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Abstract 

The paper describes a new programming language for structured 

programming of computer operating systems. It extends the 

sequential programming language Pascal with concurrent program

ming tools called processes and monitors. Part 1 of the paper 
explains these concepts informally by means of pictures 

illustrating a hierarchical design of a simple spooling system. 

Part 2 uses the same example to introduce the language notation. 

The main contribution of Concurrent Pascal is to extend the 

monitor concept with an explicit hierarchy of access rights to 

shared data structures that can be stated in the program text 

and checked by a compiler. 





1. THE PURPOSE Of CONCURRENT PASCAL 

1.1. BACKGROUND 

Since 1972 I have bean working on a new programming language 

for structured programming of computer operating systems. This 
language is called Concurrent Pascal. It extends the sequential 

programming language Pascal ~ith concurrent programming tools 

called processes and monitors [1, 2, 3]. 

This is an informal description of Concurrent Pascal. It uses 
examples, pictures, and words to bring out the creative aspects 

of new programming concepts without getting into their finer 

details. I plan to define these concepts precisely and introduce 
a notation for them in later papers. This form of presentation 

may be imprecise from a formal point of view, but is perhaps 

more effective from a human point of view. , 

1.2. PROCESSES 

We will study concurrent processes inside an operating system 

and look at one small problem only: How can large amounts of 
data be transmitted from one process to another by means of a 
buffer stored on a disk ? 

Disk buffer 

Producer process Consumer process 

Fig. 1. Process communication 

figure 1 shows this little system and its three components: 

a process that produces data, a process that consumes data, and 
a disk buffer that connects them. 
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The circles are system components and the arrows are the 

access rights of these components. They show that both processes 

can use the buffer (but they do not show that data flows from 

the producer to the consumer.) This kind of picture is an 

access graeh. 
The next picture shows a process component in more detail 

(F ig. 2). 

Access rights 

Private data 

Sequential 
program 

Fig. 2. A process 

A process consists of a private data structure and a sequential 

program that can operate on the data. One process cannot operate 

on the private data of another process. But concurrent processes 

can share certain data structures (such as a disk buffer). The 

access rights of a process mention the shared data it can operate 

on. 

1.3. /YIONITORS 

A disk buffer is a data structure shared by two concurrent 

processes. The details of how such a buffer is constructed are 
irrelevant to its users. All the processes need to know is that 

they can send and receive data through it. If they try to 

operate on the buffer in any other way it is probably either a 

programming mistake or an example of tricky programming. In both 
case, one would like a compiler to detect such misuse of a 

shared data structure. 



To make this possible, we must introduce a language construct 

that will enable a programmer to tell a compiler how a shared 

data structure can be used by processes. This kind of system 

component is called a monitor. A monitor can synchronize 
concurrent processes and transmit data between them. It can also 

control the order in which competing processes use shared, 

physical resources. figure 3 shows a monitor in detail. 

Access rights 

Shared data 

Synchronizing 
opera t ions 

Initial 
operation 

Fig. 3. A monitor 

A monitor defines a shared data structure and all the operations 

processes can perform on it. These synchronizing operations are 

called monitor procedures. A monitor also defines an initial 

operation that will be executed when its data structure is 

created. 

We can define a disk buffer as a monitor. Within this monitor 

there will be shared variables that define the location and length 

of the buffer on the disk. There will also be two monitor 

procedures, send and receive. The initial operation will make 

sure that the buffer starts as an empty one. 

Processes cannot operate directly on shared data. They can only 
call monitor procedures that have access to shared data. A 

monitor procedure is executed as part of a calling process (just 

like any other procedure). 
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If concurrent processes simultaneously call monitor procedures 
that operate on the same shared data these procedures must be 
executed strictly one at a time. Otherwise, the results of 
monitor calls will be unpredictable. This means that the machine 
must be able to delay processes for short periods of time until 
it is their turn to execute monitor procedures. We will not be 
concerned about how this is done, but will just notice that a 
monitor procedure has exclusive access to shared data while it 
is being executed. 

So the (virtual) machine on which concurrent programs run 
will handle short-term scheduling of simultaneous monitor calls. 
But the programmer must also be able to delay processes for 
longer periods of time if their requests for data and other 
resources cannot be satisfied immediately. If, for example, a 
process tries to receive data from an empty disk buffer it must 
be delayed until another process sends more data. 

Concurrent Pascal inclUdes a simple data type, called a gueue, 
that can be used by monitor procedures to control medium-term 
scheduling of processes. A monitor can either delay a calling 
process in a queue or continue another process that is waiting 
in a queue. It is not important here to understand how these 
queues work except for the following essential rule: A process 
only has exclusive access to shared data as long as it continues 
to execute statements within a monitor procedure. As soon as a 
process is delayed in a queue it loses its exclusive access 
until another process calls the same monitor and wakes it up 
again. (Without this rule, it would be impossible for other 
processes to enter a monitor and let waiting processes continue 
their execution.) 

Although the disk buffer example does not show this yet, 
monitor procedures should also be able to call procedures 
defined within other monitors. Otherwise, the language will not 
be very useful for hierarchical design. In the case of a disk 
buffer, one of these other monitors could perhaps define simple 
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input/output operations on the disk. So a monitor can also have 

access rights to other system components (see Fig. 3). 

