction by their jobs by being placed in store locations which all programs
(including the operating system itself) could read from, but none could write into.
What was the defect of this early protection system?

A university uses a spooling system to execute student programs written in a
single high-level language. Measurements show that the execution phase of an
average job uses the processor as follows:

job scheduling 3 sec
compiler loading from drum 2 --
compilation 5 --
execution 15 --

25 sec

Suggest a method for increasing the throughput of this system.

1.5. In the Exec H system, users would submit a large number of jobs in the morning.
These jobs took hours to complete and thereby prevented fast response. Suggest a
modification of the scheduling policy which would discourage users from doing
this.

1.6. "Warm start." The backing store of a spooling system may hold the input and
output of as many as 10 to 50 jobs at any time. What methods would you
propose to ensure that the operating system will be able to continue scheduling
these jobs and printing their output after a breakdown and repair of the central
processor or the internal store?

1.7. In the Scope system for the CDC 6600 computer, system resources (processor
time, storage, and so on) can remain idle while running jobs wait for operators to
mount magnetic tapes. Suggest a solution to this problem.

1.8. (Research project) Define protection and scheduling rules for an installation that
maintains a library of 30,000 magnetic tapes of which 1000 are mounted on 30
stations each day. (Hint: Take the installation environment into consideration--
the manual handling of tapes, their organization on shelves, and the ways in
which one can collect and utilize data about their expected frequency of usage.)

1.9. In the CTSS system, a single processor and an internal store are multiplexed
among user computations by swapping. The amount of internal store required by

1.10.

1.11.

1.12.

1.13.

1.14.

1.15.

1.16.

1.17.

1.18.

1.19.

EXERCISES 289

each job during execution is known. How would you use this information about
the expected workload to make swapping more efficient?

In the original version of the SDC Q-32 system, swapping reduced processor
uti l ization by 50 per cent. Suggest a modification of swapping that will increase
processor util ization without degrading user response.

How does the solution to Exercise 1.10 complicate store management?

The CTSS system uses swapping to ensure immediate response to user requests
from terminals. Measurements showed that about one-half of all user requests
could be classified as file manipulation, program input, and editing. How would
you use this information about the expected workload to improve processor
util ization at a reasonable cost wi thout degrading user response?

In the SDC Q-32 system, a significant number of jobs required long processing
time with l i t t le or no interaction. To require that a user remain at a terminal
during these periods would clearly be undesirable. Suggest a system feature which
would enable users to be absent during their computat ions and at the same time
permit the terminals to be used by others.

In the RC 4000 multiprogramming system, all files on the backing store must
have unique names. In a large installation one cannot expect users to solve name
conflicts among themselves. Suggest a structure of the file system that enables
each user to be unaware of the names used by other users unless one of them
needs access to a file created by another.

Consider a simple file system that enables users to create, use, and delete files on
a disk which is not backed up by magnetic tapes. Suggest a reasonable
classification of files that can be used to select some of them for automatic
deletion when the disk is full and more space is needed. Also consider how you
would implement this algorithm.

A file system automatically copies files from disk to magnetic tape at regular
interwls as an insurance against disk malfunction. However, it is possible that
parts of these tapes cannot be read when they are needed to reestablish"the file
system after a disk failure. What measures would you propose to ensure that tape
errors do not bring a system restart to a complete halt?

Suggest a simple method of limiting the periodic copying of files from disk to
magnetic tape in Exercise 1.16 as much as possible. (It is not an acceptable
solution to increase the interval between successive copy operations since this
interval is determined mainly by the reliability of the disk.)

Propose a system in which the problem of protecting fries stored on disk against
hardware malfunction is viewed consistently as an insurance problem; that is,
each user must decide whether to pay a premium for having some of his fries
automatical ly copied to magnetic tape at a certain frequency or else run the risk
of losing them completely.

(S. Lauesen) Outline the implementat ion details of a simple]ob control language
for a non-interactive system in which named files can be stored ei ther on a
backing store or on other peripherals. A command has the following format:

290 EXERCISES

1.20.

1.21.

1.22.

O: = P(I, A, B, . . . , Z)

I t will cause the execution of a program P with input from a file I and ou tput on
a file 0 . A, B Z are optional parameters (booleans, numbers, or textstrings)
that are meaningful to P only. The user can specify a sequence of such
commands, pass parameters between programs, and specify condit ional execu-
tion, for example:

var correct: boolean;
source: = edit(source);
object:= create file(l O);
object:= algol(source, correct);
if correct then object;
delete file(object);

where edit, create file, algol, and delete file are programs, while source and object
are data fries (after compilat ion, object becomes a program •e).

In a shared computer system, users are identified by passwords. Since the list of
passwords is stored within the operating system, management is worried about
the possibility that a malicious user may write a program which examines the
entire store and finds this list. Assuming that this is possible, choose an internal
representation of passwords that is useless for external identification.

A password which identifies a user and on which accounting of resource usage is
based may become known to other users. Suggest a simple method of detect ing
possible misuse of passwords and propose a countermeasure.

An operating system uses an alphanumeric display to keep the main opera tor
informed about the current status of the system. Consider what data would be
meaningful to him in a spooling system and in a conversational system. Decide
which of them would be useful to display continuously and which of them should
be available only on request. Make suggestions about how the operator might use
the data displayed to interact with the system and improve its performance on a
t ime scale comparable to human reaction t ime (of the order of minutes).

CHAPTER 3

3.1. (C. A. R. Hoare) "Triple buffering." Write an algorithm which can input, process,
and ou tput a sequence of data elements of type T using three buffers--A, B, and
C--cyclically as follows:

phase 1: input(A);
phase 2: process(A); input(B);
phase 3: output(A); process(B); input(C);

Overlapping of input, processing, and ou tput in t ime should be achieved by means
of concurrent s tatements wi thout the use of critical regions. Input, process, and
output can be considered primitive operations; a boolean function more is true if
the input sequence contains one or more data elements; otherwise, it is false. The

3.2.

EXERCISES 291

solution should also work when the input sequence contains 0, 1, or 2 data
elements.

What is the maximum factor f by which the execution time can be reduced by the
triple-buffering scheme of Exercise 3.1 compared to a strictly sequential
execution of input, processing, and output (ignoring the overhead of concurrent
statements)?

The algorithm below is Dekker's solution to the mutual exclusion problem for two
processes, P1 and P2. Outline an informal argument which shows that:

vat outside1, outside2: boolean; turn: 1..2;
begin

outsidel:= true; outside2:= true; turn:= 1;
eobegin
" P I " repeat

label enter
begin

repeat
outside1:= false;
repeat

if outside2 then exit enter;
until turn = 2;
outside l :ffi true;
repeat until turn ffi 1;

forever
end
P1 inside;
turn: ffi 2; outsidel:ffi true;
P1 outside;

forever

"P2" repeat
label enter
begin

repeat
outside2: = false;
repeat

if outside1 then exit enter;
until turn ffi 1;
outside2:= true;
repeat until turn ~- 2;

forever
end
P2 inside;
turn: = 1; outside2:ffi true;
P2 outside;

forever
coend

end

292

3.4.

3.5.

EXERCISES

(1) one process at most is inside its critical region at a time;

(2) if both processes are trying to enter their critical regions simultaneously,
a decision will be made within a finite t ime as to which one should be permit ted
to do so; and

(3) if a process is s topped outside its critical region, this cannot influence the
progress of the other process.

A computer has an instruction which exchanges the contents of two store
locations. Exchange operations on a given store locat ion exclude one another in
time. Comment on the following solution to the mutual exclusion problem with n
processes:

vat free: boolean; turn: array 1 . . n of boolean;
"Initially free is true, and all turns are false"

"Process i"
repeat

repeat exchange(free, turn(i)) until turn(i);
critical region;
exchange(free, turn(~));
outside region;

forever

Propose a language feature which enables concurrent processes to exchange large
messages by reference instead of by value. This language feature must enable a
compiler and its run-time system to ensure that:

(1) a reference either points to a message element or is undefined;

(2) one process at a t ime at most can access a given message element; and

(3) a process cannot reference a message element while i t is within a buffer.

3.6. Comment on the following version of Algori thm 3.7:

type B ffi shared record
buffer: array 0 . . m a x - 1 of T;
p , c: 0 . .ma x - 1;
full, empty: semaphore;

end

"Initially p = c = full ffi 0 & empty = max"

procedure send(m: T; vat b: B);
region b do

EXERCISES

begin
wait(empty);
buffer(p): ffi m;
p:ffi (p + 1) rood max;
sienat(fuU);

end

293

3.7.

procedure receive(vat m: T; b: B);
region b do
begin

wait(full);
m: ffi buffer(c);
c: ffi (c + 1) mod max;
signal(empty);

end

"Pipeline sys tem." A stream of data elements of type T produced by a process P0
passes through a sequence of processes, P1, P2, . . . , P n - 1 , which operate on
the elements in that order:

PO ~ PI -~ P2 -~ P n - 1

Define a generalized message buffer which contains all the partially consumed
data elements and write an algorithm for process P/,(0 < i < n - 1)

"Process Pl ~'
repeat

receive from predecessor;
consume element;
send to successor;

forever

3.8.

(Process P0 receives empty elements sent by process P n - 1 .) The algorithm
should enable the processes to operate directly on messages stored in the buffer
so that copying is unnecessary.

Show that the processes, P0, P1, . . , Pn-1 , in Exercise 3.7 cannot be dead-
locked with respect to the common pipeline.

3.9. Show that Algorithms 3.8 and 3.9 maintain the invariant

D =- (rr = 0 implies r w = a w) & (a w ffi 0 implies rr ffi ar)

which was used to show the absence of deadlocks.

294 EXERCISES

3.10. (p. J. Courtois, F. Heymans, and D. L. Parnas) The following is a solution to a
variant of the readers a n d wri ters problem in which no p r i o r i t y is given to waiting
writers:

var ar: shared integer; s: s emaphore ;
" In i t ia l l y ar = 0 a n d s ffi 1 "

" r eader"

region ar do
begin

ar:= ar + 1;
if ar ffi 1 then wai t (s) ;

end
read;

region ar do
begin

ar: ffi a r - 1;
if ar ffi 0 then signal(s);

'end

" w r i t e r "

wai t (s) ;
wr i te ;
signal(s);

3.11.

Use the s e m a p h o r e invar iant to prove that readers and writers exclude each other
in time and that writers also exclude one another.

Cars coming from the north and south must pass a bridge across a river.
Unfortunately, there is only one lane on the bridge. So at any moment , i t can be
crossed only by one or m o r e cars coming from the same direction (but not from
opposi te directions). Write an algorithm for a southern and a northern car as they
arrive at the bridge, cross it, and depart on the other side. (See Fig. E3.11.)

N°r<h i

Fig. E3.11.

3.12.

3.13.

3.14.

3.15.

3.16.

3.17.

3.18.

3.19.

EXERCISES 295

Refine the solution to Exercise 3.11 so that the direction of traffic across the
bridge will change each time 10 cars have crossed from one direction while one or
more cars were waiting to cross it from the opposi te direction.

Processes P1, P2, . . . , Pn share a single resource R but, one process at most can
use it at a time. A process can start using it immediately if the resource is free;
otherwise, the process must wait until the resource has been released by another
process. If one or more processes are waiting when the resource is released, it is
granted to the process with the highest priority. The priori ty rule is the following:
Process P/ has priori ty number i (1 ~ i ~ n), with low numbers indicating high
priority. Program the procedures used to reserve and release the resource:

"process Pi"
reserve(i);
use resource;
release;

In a system with non-preemptive resource allocation, resources can be requested
and released one at a time. When resources are available and no processes are
waiting for them, they can be granted to any process. But, when resources are
being released and one or more processes are waiting for them, those resources are
granted to waiting processes on the basis of priorities assigned to user
computat ions by installation management. Is this policy feasible?

(R. C. Holt) 3 processes share 4 resource units which can be reserved and released
only one at a time. Each process needs a maximum of 2 units. Show that a
deadlock cannot occur in this system.

(R. C. Holt) n processes share m resource units, which can be reserved and
released only one at a time. The maximum need of each process does not exceed
the capital m, and the sum of all maximum needs is less than m + n. Show that a
deadlock cannot occur in this system.

(R. C. Holt) (Rese~reh project) Develop probabilistic models of resource
allocation which can predict the mean t ime between deadlocks and permit
designers to determine whether the deadlocks occur so infrequently that
prevention is unnecessary.

"The banker's algorithm applied." Write two procedures which enable a customer
to ask the banker to increase and decrease his loan by a single coin of a given
currency (see Algorithm 2.6). (Notice that the identi ty of coins is relevant to the
customers.)

(E. W. Dijkstra) "The dining philosophers." Five philosophers sit around a table.
Each philosopher alternates between thinking and eating:

repeat think; eat forever

In front of each philosopher there is a plate with spaghetti. When a philosopher
wishes to eat, he picks up two forks next to his plate. There are, however, only
five forks on the table. (See Fig. E3.19.)

296 EXERCISES

Fig. E3.19.

So a philosopher can only eat when none of his neighbors are eating. Write the
algorithm for philosopher i (0 ~ i ~ 4). (Hint: Prevent deadlock.)

3.20. Comment on the following solution to the problem of the dining philosophers
(see Exercise 3.19):

var fork: array O..4 of shared boolean;

"Philosopher ?'
repeat

think;
region fork(i) do
region fork((i + 1) mod 5) do eat;

forever

3.21. Comment on the following solution to the problem of the dining philosophers
(see Exercise 3.19):

vat thinking: shared array 0. .4 of boolean;
"initially all true"

"Philosopher i"
repeat

think;
region thinking do
begin

await thinking((i- 1) mod 5) &
thinking((i + 1) rood 5);

thinking(i): ffi false;
end
eat;
region thinking do thinking(i): ffi true;

forever

EXERCISES 297

3.22. Comment on the following solution to the problem of the dining philosophers
(see Exercise 3.19): A hungry philosopher first picks up his left fork; if his right
fork is also available, he starts eating; otherwise, he puts down his left fork again
and repeats the cycle.

3.23. A spooling system consists of an input process I, a user process P, and an output
process O connected by two buffers. (See Fig. E3.24.)

Input buffer Output buffer

Fig. E3.23.

The processes exchange data in units of equal size called pages. These pages are
buffered on a drum using a floating boundary between the input and the output,
depending on the speed of the processes. The communication primitives used
ensure that the following resource constraint is satisfied:

i + o ~< max

where

m a x

i
o

maximum number of pages on drum
number of input pages on drum
number of output pages on drum

The following is known about the processes:

(1) As long as the environment supplies data, process I will eventually input
it to the drum (provided drum space becomes available).

(2) As long as input is available on the drum, process P will eventually
consume it and output a finite amount of data on the drum for each page input
(provided drum space becomes available).

(3) As long as output is available on the drum, process O will eventually
consume it.

3.24.

3.25.

Show that this system can be deadlocked.

Suggest an additional resource constraint that will prevent the deadlock in
Exercise 3.23, but still permit the boundary between input and output to vary in
accordance with the present needs of the processes.

(C. Bron) In THE multiprogramming system, a drum is divided into input buffers,
processing areas, and output buffers with floating boundaries, depending on the
speed of the processes involved. The current state of the drum can be
characterized by the following parameters:

3 . 2 6 .

3.27.

EXERCISES

max
i
P
o

reso

resp

maximum number of pages on drum
number of input pages on drum
number of processing pages on drum
number of output pages on drum
minimum number of pages reserved for output
minimum number of pages reserved for processing

Formulate the necessary resource constraints that guarantee that the drum
capacity is not exceeded and that a minimum number of pages is reserved
permanently for output and processing. Illustrate these constraints geometrically
in an (i, o, p) coordinate system.

In THE multiprogramming system (see Exercise 3.25), a page can make the
following state transitions:

(1) empty ~ input buffer
(2) input buffer ~ processing area
(3) processing area ~ output buffer
(4) output buffer ~ empty
(5) empty -> processing area
(6) processing area ~ empty

(input production)
(input consumption)
(output production)
(output consumption)
(procedure call)
(procedure return)

Define the effect of these transitions in terms of the quantities i, o, and p. Can
any of them lead to a deadlock if the assumptions made in Exercise 3.23 about
input processes, user processes, and output processes hold?

Represent the drum in Exercise 3.23 by an array of pages:

var drum: array 1..max of page

and implement the following communication procedures

send input(p)
receive input(p)
send output(p)
receive output(p)

(where p: page) such that the resource constraints of Exercises 3.23 and 3.24 are
satisfied.

CHAPTER 4

4.1.

• 4 . 2 .

A process that is operating on a shared variable delays all other processes that are
waiting to do the same. Suggest a method for alleviating this problem.

A multiprogramming system measures the processor time used by each
computation. How does this influence the design of the short-term scheduling
primitives (Algorithms 4.1-4.6)?

EXERCISES 299

4.3. To which process would you charge the processor time used to honor an
interrup~ Present the cases for and against alternatives.

4.4. In several computers, an interrupt causes the machine state (register values) to be
stored in fixed locations associated with the given interrupt signal. Under what
circumstances is this a practical technique? Explain why it is inconvenient in
general.

4.5. Choose a representation of the ready queue and implement processor
multiplexing according to a round-robin algorithm.

4.6. Choose a representation of the ready queue and implement processor
multiplexing according to a round-robin algorithm with the following additional
constraint: Processes outside critical regions are only executed when no processes
are inside critical regions and ready to run.

4.7. Represent the multi-level queue defined in Section 4.2.5

t y p e N ffi 1 . .n ;
vat q: queue N of T; t; T; p : ~V~
enter(t ,p, q);
remove(t,p , q);

in terms of records, arrays, and sequences.

, 4.8. How would you test the correctness of the short-term scheduling primitives
(Algorithms 4.1-4.6) in a systematic, reproducible manner? (Hint: Modify the
algorithms slightly to obtain a recording of significant events and design a series
of processes that will force the basic monitor through all of its relevant states at
least once.)

, 4.9. Write an algorithm which executes the statement

y : = (a + b) / (c - d) + e * f

by concurrent evaluation of subexpressions. The variables involved are distinct
integer variables.
Evaluate whether this is practical to do on a multiprocessor system with the
following execution times:

+ - 2/~sec
* / :ffi 10 #sec
intermediate result 5/~sec
cobegin coend 500 ~sec per process

4.10. (Research project) Design a multiprocessor system consisting of a number of
identical processors connected to a common store which is able to continue its
operation after a hardware malfunction of a single processor. Consider hardware
and software aspects of this reliability problem at the lowest level of
programming. Try also to make the system tolerant of other kinds of failure. Do

300 EXERCISES

not expect to solve the problem with present machines and programming
languages.

