
PER BRINCH HANSEN

Information Science

California Institute of Technology

July 1975

..

CONCURRENT PASCAL

INTRODUCTION

CONCURRENT PASCAL INTRODUCTION

Per Brinch Hansen

Information Science
California Institute of Technology

Pasadena, California 91125

July 1975

This an informal introduction to Concurrent Pascal, a programming
language for structured programming of computer operating systems.
It contains three papers entitled

1. The programming language Concurrent Pascal
2. Job control in Concurrent Pascal
3. Universal types in Concurrent Pascal

The development of Concurrent Pascal has been supported by the
National Science Foundation under grant number DCR74-17331.

THE PROGRAMMING LANGUAGE CONCURRENT PASCAL

Per Brinch Hansen

Information Science

California Institute of Technology

February 1975

Key Words and Phrases: structured multiprogramming, concurrent

programming languages, hierarchical operating systems,

concurrent processes, monitors, classes, abstract data types,

access rights, scheduling.

Abstract

The paper describes a new programming language for structured

programming of computer operating systems. It extends the

sequential programming language Pascal with concurrent program

ming tools called processes and monitors. Part 1 of the paper
explains these concepts informally by means of pictures

illustrating a hierarchical design of a simple spooling system.

Part 2 uses the same example to introduce the language notation.

The main contribution of Concurrent Pascal is to extend the

monitor concept with an explicit hierarchy of access rights to

shared data structures that can be stated in the program text

and checked by a compiler.

1. THE PURPOSE Of CONCURRENT PASCAL

1.1. BACKGROUND

Since 1972 I have bean working on a new programming language

for structured programming of computer operating systems. This
language is called Concurrent Pascal. It extends the sequential

programming language Pascal ~ith concurrent programming tools

called processes and monitors [1, 2, 3].

This is an informal description of Concurrent Pascal. It uses
examples, pictures, and words to bring out the creative aspects

of new programming concepts without getting into their finer

details. I plan to define these concepts precisely and introduce
a notation for them in later papers. This form of presentation

may be imprecise from a formal point of view, but is perhaps

more effective from a human point of view. ,

1.2. PROCESSES

We will study concurrent processes inside an operating system

and look at one small problem only: How can large amounts of
data be transmitted from one process to another by means of a
buffer stored on a disk ?

Disk buffer

Producer process Consumer process

Fig. 1. Process communication

figure 1 shows this little system and its three components:

a process that produces data, a process that consumes data, and
a disk buffer that connects them.

2

The circles are system components and the arrows are the

access rights of these components. They show that both processes

can use the buffer (but they do not show that data flows from

the producer to the consumer.) This kind of picture is an

access graeh.
The next picture shows a process component in more detail

(F ig. 2).

Access rights

Private data

Sequential
program

Fig. 2. A process

A process consists of a private data structure and a sequential

program that can operate on the data. One process cannot operate

on the private data of another process. But concurrent processes

can share certain data structures (such as a disk buffer). The

access rights of a process mention the shared data it can operate

on.

1.3. /YIONITORS

A disk buffer is a data structure shared by two concurrent

processes. The details of how such a buffer is constructed are
irrelevant to its users. All the processes need to know is that

they can send and receive data through it. If they try to

operate on the buffer in any other way it is probably either a

programming mistake or an example of tricky programming. In both
case, one would like a compiler to detect such misuse of a

shared data structure.

To make this possible, we must introduce a language construct

that will enable a programmer to tell a compiler how a shared

data structure can be used by processes. This kind of system

component is called a monitor. A monitor can synchronize
concurrent processes and transmit data between them. It can also

control the order in which competing processes use shared,

physical resources. figure 3 shows a monitor in detail.

Access rights

Shared data

Synchronizing
opera t ions

Initial
operation

Fig. 3. A monitor

A monitor defines a shared data structure and all the operations

processes can perform on it. These synchronizing operations are

called monitor procedures. A monitor also defines an initial

operation that will be executed when its data structure is

created.

We can define a disk buffer as a monitor. Within this monitor

there will be shared variables that define the location and length

of the buffer on the disk. There will also be two monitor

procedures, send and receive. The initial operation will make

sure that the buffer starts as an empty one.

Processes cannot operate directly on shared data. They can only
call monitor procedures that have access to shared data. A

monitor procedure is executed as part of a calling process (just

like any other procedure).

4

If concurrent processes simultaneously call monitor procedures
that operate on the same shared data these procedures must be
executed strictly one at a time. Otherwise, the results of
monitor calls will be unpredictable. This means that the machine
must be able to delay processes for short periods of time until
it is their turn to execute monitor procedures. We will not be
concerned about how this is done, but will just notice that a
monitor procedure has exclusive access to shared data while it
is being executed.

So the (virtual) machine on which concurrent programs run
will handle short-term scheduling of simultaneous monitor calls.
But the programmer must also be able to delay processes for
longer periods of time if their requests for data and other
resources cannot be satisfied immediately. If, for example, a
process tries to receive data from an empty disk buffer it must
be delayed until another process sends more data.

Concurrent Pascal inclUdes a simple data type, called a gueue,
that can be used by monitor procedures to control medium-term
scheduling of processes. A monitor can either delay a calling
process in a queue or continue another process that is waiting
in a queue. It is not important here to understand how these
queues work except for the following essential rule: A process
only has exclusive access to shared data as long as it continues
to execute statements within a monitor procedure. As soon as a
process is delayed in a queue it loses its exclusive access
until another process calls the same monitor and wakes it up
again. (Without this rule, it would be impossible for other
processes to enter a monitor and let waiting processes continue
their execution.)

Although the disk buffer example does not show this yet,
monitor procedures should also be able to call procedures
defined within other monitors. Otherwise, the language will not
be very useful for hierarchical design. In the case of a disk
buffer, one of these other monitors could perhaps define simple

5

input/output operations on the disk. So a monitor can also have

access rights to other system components (see Fig. 3).

