Lecture Notes In
Computer Science

Edited by G. Goos and J. Hartmanis

50

Alfred C. Hartmann

A Concurrent Pascal Compiler
for Minicomputers

Springer-Verlag
Berlin - Heidelberg - New York 1977



Editorial Board

P. Brinch Hansen - D. Gries - C. Moler - G. Seegmiiller
J. Stoer - N. Wirth

Author

Alfred C. Hartmann

Intel Corporation
Microcomputer Division
3065 Bowers Avenue
Santa Clara, CA 95051 USA

Library of Congress Cataloging in Publication Data

Hartmann, Alfred C 1948~
A Concurrent PASCAL compiler for minicomputers.

(Lecture notes in computer science ; v. 50)

Includes bibliographical references.

1. Minicomputers--Programming. 2. Compiling
(Electronic computers) 3. Concurrent PASCAL
(Computer program language) I. Title. TII. Series.
QA76.6.1383 001.6th25 778504

AMS Subiject Classifications {1970): 68 A05, 68A30
CR Subject Classifications (1974): 4.12

ISBN 3-540-08240-9 Springer-Verlag Berlin - Heidelberg - New York
ISBN 0-387-08240-9 Springer-Verlag New York - Heidelberg - Berlin

This work is subject to copyright. All rights are reserved, whether the whoie
or part of the material is concerned, specifically those of transiation, re-
printing, re-use of illustrations, broadcasting, reproduction by photocopying
machine or similar means, ang storage in data banks.

Under § 54 of the German Copyright Law where copies are made for other
than private use, a fee is payable to the publisher, the amount of the fee to be
determined by agreement with the publisher.

© by Springer-Verlag Berlin - Heidelberg 1977

Printed in Germany

Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr.

2145/3140-543210



Acknowledgements

This compiler is the product of many fruitful hours of discussion with Per Brinch Hansen.
The development of Concurrent Pascal has been supported by the National Science Found-
ation under grant number DCR74-17331.

Thanks are due to Intel Corporation for their support in the preparation of this manu-
script, and to two sterling typists - Shirley Allen and Kevin Lynott. However, any
errors or omissions in this paper are solely the responsibility of the author.

Finally, my greatest thanks goes to my wife Lorraine, to whom this work is dedicated,
and to that Providence which brought it all about.



Abstract

This paper describes a seven-pass compiler for the Concurrent Pascal programming Tang-
uage. Concurrent Pascal is an abstract programming language for computer operating
systems. The language extends sequential Pascal with the monitor concept for struc-
tured concurrent programming. Compilation of Concurrent Pascal on a minicomputer is
done by dividing the compiler into seven sequential passes. The passes, written in
sequential Pascal, generate virtual code that can be interpreted on any 16-bit mini-
computer. It has been running on a PDP-11/45 computer at Caltech since January 1975.



10.

11.

12.

13.

14.

A Concurrent Pascal Compiler for Minicomputers

Table of Contents

Introduction . . . . . . . . . . . ...

Definitions . . . . . . .. e e e e e e e

Pass Structure . . . . . . . . ..

Lexical Analysis . . . . . . . e e e e e

Syntax Analysis . . . . . .

Name Analysis . . . . . . . . . . . . . .. ..

Declaration Analysis . . . . . .

Body Analysis . . . . . . . . .

Code Selection . . . . . . . . ..

Code Assembly . . . . . . . . . ..

Interpass Topics . . . . . e e e e e e

The Virtual Machine . . . . . . . .

Implementation . . . . . . .. e e e e e

References . . . . . . . . . . e e e e e

Appendix: Syntax Graphs . . . . . . . e e e e

- 11

- 21

- 33

|

- 47

- 51

- 52

- 55

- 58

-70

71






1. Introduction

This paper describes a seven-pass compiler for Per Brinch Hansen's Concurrent Pascal
[1,2] programming language. Concurrent Pascal is an abstract programming language

for computer operating systems. The language extends sequential Pascal [7] with the
process, monitor, and class concepts for structured concurrent programming. A monitor
is a shared data structure together with a well-defined set of operations that are the
only operations possible on the data structure. Concurrent Pascal's runtime system
enforces mutually exclusive access to a monitor by competing concurrent processes. A
class gives a single process controlled access to a private data structure by means of

a well-defined set of operations.

The Concurrent Pascal compiler has been running on a DEC PDP-11/45 computer at Caltech
since January 1975. It requires 16,500 16-bit words of storage and compiles source
text at the rate of 240 characters per second (about 9-10 Tlines per second). It gen-
erates code for an ideal virtual machine that is simulated by the real machine. The
compiler is written in sequential Pascal and is easily transported to other machines.

As many machine-dependent aspects of the compiler as possible are made into changeable
constant definitions. The compiler's semantic analysis passes are isolated from the
virtual machine by two code assembly passes. So not only can different real machines
interpret the virtual machine, but the code assembly passes can be changed to view dif-
ferent virtual machines. This permits redesign of the final instruction set without
significantly affecting the compiler.

In the chapters to follow, basic terms are defined, the pass breakdown is described,
each pass is described, the virtual machine is defined, and the implementation is dis-
cussed. Many of the compilation techniques used here are well-known, but, taken as a
whole, this compiler is an engineering product that may serve as a prototype for in-
dustrial compiler writers. For this reason, the description of the compiler is made

as self-contained as possible.



