
Lecture Notes in
Computer Science
Edited by G. Goos and J. Hartmanis

50

Alfred C. Hartmann

A Concurrent Pascal Compiler
for Minicomputers

Springer-Verlag
Berlin-Heidelbera • New York 1977

Editorial Board

P. Brinch Hansen • D. Gr ies • C. Moler • G. Seegm011er

J. Stoer • N. Wirth

Author

Alfred C. Hartmann
Intel Corporat ion
Microcomputer Division

3065 Bowers Avenue
Santa Clara, CA 95051 USA

Library of Congress Cataloging in Publication Data

Har~v~ann, Alfred C 1948-
A Concurfcent PASCAL compiler for minicomputers.

(Lecture notes in computer science ; v. 50)
Includes bibliographical references.
1, Minic omput e rs - - im2ogramming. 2. Compiling

(Electronic computers) 3. Concurrent PASCAL
(Computer program language) I. Title. II. Series.
QA76.6. H585 001.6' 425 77-85 05

AMS Subject Classifications (1970): 68A05, 68A30
CR Subject Classifications (1974): 4.12

ISBN 3-540-08240-9 Springer-Verlag Berlin - Heidelberg • New York
ISBN 0-387-08240-9 Springer-Verlag New York • Heidelberg • Berlin

This work is subject to. copyright. Atl rights are reserved, whether the whole
or part of the material is concerned, specifically those of translation, re-
printing, re-use of illustrations, broadcasting, reproduction by photocopying
machine or similar means, an.d storage in data banks.

Under § 54 of the German Copyright Law where copies are made for other
than private use, a fee is payable to the publisher, the amount of the fee to be
determined by agreement with the publisher.
© by Springer-Verlag Berlin. Heidelberg 1977
Printed in Germany
Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr.
2145/3140-543210

Acknowledgements

This compi ler is the product o f many f r u i t f u l hours of d iscussion wi th Per Brinch Hansen.

The development o f Concurrent Pascal has been supported by the Nat ional Science Found-

a t i on under grant number DCR74-17331.

Thanks are due to In te l Corporat ion f o r t h e i r support in the p repara t ion of t h i s manu-

s c r i p t , and to two s t e r l i n g t y p i s t s - Sh i r l ey A l len and Kevin Lynot t . However, any

e r ro rs or omissions in t h i s paper are s o l e l y the r e s p o n s i b i l i t y o f the author .

F i n a l l y , my grea tes t thanks goes to my w i fe Lo r ra ine , to whom th i s work is ded icated,

and to tha t Providence which brought i t a l l about.

Abstract

This paper describes a seven-pass compiler for the Concurrent Pascal programming lang-

uage. Concurrent Pascal is an abstract programming language for computer operating

systems. The language extends sequential Pascal with the monitor concept for struc-

tured concurrent programming. Compilation of Concurrent Pascal on a minicomputer is

done by dividing the compiler into seven sequential passes. The passes, written in

sequential Pascal, generate virtual code that can be interpreted on any 16-bit mini-

computer. I t has been running on a PDP-11/45 computer at Caltech since January 1975.

A Concurrent Pascal Compiler f o r Minicomputers

Table o f Contents

Io

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

Appendix:

In t roduct ion . 1

Def in i t ions . 2

Pass Structure . 3

Lexical Analysis . 5

Syntax Analysis . I I

Name Analysis . 21

Declarat ion Analysis . 33

Body Analysis . 41

Code Select ion . 47

Code Assembly . 51

Interpass Topics . 52

The V i r tua l Machine . 55

Implementation . 58

References . 70

Syntax Graphs . 71

I . In t roduct ion

This paper describes a seven-pass compiler fo r Per Brinch Hansen's Concurrent Pascal

[1 ,2] programming language. Concurrent Pascal is an abst rac t programming language

fo r computer operat ing systems. The language extends sequent ia l Pascal [7] wi th the

process, moni tor , and class concepts fo r s t ructured concurrent programming. A monitor

is a shared data s t ruc ture together wi th a we l l -de f ined set o f operat ions tha t are the

only operat ions possible on the data s t ruc ture . Concurrent Pascal 's runtime system

enforces mutual ly exclus ive access to a monitor by competing concurrent processes. A

class gives a s ing le process con t ro l led access to a p r i va te data s t ruc ture by means of

a we l l -de f ined set of operat ions.

The Concurrent Pascal compiler has been running on a DEC PDP-II/45 computer at Caltech

since January 1975. I t requires 16,500 16-b i t words of storage and compiles source

tex t at the rate of 240 characters per second (about 9-10 l ines per second). I t gen-

erates code for an ideal v i r t u a l machine that is simulated by the real machine. The

compiler is w r i t t en in sequential Pascal and is eas i l y t ransported to other machines.

As many machine-dependent aspects of the compiler as possible are made in to changeable

constant d e f i n i t i o n s . The compi ler 's semantic analys is passes are i so la ted from the

v i r t u a l machine by two code assembly passes. So not only can d i f f e r e n t real machines

i n t e rp re t the v i r t u a l machine, but the code assembly passes can be changed to view d i f -

fe ren t v i r t u a l machines. This permits redesign of the f i na l i ns t ruc t i on set w i thout

s i g n i f i c a n t l y a f fec t i ng the compi ler.

In the chapters to fo l l ow , basic terms are def ined, the pass breakdown is described,

each pass is described, the v i r t u a l machine is def ined, and the implementation is d is-

cussed. Many of the compi lat ion techniques used here are wel l -known, but, taken as a

whole, th is compi ler is an engineering product that may serve as a prototype fo r in -

dus t r i a l compiler w r i t e rs . For th is reason, the descr ip t ion of the compiler is made

as se l f -conta ined as possible.

2. Definitions

The problem is to accept programs written in Concurrent Pascal El, 2], the source lang-

uage, and translate them to an equivalent representation in a machine language, the

target language. Programs that solve this problem are termed compilers; compilers map

the source language into the target language. Multipass compilers map the source lang-

uage by degrees into the target language. The f i r s t pass of a multipass compiler maps

the source language into the f i r s t intermediate language. The second pass maps the

f i r s t intermediate language into the second intermediate language. This process con-

tinues until the last pass maps the final intermediate language into the target lang-

uage. An instance of a source program is termed the source text, i ts intermediate ver-

sions are the intermediate code, and i ts target program is the final code.

The source tex t is a f i l e of characters that represents a Concurrent Pascal program.

A program consists of declarat ions and a body. The declarat ions assign names to con-

stants, types, var iables, and rout ines. The body contains statements to be executed

by the machine.

The intermediate code is a f i l e of integers. Each integer is e i ther an operator in the

intermediate language, or an argument of an operator.

The final code consists of instructions for a machine. The machine comprises a pro-

gram store and a data store. The program store contains the code. The data store con-

tains the program's constants, variables, and expressions.

The process of compilation consists of:

I . l ex ica l analysis: recognizing the symbols of Pascal;

2. syntax analysis: checking the program syntax;

3. semantic analysis: checking the program semantics; and

4. code assembly: generating machine code.

In a multipass compiler, i t ' s convenient to use th is funct ional d iv is ion as a guidel ine

fo r pass d iv is ion . A compiler might consist of four passes which perform the four func-

t ions above. Or i t might consist of two passes each performing a pa i r o f functions. The

Concurrent Pascal compiler numbers seven passes, including three passes for semantic

analys~s and two passes fo r code assembly.

3. Pass Structure

The compiler comprises seven passes:

I. lexical analysis

2. syntax analysis

3. name analysis

4. declaration analysis

5. body analysis

6. code selection

7. code assembly

I t deals with eight languages: the source language, the six intermediate languages,

and the target language. In the design of a compiler the source and target languages

are normally given, and i t remains to define the intermediate languages. In this pro-

ject we started with a clean slate. The source language was defined f i r s t . I t is

essentially the sequential Pascal language [7] extended with classes, monitors, and

processes [l , 2]. Next the target language was designed. Borrowing from Niklaus

Wirth's work on portable Pascal compilers, our target language is the language of an

ideal virtual machine. This machine, designed by Per Brinch Hansen, is tai lored to

Concurrent Pascal. I t is simulated by the real machine, a Digital Equipment Corpor-

ation POP-ll/45. After this the six intermediate languages were defined, starting

with the last intermediate language and ending with the f i r s t intermediate language.

Each pass is now defined as a separate compiler in terms of i ts input language and i ts

output code. In particular, the details of data structures and procedures used within

a given pass are irrelevant to other passes. Once the pass breakdown and intermediate

languages are determined, very few major decisions remain in the design. Given this

importance, a convenient means of specifying these languages is essential. Brinch

Hansen chose the syntax graph of Wirth [7] to define the intermediate languages.

Syntax graphs are directed graphs with nodes that define the syntactic elements of the

language. Operators are underscored. They may be followed by arguments enclosed in

parentheses. For example, the syntax of an ident i f ier l i s t in the source language is:

i d e n t i f i e r l i s t

~ ident i~er - - ~

ident i f ier

- Ie t ter ~ l etter ~
d ig i t

In the f i rst intermediate language the same construct appears as:

identifier l i s t

id(spelling index) ~

comma

The input and output graphs of lexical analysis shows that this pass converts identifiers

from a string of characters into a numeric index. These graphs clarify the function of

each pass.

Lexical analysis transforms the program into a sequence of integers representing identi-

fiers, constants, and operators. Unique identifiers are replaced by unique spellin 9 in-

dices. These integers are easier for later passes to recognize, lookup, and switch on

than the original character representation of a program.

Syntax analysis checks the syntax of the f i rs t intermediate code. The output of syntax

analysis is postfix notation (operands followed by operators). Syntax analysis elimin-

ates redundant operators and replaces ambiguous operators by unique ones. The output

is syntactically correct independent of what the input is.

Name analysis converts spelling indices to unique name indices. Because of the block

structure of Pascal, the same identifier may be used with different meanings. Name

analysis resolves this ambiguity.

Declaration analysis enforces the semantic rules of declarations. I t assigns virtual

addresses to all variables and analyzes data types. This information is distributed in

the body of the program.

Body analysis checks the compatibility of operand types and operators in statements.

Operator ambiguities are resolved, and the resulting intermediate code is nearly ready

for the machine.

I t remains for this code to be "assembled". This process consists of computing the

storage requirements of blocks, and replacing symbolic labels by program addresses.

A classic two-pass design is used for this assembly phase. The f i rs t assembly pass,

code selection, assigns addresses to labels and places them in a table that survives

to the next pass. The second assembly pass, code assembly, replaces program labels in

the code by their addresses from the table. The resultant code is the final code for

the machine. Two passes are required since the address of forward labels is not known

in the f i rs t assembly pass.

4. Lexical Analysis

* funct ion *

A Pascal program consists o f i d e n t i f i e r s , constants, and operators. Lexical analys is

converts the source tex t character by character in to the f i r s t in termediate code. This

conversion is performed as fo l lows:

i n i t i a l i z e ;

repeat

read a character ;

c l ass i f y the character by symbol group;

c o l l e c t the symbol;

output i t s intermediate code

un t i l source tex t exhausted

Each symbol begins wi th a unique class of character . I d e n t i f i e r s begin wi th l e t t e r s ;

numeric constants begin with d i g i t s ; s t r ing constants begin wi th quotat ion marks, and

so on. C lass i f i ca t i on of characters is done most convenient ly by a case statement. So

l e x i c a l analys is can be fu r ther ref ined as:

var done: boolean; ch: char;

b e ~
i n i t i a l i z e ;

done:= fa lse ;

repeat

read(ch);

case ch of

' a ' . . ' z ' : scan i d e n t i f i e r ;

' 0 ' . . ' 9 ' : scan number;

" " : scan s t r ing constant;

' < ' : scan operator ;

' : skip blanks;

' " ' : skip comment;

EM : done:=true

end " c l a s s i f i c a t i o n "

un t i l done

end " l ex i ca l ana lys is " .

* ident i f ie r scan *

Scanning an ident i f ie r consists of collecting the ident i f ie r in a string variable,

searching for i t in a table of ident i f iers, and outputing the corresponding intermediate

code. An ident i f ier may be either a program defined ident i f ier or a reserved word.

The intermediate representation of an ident i f ier is an i doperator followed by the in-

dex of the ident i f ier . The intermediate representation of a reserved word is an oper-

ator corresponding to i t .

Identif iers may be one to eighty characters long. They are stored in a table together

with their spelling indices. Reserved words are treated as ident i f iers with negative

indices. The ident i f ie r table is a fixed length array (because Pascal has no dynamic

arrays). To save space within the array, only the f i r s t ten characters of identi f iers

are stored in the table. Long ident i f iers are broken down into pieces of ten characters

each. The f i r s t piece resides in the table entry. Additional pieces are allocated

dynamically and chained to the ident i f ie r table entry. The ident i f ie r table may be de-

fined as:

type

spelling index = integer;

piece = array [l . . lO] o!char ;

piece ptr = @ id piece;

id piece = record

part: piece;

next: piece ptr

end;

var

table: array [O..table l im i t] of table entry;

this id: array El..8] o_f_f piece

"80 character ident i f ie r " ;

The lexical analyzer scans an ident i f ie r by reading i t character by character into a

string variable, ' this id ' . As each character is read, the ordinal value of the char-

acter is used to compute an index. Historical ly, this index is termed a hash key. The

hash function computes the product of the ordinal values of the ident i f ie r characters

modulo the table length. This hash key is then used as an index into the table of

ident i f iers.

Different identi f iers may have the same hash key. When a new ident i f ie r collides with

one already in the table, a cyclical search is performed starting with the existing

entry. The search stops whenever the new ident i f ier is found in the table or an empty

tab le ent ry is encountered. I f an empty tab le ent ry is reached, the i d e n t i f i e r is given

a new spe l l i ng index and inserted in the tab le .

New i d e n t i f i e r s are inser ted in the tab le as they are encountered in the program. Be-

cause co l l i s i ons must be expected, the tab le must not be al lowed to f i l l o r searches

w i l l be long. The percentage o f occupied en t r ies is termed the tab le loading. A prac-

t i c a l maximum loading depends on the app l i ca t i on . The compi ler uses a l i m i t o f 98%.

Beyond th i s po in t a successful search would requ i re more than twenty probes on the aver-

age. I f i nse r t i on o f a new i d e n t i f i e r would exceed th i s loading, l ex i ca l ana lys is is

terminated. Subsequent passes receive in termediate code up to the po in t o f te rminat ion .

* number scan *

Numeric constants are scanned by th is a lgor i thm:

"ch is the current character"

whi le ch i_n_n d i g i t s do c o l l e c t in teger por t ion ;

i f ch = ' ' then c o l l e c t f rac t i ona l po r t i on ;

i f ch = 'e ' then c o l l e c t exponent po r t i on ;

construct numeric constant;

output in termediate code

The only d i f f i c u l t i e s in handling numeric constants are the avoidance of t runcat ion er -

rors and over f low. A l l numbers are handled by real a r i thmet i c since real values have

more s i g n i f i c a n t d i g i t s than in teger values on most machines. The in teger por t ion o f

a number is co l lec ted as an in tegra l real value. I f no f rac t i ona l por t ion or exponent

por t ion is present, then the number is assumed to be an in teger . I f i t is not greater

than the la rgest a l lowable in teger , i t is t runcated to an in teger and output as the

i n t const operator fo l lowed by the in teger value.

I f a f r ac t i ona l por t ion or an exponent por t ion ex i s t s , then the number is a rea l . The

in teger por t ion and the f rac t i ona l por t ion are co l lec ted in the same manner:

number: = 0.0;

whi le ch i__nndigits d_oo

i f number < real l i m i t then

number: = number * lO.O + (ord(ch) - o rd('O))

where real l i m i t is the maximum real number d iv ided by ten. I t is important tha t the

f r ac t i ona l por t ion be t reated as above, and not be constructed by d i v i d i ng successive

d i g i t s by I0, lO0, I000, etc. since th i s would accumulate roundof f e r ro r . Rather, the

f r ac t i ona l por t ion is t reated as belonging to the in teger part and the exponent is ad-

justed.

Fol lowing th i s the exponent por t ion , i f any, is co l lec ted . Assuming the number is rea l ,

i t s representat ion must be constructed. F i r s t the exponent is checked to see i f i t is

w i th in range. I f i t is then i t is constructed as a power o f ten. Again i t is important

only pos i t i ve powers o f ten be constructed to avoid t runcat ion e r ro r . I f the exponent

is a negative power o f ten, i t is d iv ided in to the number to produce the resu l t ; over-

f low is impossible. I f the exponent is a pos i t i ve power o f ten, then mu l t i p l y i ng i t

by the number could produce over f low, but:

i f number = 0.0 then resu l t : = 0.0

else

"number >= I and

number * power o f ten <= maximum real

=> power o f ten <: maximum real / number

<: maximum real "

i f_f power of ten <= maximum real / number

then number:: number * power o f ten

else e r ro r

The in termediate code is a f i l e o f in tegers. To place a real number in the intermediate

code use is made of Concurrent Pascal's universal type f a c i l i t y . Universal types al low

arguments of passive types [I] to be passed to procedures as long as they occupy the

same number of machine words as the procedure's corresponding parameter. In our im-

plementation a real value occupies four in teger locat ions. So the fo l low ing suf f ices

to output a real constant:

type s p l i t real = ar ray [I . . 4] o f in teger ;

procedure put real (argument: univ s p l i t r e a l) ;

var i : I . . 4 ;

begin

fo___.[r i : = I to 4 d_oo put (argument [i])

en___d_d;

put real(number);

* e f f i c i e n c y *

A pass's work load var ies with i t s input . The input to Pass 1 is measured in characters,

whi le the input to l a t e r passes is measured in in tegers. Lexical analys is processes

from 70% to 500% more input symbols than any other pass (see Chapter 13). This large

amount o f input combined wi th the slowness of character I /0 makes Pass 1 a bot t leneck.