1.4. SYSTEM DESIGN

A process executes a sequential program - it is an active
component. A monitor is just a collection of procedures that do

nothing until they are called by processes - it is a passive

component. But there are strong similarities between a process

and a monitor: both define a data structure (private or shared)

and the meaningful operations on it. The main difference

between processes and monitors is the way they are scheduled

for execution.

It seems natural therefore to regard processes and monitors as

abstract data types defined in terms of the operations one can

perform on them. If a compiler can check that these operations

are the only ones carried out on the data structures then we

may be able trr build very reliable, concurrent programs in

which controlled access to data and physical resources is

guaranteed before these programs are put into operation. We

have then to some extent solved the resource protection problem

in the cheapest possible manner (without hardware mechanisms and

run time overhead).

So we will define processes and monitors as data types and make

it possible to use several instances of the same component type

in a system. We can, for example, use two disk buffers to build

a spooling system with an input process, a job process, and an

output process (Fig. 4). I will distinguish between definitions

and instances of components by calling them system types and

system components. Access graphs (such as Fig. 4) will always
show system components (not system types).

6

Cord reader Disk buffers Line printer

Input process Job process Output proce$s

Fig. 4. A spooling system

Peripheral devices are considered to be monitors implemented
in hardware. They can only be accessed by a single procedure io
that delays the calling process until an input/output operation
is completed. Interrupts are handled by the virtual machine on

which processes run.
To make the programming language useful for stepwise system

design it should permit the division of a system type, such as
a disk buffer, into smaller system types. One of these other
system types should give a disk buffer access to the disk. We
will call this system type a virtual disk. It gives a disk
buffer the illusion that it has its own private disk. A virtual
disk hides the details of disk input/output from the rest of

the system and makes the disk look like a data structure (an
array of disk pages). The only operations on this data structure
are ~ and write a page.

Each virtual disk is only used by a single disk buffer (Fig. 5).

A system component that cannot be called simultaneously by several
other components will be called a ~. A class defines a data
structure and the possible operations on it (just like a monitor).

7

The exclusive access of class procedures to class variables can

be guaranteed completely at compile time. The virtual machine

does not have to schedule simultaneous calls of class procedures

at run time, because such calls cannot occur. This makes class

calls considerably faster than monitor calls.

Virtual disk

Disk buffer

Fig. 5. Buffer, refinement

The spooling system includes two virtual disks but only one real

disk. So we need a single disk resource monitor to control the

order in which competing processes use the disk (rig. 6). This

monitor defines two procedures, reguest and release access, to

be called by a virtual disk before and after each disk transfer.

It would seem simpler to replace the virtual disks and the disk

resource by a single monitor that has exclusive access to the

disk and does the input/output. This would certainly guarantee

that processes use the disk one at a time. But this would be

done according to the built-in short-term scheduling policy of
monitor calls.

Now to make a virtual machine efficient, one must use a very

simple short-term scheduling rule (such as first-come, first

served) [2]. If the disk has a moving access head this is about

the worst possible algorithm one can use for disk transfers. It

is vital that the language make it possible for the programmer

to write a medium-term scheduling algorithm that will minimize

disk head movements [3J. The data type queue mentioned earlier
makes it possible to implement arbitrary scheduling rules within

B

a monitor.

Virtual consoles

Disk

Disk resource

Virtual disks

Fig. 6. Decomposition of virtual disks

The difficulty is that while a monitor is performing an input/
output operation it is impossible for other processes to enter
the same monitor and join the disk queue. They will automatically
be delayed by the short-term scheduler and only allowed to enter
the monitor one at a time after each disk transfer. This will,

of course, make the attempt to control disk scheduling within
the monitor illusory. To give the programmer complete control of
disk scheduling, processes should be able to enter the disk
queue during disk transfers. Since arrival and service in the
disk queueing system potentially are simultaneous operations they
must be handled by different system components as shown in Fig. 6.

If the disk fails persistently during input/output this should
be reported on an operator's console. Figure 6 shows two
instances of a class type, called a virtual console. They give
the virtual disks the illusion that they have their own private
consoles.

The virtual consoles get exclusive access to a single, real

console by calling a console resource monitor (Fig. 7). Notice
that we now have a standard technique for dealing with virtual

devices.

9

Console

Conso Ie resource

Virtual consoles

Fig. 7. Decomposition of virtua I consoles

If we put all these system components together, we get a complete

picture of a simple spooling system (fig. 8). Classes, monitors,
and processes are marked C, M, and P.

Console

Console resource

Virtual consoles

Disk

Disk resource

Virtual disks

Line

Input process Job process Output process

Fig. 8. Hierarchical system structure

10

1.5. SCOPE RULES

Some years ago I was part of a team that built a multiprogramming
system in which processes can appear and disappear dynamically [4].
In practice, this system was used mostly to set up a fixed
configuration of processes. Dynamic process deletion will certainly
complicate the semantics and implementation of a programming
language considerably. And since it appears to be unnecessary for
a large class of real-time applications, it seems wise to exclude
it altogether. So an operating system written in Concurrent Pascal
will consist of a fixed nu~ber of processes, monitors, and
classes. These components and their data structures will exist
forever after system initialization. An operating system can,
however, be extended by recompilation. It remains to be seen
whether this restriction will simplify or complicate operating
system design. But the poor quality of most existing operating

. s~stems clearly demonstrates an urgent need for simpler approaches.
In existing programming languages the data structures of

processes, monitors, and classes would be called "global data".
This term would be misleading in Concurrent Pascal where each
data structure can be accessed by a single component only. It
seems more appropriate to call them Eermanent data structures.

