

21

2.5. CLAS5ES

Every disk buffer has its own virtual disk. A virtual disk is
defined as a class type:

type virtualdisk =
class(consoleaccess, diskaccess: resource);
var terminal: virtualconsole; peripheral: disk;

procedure entry read(pageno: integer; var block: page);

var error: boolean;
begin

repeat
diskaccess.request;
peripheral.read(pageno, block, error);
diskaccess.release;
if error then terminal.write('disk failure');

until not error;
end;

procedure entry write(pageno: integer; block: page);
begin "similar to read" end;

begin "initial statement"
init terminal(consoleaccess), peripheral;

end

A virtual disk has access to a console resource and a disk
resource. Its permanent variables define a virtual console and
a disk. A process can access its virtual disk by means of
and write procedures. These procedure entries reguest and
release exclusive access to the real disk before and after each
block transfer. If the real disk fails the virtual disk calls
its. virtual console to report the error.

The initial statement or a virtual disk its
virtual console and the real disk.

Section 2.3 shows an example of how a virtual disk is

declared and initialized (within a disk buffer).

22

A class can only be initialized once. After initialization,
its parameters and private variables exist forever. A class

procedure can only access its own temporary and permanent
variables. These cannot be accessed by other components.

A class is a system component that cannot be called

simultaneously by several other components. This is guaranteed
by the following rule: A class must be declared as a permanent

variable within a system type; A class can be passed as a

permanent parameter to another class (but not to a process or

monitor). So a chain of nested class calls can only be started
by a single process or monitor. Consequently, it is not

necessary to schedule simultaneous class calls at run time -
they cannot occur.

2.6. INPUT/OUTPUT.

The real disk is controlled by a class

type disk = class

with two procedure entries

read(pageno, block, error)

write(pageno, block, error)

The class uses a standard procedure

io(block, param, device)

to transfer a block to or from the disk device. The io parameter
is a record

var param: record
operation: iooperation;
result: ioresult,
pageno: integer

end

23

that defines an input/output operation, its result, and.a page
number on the disk. The calling process is delayed until an io
operation has been completed.

A virtual console is also defined as a class

type virtualconsole =
class(access: resource),
var terminal: console;

It can be accessed by read and write operations that are similar
to each other:

procedure entry read(var text: line);
begin

access.request;
terminal.read(text);
access.release;

end

The real console is controlled by a class that is similar to
the disk class.

2.7. mULTI~ROCESS SCHEDULING

Access to the console and disk is controlled by two monitors of
type resource. To simplify the presentation, I will assume that

competing processes are served in first-come, first-served order.
(A much better disk scheduling algorithm is defined in [3]. It
can be programmed in Concurrent Pascal as well but involves more

details than the present one.)

24

We will define a multiprocess queue as an array of single-process
queues

type multiqueue = array (.O •• qlength-1.) of queue

where qlength is an upper bound on the number of concurrent
processes in the system.

A first-come, first-served scheduler is now straightforward to
program:

type resource =
monitor
var free: boolean; q: multiqueue;

head, tail, length: integer;

procedure entry request;
var arrival: integer;
begin

if free then free;= false else
begin

arrival:= tail;
tail:= (tail + 1) mod qlength;
length:= length + 1;
delay(q(.arrival.»;

end;
end;

procedure entry release;

var departure: integer;

begin

if length = 0 then free:= true else

begin

departure:= head;

head:= (head + 1) mod qlengthl

length:= length - 11

continue(q(.departure.»1

end;

end;

begin "initial statement"

free:= true; length:= 0;

head:= 0; tail:= 0;

end

2.8. INITIAL PROCESS

25

Finally, we will put all these components together into a

concurrent program. A Concurrent Pascal program consists of nested

definitions of system types. The outermost system type is an

anonymous process, called the initial process. An instance of this

process is created during system loading. It initializes the

other system components.

The initial process defines system types and instances of them.

It executes statements that initialize these system components.

In our example, the initial process can be sketched as follows

(ignoring the problem of how base addresses and limits of disk

buffers are defined):

type

resource = monitor ••• end;
console = class ••• end;

virtualconsole =
class{access: resource); ••• end;

disk = class ••• end;
virtual disk =

class{consoleaccess, diskaccess: resource); ••• end;

diskbuffer =
monitor(consoleaccess, diskaccess: resource;

base, limit: integer); ... end;

input process =
process(buffer: diskbuffer), ••• end;

job process =

process(input, output: diskbuffer); ••• end;

outputprocess =
process(buffer: diskbuffer), ••• end;

var
consoleaccess, diskaccess: resource;

buffer1, buffer2: diskbuffer;
reader: inputprocess;
master: jobprocess;

writer: outputprocess;

begin
init consoleaccess, diskaccess,

buffer1(consoleaccess, diskaccess, base1, limit1),

buffer2(consoleaccess, diskaccess, base2, limit2),

reader(buffer1),
master(buffer1. buffer2),

writer(buffer2) ;

end.