1.4. SYSTEM DESIGN 

A process executes a sequential program - it is an active 
component. A monitor is just a collection of procedures that do 

nothing until they are called by processes - it is a passive 

component. But there are strong similarities between a process 

and a monitor: both define a data structure (private or shared) 

and the meaningful operations on it. The main difference 

between processes and monitors is the way they are scheduled 

for execution. 

It seems natural therefore to regard processes and monitors as 

abstract data types defined in terms of the operations one can 

perform on them. If a compiler can check that these operations 

are the only ones carried out on the data structures then we 

may be able trr build very reliable, concurrent programs in 

which controlled access to data and physical resources is 

guaranteed before these programs are put into operation. We 

have then to some extent solved the resource protection problem 

in the cheapest possible manner (without hardware mechanisms and 

run time overhead). 

So we will define processes and monitors as data types and make 

it possible to use several instances of the same component type 

in a system. We can, for example, use two disk buffers to build 

a spooling system with an input process, a job process, and an 

output process (Fig. 4). I will distinguish between definitions 

and instances of components by calling them system types and 

system components. Access graphs (such as Fig. 4) will always 
show system components (not system types). 



6 

Cord reader Disk buffers Line printer 

Input process Job process Output proce$s 

Fig. 4. A spooling system 

Peripheral devices are considered to be monitors implemented 
in hardware. They can only be accessed by a single procedure io 
that delays the calling process until an input/output operation 
is completed. Interrupts are handled by the virtual machine on 

which processes run. 
To make the programming language useful for stepwise system 

design it should permit the division of a system type, such as 
a disk buffer, into smaller system types. One of these other 
system types should give a disk buffer access to the disk. We 
will call this system type a virtual disk. It gives a disk 
buffer the illusion that it has its own private disk. A virtual 
disk hides the details of disk input/output from the rest of 

the system and makes the disk look like a data structure (an 
array of disk pages). The only operations on this data structure 
are ~ and write a page. 

Each virtual disk is only used by a single disk buffer (Fig. 5). 

A system component that cannot be called simultaneously by several 
other components will be called a ~. A class defines a data 
structure and the possible operations on it (just like a monitor). 
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The exclusive access of class procedures to class variables can 

be guaranteed completely at compile time. The virtual machine 

does not have to schedule simultaneous calls of class procedures 

at run time, because such calls cannot occur. This makes class 

calls considerably faster than monitor calls. 

Virtual disk 

Disk buffer 

Fig. 5. Buffer, refinement 

The spooling system includes two virtual disks but only one real 

disk. So we need a single disk resource monitor to control the 

order in which competing processes use the disk (rig. 6). This 

monitor defines two procedures, reguest and release access, to 

be called by a virtual disk before and after each disk transfer. 

It would seem simpler to replace the virtual disks and the disk 

resource by a single monitor that has exclusive access to the 

disk and does the input/output. This would certainly guarantee 

that processes use the disk one at a time. But this would be 

done according to the built-in short-term scheduling policy of 
monitor calls. 

Now to make a virtual machine efficient, one must use a very 

simple short-term scheduling rule (such as first-come, first

served) [2]. If the disk has a moving access head this is about 

the worst possible algorithm one can use for disk transfers. It 

is vital that the language make it possible for the programmer 

to write a medium-term scheduling algorithm that will minimize 

disk head movements [3J. The data type queue mentioned earlier 
makes it possible to implement arbitrary scheduling rules within 
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a monitor. 

Virtual consoles 

Disk 

Disk resource 

Virtual disks 

Fig. 6. Decomposition of virtual disks 

The difficulty is that while a monitor is performing an input/ 
output operation it is impossible for other processes to enter 
the same monitor and join the disk queue. They will automatically 
be delayed by the short-term scheduler and only allowed to enter 
the monitor one at a time after each disk transfer. This will, 

of course, make the attempt to control disk scheduling within 
the monitor illusory. To give the programmer complete control of 
disk scheduling, processes should be able to enter the disk 
queue during disk transfers. Since arrival and service in the 
disk queueing system potentially are simultaneous operations they 
must be handled by different system components as shown in Fig. 6. 

If the disk fails persistently during input/output this should 
be reported on an operator's console. Figure 6 shows two 
instances of a class type, called a virtual console. They give 
the virtual disks the illusion that they have their own private 
consoles. 

The virtual consoles get exclusive access to a single, real 

console by calling a console resource monitor (Fig. 7). Notice 
that we now have a standard technique for dealing with virtual 

devices. 
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Console 

Conso Ie resource 

Virtual consoles 

Fig. 7. Decomposition of virtua I consoles 

If we put all these system components together, we get a complete 

picture of a simple spooling system (fig. 8). Classes, monitors, 
and processes are marked C, M, and P. 

Console 

Console resource 

Virtual consoles 

Disk 

Disk resource 

Virtual disks 

Line 

Input process Job process Output process 

Fig. 8. Hierarchical system structure 
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1.5. SCOPE RULES 

Some years ago I was part of a team that built a multiprogramming 
system in which processes can appear and disappear dynamically [4]. 
In practice, this system was used mostly to set up a fixed 
configuration of processes. Dynamic process deletion will certainly 
complicate the semantics and implementation of a programming 
language considerably. And since it appears to be unnecessary for 
a large class of real-time applications, it seems wise to exclude 
it altogether. So an operating system written in Concurrent Pascal 
will consist of a fixed nu~ber of processes, monitors, and 
classes. These components and their data structures will exist 
forever after system initialization. An operating system can, 
however, be extended by recompilation. It remains to be seen 
whether this restriction will simplify or complicate operating 
system design. But the poor quality of most existing operating 

. s~stems clearly demonstrates an urgent need for simpler approaches. 
In existing programming languages the data structures of 

processes, monitors, and classes would be called "global data". 
This term would be misleading in Concurrent Pascal where each 
data structure can be accessed by a single component only. It 
seems more appropriate to call them Eermanent data structures. 