CHAPTER 5

5.1 .

° 5 .2 .

5.3.

, 5 .4 .

Choose a representation of segments and holes in a store with contiguous
segments and write reserve and release operations (with compacting) using the
first fit placement algorithm.

(D. E. Knuth) "Fifty per cent rule." Consider an internal store shared by
contiguous segments and show that under equilibrium conditions it contains, on
the average, half as many holes as segments.

What guidance does the fifty per cent rule of Exercise 5.2 give toward an efficient
implementation of a placement algorithm for contiguous segments?

(P. J. Denning) "Sequential placement with compacting." Consider a store in
which contiguous segments $1, $2 , Sn are placed strictly in their order of
creation from one end of the store to the other. (See Fig. E5.4.)

Fig. E5.4.

5.5 .

5 .6 .

When segment Sn+l is being created, it is placed immediately after segment Sn
even though some of the segments S1, $2, . . . , Sn may already have been
delete~. When the boundary between segments (in use or deleted) and the hole
reaches the other end of the store, the segments in use are compacted.

(a) Let s and t denote the average length and lifetime of a segment (measured
in words and store references) and let f denote the fraction of the store which is
unused under equilibrium conditions. Show that the fraction of time F spent on
compacting is constrained as follows:

1 - f t
F ; - ~ - ~ where k ~ s - 1

(Hint: Find the average speed at which the boundary crosses the store and assume
that copying of a single word requires at least two store references.)

(b) Find F f o r f ffi 0.2, t = 1000, ands = 50.

A computer is shared by computations that all use a modest number of variables
(compared to the capacity of the internal store); the compiled programs may,
however, be fairly large. Suggest a simplified and more efficient form of demand
paging which takes advantage of this knowledge.

(P. Naur) Suggest a simple experiment which will demonstrate the locality
principle for a given program in the demand paging system of Exercise 5.5.

5.7.

, 5 .8.

5.9.

5.10.

5.11 .

5.12.

5.13.

EXERCISES 301

How would you measure thrashing in a single processor system with a single
backing store in such a way that the system does not register overcommitments of
very short duration?

(L. A. Belady, R. A. Nelson, and G. S. Shedler) "Demand paging anomaly." A
process refers to five pages, A, B, C, D, and E, in the following order:

A; B; C; D; A; B; E; A; B; C; D; E

Assume that the replacement algorithm is first-in, first-out and find the number
of page transfers during this sequence of references starting with an empty
internal store with 3 and 4 page frames.

(A. Alderson, W. C. Lynch, and B. Randell) "Load control by externalpriorities."
Simulate the behavior of a demand paging system which executes a fixed number
of identical processes indefinitely. The system is characterized by the parameters
t, T, and s and the functionp(s) = a e -bs as defined in Section 5.4.2.

(a) Measure the processor utilization ~7 as a function of the number of
processes n for an internal store of fixed capacity. The simulation should only
keep track of the number of page frames assigned to each process (but should not
be concerned with individual page frames).

(b) Repeat the experiment with the following modification: Assign priorities
1, 2 , n to the n processes and use the following scheduling rule (due to R.
M. Wharton): Assign the processor to the process of the highest priority that is
ready to run. When a page must be transferred to a full store on demand from a
given process, select a page frame from the process of the lowest priority that has
one (provided the priority of the latter process is less than that of the former). If
no such process exists, delay the given process (leaving its page frames unchanged)
until a process of higher priority releases page frames (this will never occur in this
simple model in which processes continue forever).

In a demand paging system, it is discovered that a significant amount of processor
time is lost while computations walt for slow peripherals. The scheduling
algorithm is therefore modified as follows: When idle processor time has exceeded
a certain limit, another computation is started. Comment on this proposal.

A drum consisting of 512 tracks of 1024 words each must be divided into page
frames of 512 words each. Suggest an arrangement of page frames which ensures
that there will always be a page frame which can be accessed with a negligible
waiting time (equal to ~ of the revolution time at most).

In THE multiprogramming system, processes can be deadlocked with respect to
the backing store. (See Exercises 3.25 and 3.26.) Suggest a scheduling policy
which tries to avoid this as long as possible.

In the SDS 940 computer, the internal store is divided into 16 page frames of 2 K
words each. The virtual store of a process is a single segment consisting of up to 8
pages. Address mapping is done by 8 registers which define the base addresses of
page frames available to the currently running process (some of these addresses
may be undefined, indication that no frames have been assigned to the correspond-

302

5.14.

5.15.

5.16.

5.17.

5.18.

5.19.

EXERCISES

ing pages). Comment on the usefulness of this machine for (a) sequential computa-
tions; (b) concurrent computations; and (c) demand paging.

For a computer with demand paging, the magnetic tapes are bu t t to transfer
blocks of variable length to contiguous store locations. Outline the manner in
which you would handle store allocation in such a system (assuming that it is
unacceptable to management that blocks on tape can only be smaller than or
equal to one page). Could the problem be simplified by a different machine
structure at a reasonable cost?

(K. Fuchel and S. Heller) In a CDC 6600 installation, a single processor is
multiplexed among n independent jobs placed in an internal store. When a
running job awaits the completion of input/output, the processor is assigned to a
ready job in the internal store. However, if all n jobs walt for input/output at
the same time, the processor is idle. Measurements show that with an internal
store of 65 K words, the average number of scheduled jobs n is 2, while the
processor utilization ~7 is only 36 per cent. Assuming that idle processor time is
caused only by input/output, find the average probability p that a single job is
waiting for input/output?

Use the result of Exercise 5.15 to evaluate the amount of internal store required
to increase processor utilization to 90 per cent, assuming that the operating
system and an average job need 10 K and 25 K words, respectively.

(a) If an internal store contains n independent jobs, each characterized by an
average input/output probability p as derived in Exercise 5.15, what would the
utilization W of a processor then be in a dual processor system?
(b) Evaluate 77 for n = 2 and p = 0.8.

(Desigv project) Implement concurrent statements, critical regions, and event
queues efficiently on a computer. If you feel that the available computer is less
than ideal for this purpose, then use this insight to suggest more appropriate
machine features. If you cannot carry out such a project for economic reasons,
take the time to outline the main problems and their solutions.

(Research project) Develop realistic dynamic models of the store requirements of
computations and use them to define meaningful comparisons of various store
management techniques under well-defined circumstances. (Part of the project is
to find out what these "circumstances" are.)

CHAPTER 6

6.1. Consider how you would measure the service time distribution F(t); and the
service and arrival rates,/~ and ~, continuously during system operation by simple
means (rather than by laborious analysis of measurements of individual jobs
collected over an extensive period of time).

6.2. Interarrival times which follow an exponential distribution

6.3.

6.4.

.5.

6.6.

EXERCISES 303

F(x) ffi 1 - e -x where x = k t

can be simulated by the following statement:

vat x: real;
x: ffi -In(random);

where random is a real function which delivers a random number uniformly
distributed between 0 and 1. How can the same method be used to simulate
service times which follow a hyperexponent iai distribution?:

F(x) = 1 - a e -b x _ (1 - a) e -c x where x = # t

Refine the demand paging model of Exercise 5.9 to account for different, finite
service times and working sets (for example, selected from exponential and
uniform distributions). Also make suggestions for the modelling of input /ou tpu t
delays caused by slow peripherals and the distr ibution of page demands over
drum sectors.

"Finite input queue." Consider a queuing system with a single processor, Poisson
input, and exponential service times which can hold a maximum of n jobs
(including the one being served). (See Fig. E6.4.)

I n l

Queue Processor

Fig. E6.4.

Jobs which arrive when the system is full leave without returning. The system can
be in n + 1 states with either 0, 1, . . . , or n jobs waiting or in service. Le tPo ,
P l , Pn denote the steady state probabili t ies of these states. Find the
relations between these probabili t ies and show that

p. (1- p)
Pn].- pn+l

where p = k/p is the uti l ization factor. (Hint: The same technique was used to
derive equation (6.31).)

Use the result of Exercise 6.4 to determine the necessary queue capacity when p
= 0.93 so that the probabil i ty that a job will find the queue full upon arrival does
not exceed I per cent, assuming that an average job occupies 15 K words o f store.

"Message buffer." Consider a system in which a sequence of jobs is executed by
two processors in series. (See Fig. E6.6.)

304 EXERCISES

#1 ~ n - - 1

Processor 1 Buffer Processor 2

Fig. E6.6.

Service times are exponential with means of 1/p 1 and l /P2 , respectively. The
processors are connected by a buffer which can hold a maximum of n - 1
partially completed jobs. When the buffer is full, processor 1. is delayed until
processor 2 removes another job from it. We define the performance measure R as
the ratio of the throughput of jobs with and wi thout buffering. (If no buffer is
used, processor 1 is always forced to walt while processor 2 completes a job, and
vice versa.) Use the result of Exercise 6.4 to show that

i 1- p n (1 + p) 1 - pn+ l P ¢ 1
R = w h e r e p = p.~-

2 n P2
n + l p = l

6.7. Consider a spooling system in which a central processor is connected to a line
printer by a buffer on a backing store. Use the result of Exercise 6.6 to determine
the buffer capacity necessary to maintain a throughput that is 97 per cent of the
maximum achievable, assuming that execution and printing times are exponential
with means 1 and 0.5 min. What is the value of the performance measure R?

6.8. The shortest job next algorithm minimizes the average response time. Prove this
for a batch of n jobs which arrive at the same time with service times

6.9.

6.10.

6.11.

tl ~t2 ~ . . . ~ tn

ignoring further arrivals.

Design and carry out a simulation experiment which measures the effect of
inaccurate user estimates of service times on the average waiting t imes in a
non-preemptive queuing system with a single processor using the shortest job next
algorithm.

Use the result of Exercise 6.2 to simulate the highest response ratio next
algorithm by a sequential program. Test the accuracy of the approximations,
equations (6.27) and (6.28), for various values of p, using the constants a = 0.11,
b = 0.21, and c = 1.88. (Hint: To achieve a steady state equilibrium, the program
must simulate a reasonable number of jobs before measurements are collected.)

(S. Lauesen) "Minimax response ratio scheduling." In a non -p r~mpt ive single
processor system, the queue contains three jobs at t ime t immediately after the
complet ion of a job. These jobs arrived at t imes t l , t2, and t3 with est imated run
times r l , r2, and r3. Fig. E6.11 shows the linear increase of their response ratios
in time.

EXERCISES 305

6.12.

6.13.

6.14.

6.15

6.16

.~., Slope .1. ! !
~. r l _ _ r2 r 3 $ /

~ / / /

~ Time
t 1 t 2 t 3 t

Fig. E6.11.

Use this example to find a variant of response ratio scheduling which minimizes
the maximum response ratio for a given batch of jobs ignoring further arrivals.
(Hint: Decide first which job to schedule as the last one.)

Compare the performance of the minimax response ratio algorithm of Exercise
6.11 to the highest response ratio next algorithm by a simulation similar to the
one used to solve Exercise 6.10.

(P. Mondrup) Prove that the minimax response ratio algorithm of Exercise 6.11
minimizes the maximum response ratio for a given batch of jobs. (Hint: Focus
attention on the job which will achieve the highest response ratio and all jobs
executed before it. Consider the same subset of jobs scheduled in any other order
and observe the response ratio of the job which is executed as the last one among
them. Notice that this subset may now be mixed with other jobs from the total
set.)

"Guaranteed response ratio scheduling." How can the algorithm of Exercise 6.11
be used to implement a non-preemptive system that guarantees that response
ratios never exceed a given limit? (Hint: Upon arrival of a job, the system must
decide whether to accept the job or reject it.)

The algorithm in Exercise 6.14 tends to be unfair to very short jobs. Explain why
and suggest a remedy.

"Non-preemptive foreground-background scheduling." In a non-preemptive queu-
ing system with a single processor, jobs with service times below a threshold
t enter a foreground queue, while longer jobs enter a background queue. Each
queue is served in first-come first-served order, but a job in the background queue
is only started when the foreground queue is empty. Arrivals in both queues are
Poisson processes. The overall service time distribution F(x) can be arbitrary. The
arrival rate of all jobs is denoted k. Show that the average waiting times, W1 and
W2, for foreground and background jobs are

Wo w1
W i = - - and W2=

l-Pt l -p

where p, Wo, and Pt are given by equations (6.14), (6.17), and (6.25),
respectively. (Hint: Use the conservation law.)

306 EXERCISES

6.17. In the foreground-background system of Exercise 6.16, the threshold t must be
chosen such that the average waiting time W1 in the foreground queue does not
exceed a given limit Wma x for utilization factors p ~ 1.

(a) Show that for hyperexponential service times, t is defined by the relation

6 . 1 8 .

d
G(t) < 1 - - -

where 1 and p are the mean service time and utilization factor for all jobs, while
P

G(t) and d are defined by equations (6.13) and (6.21). 1
(b) Compute t, W1, and W2 for the case in w h i c h - = 1 min, d ffi 2 . 7 5 , p =

0.93, and Win== ffi 5 rain.

(L. Kleinrock) "Process sharing." A processor is multiplexed at infinite
speed among all jobs present in a queuing system with no overhead. (This is an
idealized model of round-robin scheduling among jobs kept in an internal store
using time quanta that are very small compared to the mean service time.) Show
that for Poisson input from an infinite source with exponential service times, the
mean response time of a job with a service time t is given by:

t
R t = l _ p

6 . 1 9 .

(Hint: Consider the mean workload U in the system upon arrival of the given
job.)

(L. Kleinrock) "Selfish round robin." In a queuing system, new jobs must wait
for a while before being served. While a job waits, its priority increases linearly
with time from zero at a rate a. A job waits until its priority reaches the priority
of the jobs in service; then, it begins to share the processor equally with other
jobs in service while its priority continues to increase at a slower rate l~. The
algorithm is called "selfish" because the jobs in service try (in vain) to
monopolize the processor by increasing their priority continuously. Use Fig.
E6.19 to show that the mean response time R t for a job of service time t is given
by:

1 1
/.z #

Rt 1 - p 1 - p '

where

p = - p =p(1--~) o<~ <o~ /z

assuming that arrival and service times are exponentially distributed with means
l /k , and l /p, respectively. (Hint: Consider the total system and the two
subsystems separately.)

EXERCISES

Arrivals Departures

Waiting jobs Served jobs

307

1

i

Time

Fig. E6.19.

6.20. (E. G. Coffman and L. Kleinrock) "Shortest elapsed time next ." A processor is
multiplexed at infinite speed among all jobs in a queuing system according to
the rule shortest elapsed time next. Arrival and service times are exponential with
means 1/k and liP. Show that the mean response time R t for a job with service
time t is given by

Wo t t
R t - - +

(1 - pt) 2 1 - Pt

where

p t = fo t k x d F (x)

Wo t = -~f: h x 2 dF(x)

ffi t 1 - e -~x 0 <~ x < t
F(x)

{ 1 t ~ < x < o o

(Hint: A job of service time t will be delayed by all jobs present upon its arrival
(including the one in service) and by all jobs arriving while it is in the system,
until these jobs have either been completed or have been served for a maximum
period t each.)

6.21. A queuing system uses the scheduling algorithm shortest elapsed time next in a
foreground queue. Jobs that have received service for a period T enter a

308

6.22.

6.23.

6.24.

6.25.

6.26.

EXERCISES

background queue in which they are served to completion in first-come,
first-served order in periods when the foreground queue is empty. Use the method
of solution from Exercise 6.20 to find the mean response time Rt of long running
jobs (t > T).

A university computing center is shared by users from different departments.
Suggest a scheduling algorithm that guarantees a certain fraction of the processor
time to each department on a weekly basis. What priority rules would you suggest
for competing users from one or more departments as long as none of them have
exceeded their weekly quota?

An interactive system using round-robin scheduling and swapping tries to give
guaranteed response to trivial requests as follows: After completing a round-robin
cycle among all active jobs, the system determines the quantum for the next cycle
by dividing a maximum response time by the number of jobs requiting service. Is
this a practical policy?

Simulations showed that a multi-queue algorithm would reduce the swap time
from 40 to 20 per cent in the SDC Q-32 system. When it was implemented, this
did indeed happen, but no corresponding increase of processor utilization was
observed. Where would you expect to find the reason for this and how would you
try to improve the processor utilization7

In a preemptive queuing system with a single processor using foreground-
background scheduling, long jobs can experience indefinite waiting times when
the system is heavily used for conversational access. Propose a scheduling
algorithm which gives rapid response to a moderate number of conversational
users and at the same time guarantees a certain fraction of the processor time to
background jobs.

Suggest a scheduling algorithm which will share a single processor among three
classes of jobs as proposed in Section 1.4.1:

(1) Conversational editing and preparation of jobs

(2) Non-interactive scheduling of small jobs with fast response

(3) Non-interactive scheduling of large jobs

with response times of the order of seconds, minutes, and hours, respectively. The
system may deny service to additional users when it is heavily loaded.

ANSWERS

CHAPTER 1

1.2. (a) The time required to execute a batch is M + N * T, and the cost of using the
processor for this amount of time and letting N users wait meanwhile is (M + N *
T) * (S + N * W). So the total cost of service time and waiting time per customer

is

C = (M+N* T) * (S + N * W)/N

dC
The result follows by s e t t i n g - ~ = 0.
(b) 604/hour(!)

1.3. Since no program (including the operating system) could write into a protected
location, an operating system was forced to place its variables in unprotected
locations.

1.4. Notice that job scheduling and compiler loading account for 20 per cent of the
execution phase. This can virtually be eliminated by designing the compiler to
compile and execute a sequence of programs (rather than one) each time the
compiler is scheduled and loaded. Excellent examples are the Fortran compilers
developed at Purdue University (PUFFT) and the University of Waterloo
(WATFOR).

1.5. The countermeasure taken was to cancel any job request which had been waiting
for more than one hour without being honored.

1.7. The problem was solved in the Atlas system by postponing the execution of a job
until all its tapes were mounted.

1.9. The solution used in CTSS is to use the same base address for all jobs in the
internal store; but, instead of removing a job completely from the internal store
at the end of its time slice, the system only transfers as much of it to the backing
store as is required to make room for the next job.

1.10. Divide the internal store into two areas and execute a job in one area while
another job is being swapped into the other area. This is called overlapped
swapping and execution.

309

310

1.11.

1.12.

1.13.

1.14.

1.17.

1.20.

1.21.

ANSWERS

It requires program relocation by means of base and limit registers. This is easily
seen if you consider overlapped swapping and execution of an odd number of
jobs in two store areas.