2. Definitions

The problem is to accept programs written in Concurrent Pascal [1, 2], the source lang-
uage, and translate them to an equivalent representation in a machine language, the
target language. Programs that solve this problem are termed compilers; compilers map
the source language into the target language. Multipass compilers map the source lang-
uage by degrees into the target language. The first pass of a multipass compiler maps
the source language into the first intermediate language. The second pass maps the

first intermediate language into the second intermediate Tanguage. This process con-
tinues until the last pass maps the final intermediate language into the target lang-
uage. An instance of a source program is termed the source text, its intermediate ver-
sions are the intermediate code, and its target program is the final code.

The source text is a file of characters that represents a Concurrent Pascal program.

A program consists of declarations and a body. The declarations assign names to con-
stants, types, variables, and routines. The body contains statements to be executed

by the machine.

The intermediate code is a file of integers. Each integer is either an operator in the
intermediate language, or an argument of an operator.

The final code consists of instructions for a machine. The machine comprises a pro-
gram store and a data store. The program store contains the code. The data store con-
tains the program’s constants, variables, and expressions.

The process of compilation consists of:
1. lexical analysis: recognizing the symbols of Pascal;
2. syntax analysis: checking the program syntax;

3. semantic analysis: checking the program semantics; and

4. code assembly: generating machine code.

In a multipass compiler, it's convenient to use this functional division as a guideline
for pass division. A compiler might consist of four passes which perform the four func-
tions above. Or it might consist of two passes each performing a pair of functions. The
Concurrent Pascal compiler numbers seven passes, including three passes for semantic
analysis and two passes for code assembly.



3. Pass Structure

The compiler comprises seven passes:

lexical analysis
syntax analysis

name analysis
declaration analysis
body analysis

code selection

~NOY O B N —

code assembly

It deals with eight languages: the source language, the six intermediate languages,
and the target language. In the design of a compiler the source and target languages
are normally given, and it remains to define the intermediate languages. In this pro-
ject we started with a clean slate, The source language was defined first. It is
essentially the sequential Pascal language [7] extended with classes, monitors, and

processes [ 1, 2]. Next the target language was designed. Borrowing from Niklaus
Wirth's work on portable Pascal compilers, our target language is the language of an
ideal virtual machine. This machine, designed by Per Brinch Hansen, is tailored to
Concurrent Pascal. It is simulated by the real machine, a Digital Equipment Corpor-
ation PDP-11/45. After this the six intermediate languages were defined, starting
with the last intermediate language and ending with the first intermediate language.
Each pass is now defined as a separate compiler in terms of its input language and its
output code. In particular, the details of data structures and procedures used within
a given pass are irrelevant to other passes. Once the pass breakdown and intermediate
languages are determined, very few major decisions remain in the design. Given this
importance, a convenient means of specifying these languages is essential. Brinch
Hansen chose the syntax graph of Wirth [ 7] to define the intermediate languages.

Syntax_graphs are directed graphs with nodes that define the syntactic elements of the
language. Operators are underscored. They may be followed by arguments enclosed in
parentheses. For example, the syntax of an identifier 1ist in the source language is:

identifier list

identifier
— Jetter

letter
digit



In the first intermediate language the same construct appears as:

identifier list

——f° id(spelling index) -r—*

comma

The input and output graphs of lexical analysis shows that this pass converts identifiers
from a string of characters into a numeric index. These graphs clarify the function of
each pass.

Lexical analysis transforms the program into a sequence of integers representing identi-
fiers, constants, and operators. Unique identifiers are replaced by unique spelling in-
dices. These integers are easier for later passes to recognize, lookup, and switch on
than the original character representation of a program.

Syntax analysis checks the syntax of the first intermediate code. The output of syntax
analysis is postfix notation (operands followed by operators). Syntax analysis elimin-
ates redundant operators and replaces ambiguous operators by unique ones. The output
is syntactically correct independent of what the input is.

Name analysis converts spelling indices to unique name indices. Because of the block
structure of Pascal, the same identifier may be used with different meanings. Name
analysis resolves this ambiguity.

Declaration analysis enforces the semantic rules of declarations. It assigns virtual
addresses to all variables and analyzes data types. This information is distributed in
the body of the program.

Body analysis checks the compatibility of operand types and operators in statements.
Operator ambiguities are resolved, and the resulting intermediate code is nearly ready
for the machine.

It remains for this code to be "assembled". This process consists of computing the
storage requirements of blocks, and replacing symbolic labels by program addresses.

A classic two-pass design is used for this assembly phase. The first assembly pass,
code selection, assigns addresses to Tabels and places them in a table that survives
to the next pass. The second assembly pass, code assembly, replaces program labels in
the code by their addresses from the table. The resultant code is the final code for
the machine. Two passes are required since the address of forward labels is not known
in the first assembly pass.



4. Lexical Analysis
* function *

A Pascal program consists of identifiers, constants, and operators.

Lexical analysis

converts the source text character by character into the first intermediate code. This

conversion is performed as follows:

initialize;
repeat

read a character;

classify the character by symbol group;

collect the symbol;
output its intermediate code
until source text exhausted

Each symbol begins with a unique class of character.

Identifiers begin with letters;

numeric constants begin with digits; string constants begin with guotation marks, and
so on. Classification of characters is done most conveniently by a case statement. So

lexical analysis can be further refined as:

var done: boolean; ch: char;
begin
initialize;
done:= false;
repeat
read(ch);
case ch of

a'..'z': scan identifier;
'0f..'9": scan number;
PPty scan string constant;

'<': scan operator;

' ': skip blanks;
‘Mt skip comment;
EM : done:=true
end “classification”
until done
end "lexical analysis".