I have argued elsewhere that the most dangerous aspect of 
concurrent programming is the possibility of time-dependent 
programming errors that are impossible to locate by program 
testing ("lurking bllgs") [2, 5, 61. If we are going to depend 
on real-time programming systems in our daily lives, we must be 
able to find such obscure errors before the systems are put 
into operation. 

Fortunately, a compiler can detect many of these errors if 
processes and monitors are represented by a structured notation 
in a high-level programming language. In addition, we must 
exclude low-level machine features (registers, addresses, and 
interrupts) from the language and let a virtual machine control 
them. If we want real-time systems to be highly reliable, we 
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must stop programming them in assembly language. (The use of 

hardware protection mechanisms is merely an expensive, inadequate 

way of making arbitrary machine language programs behave almost 

as predictably as compiled programs.) 
A Concurrent Pascal compiler will check that the private data 

of a process only are accessed by that process. It will also 
check that the data structure of a class or monitor only is 

accessed by its procedures. 
Figure 8 shows that access rights within an operating system 

normally are not tree-structured. Instead they form a directed 
graph. This partly explains why the traditional scope rules of 

block structured languages are inconvenient for concurrent 

programming (and for sequential programming as well). In 
Concurrent Pascal one can state the access rights of components 

in the program text and have them checked by a compiler. 

Since the execution of a monitor procedure will delay the 
execution of further calls of the same monitor, we must prevent 

a monitor from calling itself recursively, Otherwise, processes 

can become deadlocked. So the compiler will check that the 

access rights of system components are hierarchically ordered 

(or, if you like, that there are no cycles in the access graph). 

The hierarchical ordering of system components has vital 
consequences for system design and testing [7]: 

A hierarchical operating system will be tested component by 
component, bottom up (but could, of course, be conceived top 

down or by iteration). When an incomplete operating system has 

been shown to work correctly (by proof or testing), a compiler 
can ensure that this part of the system will continue to work 

correctly when new untested program components are added on top 

of it. Programming errors within new components cannot cause 

old components to fail because old components do not call new 
components, and new components only call old components through 
well-defined procedures that have already been tested. 
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(strictly speaking, a compiler can only check that single 
monitor calls are made correctly; it cannot check sequences of 
monitor calls, for example whether a resource is always reserved 
before it is released. So one can only hope for compile time 
assurance of partial correctness.) 

3everal other reasons besides program correctness make a 

hierarchical structure attractive: 
1) A hierarchical operating system can be studied in a 

stepwise manner as a sequence of abstract machines simulated by 

programs [a]. 
2) A partial ordering of process interactions permits one to 

use mathematical induction to prove certain overall properties 
of the system (such as the absence of deadlocks) [2]. 

3) Efficient resource utilization can be achieved by ordering 
the program components according to the speed of the physical 
resources they control (with the fastest resources being 
controlled at the bottom of the system) raj. 

4) A hierarchical system designed according to the previous 
criteria is often nearly-decomposable from an analytical point 
of view. This means that one can develop stochastic models of 
its dynamic behavior in a stepwise manner [9]. 

1.6. fINAL REMARKS 

It seems most natural to represent a hierarchical system 
structure, such as Fig. a, by a two-dimensional picture. But 
when we write a concurrent program we must somehow represent 
these access rules by linear text. This limitation of written 
language tends to obscure the simplicity of the original 
structure. That is why I have tried to explain the purpose of 
Concurrent Pascal by means of pictures instead of language 
notation. 
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The class concept is a restricted form of the class concept 
of Simula 67 E~. Dijkstra suggested the idea of monitors [8]. 
The first structured language notation for monitors was proposed 
in [2] and illustrated by examples in [3]. The queue variables 
needed by monitors for process scheduling were suggested in 
and modified in [3]. 

[5] 

The main contribution of Concurrent Pascal is to extend 
monitors with explicit access rights that can be checked at 
compile time. Concurrent Pascal has been implemented at Cal tech 
for the PDP 11/45 computer. Our system uses sequential Pascal as 
a job control and user programming language. 

2. THE USE OF CONCURRENT PASCAL 

2.1. INTRODUCTION 

In Part 1 the concepts of Concurrent Pascal were explained 

informally by means of pictures of a hierarchical spooling 

system. I will now use the same example to introduce the 
language notation of Concurrent Pascal. The.presentation is 
still informal. I am neither trying to define the language 
precisely nor to develop a working system. This will be done in 
other papers. I am just trying to show the flavor of the 
language. 