26

27

When the execution of a process (such as the initial process)
terminates, its private variables continue to exist. This is
necessary because these variables may have been passed as

permanent parameters to other system components.

Acknowledgements

It is a pleasure to acknowledqe the immense value of a
continuous exchange of ideas with Tony Hoare on structured
multiprogramming. I also thank my students Luis Medina and
Ramon Varela for their helpful comments on this paper.

The project is now supported by the National Science

foundation under grant number DCR74-17331.

References

1 •

2.

3.

4.

5.

6.

7.

8.

9.

10.

Wirth, N. The programming lan9uage Pascal.
Acta Informatica 1, 1 t1971), 35-63.

Brinch Hansen, p. Operating system principles.
Prentice-Hall, July 1973.

Hoare, C. A. R. Monitors: an operating system structuring
concept. Comm. ACM 17, 10 (Oct. 1974), 549-57.

Brinch Hansen, P. The nucleus of a multiprogramming
system, Comm. ACM 13, 4 (Apr. 1970), 238-50.

Brinch Hansen, P. Structured multiprogramming.
Comm. ACm 15, 7 (July 1972), 574-78.

Brinch Hansen, p. Concurrent programming concepts.
ACM Computing Reviews 5, 4 (Dec. 1974), 223-45.

Brinch Hansen, P. A programming methodoloav for
operating system design. Proc. IFIP 74 Congress,
(Aug, 1974), 394-97, .

Dijkstra, E. W. Hierarchical ordering of sequential
processes. Acta Informatica 1, 2 (1971), 115-38.

Simon, H. A. The architecture of complexity.
Proc. American Philosophical Society 106, 6 (1962),
468-82.

Dahl, o.-J., and Hoare, C. A. R. Hierarchical program
structures. In O.-J. Dahl, E. W. Dijkstra, and
C. A. R. Hoare. Structured programming. Academic
Press, 1972.

Abstract

JOB CONTROL IN CONCURRENT PASCAL

Per Brinch Hansen

Information Science
California Institute of Technology

March 1975

This is the second of two papers that describe a new

programming language for structured programming of computer

operating systems. This language is called Concurrent Pascal.

It extends the sequential programming language Pascal with

concurrent processes, monitors, and classes. The first paper
explains the language informally. It is helpful (but not

essential) to read that paper before this one. The present

paper describes how an operating system written in Concurrent

Pascal can start and preempt user programs written in sequential

Pascal. It also explains how sequential Pascal can be used as a

job control language and how sequential programs interact with

an operating system.

Key Words and Phrases: Concurrent Pascal, operating systems,

job control language, program execution, system interface,

program preemption.

CR Categories: 4.2, 4.3

Copyright ~ 1975 Per Brinch Hansen

1. INTRODUCTION

This is the second of two papers that d~8c~ibe a new programming
language for structured programming of computer operating systems.

This language is called Concurrent Pascal. It extends the
sequential programming language Pascal [1] with concurrent

processes, monitors, and classes. Concurrent Pascal has been

implemented at Caltech for the PDP 11/45 computer. Our system
uses sequential Pascal as a job control and user programming

language.
Concurrent Pascal is explained informally by means of pictures

and examples in [2]. The present paper describes how an operating
system written in Concurrent Pascal can start and preempt user
programs written in sequential Pascal. It also explains how these

programs can call procedures defined within the operating system.

The discussion is informal and sketchy. It is helpful (but not

essential) to read the previous paper on Concurrent Jascal [2]. A
precise definition of the language and a complete description

of one or more operating systems written in it will be given in

future papers.

2. PROGRAM EXECUTION

An operating system written in Concurrent Pascal will consist

of a fixed number of processes, monitors, and classes. It is
assumed that both operating systems and user programs are written

in high-level programming languages.

I see no difficulty in building a system that can compile and
execute user programs written in a variety of different
programming languages (by making certain common assumptions about

the code generated by the compilers). However, since our project
is a research effort, all user programs will be written in a
single language (sequential Pascal).

2

We will assume that an operating system has access to a
library of compiled user programs and discuss how these programs
can be loaded in the internal computer store and executed.