In Chapter 13's example l ex i ca l analys is consumes about 37% of the elapsed time fo r

compi la t ion. A l i t t l e a t ten t ion paid to op t im iza t ion here is worthwhi le.

Character scanning must be as fas t as possib le. The source program used as an example

is 1280 l ines . For a standard 80-column card th is is over I00,000 characters. Fortu-

na te ly in our operat ing system the card reader rout ine (not a part o f the compiler)

truncates t r a i l i n g blanks from cards. This resu l ts in an average l i ne length of only

20 characters, or a reduct ion to 25,000 characters. So every I0 microseconds saved in

a character scan saves ~ second in elapsed t ime. Lexical analys is scans a character

by c a l l i n g the operat ing system once to read the next character and once to wr i t e i t .

These two ca l ls are placed i n l i n e wherever needed. The compiler always produces a

l i s t i n g f i l e o f the source tex t . The user can then t e l l the operat ing system whether

or not to p r i n t the l i s t i n g . This avoids the overhead of a l i s t i n g opt ion w i th in the

compiler.

T ra i l i ng blanks from l ines are suppressed before they reach Pass I . The only o ther

place a s t r ing of blanks might often be found is at the beginning of a l i n e . So at

the end of every l i ne (s ignaled by an NL character) blanks at the beginning of the

next l i ne are skipped. Within statements, blanks usual ly appear s ing ly , so looping

to skip blanks is not worthwhi le.

* compi ler opt ions *

Pass 1 must scan and i n t e rp re t compiler opt ions. This requires a simpl.e syntax:

compi I er opt i ons

- - " (T i d e n t i f i e r T)

Compiler opt ions must precede the program. They are scanned by Pass 1 immediately a f t e r

pass i n i t i a l i z a t i o n , before enter ing the main scan loop. Only the f i r s t character o f

the opt ion i d e n t i f i e r is recognized. Current ly three opt ions are implemented: number

ind icates the generated code w i l l only i d e n t i f y l i ne numbers at the s t a r t o f rou t ines ;

check indicates the generated code w i l l not make range checks of constant enumeration

arguments; tes t w i l l p r i n t the in termediate output of a l l passes, inc luding Pass I .

10

Compiler options must be communicated to l a t e r passes. Pass communication is governed

by an i nterpass record that remains in the heap during compi lat ion. Essential i n fo r -

mation that must precede the intermediate code is placed in the interpass record. I t

is defined as:

tYPe
interpass record :

record

opt ions: set of opt ion;

"other information"

tab le: @pass dependent table

end;

Pass 1 a l locates the interpass record on the heap. At the end of each pass, the pass

l i nk (a pointer to the interpass record) is passed as an argument to the next pass.

5. Syntax Analysis

* funct ion *

Syntax analysis checks ("parses") the program syntax. I t consists of a set of recursive

procedures that gradual ly examines the syntax in more and more de ta i l . A recursive de-

scent parser contains a possibly recursive procedure for each syntact ic construct , rep-

resented by a syntax graph. For example, the i f statement construct i s :

i f statement

-.~i__f_f--~expression--~then--~statement-r-- ~
L - e l s e --~-statement

I f we avoid the problem of e r ror recovery, a procedure to parse the above might be:

R,r,ocedure get "next symbol";

begin

"read next symbol in to var iable ' sy ' "

en_~d;

procedure i f statement;

begin

get "past i~f symbol";

"boolean" expression;

i f sy = then then get else e r ro r ;

"then" statement;

i f sy = else then begin

get "past else symbol";

"else" statement

end

end;

When the parser is inside i t s i f statement procedure, the sequence of previous procedure

ca l ls might be:

program

declarat ions

body

statement

i f statment

12

and we can see that the statement procedure wi l l now be called recursively to parse the

then statement of the i f statement. This nesting can become quite deep, reaching to

th i r ty levels for even simple programs.

* error recovery*

Each parsing procedure is a simple sequence of statements that follow the syntax graphs.

The parser can be written direct ly from the syntax graph. Error recovery is also dic-

tated by the syntax graphs. Error recovery is done to detect more errors during a single

compilation and to prevent a cascade of error messages caused by a single error. Sys-

tematic syntactic error recovery is an original contribution of this thesis.

To develop the error recovery scheme, consider the input to the parser. The f i r s t inter-

mediate code consists of operators possibly followed by arguments. Syntax analysis ig-

nores al l operator arguments, since these are concerned with semantics. There are 66

dist inct operators in the f i r s t intermediate language. Using Pascal's set types, i t is

possible to create sets of operators. The operators that may begin a particular syn-

tact ic construct are i ts handles. The handle of an id l i s t is the set { i d] . The set

of statement handles is l i d , begin, i f , case, while, repeat, for, cycle, with, i n i t] .

Whenever a syntax error is detected, zero or more input symbols are skipped until a

symbol is obtained. A key symbol is any symbol from which compilation may resume. A

set of key symbols, called keys, is passed to an error routine along with an error num-

ber:

txpe symbols = set of symbol;

procedure error (number: integer; keys: symbols);

b~in
give error indication;

while not (sy i n keys) do get "next symbol"

en__d_d;

This basic idea was used in the original transportable Pascal compiler produced by

Wirth's group. Its unsystematic application there flawed that compiler's re l i ab i l i t y .

To apply the method systematically, the key sets are derived direct ly from the syntax

graphs. I f an error occurs at a given point in a syntax graph, compilation may resume

downstream from the given point. The keys contain any operators that can be reached in

the current graph. They also contain the handles of any other graphs that may be re-

ached. The process is so systematic that recursive descent parsers with error recovery

might be generated automatically from the language definit ion i tse l f . Examples wi l l

follow.

13

This scheme impl ies tha t every parsing procedure accepts as input the keys o f i t s c a l l e r .

This permits each parsing procedure to ignore the context in which i t is ca l led . Local

keys are added to the i n i t i a l ones whenever the given procedure ca l l s another parsing

procedure. So in general the set o f keys increases as parsing procedures are ca l led ,

and decreases as these ca l l s are completed. The keys contain key symbols from each

ac t i ve leve l o f the syntac t ic h ierarchy. So when an e r ro r is detected, a minimum o f

input symbols w i l l be skipped. The f i r s t ru le o f e r ro r recovery is :

Error Recovery Rule I :

The keys contain a l l symbols from which compi lat ion may resume.

This ru le is not enough to completely determine the parser 's e r ro r recovery. One more

ru le is required to ind ica te where e r ro r checking is to be performed. Of course i f a

p a r t i c u l a r symbol is expected, then i t s absence is an e r ro r . But i f one parsing pro-

cedure ca l l s another, who should check fo r an e r ro r , the c a l l e r or the cal led? Should

a parsing procedure assume when i t is ca l led that the current symbol is a key symbol?

Or should i t ensure that when i t returns to the c a l l e r the current symbol is a key

symbol? Or should these decisions be made fo r each s ing le parsing procedure?

The so lu t ion , i t turns out , is qu i te simple. I f only a s ingle symbol is expected, as

the then symbol a f t e r the boolean expression of an i_f_systatement, then i t s absence is

an e r ro r . Otherwise we must presume several d i f f e r e n t symbols are expected, as the

statement procedure expects any statement handle. When th is occurs, a decision must

be made. This is the case whenever a branch appears in the syntax graphs. So the

second ru le is :

Error Recovery Rule 2:

Whenever a branch is encountered in the syntax graphs, check tha t the

current symbol is a key symbol.

To implement th is check, a procedure ex is ts :

procedure check (number: i n teger ; keys: symbols);

begin

i f not (sy i n keys)

then error(number, keys)

end;

and th is procedure is ca l led at every branch point in the syntax graphs.

To summarize then, only two rules ex i s t . The keys contain every symbol from which i t

is possible to resume compi lat ion. A check is made before each decis ion. These rules

may appear so obvious as to not be worth mentioning. But together with the syntax

14

graphs they completely determine the error recovery scheme! A language designer has

only to design his language; the syntax analysis and error recovery is then purely

automatic.

* syntax design considerations*

But in order to work ef fect ive ly , the language designer must obey two simple rules.

Syntax Design Rule l :

Symbols must be used unambiguously.

A symbol is used ambiguously when i t occurs in two dif ferent constructs, and, worse,

these constructs may be nested. I f the inner occurrence of this symbol is missing i t

is possible for the outer occurrence of the symbol to be associated with the inner con-

struct. When these are dif ferent constructs the result is disastrous. Pascal i t se l f

is a gross v io lator of this rule. For example the begin ' - end keywords may delimit a

compound statement, a procedure, or a program, and each of these may be nested. I f

the en__ddof a compound statement is missing, then the en__ddof the procedure is taken as

the end of the compound statement. The end of the program is taken as the en_~dd of the

procedure, and the body of the program is then assumed to be missing.

The error message wi l l indicate an improperly terminated program, when actually the

compound statement is improperly terminated. On the other hand, i f an extra end ap-

pears then i t w i l l

w i l l terminate the

error. This could

cedures may not be

better is to avoid

terminate the compound statement. The en___ddof the compound statement

procedure. Then when no begin appears, the program body wi l l be in

be avoided with a properly chosen syntax. In Concurrent Pascal pro-

nested, which would detect some errors of this sort ear l ier . Much

these ambiguities ent i re ly when designing a language.

A corol lary to the above rule can be incorporated as a second rule in i ts own right.

That is:

Syntax Design Rule 2:

All major syntactic constructs should be uniquely delimited.

Ideal ly every construct would be delimited by a unique set of symbols. This would supply

ample redundancy to detect errors as soon as possible, and prevent as much as possible

the mismatching of symbols when an error is enountered. I t would also eliminate the

compound statement whose overnesting creates problems even for humans. This rule is a

point in favor of such eyesores as i f - f i and case - esac, and a point against the

semicolon as a statement separator.

15

Concurrent Pascal v io la tes both rules of syntax design to be compatible wi th sequential

Pascal. Nevertheless the er ror recovery scheme is qui te robust and s t i l l does a f a i r

job. For a wel l-designed syntax i t can do a superb job.

* three general cases *

The method can be i l l u s t r a t e d on three abstract graphs. Any syntax graph is comprised

of a combination of sequencin 9, branchin ~, and looping. These constructs are given be-

low along with t he i r associated parsing procedures. We use two abstract constructs, a

c i r c l e and a square, and one abstract operator, a sp i ra l .

I . Sequence
- -~ -c i rc le - - -sp i ra l --~square

procedure sequence (keys: symbols);

begin

circle(keys o r [sp i r a l] o r_r square handles);
i_ff sy = spiral then get

else error(sequence error, keys or

square handles);
square(keys)

end;

2. Branch

__~ ci rcl e - l _~
square

procedure branch (keys: symbols);

begin

check(branch er ro r , keys o r c i r c l e handles

o r square handles);

i f sy i n c i r c l e handles then c i rc le(keys)

else i f sy i_nn square handles

then square(keys)

else error(branch er ro r , keys)

end;

16

3. Loop
- - ~ ci rcl e ---F-~

spiral " ~

procedure loop (keys: symbols);
var loop keys, al l keys: symbols;

done: boolean;

begin
loop keys:= circle handles o__[r[spiral];
al l keys:= keys or loop keys;

done:= false;

repeat

c i rc le(al l keys);
check(loop error, al l keys);
i f sy i_nnloop keys then

i f sy = spiral then get

else error(loop error, al l keys)

else done: = true
unti l done

end;

The loop procedure may appear complicated. However i t merely follows the rules already

outlined. The test for termination of the loop involves an auxi l iary boolean variable
since actually the loop terminates in the middle. I f Concurrent Pascal possessed a loop

statement similar to that proposed by Dahl and advocated by Knuth [4] , namely

- , - l o o p

while B; - I
I
I
I
I

w repeat ; I
I

"no t B" - , - - J

then the loop would become:

17

c i rc le (loop keys);

check(loop error , a l l keys);

while sy i_~n loop keys;

i f_f sy = spiral then get

else error(loop error , a l l keys)

repeat

The structure is much clearer in this version. I f a spiral is forgotten between two

c i rc les , compilation gives an error message and resumes as though the spiral had been

present. This conforms to Rule I . Af ter a c i r c le there is a check made before deciding

which branch of the syntax graph to take. This conforms to Rule 2. Note also that the

test for termination involves a test against the loop keys. Assuming the hypothetical

loop construct may be nested, i t would be incorrect to test for termination by saying:

while not (sy i__nn keys);

but i t would be correct (though unclear and ine f f i c i en t) to say

while not (sy i_nn keys - loop keys);

Before programming a parser in this scheme, one must master the three basic constructs.

Then more complicated constructs only require s t r i c t adherance to the rules. As an

example, the i f statement combines the sequence and branch:

proce,dure i f statement (keys: symbols);

begin

get "past i_f_fsymbol";

"boolean" expression(keys or

statement handles o r [t h e n , e lse]) ;

i_f_f sy = then then get

else e r r o r (i f error , keys or

statement handles o_ [[e lse]) ;

"then" statement(keys or

statement handles o r [e l s e]) ;

check(i f error, keys or

statement handles o_[rfelse]);

i f sy = else then begin

get "past else symbol";

"else" statement(keys)

end

en_~d;

~8

This example can be simplified by taking advantage of context. A valid assertion for

this procedure is 'statement handles <= keys'. Whenever the ' i f statement' procedure

is called, the keys already contain the statement handles.

As another example, a term combines the sequence and the loop:

term

--~-factor Lfactor._ter m °P J

procedure term (keys: symbols);

var term keys, al l keys: symbols;

begin

term keys:= factor handles or term operators;

al l keys:= keys or term keys;

factor(all keys);

loop

check(term error, al l keys);

while sy i n term keys;

Lf sy i n term operators then get

else error(term error, al l keys);

factor(all keys)

repeat

end;

* the output*

The discussion has sofar described the parsing technique and the error recovery scheme.

To complete the description of syntax analysis, the generation of the second intermed-

iate code must be explained. The second intermediate code is a syntactically correct

(but possibly meaningless) program in postfix notation. The i f statement:

i f B then Sl else $2

in postfix notation becomes:

B i f Sl then S2 else.

In postfix notation each operator is preceded by its operands. The i_f_foperator takes the

boolean expression as i ts operand. I f B is false a jump is made to statement $2. The

then operator causes a branch around statement $2, and i t indicates the start of $2.

19

The else operator indicates the end of the i f_f statement. In terms of the intermediate

code this becomes:

B falsejump(Ll) Sl jump(L2) Ll: $2 L2:

I f no else clause were present, the second intermediate code would be:

B falsejump(Ll) S1 Ll:

Syntax analysis, l ike the other passes, uses several standard output routines. Pro-

cedure put appends an operator to the output intermediate code f i l e . Procedure putl

appends an operator and an argument to the output intermediate code f i l e . Similarly

for procedure put2, but with two arguments. We can now extend the i f statement pro-

cedure to i ts ful l form:

type labe l = i n t e g e r ;

var cu r ren t l a b e l : l a b e l ; " i n i t i a l l y zero"

procedure new label (var I : l a b e l) ;

begin

cu r ren t l a b e l : = succ(cur ren t l a b e l) ;

I : = cu r ren t labe l

en___dd;

20

procedure i f statement (keys: symbols);
var I I , 12: label;

begin
get "past i f symbol";
"boolean" expression(keys or

[then, else]);
new l a b e l (l l) ;
pu t l (fa lse jump, 11);

i_f_fsy = then then get
else e r r o r (i f er ror , keys o r [e l s e]) ;

i f sy = else then begi n
get "past else symbol";

new label(12);

putl(jump, 12);

pu t l (labe l , I$) ;
"else" statement(keys);

pur l (labe l , 12)
end else pur l (labe l , Ik)

end;

This completes the description of syntax analysis.

6. Name Analysis

* function*

Name analysis converts spelling indices to name indices and enforces Concurrent Pascal's

scope rules. Lexical analysis has already converted a l l unique ident i f iers into unique

spelling indices. Concurrent Pascal allows the same iden t i f i e r to name di f ferent con-

stants, types, variables, or routines in di f ferent blocks. Name analysis converts these

possibly ambiguous spelling indices into unique name indices. A name index refers to

a single constant, type, variable, or routine throughout i ts lifespan.

Name analysis also enforces the scope rules. The scope rules define the rules for re-

cognition of ident i f iers. To be recognized, an iden t i f i e r must f i r s t be known. Iden-

t i f i e r s are known af ter they have been introduced. An introduction is ei ther a declar-

ation or a qual i f icat ion. Declaration associates an iden t i f ie r with a part icular con-

stant, type, variable, or routine. Qualif ication associates f ie ld or entry ident i f iers

with a part icular record variable or system component. A qual i f icat ion may be ei ther

the variable name followed by a period, or i t may be a with statement. The scope rules

are :

I . An i d e n t i f i e r is only known with a given meaning a f te r i t s in t roduct ion (with that

meaning) and un t i l the completion of the block, record, or qua l i f i ca t i on that i n t r o -

duced that i d e n t i f i e r (with that meaning).

2. No i d e n t i f i e r may be given more than one meaning in a s ingle block or record.

3. An iden t i f i e r may be introduced with another meaning in another block, record, or

qual i f icat ion. Where this occurs, the new meaning applies unt i l the completion of

the block, record, or qual i f icat ion.

4. Within a system component are known:

a. a l l ident i f iers introduced in the system component type (except for entry rou-

t ine ident i f ie rs) ;

b. a l l constant and type ident i f iers declared in enclosing system component types.

5. Within a routine is known, in addition to the above, al l ident i f iers introduced in

the routine.