2.2. PROCESSES 

We will now program the system components in Fig. 8 one at a 
time from top to bottom (but we could just as well do it bottom 
up) • 

Although we only need one input process, we may as well define 
it as a general system type of which several copies may exist: 

( 



type inputprocess = 

process(buffer: diskbuffer), 

var block: page; 
cycle 

readcards(block); 
buffer.send(block); 

end 
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An input process has access to a buffer of type diskbuffer (to 
be defined later). The process has a private variable block of 

type page. The data type page is declared elsewhere as an array 

of characters: 

type page = array (.1 •• 512.) of char 

A process type defines a sequential program - in this case, an 
endless cycle that inputs a block from a card reader and sends 
it through the buffer to another process. We will ignore the 

details of card reader input. 
The send operation on the buffer is called as follows (using 

the block as a parameter): 

buffer.send(block) 

The next component type we will define is a job process: 

type jobprocess = 

process(input, output: diskbuffer); 
var block: page; 

cycle 

input.receive(block); 
update(block), 

output.send(block); 
end 
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A job process has access to two disk buffers called input and 

output. It receives blocks from one buffer, updates them, and 

sends them through the other buffer. The details of updating 

can be ignored here. 
Finally, we need an output process that can receive data from 

a disk buffer and output them on a line printer: 

type output process = 
process(buffer: diskbuffer); 

var block: page; 

cycle 

buffer.receive(block); 
printlines(block); 

end 

The following shows a declaration of the main system components: 

var buffer1, buffer2: diskbuffer; 

reader: inputprocess; 
master: jobprocess; 
writer: outputprocess; 

There is an input process, called the reader, a job process, 
called the master, and an output process, called the writer. 

Then there are two disk buffers, buffer1 and buffer2, that 
connect them. 

Later I will explain how a disk buffer is defined and 
initialized. If we assume that the disk buffers already have been 

initialized, we can initialize the input process as follows: 

init reader(buffer1) 

The init statement allocates space for the private variables of 

the reader process and starts its execution as a sequential 
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process with access to buffer1. 
The access rights of a process to other system components, such 

as buffer1, are also called its parameters. A process can only 
be initialized once. After initialization, the parameters and 
private variables of a process exist forever. They are called 

permanent variables. 
The init statement can be used to start concurrent execution of 

several processes and define their access rights. As an example, 
the statement 

init reader(buffer1), master(buffer1, buffer2), writer(buffer2) 

starts concurrent execution of the reader process (with access to 
buffer1), the master process (with access to both buffers), and 
the writer process (with access to buffer2). 

A process can only access its own parameters and private 
variables. The latter are not accessible to other system components. 
Compare this with the more liberal scope rules of block structured 
languages in which a program block can access not only its own 
parameters and local variables but also those declared in outer 
blocks. In Concurrent Pascal, all variables accessible to a 
system component are declared within its type definition. This 
access rule and the init statement make it possible for a 
programmer to state access rights explicitly and have them checked 
by a compiler. They also make it possible to study a system type 
as a self-contained program unit. 

Although the programming examples do not show this, one can 
also define constants, data types, and procedures within a 
process. These objects can only be used within the process type. 



2.3. MONITORS 

The disk buffer is a monitor type: 

type diskbuffer = 
monitor(consoleaccess, diskaccess: resource; 

base, limit: integer); 

var disk: virtualdisk; sender, receiver: queue; 

head, tail, length: integer; 

procedure entry send(block: page); 

begin 

if length = limit then delay(sender), 
disk.write(base • tail, block), 

tail:= (tail + 1) mod limit; 

length:= length + 1; 

continue(receiver); 
end; 

procedure entry receive(var block: page); 

begin 
if length = 0 then delay(receiver), 
disk.read(base + head, block); 

head:= (head + 1) mod limit; 

length:= length - 1; 
continue(sender); 

end; 

begin "initial statement" 

init disk(consoleaccess, diskaccess); 

head:= 0; tail:= 0; length:= 0; 

end 
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A disk buffer has access to two other components, consoleaccess 
and diskaccess, of type resource (to be defined later). It also 

has access to two integer constants defining the base address and 

limit of the buffer on the disk. 
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The monitor declares a set of shared variables: The disk is 
declared as a variable of type virtualdisk. Two variables of type 
queue are used to delay th~ sender and receiver processes until 
the buffer becomes nonfull and nonempty. Three integers define 
the relative addresses of the head and tail elements of the 

buffer and its current length. 

The monitor defines two monitor procedures, send and receive. 

They are marked with the word entry to distinguish them from 

local procedures used within the monitor (there are none of 
these in this example). 

Receive returns a page to the ~alling process. If the buffer is 

empty, the calling proce~s is delayed in the receiver queue 

until another process sends a page through the buffer. The 
receive procedure will then read and remove a page from the head 

of the disk buffer by calling a read operation defined within 

the virtual disk type: 

disk,read(base + head, block) 

Finally, the receive procedure will continue the execution of a 
sending process (if the latter is waiting in the sender queue). 

Send is similar to receive. 

The queuing mechanism will be explained in detail in the next 
section. 

The initial statement of a disk buffer initializes its virtual 

disk with access to the console and disk resources, It also sets 
the buffer length to zero, (Notice, that a disk buffer does not 

use its access rights to the console and disk, but only passes 

them on to a virtual disk declared within it.) 
The following shows 

of type resource and 
of a disk buffer: 

a declaration of two system components 
two integers defining the base and limit 



var consoleaccess, diskaccess: resource; 
base, limit: integer; 
buffer: diskbuffer; 
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If we assume that these variables already have been initialized, 
we can initialize a disk buffer as follows: 

init buffer(consoleaccess, diskaccess, base, limit) 

The init statement allocates storage for the parameters and 
shared variables of the disk buffer and executes its initial 

statement. 
A monitor can only be initialized once. After initialization, 

the parameters and shared variables of a monitor exist forever. 
They are called permanent variables. The parameters and local 
variables of a monitor procedure, however, exist only while it 
is being executed. They are called temporary variables. 