I have argued elsewhere that the most dangerous aspect of
concurrent programming is the possibility of time-dependent
programming errors that are impossible to locate by program
testing ("lurking bllgs") [2, 5, 61. If we are going to depend
on real-time programming systems in our daily lives, we must be
able to find such obscure errors before the systems are put
into operation.

Fortunately, a compiler can detect many of these errors if
processes and monitors are represented by a structured notation
in a high-level programming language. In addition, we must
exclude low-level machine features (registers, addresses, and
interrupts) from the language and let a virtual machine control
them. If we want real-time systems to be highly reliable, we

11

must stop programming them in assembly language. (The use of

hardware protection mechanisms is merely an expensive, inadequate

way of making arbitrary machine language programs behave almost

as predictably as compiled programs.)
A Concurrent Pascal compiler will check that the private data

of a process only are accessed by that process. It will also
check that the data structure of a class or monitor only is

accessed by its procedures.
Figure 8 shows that access rights within an operating system

normally are not tree-structured. Instead they form a directed
graph. This partly explains why the traditional scope rules of

block structured languages are inconvenient for concurrent

programming (and for sequential programming as well). In
Concurrent Pascal one can state the access rights of components

in the program text and have them checked by a compiler.

Since the execution of a monitor procedure will delay the
execution of further calls of the same monitor, we must prevent

a monitor from calling itself recursively, Otherwise, processes

can become deadlocked. So the compiler will check that the

access rights of system components are hierarchically ordered

(or, if you like, that there are no cycles in the access graph).

The hierarchical ordering of system components has vital
consequences for system design and testing [7]:

A hierarchical operating system will be tested component by
component, bottom up (but could, of course, be conceived top

down or by iteration). When an incomplete operating system has

been shown to work correctly (by proof or testing), a compiler
can ensure that this part of the system will continue to work

correctly when new untested program components are added on top

of it. Programming errors within new components cannot cause

old components to fail because old components do not call new
components, and new components only call old components through
well-defined procedures that have already been tested.

12

(strictly speaking, a compiler can only check that single
monitor calls are made correctly; it cannot check sequences of
monitor calls, for example whether a resource is always reserved
before it is released. So one can only hope for compile time
assurance of partial correctness.)

3everal other reasons besides program correctness make a

hierarchical structure attractive:
1) A hierarchical operating system can be studied in a

stepwise manner as a sequence of abstract machines simulated by

programs [a].
2) A partial ordering of process interactions permits one to

use mathematical induction to prove certain overall properties
of the system (such as the absence of deadlocks) [2].

3) Efficient resource utilization can be achieved by ordering
the program components according to the speed of the physical
resources they control (with the fastest resources being
controlled at the bottom of the system) raj.

4) A hierarchical system designed according to the previous
criteria is often nearly-decomposable from an analytical point
of view. This means that one can develop stochastic models of
its dynamic behavior in a stepwise manner [9].

1.6. fINAL REMARKS

It seems most natural to represent a hierarchical system
structure, such as Fig. a, by a two-dimensional picture. But
when we write a concurrent program we must somehow represent
these access rules by linear text. This limitation of written
language tends to obscure the simplicity of the original
structure. That is why I have tried to explain the purpose of
Concurrent Pascal by means of pictures instead of language
notation.

13

The class concept is a restricted form of the class concept
of Simula 67 E~. Dijkstra suggested the idea of monitors [8].
The first structured language notation for monitors was proposed
in [2] and illustrated by examples in [3]. The queue variables
needed by monitors for process scheduling were suggested in
and modified in [3].

[5]

The main contribution of Concurrent Pascal is to extend
monitors with explicit access rights that can be checked at
compile time. Concurrent Pascal has been implemented at Cal tech
for the PDP 11/45 computer. Our system uses sequential Pascal as
a job control and user programming language.

2. THE USE OF CONCURRENT PASCAL

2.1. INTRODUCTION

In Part 1 the concepts of Concurrent Pascal were explained

informally by means of pictures of a hierarchical spooling

system. I will now use the same example to introduce the
language notation of Concurrent Pascal. The.presentation is
still informal. I am neither trying to define the language
precisely nor to develop a working system. This will be done in
other papers. I am just trying to show the flavor of the
language.

2.2. PROCESSES

We will now program the system components in Fig. 8 one at a
time from top to bottom (but we could just as well do it bottom
up) •

Although we only need one input process, we may as well define
it as a general system type of which several copies may exist:

(

type inputprocess =

process(buffer: diskbuffer),

var block: page;
cycle

readcards(block);
buffer.send(block);

end

14

An input process has access to a buffer of type diskbuffer (to
be defined later). The process has a private variable block of

type page. The data type page is declared elsewhere as an array

of characters:

type page = array (.1 •• 512.) of char

A process type defines a sequential program - in this case, an
endless cycle that inputs a block from a card reader and sends
it through the buffer to another process. We will ignore the

details of card reader input.
The send operation on the buffer is called as follows (using

the block as a parameter):

buffer.send(block)

The next component type we will define is a job process:

type jobprocess =

process(input, output: diskbuffer);
var block: page;

cycle

input.receive(block);
update(block),

output.send(block);
end

15

A job process has access to two disk buffers called input and

output. It receives blocks from one buffer, updates them, and

sends them through the other buffer. The details of updating

can be ignored here.
Finally, we need an output process that can receive data from

a disk buffer and output them on a line printer:

type output process =
process(buffer: diskbuffer);

var block: page;

cycle

buffer.receive(block);
printlines(block);

end

The following shows a declaration of the main system components:

var buffer1, buffer2: diskbuffer;

reader: inputprocess;
master: jobprocess;
writer: outputprocess;

There is an input process, called the reader, a job process,
called the master, and an output process, called the writer.

Then there are two disk buffers, buffer1 and buffer2, that
connect them.