An effective solution is to keep a single copy of the most frequently used
procedures for frie manipulation, program input, and editing permanently (or
semi-permanently) in the internal store and thus enable user programs to call
them directly. If the system does not distinguish between utility programs and
user programs, it will spend a considerable amount of time swapping multiple
copies of the former for different users.

Permit user computations to take input from and deliver output to the frie system
and permit users to input and output these data at terminals at their own
convenience before and after execution.

In the Titan supervisor, each user has his own catalog describing the names and
locations of fries Owned by him. The locations of user catalogs are defined in a
master catalog (Fraser, 1971). In the Multics system, this idea is generalized to a
tree of catalogs with fries as leaves. This enables user groups to establish local
nomenclature within project components in a hierarchal manner (Daley, 1965).

Copy only those fries which have been changed since the previous copy operation.

In the Titan supervisor, passwords quoted by users are scrambled by an algorithm
and compared with a list of scrambled passwords. The scrambling algorithm is not
kept secret since there is no economical way of performing the reverse operation.

When a user successfully quotes a password to the Titan supervisor, he is told the
date and time at which it was last quoted. If he suspects an infringement, he can
immediately choose another password.

CHAPTER 3

3.1.

vat last, this, next: T;
if more then
begin

input(next);
if more then
begin

this:ffi next;
cobegin

process(this); input(next);
coend
while more do

3.2.

3.3.

ANSWERS 311

begin
last: ffi this; this: ffi next;
cobegin

output(last); process(this); input(next);
coend

end
output(this);

end
process(next);
output(next);

end

Let I, P, and O denote the execution times of the input, processing, and output
operations. Then we have

I + P + O
f= ~<3 max(I, P, O)

(1) Notice that each process only changes its own variable outside and that

outside1 implies P1 outside &
outside2 implies P2 outside

Since process P1 only enters its critical region when outside2 holds (and vice versa
for P2), mutual exclusion is guaranteed.

(2) The variable turn is only changed at the end of a critical region; it can
therefore be regarded as a constant when both processes are trying to enter their
critical regions at the same time.

If turn = 1, then process P1 can only cycle in the statement

repeat
if outside2 then exit enter;

until turn ffi 2;

and process P2 can only cycle in the statement

repeat until turn = 2;

But the latter implies that outside2 holds, so P1 will enter its region. A similar
argument can be made when turn ffi 2.

(3) If P1 is stopped outside its critical region, we have

outside1

312 ANSWERS

This will immediately permit process P2 to enter its critical region independent of
the value of turn.

3.4. Before process i enters its critical region, we have

3.5.

not turn(i)

If free = true, we have after an exchange operation:

not free & turn(i)

and process i will enter its critical region. However, if free = false, we have after
an exchange operation:

not free & not turn(i)

and process i will not enter its critical region. So at most one process at a t ime can
be inside its critical region. And, since exchange operations are executed one at a
time, the decision as to which process should enter its critical region first cannot
be delayed indefinitely. Whether or not the scheduling of critical regions will be
fair depends entirely on the hardware implementat ion of exchange operations and
on the scheduling policy used to execute concurrent processes. The disadvantage
of the solution is that it uses the busy form of waiting.

The notat ion

vat o: pool max of T;
b: sequence of v;
s, t: ref v;

declares (1) a pool v consisting of a maximum number of message elements of
type T; (2) a sequence b of such elements sent by one process to another, and (3)
two references, s and t, to message elements.
An element is reserved, produced, and sent by a process P as follows:

reserve(s);
with s do produce element;
send(s, b);

An element is received, consumed, and released by a process Q as follows:

receive(t, b);
with t do consume element;
release(t);

As soon as an element is sent or released, the reference to it is made undefined.

3.6.

3.7.

3.8.

ANSWERS 313

The compiler will cheek that concurrent processes use disjoint sets of reference
variables; and the compiler 's run-time system will check that references are
defined when they are used.

If a receiver is waiting for a full buffer element inside a critical region, a sender
cannot enter its critical region and signal the availability of a full buffer element.
So the solution can lead to a deadlock.

The buf fer is declared to be an array of shared elements of type T. Another array
defines the number of input elements available to each process. Each process
keeps track of the index j of the buffer element it is referring to at t he moment .

vat buffer: array 0 . . m a x - 1 of shared T;
available: shared array 0 . . n - 1 of 0 . . m a x ;

"Initialization"
vat k: 1..n-l;
region available do
begin

available(O) :ffi max;
for every k do available(k): ffi 0;

end

"Process i"
vat j: O. . m a x - 1 ; succ: O. .n- l ;
begin

j:= O; succ:= (i + 1) mod n;
repeat

region available do
await available(i) > O;
region buffer(j) do consume element;
region available do
begin

available(i): = available(i) - 1;
available(succ): ffi available(succ) + 1;

end
j := (j + 1) mod max;

forever
end

A deadlock is a situation in which

P0 waits for Pn- 1 &
P1 waits for P0 &

Pn- 1 waits for Pn- 2

314 ANSWERS

because

available(O) = O&
avaiiable(1) ffi O&

.

available(n-I) = 0

But if max > O, this condition cannot hold since the critical regions satisfy the
following invariant:

n - 1
available(i) = max

i=o

3.10. Let rr and rw denote the number of running readers and running writers.
Evidently, we have

(1) O ~ r r & O ~ r w

(2) 0 ~ waits(s) ~ signals(s) + 1

Now suppose rr readers and rw writers are using the resource simultaneously.
Then we also have

(3) traits(s) - signals(s) = if rr > 0 then rw + 1 else rw

since one wait and one signal operation at most are executed for each group of
running readers which use the resource for a continuous period of time. From this
we find the following invariant:

0 ~ rr & 0 ~ rw & (if rr > 0 then rw + I else rw) ~ 1

case I:
If rr > 0 then rw = O.

case 2:
I f r r f f i 0 t h e n 0 ~ rw ~ 1.

Q . E . D .

3.11. This is a variant of the readers and writers problem (Algorithm 3.10). No priority
is specified for southern and northern cars, but they must exclude each other in
time on the bridge:

vat bridge: shared record southern, northern: integer end
"Initially both zero"

"southern ear"
begin

region bridge do

ANSWERS 315

begin
await northern = O;
southern: ffi southern + 1;

end
cross bridge;
region bridge do
southern:= southern- 1;

end

The algorithm for a northern car is symmetrical.

3.12. The data structure represents the following for cars coming from both directions:
The number of cars waiting to cross the bridge; the number of cars crossing the
bridge; and the number of cars which have entered the bridge ahead of waiting
cars coming from the opposite direction.

type direction = record
waiting, crossing, ahead: integer;

end
"Initially all zero"

vat bridge: shared record
southern, northern: direction;

end

"southern car"
begin

region bridge do
with southern do
begin

waiting: = waiting + 1;
await northern.crossing = 0 & ahead < 10;
waiting: = wait ing- 1;
crossing:= crossing + 1;
if northern.waiting > 0 then
ahead: = ahead + 1;

end
cross bridge;
region bridge do
with southern do
begin

crossing: ffi crossing- 1;
if crossing = 0 then
northern.ahead ffi 0;

end
end

316 ANSWERS

3.13. A straightforward (but not too efficient) implementat ion is the following:

type I = 1 . .n ;
vat v: shared record

free:boolean;
waiting: array I of boolean;
grant: array I of event v;

end

procedure reserve(i:/);
region v do
begin

if free then
free:= false else
begin

waiting(i): = true;
await(grant(i));

end
end

procedure release;
vat i: I;
region v do
label done
begin

for every i do
if waiting(i) then
begin

waiting(i): = false;
cause(grant(i));
exit done

end
free:ffi true;

end

3.14.

3.15.

3.16.

No, it is not. External priorities that only reflect the at t i tude of management
toward users cannot prevent deadlocks. They can be used to determine when
computat ions should be started, but during execution, additional rules must be
used, as is explained in Sections 2.6 and 3.5.

A deadlock is a state in which all resource units are reserved while one or more
processes are waiting indefinitely for more units. But, if all 4 units are reserved, at
least one process has acquired 2 units. Consequently, that process will be able to
complete its work and release both units, thus enabling another process to
continue.

Using the terminology of Section 2.6.1 we have

ANSWERS 317

n n n

(1) ~ need (i)= ~ claim(i) + ~ loan(i) < m + n
1 1 1

In a deadlock situation, all resource units are reserved:

n

(2) ~ loan(i) ffi m
1

and some processes are waiting for more units indefinitely. But from (1) and (2),
we find

n

(3) Z claim(i) < n
1

This means that at least one process j has acquired all its resources (claim(]) = O)
and will be able to complete its task and release all its resources again, thus
ensuring further progress in the system. SO a deadlock cannot occur.

3.19. Deadlock is avoided by ensuring that a hungry philosopher picks up b o t h forks at
the same time (instead of one at a time). A shared array defines the number of
unused forks next to each plate; each array element is initially equal to 2 and can
assume the values 0, 1, or 2.

var forks: shared array O..4 of O..2;

procedure phi losopher(i : O. .4) ;
vat le f t , r ~ h t : O. .4;
begin

lef t: = (i - 1) mod 5;
right:= (i + 1) mod 5;
repeat

th ink;
region f o r k s do
begin

await forks(i) = 2;
forks(left):f f i forks (le f t) - 1;
forks(r ight) : ffi forks(r ight) - 1;

end
eat;
region f o r k s do
begin

forks (l e f t) : ffi f orks (l e f t) + 1;
forks(r ight) : = forks(r ight) + 1;

end
forever

end

318

3.20.

3.21.

3.22.

3.23.

3.24.

ANSWERS

This program leads to a deadlock when all philosophers pick up their left forks at
the same time and wait for their tight forks to become available. They will then
starve to death.

It is possible for two non-adjacent philosophers to alternate in such a manner that
at any moment at least one of them is eating. Thus, they manage to prevent the
philosopher between them from ever eating.

The philosophers can starve while repeatedly picking up and putting down their
left forks in perfectunison.

A deadlock occurs when process I has filled the drum with input" (i = max) and
process I is waiting to transfer more input to the drum, while process P is waiting
to transfer more output to the drum and process O is waiting to transfer more
output from the drum.

Reserve a minimum number of pages (called reso) permanently for output
buffeting, but permit the number of output pages to exceed this limit when drum
space is available. The resource constraints now become:

i + o ~ max

i < m a x - reso

where

0 < reso < max

This is illustrated by Fig. A3.24.

m a x

r e s o ~\\\\\
m a x

Fig. A3.24.

If process P is waiting to deliver output on the drum, process O will eventually
consume all previous output and make at least reso pages available for further
output, thus enabling P to continue. So P cannot be delayed indefinitely by O.
Process I can be delayed if the drum is full of input/output; but sooner or later,
all previous input will be consumed by P and the corresponding output will be
consumed by O, thus enabling I to continue.

ANSWERS 319

3.25. Resource constraints:

(a)

(b)

(c)

(d)

See also Fig. A3.25.

i + o + p < max

i + o ~< rnax - resp

i + p ~ m a x - reso

i ~ max - (reso + resp)

p

t I roso
m a x

re8o

/

\
i I I 1 ~ \

/ / b 'l

Fig. A3.25.

3.26.

Typical values used in THE multiprogramming system are max = 1000, resp ~-
744, and reso = 64.

The effects of the state transitions are the following:

(1) i:ffi i + 1

(2) i : f f i i - 1; p:ffip+ 1

(3) p : = p - 1 ; o : = o + 1

(4) o:= o - 1

(5) p : f p + 1

(6) p : f p . - 1

320

3.27.

ANSWERS

By examining the resource constraints illustrated in the solution to Exercise 3.25,
we see the following:

(6) Procedure returns can take place immediately since they only release
r e sources .

(5) Procedure calls may exhaust the drum (p = max - reso) and lead to
deadlock.

(4) Output consumption can take place immediately after ou tput becomes
available.

(3) Output production can be delayed temporari ly until all previous output
has been consumed and made at least reso pages available for further output .

(2) Input consumption can take place immediately after input becomes
available.

So input /ou tput consumption will continue as long as the user processes do
not deadlock themselves by procedure calls.

(1) Input production can be delayed until all previous input and the
corresponding output has been consumed. At this point , when i = o = 0, input can
be produced provided the user processes have not exhausted the drum (p < max -
reso).

Conclusion: The uncontrolled amount of storage assiffned to the user processes
is the only possible source of a storage deadlock.

const reso ffi desired value;
type N ffi 1 . .max;
vat v: shated record

drum: array N of page;
input, output, empty: sequence of N;
i, o: O. .max;
current: N;

end
"Initially all pages are empty and i ffi o ffi 0"

procedure send input(p: page);
region v do
begin

await i + o < max & i < max - reso;
get(current, empty);
drum(current): ffi p;
put(current, input);
i: ffi i + 1;

end

procedure receive input(vat p: page);
region v do

ANSWE RS 321

begin
await i ~ O;
get(current, input);
p : = drum(current);
put(current, empty);
i:= i - 1;

end

The procedures send output and receive output await the holding of i + o ~ max
and o ~ 0, respectively. Apart from that, they are quite similar to send input and
receive input.

C H A P T E R 4

4.1. In THE multiprogramming system, a process is given a higher pr ior i ty of
execut ionwhi le it is within a critical region.

4.2. The system must include a clock that measures t ime in units comparable to the
access time of the internal store. The procedure initiate process must set the
elapsed processor time for a new child process to zero; the procedure terminate
process must add the amount used by the calling process to that used by its
parent process. When a running process is entered in a queue, the interval that has
elapsed since it was last continued must be added to its elapsed processor time.

4.3. Processor t ime spent on an interrupt that terminates an action (for example,
input /output) started by a particular process ought to be charged to that process.
But this fairness may be expensive since it increases the overhead at the lowest
level of scheduling. A simpler method is to let the currently running process pay
for all interrupts which occur while it is running and hope that in the long run the
cost will be evenly distributed among all processes.

4.4. This technique is based on the assumption that an interrupted process A will
continue to run after the response to an interrupt. But, in general, an interrupt
may cause the basic moni tor to preempt a process A in favor of another process,
B. I t is now necessary to Copy the execution state of process A from the locations
associated with the interrupt to the process description associated with A. The
machine might as well have stored them there in the first place.

4.5.

vat ready: sequence of P;

procedure preempt process;
vat candidate: P;
region v do
begin

put(process, ready);
get(candidate, ready);
continue(candidate);

end

322

4.6.

ANSWERS

type process description ffi record
• o o o o

urgent: boolean;
end

"Initially, urgent is false; it is true within critical regions"

vat ready: record
foreground, background: sequence of P;

end
"Urgent processes enter the foreground queue;
other processes enter the background queue"

procedure pree rnp t process;
v a r candidate: P;
region v do
begin

with ready do
begin

if process table(process), urgent then
put(process, foreground) else
put(process, background);
if not empty(foreground) then
get(candidate, foreground) else
get(candidate, background);

end
continue(candidate);

end

4.7.

type Q = record
level: array N of sequence of T;
top: N;
waiting: integer;

end
"Initially all levels are empty and waiting ffi 0"

procedure enter(t: T;p: N; vat q: Q);
begin

with q do
begin

put(t, level(p));
if waiting = 0 then top:=p else
if p < top then top: = p;

4.8.

ANSWERS 323

waiting: = waiting + 1;
end

end

procedure remove(vat t: T; p: N; q: Q);
begin

with q do
begin

get(t, level(top)); p:= top;
waiting: = waiting- 1;
if waiting > 0 then
while empty(top) do top: = top + 1;

end
end

The following technique was used to test the RC 4000 multiprogramming system:
The procedures

enter(process, queue) continue(process)

will stop processor multiplexing temporarily and print one or two integers identify-
ing the process and the queue involved.
To test processor multiplexing, the system is initialized with two processes, A and
B:

cobegin
"A" repeat forever
"B" repeat forever

coend

and the timer is replaced with an interrupt key. Assuming that the short-term
scheduling algorithm is round-robin, the test output will have the following
format (shown here in symbolic form to make it more readable):

continue A
* enter A, ready queue

continue B
* enter B, ready queue

continue A

The lines marked * are the responses to timer interrupts simulated by pushing the
interrupt key.
To test the wait and signal operations, the system is started with two processes, C
and D, in the ready queue (in that order):

324 ANSWERS

var v: shared boolean; i: integer;
cobegin

"C" begin
region v do
for i: = I to some limit do;

end
"D" begin

region v d o . . . ;

end
coend

The test output will appear as follows:

continue C
* enter C, ready queue

continue D
enter D, semaphore queue
continue C
enter D, ready queue

* enter C, ready queue
continue D

"C enters its region"
"C preempted within its region"

"D waiting to enter its region"

"C leaves its region"
"C preempted outside its region"
"D enters its region"

and so on. (See also Bdnch Hansen, 1973.)

4.9.

vat y, a, b, c, d, e, f, g, h, i: integer;
begin

cobegin
g:ffi a + b;
h : = c - d;
i:ffi e * f;

coend
y :ffi g/h + i;

end

The execution times of the sequential and concurrent versions of the statement
are 51 and 1542/~sec, respectively (!).

CHAPTER 5

° 5 . 2 . Let s and h denote the average number of segments and holes, respectively. The
probability that a given segment is followed by a hole in the store (and not by

1 another segment) is ~ because deletions and creations are equally probable in
equilibrium. So with s segments in store, the average number of holes h must be

5.3.

5.4.

5.5.

5.6.

- 5.8.

5.10.

5.11.

A N S W E R S 325

s[2. It is intuitively reasonable that the number of holes must be less than the
number of segments because neighboring segments can be combined into a single
hole upon deletion.

It is advantageous to represent the state of the store by a list of holes because, on
the average, it will only be half as long as a list of segments.

(a) Consider a store of c words immediately after compacting when the hole
consists of f c words. In equilibrium, an average segment of s words is deleted and
another one is created every t references. So the boundary moves at the speed of
sit words per reference. Consequently, it crosses the hole after f c t/s references.
At this point, (1 - f)c words must be compacted; this requires at least 2 (1 - f)c
references. So the fraction of time spent on compacting is

F >/ 2(1- f~c
2(1 - f)c + f c t/s

which reduces to the equation given.

(b) F = 0.29.

In the GIER Algol system, stack pages remain fixed in the internal store, whereas
program pages are transferred to and from a drum on demand.

Extend the given program P with the following data structure

vat A: array 1.. max of
array 1..page length of integer:

and execute it as the only process on the machine. The amount of store available
to program P itself can be changed by means of the constant max.

9 and 10 page transfers, respectively.

Idle processor time can also be caused by processes waiting for page transfers. In
that case, the modified algorithm will soon cause thrashing by increasing the
computational workload.

In THE multiprogramming system, all frames pass the access heads once, in order
of (cyclically) increasing frame number during each revolution. (See Fig. A5.11.)