* jidentifier scan *

Scanning an identifier consists of collecting the identifier in a string variable,
searching for it in a table of identifiers, and outputing the corresponding intermediate

code.

An identifier may be either a program defined identifier or a reserved word.

The intermediate representation of an identifier is an id operator followed by the in-

dex of the identifier.
ator corresponding to it.

Identifiers may be one to eighty characters long.

with their spelling indices.

The identifier table
To save space within
are stored in the table.
each.

indices.
arrays).
Long
The first piece resides
dynamically and chained to the

The intermediate representation of a reserved word is an oper-

They are stored in a table together

Reserved words are treated as identifiers with negative

is a fixed Tength array {because Pascal has no dynamic
the array, only the first ten characters of identifiers
identifiers are broken down into pieces of ten characters
in the table entry. Additional pieces are allocated

identifier table entry.

The identifier table may be de-
fined as:

type
spelling index =
piece = array [1..10] of char;
piece ptr = @ id piece;

integer;

id piece = record
part: piece;
next: piece ptr

end;

var
table: array [0..table Timit] of table entry;
this id: array [1..8] of piece
"80 character identifier";

The lexical analyzer scans an identifier by reading it character by character into a

As each character is read, the ordinal value of the char-
acter is used to compute an index. Historically, this index is termed a hash key. The
hash function computes the product of the ordinal values of the identifier characters
modulo the table length. This hash key is then used as an index into the table of
identifiers.

string variable, 'this id'.

Different identifiers may have the same hash key. When a new identifier collides with
one already in the table, a cyclical search is performed starting with the existing

entry. The search stops whenever the new identifier is found in the table or an empty



table entry is encountered. If an empty table entry is reached, the identifier is given
a new spelling index and inserted in the table.

New identifiers are inserted in the table as they are encountered in the program. Be-
cause collisions must be expected, the table must not be allowed to fill or searches
will be long. The percentage of occupied entries is termed the table loading. A prac-
tical maximum loading depends on the application. The compiler uses a limit of 98%.
Beyond this point a successful search would require more than twenty probes on the aver-
age. If insertion of a new identifier would exceed this loading, lexical analysis is
terminated. Subsequent passes receive intermediate code up to the point of termination.

* number scan *
Numeric constants are scanned by this algorithm:

"ch is the current character"

while ch in digits do collect integer portion;
if ch = '.' then collect fractional portion;
if ch = 'e' then collect exponent portion;
construct numeric constant;

output intermediate code

The only difficulties in handling numeric constants are the avoidance of truncation er-
rors and overflow. All numbers are handied by real arithmetic since real values have
more significant digits than integer values on most machines. The integer portion of
a number is collected as an integral real value. If no fractional portion or exponent
portion is present, then the number is assumed to be an integer., If it is not greater
than the largest allowable integer, it is truncated to an integer and output as the

int const operator followed by the integer value.

If a fractional portion or an exponent portion exists, then the number is a real. The
integer portion and the fractional portion are collected in the same manner:

number:= 0.0;
while ch in digits do

if number < real 1imit then
number:= number * 10.0 + {ord{ch} - ord('0)}

where real limit is the maximum real number divided by ten. It is important that the
fractional portion be treated as above, and not be constructed by dividing successive
digits by 10, 100, 1000, etc. since this would accumulate roundoff error. Rather, the



fractional portion is treated as belonging to the integer part and the exponent is ad-
Jjusted.

Following this the exponent portion, if any, is collected. Assuming the number is real,
its representation must be constructed. First the exponent is checked to see if it is
within range. If it is then it is constructed as a power of ten. Again it is important
only positive powers of ten be constructed to avoid truncation error. If the exponent
is a negative power of ten, it is divided into the number to produce the result; over-
flow is impossible. If the exponent is a positive power of ten, then multiplying it

by the number could produce overflow, but:

if number = 0.0 then result:= 0.0

else
"number >= 1 and
number * power of ten <= maximum real
=> power of ten <= maximum real / number

<= maximum real"

if power of ten <= maximum real / number
then number:= number * power of ten
else error

The intermediate code is a file of integers. To place a real number in the intermediate
code use is made of Concurrent Pascal's universal type facility. Universal types allow
arguments of passive types [1] to be passed to procedures as long as they occupy the
same number of machine words as the procedure's corresponding parameter. In our im-
plementation a real value occupies four integer locations. So the following suffices

to output a real constant:

type split real = array [1..4] of integer;
procedure put real (argument: univ split real);
var i: 1..4;
begin

for i:= 1 to 4 do put(argument[i})
end;

.

put real{number);



* efficiency *

A pass's work load varies with its input. The input to Pass 1 is measured in characters,
while the input to later passes is measured in integers. lLexical analysis processes
from 70% to 500% more input symbols than any other pass (see Chapter 13). This large
amount of input combined with the slowness of character I/0 makes Pass 1 a bottleneck.

In Chapter 13's example lexical analysis consumes about 37% of the elapsed time for
compilation. A 1ittle attention paid to optimization here is worthwhile.

Character scanning must be as fast as possible. The source program used as an example
is 1280 lines. For a standard 80~column card this is over 100,000 characters. Fortu-
nately in our operating system the card reader routine (not a part of the compiler)
truncates trailing blanks from cards. This results in an average line length of only
20 characters, or a reduction to 25,000 characters. So every 10 microseconds saved in
a character scan saves % second in elapsed time. Lexical analysis scans a character
by calling the operating system once to read the next character and once to write it.
These two calls are placed inline wherever needed. The compiler always produces a
listing file of the source text. The user can then tell the operating system whether
or not to print the listing. This avoids the overhead of a listing option within the
compiler.