A monitor procedure can only access its own temporary and 

permanent variables. These variables are not accessible to 
other system components. Other components can, however, call 
procedure entries within a monitor. While a monitor procedure 
is being executed, it has exclusive access to the permanent 
variables of the monitor. If concurrent processes try to call 
procedures within the same monitor simultaneously, these 
procedures will be executed strictly one at a time. 

Only monitors and constants can be permanent parameters of 
processes and monitors. This rule ensures that processes only 
communicate by means of monitors. 

It is possible to define constants, data types, and local 
procedures within monitors (and processes). The local procedures 

of a system type can only be called within the system type. To 
prevent deadlock of monitor calls and ensure that access rights 
are hierarchical the following rules are enforced: A procedure 

must be declared before it can be called; Procedure definitions 
cannot be nested and cannot call themselves; A system type 
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cannot call its own procedure entries. 
The absence of recursion makes it possible for a compiler to 

determine the store requirements of all system components. This 
and the use of permanent components make it possible to use 
fixed store allocation on a computer that does not support paging. 

Since system components are permanent they must be declared as 
permanent variables of other components. 

2.4. QUEUES 

A monitor procedure can delay a calling process for any length 
of time by executing a delay operation on a queue variable. Only 
one process at a time can wait in a queue. When a calling process 
is delayed by a monitor procedure it loses its exclusive access 
to the monitor variables until another process calls the same 
monitor and executes a continue operation on the queue in which 

the process is waiting. 
The continue operation makes the calling process return from 

its monitor call. If any process is waiting in the selected 
queue, it will immediately resume the execution of the monitor 
procedure that delayed it. After being resumed. the process 
again has exclusive access to the permanent variables of the 

monitor. 
Other variants of process queues (called "events" and 

"conditions") are proposed in [3, ~. They are multi-process 
queues that use different (but fixed) scheduling rules. We do 
not yet know from experience which kind of queue will be the 
most convenient one for operating system design. A single-process 
queue is the simplest tool that gives the programmer complete 
control of the scheduling of individual processes. Later, I will 
show how multi-process queues can be built from single-process 
queues. 

A queue must be declared as a permanent variable within a 
monitor type. 
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2.5. CLAS5ES 

Every disk buffer has its own virtual disk. A virtual disk is 
defined as a class type: 

type virtualdisk = 
class(consoleaccess, diskaccess: resource); 
var terminal: virtualconsole; peripheral: disk; 

procedure entry read(pageno: integer; var block: page); 

var error: boolean; 
begin 

repeat 
diskaccess.request; 
peripheral.read(pageno, block, error); 
diskaccess.release; 
if error then terminal.write('disk failure'); 

until not error; 
end; 

procedure entry write(pageno: integer; block: page); 
begin "similar to read" end; 

begin "initial statement" 
init terminal(consoleaccess), peripheral; 

end 

A virtual disk has access to a console resource and a disk 
resource. Its permanent variables define a virtual console and 
a disk. A process can access its virtual disk by means of ~ 
and write procedures. These procedure entries reguest and 
release exclusive access to the real disk before and after each 
block transfer. If the real disk fails the virtual disk calls 
its. virtual console to report the error. 

The initial statement or a virtual disk initializ~s its 
virtual console and the real disk. 



Section 2.3 shows an example of how a virtual disk is 

declared and initialized (within a disk buffer). 
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A class can only be initialized once. After initialization, 
its parameters and private variables exist forever. A class 

procedure can only access its own temporary and permanent 
variables. These cannot be accessed by other components. 

A class is a system component that cannot be called 

simultaneously by several other components. This is guaranteed 
by the following rule: A class must be declared as a permanent 

variable within a system type; A class can be passed as a 

permanent parameter to another class (but not to a process or 

monitor). So a chain of nested class calls can only be started 
by a single process or monitor. Consequently, it is not 

necessary to schedule simultaneous class calls at run time -
they cannot occur. 

2.6. INPUT/OUTPUT. 

The real disk is controlled by a class 

type disk = class 

with two procedure entries 

read(pageno, block, error) 

write(pageno, block, error) 

The class uses a standard procedure 

io(block, param, device) 

to transfer a block to or from the disk device. The io parameter 
is a record 



var param: record 
operation: iooperation; 
result: ioresult, 
pageno: integer 

end 
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that defines an input/output operation, its result, and.a page 
number on the disk. The calling process is delayed until an io 
operation has been completed. 

A virtual console is also defined as a class 

type virtualconsole = 
class(access: resource), 
var terminal: console; 

It can be accessed by read and write operations that are similar 
to each other: 

procedure entry read(var text: line); 
begin 

access.request; 
terminal.read(text); 
access.release; 

end 

The real console is controlled by a class that is similar to 
the disk class. 