Later I will explain how a disk buffer is defined and
initialized. If we assume that the disk buffers already have been

initialized, we can initialize the input process as follows:

init reader(buffer1)

The init statement allocates space for the private variables of

the reader process and starts its execution as a sequential

16

process with access to buffer1.
The access rights of a process to other system components, such

as buffer1, are also called its parameters. A process can only
be initialized once. After initialization, the parameters and
private variables of a process exist forever. They are called

permanent variables.
The init statement can be used to start concurrent execution of

several processes and define their access rights. As an example,
the statement

init reader(buffer1), master(buffer1, buffer2), writer(buffer2)

starts concurrent execution of the reader process (with access to
buffer1), the master process (with access to both buffers), and
the writer process (with access to buffer2).

A process can only access its own parameters and private
variables. The latter are not accessible to other system components.
Compare this with the more liberal scope rules of block structured
languages in which a program block can access not only its own
parameters and local variables but also those declared in outer
blocks. In Concurrent Pascal, all variables accessible to a
system component are declared within its type definition. This
access rule and the init statement make it possible for a
programmer to state access rights explicitly and have them checked
by a compiler. They also make it possible to study a system type
as a self-contained program unit.

Although the programming examples do not show this, one can
also define constants, data types, and procedures within a
process. These objects can only be used within the process type.

2.3. MONITORS

The disk buffer is a monitor type:

type diskbuffer =
monitor(consoleaccess, diskaccess: resource;

base, limit: integer);

var disk: virtualdisk; sender, receiver: queue;

head, tail, length: integer;

procedure entry send(block: page);

begin

if length = limit then delay(sender),
disk.write(base • tail, block),

tail:= (tail + 1) mod limit;

length:= length + 1;

continue(receiver);
end;

procedure entry receive(var block: page);

begin
if length = 0 then delay(receiver),
disk.read(base + head, block);

head:= (head + 1) mod limit;

length:= length - 1;
continue(sender);

end;

begin "initial statement"

init disk(consoleaccess, diskaccess);

head:= 0; tail:= 0; length:= 0;

end

17

A disk buffer has access to two other components, consoleaccess
and diskaccess, of type resource (to be defined later). It also

has access to two integer constants defining the base address and

limit of the buffer on the disk.

18

The monitor declares a set of shared variables: The disk is
declared as a variable of type virtualdisk. Two variables of type
queue are used to delay th~ sender and receiver processes until
the buffer becomes nonfull and nonempty. Three integers define
the relative addresses of the head and tail elements of the

buffer and its current length.

The monitor defines two monitor procedures, send and receive.

They are marked with the word entry to distinguish them from

local procedures used within the monitor (there are none of
these in this example).

Receive returns a page to the ~alling process. If the buffer is

empty, the calling proce~s is delayed in the receiver queue

until another process sends a page through the buffer. The
receive procedure will then read and remove a page from the head

of the disk buffer by calling a read operation defined within

the virtual disk type:

disk,read(base + head, block)

Finally, the receive procedure will continue the execution of a
sending process (if the latter is waiting in the sender queue).

Send is similar to receive.

The queuing mechanism will be explained in detail in the next
section.

The initial statement of a disk buffer initializes its virtual

disk with access to the console and disk resources, It also sets
the buffer length to zero, (Notice, that a disk buffer does not

use its access rights to the console and disk, but only passes

them on to a virtual disk declared within it.)
The following shows

of type resource and
of a disk buffer:

a declaration of two system components
two integers defining the base and limit

var consoleaccess, diskaccess: resource;
base, limit: integer;
buffer: diskbuffer;

19

If we assume that these variables already have been initialized,
we can initialize a disk buffer as follows:

init buffer(consoleaccess, diskaccess, base, limit)

The init statement allocates storage for the parameters and
shared variables of the disk buffer and executes its initial

statement.
A monitor can only be initialized once. After initialization,

the parameters and shared variables of a monitor exist forever.
They are called permanent variables. The parameters and local
variables of a monitor procedure, however, exist only while it
is being executed. They are called temporary variables.

A monitor procedure can only access its own temporary and

permanent variables. These variables are not accessible to
other system components. Other components can, however, call
procedure entries within a monitor. While a monitor procedure
is being executed, it has exclusive access to the permanent
variables of the monitor. If concurrent processes try to call
procedures within the same monitor simultaneously, these
procedures will be executed strictly one at a time.

Only monitors and constants can be permanent parameters of
processes and monitors. This rule ensures that processes only
communicate by means of monitors.

It is possible to define constants, data types, and local
procedures within monitors (and processes). The local procedures

of a system type can only be called within the system type. To
prevent deadlock of monitor calls and ensure that access rights
are hierarchical the following rules are enforced: A procedure

must be declared before it can be called; Procedure definitions
cannot be nested and cannot call themselves; A system type

20

cannot call its own procedure entries.
The absence of recursion makes it possible for a compiler to

determine the store requirements of all system components. This
and the use of permanent components make it possible to use
fixed store allocation on a computer that does not support paging.

Since system components are permanent they must be declared as
permanent variables of other components.

2.4. QUEUES

A monitor procedure can delay a calling process for any length
of time by executing a delay operation on a queue variable. Only
one process at a time can wait in a queue. When a calling process
is delayed by a monitor procedure it loses its exclusive access
to the monitor variables until another process calls the same
monitor and executes a continue operation on the queue in which

the process is waiting.
The continue operation makes the calling process return from

its monitor call. If any process is waiting in the selected
queue, it will immediately resume the execution of the monitor
procedure that delayed it. After being resumed. the process
again has exclusive access to the permanent variables of the

monitor.
Other variants of process queues (called "events" and

"conditions") are proposed in [3, ~. They are multi-process
queues that use different (but fixed) scheduling rules. We do
not yet know from experience which kind of queue will be the
most convenient one for operating system design. A single-process
queue is the simplest tool that gives the programmer complete
control of the scheduling of individual processes. Later, I will
show how multi-process queues can be built from single-process
queues.