Trailing blanks from lines are suppressed before they reach Pass 1. The only other
place a string of blanks might often be found is at the beginning of a 1ine. So at
the end of every line (signaled by an NL character) blanks at the beginning of the

next line are skipped. Within statements, blanks usually appear singly, so looping
to skip blanks is not worthwhile.

* compiler options *
Pass 1 must scan and interpret compiler options. This requires a simple syntax:

compiler options

—’(T identifier —r )—

1)

Compiler options must precede the program. They are scanned by Pass 1 immediately after
pass initialization, before entering the main scan loop. Only the first character of
the option identifier is recognized. Currently three options are implemented: number
indicates the generated code will only identify line numbers at the start of routines;
check indicates the generated code will not make range checks of constant enumeration
arguments; test will print the intermediate output of all passes, including Pass 1.



10

Compiler options must be communicated to later passes. Pass communication is governed
by an interpass record that remains in the heap during compilation. Essential infor-

mation that must precede the intermediate code is placed in the interpass record. It

is defined as:

type
interpass record =
record
options: set of option;
"other information"”
table: @pass dependent table
end;

Pass 1 allocates the interpass record on the heap. At the end of each pass, the pass
1ink (a pointer to the interpass record) is passed as an argument to the next pass.



5. Syntax Analysis
* function *

Syntax analysis checks ("parses") the program syntax. It consists of a set of recursive
procedures that gradually examines the syntax in more and more detajl. A ryecursive de-
scent parser contains a possibly recursive procedure for each syntactic construct, rep-

resented by a syntax graph. For example, the if statement construct is:

if statement

~ f —= expression — then — statement jj_"
L else —= statement

If we avoid the problem of error recovery, a procedure to parse the above might be:

procedure get "next symbol";
begin
“read next symbol into variable 'sy'"
end;
procedure if statement;
begin
get "past if symbol”;
"boolean" expression;
if sy = then then get else error;

“then” statement;
if sy = else then_begin
get "past else symbol";
"else" statement
end
end;

When the parser is inside its if statement procedure, the sequence of previous procedure
calls might be:

program
declarations
body
statement

if statment



12

and we can see that the statement procedure will now be called recursively to parse the
then statement of the if statement. This nesting can become quite deep, reaching to
thirty levels for even simple programs.

* grror recovery*

Each parsing procedure is a simple sequence of statements that follow the syntax graphs.
The parser can be written directly from the syntax graph. Error recovery is also dic-
tated by the syntax graphs. Error recovery is done to detect more errors during a single
compilation and to prevent a cascade of error messages caused by a single error. Sys-
tematic syntactic error recovery is an original contribution of this thesis.

To develop the error recovery scheme, consider the input to the parser. The first inter-
mediate code consists of operators possibly followed by arguments. Syntax analysis ig-
nores all operator arguments, since these are concerned with semantics. There are 66
distinct operators in the first intermediate language. Using Pascal's set types, it is
possible to create sets of operators. The operators that may begin a particular syn-
tactic construct are its handlies. The handle of an id list is the set [id]. The set

of statement handles is [ id, begin, if, case, while, repeat, for, cycle, with, init].

Whenever a syntax error is detected, zero or more input symbols are skipped until a key
symbol is obtained. A key symbol is any symbol from which compilation may resume. A
set of key symbols, called keys, is passed to an error routine along with an error num-
ber:

type symbols = set of symbol;
procedure error {number: integer; keys: symbols);
begin

give error indication;

while not (sy in keys) do get "next symbol"
end;

This basic idea was used in the original transportable Pascal compiler produced by
Wirth's group. 1Its unsystematic application there flawed that compiler's reliability.
To apply the method systematically, the key sets are derived directly from the syntax
graphs. If an error occurs at a given point in a syntax graph, compilation may resume
downstream from the given point. The keys contain any operators that can be reached in
the current graph. They also contain the handles of any other graphs that may be re-
ached. The process is so systematic that recursive descent parsers with error recovery
might be generated automatically from the language definition itself. Examples will
follow.



13

This scheme implies that every parsing procedure accepts as input the keys of its caller.
This permits each parsing procedure to ignore the context in which it is called. Local
keys are added to the initial ones whenever the given procedure calls another parsing
procedure. So in general the set of keys increases as parsing procedures are called,
and decreases as these calls are completed. The keys contain key symbols from each
active level of the syntactic hierarchy. So when an error is detected, a minimum of
input symbols will be skipped. The first rule of error recovery is:

Error Recovery Rule 1:
The keys contain all symbols from which compilation may resume.

This rule is not enough to completely determine the parser's error recovery. One more
rule is required to indicate where error checking is to be performed. Of course if a
particular symbol is expected, then its absence is an error. But if one parsing pro-
cedure calls another, who should check for an error, the caller or the called? Should
a parsing procedure assume when it is called that the current symbol is a key symbol?
Or should it ensure that when it returns to the caller the current symbol is a key
symbol? Or should these decisions be made for each single parsing procedure?

The solution, it turns out, is quite simple. If only a single symbol is expected, as
the then symbol after the boolean expression of an if systatement, then its absence is
an error. Otherwise we must presume several different symbols are expected, as the
statement procedure expects any statement handle. When this occurs, a decision must
be made. This is the case whenever a branch appears in the syntax graphs. So the
second rule is:

Error Recovery Rule 2:
Whenever a branch is encountered in the syntax graphs, check that the
current symbol is a key symbol.