It is tempting to try to make program loading an elementary
operation in the system design language. This would make it
possible for a compiler and its run-time environment to check
that an executable program is loaded (and not an undefined
collection of bits). To do this, the operating system code
generated by a compiler must, of course, make many assumptions
about the details of disk access, program files, and directories.
But if the language makes rigid assumptions about one of the
most central operating system components - a file system - it
will obviously not be a very useful tool for the design of a
variety of different operating systems.

So the language facilities for program loading and execution
must be very simple and flexible. This will make them potentially
dangerous to use. since the compiler has no way of knowing
whether an operating system loads an executable program. It is
wise therefore to hide the details of program loading within a
single system component and make it look like a well-defined
operation to the rest of the operating system.

In Concurrent Pascal, a process can load a compiled program
into a data structure and call it as if it were a procedure.
The loading is done by means of input operations as defined in
(2]. lllhen a compiled program terminates its execution it returns
to the point inside the operating system where it was called by .
a process. (for the moment, we are ignoring the problem of how
a program can be stopped if it causes a run-time error or
exceeds a time limit.)

figure 1 shows the simple idea of a user program being a

procedure that is fetched and called by a system process. A
process that controls the execution of a program will be called

a ~r.~.

3

User program

Job process

Fig 1. A job process that calls a user program

A compiled program must be stored in a variable declared within

the job process:

var codel codestore

The data type codestore can, for example, be declared as an
array of disk pages:

type codestore = array (•••) of page

The job process must also include a declaration of the user

program as a pseudo-procedure I

program job(v: codestore)

After loading, a program can be called as a procedure using its

code variable as a parameter:

job(code)

If a user program completes its execution or causes a run-time
error (say, an arithmetic overflow), it returns to the point
where it was called by the job process. A standard function
enables the job process to determine where and why the program

4

terminated. If the program failed, the job process can add a line
number and an error message to its output.

3. SYSTEM INTERFACE

An operating system should be in complete control of resource
allocation and input/output. But a user program must be able to
call the operating system and ask it to perform these functions.
Figure 2 shows how this is done.

Interface procedures .

User program

Fig. 2. Interface procedures

A user program is conceptually a procedure called by a job
process. The program cannot access data inside the operating
system (and vice versa). But the job process defines a set of
procedures that can be called by a user program. They are called
interface procedures.

As an example, consider a simple user program that only needs
to input and output characters. To make this possible, two
interface procedures, read and write, must be defined inside
its job process:

procedure entry read(var c: char),

begin ••• end;

procedure entry write(c: char);

begin ••• end I

5

The details of these interface procedures are not relevant here.
Interface procedures are marked with the word entry to distinguish
them from local procedures used within the job process. A job
process cannot call its own procedure entries (nor can any other
system component).

The program declaration in the job process must be extended
with a list of the interface procedures that are accessible to
the user program:

program job(v: codestore),
entry read, write,

One can introduce several program declarations with different
system interfaces inside a single job process. This makes it
possible to give different access rights to different programs
called by the same job process.

A sequential Pascal program must be prefixed by declarations of
the interface procedures it can call and their parameter types.
The following shows the job prefix of a user program that can
call the read and write procedures inside its job process:

procedure read(var c: char),
procedure write(c: char),
program main,
••• < user program> •••

The prefix must list the interface procedures in the order in
which they appear in the program declaration inside the operating
system.

A user could, of course, crash the system if he were able to
write his own prefix. This can be avoided by having the
operating system or the compiler automatically insert a standard
prefix in front of all user programs. The compiler will then
refuse to accept further interface definitions after the keyword
program.

6

To a user program, its job process looks like a class that can
be accessed by procedure calls only. The access rights of a user
program to these procedures can be checked at compile time - a

point that was emphasized in [2].
So far we have assumed that a program only has a single

implicit parameter (representing its code). A job process can,
however, pass explicit parameters to a program when it is called,

and the program can return values when it terminates. The

explicit program parameters and their types must be defined in
the prefix as illustrated by the following example:

type T =
program main(param: T),

...
The Concurrent Pascal compiler assumes that the last parameter
specified in a program declaration denotes the code to be

executed. This parameter is not accessible within the sequential

program. So a user program called with a single, explicit

parameter would be declared as follows within a job process:

program job(param: T, code: codestore)

Only simple data types, arrays, records, and sets can be passed

as explicit parameters to user programs. Procedures can only be

passed as implicit parameters by means of the interface mechanism

explained earlier. Processes, monitors, classes, and queues cannot
be passed as parameters to user programs [2J (because user programs
might misuse them and crash the operating system).