Track

0 1 • • • 511

Word ~

1021 k\ \ \ '%,\ \ 'q&\ \~\ \ \~\ \ \&\ \ \~k\ \ \m\\ \&\ \ \~k\ \ \~\ \&\ \ \ '~.~

Frame
0 1 . . . 511

512 513 . . . 1023

Fig. A5.11.

326

5.12.

5.13.

5.15.

ANSWERS

The track number t and the word number w of the beginning of frame number f
are defined as follows:

t: = f mod 512 w: = f

where

0 ~ f ~ 1023

From the solution to Exercise 3.25, we find that the dangerous boundaries are i =
max - (reso + resp) and i + p ffi max - reso. Here, further input production (i: = i +
1) depends on input consumption (i: = i - 1; p:=p + 1) and procedure returns
(p:ffi p - 1); in short, it depends on activities within user processes, whereas
output consumption (o: ffi o - 1) is of no help. Unfortunately, it is also possible
that user processes will do exactly the opposite and lead the system right into a
deadlock by an excessive number of procedure calls (p:ffi/~ + 1). A possible
solution is to use load control, that is, to try to stay away from these boundaries
and prevent the scheduling of further computations if the system comes close to
them. In THE multiprogramming system, the operator is notified of a tight store
situation and is expected to act accordingiy.

(a) sequential computations: The machine can be used to implement a stack not
exceeding 16 K words efficiently. This is satisfactory for a large class of
sequential programs.
(b) concurrent computations: If the machine is used to implement nested
segments, it would seem to be a serious limitation that a parent process can only
assign a segment to a child process that is at least 2 K words (= 1 page) smaller
than its own segment. It is possible, however, to implement a general
tree-structured stack of non-nested segments by using the page registers to define
that (linear) part of the stack which is accessible to the currently running process.
But the requirement that each process be assigned at least 2 K words of internal
store will certainly limit the usefulness of concurrent statements. One can
therefore conclude that this machine is not very practical for Concurrent
computations. Nevertheless, it has been used for that purpose (Lampson, 1966).

(c) demand paging: It is also doubtful that the machine is adequate for this
purpose considering that working sets are restricted to eight pages. Most programs
would need all eight pages in the internal store to run efficiently.

The probability that n independent jobs are waiting for input/output at the same
time isp n, so we have

17 = 1- pn

or

p = (I- 71) 11n

For n = 2 and W = 0.36, we findp = 0.8. In other words, the average job waits for
input/output 80 per cent of the time.

ANSWERS 327

5.16. Since ~ = 1 - pn we have

tn(1- 7)
n ~ -

l n p

Using fi = 0.9 and p = 0.8, we find n = 10. So we need 10 * 1 + 25 * 10 = 2 6 0 K
words.

5.17. I f all jobs wait , bo th processors are idle; the probabi l i ty o f this is pn. And, if all
jobs excep t one wait , one processor is idle; the probabi l i ty o f this is n pn-1 (1 -
p) . So the ut i l izat ion of each processor is

rl = 1 - (pn + n p n - X (1 - p) /2)

F o r n = 2 a n d p = 0.8, we f i n d r / = 0.2.

CHAPTER 6

6.2. The tr ick is to look upon F(x) as a mix ture o f two exponent ia l d is t r ibut ions

F(x) = a (1 - e -b x) + (1 - a)(1 - e -c x)

f rom which jobs are chosen wi th probabil i t ies a and 1 - a. This leads to the
fol lowing s ta tement :

vat x: real;
if random < a then x: = - ln(random)/b

else x: = - In(random)/c;

6.4. The relat ions be tween the s teady state probabil i t ies are:

P0 = P 0 (1 - kdt) +pl tJdt

pj = p j _ l ~ d t + p j (1 - (k+l~)d t)+pj+l lJd t (0 < j < n)

Pn = Pn- l kd t + Pn(1 - / a d o

The middle equa t ion shows t h a t , during a t ime interval dr, the state j can be
entered ei ther: (1) f rom the state j - 1, af ter an arrival; (2) f rom the state j , if no
arrival or depar ture occurs; or (3) f rom the state j + 1, af ter a depar ture . By solving
these equat ions , we find

PjfPJPo (0 ~< j ~< n)

and, since the sum of the probabilities is one, we have

328 ANSWERS

1 - P
P0 1 - pn+l

From this, the result for Pn follows immediately.

6.5. For p = 0.93 and n ffi 28, we have Pn = 0.01. The store capacity needed is 28 * 15
= 420 K words.

6.6. The input rate to the buffer is Pl when it is not full so the average input rate is

U i (1 - Pn)

In a steady state, this is equal to the average output rate.
Without a buffer, the service rate is

1 /~1
1 1 • l . + p

Pl P2

So we find

R f f i (l + p) (1 - P n) for p ¢ - I

The result for p = 1 follows by using L'Hospital ' s rule.

1 1
6.7. Let ~,'~ and ~ denote the means of execution and printing times, respectively.

The maximum throughput is Pl (for an infinite buffer). If the buffer capacity is n
- 1, the throughput is p~ (1 - Pn). For p = 0.5 and n ffi 4, we find Pn ffi 0.03 and R
ffi 1.45.

6.8. n users must wait for the execution of job 1; n - 1 users must wait for the
execution of job 2; and so on. Therefore, the average response t ime is

6 . 9 .

6.11.

(n * t l + (n - 1) * t 2 + . . . + tn) /n

If we make any changes in this schedule, for example by exchanging jobs j and k
(where j < k), the average response t ime is increased by the amount

(k - i) * (tk - t j) /n 1> 0

In other words, the average response t ime can only increase if the shortest j ob
nex t algorithm is not used.

One method described by Conway, Maxwell, and Miller (1967) is to generate
actual processing times t (for example, as proposed in Exercise 6.2) and mult iply
them by a scaled random number to obtain est imated processing times that are
uniformly distr ibuted between (1 - p) t and (1 + p) t where p is the maximum
error of estimates.

First, the scheduler computes the response ratios at t ime t + r l + r2 + r3, when all

A N S W E R S 329

6.13.

0

0

t 1 t 2 t 3 t

I I I I
r 2 r 1 r 3

Fig. A6.11.

T i m e

three jobs will have been finished (see Fig. A6.11). At that t ime, job 3 will have
the smallest response ratio of the three; so the scheduler decides to execute this
job last and proceeds to examine jobs 1 and 2 at t ime t + r l + r2, when they will
both be finished. Here the response ratio of job 1 is the smaller, and
consequently, job 2 is selected for service at t ime t. This algorithm is repeated
each time a job is completed to take new arrivals into account. Note that this
algorithm is not quite the same as h i g h e s t r e s p o n s e ra t io n e x t : The lat ter would
schedule job 1 at time t. Intuitively, it is clear that the present algorithm at tempts
to minimize the maximum response ratio by consistently postponing those jobs
that will suffer the least increase of their response ratios.

Consider the queue at time t immediately after a departure and ignore further
arrivals. The waiting jobs are numbered 1 to n in the order in which they will be
scheduled:

job: 1 2 . . . i . . . n
arrival time: t l t2 ti . . . tn

service time: r l r2 . . . ri • . . rn

Among these we assume that job i will reach the highest response ratio before its
departure. When the jobs I to i have been executed, t ime becomes

T i f f i t + r l + r 2 + . . . + r i

and job i has the response ratio

R i (T i) = (T i - t i) / r ~

The reason for executing job i last in the sequence i to i is that its response ratio
will be the lowest one among these jobs at time Ti:

R i (T i) ffi ra in[R1 (T i) , R 2 (T i) R i (T i)]

Consider now the consequences of scheduling the same n jobs in any other
sequence:

330

6.14.

6.15.

ANSWERS

job: a b . . . j . . . z
arrival time: ta tb • • • tj . . . tz

service time: r a r b . . . rj . . . r z

In the new sequence, we select the smallest subsequence of jobs, a to j, that
contains all the jobs, 1 to i, of the original subsequence. (This implies that j o b j is
itself one of the jobs 1 to i.) When the jobs a t o j have been served, time becomes

T j = t + r a + r b + . . . + r j

and job] reaches the response ratio

R~(tO) = (T~ - t j) lr~

Since the jobs 1 to i are a subset of the jobs a to], the sum of their service times
Ts - t must be less than or equal to the sum of service times Tj - t. And since
response ratios increase with time, Ti ~ T j implies

Rj(T~) i> Rj(T~)

It is also known that job j is one o£ the jobs 1 to / , of which job i has the smallest
response ratio at time Ti. The above inequality can therefore be extended as
follows:

R j (T j) /> R j (T i) ~ R i (T i)

In other words, when the scheduling algorithm is changed, there will always be a
job j that reaches a response ratio R j (T j) , which is greater than or equal to the
highest response ratio R~(Ti) obtained with the original algorithm.
Notice that this proof is valid in general for priorities which are non-decreasing
functions of time. For example, in a f i r s t - come , f i r s t - served system, priorities
increase linearly with waiting time at the same rate for all jobs. Therefore, the
present proof shows that the f i r s t - come , f i r s t - served algorithm minimizes the
maximum waiting time for a given batch of jobs.

When a customer arrives with a request for service of a certain length, the
scheduler computes the sequence in which jobs would be executed if the request
were accepted. If this simulation shows a response ratio exceeding the given limit,
the request is rejected; otherwise, it is accepted.

When a very short job is requested, there is a high probability that its response
ratio will exceed the given limit while the job in service is being completed. You
can easily see this if you consider average response ratios: If the very short job
requires a service time t, then its average response ratio will be W o / t after the
completion of the job in service. Thiswill exceed a limit R if t < W o / R . For p ffi
0.93, d ffi 2.75, and R ffi 10 we find ~t < 0.26. According to Fig. 6.3, this means
that about 30 per cent of all jobs will be denied service. A reasonable cure would
be to require that either the response time be less than a certain limit (say 5 min)
or the response ratio be less than another limit (say 10).

ANSWERS 331

6.16. When a foreground job arrives, a job from either queue may be in service; its
expected completion time is W0. Apart from that, a foreground job can only be
delayed by other foreground jobs already present. So the equation for W1 follows
directly from equation (6.22) by replacing p with Pt.
From the conservation law (6.19), we find:

oo p w o
W1 f t kx dF(x) + W2 .f. ~,x dF(x) =

1 o P

o r

pWo
PtW1 + (p - pt)W2 = 1 - p

From this result, the equation for W2 follows directly by substitution of the
equation for W1.

6.17. (a) From Exercise 6.16, we have

W° ~ Wm~
1-Pt

By using Pt = P G(t), we find

(0)1
G(t) ~. 1 - Wm,~ P

Furthermore, we have

pd
Wo =

U

Using these results for p ~ 1, we find the given relation.
(b) We require G(t) ~ 0.45. According to Fig. 6.4, this is satisfied for/~t ffi 2.5 or t
= 2.5 rain. Furthermore, W1 = 4.4 rain and W2 = 63 rain.

6.18. Let N denote the total number of-jobs present (waiting or in service) when the
given job arrives and let U denote their mean completion time. Since the service
times are exponential, the mean completion time per job remains l ip independent
of the scheduling algorithm used. This combined with equation (6.18) gives

U=.. ~ 1 P
p p l - p

Or

N = P
1 - p

332 ANSWERS

And, since all jobs share the processor equally, we have for the newly arrived job

R t = (N + 1) t

which can be reduced to the given result.

6.19. The total number of jobs N waiting or in service when the given job arrives is
given by

P
N = -

1 - p

independent of the scheduling algorithm (see Exercise 6.18). From this we derive
the mean overall response time R by using Little's law (6.15):

1
N

R = ' ~ = i _ p

Now let W and S t denote the mean times spent waiting and in service by a job of
service time t. Since priorities are initially based only on elapsed waiting time, W
is clearly independent of the service time t. Evidently, we have

R t = W + S t

Since service is based on processor sharing, we have from Exercise 6.18:

,= k_~_
St= 1-p' where p P

By taking the averages of R t and St , we find

R = W + S

o r

W = I _ 1
/.L 1 - p 1

And from the priority diagram, we find the relation

6.20.

1

which defines k' (and thereby p').

Let Tl denote the delay of a newly arrived job with service time t caused by
earlier arrivals (waiting or in service). The mean time required for the job in

ANSWERS 333

service to either complete or reach a service time t is Wto (see Section 6.1.4). In a
steady state, the mean number of earlier arrivals waiting which have been served
less than t is kTI, and the mean time required to serve them for a maximum
period t is

t
fo k T l x dF(x) = PtTi

So we have

T1 = Wo t + pt T1

or

wo
Ti = l _ p t

Now, let T2 denote the delay caused by later arrivals. During the mean response
time R t of the given job, the mean number of arrivals is kRt, and the mean time
required to serve them for a maximum period t is

t
T2 = fo k R t x dF(x) : P tR t

By'setting

R t f Tl + T2 + t

the given result follows.

6.21. A long-running job must wait for the completion of all earlier arrivals. So we have

Wo 1 p
T1

1 - p p l - p

The delays caused by later arrivals is

T2 = PT Rt

And, since

Rt ffiT1 + T 2 + t

we find

1 P t R t ffi ~ + - -

p (1 - p) (1 - pT) 1 - PT t > T

334

6.23.

6.24.

6.25.

ANSWERS

Only as long as there are comparatively few users in the system. When the
quantum is decreased to satisfy more users rapidly two things happen: (1)
processor utilization decreases; and (2) at a certain point, the quantum becomes
too small to satisfy most trivial requests. Users will then experience a sudden
increase of response times because their requests must pass through the
round-robin queue several times.

The 20 per cent savings went to idle time caused by slow peripherals (Schwartz,
1967). The solution used was to increase the number of background jobs (in
queue 3) by adding 350,000 words of drum storage to the installation.

The batch/time-sharing system for the SDS Sigma 5 and 7 computers uses a
particularly simple algorithm (Shemer, 1969): The system always keeps a
background job in the internal store ready to run. While foreground jobs are being
swapped, the processor serves the background job. When a swap has been
completed, the corresponding foreground user is given one quantum (provided
the background job has already used its quantum).

VOCABULARY

The following is a glossary of the most basic terms used in the text. The
entries are arranged according to the logic of the subject, with an alphabetic
index at the end. New terms are printed in bold face type. References to
previously defined terms are printed in italics. My main purpose is to be
consistent in the use of terminology within the framework of this book. I
am not seeking general acceptance of the present vocabulary and have made
no a t tempt to list alternative terms for the concepts or distinguish between
preferred and deprecated terms.

COMPUTERS AND OPERATING SYSTEMS

Data. Physical phenomena chosen by convention to represent certain
aspects of our conceptual and real world. The meanings we assign to
data are called their Information. Data are used to transmit information
between human beings, to store information for future use, and to
derive new information by manipulating the data according to formal
rules.

Operation. A rule for deriving a finite set of data, called the Output , f rom
another finite set of data, called the Input. Once initiated, an operation
is completed within a finite time. An operation always delivers the same
ou tpu t when it is applied to a given input, regardless of the time
required to carry it out.

Computat ion. A finite set of operations applied to a finite set o f data in
an a t tempt to solve a problem. If a computat ion solves the given
problem, it is also called an Algorithm; but a computat ion can be
meaningless.

Process. A computation in which the operations are carried ou t strictly
one at a time.

Program. A description of a computation in a formal language called a
Programming Language.

Computer. A physical system capable of carrying out computations by
interpreting programs. A computer consists of a Store, a physical
componen t in which data and programs can be retained for future use,
and one or more Processors, physical components which can carry out
processes defined by stored programs.

335

336 VOCABU LARY

Virtual Machine. A computer simulated partly by program.
Operating System. A set of manual and automatic procedures that enable

a group of people to share a computer efficiently. An operating system
receives requests from users and determines the order in which their
computat ions are carried out. It provides users with long-term storage
of programs and data, and protects them against unauthorized usage.
Finally, it performs accounting of the cost of computat ion and assists
management in measuring performance.

Non-interactive System. An operating system that does no t permit
computat ions to interact with the environment of a computer.

Interactive System. An operating system that permits computat ions to
interact with the environment of a computer.

CONCURRENT PROCESSES

Concurrent Processes. Processes that overlap in time. Concurrent processes
are called Disjoint if each of them only refers to Private Data; theyare
called Interacting if they refer to Common Data.

Multiprogramrning. Programming techniques used to control concurrent
processes.

Synchronization. A general term for any constraint on the order in
which operations are carried out. A synchronizing rule can, for
example, specify the precedence, priority, or mutual exclusion in time
of operations.

Critical Regions. A set of operations on a c o m m o n data structure which
exclude one another in time.

Semaphore. A c o m m o n data structure used to exchange timing signals
between concurrent processes.

Message Buffer. A c o m m o n data structure used to exchange data between
concurrent processes.

Monitor. A c o m m o n data structure and a set of meaningful operations on
it that exclude one another in time and control the synchronization of
concurrent processes.

Running. The state of a process that is being executed by a processor.
Waiting. The state of a process that is suspended temporari ly until a

synchronizing condition, called an Event, holds.
Deadlock. A situation in which two or more processes are waiting

indefinitely for events that will never occur.

SCHEDULING

Job. A general term for a computat ion requested by a user.
Resource. A general term for any object (processor, store, program, data,

and so on) shared by computat ions.

VOCABULARY 337

Scheduling Algorithm. An algorithm that determines the order in which
competing jobs are allowed to use resources.

Arrival Rate. The average number of jobs requested per time unit.
Service Rate. The average number of jobs completed per time unit when

the system is being used.
Utilization Factor. The ratio of the arrival rate to the service rate. In the

steady state, the utilization factor represents the average fraction of
time that the system is being used.

Service Time. The amount of time required to execute a job.
Waiting Time. The amount of time during which a job waits to be

executed.
Response Time. The time interval between the request for execution of a

job and the return of its results to a user. The response time is the sum
of the waiting time and the service time.

Response Ratio. The ratio of the response time to the service time of a
job. The response ratio represents the degradation in execution speed
experienced by a given job as a result of the presence of other jobs and
the scheduling algorithm used.

Equitable Sharing. A form of scheduling under which the response ratio is
proport ional to the number of jobs present in the system.

Non-preemptive Scheduling. A form of scheduling in which jobs can use
resources exclusively until they release them again.

Preemptive Scheduling. A form of scheduling in which jobs can be
interrupted and their resources transferred to more urgent jobs. An
interrupted job can be either Terminated completely or Resumed later.

Multiplexing. The sharing of a single resource among several jobs--one at a
t ime--by frequent preemption and resumption.

Priority. A number used to establish an order of precedence among jobs
competing for resources. Priorities can be either fixed or dynamic.