To implement this check, a procedure exists:
procedure check {number: integer; keys: symbols);
begin

if not {sy in keys)
then errvor{number, keys)
end;

and this procedure is called at every branch point in the syntax graphs.
To summarize then, only two rules exist. The keys contain every symbol from which it

is possible to resume compilation. A check is made before each decision. These rules
may appear so obvious as to not be worth mentioning. But together with the syntax



14

graphs they completely determine the error recovery scheme! A language designer has
only to design his language; the syntax analysis and error recovery is then purely
automatic.

* syntax design considerations*
But in order to work effectively, the language designer must obey two simple rules.

Syntax Design Rule 1:
Symbols must be used unambiguously.

A symbol is used ambiguously when it occurs in two different constructs, and, worse,
these constructs may be nested. If the inner occurrence of this symbol is missing it
is possible for the outer occurrence of the symbol to be associated with the inner con-
struct. When these are different constructs the result is disastrous. Pascal itself
is a gross violator of this rule. For example the begin - end keywords may delimit a
compound statement, a procedure, or a program, and each of these may be nested. If

the end of a compound statement is missing, then the end of the procedure is taken as
the end of the compound statement. The end of the program is taken as the end of the
procedure, and the body of the program is then assumed to be missing.

The error message will indicate an improperly terminated program, when actually the
compound statement is improperly terminated. On the other hand, if an extra end ap-
pears then it will terminate the compound statement. The end of the compound statement
will terminate the procedure. Then when no begin appears, the program body will be in
error. This could be avoided with a properly chosen syntax. In Concurrent Pascal pro-
cedures may not be nested, which would detect some errors of this sort earlier. Much
better is to avoid these.ambiguities entirely when designing a language.

A corollary to the above rule can be incorporated as a second rule in its own right.
That is:

Syntax Design Rule 2:
A11 major syntactic constructs should be uniquely delimited.

Ideally every construct would be delimited by a unique set of symbols. This would supply
ample redundancy to detect errors as soon as possible, and prevent as much as possible
the mismatching of symbols when an error is enountered. It would also eliminate the
compound statement whose overnesting creates problems even for humans. This rule is a
point in favor of such eyesores as if - fi and case - esac, and a point against the
semicolon as a statement separator.



15
Concurrent Pascal violates both rules of syntax design to be compatible with sequential
Pascal. Nevertheless the error recovery scheme is quite robust and still does a fair
job. For a well-designed syntax it can do a superb job.

* three general cases *

The method can be illustrated on three abstract graphs. Any syntax graph is comprised
of a combination of sequencing, branching, and looping. These constructs are given be-

low along with their associated parsing procedures. We use two abstract constructs, a
circle and a square, and one abstract operator, a spiral.

1. Sequence
~ circle ~* spiral ~ square -~

procedure sequence (keys: symbols});
begin
circle(keys or [spiral] or square handles);
if sy = spiral then get
else error{sequence error, keys or
square handles);
square{keys}
end;

. Branch
cn'c'ie
—{:square
procedure branch {keys: symbols};
begin
check(branch error, keys or circle handles
or sguare handles};
if sy in circle handles then circle(keys)
else if sy in square handles
then square(keys}

else error(branch error, keys)
end;



16

3. Loop
circlej—
spiral

procedure Toop (keys: symbols);
var Toop keys, all keys: symbols;
done: boolean;
begin
loop keys:= circle handles or [spiral]l;
all keys:= keys or loop keys;
done:= false;
repeat
circle{all keys);
check(Toop error, all keys):
if sy in loop keys then
if sy = spiral then get
else error{loop error, all keys)
else done:= true
until done
end;

The loop procedure may appear complicated. However it merely follows the rules already
outlined. The test for termination of the loop involves an auxiliary boolean variabie
since actually the loop terminates in the middle. If Concurrent Pascal possessed a 1oop
statement similar to that proposed by Dahl and advocated by Knuth [ 4], namely

> 100
while B3~ 7
]
l
[
. !
L—.regeat; !
"ﬂ% Bn PP |

then the Toop would become:



17

loop
circle(loop keys);
check(loop error, all keys);
while sy in loop keys;
1f sy = spiral then get
else error{loop error, all keys)
repeat

The structure is much clearer in this version. If a spiral is forgotten between two
circles, compilation gives an error message and resumes as though the spiral had been
present. This conforms to Rule 1. After a circle there is a check made before deciding
which branch of the syntax graph to take. This conforms to Rule 2. Note also that the
test for termination involves a test against the loop keys. Assuming the hypothetical
loop construct may be nested, it would be incorrect to test for termination by saying:

while not {sy in keys);
but it would be correct {though unclear and inefficient) to say
while not (sy in keys - loop keys);

Before programming a parser in this scheme, one must master the three basic constructs.
Then more complicated constructs only require strict adherance to the rules. As an
example, the if statement combines the sequence and branch:

procedure if statement (keys: symbols);
begin
get “past if symbol™;
“boolean" expression{keys or
statement handles or [ then, else]);
if sy = then then get
else error(if error, keys or
statement handies or [else});
“then" statement{keys or
statement handles or [else]);
check(if error, keys or
statement handles or [else]);
if sy = else then begin
get "past else symbol®;
“else" statement(keys)
end
end;



18
This example can be simplified by taking advantage of context. A valid assertion for
this procedure is ‘statement handles <= keys'. Whenever the 'if statement’' procedure
is called, the keys already contain the statement handles.