The fourth rule is a departure from pure block structure scope rules. I t forbids a

nested component def in i t ion from referencing the parameters or variables of an enclosing

22

component. This rule gives the operating system designer exp l ic i t control over the ac-

cess rights of components.

* the tables *

Name analysis implements these rules through several tables:

a. the spellin 9 table translates a spelling index to a unique name;

b. the update stack contains old spelling table entries that have been temporarily re-

placed;

c. the display marks the update stack for each level and contains other information

associated with levels.

Around these data structures revolves the entire structure of the pass.

* the spelling table *

The spelling table contains an entry for every possible spelling index. Associated with

each spelling index used is i ts name. To enforce the scope rules, an access attr ibute

and a nesting level are also assicated with the index. This structure appears as:

type

spelling index = O..spelling max;

access attr ibute = (general, external, internal, incomplete, unresolved,

qualif ied, functional, undefined);

level index = O..level max;

name pointer = @ name entry;

spelling entry = record

name: name pointer;

access: access at t r ibute;

level: level index

end;

va t

spelling table: array { spelling index]

o_~fspelling entry;

23

The name is a po in te r to an ent ry in a tab le conta in ing a l l in format ion associated wi th

the name in th is pass. We postpone th is discussion t i l l a t e r .

The access a t t r i b u t e and leve l index determine the program's access r igh ts to the name

as defined by the scope ru les. This gives the operat ing system designer se lec t i ve con-

t r o l over access to operat ing system components. Names wi th 9eneral access may be r e f -

erenced in the block in which they are de f i nedand in any nested blocks. Constant and

type names have general access.

Names wi th external access may only be referenced outs ide the block in which they are

declared. A system component may not reference i t s own ent ry rou t ines , and so they

have external access.

Names wi th in te rna l access may on ly be referenced in the system component or rou t ine

in which they are defined. Unlike general access, these names may not be referenced

in nested system component types. This d i s t i n c t i o n between general and in te rna l ac-

cess involves a comparison of the name's leve l wi th the current component type 's l e ve l .

No leve l comparison is required wi th general access. Var iab le , parameter, and non-

en t ry rout ine names have in te rna l access. A system component's var iab les and parameters

may be accessed in the component and i t s rout ines, but not in nested system component

types. A rou t ine ' s var iab les and parameters may only be referenced ins ide the rou t ine .

Routines may not be nested.

Names wi th incomplete access may not be referenced. Type and procedure names have in -

complete access u n t i l the completion of t h e i r dec la ra t ion . A type dec la ra t ion may not

reference i t s e l f ; a procedure may not be recurs ive.

Names with unresolved access may only be referenced in the in te r face l i s t of a sequen-

t i a l program dec la ra t ion . A name may be introduced in such a l i s t . When th is happens

i t s access changes from undefined to unresolved. A f te r the en t ry rou t ine is resolved,

i t s access becomes ex te rna l .

Names wi th qua l i f i ed access are introduced by wi th statements. A with statement selects

a record va ra ib le or system component fo r processing. This introduces the f i e l d or

en t ry names, and they are included in the spe l l i ng tab le wi th q u a l i f i e d access.

The name o f a funct ion in the body o f a funct ion has funct ional access. This means a

value may be assigned to the funct ion r e s u l t , but the funct ion may not be referenced

recurs ive ly .

Undefined names ~ave undefined access. They may not be referenced before being declared.

This is the l as t o f the access a t t r i b u t e s .

24

* the update stack *

Updating of the spelling table is accomplished via an update stack, a technique due to

Naur [5]. Whenever a name is introduced i ts previous spelling entry value is pushed

on the update stack. At the end of the scope (block, record declaration, or qua l i f i -

cation) that introduced the name, the old spelling entry is popped from the update stack

and put back into the spelling table. This requires that the "base" of the current

portion of the update stack be marked at the beginning of new scopes (also called lev-

els). Analagous to the storing of base addresses in a run-time display, the base in-

dices of the update stack are stored in a compile-time display. These two structures

may be described as:

type

update index = O..update max;

update entry = record

location: spelling index;

old entry: spelling entry;

en__d_d;

display index = O..display max;

display entry = record

level entry: name pointer;

base: update index;

previous component level:

level index;

previous qualif ication l i s t :

qualif ication pointer

end;

v a r

display: array [display index] o_f_fdisplay entry;

update stack: array [update index]

of update entry;

current level,

current update: update index;

current component level: display index;

current qualif ication l i s t : qualif ication pointer;

The display contains al l information relevant to the nesting of levels. When a new level

is entered in either a declaration or with statement, a new entry is pushed on the dis-

play. This new entry contains a name pointer to the system component type, routine, or

with temporary associated with the level. The base of the update entries for this level

is marked. The previous system component level is remembered in case this is a nested

system component type. The previous qualif ication l i s t is also saved. Entry names or

25

f ie ld names associated with a system component or record type are maintained in a quali

f ication l i s t . A l i s t is associated with each level since these types may be nested.

Qualification l i s ts w i l l be discussed in more detail later.

Entering and leaving levels of nesting is controlled by the sequence of declarations

and with statements. The semantic routines associated with these constructs may use

two routines that push and pop display entries to enter and ex i t levels:

procedure push level (level name: name pointer) ;

begin

i f current level = level max

then abort compilation

else current l e v e l : : succ(current l eve l) ;

with display [current level] do be~in

base: = succ(current update);

level entry: = level name;

previous component level: =

current component level;

previous qualif ication l i s t : =

current qualif ication l i s t

end;

current qualif ication l i s t : = ni l

end;

procedure pop level;

vat this update: update index;

begin

with display [current level] do begin

current component level: =

previous component level;

current qualif ication l i s t : =

previous qualif ication l i s t ;

for this update: = current update

downto base do pop update

end;

current level: = pred(current level)

end;

The pushing and popping of update entr ies is control led s im i la r l y :

2B

procedure push update (this index: spelling index;

this name: name pointer;

this access: access at t r ibute) ;

begin

i f current level > global level then begin

"save the old entry"

i f current update = update max

then abort compilation

else current update:=

succ(current update);

with update stack {current update] do be~gin

location:= this index;

old entry:= spelling table [this index]

end

end;
"now f i l l in the new entry"

with spelling table [th is index] do begin

name: = this name;

access-:= this access;

level:= current level

end

end;

procedure pop update;

begin

with update stack {current update] do

spelling table { location]:= old entry

end;

* table size *

Overflow in any of these tables wi l l abort compilation. The pass w i l l terminate and

subsequent passes wi l l process intermediate code only up to the point of termination.

For this reason the tables must be large enough to accomodate as many names as may be

used in the largest program that may run on the machine. The size of the spelling table

is determined by the size of the hash table used in lexical analysis. The display is

small, as few programs are very deeply nested. Concurrent Pascal does not allow rou-

tines to be nested. A few levels of nesting for system component types, record types,

and with statements is al l that is required.

The update stack can be small since names in the outermost scope (global names) need

not be entered. Languages without name qual i f icat ion, such as Algol 60, only place

27

names in the update stack when they are re__defined. This makes level popping less ef-

f ic ient since local names must be removed from the spell ing table by a search for cur-

rent level numbers. This increase in the cost of level exits is tolerable only when

level crossings correspond to block boundaries. In languages with name qual i f icat ion,

level boundaries may be crossed many times within a block. A search of the entire spel-

l ing table to "undefine" newly defined entries would be intolerable. For this reason

every nonglobal name has i ts old spelling entry placed in the update stack.

Another performance consideration involves the use of qual i f icat ion l i s t s . These l i s t s

contain the entry names of system component types or the f ie ld names of record types.

When a system component or record variable name is followed by a period, a new level

is entered. Any of that variable's entry or f ie ld names is now included in the scope.

Since only one entry or f ie ld may be selected following the period, i t is not worth-

while to update the spelling table with a l l the possible f ields or entries. Instead a

l inear search of the qual i f icat ion l i s t is made to retr ieve the name of the part icular

f ie ld or entry selected. The spelling table remains unaffected.

The s i tua t ion is d i f f e ren t when a system component or record var iab le is named in a

with statement. Here there may be many select ions from the var iab le. In th is case the

spel l ing table is updated to re f l ec t the change in scope. The qua l i f i ca t i on l i s t is

traversed and each f i e l d or entry name is placed in the spe l l ing table. At the con-

conlusion of the with statement the new level is popped.

* the name table *

Another s ign i f i can t data structure of name analysis is the name table. Once a name is

recognized through the spel l ing table, a pointer to the name entry is obtained. The

name table contains a l l information associated with a name whether i t be the name of a

constant, type, var iab le , parameter, or rout ine. Concurrent Pascal does not require

that every constant or type possess a name. Name analysis responds to th is in two d i f -

ferent ways.

Constants are nameless. No hame index is assigned to constants. Name analysis removes

constant declarat ions from the intermediate code. Index constants are represented in

the name table by the i r value. Al l other constants (real or s t r ing) are represented

in the name table by the i r displacement in the program's constant area. Wherever con-

stant names appear in the intermediate code, they are replaced by the i r value or d is-

placement.

Types, on the other hand, are a l l given a name index, whether or not the programmer

names them. This is done so that delcaration analysis, the next pass, may refer to

28

types by their names (name indices).

Associated with each name in the name table is only the information required by name

analysis. So far we have described three functions of name analysis. I t assigns name

indices to types, variables, parameters, and routines; i t replaces constants by their

values or displacements; i t enforces the scope rules of Concurrent Pascal. This last

function, scope rule enforcement, real ly means that name analysis controls the access

rights of the program. What can or cannot be accessed is determined by this pass. Later

passes wi l l determine how these names may be accessed. This forms a clean division be-

tween these logical ly separate aspects of semantic analysis.

Access to a name involves referencing the name table. The name table is a linked l i s t

structure that represents the access relationships of types, variables, parameters,

and routines. Subrange types are linked to their range types. System component types

are linked to their entry routines. Routines are linked to their parameters; functions

are also linked to their result types and sequential programs to their interface. Array

types are linked to their index and element types. With statement temporaries are

linked to their record or system component types. Record types are linked to their

f ields. All these relationships are represented in the name table, and this information

is distributed where necessary in the intermediate output code. No subsequent pass

possesses a linked structure that reproduces these relationships.

A name tab le ent ry is def ined as:

type

q u a l i f i c a t i o n po in te r : @ q u a l i f i c a t i o n en t ry ;

q u a l i f i c a t i o n en t ry = record

spe l l i ng : spe l l i ng index;

name: name po in te r ;

next q u a l i f i c a t i o n :

q u a l i f i c a t i o n po in te r

end;

name index = O..name max;

name po in te r = @name en t ry ;

name ent ry =

record

index: name index;

case kind: name kind of

index constant: (

constant type: name index;

constant value: i n tege r) ;

29

real constant: (

real displacement: in teger) ;

str ing constant: (

str ing length,

str ing displacement: in teger) ;

variable: (

var iable type: name pointer) ;

parameter: (

parameter type,

next paramter: name pointer) ;

f i e l d : (

f i e l d type: name pointer) ;

scalar type: (

range type: name index);

component type: (

i n i t i a l statement: name pointer;

entry l i s t : qua l i f i ca t ion pointer) ;

routine: (

parameter l i s t : name pointer;

function type: name index);

sequential program: (

sequential parameter l i s t :

name pointer;

interface l i s t :

qua l i f i ca t ion pointer) ;

array type: (

index type: name index;

element type: name pointer) ;

with temporary: (

with type: name index);

record type: (

f i e l d l i s t : qua l i f i ca t ion pointer)

end_d;

* the operand stack *

Name analysis stores operands in a stack since they precede the i r operator in the input

code. An operand entry is s imi lar to a name entry, but there are some dif ferences.

Af ter def ining an operand entry we w i l l discuss i ts use.

30

type

operand index = O..operand max;

operand entry =

record

case class: operand class of

index constant: (

constant type: name index;

constant value: integer);

real constant: (

real displacement: integer);

string constant: (

string length,

string displacement: integer);

variable: (

variable type: name pointer);

routine: (

routine entry,

next parameter: name pointer);

function result: (

function type: name index);

case label: (

label number,

case value: integer);

declaration: (

declaration entry: name pointer;

declaration index: spelling index)

"undefined, factor constant: (

empty)"

en_~d;

Constants encountered in a declaration are pushed on the operand stack. Whether or not

the constant value is placed in the intermediate output code depends on the particular

construct. Constants appearing in constant definitions are placed in the name table and

not transmitted until they are referenced. Constants in the body appear either as

labels or as factors. Constant labels are pushed on the operand stack as case labels.

Constant factors are immediately transmitted in the intermediate code and an entry pushed

on the operand stack. This entry is empty, though, since the factor value is not re-

quired in this pass.

Variables may only be referenced in a body. When a reference appears, the variable type

is pushed on the operand stack. Variables may be either "subscripted" or "qualified",

A subscript applied to an array variable replaces the name of the array type with the

31

name of the array element type. A period and a f ie ld name applied to a record variable

replaces the record type with the f ie ld type. A period and an entry routine name ap-

plied to a system component replaces the variable operand entry with a routine operand

entry.

Routines may be referenced in the body or in the interface l i s t of a sequential program

declaration. Routine names appearing in an interface l i s t are not placed on the operand

stack. Instead they are added to a chain of names associated with the program declar-

ation. This chain is maintained by the same mechanisms used to maintain qual i f icat ion

l i s ts . Routines referenced in the body are placed on the operand stack. The name of

the routine and the name of i ts f i r s t parameter are included in the operand entry. As

each argument appears in the input code, the parameter chain is followed to the next

parameter. I f the parameter chain is shorter than the argument l i s t , an error indicat-

ing too many arguments is given. I f the argument l i s t is shorter than the parameter

chain, an error indicating too few arguments is given.

Routines may not be referenced recursively. The name of a function may be referenced

in the function body only to assign a result to the function. For this reason a special

access at t r ibute, functional access, is given to the function name inside the function

body. Reference to a function name with this at t r ibute places the function result en-

t ry on the operand stack.

Names are declared in a declaration part. While the declaration is s t i l l incomplete,

the operand stack entry indicates a declaration. Associated with the declaration is

i ts spelling index and a pointer to i ts incomplete name entry. This information is

used to update the various tables at the completion of the declaration.

Occurrence of an error in the declaration part or body part may inval idate an operand.

As in the Gier Algol compiler [5], no attempt is made to correct an inval id operand.

Its description is changed to undefined. Subsequent accesses to an undefined operand

are ignored by the pass, but undefined operands wi l l be placed in the intermediate out-

put code where necessary. No f inal code is produced for an incorrect program. Un-

defined operands may result from many di f ferent errors. For example an attempt to am-

biguously define a name wi l l y ie ld an undefined operand. An attempt to attach an argu-

ment l i s t to anything but a routine wi l l y ie ld an undefined operand. Error recovery

consists of marking the operand undefined and ignoring further attempts to process the

operand. For this reason, every operand access must f i r s t check for an undefined op-

erand. This involves far less ef for t than to correct i l lega l operands.

32

* summary *

This pass's output contains unique name indices that are used in later passes to refer

to types, variables, parameters, and routines. All access linkages between these quan-

t i t i es are checked and distributed in the output code. The name table is used to re-

present the structural relationships of language elements. This structural relat ion-

ship embodies the major complexities of the language. Name analysis isolates this

complexity from the balance of semantic analysis. With few exceptions, the nodes of

this structure contain only name indices and links to other nodes. These links are

distributed in the intermediate code by transmitting the name index of the node refer-

enced by the l ink. As examples, a variable appears in the output as the variable's

name index followed by i ts type's name index. A subscript expression is followed by

the array index type's name index and the array element type's name index. In this

way traversal of linked structures is avoided in later passes. Name analysis is con-

cerned only with names and their relationships. The passes next described deal with

what these names represent.

7, Declarat ion Analysis

* funct ion *

Declarat ion analys is performs the semantic processing o f dec la ra t ion par ts . I t analyzes

types, assigns addresses to var iab les and parameters, assigns program labels to rou t ines ,

and d i s t r i bu tes th is in format ion in the body parts. A host o f semantic ru les contained

in the o r i g i na l language spec i f i ca t i on are enforced, These rules have two i n ten t i ons :

to enforce implementation r e s t r i c t i o n s , and to ensure proper use o f language f a c i l i t i e s .

Examples of implementation r e s t r i c t i o n s are:

a. case labels must l i e in the i n t e r va l [0 , 127];

b. s t r ing types must contain an even number o f characters;

c. process components must be component var iab les of the i n i t i a l process.

Examples of proper usage rules are:

a. universal types must be passive;

b. funct ion parameters must be constant parameters;

c. queue var iab les must be monitor component var iab les .

There are more than a score of these ru les. Their enforcement depends on the e f f i c i e n t

representat ion of type informat ion in the pass's data s t ructures.

* the symbo! tab le *

The analysis of dec larat ions requires a symbol tab le . This pass's symbol tab le con-

ta ins no pointers. Al l symbol table l inks have been analyzed and d i s t r i bu ted by name

ana lys is , the previous pass. These l inks appear in the input as name indices. They

are t rans la ted to symbol tab le l inks through a name tab le :

t ~ e

name index = O..name max;

symbol tab le l i n k = @ symbol tab le en t ry ;

v a t

name tab le = array f name index]

o f symbol tab le l i n k ;

34

When a name is delcared, an entry is created for i t in the symbol table. The l ink to

the entry is then stored in the name table. Subsequent references to the name are

processed indirect ly through the name table. Note that the l ink to the entry instead

of the entry i t se l f is housed in the name table. This permits symbol table entries to

be allocated dynamically as they are declared. In this way small programs may be com-

piled in less memory space than large programs.

The operand stack used in this pass is a simple vector of symbol table links. Operands

appear in the input as name indices. They are translated to links via the name table,

and the links are pushed on the operand stack.