Queue. A set of jobs waiting for a given type of resource and ordered
according to priorities.

Time Slice. An interval of time during which a job can use a resource
without being preempted.

Round Robin. Cyclical multiplexing of a resource among jobs with fixed
time slices.

PROCESSOR AND STORE MANAGEMENT

Short-term Scheduling. That part of a scheduling algorithm that assigns
processors and storage to processes as soon as they become available to
maintain efficient utilization of a computer. This level of programming
also implements synchronizing operations, which enable processes to
interact.

Medium-term Scheduling. That part of a scheduling algorithm that

338 VOCABULARY

initiates and terminates processes in accordance with the policy of
computer management towards users. This level o f programming
establishes the identi ty and authori ty of users; inputs and analyzes their
requests; initiates and terminates jobs; performs accounting of resource
usage; and maintains system integrity in spite of hardware malfunction.

Interrupt. A timing signal that causes a processor to suspend the execut ion
of its current process and start another process.

Store Location. A store component that can represent any one o f a finite
set of data values.

Store Capacity. The number of locations in a store.
Access Time. The average t ime required to record or obtain the value of a

store location. For stores with moving physical media (magnetic tapes,
drums, and disks), the access time consists of a Waiting Time, required
to position the media, and a Transfer time, required to transfer data to
or f rom the store.

Internal Store. A store with a moderate capacity and fast access used to
hold data and programs during execution.

Backing Store. A store with a large capacity and slow access used to hold
data and programs until they are needed in an internal store.

Address. A number used to identify a store location. A Real Address is
unique within the entire store; a Virtual Address is only unique within a
part of the store. The conversion of a virtual address into a real address
is called Address Mapping.

Store Allocation. The assignment of store locations to data and programs
prior to their use. Store allocation can be done: (1) at compile time
(Fixed Allocation); (2) prior to execution (Dynamic Allocation); or (3)
during execution (Dynamic Relocation).

Segment. A set of data that can be placed anywhere in a store and
addressed relative to a common origin. The origin and number of
locations of a segment are called its Base Address and its Length,
respectively.

Placement Algorithm. An algorithm that determines where in an internal
store segments should be placed prior to their use.

Contiguous Segmentation. A form of placement in which each segment is
placed in store locations with contiguous real addresses.

Paged Segmentation. A form of placement in which the store is divided
into units of equal length, called Page Frames, while segments are
divided into units of the same length, called Pages. During execution, a
page can be placed in any available page frame.

Compacting. A form of dynamic relocation in which contiguous segments
are moved to one end of the store to combine all unused storage at the
other end.

Store Fragmentation. Unused storage wasted between contiguous seg-
ments (External Fragmentation) or within paged segments (Internal
Fragmentation).

VOCABULARY 339

Demand Fetching. A form of store multiplexing in which segments are
kept on a backing store and only placed in an internal store when
computations refer to them.

Locality. The tendency of processes to refer heavily to a subset o f their
segments over a period of time.

Working Set. The minimum amount of internal storage needed by a
process to utilize a processor efficiently.

Thrashing. A state in a demand fetching system in which processors
spend most of their time waiting for segments to be transferred from
the backing store to the internal store.

Load Control. A method that prevents thrashing by measuring the
utilization of processors and backing storage, and (if necessary)
preempting processes to reduce the computat ional load.

Replacement Algorithm. An algorithm used in a demand fetching system
to determine which segment (or which part of it) to remove when
another segment must be placed in a full internal store.

Transfer Algorithm. An algorithm used in a demand fetching system to
determine the order in which segments demanded by concurrent
processes are transferred from a backing store to an internal store.

Swapping. A form of store multiplexing in which jobs axe kept on a
backing store and periodically transferred entirely to an internal store
to be executed for a fixed time slice.

Resource Protection. The use of automatic procedures to ensure that
resources are accessed by well-defined operations within computations
authorized to use these resources.

INDEX TO VOCABULARY

A

Access time, 338
Address, 338
Address mapping, 338
Algorithm, 335
Arrival rate, 337

External fragmentation, 338

F

Fixed allocation, 338

B

Backing store, 338
Base address, 338

C

Common data, 336
Compacting, 338
Computation, 335
Computer, 335
Concurrent processes, 336
Contiguous segmentation, 338
Critical regions, 336

Information, 335
Input, 335
Interacting processes, 336
Interactive system, 336
Internal fragmentation, 338
Internal store, 338
Interrupt, 338

Job, 336

Data, 335
Deadlock, 336
Demand fetching, 339
Disjoint processes, 336
Dynamic allocation, 338
Dynamic relocation, 338

E

Equitable sharing, 337
Event, 336

Load control, 339
Locality, 339

M

Medium-term scheduling, 337
Message buffer, 336
Monitor, 336
Multiplexing, 337
Multiprogramming, 336

341

I

INDEX TO VOCABULARY

N

Non-interactise system, 336
Non-preemptive scheduling, 337

0

Operating system, 336
Operation, 335
Output, 335

Page, 338
Paged segmentation, 338
Page frame, 338
Placement algorithm, 338
Preemptive scheduling, 337
Priority, 337
Private data, 336
Process, 335
Processor, 335
Program, 335
Programming language, 335

Q

Queue, 337

Scheduling algorithm, 337
Segment, 338
Segment length, 338
Semaphore, 336
Service rate, 337
Service time, 337
Short-term scheduling, 337
Store, 335
Store allocation, 338
Store capacity, 338
Store fragmentation, 338
Store location, 338
Swapping, 339
Synchronization, 336

T

Termination, 337
Thrashing, 339
Time slice, 337
Transfer algorithm, 339
Transfer time, 338

Utilization factor, 337

Real address, 338
Replacement algorithm, 339
Resource, 336
Resource protection, 339
Response ratio, 337
Response time, 337
Resumption, 337
Round robin, 337
Running process, 336

V

Virtual address, 338
Viltual machine, 336

W

Waiting process, 336
Waiting time, 337-38
Working set, 339

REFERENCES

The following is a complete list of the literature referenced in the text.

ALDERSON, A., LYNCH, W. C., and RANDELL, B., "Thrashing in a multiprogrammed
paging system," International Seminar on Operating System Techniques, Belfast,
Northern Ireland, Aug.-Sept. 1971.

ALEXANDER, S. L. and KONIGSFORD, W. L., "TSS/360: a time-shared operating
system," Proe. AFIPS Fall Joint Computer Conf., pp. 15-28, 1968.

ANDERSEN, P. L., "RC 4000 datamatics: monitor 3," Regnecentralen, Copenhagen,
Denmark, Feb. 1972.

ARDEN, B. and BOETTNER, D., "Measurement and performance of a multi-
programming system," The 2d ACM Symposium on Operating System Principles,
Princeton, New Jersey, Oct. 1969.

BATSON, A., JU, S., and WOOD, D., "Measurements of segment size," Comm. ACM
13, 3, pp. 155-59, March 1970.

BELADY, L. A., "A study of replacement algorithms for a virtual-store computer," IBM
Systems Journal 5, 2, pp. 78-101, 1966.

BELADY, L. A., NELSON, R. A., and SHEDLER, G. S., "An anomaly in space-time
characteristics of certain programs running in a paging machine," Comm. ACM 12, 6,
pp. 349-53, June 1969.

BELL, G. and NEWELL, A., Computer Structures: Readings and Examples.
McGraw.Hill Book Company, New York, New York, 1971.

BRATMAN, H., and BOLDT, I. V., "The SHARE 709 system: supervisory control,"
Journal ACM 6, 2, pp. 152-55, April 1959.

BREDT, T. H., "A survey of models for parallel computing," Stanford University, Palo
Alto, California, Aug. 1970.

BRIGHT, H. S., CHEYDLEIJR, B. F., and GROWE, W., "On the reduction of
turnaround time," Proe. AFIPS Fall Joint Computer Conf., pp. 161-69, Dec. 1962.

BRINCH HANSEN, P. (ed.), "RC 4000 software: multiprogramming system,"
Regnecentralen, Copenhagen, Denmark, April 1969.

BRINCH HANSEN, P., "The nucleus of a multiprogramming system," Comm. ACM 13,
4, pp. 238-50, April 1970.

BRINCH HANSEN, P., "An analysis of response ratio scheduling," IFIP Congress 71,
Ljubljana, Yugoslavia, Aug. 1971a.

343

344 REFERENCES

BRINCH HANSEN, P., "An outline of a course on operating system principles,"
International Seminar on Operating System Techniques, Belfast, Northern Ireland,
Aug.-Sept. 1971b.

BRINCH HANSEN, P., "A comparison of two synchronizing concepts," Acta
Informatica 1, 3, pp. 190-99, 1972a.

BRINCH HANSEN, P., "Structured multiprogramming," Comm. ACM 15, 7, pp.
574-78, July 1972b.

BRINCH HANSEN, P., "Testing a multiprogramming system," Software--Practice &
Experience 3, 2, pp. 145-50, April-June 1973.

BRON, C., "Allocation of virtual store in THE multiprogramming system,"
International Seminar on Operating System Techniques, Belfast, Northern Ireland,
Aug.-Sept. 1971.

COFFMAN, E. G. and WOOD, R. C., "Interarrival statistics for time-sharing systems,"
Comm. ACM 9, 7, pp. 500-03, July 1966.

COFFMAN, E. G. and KLEINROCK, L., "Computer scheduling methods and their
countermeasures," Proc. AFIPS Spring Joint Computer Conf., pp. 11-21, April 1968a.

COFFMAN, E. G. and VARIAN, L. C., "Further experimental data on the behavior of
programs in a paging environment," Comm. ACM 11,7, pp. 471-74, July 1968b.

COFFMAN, E. G. and KLEINROCK, L., "Feedback queuing models for time-shared
systems," Journal of ACM 15, 4, pp. 549-76, Oct. 1968c.

COFFMAN, E. G., ELPHICK, M. J., and SHOSHANI, A., "System deadlocks,"
Computing Surveys 3, 2, pp. 67-78, June 1971.

COMEAU, L. W., "A study of the effect of user program optimization in a paging
system," ACM Symposium on Operating System Principles, Gatlinburg, Tennessee,
Oct. 1967.

COMFORT, W. T., "A computing system design for user service," Proc. AFIPS Fall Joint
Computer Conf., pp. 619-28, 1965.

CONWAY, M. E., "Design of a separable transition-diagram compiler," Comm. ACM 6,
7, pp. 396-408, July 1963.

CONWAY, R. W., MAXWELL, W. L., and MILLER, L. W., Theory of Scheduling,
Addison-Wesley, Reading, Massachusetts, 1967.

CORBATO, F. J., MERWIN-DAOGETT, M., and DALEY, R. C., "An experimental
time-sharing system," Proc. AFIPS Fall Joint Computer Conf., pp. 335-44, May 1962.

CORBATO, F. J. and VYSSOTSKY, V. A., "Introduction and overview of the
MULTICS system," Proc. AFIPS Fall Joint Computer Conf., pp. 185-96, Nov. 1965.

COSINE REPORT on "An undergraduate course on operating systems principles,"
Commission on Education, National Academy of Engineering, Washington, D.C., June
1971.

COURTOIS, P. J., HEYMANS, F., and PARNAS, D. L., "Concurrent control with
'readers' and 'writers.'" Comm. ACM 14, 10, pp. 667-68, Oct. 1971.

REFERENCES 345

COX, D. R. and SMITH, W. L., Queues, John Wiley and Sons, New York, New York,
1961.

DAHL, O.-J., MYHRHAUG, B., and NYGAARD, K., "Simula 67--Common base
Language," Norsk Regnesentral, Oslo, Norway, May 1968.

DAHL, O.-J. and HOARE, C. A. R., "Hierarcbal program structures," Unpublished
draft, 1971.

DALEY, R. C. and NEUMAN, P. G., "A general purpose file system for secondary
storage," Proc. AFIPS Fall Joint Computer Conf., pp. 213-29, 1965.

DALEY, R. C. and DENNIS, J. B., "Virtual memory, processes, and sharing in Multics,"
Comm. ACM11, 5, pp. 306-12, May 1968.

DeMEIS, W. M. and WEIZER, N., "Measurements and analysis of a demand paging time
sharing system," Proc. ACM National Meeting, pp. 201-16, 1969.

DENNING, P. J., "The working set model for program behavior," Comm. ACM 11, 5,
pp. 323-33, May 1968.

DENNING, P. J., "Virtual memory," Computing Surveys 2, 3, pp. 153-89, Sept. 1970.

DENNIS, J. B., "Segmentation and the design of multiprogrammed computer systems,"
Journal of ACM 12, 4, pp. 589-602, Oct. 1965.

DENNIS, J. B. and VAN HORN, E. C., "Programming semantics for multiprogrammed
computations," Comm. ACM 9, 3, pp. 143-55, March 1966.

DIJKSTRA, E. W., "Cooperating sequential processes," Technological University,
Eindboven, The Netherlands, 1965. (Reprinted in Programming Languages, F.
Genuys, ed., Academic Press, New York, New York, 1968).

DIJKSTRA, E. W., "The structure of THE multiprogramming system," Comm. ACM
11, 5, pp. 341-46, May 1968.

DIJKSTRA~ E. W., "A short introduction to the art of programming," Technological
University, Eindhoven, The Netherlands, Aug. 1971a.

DIJKSTRA, E. W., "Hierarchal ordering of sequential processes," Acta Informatica 1, 2,
pp. 115-38, 1971b.

DIJKSTRA, E. W., "A class of allocation strategies inducing bounded delays only,"
Proc. AFIPS Spring Joint Computer Conf., pp. 933-36, May 1972.

ESTRIN, G. and KLEINROCK, L., "Measures, models, and measurements for
time.shared computer utilities," Proc. ACM National Meeting, pp. 85-96, Aug. 1967.

FELLER, W., "An Introduction to Probability Theory and its Applications," Vol. I, 2
ed., John Wiley and Sons, New York, New York, 1957.

FIFE, D. W., "An optimization model for time-sharing," Proc. AFIPS Spring Joint
Computer Conf., pp. 97-104, April 1966.

FINE, G. H., JACKSON, C. W., and McISAAC, P. V., "Dynamic program behavior
under paging," Proc. ACM National Meeting, pp. 223-28, 1966.

34.6 REFERENCES

FRASER, A. G., "The integrity of a disc based file system," International Seminar on
Operating System Techniques, Belfast, Northern Ireland, Aug.-Sept. 1971.

FREEMAN, D. N. and PEARSON, R. R., "Efficiency vs responsiveness in a
multiple-services computer facility," Proc. ACM National Meeting, pp. 25-34B, 1968.

FUCHEL, K. and HELLER, S., "Consideration in the design of a multiple computer
system with extended core storage," The ACM Symposium on Operating System
Principles, Gatlinburg, Tennessee, Oct. 1967.

GLASER, E. L., COULEUR, J. F., and OLIVER, G. A., "System design of a computer
for time sharing applications," Proc. AFIPS Fall Joint Computer Conf., pp. 197-202,
1965.

GRAHAM, R. M., "Protection in an information processing utility," Comm. ACM 11, 5,
pp. 365-69, May 1968.

HABERMANN, A. N., "On the harmonious cooperation of abstract machines,"
Technological University, Eindhoven, The Netherlands, 1967.

HABERMANN, A. N., "Prevention of system deadlocks," Comm. ACM 12, 7, pp.
373-85, July 1969.

HABERMANN, A. N., "Synchronization of communicating processes," Comm. ACM
15, 3, pp. 171-76, March 1972.

HAVENDER, J. M., "Avoiding deadlock in multitasking systems," IBM Systems Journal
7, 2, pp. 74-84, 1968.

HOARE, C. A. R., "An axiomatic basis for computer programming," Comm. ACM 12,
10, pp. 576-83, Oct. 1969.

HOARE, C. A. R., "Proof of a program: Find," Comm. ACM 14, 1, pp. 39-45, Jan.
1971a.

HOARE, C. A. R., "Towards a theory of parallel programming," International Seminar
on Operating System Techniques, Belfast, Northern Ireland, Aug.-Sept. 1971 b.

HOARE, C. A. R. and McKEAG, R. M., "A survey of store management techniques,"
International Seminar on Operating System Techniques, Belfast, Northern Ireland,
Aug.-Sept. 1971c.

HOLT, R. C., "On deadlock in computer systems," Cornell University, Ithaca, New
York, 1971.

HOOVER, E. S. and ECKHART, B. J., "Performance of a monitor for a reai-time
control system," Proc. AFIPS Fall Joint Computer Conf., pp. 23-25, Nov. 1966.

HORNING, J. J. and RANDELL, B., "Process structuring," University of Newcastle
upon Tyne, England, 1972.

HUME, J. N. P. and ROLFSON, C. B., "Scheduling for fast turnaround in job-at-a-time
processing," IFIP Congress 68, Edinburgh, Great Britain, Aug. 1968.

IRONS, E. T., "A rapid turnaround multiprogramming system," Comm. ACM 8, pp.
152-57, March 1965.

REFERENCES 347

KILBURN, T., HOWARTH, D. J., PAYNE, R. B., and SUMNER, F. H., "The
Manchester University Atlas operating system. Part I: Internal organization,"
Computer Journal 4, 3, pp. 222-25, Oct. 1961.

KILBURN, T., EDWARDS, D. B. G., LANIGAN, M. J., and SUMNER, F. H., "One-level
storage system," IRE Transactions on Electronic Computers 11, 2, pp. 233-35, April
1962.

KLEINROCK, L., "A conservation law for a wide class of queuing disciplines," Naval
Research Logistics Quarterly 12, pp. 181-92, June 1965.

KLEINROCK, L., "Certain analytic results for time-shared processors," IFIP Congress
68, Edinburgh, Great Britain, Aug. 1968.

KLEINROCK, L., "A continuum of time-sharing scheduling algorithms," Proc. AFIPS
Spring Joint Computer Conf., pp. 453-58, 1970.

KNUTH, D. E., The Art of Computer Programming, Volume 1. Addison-Wesley,
Reading, Massachusetts, 1969.

LAMPSON, B. W., LICHTENBERGER, W. W., and PIRTLE, M. W., "A user machine in
a time-sharing system," Proc. IEEE 54, 12, pp. 1766-74, Dec. 1966.

LAMPSON, B. W., "A scheduling philosophy for multiprocessing systems," Comm.
ACM11, 5, pp. 347-60, May 1968.

LAMPSON, B. W., "Dynamic protection structures," Proc. AFIPS Fall Joint Computer
Conf., pp. 27-38, 1969.

LAMPSON, B. W., "On reliable and extensible operating systems," Infotech State of the
Art Proceedings, 1970.