As another example, a term combines the sequence and the loop:

term

-—» factor
Lfactor -— term op‘-I

procedure term (keys: symbols);
var term keys, all keys: symbols;
begin
term keys:= factor handles or term operators;
all keys:= keys or term keys;
factor{all keys};
loop
check(term error, all keys);
while sy in term keys;
if sy in term operators then get
else error{term error, all keys};
factor{all keys}

repeat
end;

* the output*

The discussion has sofar described the parsing technique and the error recovery scheme.
To complete the description of syntax analysis, the generation of the second intermed-
iate code must be explained. The second intermediate code is a syntactically correct
(but possibly meaningless) program in postfix notation. The if statement:

if B then S1 else S2
in postfix notation becomes:

B if ST then S2 else.
In postfix notation each operator is preceded by its operands. The if operator takes the
boolean expression as its operand. If B is false a jump is made to statement $2. The
then operator causes a branch around statement S2, and it indicates the start of S2.



19

The else operator indicates the end of the if statement. In terms of the intermediate
code this becomes:

B falsejump{L1) S1 jump(L2) L1: S2 L2:
If no else clause were present, the second intermediate code would be:
B falsejump(L1) S1 LI1:

Syntax analysis, like the other passes, uses several standard output routines. Pro-
cedure put appends an operator to the output intermediate code file. Procedure puti
appends an operator and an argument to the output intermediate code file. Similarly

for procedure put?, but with two arguments. We can now extend the if statement pro-
cedure to its full form:

type label = integer;
var current label: label; "initially zero"
procedure new label (var 1: label);
begin
current label:= succ{current label);
1:= current label
end;



20

procedure if statement (keys: symbols);
var 11, 12: label;
begin
get "past if symbol";
"boolean" expression(keys or
[ then, elsel);
new label(11);
putl(false jump, 11);
if sy = then then get
else error(if error, keys or [else]);
if sy = else then begin
get "past else symbol";
new label(12);
putl(jump, 12};
putl(label, 11);
"else" statement(keys);
putl(label, 12)
end else putl(label, 11)
end;

This completes the description of syntax analysis.



6. Name Analysis
* function*

Name analysis converts spelling indices to name indices and enforces Concurrent Pascal's
scope rules. Lexical analysis has already converted all unique identifiers into unique
spelling indices. Concurrent Pascal allows the same identifier to name different con-
stants, types, variables, or routines in different blocks. Name analysis converts these
possibly ambiguous spelling indices into unique name indices. A name index refers to

a single constant, type, variable, or routine throughout its 1ifespan.

Name analysis also enforces the scope rules. The scope rules define the rules for re-
cognition of identifiers. To be recognized, an identifier must first be known. Iden-
tifiers are known after they have been introduced. An introduction is either a declar-
ation or a qualification. Declaration associates an identifier with a particular con-

stant, type, variable, or routine. Qualification associates field or entry identifiers
with a particular record variable or system component. A qualification may be either
the variable name followed by a period, or it may be a with statement. The scope rules
are:

1. An identifier is only known with a given meaning after its introduction (with that
meaning) and until the completion of the block, record, or qualification that intro-
duced that identifier (with that meaning).

2. No identifier may be given more than one meaning in a single block or record.

3. An identifier may be introduced with another meaning in another block, record, or
qualification. Where this occurs, the new meaning applies until the completion of
the block, record, or qualification.

4. Within a system component are known:

a. all identifiers introduced in the system component type (except for entry rou-
tine identifiers);

b. all constant and type identifiers declared in enclosing system component types.

5. Within a routine is known, in addition to the above, all identifiers introduced in
the routine.

The fourth rule is a departure from pure block structure scope rules. It forbids a
nested component definition from referencing the parameters or variables of an enclosing



22

component. This rule gives the operating system designer explicit control over the ac-
cess rights of components.

* the tables *
Name analysis implements these rules through several tables:
a. the spelling table translates a spelling index to a unique name;

b. the update stack contains old spelling table entries that have been temporarily re-
placed;

c. the display marks the update stack for each level and contains other information
associated with levels.

Around these data structures revolves the entire structure of the pass.

* the spelling table *

The spelling table contains an entry for every possible spelling index. Associated with
each spelling index used is its name. To enforce the scope rules, an access attribute
and a nesting level are also assicated with the index. This structure appears as:

type
spelling index = 0..spelling max;
access attribute = (general, external, internal, incomplete, unresolved,
qualified, functional, undefined);
level index = 0..level max;
name pointer = @ name entry;
spalling entry = record
name: name pointer;
access: access attribute;
level: level index
end;
var
spelling table: array [speliing index]
of spelling entry;



23

The name is a pointer to an entry in a table containing all information associated with
the name in this pass. We postpone this discussion til Tater.

The access attribute and level index determine the program's access rights to the name

as defined by the scope rules. This gives the operating system designer selective con-
trol over access to operating system components. Names with general access may be ref-
erenced in the block in which they are defined.and in any nested blocks. Constant and
type names have general access.

Names with external access may only be referenced outside the block in which they are
declared. A system component may not reference its own entry routines, and so they
have external access.