This same simplicity carries over to the symbol table. In contrast to the plethora of

symbol table Variants used in name analysis, there now exist only three non-empty var-

iants. A fourth variant, the undefined entry, is empty. Variables and parameters are

combined in the f i r s t variant, routines in the second variant, and types in the third

variant:

type

symbol table entry =

record

case class: entry class of

value: (

"variable or parameter information");

routine: (

"routine information");

template: (

"type information")

end;

* the value variant *

Variables and parameters are represented in the symbol table by a value variant.

variant contains the following in for~ t ion about the value:

a. the address mode

b. the address displacement

This

c. the declaration context

3.5

This information is required by later passes and wi l l be distributed in the output.

The address mode and address displacement are a virtual address in Concurrent Pascal.

Classical block structured architectures u t i l i ze an address consisting of an address

level and address displacement. In Concurrent Pascal routines may not be nested in-

side other routines, so there exist only two levels, the system component level ("glo-

bal") and the routine level (" local") . The mode encodes this information, as well as

the type of system component or entry routine. Some of the modes represented in this

pass are temporary modes; they do not appear in the final code. The modes are:

small constant *)

large constant

simple routine

sequential program

process entry routine

class entry routine

monitor entry routine

process component

class component

monitor component

standard routine *)

undefined *)

*) temporary mode

The address displacement is the displacement of the value w i th in the data record of the

component, rout ine, record, or constants area. Displacements are assigned sequent ia l ly

as f i e l d , var iab le, and parameter declarat ions are processed. Displacements may be

pos i t ive or negative, they may be assigned forwards or backwards, and they may or may

not be o f fse t . Record f i e lds have pos i t ive forward displacements wi thout o f fse t . For

example, in a record with two integer f ie lds, the f i r s t f ie ld 's displacement is zero

and the second f ie ld 's displacement is one word. Variables have negative forward dis-

placement without offset. For example in a routine with two integer variables, the

f i r s t variable's displacement is minus one word and the second variable's displacement

is minus two words. Parameters have positive backwards displacement with an offset of

one word. Backwards means their displacements are assigned in order from last declar-

ation to f i r s t declaration. For example in a routine with two integer parameters, the

last parameter's displacement is one word and the f i r s t parameter's displacement is

two words. Function results are displaced simi lar ly to parameters, but the offset is

either one or two words depending on the mode. This assignment of displacements may

appear a b i t intr icate (as i t did to this writer) but i t is largely determined by the

address structure of the PDP-II/45. Chapter 12 i l lustrates these displacements.

36

Displacements are relative to a particular system component, routine, or record. The

previous displacement must be saved whenever a new level is entered. Again, as in

name analysis, this entails the use of a compile time display. The display is a stack

that has an entry for each level. I t contains the previous mode and displacement to

be restored upon reentering the level.

The declaration context of a value indicates the context in which the value was de-

clared. This information is used in the next pass (body analysis) primarily to deter-

mine i f a value may be changed. The different contexts are:

function result

class entry variable

variable

variable parameter

universal variable parameter

constant parameter

universal constant parameter

generic standard function parameter

record f ie ld

constant

expression

The "generic standard function parameter" context is used to handle the tr icky standard

functions, absolute value, successor, and predecessor, whose result types depend on the

argument types. This problem is discussed in the body analysis description. The "con-

stant" and "expression" contexts are also used in that pass since no declarations ap-

pear for them.

* the routine variant *

Routines are represented in the symbol table by a routine variant. This entry contains

the address of the routine and the routine's parameter length and ~ocal variable length.

A routine may be a local routine of a system component, or i t may be an entry routine.

This information is encoded in the mode portion of the routine address. The modes are

the same as those for values.

Unlike value addresses, though, a displacement is not given. Displacements in the pro-

gram area wi l l not be known until the code is assembled. In l ieu of a displacement,

a routine label is given as the second part of the address. These labels are then re-

solved into program displacements during code assembly.

37

The parameter length and local variable length are accumulated when the routine is de-

clared. This information wi l l be included in the f inal code. The parameter length is

required in order to pop the parameters from the data stack upon routine ex i t . The

variable length is required in order to push the variable storage area on the data stack

during routine entry. The i n i t i a l statement of a system component is treated, for these

purposes, as an entry routine. Associated with i t are the parameter length and compon-

ent variable length of the system component i t se l f . In the case of a process i n i t i a l

statement, the additional stack length, i f any, is included in the routine variant.

This f a c i l i t y allows the programmer to al locate a fixed additional amount of storage

to allow processes to execute sequential programs.

To summarize, then, a routine variant contains:

the rout ine mode

the rout ine label

the parameter length

the va r iab le length

the add i t iona l stack length.

* the template va r ian t *

A l l in format ion associated with types is contained in the template va r i an t . This in -

formation includes:

the name index

the type length

the active attr ibutes

the type "kind"

information part icular to individual kinds

The name index of the type is retained. I t is transmitted in the intermediate code

for use in type checking by body analysis. The length of the type is used for assign-

ing displacements and may be incorporated in the f inal code.

* the active attr ibutes *

The active attr ibutes are a set of attr ibutes associated with the type. They indicate

whether the type contains an instance of an active type. This information is impor-

tant since many semantic rules require knowledge of the active attr ibutes of a type.

I f a type contains no active types, then i t is considered a passiv e type, and i ts

38

active attributes are emptY. Pascal's simple types, record types with passive f ields,

and array types with passive elements are al l examples of passive types. A class type

is an active type with the class at t r ibute. A monitor type is an active type with the

monitor at tr ibute. A process type is an active type with the process attr ibute. A

queue type is an active type with the queue attr ibute. Structured types (array or re-

cord types) containing active types are themselves active types. They inheri t the at-

tributes of their elements.

The active attributes are represented by a short set. In this implementation of Con-

current Pascal a l l sets are the same length; they al l contain 128 possible elements.

Short sets are readily obtained from these rather long sets by using Concurrent Pascal's

universal type fac i l i t y . This f a c i l i t y was discussed in the description of lexical

analysis. In composing structured types, these attributes are inherited by taking the

union of the element type's attributes with the structured type's attributes. The op-

eration of set inclusion tests for the presence of a particular at t r ibute.

One important example of the use of active attributes is this. Queue variables are

intended to be monitor component variables. Process access to monitors is mutually

exclusive. Since only one process at a time may actively execute a monitor, the mon-

i to r may place one process in a queue while i t services another. Transfer of the queue

variable outside the monitor, say to another monitor, would violate this intent. The

only way the monitor could pass the queue variable out to another component would be

in an argument l i s t . The queue variable could be placed in an argument l i s t in an

i n i t statement or in an entry routine reference. Since i n i t i a l statements are viewed

as entry routines we are le f t with this one case. Entry routine parameter types may

not possess the queue attr ibute.

* the type kind *

Types are classified into kinds. These various kinds are chosen to fac i l i ta te type

checking in the body. This type checking wi l l be done by the next pass. The possible

kinds are:

integer

real

boolean

character

enumeration

set

string

queue

39

system component

passive

act ive

generic

undefined

The standard index types, in teger , rea l , boolean, and char, are each given t h e i r own

kind. Any other index type is considered an enumeration kind. The standard queue type

is a queue kind. The system component types are system component kinds. An array of

characters is a s t r ing type. Any passive structured type that is not a s t r ing type is

a passive kind. Any act ive structured type is an act ive kind.

The generic standard rout ine parameter types are of generic kind. The possible generic

types are ar i thmet ic , index, and passive. For example the absolute value funct ion takes

an ar i thmet ic argument, the successor funct ion takes an index argument, and the input /

output procedure takes several passive arguments.

Par t icu lar information may be included in the entry for the d i f f e ren t kinds. Integer,

rea l , character, and enumeration kinds contain the minimum and maximum values of t h e i r

enumeration. System component kinds contain the mode of the component and i t s var iab le

length. This length w i l l be incorporated in the code as the displacement required to

obtain the base address of the component data area. This permits system component data

areas to be addressed s i m i l a r l y to rout ine data areas.

* the pass output *

The symbol tab le entr ies are d is t r ibu ted in the intermediate code by declarat ion an-

a lys is . A s ingle entry may be d i s t r i bu ted many times, since i t is inserted in the out-

put wherever the entry is referenced in the body port ions of the program. Only two

output formats are used for ent r ies : a value format and a rout ine format. Type in-

formation is included in the value format.

The fo l lowing information appears in the value format:

the address mode

the address displacement

the declarat ion context

the type kind

the type name index

the type length.

40

The value format is preceded by one of two intermediate language operators. These op-

erators are var or vcomp. The var operator implies an unqualified variable. The vcomp

operator implies a qualified variable (a variable component). Constants are treated

as unqualified variables with a constant declaration context. So in the output con-

stants, variables, and parameters al l appear as values.

The routine format contains:

the routine mode

the routine label

the parameter length

the variable length

the additional stack length.

The routine format is also preceded by one of two intermediate language operators:

routine or rcomp. The routine operator implies a simple routine, while the rcomp op-

erator implies an entry routine. Function references introduce an additional require-

ment for specification of the function type.

This scheme provides a uniformity of reference to either values or routines. Declar-

ations are consumed and distributed in the body where required. This permits a very

simple design for body analysis, the next pass to be described.

8. Body Analysis

* function *

Body analysis performs semantic checking in the body parts of the program. I t checks

the compatibil ity of operands and their operators, and generates addressing commands

for the machine. This is the final phase of semantic processing. Name analysis has

consumed constant declarations, and declaration analysis has consumed type, variable,

and routine declarations. Devoid now of declarations, the intermediate input code

consists of a simple sequence of bodies.

A short summary of semantic analysis is: Name analysis checks the access relationships

of the program and distributes valid symbol table links in the output code. Declar-

ation analysis checks the declarations of the program and distributes valid symbol

table nodes in the body. Body analysis then checks the compatibil ity of operands and

their operators and distributes valid commands in the body. These commands wi l l then

be processed by the code assembly passes to produce the final machine code.

* type compat ib i l i t y checking *

Type compat ib i l i t y may be of two forms:

a. compat ib i l i t y of operands with each other;

b. compat ib i l i t y of operands wi th t h e i r operator.

For example the addi t ion operator requires that i t s two operands be compatible wi th

each other (a) and that they be ar i thmet ic (b) . Checking the compa t ib i l i t y of operands

wi th each other fol lows the type compa t ib i l i t y rules of Concurrent Pascal. These rules

have been espec ia l ly chosen to minimize the labors of type checking and of learning

the language as a programmer. Two types are compatible i f any of the fo l lowing are

true:

I. they are defined by the same type def ini t ion;

2. both are subranges of a single type;

3. they are string types of the same length;

4. they are set types whose members are the same index type;

42

5. they are set types, one (or both) of which is the null set type;

6. one type is a universal parameter type and the other type is a passive argument

type of the same length;

7. one type is an argument type and the other type is i ts generic parameter type.

Type information appears in the input as i t was distributed by declaration analysis.

So types appear as three arguments: a kind, a name index, and a length. These argu-

ments are chosen to mesh with the compatibil ity rules in a simple manner. This scheme

is made possible by using a small set of primitive attributes to represent the context

and type information of operands. This information is contained in the operand stack;

no symbol table exists in this pass. The operand stack is a linked stack whose entries

are:

,tYPe
operand entry :

record

"address information"

mode: address mode; displacement: in teger ;

informatlon "type " "

kind: type kind; name: name index;

length: in teger ;

case class: operand class o f

value: (

"value information"

context: declarat ion context ;

s ta te: address s ta te) ;

routine: (

"routine information"

parameter length,

variable length,

additional stack length: integer)

"undefined: (

empty)"

end;

The address information represents the virtual address of the operand. In the case of

routines the 'displacement' is a label. The type information is the same as in declar-

ation analysis. For routines, this would be the function result type, i f any. Except

for the address state, to be discussed later, the routine and value information has

also been described before.

43

Type c o m p a t i b i l i t y is checked by a funct ion tha t compares the type o f the top operand,

' t ' , and second to the top operand, ' s ' :

function compatible: boolean;

begin

i fft@.context Lnuniversal the.n..

"apply Rule 6"

compatible:= (s@.kind in passives)

and (t@.length = s@.length)

else i f t@.kind = s@.kind then

case t@.kind of

integer kind, real kind, boolean kind,

character kind, queue kind:

"Rules l , 2"

compatible: = true;

enumeration kind, passive kind,

active kind, component kind:

"Rules 1, 2"

compat ib le: = t@.name = s@.name;

s t r i n g kind:

"Rules I , 3"

compat ible: = t@.length = s@.length;

set kind:

"Rules I , 4, 5"

compat ible: = (t@.name = s@.name)

or (t@.name = n u l l)

o r (s@.name = n u l l) ;

undefined kind:

compat ib le: = fa l se

"but suppress e r ro r message"

end;

else i f t@.kind = generic kind then

"Rule 7"

case t@.name of

a r i t hmet i c genre:

compat ib le: = s@.kind in a r i t hme t i c

index genre:

compat ib le: = s@.kind in indexes;

passive genre:

compat ible: = s@.kind in passives

end

44

else compatible:= false

end;

This simple function performs compatibilty checking of two operands. I t is usually only

invoked for argument type checking where the ful l range of operand types is possible.

Since most operators take limited operator types, the check can usually be performed

even more simply in- l ine. For example, addition checking need only ask i f two kinds

are either both integer or both real.

The context of a value, as well as the kind, is also used in compatibility checking.

Assignment targets and variable arguments must be assignable. This is checked by ex-

amining the context of the value.

* addressing commands *

Before an operand may be uti l ized by the machine, i t must be addressed. Body analysis

makes use of an address state. The address states are:

direct,

indirect,

addressed, or

expression.

The direct state indicates an operand that is directly addressable. Its mode and dis-

placement are known. Unqualified variables and constant parameters are directly ad-

dressable.

The indirect state indicates an operand whose address is directly addressable, for exL

ample, a variable parameter.

The addressed state indicates an operand whose address is on the machine's stack (such

as a subscripted variable), while the expression state indicates an operand whose value

is on the machine's stack.

To u t i l i ze an operand, the machine requires its state be either addressed or expression.

Short operands may be placed directly in the stack, while long operands may only have

their addresses placed in the stack. The short operands are either of byte length

(characters within strings), word length (enumeration types), real length (reals)~ or

set length (sets). An address is i t se l f a short (word length) operand. Long operands

are of structured type (arrays or records).

45

case t@.state of

d i rec t :

"generate command to load value:

push value (length code, mode, displacement)"

i nd i rec t :

" f i r s t generate command to load value address:

push value (word length, mode, displacement)"

"then generate command to i n d i r e c t l y load value:

push i nd i rec t (length code)"

addressed:

"generate command to i nd i r ec t l y load value:

push i nd i rec t (length code)"

expression:

"value is already loaded"

end

Long operands, assignment targets, and var iable arguments have the i r address, not t he i r

value, pushed on the machine stack at runtime. Again, the commands generated by boQy

analysis depend on the address state of the operand:

case t@.state of

d i rec t :

"generate command to load address:

push address (mode, displacement)"

i nd i rec t :

"generate command to load address value:

push value (word length, mode, displacement)"

addressed:

"the address is already loaded"

expression:

e r ror "expressions are not addressable"

end

These operations of value loading or address loading are performed for most operators.

Variable references are a good example. Consider the var iable reference

v i i + l] . f

and i t s resu l tant loading commands. F i rs t the address of 'v ' is loaded. Then the

value of the subscr ipt expression is loaded. Then the index command performs the in-

dexing leaving the address of ' ~ i + I] ' on the stack. Assume th is is a record.

Then next a f i e l d ins t ruc t ion is issued, taking as i t s argument the displacement of

46

' f ' within the record. This adds the displacement to the address already on the stack,

leaving as a result the address of the f ie ld . I f this is al l that is required then no

further commands are issued, else the value is loaded by a push indirect command.

Should ' v i i + l] ' be a system component and ' f ' an entry routine, then the commands

are dif ferent. After the indexing command is generated, a f ie ld command is generated

with i ts argument the component offset. Then the routine reference is generated. A

routine reference command is of the form

call (mode, label, paramter length).

* error recovery*

As in previous passes, the error recovery scheme, due to Naur [5] , consists of marking

an operand undefined. This provides a simple uniform scheme of error recovery over

the three semantic analysis passes. The error routines themselves change the operand

description to undefined. Two error routines exist. The f i r s t routine is for unary

operators, the second for binary operators. Each routine checks the operand descrip-

tions on the stack. I f they are undefined, no error message is given. I f they are

defined, then an error message is given and thei r description is changed to undefined.

This eliminates redundant error messages in this pas~.

9. Code Selection

* f u n c t i o n *

The compi ler 's l as t two passes, both designed and wr i t ten by Per Brinch Hansen, per-

form code assembly using a c lassic two-pass design. The f i r s t assembly pass is named

code select ion. I ts funct ion is to define the addresses of program labels , determine

the stack requirements of routines and components, construct the constants tab le , and

t rans la te the input code to f ina l code. Code select ion w i l l leave four tables behind

in the heap for use by the next pass, code assembly. These tables contain the addresses

of rout ine labels , the addresses of jump labe ls , the stack requirements of components

and rout ines, and the large constants. No a rb i t r a r y l i m i t is placed on the size of

the program that may be assembled.

* table management *

Code select ion constructs four tables in the heap, a rout ine label tab le , a jump tab le ,

a stack tab le, and a constants table. Common management routines are used for each of

these. Tables are broken up into pieces of I00 entr ies each:

const

piece length = I00;

type

piece pointer = @ table piece

table piece = record

next piece: piece po in ter ;

contents: array { l . . p i e c e length]

o f integer

end;

Body analysis leaves a short record behind in the heap, ca l led the interpass record.