LICKLIDER, J. C. R. and CLARK, W. E., "On-line man-computer communication,"
Proc. AFIPS Spring Joint Computer Conf., pp. 113-28, May 1962.

LISKOW, B. H., "The design of the Venus operating system," Comm. ACM 15, 3, pp.
144-49, March 1972.

LITTLE, J. D. C., "A proof of the queuing formula L = kW," Operations Research 9,
pp. 383-87, 1961.

LONERGAN, W. and KING, P., "Design of the B5000 system," Datamation 7, 5, pp.
28-32, May 1961.

LYNCH, W. C., "Description of a high capacity fast turnaround university computing
center," Proc. ACM National Meeting, pp. 273-88, Aug. 1967.

LYNCH, W. C., "An operating system design for the computer utility environment,"
International Seminar on Operating System Techniques, Belfast, Northern Ireland,
Aug.-Sept. 1971.

McCULLOUGH, J. D., SPEIERMAN, K. H. and ZURCHER, F. W., "A design for a
multiple user multiprocessing system," Proc: AFIPS Fall Joint Computer Conf., pp.
611-17, 1965.

348 REFERENCES

McKEAG, R. M., "Burroughs B5500 Master control program," The Queen's University
of Belfast, Northern Ireland, 1971a.

McKEAG, R. M., "THE Multiprogramming system," The Queen's University of Belfast,
Northern Ireland, 1971b.

McKINNEY, J. M., "A survey of analytical time-sharing models," Computing Surveys
1,2, pp. 105-16, June 1969.

MEALY, G. H., "The functional structure of OS/360. Part I--Introductory survey,"
IBM Systems Journal 5, 1, 1966.

MINSKY, M. L., Computation: Finite and Infinite Machines. Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1967.

MORENOFF, E. and McLEAN, J. B., "Inter-program communications, program string
structures and buffer files," Proc. AFIPS Spring Joint Computer Conf., pp. 175-83,
1967.

MORRIS, D., SUMNER, F. H., and WYLD, M. T., "An appraisal of the Atlas
supervisor," Proc. ACM National Meeting, pp. 67-75, Aug. 1967.

MOTOBAYASHI, S., MASUDA, T. and TAKAHASHI, N., "The HITAC 5020 time
sharing system," Proc. ACM National Meeting, pp. 419-29, 1969.

NATO REPORT on "Software Engineering,," Garmisch, Germany, Oct. 1968.

NATO REPORT on "Software Engineering," Rome, Italy, Oct. 1969.

NAUR, P., "The design of the GIER Algol compiler," BIT 3, 2-3, pp. 124-40 and
145-66, 1963.

NAUR, P., "The performance of a system for automatic segmentation of programs
within an Algol compiler (GIER Algol)," Comm. ACMS, 11, pp. 671-77, Nov. 1965.

NAUR, P., "Program translation viewed as a general data processing problem," Comm.
ACM 9, 3, pp. 176-79, March 1966.

OPPENHEIMER, G. and WEIZER, N., "Resource management for a medium-scale
time-sharing operating system," Comm. ACM 11, 5, pp. 313-22, May 1968.

ORGANICK, E. I. and CLEARY, J. G., "A data structure model of the B6700
computer system," Proc. Symposium on Data Structures in Programming Languages,
Gainsville, Florida, pp. 83-145, Feb. 1971.

ORGANICK, E. I., The Multics System: An Examination of its Structure. MIT Press,
Cambridge, Massachusetts, 1972.

PATIL, S. S., "Closure properties of intetconnections of determinate systems," Record
of the Project MAC Conference on Concurrent Systems and Parallel Computations,
ACM, New York, New York, pp. 107-16, June 1970.

PHIPPS, T. E., "Machine repair as a priority waiting-line problem," Operations Research
4, pp. 76-85, 1956.

RANDELL, B. and RUSSELL, L. J., Algol 60 Implementation. Academic Press, New
York, New York, 1964.

REFERENCES 349

RANDELL, B., "A note on storage fragmentation and program segmentation," Comm.
ACM 12, 7, pp. 365-72, July 1969.

ROSIN, R. F., "Determining a computing center environment," Comm. ACM 8, 7, pp.
463-68, July 1965.

ROSIN, R. F., "Supervisory and monitor systems," Computing Surveys 1, 1, pp. 15-32,
March 1969.

ROSS, D. T., "Introduction to software engineering with the AED-0 language,"
Massachusetts Institute of Technology, Cambridge, Massachusetts, Oct. 1969.

SALTZER, J. H., "Traffic control in a multiplexed computer system," MAC-TR-30,
Massachusetts Institute of Technology, Cambridge, Massachusetts, July 1966.

SCHERR, A. L., "An analysis of time-shared computer systems," MAC-TR-18,
Massachusetts Institute of Technology, Cambridge, Massachusetts, June 1965.

SCHROEDER, M. D. and SALTZER, J. H., "A hardware architecture for implementing
protection rings," Comm. ACM 15, 3, pp. 157-70, March 1972.

SCHWARTZ, J. I., COFFMAN, E. G., and WEISSMAN, C., "A general purpose
time-sharing system," Proc. AFIPS Spring Joint Computer Conf., pp. 397-411, April
1964.

SCHWARTZ, J. I. and WEISSMAN, C., "The SDC time.sharing system revisited," Proc.
ACM National Meeting, pp. 263-71, Aug. 1967.

SHEMER, J. E. and HEYING, D. W., "Performance modeling and empirical
measurements in a system designed for batch and time-sharing users," Proc. AFIPS
Fall Joint Computer Conf., pp. 17-26, 1969.

SIMON, H. A., "The architecture of complexity," Proc. American Philosophical Society
106, 6, pp. 468-82, 1962.

SIMON, H. A., "Reflections on time sharing from a user's point of view," Computer
Science Research Review, Carnegie.Mellon University, Pittsburgh, Pennsylvania, 1966.

STRACHEY, C., "Time sharing in large fast computers," Proc. International Conference
on Information Processing,. UNESCO, Paris, France, pp. 336-41, June 1959.

THORNTON, J. E., "Parallel operation in the Control Data 6600," Proc. AFIPS Fall
Joint Computer Conf., pp. 33-40, 1964.

VANDERBILT, D. H., "Controlled information sharing in a computer utility,"
MAC-TR-67, Massachusetts Institute of Technology, Cambridge, Massachusetts, Oct.
1969.

VAREHA, A. L., RUTLEDGE, R. M., and GOLD, M. M., "Strategies for structuring
two-level memories in a paging environment," The 2d ACM Symposium on Operating
System Principles, Princeton, New Jersey, Oct. 1969.

WALTER, E. S. and WALLACE, V. L., "Further analysis of a computing center
environment," Comm. ACM 10, 5, 266-72, May 1967.

WILSON, R., "CDC Scope 3.2," The Queen's University of Belfast, Northern Ireland,
1971a.

350 REFERENCES

WILSON, R., "The Titan supervisor," The Queen's University of Belfast, Northern
Ireland, 1971b.

WIRTH, N., "On multiprogramming, machine coding, and computer organization,"
Comm. ACM 12, 9, pp. 489-98, Sept. 1969.

WIRTH, N., "The programming language Pascal," Acta Informatica 1, 1, pp. 35-63,
1971a.

WIRTH, N., "The design of a Pascal compiler," Software--Practice and Experience 1,
pp. 309-33, 1971b.

WULF, W. A., "Performance monitors for multiprogramming systems," The 2d ACM
Symposium on Operating System Principles, Princeton, New Jersey, Oct. 1969.

The following papers: ALDERSON, 1971; BRINCH HANSEN, 1971b; BRON, 1971;
DIJKSTRA, 1971b; FRASER, 1971; HOARE, 1971b and 1971c; and LYNCH, 1971
have been reprinted in:

Operating Systems Techniques--Proceedings of a Seminar held at Queen's University,
Belfast, 1971. Edited by C. A. R. Hoare and R. H. Perrott. Academic Press, New York,
1972.

DAHL, 1971 is included in:

DAHL, O.-J., DIJKSTRA, E. W. and HOARE, C. A. R. Structured Programming,
Academic Press, New York, 1972.

INDEX TO ALGORITHMS

2.1-6
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8-9
3.10

3.11
3.12

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
5.1-4
7.1
8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11-12

The Banker's Algorithm, 45-49
Copying of a Sequence of Records, 59
A Resource R Shared by n Concurrent Processes, 86
A Variable v Shared by Two Concurrent Processes, 86
Mutual Exclusion Implemented With Semaphores, 95
Periodic Scheduling of Concurrent Processes, 97
Process Communication With Conditional Critical Regions, 102
Process Communication With Semaphores, 104
The Readers and Writers Problem Solved With Semaphores, 108-9
The Readers and Writers Problem Solved With Conditional Critical Regions,
113
Scheduling of Heavily Used Resources With Conditional Critical Regions, 117
Scheduling of Heavily Used Resources With Simple Critical Regions and
Event Variables, 120
The Scheduling of a Ready Process, 139
The Initiation of a Child Process, 141
The Delay of a Parent Process, 141
The Termination of a Child Process, 142
The Semaphore Operations Wait and Signal, 143
The Event Operations Await and Cause, 144
The Instruction Execution Cycle of a Processor With Interrupts, 149
A Monitor Call and Exit, 149
Demand Paging, 180-82
Representation of a Message Buffer by a Shared Class, 230
The Basic Cycle of a Conversational Process, 246
The Monitor Data Structure, 270
The Monitor Procedure Send Message, 271
The Monitor Procedure Wait Message, 272
The Monitor Procedure Send Answer, 272
The Monitor Procedure Wait Answer, 273
The Extended Monitor Data Structure, 275
The Monitor Procedure Create Process, 276
The Monitor Procedure Start Process, 276
The Monitor Procedure Stop Process, 277
The Monitor Procedure Remove Process, 278-79

351

INDEX

A

Abbreviation, 24, 28
Abstraction, 24-25, 28-31, 30, 51, 76,

134, 150-51
Access head, 157, 189
Accessible variables, 64-68, 84
Access ratio, 185-90
Access rights, 225-35
Access time, 157, 160, 182, 186,

189-90, 338
Accounting, 2, 256, 298-99
Activate, 242
Actual parameter, 37
Adams, D. A., 131
Address, viii, 32, 159-60, 338
Addressing (see Store addressing)
Address mapping, 160-69, 230, 232,

301, 338
AED-O language, 235
Alderson, A., 188, 301,343, 350
Alexander, S. L., 16, 343
Algol 60 language, 32, 228, 286
Algorithm, 29, 335
Ancestor process, 166-67, 274
Andersen, P. L., 285, 343
Answer, 127-30, 241-44, 248, 280
Arbiter, 87, 96, 137, 230
Arden, B., 177, 343
Area claim, 257
Area process, 262-63
Arithmetic operator, 37, 227
Array, 35, 65
Arrival pattern, 195-97
Arrival rate, 196, 337
Assertion, 27-28, 37, 40-41, 51, 67-68,

88-89, 100
Assignment statement, 37, 65
Associative store, 168, 175
Atlas computer, 13, 16, 164, 175, 177,

182, 191
Atlas supervisor, 21-22
Autoload key, 267

Awaiting answer state, 243
Awaiting message state, 243
Awaiting monitor response state, 281
Awaiting stop state, 280
Await operation, 98-100, 119, 144-45

B

B5000 computer, 168, 182, 191
B5500 master control program, 170-72,

176, 188, 231, 285-86
B6700 computer, 165
B8500 computer, 168
Background queue, 213, 222
Backing store, 6-17, 157-58, 161,

172-73, 178-91, 206-07, 213-24,
240, 258, 260-63, 267-68, 288-89,
297-98, 338

Balanced system, 185-88, 191
Banker's algorithm, 42-49, 124-25, 295
Base address, 160-69, 173-75, 338
Base register, 11, 163, 167-68, 269
Basic monitor, 121, 135, 137-38, 150,

230-31
Basic operating system, 233, 247,

253-55, 257, 259, 263-67, 268,
274

Basic process, 138
Batch processing, 6-10, 17-18, 193, 195,

198-200, 287-88
Batson, A., 171, 343
Bech, N. I., xi
Belady, L. A., 188-89, 301, 343
Bell, G., 156, 164, 191, 343
Best fit placement, 170
Block, 157, 169, 247
Block operation, 152
Boettner, D., 177, 343
Boldt, I . V., 343
Boolean, 34
Boolean operator, 37
Bratman, H., 10, 343

353

354 INDEX

Bredt, T. H., 131, 343
Bright, H. S., 194,343
Brinch Hausen, P., 85, 130-31, 153,

173, 210, 212, 237-38, 343-44,
350

Bron, C., 124, 191, 286, 297,344,350
Buffer, 13, 17, 89-93, 100-06, 127-30,

145, 227-30, 233, 241-49, 256-57,
297-98, 303-04

Buffer capacity, 90, 256-57, 304
Buffer claim, 257
Buffer pool, 241, 256-57
Busy form of waiting, 79, 100, 137, 142

C

Cambridge file system, 226, 235
Capability, 232-35
Card reader, 6-13, 124, 127, 156, 240,

249
Case statement, 39
Catalog, 16, 258, 260-63
Catalog entry, 260-61
Catalog key, 261-62
Catalog mask, 261
Cause procedure, 119, 144-45
CDC 6400 computer, 166
CDC 6600 computer, 164, 191
CDC 6600 Scope system, 171, 285-86,

288, 302
Central processor (see Processor)
Change entry procedure, 261
Cheydleur, B. F., 343
Child process, 140-42, 166-67, 172, 233,

251-54, 273-81
Circular waiting (see Deadlock)
Circulation time, 13, 216
Claim, 43, 257
Clark, W. E., 14, 347
Class concept, 121, 226-32, 234
Cleary, J. G., 165, 348
Clock process, 259
Closure property, 71-75, 92
Coffman, E. G., 22, 123, 131, 183, 189,

196-97, 214, 224, 307, 344, 349
Comeau, L. W., 190, 344
Comfort, W. T., 168, 344
Comment, 42
Common operation, 76
Common variable, 65, 77, 84, 91, 93-96,

98-100, 120-21, 124, 127, 283-84,
298, 336

Communication (see Process communi-
cation)

Communication invariant, 91, 93
Compacting, 171-72, 178, 300, 338
Competing processes, 77
Compile time checking, 60-68, 84,

96-98, 226-32, 234, 283
Complete allocation, 124, 172-73, 178
Component, 24-26
Compound statement, 38
Computation, 26-33, 335
Computer, 31-32, 335 (see also Atlas

computer, B5000 computer,
B6700 computer, B8500 com-
puter, CDC 6400 computer, CDC
6600 computer, Electrologica X8
computer, GE 645 computer,
GIER computer, HITA C 5020
computer, IBM 360 computer,
IBM 360/67 computer, IBM 7094
H computer, RC 4000 computer,
SDS 940 computer, Univac 1107
computer)

Computer characteristics, 5-6
Concurrent processes, 10-17, 29-31,

55-68, 138-42, 166-69, 178,
239-41, 247-54, 259-60, 263-67,
283, 336 (see also Ancestor pro-
cess, Await operation, Banker's
algorithm, Basic monitor, Basic
process, Block operation, Buffer,
Cause procedure, Claim, Closure
property, Common operation,
Common variable, Communication
invariant, Competing processes,
Complete allocation, Concurrent
statement, Conditional critical re-
gion, Conditionally functional
system, Consistency requirement,
Coroutines, Critical region, Dead-
lock, Delay, Delay process pro-
cedure, Dependency requirement,
Dining philosophers problem, Dis-
joint processes, Event, Fair sched-
uling, Fork operation, Functional
system, Heavily used resources,
I-Iierarchal process communication,
Hierarchal resource allocation, In-
terleaved operations, Join oper-
ation, Loan, Loosely connected
processes, Master process, Message
buffer, Monitor, Multiprogram-
ruing, Mutual exclusion, Nested
concurrent statements, Nested crit-

INDEX 355

Concurrent processes (contd.)
ical regions, Non-functional sys-
tem, Overlapped operations, Partial
allocation, Permanent resource,
Pipeline system, P operation, Pre-
cedence graph, Private variable,
Process communication, Process
cooperation, Process interaction,
Readers and writers problem,
Receive procedures, Release proce-
dures, Reserve procedures, Re-
source, Resource sharing, Sema-
phore, Semaphore invariant, Send
procedures, Servant process, Signal
procedure, Synchronization, Tem-
porary resource, Timing signal,
Triple buffering, Unconditionally
functional system, Unfair schedul-
ing, V operation, Waiting process,
Wait procedure, Wakeup opera-
tion)

Concurrent statement, 57-68, 139-42,
150, 166-67, 299

Conditional critical region, 98-121,
130-31, 145

Conditionally functional system, 75
Connection, 24-26, 30, 72-76
Conservation law, 202-4, 208, 210
Consistency requirement, 71-75, 92
Constant definition, 33
Constant parameter, 41, 65-67
Consumer (see Process communication)
Contiguous segments, 170-73, 176, 178,

182, 188, 220, 239, 285, 300, 338
Conversational access, 14-19, 259-60,

263-67, 286, 308
Conversational process, 244-47, 266
Conway, M. E., 131, 344
Conway, R. W., 224, 344
Cooperating processes (see Process co-

operation)
Corbato, F. J., 14, 16, 21, 223, 344
Coroutines, 131
Correctness proof, 52, 60, 64-68, 94-96,

100-14, 228-30
Cosine report, 282, 3414
Couleur, J. F., 346
Courtois, P. J., 106, 294, 344
Cox, D. R., 195, 216, 345
Create entry procedure, 261
Create process procedures, 140-41, 153,

249, 251, 256, 262-63, 269,
273-76

Creation number, 262

Critical region, 83-89, 91, 93-121, 127,
130, 136-38, 143, 145, 150, 152,
169, 229-30, 283-85, 299, 336

CTSS system, 14, 21, 214, 220, 222-23,
288-89

Cycle stealing, 137, 191
Cyclic access, 157

Dahl, O.-J., 227-28, 234-35, 345, 350
Dahlgaard, P., xi
Daley, R. C., 21, 168, 344-45
Data, 26-27, 226-32, 335
Data area, 260-63
Data segment, 161-69
Data sharing (see Resource sharing)
Data structure, 33-36
Data type, 26-28, 33-36
Deadlock, 43-45, 72, 80, 85, 97, i05,

122-30, 148, 172-73, 285, 293,
295-98, 301, 336

Deadlock prevention, 42-49, 91, 107,
112, 114, 122-30, 172, 178

Decomposition, 29-31, 151
Dedicated response program, 222
Dekker, Th. J., 81, 87, 291
Delay, 77-81, 83-86, 90, 94, 98-100,