Names with internal access may only be referenced in the system component or routine

in which they are defined. Unlike general access, these names may not be referenced

in nested system component types. This distinction between general and internal ac-
cess involves a comparison of the name's Tevel with the current component type's level.
No level comparison is required with general access. Variable, parameter, and non-
entry routine names have internal access. A system component's varjables and parameters
may be accessed in the component and its routines, but not in nested system component
types. A routine's variables and parameters may only be referenced inside the routine.
Routines may not be nested.

Names with incomplete access may not be referenced. Type and procedure names have in-

complete access until the compietion of their declaration. A type declaration may not
reference itself; a procedure may not be recursive.

Names with unresolved access may only be referenced in the interface 1ist of a sequen-

tial program declaration. A name may be introduced in such a 1ist. When this happens
its access changes from undefined to unresolved. After the entry routine is resolved,
its access becomes external.

Names with qualified access are introduced by with statements. A with statement selects
a record varaible or system component for processing. This introduces the field or

entry names, and they are included in the spelling table with qualified access.

The name of a function in the body of a function has functional access. This means a

value may be assigned to the function result, but the function may not be referenced

recursively.

Undefined names have undefined access. They may not be referenced before being declared.
This is the last of the access attributes.



24
* the update stack *

Updating of the spelling table is accomplished via an update stack, a technique due to
Naur { 5]. MWhenever a name is introduced its previous spelling entry value is pushed

on the update stack. At the end of the scope {(block, record declaration, or qualifi-
cation) that introduced the name, the old spelling entry is popped from the update stack
and put back into the spelling table. This requires that the "base" of the current
portion of the update stack be marked at the beginning of new scopes {also called lev-
els). Analagous to the storing of base addresses in a run-time display, the base in-
dices of the update stack are stored in a compile-time display. These two structures
may be described as:

type
update index = 0..update max;

update entry = record
Tocation: spelling index;
old entry: spelling entry;
end;
display index = 0..display max;
display entry = record
level entry: name pointer;
base: update index;
previous component level:
level index;
previous qualification list:
qualification pointer
end;
var
display: array [ display index} of display entry;
update stack: array {[update index]
of update entry;
current level,
current update: update index;
current component level: display index;
current qualification list: qualification pointer;

The display contains all information relevant to the nesting of levels. When a new level
is entered in either a declaration or with statement, a new entry is pushed on the dis-
play. This new entry contains a name pointer to the system component type, routine, or
with temporary associated with the level. The base of the update entries for this level
is marked. The previous system component level is remembered in case this is a nested
system component type. The previous qualification 1list is also saved. Entry names or



25

field names associated with a system component or record type are maintained in a quali
fication Tist. A Tist is associated with each Tevel since these types may be nested.
Qualification Tists will be discussed in more detail later.

Entering and Teaving levels of nesting is controlled by the sequence of declarations
and with statements. The semantic routines associated with these constructs may use
two routines that push and pop display entries to enter and exit levels:

procedure push Tevel (Tevel name: name pointer);
begin
if current level = level max
then abort compilation
else current Tevel:= succ(current level);
with display [ current level] do begin
base:= succ{current update);
Tevel entry:= level name;
previous component level:=
current component level;
previous qualification Tist:=
current qualification Tist
end;
current qualification list:= nil
end;
procedure pop level;
var this update: update index;
begin
with display [ current level] do begin
current component level:=
previous component level;
current qualification Tist:=
previous qualification Tist;
for this update:= current update
downto base do pop update
end;
current level:= pred(current Tevel)

end;

The pushing and popping of update entries is controlled similarly:



26

procedure push update (this index: spelling index;
this name: name pointer;
this access: access attribute);
begin
if current level > global level then begin
"save the old entry”
if current update = update max
then abort compilation
else current update:=
succ{current update);
with update stack [current update] do begin
location:= this index;
old entry:= spelling table { this index]
end
end;
"now fill in the new entry"
with spelling table [ this index] do begin
name:= this name;
access:= this access;
level:= current level
end
end;
procedure pop update;
begin
with update stack [ current update] do
spelling table { location]:= old entry
end;

* table size *

Qverflow in any of these tables will abort compilation. The pass will terminate and
subsequent passes will process intermediate code only up to the point of termination.
For this reason the tables must be large enough to accomodate as many names as may be
used in the largest program that may run on the machine. The size of the spelling table
is determined by the size of the hash table used in lexical analysis. The display is
small, as few programs are very deeply nested. Concurrent Pascal does not allow rou-
tines to be nested. A few levels of nesting for system component types, record types,
and with statements is all that is required.

The update stack can be small since names in the outermost scope {global names) need
not be entered. Languages without name qualification, such as Algol 60, only place



27

names in the update stack when they are redefined. This makes level popping less ef-
ficient since local names must be removed from the spelling table by a search for cur~
rent level numbers. This increase in the cost of level exits is tolerable only when
level crossings correspond to block boundaries. In languages with name qualification,
level boundaries may be crossed many times within a block. A search of the entire spel-
ling table to "undefine" newly defined entries would be intolerable. For this reason
every nonglobal name has its old spelling entry placed in the update stack.

Another performance consideration involves the use of qualification lists. These lists
contain the entry names of system component types or the field names of record types.
When a system component or record variable name is followed by a period, a new level

is entered. Any of that variable's entry or field names is now included in the scope.
Since only one entry or field may be selected following the period, it is not worth-
while to update the spelling table with all the possible fields or entries. Instead a
linear search of the qualification list is made to retrieve the name of the particular
field or entry selected. The speliing table remains unaffected.

The situation is different when a system component or record variable is named in a
with statement. Here there may be many selections from the variable. In this case the
speliing table is updated to reflect the change in scope. The qualification 1ist is
traversed and each field or entry name is placed in the spelling table. At the con-
conlusion of the with statement the new level 1is popped.