A queue must be declared as a permanent variable within a
monitor type.

21

2.5. CLAS5ES

Every disk buffer has its own virtual disk. A virtual disk is
defined as a class type:

type virtualdisk =
class(consoleaccess, diskaccess: resource);
var terminal: virtualconsole; peripheral: disk;

procedure entry read(pageno: integer; var block: page);

var error: boolean;
begin

repeat
diskaccess.request;
peripheral.read(pageno, block, error);
diskaccess.release;
if error then terminal.write('disk failure');

until not error;
end;

procedure entry write(pageno: integer; block: page);
begin "similar to read" end;

begin "initial statement"
init terminal(consoleaccess), peripheral;

end

A virtual disk has access to a console resource and a disk
resource. Its permanent variables define a virtual console and
a disk. A process can access its virtual disk by means of ~
and write procedures. These procedure entries reguest and
release exclusive access to the real disk before and after each
block transfer. If the real disk fails the virtual disk calls
its. virtual console to report the error.

The initial statement or a virtual disk initializ~s its
virtual console and the real disk.

Section 2.3 shows an example of how a virtual disk is

declared and initialized (within a disk buffer).

22

A class can only be initialized once. After initialization,
its parameters and private variables exist forever. A class

procedure can only access its own temporary and permanent
variables. These cannot be accessed by other components.

A class is a system component that cannot be called

simultaneously by several other components. This is guaranteed
by the following rule: A class must be declared as a permanent

variable within a system type; A class can be passed as a

permanent parameter to another class (but not to a process or

monitor). So a chain of nested class calls can only be started
by a single process or monitor. Consequently, it is not

necessary to schedule simultaneous class calls at run time -
they cannot occur.

2.6. INPUT/OUTPUT.

The real disk is controlled by a class

type disk = class

with two procedure entries

read(pageno, block, error)

write(pageno, block, error)

The class uses a standard procedure

io(block, param, device)

to transfer a block to or from the disk device. The io parameter
is a record

var param: record
operation: iooperation;
result: ioresult,
pageno: integer

end

23

that defines an input/output operation, its result, and.a page
number on the disk. The calling process is delayed until an io
operation has been completed.

A virtual console is also defined as a class

type virtualconsole =
class(access: resource),
var terminal: console;

It can be accessed by read and write operations that are similar
to each other:

procedure entry read(var text: line);
begin

access.request;
terminal.read(text);
access.release;

end

The real console is controlled by a class that is similar to
the disk class.

2.7. mULTI~ROCESS SCHEDULING

Access to the console and disk is controlled by two monitors of
type resource. To simplify the presentation, I will assume that

competing processes are served in first-come, first-served order.
(A much better disk scheduling algorithm is defined in [3]. It
can be programmed in Concurrent Pascal as well but involves more

details than the present one.)

24

We will define a multiprocess queue as an array of single-process
queues

type multiqueue = array (.O •• qlength-1.) of queue

where qlength is an upper bound on the number of concurrent
processes in the system.

A first-come, first-served scheduler is now straightforward to
program:

type resource =
monitor
var free: boolean; q: multiqueue;

head, tail, length: integer;

procedure entry request;
var arrival: integer;
begin

if free then free;= false else
begin

arrival:= tail;
tail:= (tail + 1) mod qlength;
length:= length + 1;
delay(q(.arrival.»;

end;
end;

procedure entry release;

var departure: integer;

begin

if length = 0 then free:= true else

begin

departure:= head;

head:= (head + 1) mod qlengthl

length:= length - 11

continue(q(.departure.»1

end;

end;

begin "initial statement"

free:= true; length:= 0;

head:= 0; tail:= 0;

end

2.8. INITIAL PROCESS

25

Finally, we will put all these components together into a

concurrent program. A Concurrent Pascal program consists of nested

definitions of system types. The outermost system type is an

anonymous process, called the initial process. An instance of this

process is created during system loading. It initializes the

other system components.

The initial process defines system types and instances of them.

It executes statements that initialize these system components.

In our example, the initial process can be sketched as follows

(ignoring the problem of how base addresses and limits of disk

buffers are defined):

type

resource = monitor ••• end;
console = class ••• end;

virtualconsole =
class{access: resource); ••• end;

disk = class ••• end;
virtual disk =

class{consoleaccess, diskaccess: resource); ••• end;

diskbuffer =
monitor(consoleaccess, diskaccess: resource;

base, limit: integer); ... end;

input process =
process(buffer: diskbuffer), ••• end;

job process =

process(input, output: diskbuffer); ••• end;

outputprocess =
process(buffer: diskbuffer), ••• end;

var
consoleaccess, diskaccess: resource;

buffer1, buffer2: diskbuffer;
reader: inputprocess;
master: jobprocess;

writer: outputprocess;

begin
init consoleaccess, diskaccess,

buffer1(consoleaccess, diskaccess, base1, limit1),

buffer2(consoleaccess, diskaccess, base2, limit2),

reader(buffer1),
master(buffer1. buffer2),

writer(buffer2) ;

end.

26

27

When the execution of a process (such as the initial process)
terminates, its private variables continue to exist. This is
necessary because these variables may have been passed as

permanent parameters to other system components.

Acknowledgements

It is a pleasure to acknowledqe the immense value of a
continuous exchange of ideas with Tony Hoare on structured
multiprogramming. I also thank my students Luis Medina and
Ramon Varela for their helpful comments on this paper.

The project is now supported by the National Science

foundation under grant number DCR74-17331.

References

1 •

2.

3.

4.

5.

6.

7.

8.

9.

10.

Wirth, N. The programming lan9uage Pascal.
Acta Informatica 1, 1 t1971), 35-63.