137, 140-45, 242
Delay process procedure, 140-41
Demand fetching, 178-91, 300-02, 339
DeMeis, W. M., 188, 220, 345
Denning, P. J., 188, 191, 300, 345
Dennis, J. B0, 168, 232, 235, 345
Dependency requirement, 72-75, 92
Descendant process, 273, 280
Design objectives, ix-x, 1-21, 24-26,

238-39, 254, 282
Dijkstra, E. W., 42-43, 52, 57, 61, 77,

81, 85, 93, 122, 130-31, 286, 295,
345, 350

Dining philosophers problem, 295-97
Direct access, 12-13, 156
Directly accessible resource, 234
Directory of files (see Catalog)
Disjoint processes, 64-68, 75-76, 88, 96,

124, 336
Disk, 12, 15-16, 157-58, 186, 289
Display, 164-68
Display register, 165-66
Distribution function, 196, 198, 200
Document, 240, 249-50

356 INDEX

Documentation, 26, 282, 287
Drum, 12-18, 157-58, 179-91, 220-21,

297-98, 301
Drum process, 180-82
Drum sector, 190
Dummy answer, 243-44, 252, 279
Dynamic allocation, 11, 160, 338
Dynamic priority, 146-48, 151, 206-07,

209-24, 255
Dynamic relocation, 161, 163, 167-69,

171-72, 178-91,220, 338

Eckhart, B. J., 152-53, 346
Edwards, D. B. G., 347
Electrologica X8 computer, 178
Elphick, M. J., 131, 344
Empty buffer, 90, 243
Empty function, 36, 116, 146
Enabled interrupts, 148-49, 239, 281
Enter procedure, 116, 146
Enter region operation, 137, 148-49,

152
Enumeration, 26-27, 34, 51
Environment, 24, 68-75, 226, 231-32,

234
Equitable sharing, 209, 213-21, 255,

337
Equivalent resources, 42, 123, 173
Error checking (see Compile time check-

ing, Run time checking)
Estrin, G., 224, 345
Event, 93, 98-100, 104, 245, 336
Event implementation, 144-45
Event queue, 100, 116-22, 144-45, 245
Exchange operation, 292
Exclude user procedure, 257-58
Exec H system, 13-14, 18-19, 21, 122,

288
Execution time, 6, 13, 150-51, 268-69,

299
Exhaustive testing, 51
Exi t statement, 36-37, 67
Expected workload, viii, 18-19, 21,158,

288-89, 300
Exponential distribution, 196-200, 202,

204, 214-15, 218, 220, 222,
302-03

Expression, 37, 65
External fragmentation, 175, 177, 300,

338

External process, 240-41, 247-50,
259-63, 284-85

Fair scheduling, 84, 94, 118
Fast response, 13-19, 147, 150-51, 195,

208-24, 250, 255, 284-85
Feller, W., 195, 345
Fife, D. W., 200, 345
Fif ty per cent rule, 300
File integrity, 16
File system, 15-16, 76, 158, 168, 226,

231, 256-58, 260-63, 267-68,
285-86, 289-90

Fine, G. H., 183, 345
Finite input queue, 303
Finite input source, 205, 214, 217
First-come, first-served scheduling, 84,

203, 206-07, 209, 212-13, 222,
305, 308

First-come, first-served transfer, 189
First f i t placement, 170, 300
First-in, first-out replacement, 188, 301
First-in, first-out store, 36, 241
Fixed allocation, 160, 338
Fixed-length segment, 162-67, 178
Fixed priority, 146
Floyd, R. W., 52
Foreground]Background scheduling,

213-14, 222-23, 305-08
Foreground queue, 213, 222
Fork operation, 152
Formal parameter, 41
For statement, 39
Fraser, A. G., 16, 21, 226, 235, 286,

346, 350
Freeman, D. N., 204, 206, 346
Fuchel, K., 302, 346
Full buffer, 90
Function, 37, 41-42, 65
Functional system, 27, 31, 56, 60-75
Function declaration, 41-42
Function designator, 37

G

GE 645 computer, 168, 177
General-purpose system, 19-21
Get event procedure, 245-47, 283

INDEX 357

Get procedure, 36
GIER Algol 60 compiler, 190
GIER computer, 178
Glaser, E. L., 168, 346
Gold, M. M., 349
Go to statement (see Exi t statement)
Graham, R. M., 233,346
Growe, W., 343
Guaranteed response, 16, 172, 213, 305,

3O8
Guaranteed response ratio scheduling,

305

Habermann, A. N., 45, 93, 130, 346
Hardware malfunction, 16, 288-89, 299
Hardware management, 134, 152
Havender, J. M., 122, 346
Heavily used resources, 116-22
Heller, S., 302, 346
Heying, D. W., 349
Heymans, F., 106, 294, 344
Hierarchal process communication,

127-30
Hierarchal resource allocation, 126-27
Hierarchal store, 158, 178-91
Hierarchal structuring, 45-52, 126-30,

230, 233, 251-54, 273-79
Highest response ratio next scheduling,

207, 209-13, 304
History of a computation, 68-75
HITAC 5020 computer, 233
Hoare, C. A. R., xi, 52, 60, 67-68, 85,

99, 131, 169, 191, 230, 234-35,
290, 345-46,350

Holes, 170-72, 300
Holt, R. C., 123, 125, 295, 346
Hoover, E. S., 152-53, 346
Hopkins, M. E., 20
Homing, J. J., xiii, 52-53, 346, 350
Howarth, D. J., 21, 347
Hume, J. N. P., 213, 346
Hyperexponential distribution, 196-200,

204, 212, 303

IBM 360 computer, 19-20
IBM 360/67 computer, 168, 177, 224

IBM 7094 H computer, 164, 191
Ideal replacement, 188
Identifier, 33-36, 159-60
Idle backing store, 185
Idle processor, 7-10, 15-16, 185-88,

219-21, 288, 301-02
Idling process, 138-39
I f statement, 38, 40
Include user procedure, 257-58
Indirectly accessible resource, 234
Infinite input source, 205
Information, 26, 335
Ingargiola, G., xi
Inhibited interrupts, 148-49, 241, 250,

281, 283
Initiate process procedure, 135, 140-41,

152
Input, 5-15, 27, 89, 335
Input history, 69
Input/output, 2-3, 5-15, 68-76, 137,

150, 169, 240-41, 247-50, 252,
255, 257-58, 259-63, 280-81,
284-85, 288-89, 297-98, 301-04
(see also Backing store, Block,
Buffer, Card reader, Disk, Drum,
External process, Large messages,
Line printer, Magnetic tape, Paper
tape reader, Peripheral device)

Input sequence, 68
Input time, 6
Instruction, 32
Instruction execution cycle, 5, 136,

147-49
Instruction execution time, 87
Integer, 34, 226-27
Integrated circuits, 157-58
Interacting processes (see Process inter-

action)
Interactive system, 14-17, 193, 205-06,

214-24, 259-60, 263-67, 286, 308,
336 (see also Conversational ac-
cess, CTSS system, Dedicated
response program, Exec H system,
Log in command, Log out com-
mand, MULTICS system, Open
shop, RC 4000 system, SDC Q-32
system, SDS Sigma 7 system, Ter-
minal, Thinking state, Titan super-
visor, Trivial request, TSS 360
system, Waiting state)

Interarrival time, 196-97, 214-15,
302-03

Interleaved operations, 57, 61-64, 82-83,
88, 137

358 INDEX

Internal claim, 257
Internal fragmentation, 175-77, 338
Internal process, 239-40, 251-54, 284-85
Internal store, 134, 137, 157-78,

182-88, 239, 251-54, 256, 338
Interrupt, 11-12, 14, 147-51, 195, 205,

230, 248, 259, 299, 338
Interruptable processor state (see En-

abled interrupts)
Interrupt key, 259
Interval timer (see Timing device)
Invariant, 41, 88-89, 91, 93-95, 100-03,

107, 110-14, 293
Irons, E. T., 213, 223, 346
Irreproducible behavior (see Non-

functional system)

Jackson. C. W., 345
Jensen, J;, 237
Job, 6, 336
Job arrival, 194-97, 214-15
Job control language, 2, 15, 263-67,

289-90
Job departure, 194, 215
Job profile, 5-6, 197-200, 214-15
Job queue, 7, 12, 194, 206-7, 213-14,

222-23, 288, 303
Job scheduling (see Scheduling)
Join operation, 152
Ju, S., 343

K

Karp, R. M., 131
KDF 9 Algol 60 compiler, 165
Kilburn, T., 13, 16, 21, 164, 347
King, P., 168, 286, 347
Kleinrock, L., 202, 204, 217, 224,

306-07, 344-45, 347
Knuth, D. E., 36, 131, 170-71, 300, 347
Konigsford, W. L., 343

Label, 36-37
Lampson, B. W., 152-53, 235, 347

Lanigan, M. J., 347
Large job (see Long job)
Large messages, 92-93, 247-49, 284,

292, 298
Large systems, 3, 25-26, 50-52, 228
Last-come, first-served scheduling, 84
Last-in, first-out store, 162
Lauesen, S., 237, 289, 304
Least recently used replacement, 188-89
Leave region operation, 137-38, 148-49,

152
Lichtenberger, W. W., 347
Licklider, J. C. R., 14, 347
Limited swapping, 221-24
Limit register, 11, 269
Line printer, 6-13, 124-25, 127, 156,

232, 240, 304
Liskow, B. H., 152-53, 347
Literature, xiii, 21-22, 52-53, 130-31,

152-53, 191, 224, 234-35, 285-86,
343-50

Little, J. D. C., 201, 203, 347
Load control, 184-88, 301, 339
Load function, 202-03
Loading program, 11
Load operation, 87, 137
Loan, 43
Localized store references, 183, 300,

339
Location (see Store location)
Location length, 157
Lock operation, 152
Log in command, 15
Log out command, 15
Lonergan, W., 168, 286, 347
Long job, 10, 19, 198, 200, 206-13,

218-19, 223, 308
Look up entry procedure, 261
Loosely connected processes, 30-31, 116
Luconi, F. L., 131
Lynch, W. C., 13, 21, 122, 205, 301,

343, 347, 350

M

Machine language, 2-3, 5, 228, 234,
283-84

Magnetic cores, 157-58
Magnetic tape, 6-10, 18-19, 124, 156-58,

240, 247-50, 267, 288-89, 302
Main queue, 99-100, 118

INDEX 359

Master process, 128-29
Masuda, T., 348
Max function, 34-35
Maxwell, W. L., 224, 344
McCullough, J. D., 168, 347
McIsaac, P. V., 345
McKeag, R. M., 169-70, 172, 176, 178,

191, 231, 286, 346, 348,350
McKinney, J. M., 224, 348
McLean, J. B., 131, 348
Mealy, G. H., 19, 348
Me~,n load, 203
Mean queue length, 201, 206-07, 212
Mean service time, 198, 214-15
Mean time quantum, 218-21
Mean waiting time, 201-18
Measurement, 2, 6, 9-10, 13, 15, 171,

176-77, 183, 190, 196-200, 204,
206, 214-15, 220, 222-23, 268-69,
298, 300-02

Medium-term scheduling, 134, 147,
151-52, 155, 178, 188, 193-224,
238, 251-56, 269, 273-81, 284,
337

Memoryless property, 198-99, 202, 215
Merwin-Daggett, M., 21, 344
Message, 89, 123, 127-30, 241-44,

247-49, 259, 262
Message buffer, 89-93, 100-06, 127-31,

145, 227-30, 233, 241-49, 252,
256-57, 270, 280, 284, 292-93,
297-98, 303-04, 336

Message buffer state, 243
Message queue (see Message buffer)
Miller, L. W., 224, 344
Miller, R. E., 131
Min function, 34-35
Minimax response ratio scheduling,

304-05
Minsky, M. L., 52-53, 348
Model, 24, 182-88, 194-221, 295,

300-08
Modify process procedure, 251
Mondrup, P., 305
Monitor, 121, 135, 137-38, 145, 229-33,

241-63, 268-85, 336
Monitor call, 137-38, 148-49, 229-30,

233
Monitor data structure, 139-44, 229-30,

270, 275
Monitor exit, 138, 148-49, 231
Morenoff, E., 130-31, 348
Morgan, H. L., xi

Morris, D., 21-22, 205, 348
Motobayashi, S., 233, 348
MULTICS system, 16, 168, 233-34, 286
Multiple-level scheduling, 213-14,

222-23, 299
Multiplexing, 11-17, 62-63, 81-83, 124,

145-51, 161, 172, 178-91, 213-24,
239-40, 252-53, 255-56, 284,
288-89, 299, 306-08, 337

Multiprocessor system, 8-10, 32, 57,
134-50, 169, 190, 299, 302-04

Multiprogramming, 2, 4, 11-17, 336
Multi-segment computation, 164-67
Mutual exclusion, 77-89, 91, 93-97,

106-14, 123-24, 127, 136-38, 169,
229-31, 249, 257-58, 263, 283-84,
291-92, 294

Myhrhaug, B., 345

N

Nash, J., 20
Nato reports, 20, 61, 348
Naur, P., xi, 52, 178 , 183, 190, 228,

300, 348
Need, 43
Nelson, R. A., 301, 343
Nested concurrent statements, 58
Nested critical regions, 85, 127
Nested procedures, 165-67
Nested segments, 172-73, 178
Neuman, P. G., 345
Newell, A., 156, 164, 191, 343
Non-busy form of waiting, 81, 137, 143
Non-functional system, viii,' 31, 60-64,

75-76, 81-83, 92, 96-97, 122-23
Non-interacting processes (see Disjoint

processes)
Non-interactive system, 6-14, 17-21,

204-14, 285-86, 336 (see also
Atlas supervisor, B5500 master
control program, Batch processing,
CDC 6600 Scope system, OS 360
system, SDS Sigma 7 system,
Spooling system, THE system,
Titan supervisor)

Non-overlapped swapping, 15-16, 219-21
Non-preemptive scheduling, 123-27,

134-45, 195, 204-13, 304-8, 337
Non-relocatable segment, 166-67, 172
Nygaard, K., 345

360 INDEX

0

Oliver, G. A., 346
Open shop, 7
Operating system, 1-21, 336 (see also

Atlas supervisor, B5500 master
control program, Batch processing,
CDC 6600 Scope system, CTSS
system, Design objectives, Docu-
mentation, Exec H system, Ex-
pected workload, General-purpose
system, Interactive system, Job
control language, Measurement,
Model, MULTICS system, MuJti-
processbr system, Non-interactive
system, ppe~ shop, Operator, OS/
360 system, Performance meas-
ures, RC~4000 system, Real-time
scheduling, Reliability, Response
time, SDC Q-32 system, SDS
Sigma 7 system, Simulation,
Single-processor system, Special-
purpose system, Spooling system,
System size, Terminal, THE sys-
tem, Throughput, Titan supervisor,
Triangle Universities Computation
Center, TSS 360 system, Uti-
lization factor, Venus system,
Virtual machine)

Operation, 27-28, 55-57, 68, 226-32,
335

Operator, 2, 7-10, 15, 19, 188, 193,
244, 250, 263-66, 288

Oppenheimer, G., 188, 348
Organick, E. I., 165, 286, 348
0S/360 system, 19-21, 122
Output, 5-15, 27, 89, 335
Output history, 69
Output sequence, 68
Output time, 6
Overlapped operations, 57, 63
Overlapped swapping, 219-21

Page, 16, 173, 179-82, 338
Paged segment, 173-91, 220, 338
Page frame, 173, 179-82, 301, 338
Page index, 173-75
Page length, 174-78
Page queue, 184, 190

Page replacement, 179-81, 188-89
Page table, 173-75, 179-81
Paper tape reader, 156, 240, 249, 267
Parent process, 140-41, 166-67, 172,

251-54, 273-81
Parnas, D. L., 106, 294, 344
Partial allocation, 124
Pascal compiler, 166, 228
Pascal language, 32-42, 52-53, 65-67,

121, 228
Password, 16, 226, 290
Patil, S. S., 71, 348
Payne, R. B., 21, 347
Pearson, R. R., 346
Performance measures (see Circulation

time, Processor utilization, Queue
length, Response ratio, Response
time, Store utilization, Waiting
ratio, Waiting time, Utilization
factor)

Peripheral device, 2-3, 6-17, 32, 123-27,
137, 150, 169, 240, 249, 257-58

Perlis, A. J., xi
Permanent entry procedure, 262
Permanent resource, 123-27
Perrott, R. H., 350
Phipps, T. E., 208-09, 348
Pipeline system, 293
Pirtle, M. W., 347
PL 360 language, 152
Placement algorithm, 169-78, 300, 338
Pointer variable, x, 92-93
Poisson distribution, 195-97, 202, 206
Policy, 1, 3, 134, 146, 151, 194
P operation, 93, 152
Precedence graph, 29, 57-60
Pred function, 34-35
Preemptive scheduling, 124, 145-50,

169, 172, 178-91, 195, 202,
213-24, 244, 252, 269, 273-81,
284, 306-08, 337

Preempt process procedure, 135,147-50
Primitive component, 24
Primitive data type, 33-35, 65, 226-27
Primitive statement, 36-37
Priority, 146, 337
Priority groups, 146, 222-23
Priority scheduling, 10, 13, 75, 106-07,

118, 145-50, 152, 188, 194-95,
204-24, 284-85, 295, 299, 301,
304-08

Private variable, 65, 336
Privileged operation, 258

INDEX 361

Privileged state, 11, 230-31, 241
Procedure declaration, 40-41, 65-66, 229
Procedure mask, 258
Procedure statement, 37, 65-66, 161-67,

229
Process, 28-31, 55-58, 88, 161-67,

172-73, 239-41, 247-54, 259-63,
283, 335

Process authority, 233-34, 253-54
Process behavior, 182-88
Process communication, 17-18, 71-76,

89-106, 127-30, 227-30, 241-49,
270-73, 284

Process cooperation, 17-18, 89-122
Process creation, 135, 138-42, 150,

251-54, 256, 263-64, 269, 273-81
Process description, 135-42, 181, 239,

241, 251, 256-57, 260, 262, 270,
274-75

Process function, 138
Process hierarchy, 139-42, 166-67,

172-73, 233, 251-54, 273-79
Process identification, 117, 136, 138,

180-81, 233, 239-41, 249-52,
258-60, 262, 270-71

Process implementation, 134-53, 161-69,
269-81, 283-85

Process interaction, 30, 77-130, 134-53,
336

Process kind, 241, 248
Process name, 239-41, 249-52, 259-60,

262
Processor, 32, 134, 136-37, 160, 179,

230, 335
Processor management, 133-53, 337-38

(see also Basic monitor, Busy form
of waiting, Child process, Enabled
interrupts, Enter region operation,
Event implementation, Hardware
management, Idle processor, Idling
process, Inhibited interrupts, Initi-
ate process procedure, Instruction
execution cycle, Interrupt, Leave
region operation, Lock operation,
Monitor call, Monitor exit, Multi-
processor system, Non-busy form
of waiting, Parent process, Pre-
empt process procedure, Process
description, Process hierarchy, Pro-
cess identification, Processor,
Processor multiplexing, Processor
state, Processor utilization, Process
queue, Process register, Process