This record contains the number of rout ine labels , the number of jump labe ls , and the

length of the constants area. These entr ies were computed by e a r l i e r passes. Declar-

at ion analysis determined the number of rout ine labels , syntax analysis determined the

number of jump labels , and name analysis determined the length of the constants area.

Code select ion uses th is information to a l locate the tables as part of pass i n i t i a l -

i za t ion ; dynamic table extension is not required.

Three routines perform table management. The a l locate rout ine takes the number of table

entr ies required and returns a pointer to the constructed tab le . This rout ine is ca l led

during pass i n i t i a l i z a t i o n , once for each of the four tables. The enter rout ine takes

48

a table pointer, an entry index, and an entry and enters i t in a table. The entry

routine takes a table pointer and an entry index and returns the entry.

* address def in i t ion *

Program labels are divided into two groups, routine labels and jump labels. Routine

labels appear, one to a routine, at the start of each routine body. These labels were

generated by declaration analysis as part of the analysis of routine declarations.

Jump labels appear within a routine body. These labels were generated by syntax anal-

ysis when i t converted statements to postfix notation.

Jump labels appear in the input code as a label command followed by a label number.

When encountered, the current program address is entered in the jump label table using

the label number as an index. Code assembly, the next pass, wi l l use this table to

replace the label by a relat ive address in jump instructions. Three types of jump

instructions exist , the jump, the false ~ump, and the case jump. The jump and false

jump commands are followed by a label number. The case jump command is followed by

the minimum and maximum case label values, and (maximum - minimum + l) labels. These

jump commands are output by code selection as they came in with the addition of one

more argument. Since a l l jumps in the machine use relat ive addressing, the current

program address is appended to a l l jump instructions. Then the next pass wi l l take

the difference between the jump label address and the jump instruction address as the

argument of the jump instruction.

Routine labels appear in the input code as arguments to the enter command. This com-

mand begins a l l routine bodies. Whe~ encountered, the current program address is en-

tered in the routine label table. Code assembly, the next pass, w i l l use this address

to replace the label in call instructions. The current program address is again in-

cluded as an argument to the call instruction.

* stack requirements *

The compiler computes the maximum run-time stack requirements of routines and com-

ponents. Since routine calls may be dynamically nested, these stack requirements must

be computed for the worst case call sequence. This is possible to perform at compile

time because Concurrent Pascal forbids recursion. Recursion is allowed in sequential

Pascal, and here the programmer may reserve additional stack space for processes that

call separately compiled sequential programs.

49

The absence of recursion and forward references means that only previously defined

routines are referenced. This makes i t simple to compute a rout ine 's maximum stack

requirements. The current stack extent is kept in one global var iab le , and i t s high

water mark in another global var iab le . The f i r s t rout ine in a program cannot ca l l

any other rout ine in the program. So i t s stack requirements are only those fo r i t s

own var iables and temporaries. Subsequent rout ines may ca l l previous rout ines. When-

ever a ca l l is encountered, the cal led rout ine 's stack requirements are added to the

current stack extent. I f th is exceeds the high water mark, then the high water mark

is updated. Immediately a f t e r the c a l l , the current stack extent is decren~nted by

the sum of the previous stack requirements plus the parameter length. (The parameter

length is added piecemeal to the current stack extent as code is generated to push

each argument on the stack before the c a l l .) In th is way the movement of the stack

at runtime is simulated by code se lect ion. At the end of the rout ine, the high water

mark becomes the rout ine 's stack requirement.

Routine and component stack requirements are placed in the stack table by code selec-

t ion . Code assembly w i l l remove them from the table and place them in the enter in-

s t ruc t ion at the beginning of the rout ine. The index of the stack requirement in the

table is the routine label .

* the constants table *

Concurrent Pascal allows enumeration constants, real constants, and s t r ing constants.

The empty set is a special case; i t is the only set constant. Enumeration constants

are short constants. They are included in the code as part o f the ins t ruc t ion that

references them. Al l other constants are lon 9 constants. Long constants are housed

in the constants table and referenced by t he i r displacement, The constants table is

constructed piecemeal by code select ion as large constants appear in the input code.

Code assembly outputs the constants table fo l lowing the code at the end of the pass.

* command t rans la t ion *

Code select ion performs simple encoding of types into opcodes to make the simulat ion

of the v i r t ua l machine fas ter . This funct ion is performed here to i so la te the seman-

t i c analysis from deta i l s of the machine s imulat ion. I t permits peephole opt imizat ion

of the ins t ruc t ion set wi thout a l t e ra t i on of semantic analysis (th is is not done in

the present compiler).

Code select ion accepts less than f i f t y d i f f e ren t commands from body analysis. By merg-

ing arguments with operators, th is set of commands is more than doubled. For example

50

the "push valu ~ (word length, local routine mode, displacement)" command becomes the

"push local (displacement)" instruct ion. No similar instruct ion exists for reals. A
"pus h value (real length, local routine mode, displacement)" command becomes two in-

structions. A "local address (displacement)" instruct ion followed by a push real in-
struct ion. I f a l l possible permutations of commands and the i r arguments were made

separate instruct ions, the instruct ion set would be much larger.

Source l ine numbers may or may not appear as instructions in the f inal code. A compiler

option determines i f l ine number instructions are to be generated for every source l ine

(and at every jump label) or only at the beginning of routines. This permits a run-

time error indication of the part icular source l ine that fai led.

I0. Code Assembly

* function *

Code assembly is the las t compiler pass. I t completes the transformation of the pro-

gram to f ina l machine code. Routine labels and jump labels are replaced by program

addresses, stack lengths are inserted in rout ine entry and process i n i t i a l i z a t i o n in-

s t ruct ions, er ror messages are l i s t ed , and the constants table is output at the end

of the program.

* table manipulation *

The four tables constructed by code select ion are used in th is pass. Label addresses

are ret r ieved from e i ther the rout ine label table or the jump label table and used to

resolve cal l or jump inst ruct ions. Stack lengths are re t r ieved from the stack table

and inserted in routine entry and process i n i t i a l i z a t i o n inst ruct ions. At the con-

clusion of the pass, the constants table contents are appended to the code.

* er ror messages *

This pass pr ints error messages, i f any, on the program l i s t i n g . Ear l ie r passes, when-

ever they encounter an er ror , output an error operator with i t s arguments the pass

number and error message number. This insures that er ror messages from d i f f e ren t passes

w i l l be l i s t ed in order of l ine number. Code assembly then processes error operators

and pr ints the associated error messages. Error messages are in plain tex t . They

consist of the source l ine number and a short explanatory message.

11. Interpass Topics

* overview *

Several i n te res t i ng topics have been l e f t out o f the compiler descr ip t ion by passes.

These topics spread over several compiler passes and are best described in a separate

chapter. Constants handl ing, the case statement, and the wi th statement are included.

These topics have been mentioned in previous chapters, but not completely or coherent ly .

Their treatment here shows how a number o f complicated constructs may be handled in

stages.

* constants handl ing *

Anonymous constants are parsed and t h e i r values inserted in the in termediate code by

l ex i ca l analys is . Anonymous constants f a l l i n to f i v e categor ies: in tegers , rea ls ,

characters, s t r i ngs , and sets. In teger and character constants are short constants.

They w i l l be incorporated in the code as arguments. Real, s t r i n g , and set constants

are lon 9 constants. They w i l l appear in a separate constants tab le . Only one set

constant ex i s t s , the empty set. The empty set is the f i r s t en t ry in the constants

tab le .

Named constants are given values or constants tab le displacements in name ana lys is ,

the t h i r d pass. Name analys is replaces short named constants by t h e i r values and long

named constants by t h e i r displacements. So constant dec lara t ions are the sole respons-

i b i l i t y of name analys is . Al l o ther dec larat ions are handled by dec lara t ion analys is .

Constant references are included in the commands by body analys is as part of i t s op-

erand addressing r e s p o n s i b i l i t y . A short constant is referenced by a "push const (va l -

ue)" i n s t r uc t i on , and a long constant is referenced by a "const addr (displacement)"

i ns t ruc t i on .

* the case statement *

Case labels are constants; they are handled by name analys is . That pass co l lec ts a l l

the case label values, assures they l i e in the range [0, 127], and insures there are

no ambiguous labe ls . A 128-element array is used for these operat ions. At the con-

c lus ion of the case statement, a t rans fe r vector is placed in the output code. This

t rans fe r vector has (maximum - minimum + 1) en t r i es , where [minimum, maximum] is the

range of case label values. The t rans fe r vector is indexed by case label values; i t s

53

entr ies are the jump labels for the ind iv idual cases.

case x of 3: SI; 5: S2 end

For example, the case statement

would appear in the name analysis output as the case statement code followed by the

t ransfer vector (I I , in, 12). Label ' I I ' is the jump label of statement 'S I ' . Label

' l n ' is the jump label of the end of the case statement. This is because no case exis ts

for 'x = 4 ' , so the case statement w i l l be skipped. Label '12' is the jump label of

statement '$2 ' .

Body analysis performs case label type checking to insure that the case selector ex-

pression and case labels are of compatible type. Since name analysis co l lects case

labels at the end of the statement, i t places special type checking operators in the

output. These operators take as the i r argument the name index of the case label type.

Body analysis uses these operators to compare the case label types with the type of

the selector expression.

* the with statement *

Concurrent Pascal's with statement may name a system component or a record var iab le.

This introduces the entry names or f i e l d names into the scope at that point . From

the point of view of name analysis, no real di f ference exists between these two cases.

An example for a record var iable might be:

v a r

record var iab le:

record

f i e l d : integer

end;

begin

with record var iable do

f i e l d := 0

end;

The semantics of the with statement are simple. The address of the with var iab le is

evaluated and treated as a temporary pointer unt i l the end of the statement. This

temporary is then used to qua l i fy the entry or f i e l d names in the body of the with

statement. This can be stated in high level terms. Let the expression

p reef v

mean "assign the address of var iab le 'v ' to pointer '~ ' " Then the with statement

example above is treated as

54

with temporary refrecord variable do

temporary@.field:= O.

Name analysis translates the or ig ina l with statement format to th is new format. I t

e x p l i c i t l y introduces a declarat ion of the with temporary, and i t qua l i f i es entry or

f i e l d names with the newly created temporary.

Declaration analysis processes the declaration of the with temporary. This is an ex-

ample of a declaration inside the body. Declaration analysis assigns a displacement

to the with temporary. This displacement is the stack displacement where the with

variable address is evaluated. At the end of the with statement, the temporary is

popped from the stack.

Body analysis generates the commands to evaluate the address of the with variable.

Inside the body of the with statement, i t generates commands to push the with temp-

orary on the stack wherever a qualified name appears.

* remarks *

Altogether these are good examples of how semantic analysis can be sp l i t over several

different passes. Each pass performs a well-defined subset of thesemantic analysis

process. All this is done with no pass having a complete symbol table. Context a-

wareness is s t r i c t l y l imited to the immediate program neighborhood. This requires a

systematic design of the entire compiler, with a clean development of each pass and

i ts interrelation to other passes.

12. The Virtual Machine

* introduction *

The Concurrent Pascal compiler generates code for an ideal machine. The transportable

compilers developed by Wirth's group at the Technical University (ETH) in Zurich com-

pi le code for an ideal machine. Concurrent Pascal's ideal machine was designed by

Per Brinch Hansen. The following discussion is adapted from his description of the

machine. This ideal machine is simulated by the real machine, in our case a Digital

Equipment Corporation PDP-11/45. Certain peculiarit ies of the real machine (e.g. pro-

gram relative addressing) appear in the final code. These peculiarit ies are intro-

duced during the code assembly phase of compilation. For this reason, the machine is

best described at the point just before code assembly when the intermediate language

is s t i l l adaptable to general machine architectures. This then is a description of the

machine as viewed by semantic analysis. The machine instruction set is the command

set generated by the last semantic pass, body analysis. The two-pass code assembler

may be viewed as a postprocessor that adapts this virtual machine code to particular

architectures.

The v i r t u a l machine is an ideal stack machine. No assumptions are made about p a r t i c u l a r

reg i s te rs in any real machine. The v i r t u a l i n s t r u c t i o n set may be assembled in to real

code for any machine on an i ns t ruc t i on by i n s t r u c t i o n (contex t f ree) basis .

* data types *

The v i r t u a l machine recognizes f i v e types o f data:

1) byte - used to represent a s ing le charac ter w i t h i n a s t r i n g ;

2) word - used to represent enumeration types, queues, and processes; must be one or

more bytes in leng th ;

3) real - used to represent a r e a l ; must be one or more words 4n length ;

4) set - used to represent a set ; must be one or more words in leng th ;

5) s t ruc tu re - used to represent a s t ruc tu red type, c lass , or moni tor .

The f i r s t four data types are f i xed length , wh i le the s t ruc tu re type is v a r i a b l e length.

Byte data represents characters w i th in s t r i n g s . The representa t ion is ASCII. Word

56

data represents enumeration types. Programmer defined enumeration types are represented

by consecutive integers O, l , 2, . . . Integer and real representations are determined

by the particular machine. Sets are represented as b i t strings. The virtual machine

uses fixed length sets. Program components are represented by indices l , 2, 3

defined during system in i t ia l i za t ion . The index zero represents an uninit ial ized com-

ponent. Queues contain process indices. An empty queue contains index zero.

* data addresses *

The data store contains a constant segment, a stack, and a heap. Addresses contain

a mode and a displacement. Modes and displacements were described in the discussion

of declarat ion analysis. The apparent in t r i cacy of displacement assignment ac tua l ly

resul ts from a very simple data segment design. The data segment of a component or a

rout ine has the same structure. This st ructure is diagrammed below:

-4

-2

~ 0

2

4

temporaries

var iables

l ine number or

component index

parameters

function value

T
stack

growth

Figure: A data segment.

The base address of a data segment div ides the var iables from the parameters. Com-

ponent data segments have t he i r address shi f ted by the var iab le length, or component

o f f se t , in order to point to the base locat ion. The base locat ion contains e i ther the

l i ne number at the point of ca l l fo r rout ines, or i t contains the component index fo r

system components. The parameter port ion may contain more than jus t the e x p l i c i t par-

ameters. This allows the rout ine entry to address global component var iables. A ca l l

of a sequential program places a l i s t of in ter face rout ine addresses on the stack be-

fore the e x p l i c i t parameters. Af ter the e x p l i c i t parameters, the address of the se-

quential code store is placed on the stack.

5?

* program addresses *

Program addresses are represented by integer labels. A label is either a jump label

or a routine label. Jump labels are labels of points within the body of a routine.

Routine labels are the labels attached to the beginning of a routine body. All ref-

erences to jump labels are within a routine. All references to routine labels are

between routines.

* the virtual commands *

A virtual command consists of one or more integers. The f i r s t integer is the operator.

Subsequent integers, i f any, are the arguments. For example, the f ie ld command takes

a displacement as its argument. The top stack location contains an address and the

f ie ld command increments the address by the displacement. The instruction set is re-

markable in that i t is unremarkable. I t implements Concurrent Pascal with a simple

set of commands for manipulation of a stack machine.

13. Implementation

* history *

The Concurrent Pascal compiler was inspired by the Gier Algol compiler [5] of thirteen

years ago. That ef for t showed that compilation can be made simple and eff ic ient by

using a large number of small passes. The Gier compiler used nine passes. Lexical

analysis used two passes, syntax analysis used one pass, semantic analysis used three

passes, and code assembly used three passes.

Additional inspiration for this compiler was obtained from the ten-years' old Cobol

compiler for the Siemens 3003 [4]. This was a ten-pass compiler. Lexical analysis

used one pass, syntax analysis used one pass, semantic analysis used four passes, and

code assembly used four passes.

Both the Gier and Siemens compilers were written in assembly language and generated

code for the real machine. This accounts for differences in code assembly between

these compilers and the Concurrent Pascal compiler. The small size of the Gier com-

puter required that the compiler separate ident i f ier matching from the balance of lex-

ical analysis to obtain two passes. For syntax analysis, both previous compilers used

the tradit ional transition matrix technique (instead of recursive descent).

* testing *

The Concurrent Pascal compiler transmits intermediate code between i ts passes. As in

the Gier and Siemens compilers, the sole diagnostic information is a l is t ing of the

intermediate and final code. I f the compiler crashes or loops endlessly, the operating

system ensures that al l intermediate code up to the point of fai lure is l isted. This

l i s t ing is controlled by an option switch within the compiler.

The compiler was developed using a set of systematically developed test cases for each

pass. These test cases are Concurrent Pascal programs that make each pass generate

every possible operator and execute every statement at least once. At least two test

programs are written for each pass. One program is entirely correct for the pass; the

other program generates every possible error in the pass. ~ Pass I is tested f i r s t .

This pass, lexical analysis, requires a special test mechanism. Since lexical analysis

l i s ts the source program, the l is t ing of the f i r s t intermediate code must be inter-

leaved with the source l is t ing. Lexical analysis buffers test output between source

lines. This alternates source lines with their intermediate code.

59

Once the f i r s t pass is complete, the second pass is tested, and so on. As each pass

is f i n i shed , the next pass is added. This al lows a l l t es t programs to be in source

t ex t form, and i t tests a l l interpass assumptions. At each phase of the tes t i ng a l l

t es t programs are used, not j u s t the tes t programs fo r the new pass. General ly when

a new pass is f i r s t added, a l l t es t programs w i l l f a i l . Several o f these f a i l u r e s

w i l l po in t out d i f f e r e n t bugs, and these may be discovered and corrected s imul tan-

eously. As tes t i ng progresses, more and more tes t programs w i l l be compiled w i thou t

f a i l u r e , u n t i l f i n a l l y a l l tes t programs compile successfu l ly .

The output of the test cases is the intermediate code. This is a sequence of integers.