Brinch Hansen, p. Operating system principles.
Prentice-Hall, July 1973.

Hoare, C. A. R. Monitors: an operating system structuring
concept. Comm. ACM 17, 10 (Oct. 1974), 549-57.

Brinch Hansen, P. The nucleus of a multiprogramming
system, Comm. ACM 13, 4 (Apr. 1970), 238-50.

Brinch Hansen, P. Structured multiprogramming.
Comm. ACm 15, 7 (July 1972), 574-78.

Brinch Hansen, p. Concurrent programming concepts.
ACM Computing Reviews 5, 4 (Dec. 1974), 223-45.

Brinch Hansen, P. A programming methodoloav for
operating system design. Proc. IFIP 74 Congress,
(Aug, 1974), 394-97, .

Dijkstra, E. W. Hierarchical ordering of sequential
processes. Acta Informatica 1, 2 (1971), 115-38.

Simon, H. A. The architecture of complexity.
Proc. American Philosophical Society 106, 6 (1962),
468-82.

Dahl, o.-J., and Hoare, C. A. R. Hierarchical program
structures. In O.-J. Dahl, E. W. Dijkstra, and
C. A. R. Hoare. Structured programming. Academic
Press, 1972.

Abstract

JOB CONTROL IN CONCURRENT PASCAL

Per Brinch Hansen

Information Science
California Institute of Technology

March 1975

This is the second of two papers that describe a new

programming language for structured programming of computer

operating systems. This language is called Concurrent Pascal.

It extends the sequential programming language Pascal with

concurrent processes, monitors, and classes. The first paper
explains the language informally. It is helpful (but not

essential) to read that paper before this one. The present

paper describes how an operating system written in Concurrent

Pascal can start and preempt user programs written in sequential

Pascal. It also explains how sequential Pascal can be used as a

job control language and how sequential programs interact with

an operating system.

Key Words and Phrases: Concurrent Pascal, operating systems,

job control language, program execution, system interface,

program preemption.

CR Categories: 4.2, 4.3

Copyright ~ 1975 Per Brinch Hansen

1. INTRODUCTION

This is the second of two papers that d~8c~ibe a new programming
language for structured programming of computer operating systems.

This language is called Concurrent Pascal. It extends the
sequential programming language Pascal [1] with concurrent

processes, monitors, and classes. Concurrent Pascal has been

implemented at Caltech for the PDP 11/45 computer. Our system
uses sequential Pascal as a job control and user programming

language.
Concurrent Pascal is explained informally by means of pictures

and examples in [2]. The present paper describes how an operating
system written in Concurrent Pascal can start and preempt user
programs written in sequential Pascal. It also explains how these

programs can call procedures defined within the operating system.

The discussion is informal and sketchy. It is helpful (but not

essential) to read the previous paper on Concurrent Jascal [2]. A
precise definition of the language and a complete description

of one or more operating systems written in it will be given in

future papers.

2. PROGRAM EXECUTION

An operating system written in Concurrent Pascal will consist

of a fixed number of processes, monitors, and classes. It is
assumed that both operating systems and user programs are written

in high-level programming languages.

I see no difficulty in building a system that can compile and
execute user programs written in a variety of different
programming languages (by making certain common assumptions about

the code generated by the compilers). However, since our project
is a research effort, all user programs will be written in a
single language (sequential Pascal).

2

We will assume that an operating system has access to a
library of compiled user programs and discuss how these programs
can be loaded in the internal computer store and executed.

It is tempting to try to make program loading an elementary
operation in the system design language. This would make it
possible for a compiler and its run-time environment to check
that an executable program is loaded (and not an undefined
collection of bits). To do this, the operating system code
generated by a compiler must, of course, make many assumptions
about the details of disk access, program files, and directories.
But if the language makes rigid assumptions about one of the
most central operating system components - a file system - it
will obviously not be a very useful tool for the design of a
variety of different operating systems.

So the language facilities for program loading and execution
must be very simple and flexible. This will make them potentially
dangerous to use. since the compiler has no way of knowing
whether an operating system loads an executable program. It is
wise therefore to hide the details of program loading within a
single system component and make it look like a well-defined
operation to the rest of the operating system.

In Concurrent Pascal, a process can load a compiled program
into a data structure and call it as if it were a procedure.
The loading is done by means of input operations as defined in
(2]. lllhen a compiled program terminates its execution it returns
to the point inside the operating system where it was called by .
a process. (for the moment, we are ignoring the problem of how
a program can be stopped if it causes a run-time error or
exceeds a time limit.)

figure 1 shows the simple idea of a user program being a

procedure that is fetched and called by a system process. A
process that controls the execution of a program will be called

a ~r.~.

3

User program

Job process

Fig 1. A job process that calls a user program

A compiled program must be stored in a variable declared within

the job process:

var codel codestore

The data type codestore can, for example, be declared as an
array of disk pages:

type codestore = array (•••) of page

The job process must also include a declaration of the user

program as a pseudo-procedure I

program job(v: codestore)

After loading, a program can be called as a procedure using its

code variable as a parameter:

job(code)

If a user program completes its execution or causes a run-time
error (say, an arithmetic overflow), it returns to the point
where it was called by the job process. A standard function
enables the job process to determine where and why the program

4

terminated. If the program failed, the job process can add a line
number and an error message to its output.

3. SYSTEM INTERFACE

An operating system should be in complete control of resource
allocation and input/output. But a user program must be able to
call the operating system and ask it to perform these functions.
Figure 2 shows how this is done.

Interface procedures .

User program

Fig. 2. Interface procedures

A user program is conceptually a procedure called by a job
process. The program cannot access data inside the operating
system (and vice versa). But the job process defines a set of
procedures that can be called by a user program. They are called
interface procedures.