2.7. mULTI~ROCESS SCHEDULING 

Access to the console and disk is controlled by two monitors of 
type resource. To simplify the presentation, I will assume that 

competing processes are served in first-come, first-served order. 
(A much better disk scheduling algorithm is defined in [3]. It 
can be programmed in Concurrent Pascal as well but involves more 

details than the present one.) 
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We will define a multiprocess queue as an array of single-process 
queues 

type multiqueue = array (.O •• qlength-1.) of queue 

where qlength is an upper bound on the number of concurrent 
processes in the system. 

A first-come, first-served scheduler is now straightforward to 
program: 

type resource = 
monitor 
var free: boolean; q: multiqueue; 

head, tail, length: integer; 

procedure entry request; 
var arrival: integer; 
begin 

if free then free;= false else 
begin 

arrival:= tail; 
tail:= (tail + 1) mod qlength; 
length:= length + 1; 
delay(q(.arrival.»; 

end; 
end; 



procedure entry release; 

var departure: integer; 

begin 

if length = 0 then free:= true else 

begin 

departure:= head; 

head:= (head + 1) mod qlengthl 

length:= length - 11 

continue(q(.departure.»1 

end; 

end; 

begin "initial statement" 

free:= true; length:= 0; 

head:= 0; tail:= 0; 

end 

2.8. INITIAL PROCESS 
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Finally, we will put all these components together into a 

concurrent program. A Concurrent Pascal program consists of nested 

definitions of system types. The outermost system type is an 

anonymous process, called the initial process. An instance of this 

process is created during system loading. It initializes the 

other system components. 

The initial process defines system types and instances of them. 

It executes statements that initialize these system components. 

In our example, the initial process can be sketched as follows 

(ignoring the problem of how base addresses and limits of disk 

buffers are defined): 



type 

resource = monitor ••• end; 
console = class ••• end; 

virtualconsole = 
class{access: resource); ••• end; 

disk = class ••• end; 
virtual disk = 

class{consoleaccess, diskaccess: resource); ••• end; 

diskbuffer = 
monitor(consoleaccess, diskaccess: resource; 

base, limit: integer); ... end; 

input process = 
process(buffer: diskbuffer), ••• end; 

job process = 

process(input, output: diskbuffer); ••• end; 

outputprocess = 
process(buffer: diskbuffer), ••• end; 

var 
consoleaccess, diskaccess: resource; 

buffer1, buffer2: diskbuffer; 
reader: inputprocess; 
master: jobprocess; 

writer: outputprocess; 

begin 
init consoleaccess, diskaccess, 

buffer1(consoleaccess, diskaccess, base1, limit1), 

buffer2(consoleaccess, diskaccess, base2, limit2), 

reader(buffer1), 
master(buffer1. buffer2), 

writer(buffer2) ; 

end. 

26 
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When the execution of a process (such as the initial process) 
terminates, its private variables continue to exist. This is 
necessary because these variables may have been passed as 

permanent parameters to other system components. 
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1. INTRODUCTION 

This is the second of two papers that d~8c~ibe a new programming 
language for structured programming of computer operating systems. 

This language is called Concurrent Pascal. It extends the 
sequential programming language Pascal [1] with concurrent 

processes, monitors, and classes. Concurrent Pascal has been 

implemented at Caltech for the PDP 11/45 computer. Our system 
uses sequential Pascal as a job control and user programming 

language. 
Concurrent Pascal is explained informally by means of pictures 

and examples in [2]. The present paper describes how an operating 
system written in Concurrent Pascal can start and preempt user 
programs written in sequential Pascal. It also explains how these 

programs can call procedures defined within the operating system. 

The discussion is informal and sketchy. It is helpful (but not 

essential) to read the previous paper on Concurrent Jascal [2]. A 
precise definition of the language and a complete description 

of one or more operating systems written in it will be given in 

future papers. 

2. PROGRAM EXECUTION 

An operating system written in Concurrent Pascal will consist 

of a fixed number of processes, monitors, and classes. It is 
assumed that both operating systems and user programs are written 

in high-level programming languages. 

I see no difficulty in building a system that can compile and 
execute user programs written in a variety of different 
programming languages (by making certain common assumptions about 

the code generated by the compilers). However, since our project 
is a research effort, all user programs will be written in a 
single language (sequential Pascal). 
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We will assume that an operating system has access to a 
library of compiled user programs and discuss how these programs 
can be loaded in the internal computer store and executed. 

It is tempting to try to make program loading an elementary 
operation in the system design language. This would make it 
possible for a compiler and its run-time environment to check 
that an executable program is loaded (and not an undefined 
collection of bits). To do this, the operating system code 
generated by a compiler must, of course, make many assumptions 
about the details of disk access, program files, and directories. 
But if the language makes rigid assumptions about one of the 
most central operating system components - a file system - it 
will obviously not be a very useful tool for the design of a 
variety of different operating systems. 

So the language facilities for program loading and execution 
must be very simple and flexible. This will make them potentially 
dangerous to use. since the compiler has no way of knowing 
whether an operating system loads an executable program. It is 
wise therefore to hide the details of program loading within a 
single system component and make it look like a well-defined 
operation to the rest of the operating system. 