4. JGB CONTROL PROGRA~S

Sequential Pascal can also be used as a job control language to
specify the execution of a sequence of programs, Figure 3 shows
an example of this,

7

Pass 1 Pass N User program

Job cycle

Job process

Fig. 3. Job control and user programs

Here a job process starts by executing a sequential program
called the job cycle. The job cycle is a cyclical program that
communicates with a user through a terminal. In this example.
the user has asked the job cycle to call another program named
pascal. This program in turn calls a sequence of other programs.
pass 1 to pass N, that compiles a user program. If the compilation
is successful, the user program will be executed. Afterwards
control returns to the job cycle that will ask the user what to
do next.

The job cycle and pascal programs are called job control
programs because they control the execution of other programs.
What a job control program needs is simply the ability to call
other programs and pass parameters to them. Then the need for a
separate job control language will vanish.

Nested program calls can be handled by an interface procedure
~ that takes a program identifier as an argument. The job
process will look up the identifier in a directory and verify
that it refers to an executable program. If so it will load the
program and call it. After termination of a program, the job

process must reload the code of the previous program and" return
to it. To do thi~ the process needs access to a stack of program
identifiers _ a trivial ihing to i~plement by means of a class

[~.
This leads to the following outline of the procedure run:

procedure entry run(id: identifier),

var oldid: identifier,

begin
if executable(id) then

begin
load(id, code),
push(id),
job(code),
pop(oldid),
load(oldid, code),

end,
end

8

The procedure can, of course, also include arguments to be passed
to or from a called program (subject to the restrictions mentioned

earlier).

This scheme essentially implements demand fetching of program
code before and after each program call. The system only keeps
the code of the current program in the internal store.

The variables of nested programs are, however, all kept in
the stack of the job process until the programs terminate. This
is not a serious problem since job control programs usually have
few variables.

So although Concurrent Pascal uses a very primitive form of
program loading, an operating system can make a program library
look as a set of nested or recursive procedures. The integrity
of a file system can be guaranteed by a suitable design of
interface procedures that give user programs controlled access
to programs and data.

9

5. PROGRAM PREEmPTION

How can an operating system force a sequential program to
terminate if it goes into an endless loop or exceeds some time
limit? Figure 4 shows the method used to solve this problem. The
virtual machine associates a stop signal with every process. This
signal is turned off by the operating system when the execution
of a program begins and turned on when it must terminate.

Job monitor User program·

Clock process Job process

Fig. 4. Preemption of a user program

Before a job process starts a program it calls a job monitor and
defines a time limit for the program. During program execution, the
job monitor is called every second or so by a clock process. If the
program has exceeded its time limit, the job monitor will call a
standard procedure that turns the stop signal of the job process
on.

The compiled user code examines this signal every time it
repeats a loop. If the signal is on, the program terminates with
the result time limit exceeded. (This mechanism can also be used
to preempt a program at any time on request.)

One can argue about the details of this scheme, but it does
have one major advantage: it makes preemption look like normal
program termination to a job process. This simple solution
only works because user code is generated by a reliable compiler

10

(and not by an assembly language programmer).
It may be too early to eliminate all use of assembly language

programming in computer applications. But system programmers
should realize that they are complicating their design problems
tremendously if they assume that all programs potentially can
be random collections of bIts. A compiler can solve many of the
reliability problems of programming systems in the simplest and

most efficient manner (provided we are able to make a reliable

compiler) •
We must, of course, make sure that preemption does not take

place while an interface procedure is being executed on behalf of
a user program. Otherwise the data structures of an operating
system might be left in an inconsistent state that could cause
the system to crash. So it is only the code generated for
sequential programs that examines stop signals; they are ignored
by the code generated for concurrent programs.

Acknowledgements

This project is supported by the National Science Foundation
under grant number DCR74-17331.

References

1 •

2.

Wirth, N. The programmin9 lan9uage Pascal.
Acta Informatica 1, 1 (1971), 35-63.

Brinch Hansen, P. The programming language Concurrent Pascal.
Invited paper. AcmjIEEE International Conference on
Reliable Software, Los Angeles, California, 21-23 April
1975. IEEE Transactions on Software Engineering
1, 2 (June 1975).

Abstract

UNIVERSAL TYPES IN CONCURRENT PASCAL

Per Brinch Hansen

Information Science
California Institute of Technology

November 1974

This note describes the use of universal types as a means of
relaxing the checking of operand types where this is needed in
system programming. The universal types are part of Concurrent
Pascal, a new programming language for structured programming
of computer operating systems.

Key Words and Phrases: Concurrent Pascal, programming languages,
type checking, universal types.

CR Categories: 4.2, 4.3

This note describes a form of universal data types that seems
to be convenient (if not necessary) in an abstract programming
language for system programming. It is part of Concurrent
Pascal, a new programming language for structured programming
of computer operating systems [1. 2].