Each integer is either an operator or an argument in the intermediate language. Op-

erators appearing on the test l i s t i ng are preceded by the l e t te r 'C', arguments are

not. The test output mechanism always remains in the compiler as an option. Once

released, users may use the test option i f they encounter a compiler fa i lure. The

l i s t ing can then be mailed to the compiler wr i ter for examination and correction. Com-

p i ler changes may also be tested with this mechanism.

Compiler f a i l u res during tes t ing are normal ly detected by runtime checks in the v i r -

tual machine. Three types of checking are performed. Var iant checking insures tha t

va r ian t f i e l ds are only referenced when the tag f i e l d contains an appropr ia te value.

This check is v i t a l during tes t ing o f name analys is where a large l inked s t ruc ture of

va r ian t records is created. In a sample o f 64 compi ler f a i l u res during tes t i ng , 18

f a i l u r e s , or 28%, were va r ian t er rors . Pointer checking insures tha t n i l po in ter va l -

ues are not used as references. Again th is is va luable in any pass with a l inked struc-

ture. In the sample of 64 f a i l u r e s , 13 f a i l u r e s , or 20%, were po in te r er rors . Range

checking insures that subscripts and case statement se lectors are w i th in range. In

the sample of 64 f a i l u r e s , 32 f a i l u r e s , or 50%, were range er rors .

The sample of compiler f a i l u res was taken a f t e r name analys is had near ly been com-

p l e t e l y tested. Name analys is resu l ted in the most va r ian t and po in te r e r rors . Prob-

ably over the en t i r e compi ler , the proport ions of v a r i a n t , po in te r , and range errors

were f a i r l y close. The value o f these checks is enormous. In the t o t a l sample o f 64

f a i l u r e s , on ly one f a i l u r e , or less than 2%, was an endless loop!

Systematic tes t ing of the compiler occupied three months, from October through December

of 1974. Actual PDP-11 machine t ime during tes t ing was a twenty-minute session, twice

da i l y . The compiler had been designed and wr i t t en during the summer, June through

September. I t was wr i t t en backwards, s ta r t i ng wi th the l as t pass.

80

* performance - space *

Before writ ing the Concurrent Pascal compiler, a small group f i r s t wrote a compiler

for the sequential Pascal language as defined by Wirth [7]. This was a six-pass com-

p i ler that generated a combination of real and virtual code for the DEC PDP-11/45. In

this compiler semantic analysis used two passes instead of three. Name analysis was

sp l i t between declaration and body analysis. This made the two semantic analysis passes

nearly equal in size, both far larger than the other passes. Declaration analysis con-

structed the symbol table for the entire program, and i t remained in the heap between

the two passes. A space requirement histogram for the six passes is shown next. The

space measured is the sum of the program and data space for the pass. The data space

is suff icient for self-compilation.

Total space requirement for six-pass compiler.

Pass Space requirement; * = 500 16-bit words.

1 (14k) ****************************

2 (13k) **************************

3 (22k) **

4 (23k) ***

5 (12k) ************************

6 (12k) ************************

Lessons learned from the six-pass compiler lead to the development of a to ta l ly new

design for a seven-pass Concurrent Pascal compiler. The key element in the new design

is the name analysis pass, an idea that goes back to the Gier Algol compiler [5]. The

space requirement histograms for the seven passes of the Concurrent Pascal compiler •

are shown next. The improvement in space u t i l i za t ion is str iking. The data space is

suff icient for compilation of the Solo System, Brinch Hansen's operating system wr i t -

ten in Concurrent Pascal. A sequential version of the Concurrent Pascal compiler was

constructed in one additional ~nth (January 1975). The total space required for self-

compilation of the sequential Pascal compiler is 256 words larger than the maximum

space shown for Concurrent Pascal.

61

Total space requirement fo r Concurrent Pascal compiler.

Pass Space requirement; * = 500 16-b i t words.

1 (12k) *

2 (9 k) * * * * * * * * * * * * * * * * * *

3 (1 6 . 5 k) *

4 (13k) *

5 (6.5k) * * * * * * * * * * * * *

6 (5.5k) * * * * * * * * * * *

7 (6 k) * * * * * * * * * * * *

Program space requirement fo r Concurrent Pascal compi ler.

(About I000 words of program are common I /0 rout ines in each pass.)

Pass Space requirement; * = 500 16-b i t words.

1 (5.5k) * * * * * * * * * * *

2 (6.5k) * * * * * * * * * * * * *

3 (9 k) * * * * * * * * * * * * * * * * * *

4 (7 k) * * * * * * * * * * * * * *

5 (5 k) * * * * * * * * * *

6 (4 k) * * * * * * * *

7 (4.5k) * * * * * * * * *

The program space requirements r e f l e c t the choice of compi le-t ime opt ions chosen fo r

the pass compi lat ions. Line numbers may o p t i o n a l l y appear in the code, as may va r i an t ,

po in te r , and range checks. A l i n e number always appears fo r each rout ine even i f the

l i ne number opt ion is turned o f f . A range check is b u i l t i n to the indexing and case

jump ins t ruc t ions . Turning o f f the check opt ion w i l l not remove subscr ipt and case

se lec tor range checks. With th is in mind, a l l passes were compiled wi thout l i ne numbers.

All passes except Pass 1 were compiled with checks. The importance in the choice of

compiler options is shown next. The program space for each pass is shown for the three

cases (1) with l ine numbers and with checks, (2) without l ine numbers but with checks,

and (3) without l ine numbers and without checks. On the average, case (2) is 75% the

size of case (1), and case (3) is 70% the size of case (1).

Program space requirements for Concurrent Pascal compiler.

First l ine with l ine numbers and with checks.

Second l ine without l ine numbers but with checks.

Third l ine without l ine numbers and without checks.

Pass S~ace requirement; * = 500 16-bit words.

(7000) * * * * * * * * * * * * * *

(5300) * * * * * * * * * * *

(5000) * * * * * * * * * *

(8500) * * * * * * * * * * * * * * * * *

(6600) * * * * * * * * * * * * *

(6300) * * * * * * * * * * * * *

(11300) ***********************

(8800) ******************

(7800) * * * * * * * * * * * * * * * *

(8800) ******************

(6800) **************

(6000) * * * * * * * * * * * *

(6800) **************

(5000) **********

(4800) **********

(5800) ************

(4000) ********

(4000) ********

(6500) *************

(4600) *********

(4300) *********

63

Pass data f o r comp i l a t i on o f the Solo System may be est imated as f o l l o w s :

Data space requi rement f o r Concurrent Pascal compi le r ,

Pass Space requ i rement ; * = 500 16 -b i t words.

1 (7 k) * * * * * * * * * * * * * *

2 (2 .5k) * * * * *

3 (7 ,5k) * * * * * * * * * * * * * * *

4 (6 k) * * * * * * * * * * * *

5 (1 .5k) * * *

6 (2 k) * * * *

7 (2 k) * * * *

Common data f o r a l l passes (1 6 - b i t words)

Cal l f o r Solo command i n t e r p r e t e r

Command i n t e r p r e t e r data

Cal l o f compi le r d r i v e r

Compiler d r i v e r data

Cal l o f a pass

Pass code bu f fe rs

Tota l

100

370

100

100

100

514

1284

Pass I data I 1 6 - b i t words)

Hash t ab le - 7 words * 751 en t r i es

Other va r i ab les

Fixed data t o t a l

Local data

Long i d e n t i f i e r s - 6 words * 17 en t r i es

Dynamic t o t a l

Fixed + dynamic t o t a l

5257

230

5487

25

102

127

5614

84

Pass 2 data (16-b i t words)

Constant keys sets - 8 words * 66 sets

Other variables

Fixed data to ta l

Recursion - 22 words avg. * 30 levels

Fixed + dynamic to ta l

Pass 3 data (16-b i t words)

Operand stack - 3 words * 151 entr ies

Case label array - I word * 128 entr ies

Update stack - 4 words * 100 entr ies

Display - 4 words * 15 entr ies

Spell ing table - 3 words * 701 entr ies

Miscellaneous

Fixed data to ta l

Named constants - 4 words * 66 entr ies

' Types - 4 words * 65 entr ies

Fields - 7 words * 19 entr ies

Parameters - 4 words * 170 entr ies

Varibles - 4 words * 123 entr ies

I n i t i a l statements - 4 words * 34 entr ies

& simple routines

Entry routines - 7 words * 89 entr ies

Inter face routines - 3 words * 46 entr ies

Standard entr ies - 4 words * 39 entr ies

With temporaries - 4 words * 16 entr ies

Local data

qz,namic data to ta l

Fixed + dynamic tota, l

Pass 4 data (16-b i t words,)

Noun table - 1 word * 701 entr ies

Operand stack - 1 word * 101 entr ies

Display - 3 words * 16 entr ies

Miscellaneous

Fixed data to ta l

Symbol table 7 words

• 65 types

• 19 f i e l ds

"170 parameters

528

10

538

660

1198

453

128

400

60

2103

101

3245

264

260

133

680

492

136

623

138

156

64

50

2996

6241

701

101

48

116

966

455

133

1190

* 123 variables

* 123 routines

* 29 standard entries

* 16 with temporaries

Local data

Dynamic data total

Fixed + dynamic total

85

861

861

203

112

25

3840

4806

Pass 5 data (1 6 - b i t words)

Standard operands - 9 words * 5 en t r ies

Stack l i nks - 3 words * 3 en t r ies

Miscellaneous

Fixed data t o t a l

Stack en t r ies - 12 words * 5 en t r ies

Local data

Dynamic data t o t a l

Fixed + dynamic t o t a l

45

9

111

165

6O

25

85

25O

Pass 6, 7 data ,(16-bi t words)

Miscellaneous

Fixed data t o t a l

Local data

Labels - 92 labe ls

Blocks - 123 blocks

Large constants - few

Stack tab le - 123 blocks

Dynamic data t o t a l

Fixed + dynamic t o t a l

29

29

15

101

202

101

202

621

65O

Total compi ler data space (16 -b i t words)

Common

Pass I

Pass 2

Pass 3

Pass 4

Pass 5

Pass 6,
Total

1300

5600

1200

6200

4800

250

650
20,000

66

Total compiler program space (16-bit words)

Common 1000

Pass 1 4000

Pass 2 5600

Pass 3 7800

Pass 4 5800

Pass 5 4000

Pass 6 3000

Pass 7 3600

Total 34,800

Excluding a common prefix of 70 lines, and excluding common I/O routines of 150 lines,

the length in lines of each pass's source text is:

Concurrent Pascal Cpmpiler source text length (l ines).

Common 220

Pass 1 768

Pass 2 1079

Pass 3 1515

Pass 4 1182

Pass 5 943

Pass 6 863

Pass 7 912

Total 7482

* performance - time *

The speed of the original six-pass compiler running under Brinch Hansen's Basic System

is shown next. To estimate the internal speed of the compiler, a dummy six-pass com-

p i ler was measured that performed only the I/O operations of the real compiler. All

times were measured with a stop watch. The average source l ine length for the test

program is 25 characters. Pass 5 of the six-pass compiler served as the test program.

Six-pass compiler speed

Null program time

Pass 1 internal speed

Compiler internal speed

Pass 1 overall speed

11 sec

2035 char/sec

678 char/sec

1221 char/sec

Compiler overal l speed

87

480 char/sec

A s im i l a r experiment was performed for the Concurrent Pascal compiler running under

Brinch Hansen's Solo System. The average source l i ne length for the tes t program is

20 characters. The Solo System i t s e l f served as the tes t program.

Concurrent Pascal compiler speed

Null program time

Pass I internal speed

Compiler internal speed

Pass I overal l speed

Compiler overal l speed

7 sec

2318 char/sec

843 char/sec

605 char/sec

236 char/sec

The Concurrent Pascal compiler is 24% fas ter i n t e rna l l y than the six-pass compiler,

This combines wi th a 27% reduction in space required fo r the Concurrent Pascal compiler.

The poor showing for overal l speed in the new design re f lec ts two factors. One fac tor

is the greater amount of I/O in the seven-pass compiler due to the addi t ional pass and

to d i s t r i b u t i o n of the symbol table in the intermediate code. The size of the output

code fo r each pass of the two compilers fo r t he i r respect ive tes t cases is :

Pass six-pass Concurrent

i 8,205 10,368

2 8,240 10,880

3 6,728 10,880

4 7,474 15,744

5 6,060 9,344

6 6,075 5,504

7 0 5,248

Total 42,782 67,968

The sizes of the test cases are nearly the same whi le the intermediate code size is

great ly expanded in the new compiler. Another fac tor inf luencing the overal l speed

d i f ference is the re la t i ve I /0 e f f i c iency of the Basic System (wr i t ten in assembly lang-

uage) and the Solo System (wr i t ten in Concurrent Pascal). This comparison has not been

undertaken.

B8

* f i le system *

The Concurrent Pascal compiler relies heavily on an efficient implementation of sequen-
tial I/O. In the performance evaluation, approximately three-quarters of total elapsed
compile time is I/O time. A rough estimate would divide I/O time equally between CPU
time for I/O administration and physical wait time for the disk.

The compiler uses six separate fi les, each of which is sequential.
fil ing system is shown next:

I INT. CODE1 ~ I INT. CODE I
j

SOURCE -I LISTING

I PASS CODE 1 F I FINAL CODE

A diagram of the

Compiler f i le system

The performance of a many-pass compiler is greatly affected by the performance of se-
quential I/O. The null program time is largely pass loading time. The speed of Pass 1
is largely the speed at which the source f i le can be read. The speed of later passes
is largely the speed the intermediate code files can be accessed.

* further work *

The performance of this system can be greatly improved with l i t t le effort. Generating
code in byte-length units instead of word-length units would shrink the code size by
nearly half. Placing the 1-K word virtual machine interpreter into read-only memory
would double its speed. This system uses the slowest main memory and slowest disk manu-
factured for the PDP-II/45. Peephole code optimization could easily be added to the
small code assembly passes.

The removal of classes from sequential Pascal was a mistake. The compilers would prob-
ably be smaller and simpler i f they were written with classes. The class concept simp-
lif ies the handling of data structures by hiding their implementation details. This
permits the use of classes as abstract types. Another use of classes is to collect
routines into manageable groups. A single routine of 100 statements is difficult to
understand; a single program of 100 routines is even worse. Classes impose a hierarchy
on routines just as routines impose a hierarchy on statements. Unlike routines, classes
may be nested and the program built up in "layers". Concurrent Pascal's scope rules

69

turn th is mul t i leve l hierarchy into only two levels at runtime.

This pro ject shows that a very simple machine is ideal fo r Concurrent Pascal. Optimi-

zat ion improves the match between language and machine. Assembly languages and real

machines are so c losely matched that they are very e f f i c i e n t . Using these same machines

wi th high- level languages can resu l t in a mismatch and loss of e f f i c iency . Optimizing

compilers may correct th is at some expense. I bel ieve a be t te r way to opt imize is to

restore the match between language and machine. The language syntax must simply ex-

press the intended semantics. These semantics should be simple to understand and im-

plement. And they should read i ly map onto the ins t ruc t ion set of an ideal machine.

14. References

[1] Brinch Hansen, P.
perience, Vol.6, (April-June 1976), 139-205.

[2] Brinch Hansen, P. The programming language Concurrent Pascal.
on Software Engineering 1, 2 (June 1975), 199-207.

[3] Brinch Hansen, P. and House, R. The Cobol compiler for the Siemens 3003.
6, 1 (1966), 1-23.

[4] Knuth, D. Structured programming with ~ to statements.
(Dec. 1974), 261-301.

[5] Naur, P.

145-166.

[6] Wirth, N.

[7] Wirth, N.

Papers on the Solo Operating System, Software--Practice and Ex-

IEEE Transactions

BIT

Computing Surveys 6, 4

The design of the Gier Algol compiler. BIT 3, 2-3 (1963), 124-140 and

The design of a Pascal compiler. Software I (1971), 309-333.

Systematic Programmin 9. Prentice-Hall, Englewood Cl i f fs , N.J., 1973.

APPENDIX

Definitions

active type:

Concurrent Pascal - Syntax Graphs

type containing class types, monitor types, process types, or queue types.

active variable: a variable of active type.

argument: an expression passed in an argument l i s t .

arithmetic type: an integer or real ~ange.

component parameter: a parameter to a system component type.

component variable: a variable declared at the beginning of a system component type.

constant parameter: a parameter defined without the vat keyword.

entry routine: a procedure entry, function entry, or i n i t i a l statement.

index type: a symbolic scalar (including boolean), integer, or character type.

large type: array or record type.

parameter: an ident i f ie r declared in a parameter l i s t .

passive type: a type not containing class types, monitor types, process types, or queue

types.

passive variable: a variable of passive type.

queue variable: a variable of a type containing a queue type.

routine: a procedure, function, program, or i n i t i a l statement.

scalar type: a real or index type.

small type: a scalar type or set type.

72

s t r ing type: an array of characters.

system component: a var iab le of type class, monitor, or process.

type compa t ib i l i t y :

I)

2)

3)

4)

5)

universal type:

two types are compatible i f

they are defined by the same type d e f i n i t i o n ; or

both are subranges of a s ing le type; or

they are s t r ing types of the same length; or

they are set types whose members are of the same index type; or

they are set types, one (or both) of which is the nul l set type.

a parameter type defined with the univ keyword.

var iab le parameter: a parameter defined with the var keyword.

Syntax and Rules

The rules are preceded by a parenthesized number that refers to the compiler pass re-

sponsible fo r ru le enforcement. The numbers and the i r associated passes are:

1. lex ica l analysis

2. syntax analysis

3. name analysis

4. declarat ion analysis

5. body analysis

6. code select ion

7. code assembly

73

Pass ! z input syntax description

i. D r o = r a m

---~block--b.