Processor management (contd.)
state, Process table, Ready process,
Ready queue, Register state,
Running process, Run process pro-
cedure, Semaphore implementa-
tion, Short-term scheduling,
Single-processor system, Termi-
nated process, Terminate process
procedure, Time slice, Timing con-
straints, Timing device, Unlock
operation, Waiting process)

Processor multiplexing, 11-17, 63,
81-83, 124, 145-51, 239-40,
255-56, 299, 306-07

Processor sharing scheduling, 306-07
Processor state, 11-12, 148-49, 230-31
Processor utilization, 7-10, 13, 15-16,

151, 184-91, 219-22, 289, 300,
302, 308

Process preemption (see Preemptive
scheduling)

Process queue, 94, 99-100, 116-21, 136,
139-40, 142-48, 180-82, 184-85

Process register, 136, 138
Process removal (see Process termi-

nation)
Process replacement, 250
Process scheduling (see Short-term

scheduling)
Process state, 51, 135, 140, 240, 242,

252, 274
Process table, 136, 139, 180-82, 270,

275
Process termination, 135, 138-42,

251-54, 256, 258, 265, 269,
273-81

Process tree (see Process hierarchy)
Producer (see Process communication)
Program, 4-5, 31-32, 42, 240, 335
Program construction, 42-52, 226-32
Program loading, 15, 251-52, 264
Programming language, 3, 31-42, 335
Programming layer, 50-52, 56
Program relocation (see Dynamic allo-

cation, Dynamic relocation)
Program segment, 161-64
Program segmentation, 159-78
Program structure, 24-26, 36-42, 50-51,

185, 190, 226-32
Program testing, 14, 26, 51-52, 60-68,

228-32, 250, 282, 299
Program verification (see Assertion,

Compile time checking, Correct-

r

362 INDEX

Program verification (contd.)
ness proof, Deadlock prevention,
Program testing, Run time check-
ing)

Protection, 2, 4, 7-8, 11-12, 16, 61,
225-35, 254-58, 261-62, 269, 288,
290, 339 (see also Access rights,
Capability, Claim, Class concept,
Directly accessible resource, In-
directly accessible resource, Moni-
tor, Password, Privileged operation,
Privileged state, Process authority,
Process hierarchy, Process identifi-
cation, Security checking, Shared
class, User authority}

Protection key, 251-52, 256, 261
Protection levels, 11-12, 231, 233
Protection register, 256
Punched cards (see Card reader)
Put procedure, 36

Q

Queue, 7, 12-13, 94, 99-100, 116-21,
136, 139-40, 142-48, 180-82,
184-85, 194-95, 213-14, 222-23,
240-41, 245-48, 337

Queue length (see Mean queue length)
Queuing system, 184-85, 194-224,

302-08

Randell, B., 52-53, 165, 175, 177, 301,
343, 346, 348-49

Random access, 157
Random store references, 183
Range, 34
RC 4000 Algol 60 compiler, 190
RC 4000 computer, 254, 256, 268-69
RC 4000 system, xii, 130-31, 153, 172,

233-34, 237-85, 289 (see also
Activate, Ancestor process, An-
swer, Area claim, Area process,
Autoload key, Awaiting answer
state, Awaiting message state,
Awaiting monitor response state,
Awaiting stop state, Basic oper-
ating system, Buffer claim, Buffer
pool, Catalog, Catalog entry,

RC 4000 system (contd.)
Catalog key, Catalog mask, Change
entry procedure, Child process,
Clock process, Conversational pro-
cess, Create entry procedure,
Create process procedures, Crea-
tion number, Data area, Descend-
ant process, Document, Dummy
answer, External process, Get
event procedure, Include user
procedure, Internal claim, Internal
process, Interrupt key, Look up
entry procedure, Message, Message
buffer, Monitor, Parent process,
Permanent entry procedure, Privi-
leged operation, Procedure mask,
Process description, Process hier-
archy, Process kind, Process name,
Process replacement, Process state,
Process table, Program loading,
Protection key, Protection levels,
Protection register, Remove entry
procedure, Remove process pro-
cedures, Rename entry procedure,
Send answer procedure, Send
message procedure, Start process
procedure, Start time, Stop count,
Stopped directly state, Stopped
indirectly state, Stop process
procedure, System initialization,
System nucleus, System restart,
Temporary entry, Time slice, Wait
answer procedure, Wait event
procedure, Wait message pro-
cedure)

Readers and writers problem, 106-14,
293-94

Read operation, 156
Ready process, 135-36, 152, 240, 242,

252
Ready queue, 136, 139-40, 142, 145-48,

184, 240, 255, 299
Real, 34
Real address, 160, 165, 168, 170, 173,

338
Real store, 159, 170, 173, 186
Real-time scheduling, 16-18, 97-98,

150-53, 172, 250, 259, 285
Receive procedures, 91, 93-94, 227-30
Receiver (see Process communication)
Record, 35, 41, 65
Recursion, 40-41, 164-66
Redundancy, 60
Register, 136, 157, 251

INDEX 363

Register state, 136, 140, 251, 299
Relational operator, 37
Relative address, 160, 163, 174
Release procedures, 77-86, 106-27, 249,

252, 256
Reliability, 3, 16, 20, 25, 172, 282,

288-89, 299
Remove entry procedure, 261
Remove procedure, 116, 146
Remove process procedures, 140-42,

153, 250, 252, 256, 258, 269,
273-79

Rename entry procedure, 261
Repeat statement, 39
Replacement algorithm, 188-89, 301,

339
Reproducible behavior (see Functional

system)
Reserve procedures, 77-86, 106-27, 249,

256, 263
Resource, 1, 77, 225, 336
Resource protection (see Protection)
Resource sharing, 1-2, 42-45, 77-89,

106-235, 249, 254-60, 263
Response ratio, 201, 209, 218-19, 337
Response time, 6, 9-10, 13, 15-16, 207,

214-18, 337
Resumption, 145, 195, 202, 252, 269,

273-81
Rewind operation, 156
Rodriguez, J. E., 131
Rolfson, C. B., 346
Rosin, R. F., 6, 21-22, 199-200, 205,

349
Ross, D. T., 235, 349
Round-robin scheduling, 14-15, 148,

151, 209, 214-21, 255-56, 285,
299, 308, 337

Running process, 135-36, 152, 240, 242,
252, 336

Run process procedure, 135, 139
Run time (see Service time)
Run time checking, 60, 94, 232-34, 244,

269, 283
Russell, L. J., 165, 348
Rutledge, R. M., 349

Safe state, 43-45
Saltzer, J. H., 152-53, 349
Saturation, 217-21

Scheduling, viii, 4, 6-17, 84, 116-22,
193-224, 251-56, 273-81, 288,
301-08, 336-37 (see also Arrival
pattern, Arrival rate, Background
queue, Circulation time, Conserva-
tion law, Distribution function,
Dynamic priority, Equitable shar-
ing, ExPonential distribution, Fast
response, Finite input queue,
Finite input source, First-come
first-served scheduling, Fixed
priority, F oreground]Background
scheduling, Foreground queue,
Guaranteed response, Guaranteed
response ratio scheduling, Highest
response ratio next scheduling,
Hyperexponential distribution, In-
finite input source, Interarrival
time, Job, Job arrival, Job
departure, Job profile, Job queue,
Job scheduling, Last-come first-
served scheduling, Limited swap-
ping, Load function, Long job,
Mean load, Mean queue length,
Mean service time, Mean time
quantum, Mean waiting time,
Medium-term scheduling, Memory-
less property, Minimax response
ratio scheduling, Multiple-level
scheduling, Non-preemptive sched-
uling, Policy, Poisson distribution,
Preemptive scheduling, Priority,
Priority scheduling, Processor shar-
ing scheduling, Process queue,
Queue, Queuing system, Real-time
scheduling, Response ratio, Re-
sponse time, Resumption, Round-
robin scheduling, Selfish round
robin scheduling, Service pattern,
Service rate, Service time, Service
time estimates, Shortest elapsed
time next scheduling, Shortest job
next scheduling, Short job, Short-
term scheduling, Steady state,
Thinking state, Throughput, Time
slice, Trivial request, User manage-
ment, Waiting ratio)

Scheduling algorithm, 6, 13, 134, 148,
193-224, 337

Scherr, A. L., 214, 216, 220, 222-23,
349

Scholten, C. S., 93
Schroeder, M. D., 233, 349
Schwartz, J. I., 14, 21-22, 215, 222, 349

364 INDEX

SDC Q-32 system, 14-16, 19, 21-22,
158, 196-97, 215, 222, 289, 308

SDS 940 computer, 301-02
SDS Sigma 7 system, 215
Security checking, 226, 250
Segment, 160-78, 338
Segment index, 164-68
Segment length, 160, 171, 175-78, 338
Segment table, 167-68
Selfish round robin scheduling, 306-07
Semaphore, 93-98, 102-16, 130, 336
Semaphore implementation, 142-43
Semaphore invariant, 94-95, 103, 110,

142, 294
Send answer procedure, 242, 248,

268-69, 272
Sender (see Process communication)
Send message procedure, 242, 256, 259,

262, 268-69, 271
Send procedures, 91, 93-94, 227-30
Sequence, 36
Sequential access, x, 2, 6-7, 10, 17-18,

156-57
Sequential-cyclic access, 157
Sequential process (see Process)
Servant process, 128-29
Service pattern, 197-200, 202
Service rate, 198, 337
Service time, 6, 13, 197-200, 214-15,

256, 303, 337
Service time estimates, 13, 199, 205,

213, 304
Shared class, 229
Shared variable (see Common variable)
Shaw, A. C., xi
Shedler, G. S., 301, 343
Shemer, J. E., 215, 349
Shortest access time next transfer, 190
Shortest elapsed time next scheduling,

213, 307
Shortest job next scheduling, 13, 75,

207-09, 212-13
Short job, 6, 10, 13, 19, 194, 198, 200,

205-24, 304-05
Short-term scheduling, 84, 94, 118,

134-53, 155-56, 178-91, 239-40,
255-56, 284-85, 298-99, 337

Shoshani, A., 131, 344
Side effect, 66-67
Signal procedure, 93-94, 135, 142-43,

145, 150, 152
Simon, H. A., 52-53, 219, 227, 349
Simula 67 language, 121, 228-30, 234

Simulation, 131, 170, 210, 212, 223,
301, 303-05, 308

Simultaneous access, 65, 106, 124, 263
Single-processor system, 10-15, 57,

81-83, 131, 148-49, 169, 193-224,
302

Single-segment computation, 161-64
Slow core store, 157-58, 186, 223-24
Small job (see Short job)
Small messages, 92, 233, 241-44
Smith, W. L., 345
Special-purpose systems, 18-19
Speed independence (see Functional

system)
Speierman, K. H., 347
Spooling system, 10-14, 17-19, 29-30,

75, 127, 172, 194, 206-13, 288,
297, 304

Stack, 162-68, 172-73
Stack replacement, 189
Start process procedure, 15, 153,

251-52, 269, 273-77
Start time, 256
State (see Message buffer state, Process

state, Processor state)
Statement concatenation, 38
Statement repetition, 39
Statement selection, 38-39
Steady state, 201-02, 215, 304
Stop count, 280-81
Stopped directly state, 252, 274
Stopped indirectly state, 252, 274
Stop process procedure, 15, 153, 252,

269, 273-81
Storage arbiter (see Arbiter)
Store, 32, 156, 335
Store addressing, 159-69
Store allocation, 4, 159-61, 169-91,338
Store capacity, 6, 15, 157, 338
Store components, 156-58
Store deadlock, 126, 172, 297-98, 301
Store fragmentation, 175-77, 300, 338
Store location, 32, 156, 159, 338
Store management, 155-91, 213-24, 239,

251-54, 256, 337-39 (see also
Access ratio, Access time, Address,
Address mapping, Arbiter, Associa-
tive store, Backing store, Balanced
system, Base address, Base register,
Best fit placement, Block, Buffer,
Compacting, Contiguous segments,
Cycle stealing, Cyclic access, Data
segment, Demand fetching, Direct

INDEX 365

Store

Store

management (contd.)
access, Display, Display register,
Drum process, Drum sector, Dy-
namic allocation, Dynamic reloca-
tion, External fragmentation, Fif ty
per cent rule, First-come first-
served transfer, First f i t placement,
First-in first-out replacement,
Fixed allocation, Fixed-length seg-
ment, Hierarchal store, Holes,
Ideal replacement, Idle backing
store, Internal fragmentation, In-
ternal store, Last-in first-out store,
Least recently used replacement,
Limited swapping, Limit register,
Load control, Loading program,
Load operation, Localized store
references, Location length, Multi-
processor system, Multi-segment
computation, Nested segments,
Non-overlapped swapping, Non-
relocatable segment, Overlapped
swapping, Page, Paged segment,
Page frame, Page index, Page
length, Page queue, Page replace-
ment, Page table, Placement algo-
rithm, Process behavior, Program
segment, Program segmentation,
Random access, Random store
references, Read operation, Real
address, Real store, Relative ad-
dress, Replacement algorithm, Seg-
ment, Segment index, Segment
length, Segment table, Sequential
access, Sequential-cyclic access,
Shortest access time nex t transfer,
Short-term scheduling, Single-
segment computation, Slow core
store, Stack, Stack replacement,
Store, Store addressing, Store
allocation, Store capacity, Store
components, Store deadlock, Store
fragmentation, Store location,
Store medium, Store multiplexing,
Store operation, Store technology,
Store utilization, Swapping,
Thrashing, Time slice, Transfer
algorithm, Transfer time, Tree-
structured stack, Utilization factor,
Variable-length segment, Virtual
address, Virtual store, Word index,
Working set, Write operatiov)
medium, 156-57

Store multiplexing, 15-16, 124, 151,
161, 172, 178-91, 213-24, 252-53,
256, 284, 288-89, 301, 308

Store operation, 87, 137
Store protection (see Protection)
Store technology, 156-58
Store utilization, 171,175-77, 300
Strachey, C., 14, 349
Structure, 24-26, 50-52, 126-30
Structured data type, 35-36, 227-32
Structured statement, 38-42
Suce function, 34
Sumner, F. H., 21-22, 347-48
Svalgaard, L., 238
Swapping, 15-16, 213, 219-24, 252-53,

256, 288-89, 308, 339
Synchronization, 10-11, 72, 77, 90-91,

94, 98-100, 114-22, 138-45, 242,
336

System, 24-26
System initialization, 267-68
System nucleus, 238
System restart, 288-89
System size, 20, 268

T

Takahashi, N., 348
Temporary entry, 261-62
Temporary resource, 123, 127-30
Terminal, 14-15, 32, 214, 226, 244-47,

251, 259-60, 263-67, 289
Terminated process, 135-36, 139
Terminate process procedure, 135, 140,

142, 152
Testing (see Program testing)
THE system, 52, 124-26, 130, 188-89,

191, 286, 297-98, 301
Thinking state, 214
Thornton, J. E., 164, 285-86, 349
Thrashing, 185-89, 301, 339
Throughput, 7-13, 288
Time-dependent behavior (see Non-

functional system)
Time grain, 56, 75-76, 87
Time-independent behavior (see Func-

tional system)
Time quantum (see Time slice)
Time slice, 14-15, 70-74, 199, 205, 215,

218-23, 239, 255-56, 308, 337
Timing constraints, 150-51, 268-69
Timing device, 11, 97-98, 147, 255, 259

366 INDEX

Timing signal, 11, 93-98, 118-19,
142-45, 147-50

Titan supervisor, 286
Transfer algorithm, 189-90, 339
Transfer time, 157, 338
Trap, 11
Traub, J. F., xi
Tree-structured stack, 166-67
Triangle Universities Computation

Center, 204, 206
Triple buffering, 290-91
Trivial request, 14-16, 218-21, 308
TSS 360 system, 16
Type (see Data type)
Type checking, 226-32

Unconditionally functional system,
72-75, 92

Unfair scheduling, 84
Uninterruptable processor state (see

Inhibited interrupts)
Univac 1107 computer, 13
Unlock operation, 152
Unsafe state, 43-45
Urgent function, 146
User authority, 226, 233-34
User directory, 226, 290
User identification, 226
User management, 134, 152
User program, 3-6
User state, 12, 231
Utilization factor, 201, 206, 300, 302,

337

Value, 26, 32-34, 156, 159
Vanderbilt, D. H., 235, 349
Van Horn, E. C., 232, 235, 345
Vareha, A. L., 224, 349
Variable, 24, 33, 161-67, 229
Variable-length segment, 174, 178
Variable parameter, 41, 65-67
Varian, L. C., 183, 189, 344
Venus system, 152-53
Verification (see Program verification)

Virtual address, 160, 163, 165, 168,
173, 338

Virtual machine, 2-5, 50, 134,336
Virtual machine language, 2
Virtual store, 159, 163, 165, 167-68,

186, 260
Vocabulary, xii, 335-39
V operation, 93, 152
Vyssotsky, V. A., 344

W

Wait answer procedure, 242, 245, 248,
256, 259, 268-69, 272-73, 280

Wait event procedure, 245-47, 280, 283
Waiting process, 336
Waiting ratio, 201, 206-13
Waiting state, 135, 152, 214, 242-43,

252
Waiting time, 157, !94, 201-18, 301,

305-08, 337-38
Wait message procedure, 242, 245,

268-69, 271-72
Wait procedure, 93-94, 135, 142-43,

145, 150, 152
Wakeup operation, 152
Wallace, V. L., 349
Walter, E. S., 6, 199, 205, 349
Warm start, 288
Weissman, C., 22, 349
Weizer, N., 188, 345, 348
While statement, 39-41
Wilson, R., 171, 285-86, 349-50
Wirth, N., 32-33, 52-53, 152-53, 161,

166, 228, 350
With statement, 41
Wood, D., 343
Wood, R. C., 196-97, 214, 344
Word, 157
Word index, 162, 165-66, 168, 173-75
Working set, 185-89, 220, 339
Write operation, 156
Wulf, W. A., 188, 348
Wyld, M. T., 22, 348

Z

Zurcher, F. W., 347