In Concurrent Pascal, a process can load a compiled program 
into a data structure and call it as if it were a procedure. 
The loading is done by means of input operations as defined in 
(2]. lllhen a compiled program terminates its execution it returns 
to the point inside the operating system where it was called by . 
a process. (for the moment, we are ignoring the problem of how 
a program can be stopped if it causes a run-time error or 
exceeds a time limit.) 

figure 1 shows the simple idea of a user program being a 

procedure that is fetched and called by a system process. A 
process that controls the execution of a program will be called 

a ~r.~. 
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User program 

Job process 

Fig 1. A job process that calls a user program 

A compiled program must be stored in a variable declared within 

the job process: 

var codel codestore 

The data type codestore can, for example, be declared as an 
array of disk pages: 

type codestore = array ( ••• ) of page 

The job process must also include a declaration of the user 

program as a pseudo-procedure I 

program job(v: codestore) 

After loading, a program can be called as a procedure using its 

code variable as a parameter: 

job(code) 

If a user program completes its execution or causes a run-time 
error (say, an arithmetic overflow), it returns to the point 
where it was called by the job process. A standard function 
enables the job process to determine where and why the program 
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terminated. If the program failed, the job process can add a line 
number and an error message to its output. 

3. SYSTEM INTERFACE 

An operating system should be in complete control of resource 
allocation and input/output. But a user program must be able to 
call the operating system and ask it to perform these functions. 
Figure 2 shows how this is done. 

Interface procedures . 

User program 

Fig. 2. Interface procedures 

A user program is conceptually a procedure called by a job 
process. The program cannot access data inside the operating 
system (and vice versa). But the job process defines a set of 
procedures that can be called by a user program. They are called 
interface procedures. 

As an example, consider a simple user program that only needs 
to input and output characters. To make this possible, two 
interface procedures, read and write, must be defined inside 
its job process: 

procedure entry read(var c: char), 

begin ••• end; 

procedure entry write(c: char); 

begin ••• end I 
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The details of these interface procedures are not relevant here. 
Interface procedures are marked with the word entry to distinguish 
them from local procedures used within the job process. A job 
process cannot call its own procedure entries (nor can any other 
system component). 

The program declaration in the job process must be extended 
with a list of the interface procedures that are accessible to 
the user program: 

program job(v: codestore), 
entry read, write, 

One can introduce several program declarations with different 
system interfaces inside a single job process. This makes it 
possible to give different access rights to different programs 
called by the same job process. 

A sequential Pascal program must be prefixed by declarations of 
the interface procedures it can call and their parameter types. 
The following shows the job prefix of a user program that can 
call the read and write procedures inside its job process: 

procedure read(var c: char), 
procedure write(c: char), 
program main, 
••• < user program> ••• 

The prefix must list the interface procedures in the order in 
which they appear in the program declaration inside the operating 
system. 

A user could, of course, crash the system if he were able to 
write his own prefix. This can be avoided by having the 
operating system or the compiler automatically insert a standard 
prefix in front of all user programs. The compiler will then 
refuse to accept further interface definitions after the keyword 
program. 
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To a user program, its job process looks like a class that can 
be accessed by procedure calls only. The access rights of a user 
program to these procedures can be checked at compile time - a 

point that was emphasized in [2]. 
So far we have assumed that a program only has a single 

implicit parameter (representing its code). A job process can, 
however, pass explicit parameters to a program when it is called, 

and the program can return values when it terminates. The 

explicit program parameters and their types must be defined in 
the prefix as illustrated by the following example: 

type T = ... . . . 
program main(param: T), 

... 
The Concurrent Pascal compiler assumes that the last parameter 
specified in a program declaration denotes the code to be 

executed. This parameter is not accessible within the sequential 

program. So a user program called with a single, explicit 

parameter would be declared as follows within a job process: 

program job(param: T, code: codestore) 

Only simple data types, arrays, records, and sets can be passed 

as explicit parameters to user programs. Procedures can only be 

passed as implicit parameters by means of the interface mechanism 

explained earlier. Processes, monitors, classes, and queues cannot 
be passed as parameters to user programs [2J (because user programs 
might misuse them and crash the operating system). 

4. JGB CONTROL PROGRA~S 

Sequential Pascal can also be used as a job control language to 
specify the execution of a sequence of programs, Figure 3 shows 
an example of this, 
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Pass 1 Pass N User program 

Job cycle 

Job process 

Fig. 3. Job control and user programs 

Here a job process starts by executing a sequential program 
called the job cycle. The job cycle is a cyclical program that 
communicates with a user through a terminal. In this example. 
the user has asked the job cycle to call another program named 
pascal. This program in turn calls a sequence of other programs. 
pass 1 to pass N, that compiles a user program. If the compilation 
is successful, the user program will be executed. Afterwards 
control returns to the job cycle that will ask the user what to 
do next. 

The job cycle and pascal programs are called job control 
programs because they control the execution of other programs. 
What a job control program needs is simply the ability to call 
other programs and pass parameters to them. Then the need for a 
separate job control language will vanish. 

Nested program calls can be handled by an interface procedure 
~ that takes a program identifier as an argument. The job 
process will look up the identifier in a directory and verify 
that it refers to an executable program. If so it will load the 
program and call it. After termination of a program, the job 



process must reload the code of the previous program and" return 
to it. To do thi~ the process needs access to a stack of program 
identifiers _ a trivial ihing to i~plement by means of a class 

[~. 
This leads to the following outline of the procedure run: 

procedure entry run(id: identifier), 

var oldid: identifier, 

begin 
if executable(id) then 

begin 
load(id, code), 
push(id), 
job(code), 
pop(oldid), 
load(oldid, code), 

end, 
end 
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The procedure can, of course, also include arguments to be passed 
to or from a called program (subject to the restrictions mentioned 

earlier). 