2. blpck

--~declarations --~body---~

. de¢~aratiQns

.~constant ,b~
declarations If | .

ll~ariable ~L~routine
I declarations declarations

type J
declarations--

L

F

4. constant declarations

-4~const ~id-~= -~constant--~; -~

5.

6.

type declarations

--,-t~pe~id--~= -Ptype-~ ;-~

(3) The type definition may not reference its own

type identifier.

typ9

~-enumeration type

subrange type -I

J -~set type
-I

~-array type q
h

-~record type

,component type ~I

(3) The id must be a type identifier.

74

7. e~umeration type

--~(~id list ~)~

(4) No more than 128 values may be enumerated.

(4) It may not be defined within a record type.

8. subrange tFpe

--b constant -~b °o --~ constant ~

(3) The lower bound must not exceed the upper bound.

(3) The constants must be of compatible index types.

9. set type

-4-set of~type~

(4) The member type must be an index type.

(4) The bounds of integer member types must lie in

the range 0..127.

10. array type

"-~ array-~(-~Y~ey.)-'o_!f--type--~

(4) The subscript types must be index types.

(4) String length mod word length must be zero.

11. recor~

-'~ record~id list~:~type~end~

75

12. component type

class
monitor-~parm list-~ ;~ +-~integer~block
process

(4) A system component type may only be nested

within another system component type (but not

within a record or routine). The entire program

is an implied process type.

(4) The "offset" of system component types must be

accumulated and associated with the type.

(4) Stack lengths may only be specified for processes.

13. variable declarations

-----var ~ i d list"~:-'~type-'~; "~
(4) Entry variables must be passive component

variables of class types.

(4) Active variables must be component variables.

(4) Queue variables must be monitor component

variables.

(4) Process components must be component variables of

the initial process.

14. i_~d list

15. routine, declarations

~;;-f-procedure,, deolaration~

function declaration ~
program declaration

(4) Routine declarations cannot be nested.

76

16., procedure declaration

~procedure~id-~parm list-~;-pblock~

17. function declaration

.._~function~'~id..~parm list--~:-~id-~;-~block--~
(3) The last identifier must be a type identifier.

(4) Function types must be index types.

18. uro~ram declaration

---~pro~ram-~id~parm list-~;[~entry -~id list-~; - ~

(3) The interface must name only entry routines

within the same component type as the given

program. These may be forward references.

() The last parameter is assumed to be a passive

code variable.

19. uarm list

(3) The last identifier must be a type identifier.

(4) Universal types must be passive.

(4) Component parameters must be of small type or they

must be monitor components, with the exception

class components may be parameters of other class

components.

(4) Component parameters must be constant parameters.

(4) Function parameters must be constant parameters.

(4) Program parameters must be of passive type.

(4) Entry routine parameters may not contain queues.

20. body

--~begin--~stat list-4~end ~

77

21. stat list

22. stat

., j, ,,i

---compound star

-~-if stat

-~case stat

~while stat -~
~repeat stat

7~l~t~a t ~

[I
-~init stat--~

23. assignment

~variable--~:= ~expr~

(5) The variable must be passive.

(5) The variable may not be a constant parameter.

(5) The types of the variable and the expression must

be compatible.

(5) The variable may, not be an entry variable outside

the present component.

24. procedure call

~ var iab i e ~."'~id-~ar g list~

(3) A routine may not reference itself.

(3) A component type may not reference its own entry

routines.

(5) Process entry procedures may not be referenced.

78

25. ark list

~(~expr ~) ~'~

(3) The arguments must correspond in number to the

parameters.

(5) The arguments must correspond in type to the

parameters, with the following exceptions:

(5) Arguments corresponding to parameters of

universal type may be of any passive type

of the same size as the parameter.

(5) String arguments corresponding to constant

non-universal string parameters may be

any length.

(5) Arguments corresponding to variable parameters

must themselves be variables.

26~ compound stat

begin-~stat list-~gnd---,-

27. ~ stat

--~ if~ expr --then ~sta tUelse -~ sts't'~
(5) The expression must be boolean.

2~. case stat

__ case-,.expr,of~constant~:-~stat~end ~

1 "~ '~ --

(3) The case label constants must be unique.

(3) Integer case labels must possess values in the

range 0..127.

(5) The selector expression and the ease label

constants must be of compatible index type.

79

29. wh..ile stat

while ~expr ~do ~stat

(5) The expression must be boolean.

30. repeat st at

~repeatJJ-stat list~until-,~expr~

(5) The expression must be boolean.

31. fo~ .~.tat

to
--~ £or ,id-~ : : ~expr 4 --~xpr. do -~stat--~

~,,,gwnto"

(3) The control variable may not be a record field or

a function name.

(5) The rules governing assignment apply.

(5) The control variable must be of index type~

32. cycle star

~c~cle--~stat list--~end--,-

33. with stat

W.~.th ~var iable ~d__q-- s tat ~

(2) The use of more than one with variable is

equivalent to the use of nested with statements.

(3) With variables must be of class, monitor,

or record type.

80

34. ,init star

-- init ,~variable-~arg list~

(5) System components may only be initialized within

the component in which they are declared as

variables (but not where they are declared as

parameters).

(3) The variable must be a system component variable.

35- expr

sexpr~expr op-~sexpr

(5) = and <> require compatible passive operands.

(5) <= and >: require compatible small or string

operands.

(5) < and > require compatible scalar or string

o p e r a n d s .

(5) i n r e q u i r e s an i n d e x l e f t o p e r a n d and a s e t r i g h t

operand whose member type is compatible with the

left operand.

35. sexpr

unary 'o~p~term ~sexpr op ~term i

(5) Unary operators (+, -) require arithmetic

operands.

(5) Binary + requires compatible arithmetic operands.

(5) Binary - requires compatible arithmetic or set

operands.

(5) or requires compatible boolean or set operands.

81

37.

38.

term

~ factor ~term op~factor ~

(5) * requires compatible arithmetic operands.

(5) / requires real operands.

(5) div and mod require integer operands.

(5) and (&) requires compatible boolean or set

operands.

factor

--constant I "

-~ variable

-~ function call --~
-m- (-~ expr --~) ----~

I
4- not -~factor--~

(5) n~ requires a boolean operand.

(5) Set member expressions must be of compatible

index type.

39. function c~ll

~variabie~.~id~arg list ~

(3) The identifier must be a function identifier.

(3) A routine may not reference itself.

(5) Process entry functions may not be referenced~

82

40.

id

variable

~ id4--. ~ I
J

(3) Only class, monitor, or record variables may be

qualified.

(3) The field or entry name must exist.

(3) Only array variables may be subscripted.

(5) The subscript expressions must be compatible with

the subscript types.

41~ constant

....... i string ---

U-~scalar constant --~
(3) The identifier must be a constant identifier~

42. i_~d

~letter ~letter~

~ digitq--

43. string

,~character ~,

~(:-~integer-~:)

(I) The integer must lie in the range 0.4127.

(I) The string length mod word length must be zero.

44. scalar constant

/rreal constant~

-~index constant

83

45. real constant

_..~digit L-_digit ~e~_~digit .__g-._-~
sequence sequence I ~ jsequence ~

(I) The real constant must be representable on the

machine.

46. digit sequence

47. index constant

, ~integer "~

~char constant j

--~digit sequence ~

(I) The integer value must be representable on the

machine.

49. char constant

~ character . .

(:-~integer-~:)

(I) The integer value must lie in the range 0..127.

50° separator

~ space .~

end of line

"--comment~"

I) An arbitrary number of separators may be inserted

between any two symbols except within word

delimiters, identifiers, constants, and the

composite operators:

.. := >= <= (. .) <>

84

P~SS ~ m inuut syntax description

I. program

-~block-~ e~-~eom~

2. bloq k

--~declarations--~body~

. declarations

constant
F declarations~

• variableroutine
. ~declarations ~rdeclarations

k type .I |
declarations~

4. constant declarations

--~constri_~d(spix)-~eg-~constant-,~semi~olon ~

5. type declarations

--~ type ~id (spix)-~e_.q-~type 4- semicolon q -~

6. type

-- id(spix) ' ~""

--~enumeration type

--D- subrange type

-~set type ---I

--~array type*

~,~record type

--,-component type 7

7. enumeration ~ype

--~open-,-id list-~-close

85

8. s~.brang e ~Ype

--~constant-,-up to--constant--,"

9. set type

-4~et o__ff-~-type ~

10. array type

--~ array *sub,type ~us -- of -~type ~

\comma -

11. record t~pe

record ~id list-~colon-~type~end -

semicolon - ,, ,, , ,, ,

12. comPonent t~pe

class ..
monitor~-parm list~semicolon-[~plus~integer~block --~"
process

13. variable declarations

Y~r ~ i d list--colon-~ty.pe-,-semico!Qn --~

14. id list

~id(spix) ~

comma --~

15. routine declarations I semicolonq-procedure declaratio~
semicolons--function declaration

program declaration

16. procedure declaration

-,-Drocedure~~id(spix)-,-parm list~semico~..9.n~block-,-

86

17. functio n declargtion

-~function~i_~d(spix)-~parm list~-colon-~id(spix)-~

[--semieolon blOCk----
18. Dr~ram declaration

--,-pro~ram~i__dd(spix)-~parm list-~semicolon-l~
[~entry-~-id list~semicolo~

19 ~ D~rm

-~open ~ i d list ~colon ~ i d (spix) ToIose --,-

semicolon

20. body

----b~gin-4bstat list-,-en__~d--~

214 stat list

22. st~t

-,-assignment------4

-~-procedure call---~

-~compound stat---~

~if stat

~case stat =

-,-while stat

----repeat stat------~

---for stat

-,-cycle stat-------~

-,-with stat--------~

-J-init star

87

23. assignment

-~.variable-~-becomes-~-expr~

24. procedur@ call

~variable-P-arg list~

25. ar~ ~is t

]~ o~n ~expr ~close ~

~-~cPmmaq

26. compound statement

-~ begin-~stat list-~end---~

27. i_~f stat

--~ if~expr~then-~stat4~else-~stat_tab

28. .c.ase ~tat

.cas e -~expr -~ o__~f ~con s tanS c o 1 on ~u. s t a t ~en d -~

F c°mma I

semicolon ~ --

29. while ,star

--~hile-~expr--~do-4~stat~

30. repeat stat

-~-~-stat list-~until-~expr--~

31. for stat

-~ _fQr ~ i_~d (spix) -~ becomes -pexpr-P t_~o ~expr-~d_~o ~sta t~
,downto

32. cycle ,stat

cycle-~stat list-D-end

88

33. with star

--~ with~ariable ~do -Ps tat --~

"' comma ~--

34. init stat

--~ init~variable--~arg list~

-- comma - --

35. expr

--~sexpr~expr op-~sexpr ~

e xpr oo: e__q n_ee l e g.e It ~ i__nn

36. sexpr

plus "N~
(minus~term~sexp r ° P-~t e rm 7~c---~

sexpr oP: plus minus or

37. term

~factor~term op--~factor~

term o_2: star slash div mod and

38. factor

rconstant '

~variable ~

~function call

~open~expr~close~

not~factor

~comma

89

39. function call

~variable-~Parg list~

40. variable

i d(spix) , ,

~id (spix)~-period ~

~-..b U~ e x Pr~,s u b 4~-A

~commal

41. constant

__~(spix) , 1
string(length)~

scalar constant-J

44. scalar constant

r e a l

index constant ~

47. index constant

~ integer(value)
'~char(value)

Pass ~ ~ input syntax description

I. ,program

component type-~eom

2. block

--P-declarations -4~body--~

90

3. declarations

constant
~ declarations- 1

~variable routine

b, e
declarations

4. constant declarations

~--~const id(spix)--~constant-~pconst def

5.

6.

type declarations

~ type id(spix)--~type--Ptype def~

typ9

type(spix)

-~enumeration type

-~ subrange type

-~set type

~array type

~record type

-~component type , ~I

L

7. enumeration type

__~ enum~enum id(spix)~enum def

8. subrangg type

~constant-4bccnstant--~subr d~f~

9- set type

~type-~set def ~

I0~ arra~ type

~type-~-type-4barray def

91

11. record type

- - - -~ rec~f ie ld_ id (sp ix)~-~ type-~f ie ld l i s t (number)Trec ' def--~
t-

12. component t~pe

clas__~s
parm list-~ monitor stack~lengthj~declarations --~

process

13. v~,r~able declarations

-]~yar id(spix) T~type-~(e)var list(number) ~

15. routine declarations

v proeedure declaration~

,,, ~functi°n declarati°n~

15.1 initial statement

~ inits def-~-body-~-inits end ~

16. procedure declaration

--~Droc(e)~id(spix)-~parm list-~proc(el ,def~block~Droc(e) end-~-

17. function declaration

-~func(e,),,,id(spix)-~parm list-t-,func{e~,,def(spix)-~block-~

~func(e 1 end-~

18. program declaration

~prog id(spix)-~parm list~interface~prog def --D~

92

18. I interface

--~intf [intf id(spix)J"

19. parm list

--P ~start (mode)~parm id(sPix !~ parm/univ type(spix)T pen~'l-~

mode is any of: class mode monitor mode

process mode proc mode proce mode func mode

funce mode program mode.

20. body

~body-~-stat~body....end~

22. s.tat

~assignment~ ~

~proc call~

.while stat ~ [

repeat stat~

23. assignment

-,-name-~-aname-,~expr~store~

24. proc call

~name-P-call name-a, arg list~call--m-

93

25. a,~,g list

~ar~ list ~,e,xpr-4-apg

27. if stat

~expr~falsejump(ll)-~-stat---]

~i m ~def label(ll)

u D def(12, ll)-~-stat-4~def label(12)

28. case sta_~t ,,,

--~ expr-)-case jump(10)~def case(li)-~

[~'consta"nt -~case ~stat)
L).]ump(ln) ~end case(10, in)

29. while stat

--~de.f lab.el(ll)-~expr-~.falsejump(12)--~

~stat-~.]ump def(ll, 12)~

30. repeat stat

~-i- def label(1)~stat~expr~false,]ump(1)-~

31. for stat

--o-name-D-address-~-expr--]

~for store-~-expr-D-for lim(ll, comp, 12)~

[~-stat-~-for up/down(ll, 12)~

32. cycle stat

-4~def label(1)-~-stat-D~jUmP(1)~

33- with stat

~with var-~name-~with temp-~sta t~with-~

34. init stat

name~,-init name~arg list~init~

94

35. expr

-4~sexpr~value-~sexpr-- expr op ~-~

expr op: it e q ~ le ne ~e i__nn

36. sexpr

uD1us

~term ~ k~alue ~term -~sexpr op~

~uminus/~

sexp, r op : plus minus o_2r

37. term

-~D fac tor~value ~fac tor-~-te rm op~

term op: .star slash div mod and

38. factor

--~,-name-~fname

-,-factor constant

-,-function call

-~expr

-4~factor -~'D.Qt

yexpr inci'ude l~ -~ e.mpty set -4.

factor constant: constant with an 'f' prefixed to

all terminal symbols.

39. fu.nction ca l 1

~name-,-function-~arg list-~call func

40 ~ name

I"
su.b .~ expr Jaddress

95

41. constant

~ cQ,P, stant(spix)-~
44. scalar constan,,~,

~real

L ex

47. in,,~e~ constant

< inte~er(value)~_~
char(value) /

Pass 4 - input ~ description

I. program

--~component type-~eom--~

2. block

-~declarations-J-body~

3.

5.

declarations

type variable routine
~declarations~declarations~declarations~

type declarations

~-~type-~type def~

6~

96

type

~typ~(noun) _T ~
-~enum def(noun, max) '"

-~subr def(noun, "range" noun, min, max) ---~

-~type~set def(noun)

-~type~type~ array def(noun)

-~record type

~-component type

11. record type

rec new noun(noun)T~type~fieldlist(number)~rec, de f(noun)~

12. component type

class
~parm list~monitor(noun, "initial star" noun)-- 7

process

~st'ack(length) ~declarati'ons

13. variable declarations

i--~new~n°un(n°un)T~type~(e)var~is~(number)~.

15. routine declarations

~procedure declaration~

function declaration~

~program declaration~
initial statement ~ !

15.1 .~n.itial statement

-~ inits def-~body~

164 procedure declaration

-~-parm list-~-proc{e~/{f} def(noun)-4~block ~

17.

97

function declaration

-~parm list~func{e}/{f) def("type" noun, noun)~block~

18. Program declaration

~parm list-~prog def(noun)~,fwd def(noun)-~

19.

20.

22.

23.

parm list
1

--~p~tart(mode)~new~~(n.umbernOUn(noun)~parm/univ)~ pend ~ type(n°un)~I~

~od~: .glass mode monitor mod~ .~rocess ~ode

r o ~ proce mode ~ funce mode

~Qgram mode.

bpdy

--~bQdy-~-stat-~body end---~

s t a___~t

~asslgnmen
proc call~

if stat -)

~case stat 4e---

while stat~--

repeat stat~-

for stat

i ycle stat,a~-
with stat

init stat -

assignment

|ra~dress

--~name ~ expr -~store

~result("type', noun)-J

98

24. proc call

name~interface~arg list~eall proc/prog-~

24,1 interface

---~intf~intf id(noun)~

25. arg list

~expr -~("parm" noun, "type" noun)~

27. if stat

--~ expr --~ false jump (11) ~ s ta t--].z

~def~ .~abel (11)

iump def(12, ll)-*-stat -~def label(12)

28. case stat

--,~expr---case jumD(lO~def label(li)-~.