As an example, consider a simple user program that only needs
to input and output characters. To make this possible, two
interface procedures, read and write, must be defined inside
its job process:

procedure entry read(var c: char),

begin ••• end;

procedure entry write(c: char);

begin ••• end I

5

The details of these interface procedures are not relevant here.
Interface procedures are marked with the word entry to distinguish
them from local procedures used within the job process. A job
process cannot call its own procedure entries (nor can any other
system component).

The program declaration in the job process must be extended
with a list of the interface procedures that are accessible to
the user program:

program job(v: codestore),
entry read, write,

One can introduce several program declarations with different
system interfaces inside a single job process. This makes it
possible to give different access rights to different programs
called by the same job process.

A sequential Pascal program must be prefixed by declarations of
the interface procedures it can call and their parameter types.
The following shows the job prefix of a user program that can
call the read and write procedures inside its job process:

procedure read(var c: char),
procedure write(c: char),
program main,
••• < user program> •••

The prefix must list the interface procedures in the order in
which they appear in the program declaration inside the operating
system.

A user could, of course, crash the system if he were able to
write his own prefix. This can be avoided by having the
operating system or the compiler automatically insert a standard
prefix in front of all user programs. The compiler will then
refuse to accept further interface definitions after the keyword
program.

6

To a user program, its job process looks like a class that can
be accessed by procedure calls only. The access rights of a user
program to these procedures can be checked at compile time - a

point that was emphasized in [2].
So far we have assumed that a program only has a single

implicit parameter (representing its code). A job process can,
however, pass explicit parameters to a program when it is called,

and the program can return values when it terminates. The

explicit program parameters and their types must be defined in
the prefix as illustrated by the following example:

type T =
program main(param: T),

...
The Concurrent Pascal compiler assumes that the last parameter
specified in a program declaration denotes the code to be

executed. This parameter is not accessible within the sequential

program. So a user program called with a single, explicit

parameter would be declared as follows within a job process:

program job(param: T, code: codestore)

Only simple data types, arrays, records, and sets can be passed

as explicit parameters to user programs. Procedures can only be

passed as implicit parameters by means of the interface mechanism

explained earlier. Processes, monitors, classes, and queues cannot
be passed as parameters to user programs [2J (because user programs
might misuse them and crash the operating system).

4. JGB CONTROL PROGRA~S

Sequential Pascal can also be used as a job control language to
specify the execution of a sequence of programs, Figure 3 shows
an example of this,

7

Pass 1 Pass N User program

Job cycle

Job process

Fig. 3. Job control and user programs

Here a job process starts by executing a sequential program
called the job cycle. The job cycle is a cyclical program that
communicates with a user through a terminal. In this example.
the user has asked the job cycle to call another program named
pascal. This program in turn calls a sequence of other programs.
pass 1 to pass N, that compiles a user program. If the compilation
is successful, the user program will be executed. Afterwards
control returns to the job cycle that will ask the user what to
do next.

The job cycle and pascal programs are called job control
programs because they control the execution of other programs.
What a job control program needs is simply the ability to call
other programs and pass parameters to them. Then the need for a
separate job control language will vanish.

Nested program calls can be handled by an interface procedure
~ that takes a program identifier as an argument. The job
process will look up the identifier in a directory and verify
that it refers to an executable program. If so it will load the
program and call it. After termination of a program, the job

process must reload the code of the previous program and" return
to it. To do thi~ the process needs access to a stack of program
identifiers _ a trivial ihing to i~plement by means of a class

[~.
This leads to the following outline of the procedure run:

procedure entry run(id: identifier),

var oldid: identifier,

begin
if executable(id) then

begin
load(id, code),
push(id),
job(code),
pop(oldid),
load(oldid, code),

end,
end

8

The procedure can, of course, also include arguments to be passed
to or from a called program (subject to the restrictions mentioned

earlier).

This scheme essentially implements demand fetching of program
code before and after each program call. The system only keeps
the code of the current program in the internal store.

The variables of nested programs are, however, all kept in
the stack of the job process until the programs terminate. This
is not a serious problem since job control programs usually have
few variables.

So although Concurrent Pascal uses a very primitive form of
program loading, an operating system can make a program library
look as a set of nested or recursive procedures. The integrity
of a file system can be guaranteed by a suitable design of
interface procedures that give user programs controlled access
to programs and data.

9

5. PROGRAM PREEmPTION

How can an operating system force a sequential program to
terminate if it goes into an endless loop or exceeds some time
limit? Figure 4 shows the method used to solve this problem. The
virtual machine associates a stop signal with every process. This
signal is turned off by the operating system when the execution
of a program begins and turned on when it must terminate.

Job monitor User program·

Clock process Job process

Fig. 4. Preemption of a user program

Before a job process starts a program it calls a job monitor and
defines a time limit for the program. During program execution, the
job monitor is called every second or so by a clock process. If the
program has exceeded its time limit, the job monitor will call a
standard procedure that turns the stop signal of the job process
on.

The compiled user code examines this signal every time it
repeats a loop. If the signal is on, the program terminates with
the result time limit exceeded. (This mechanism can also be used
to preempt a program at any time on request.)

One can argue about the details of this scheme, but it does
have one major advantage: it makes preemption look like normal
program termination to a job process. This simple solution
only works because user code is generated by a reliable compiler

10

(and not by an assembly language programmer).
It may be too early to eliminate all use of assembly language

programming in computer applications. But system programmers
should realize that they are complicating their design problems
tremendously if they assume that all programs potentially can
be random collections of bIts. A compiler can solve many of the
reliability problems of programming systems in the simplest and

most efficient manner (provided we are able to make a reliable

compiler) •
We must, of course, make sure that preemption does not take

place while an interface procedure is being executed on behalf of
a user program. Otherwise the data structures of an operating
system might be left in an inconsistent state that could cause
the system to crash. So it is only the code generated for
sequential programs that examines stop signals; they are ignored
by the code generated for concurrent programs.