This scheme essentially implements demand fetching of program 
code before and after each program call. The system only keeps 
the code of the current program in the internal store. 

The variables of nested programs are, however, all kept in 
the stack of the job process until the programs terminate. This 
is not a serious problem since job control programs usually have 
few variables. 

So although Concurrent Pascal uses a very primitive form of 
program loading, an operating system can make a program library 
look as a set of nested or recursive procedures. The integrity 
of a file system can be guaranteed by a suitable design of 
interface procedures that give user programs controlled access 
to programs and data. 
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5. PROGRAM PREEmPTION 

How can an operating system force a sequential program to 
terminate if it goes into an endless loop or exceeds some time 
limit? Figure 4 shows the method used to solve this problem. The 
virtual machine associates a stop signal with every process. This 
signal is turned off by the operating system when the execution 
of a program begins and turned on when it must terminate. 

Job monitor User program· 

Clock process Job process 

Fig. 4. Preemption of a user program 

Before a job process starts a program it calls a job monitor and 
defines a time limit for the program. During program execution, the 
job monitor is called every second or so by a clock process. If the 
program has exceeded its time limit, the job monitor will call a 
standard procedure that turns the stop signal of the job process 
on. 

The compiled user code examines this signal every time it 
repeats a loop. If the signal is on, the program terminates with 
the result time limit exceeded. (This mechanism can also be used 
to preempt a program at any time on request.) 

One can argue about the details of this scheme, but it does 
have one major advantage: it makes preemption look like normal 
program termination to a job process. This simple solution 
only works because user code is generated by a reliable compiler 
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(and not by an assembly language programmer). 
It may be too early to eliminate all use of assembly language 

programming in computer applications. But system programmers 
should realize that they are complicating their design problems 
tremendously if they assume that all programs potentially can 
be random collections of bIts. A compiler can solve many of the 
reliability problems of programming systems in the simplest and 

most efficient manner (provided we are able to make a reliable 

compiler) • 
We must, of course, make sure that preemption does not take 

place while an interface procedure is being executed on behalf of 
a user program. Otherwise the data structures of an operating 
system might be left in an inconsistent state that could cause 
the system to crash. So it is only the code generated for 
sequential programs that examines stop signals; they are ignored 
by the code generated for concurrent programs. 
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This note describes a form of universal data types that seems 
to be convenient (if not necessary) in an abstract programming 
language for system programming. It is part of Concurrent 
Pascal, a new programming language for structured programming 
of computer operating systems [1. 2 ]. 

In most abstract programming languages operands and operators 
must be of compatible types. The type rules will allow you to 
add two integers, but not two booleans. The checking of such 
rules during compilation is vital for a programmer since it 
makes it possible for him to ignore the representation of data 
inside a computer store and think of them in terms of their 
abstract properties. 

Occasionally, an operating system designer must, however, be 
able to relax the rules of type checking somewhat. The following 
describes how this can be done without going to the other extreme 
of introducing variables that are treated as typeless bit 
patterns throughout a program. (The latter extreme is, of course, 
the rule in assembly language and in some implementation 
languages.) 

Consider an operating system procedure that writes a page of 
data on a disk: 

procedure write(pageno: integer; page: charpage), 
begin ••• end 

The details of this procedure do not matter here. We will assume 
that a charpage is defined elsewhere as an array of characters: 

type charpage = array ( ••• ) of char 

This procedure can now be used by an operating system to output 
a variable x as page number i on the disk: 

var i: integerl XI charpage, 
• •• wr it e ( i, x) ••• 
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If we insist that the arguments of a procedure call must be 
of the same types as the parameters defined within the procedure 
then we cannot use the same procedure to output a page of another 
type, sayan array of integers: 

where 

var j: integerl YI integerpagel 
••• wrlte(j, y) ••• 

type integerpage = array ( ••• ) of integer 

To make the write procedure more general we will use the key 
word ~ to indicate that it can be called with any argument 
that occupies the same number of store locations as a charpagel 

procedure write(pagenot integerl paget univ charpage), 
begin ••• end 

The procedure can now be called with the argument y. 
Before and after the call, the variable y is regarded as being 

strictly an integerpage. And within the procedure, the parameter 
page is considered to be strictly a charpage. The type checking 
is only relaxed at the point where the procedure is called. 

There is also an occasional need for universal types in 
sequential system programs (usually handled by means of standard 
procedures). One example is the use of ordinal values of 
characters to convert constants from text form to numeric form. 
The following function defines the ordinal value of a character: 

function ord(c: univ integer): integer I 
begin ord:= c end 

It can be called as follows: 

var i: integerl c: char, 
i:= ord(c) ••• 
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Another example would be a multipass compiler in which the 
passes communicate with one another by means of a sequence of 
integer values stored on disk. Here the first pass must be able 
to split a real constant into a sequence of integers ("machine 
words") and transmit them to the second pass. This can also be 
done by means of universal types. 

A universal parameter type 

univ T 

represents the ~ of all arguments represented by the same 
number of store locations as the data type T. It seems reasonable 
to require that universal types not be used to perform undefined 
manipulation of data structures that contain pointers or are 
shared by concurrent processes, 
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