[,-chk type("type" noun)~-,~stat-,Pjump(in) -

~case list(lO, min, max, 11, ... , in)---a-

29. while stat

def label(ll)-~expr ~falsejump(12)-~'stat-1"Jump def(ll, 12)~

30. repeat stat

-~def label(1)~stat~-expr~false.iump(1) -~

31. for sta~

-~- name -~ address -~expr--~

for @tore-~-expr-~for lim(ll, comp, 12)-~

~stat~-for up/down(ll, 12)~

32. cycle stat

--~def labe!(1)-I~stat-*~jump(1)~

99

33. with s~,at

~withvar ~name~with temp(noun)~stat~with-~-

34. init stat

-4~name-4~arg list-~m-init~

35. expy

~sexprL~-'value-~sexpr-~-expr o p ~

expr qp: l__tt e__q ~t le ne ~e i_~n

36. sexpr

~plus. , ,

-- term~ ~alue~.term-~sexpr op ,~

uminus

sexpr Q p: plus minus or

37. term

--~-factor Kvalue ~facto r -~term op

term op: star slash div mod and

38. factor

---m~name

-w-constant ~

-m~function call , , ,

-~-expr

-m-factor-~-nQt

~empty.,,set ~ exPr--~.include -~

39- function call

-a~name~function("type" noun)-~arg list~call func -a~

100

40. n~e

. ~routine(noun)'

~var("var" noun, "type" noun

~selection ~)~

~ subseripting
L--arrow("type" noun

40. I selection

<v~omp("var" noun, "type" noun~

rgomp("routine" noun)

40.2 Subscripting

--~a~dres~-~expr~sub("index" noun, "element" noun)--D-

41. c~nstant

~ i~dex(value, "type" noun)~

re al(displ) , ~

I string(length, displ) u,

Pas~ ~ ~ Input synt~ description

I. program

-~ body-~e~m(varlength)--w"

20.

body(mode, label, parm length, var length, stack length)

~stat-4P~ end --~"

22. star

101

~-- assignment

~--proc call

• - if stat

t- case stat ~----

e- while star

~- repeat stat ~-

~- for stat

• -- cycle statq---

~- with stat

~init stat

23. assignment

a..~dress

--'~operand< ~expr-~store ~
result(disp, kind, noun, length) /

24. proc call

~call proc

~operand~interfaoe~arg list~

~call prog(interface length)~

24. I interface

i ntf ibi(1) ~-~

25. ~ list

~ expr-~con'st/var/saveparm(mode, disp, context', I

kind, noun, length)-~

102

27. i ff stat

---~ expr -,- false.iumD(l I) --8-star --7

28. case s ~.~..~

~expr-,-case lump(10)~def label('li)--]
L~ehk type(kind', noun, length)~stat--m-iump(in) ~

~ease llst(10, mln, max, 11, ... , in)~

29. while stat

def label(ll)~expr~,-falsejump(12)~-stat~,-iump def(ll 12)~-

30~ repeat s.~at

-~-def ~abel(1)~-stat~expr~falsejump(1)-~,-

31. for stat

~ operand-,-addr~.~-~-expr--]

~f0r store-a-expr~ fgr lim(ll, disp, op, 12) .--].

[,-stat-~-for uD/down(ll, 12)--~

32. cycle stat

~def..~abel(1)-~-stat-,-jump(1)-~-

33. with star

--,-operand ~address~stat~ with-~-

34. init s~.a ~

~operand-m-arg list-~init~

35. expr

__~sexprLvalue~sexpr~,-expr op '~

expr Op.: l__%t e q gt le ne gg in

t03

36. sexpr

--=-term aXue ~term-~sexpr op

sexPr_ OP : Plus m,lnus o__~r

37. term

--i~factorJP-valu.e~factor-~term op~

term Dp..;. ~tar ~lash div mod and

38. factor

~operand '

function call ~It

~expr

r ctor not 3
L-~empty set -b.expr ~include "-~

39. function call

~call. fu.np -~"

~operand~function(kind, noun, length)~arg list~

~call gen~

40. operand

routine(mode, label, parm length, var length, stack length)~

var(mode, disp, context, kind~::::~t:::gth) f ' .I ~

F;;~2:[ik[2]?gnoun, length)~
40. I .se.lection

vcomp(mode, disp, context, kind, noun, length))~

rcomp(mode, label, parm length, vat length, stack length

104

40.2 subscript~Dg

-~baddress -w~expr-l-sub(min, max, length,

"index" kind, noun, length,

"element" kind, noun, length)-~

Pass 6 - input syntax description

I. program

-~-jump(1)~body~eom(var length) --~

20. body

enter(mode, label, parm length, var length,

[-iPstat-~-return(mode)~

temp length)-~...

22. slat

assignment

I-proc call

if stat

case stat

while stat

repeat stat q~--

for stat

.I cycle stat~

with star

-- init stat

23. assignment

assign(type)

-~varaddr-k-expr{

~copy(length) /

105

24. proc call

i
~arg list-~procedure(std number)- i~

-~-interface~arg list~callprog~pop(intf length)

-~.var a ddr-w-field(dlsp).~]

[~arg list~call(mode, label, parm length) '

24. I interface

~- push.label (label)

25. arg list

~ expr~]

27. if stat

-t-expr ~-false.iump (11) ~stat -~deflabel (i I) -

~jumR(12)-~-de flabel (I I) stat ~deflabel(12)

28. case stat

--~expr~.ium#(lO)~deflabel(li) j

[~stat-~'.]ump(in)-~deflabel(lO) 7

[~case.iump(min, max, 11, ... , im)-~deflabel(in) -~"

29. while star

-~deflabel(ll)-P- expr-J-false.iump(12)- ~

~stat-P-iump(li)-~deflabel(12)~

304 repeat stat

deflabel(1)~stat~expr ~falsejump(1)-~"

106

31. for stat

-4P "control". . varaddr ~"initial".. expr ~assig~(word!~

[,-"limit" expr ~"control" varvalue*-"limit" varvalue.

~Compare(ng/ni, word)~falsejump(12)~stat .- ~

~ilcontrol" varaddr~increment/decrement ' 'I

~jump(ll)~-deflabel(12)~,-po~(word)'---a~

32. cycle stat

--~deflabel(1)-Pstat-o-j.ump(1)-m~

33- with stat

-w-varaddr~,-stat-m-pQp(word)-~-

34. init stat

--.-varaddr~-field(disp)-~arg_ list--~

~init(mode, label, parm length, var l~ngth)-a~

35- expr

--~.sexpr

~compstruct(comp, lengt

36. sex,r,,
--~ term]~neg(type) ~term

[~add/sub/or:(type)'' '--~ ~

37. or - -

k I
factor factor--~ ' " 'I ~

~mul I div Imod I an~'i type > ')

107
38. factor

-~Ppushconst(value)

~variable

-P- function call

-~- expr .. r I

-~ factor -~- not .~

--varvalue ~expr-~-buildset~

39- func..t.ion ca.ll

~ arg list-~-function(std number, type)~

varaddr-~field(disp) ~

~funcvalue(mode, type) -e-arg list--]

~cail(mode, label~ parm iengthi

40. variable

varvalue.

varaddr~

40.1 varvalue

pushvar(type, mode, disp)~.~
<varaddr--~pushind(type).J

40.2 varaddr

~ pushaddr(mode, disp) varaddr~ I~

varvalueE::lb:::::::ngJ I
40.3 selection

-~bfield(disp)~

108

40.4 subscriDting

~expr-~'index(min, max, length) -P-

Pass I = i~put syntax ~escription

I. program

--,~jump(loc, label)-~-body-,-eom ~

20. body

~enter-a-stat-D-return-4-

20.1 e~ter

enter(block, pop length, line, var length)

e~terprog(pop length, line, block, vat length)

enter~roc(bloek, pop length, line, vat length)

en.~erclas(block, poplength + wordlength, line, var length)

e~termon(block, poplength + wordlength, line, var length)

beginproc(line)

b~ginclas(block, fivewords, line, 0)

b~.ginmon(block, fivewords, line, 0)

20.2 re~urn

e~it exitprog exitproc exitclass

exitmon endDroc endclass e~.dmon

109

22. stat

assignmen

proc c a l l ~
if stat

case stat4--

while stat~-

repeat stat~

for stat.q---
cycle state-

-with stat~--

-init stat~-

23. assignment

~varaddr-~-expr -~assign--~-

23.1 assign

.... I
copyword ,'

cppyreal

¢Q~yset

co pystruct(length in words)

24. Droc call

~ arg list-~std proc --'

interface~arg list~callprcg~pop(intf length

varaddr field(disp)
.... T ,,,7

callsys(number) -~

~arg list{ ~

~call(loc, block) /

I-

110

24.1 std proc

delay cQntinue i__9.o start stop setheaD wait

24.2 ~n~erface

25. arg list

'~ expr ~] "

27. if stat

expr~falsejump(loc, ll)~stat~jum~(loe, 12)~stat-~

28. case stat

-4~expr~,iump(loe, 10)~stat-m-jump(loc, in)~

casejump(min, max -min, loc, 11, ... , im) -l"

29. while star

expr~false.iump(loc, 12)~stat~-jump(loc, 11)--"

30. repeat star

_~.stat-~expr-l-falsejump(loc, 1)--I"

31- fo~ stat

-~-"control" varaddr ~''initial" expr~ copyword-~.

L~.limit- expr~"control" varvalue a''limit" varvalue~

~ngword/nlw0r~. false jump (loc, 12)~" stat-~

~"control" varaddr~incrword/decy w°rd

~jump(loe, ll)--pop(word)---,-

32. cycle stat

--~ stat -~jump(loc, i)~

111

33- with stat

----varaddr-~-stat-h-pp.p(word)-~-

34. i.n.i.% stat

--~varaddr~field(dispi~arg list-~init~

34.1 init

initproc(parm length, var length, block, loc, block)

initclass(parm length, loc, block)

initmon(parm length, loc, block)

35. expr

~sexpr~sexpr-~expr oP~

expr oR: isword e~word grword nlword

neword ngword isreal eqreal grreal nlreal

nereal ngreal e qset nlset neset

n_~ ,~nset

.36. sexpr

term ~negwprd/negreal ~term-~sexpr ,op~

sex~r op: addword addreal subword

subreal subset orword orset

~7- term

~factor~factor--m-term' o'P~-~

term opi mulword mulreal divword

divreal modword andword andset

112

384 factor

pushconst(value)

variable

-~function call

J

- ~ e x p r

-~factor-~ not -

-~varvalue ~expr--~buildset 'I"'

39. function call

~ arg list-~-std func .)~,.

varaddr ~field(disp) -~

' '"" .callsys(number)

~funevalui(mldl) •ari' li'it

~call(loc , block

39.1 std func

truncreal ab.sword absreal succword predword

convword empty attribute realtime

40. variable

varvalue.

varaddr ~-~

40.1 varvalu~,

~ Dushlooa!(disp) pushglo~.(disp)--------~

varaddr~pushbyte

~ pushind
r pushreal----~ ~pushset.

113

40.2 varaddr

--~ constaddr(disp) ~ j

-bloealaddr(disp)

-~glo.b.~ddr(disp)

-~varaddr

~selection ~

subscripting~

varvalue

40.3 sele.ction

-~field(disp)---~

40.4 subscripting

--~expr-P-index(min~ dimension, length)~

Final code - syntax description

I. program

-~b(prog length, code length, stack length,

~]ump(disp)-~body -~(constants)---~

20. body

-P-enter-~-stat ~return-4~

var length)~

114

20.1 enter

enter(stack length, pop length, line, var length)

enterprog(pop length, line, stack length, var length)

enterproc(stack length, pop length, line, vat length)

enterclas(stack length, pop length + word length,

line, vat length)

entermon(stack length, pop length + word length,

line, var length)

beginproc(line)

beginclas(stack length, five words, line, O)

beginmon(stack length, five words, line, O)

"pop length is parm length plus four words"

20.2

22.

return

exit exitprog exitproc exitclass

exitmon endproc endclass endmon

stat

~-assignment4---

proc call

~- if star

• - case stat~ ~----

~-while stat ~ -

• - repeat star4--

4- for stat

•--cycle stat

e-with stat

-- init star

23. assignment

-~varaddr -~expr-P~assign~

115

23.1 assign

~ coDybyte Copyword J

copyreal '

copy~et -'

Copystruct(length in words)

24. p,roc call

~ arg list-~-std proc , , I
interface~arg list~c~llprog~pop(intf length)

varaddr-~-field(disp)-]

~i i - ~callsEs(number)rg ist{ b~) ,

~call(disp) J

24.1 std proc

delay continue io start ,stop setheap wait

24.2 interface

pushl belCdisp l

25. ar~ list

"~_ expr~]

27. if stat

expr~fa!sejump(dl) ~stat~,iump(d2)~stat-~p

28. case star

expr -P-,ium p (dO)~s tat -~,~ um p (dn)~

~casejump(min, max- min, dl, dm) -~

29. while stat

-~ expr ~~(d2) ~stat ~.iump(dl)~

116

30. r~ueat stat

-~ stat-~-expr~falseJumD(d)~

31. for stat

--¢-"control" varaddr-~"initial" expr-~copyword-~

~"limit" expr~"control" varvalue~"limit" varvalue ~

[~ ogword/nlword ~false.i ump (d 2) ~s ta t -~

~"control" varaddr--incrword/decrword ~,iump(d!)~,

32. cFcle star

--~stat-~-jump(d)~

33. with stat

--p. varaddr-~stat ~p~p(word) ~

34. ip~% s tat

varaddr~fie~d(disp)~arg list-~init-~
34.1 init

init~roc(parm length, var length, stack length, disp)

initclass(parm length, disp)

~sitmon(parm length, disp)

35. ~xpr

~sexprL~sexpr~;"x'Pr ;p-~t--~
eXP~ op: Isword e~word grword nlword

neword ngword ~eal eqreal grreal

nlreal nereal n~real eqset nlset neset

ngset inset lsstruct eqstruct grstruct

nlstruct nestruct ngstruct.

"struct operators take the struct length in

words as an argument"

36.

117

sexpr

-~-term negword~negreal I

~term-o-sexpr op "

sexpr op: a~,~word addreal subword

subreal subset 9rword orset.

37. term

factor ~factor,-~ term op

term op: mulword mulreal divword

divreal modword andword andset.

38. factor

----~ pushconst(value) ~ , J'

-~ variable

function call ~I

-~ expr ,,

factor -~nQt , ,

.varvalue~,expr-4~buildset~

39. function call

~ arg list-~std func i~
varaddr ~ f~eld (disp)--7

I~ ~callsys(number)~

funcvalue(mode)~arg liSt~cal l(disp) ~)' '

3%1 std func

truncreal absword absreal succword predword

convword empty Attribute realtime

118

40. variable

<varvalue ~_~

varaddrJ

40. I varvalue

--~pushlocal(disp)
pus, hglob(disp)

varaddrTpushbyte,~
~ pu,shind
F P~shreal
~pushset ,,,

]
]

4Q~2 vara~dr

---~ constaddr(disp),,

-~ local addr(disp)

-~lobaddr(disp)

-~ varaddr ~

--~varvalue

]
]

 election r I
subscripting

40.3 selection

-bfield(disp)--P-

40.4 subscripting

--~expr-~-index(min, dimension, length)~

119

Concurrent Pascal Machine Operators

CONSTADDR

PUSHLOCAL

PUSHREAL

POINTER

COPYWORD

COPYSTRUC

ANDWORD

NEGWORD

SUBWORD

MULREAL

BUILDSET

GRWORD

LSREAL

NEREAL

NESET

GRSTRUCT

FUNCVALUE

INITVAR

EXIT

ENDCLASS

ENDMON

ENDPROC

NEWLINE

INITHON

TRU~ICREAL

PREDWORD

REALTIME

START

LOCALADDR

PUSHGLOB

PUSHSET

VARIANT

COPYREAL

NEW

ANDSET

NEGREAL

SUBREAL

DIVWORD

INSET

2; NLWORD = 92; ,

lO; EQREAL = lO0;

18; NGREAL = I08;

26; NGSET = l l 6 ;

34; NLSTRUCT = 124;

42; JUMP = 132;

50; CALL = 140;

58; ENTERPROG = 148;

66; ENTERCLAS = 156;

74; ENTERMON = 164;

82; ENTERPROC = 172;

90; INCRWORD = 180;

98; INITPROC = 188;

I06; ABSWORD = 196;

114 ; CONVWORD = 204;

122; DELAY = 212;

130; STOP = 220;

138 ; GLOBADDR = 6;

146 ; PUSHIND = 14;

154; FIFLD = 22;

162; RANGE = 30;

170; COPYSET = 38;

178 ; NEWINIT = 46;

186 ; ORWORD = 54;

194 ; ADDWORD = 62;

202 ; SUBSET = 70;

210 ; DIVREAL = 78;

218 ; LSWORD = 86;

4; NEWORD = 94;

12; CRREAL = I02;

20; EQSFT = l lO;

28; LSSTRUCT = l iB ;

36; NESTRUCT = 126;

44; FALSEJUMP = 134;

52; CALLSYS = 142;

60; EXITPROG = 150;

68; EXITCLASS = 158;

76; EXITMON = 166;

84; EXITPROC = 174;

DECRWORD

PUSHLABEL

ABSREAL

EMPTY

CONTINUE

SETHEAP

PUSHCONST

PUSHBYTE

INDEX

COPYBYTE

COPYTAG

NOT

ORSET

ADDREAL

MULWORD

MODWORD

EQWORD

NGWORD

NLREAL

NLSET

EQSTRUCT

NGSTRUCT

CASEJUMP

ENTER

BEGINCLAS

BEGINMON

BEGINPROC

POP

INITCLASS

CALLPROG

SUCCWORD

ATTRIBUTE

IO

WAIT

182;

190;

198;

206;

214;

222;

8;

16;

24;

32;

40;

48;

56;

64;

72;

80;

88;

96;

I04;

l l 2 ;

120;

128;

136;

144;

152;

160;

168;

176;

184;

192;

200;

208;

216;

224;