Acknowledgements

This project is supported by the National Science Foundation
under grant number DCR74-17331.

References

1 •

2.

Wirth, N. The programmin9 lan9uage Pascal.
Acta Informatica 1, 1 (1971), 35-63.

Brinch Hansen, P. The programming language Concurrent Pascal.
Invited paper. AcmjIEEE International Conference on
Reliable Software, Los Angeles, California, 21-23 April
1975. IEEE Transactions on Software Engineering
1, 2 (June 1975).

Abstract

UNIVERSAL TYPES IN CONCURRENT PASCAL

Per Brinch Hansen

Information Science
California Institute of Technology

November 1974

This note describes the use of universal types as a means of
relaxing the checking of operand types where this is needed in
system programming. The universal types are part of Concurrent
Pascal, a new programming language for structured programming
of computer operating systems.

Key Words and Phrases: Concurrent Pascal, programming languages,
type checking, universal types.

CR Categories: 4.2, 4.3

This note describes a form of universal data types that seems
to be convenient (if not necessary) in an abstract programming
language for system programming. It is part of Concurrent
Pascal, a new programming language for structured programming
of computer operating systems [1. 2].

In most abstract programming languages operands and operators
must be of compatible types. The type rules will allow you to
add two integers, but not two booleans. The checking of such
rules during compilation is vital for a programmer since it
makes it possible for him to ignore the representation of data
inside a computer store and think of them in terms of their
abstract properties.

Occasionally, an operating system designer must, however, be
able to relax the rules of type checking somewhat. The following
describes how this can be done without going to the other extreme
of introducing variables that are treated as typeless bit
patterns throughout a program. (The latter extreme is, of course,
the rule in assembly language and in some implementation
languages.)

Consider an operating system procedure that writes a page of
data on a disk:

procedure write(pageno: integer; page: charpage),
begin ••• end

The details of this procedure do not matter here. We will assume
that a charpage is defined elsewhere as an array of characters:

type charpage = array (•••) of char

This procedure can now be used by an operating system to output
a variable x as page number i on the disk:

var i: integerl XI charpage,
• •• wr it e (i, x) •••

2

If we insist that the arguments of a procedure call must be
of the same types as the parameters defined within the procedure
then we cannot use the same procedure to output a page of another
type, sayan array of integers:

where

var j: integerl YI integerpagel
••• wrlte(j, y) •••

type integerpage = array (•••) of integer

To make the write procedure more general we will use the key
word ~ to indicate that it can be called with any argument
that occupies the same number of store locations as a charpagel

procedure write(pagenot integerl paget univ charpage),
begin ••• end

The procedure can now be called with the argument y.
Before and after the call, the variable y is regarded as being

strictly an integerpage. And within the procedure, the parameter
page is considered to be strictly a charpage. The type checking
is only relaxed at the point where the procedure is called.

There is also an occasional need for universal types in
sequential system programs (usually handled by means of standard
procedures). One example is the use of ordinal values of
characters to convert constants from text form to numeric form.
The following function defines the ordinal value of a character:

function ord(c: univ integer): integer I
begin ord:= c end

It can be called as follows:

var i: integerl c: char,
i:= ord(c) •••

3

Another example would be a multipass compiler in which the
passes communicate with one another by means of a sequence of
integer values stored on disk. Here the first pass must be able
to split a real constant into a sequence of integers ("machine
words") and transmit them to the second pass. This can also be
done by means of universal types.

A universal parameter type

univ T

represents the ~ of all arguments represented by the same
number of store locations as the data type T. It seems reasonable
to require that universal types not be used to perform undefined
manipulation of data structures that contain pointers or are
shared by concurrent processes,

Acknowledgements

The development of Concurrent Pascal is supported by the
National Science foundation under grant number DCR74-17331.

1. Brinch Hansen, p. The programming language Concurrent Pascal.
IEEE Transactions on Software Engineering 1, 2 (June 1975).

2. Brinch Hansen, p. Job control in Concurrent Pascal.
Information Science, California Institute of Technology,
Match 1975.

BIBLIOGRAPHIC DATA ~:' neport No. . 12•
3. Rccipienes ACCC:i5ion No.

SHEET SF-OCA-DCR74-17331-CP2
4. Tide and SUbtitle 5. Report Date

Concurrent Pascal Introduction July 1975
6-.

7. A uthor(s)
Per Brinch Hansen 8. Performing Organization Rept.

NoC IT-IS - TR 18
9. Performing Organization Name and Address 10. Project/Task/Work Unit No.

Information Science 286-80
California Institute of Technology II. Contract/Grant No.

Pasadena, California 91125 NSF DCR74-17331
12. Sponsoring Organization Name and Address 13. Type of Report & Period

National Science Foundation Covered

Offica of Computing Activities 1 • Edition
lAIash;ngton, D.C. 20550 14.

IS. Supp!ementary Notes

16. Abstracts

This is an inforllal introduction to Concurrent Pascal, a programming
language for structured programming of computer operating systems.
It contains three papers entitled

_ 1. The programming language Concurrent Pascal

2. Job control in Concurrent Pascal

3. Universal types in Concurrent Pascal

17. Key Words and Document Analysis. 170. Descriptors

Structured multiprogramming, concurrent programming languages,
hierarchical operat,ing systems, concurrent processes, monitors,
classes, abstract data types, access rights, scheduling, job
control language, system interface, type checking, universal
types

17b. Identifiers/Open-Ended Terms

.

-.
17c. COSATI Field/Group

18. Availability .Statement 19. Security Class (This . 21. No. of Pages
Report) 43 'l1.NC LASS1F IFD

20. Security Class (This 22. Price
Page

UNCLASSIFIED
FORM NTIS·3 R v. 3·72 S' E

THIS FORM MA Y DE REPRODUCED