In most abstract programming languages operands and operators
must be of compatible types. The type rules will allow you to
add two integers, but not two booleans. The checking of such
rules during compilation is vital for a programmer since it
makes it possible for him to ignore the representation of data
inside a computer store and think of them in terms of their
abstract properties.

Occasionally, an operating system designer must, however, be
able to relax the rules of type checking somewhat. The following
describes how this can be done without going to the other extreme
of introducing variables that are treated as typeless bit
patterns throughout a program. (The latter extreme is, of course,
the rule in assembly language and in some implementation
languages.)

Consider an operating system procedure that writes a page of
data on a disk:

procedure write(pageno: integer; page: charpage),
begin ••• end

The details of this procedure do not matter here. We will assume
that a charpage is defined elsewhere as an array of characters:

type charpage = array (•••) of char

This procedure can now be used by an operating system to output
a variable x as page number i on the disk:

var i: integerl XI charpage,
• •• wr it e (i, x) •••

2

If we insist that the arguments of a procedure call must be
of the same types as the parameters defined within the procedure
then we cannot use the same procedure to output a page of another
type, sayan array of integers:

where

var j: integerl YI integerpagel
••• wrlte(j, y) •••

type integerpage = array (•••) of integer

To make the write procedure more general we will use the key
word ~ to indicate that it can be called with any argument
that occupies the same number of store locations as a charpagel

procedure write(pagenot integerl paget univ charpage),
begin ••• end

The procedure can now be called with the argument y.
Before and after the call, the variable y is regarded as being

strictly an integerpage. And within the procedure, the parameter
page is considered to be strictly a charpage. The type checking
is only relaxed at the point where the procedure is called.

There is also an occasional need for universal types in
sequential system programs (usually handled by means of standard
procedures). One example is the use of ordinal values of
characters to convert constants from text form to numeric form.
The following function defines the ordinal value of a character:

function ord(c: univ integer): integer I
begin ord:= c end

It can be called as follows:

var i: integerl c: char,
i:= ord(c) •••

3

Another example would be a multipass compiler in which the
passes communicate with one another by means of a sequence of
integer values stored on disk. Here the first pass must be able
to split a real constant into a sequence of integers ("machine
words") and transmit them to the second pass. This can also be
done by means of universal types.

A universal parameter type

univ T

represents the ~ of all arguments represented by the same
number of store locations as the data type T. It seems reasonable
to require that universal types not be used to perform undefined
manipulation of data structures that contain pointers or are
shared by concurrent processes,

Acknowledgements

The development of Concurrent Pascal is supported by the
National Science foundation under grant number DCR74-17331.

1. Brinch Hansen, p. The programming language Concurrent Pascal.
IEEE Transactions on Software Engineering 1, 2 (June 1975).

2. Brinch Hansen, p. Job control in Concurrent Pascal.
Information Science, California Institute of Technology,
Match 1975.

BIBLIOGRAPHIC DATA ~:' neport No. . 12•
3. Rccipienes ACCC:i5ion No.

SHEET SF-OCA-DCR74-17331-CP2
4. Tide and SUbtitle 5. Report Date

Concurrent Pascal Introduction July 1975
6-.

7. A uthor(s)
Per Brinch Hansen 8. Performing Organization Rept.

NoC IT-IS - TR 18
9. Performing Organization Name and Address 10. Project/Task/Work Unit No.

Information Science 286-80
California Institute of Technology II. Contract/Grant No.

Pasadena, California 91125 NSF DCR74-17331
12. Sponsoring Organization Name and Address 13. Type of Report & Period

National Science Foundation Covered

Offica of Computing Activities 1 • Edition
lAIash;ngton, D.C. 20550 14.

IS. Supp!ementary Notes

16. Abstracts

This is an inforllal introduction to Concurrent Pascal, a programming
language for structured programming of computer operating systems.
It contains three papers entitled

_ 1. The programming language Concurrent Pascal

2. Job control in Concurrent Pascal

3. Universal types in Concurrent Pascal

17. Key Words and Document Analysis. 170. Descriptors

Structured multiprogramming, concurrent programming languages,
hierarchical operat,ing systems, concurrent processes, monitors,
classes, abstract data types, access rights, scheduling, job
control language, system interface, type checking, universal
types

17b. Identifiers/Open-Ended Terms

.

-.
17c. COSATI Field/Group

18. Availability .Statement 19. Security Class (This . 21. No. of Pages
Report) 43 'l1.NC LASS1F IFD

20. Security Class (This 22. Price
Page

UNCLASSIFIED
FORM NTIS·3 R v. 3·72 S' E

THIS FORM MA Y DE REPRODUCED