* the name table *

Another significant data structure of name analysis is the name table. Once a name is
recognized through the spelling table, a pointer to the name entry is obtained. The
name table contains all information associated with a name whether it be the name of a
constant, type, variable, parameter, or routine. Concurrent Pascal does not require
that every constant or type possess a name. Name analysis responds to this in two dif-
ferent ways.

Constants are nameless. No name index is assigned to constants. Name analysis removes
constant declarations from the intermediate code. Index constants are represented in
the name table by their value. A1l other constants {(real or string) are represented

in the name table by their displacement in the program's constant area. Wherever con-
stant names appear in the intermediate code, they are replaced by their value or dis-
placement.

Types, on the other hand, are all given a name index, whether or not the programmer
names them. This is done so that delcaration analysis, the next pass, may refer to



28
types by their names {name indices).

Associated with each name in the name table is only the information required by name
analysis. So far we have described three functions of name analysis. It assigns name
indices to types, variables, parameters, and routines; it replaces constants by their
values or displacements; it enforces the scope rules of Concurrent Pascal. This last
function, scope rule enforcement, really means that name analysis controls the access
rights of the program. What can or cannot be accessed is determined by this pass. Later
passes will determine how these names may be accessed. This forms a clean division be-
tween these logically separate aspects of semantic analysis.

Access to a name involves referencing the name table. The name table is a linked list
structure that represents the access relationships of types, variables, parameters,

and routines. Subrange types are linked to their range types. System component types
are linked to their entry routines. Routines are linked to their parameters; functions
are also linked to their result types and sequential programs to their interface. Array
types are linked to their index and element types. With statement temporaries are
linked to their record or system component types. Record types are linked to their
fields. Al11 these relationships are represented in the name table, and this information
is distributed where necessary in the intermediate output code. No subsequent pass
possesses a linked structure that reproduces these relationships.

A name table entry is defined as:

type
qualification pointer = @ qualification entry;
qualification entry = record
spelling: spelling index;
name: name pointer;
next qualification:
qualification pointer
end;
name index = 0..name max;
name pointer = @Gname entry;
name entry =
record
index: name index;
case kind: name kind of
index constant: (
constant type: name index;
constant value: integer);



29

real constant: (

real displacement: integer);
string constant: {

string length,

string displacement: integer);
variable: (

variable type: name pointer);
parameter: {

parameter type,

next paramter: name pointer);
field: {

field type: name pointer);
scalar type: {(

range type: name index);
component type: {

initial statement: name painter;

entry 1ist: qualification pointer);
routine: (

parameter list: name pointer;

function type: name index};
sequential program: (

sequential parameter list:

name pointer;
interface list:
qualification pointer);

array type: (

index type: name index;

element type: name pointer);
with temporary: {

with type: name index);
record type: (

field list: qualification pointer)

end;

* the operand stack *

Name analysis stores operands in a stack since they precede their operator in the input
code. An operand entry is similar to a name entry, but there are some differences.
After defining an operand entry we will discuss its use.



30

type

operand index = O..operand max;

operand entry
record
case class: operand class of
index constant: (
constant type: name index;
constant value: integer);
real constant: (
real displacement: integer);
string constant: {
string length,
string displacement: integer);
variable: {
variable type: name pointer);
routine: (
routine entry,
next parameter: name pointer);
function result: (
function type: name index);
case label: (
label number,
case value: integer);
declaration: {
declaration entry: name pointer;
declaration index: spelling index)
"undefined, factor constant: (
empty)"
end;

Constants encountered in a declaration are pushed on the operand stack. Whether or not
the constant value is placed in the intermediate output code depends on the particular
construct. Constants appearing in constant definitions are placed in the name table and
not transmitted until they are referenced. Constants in the body appear either as
‘labels or as factors. Constant labels are pushed on the operand stack as case labels.
Constant factors are immediately transmitted in the intermediate code and an entry pushed
on the operand stack. This entry is empty, though, since the factor value is not re-
quired in this pass.

Variables may only be referenced in a body. When a reference appears, the variable type
is pushed on the operand stack. Variables may be either "subscripted" or “qualified”.
A subscript applied to an array variable replaces the name of the array type with the



31

name of the array element type. A period and a field name applied to a record variable
replaces the record type with the field type. A period and an entry routine name ap-
plied to a system component replaces the variable operand entry with a routine operand
entry.

Routines may be referenced in the body or in the interface 1ist of a sequential program
declaration. Routine names appearing in an interface Tist are not placed on the operand
stack. Instead they are added to a chain of names associated with the program declar-
ation. This chain is maintained by the same mechanisms used to maintain qualification
1ists. Routines referenced in the body are placed on the operand stack. The name of
the routine and the name of its first parameter are included in the operand entry. As
each argument appears in the input code, the parameter chain is followed to the next
parameter, If the parameter chain is shorter than the argument 1ist, an error indjcat-
ing too many arguments is given. If the argument 1list is shorter than the parameter
chain, an error indicating too few arguments is given.

Routines may not be referenced recursively. The name of a function may be referenced
in the function body only to assign a result to the function. For this reason a special
access attribute, functional access, is given to the function name inside the function
body. Reference to a function name with this attribute places the function result en-
try on the operand stack.

Names are declared in a declaration part. While the declaration is still incomplete,
the operand stack entry indicates a deciaration. Associated with the declaration is
its spelling index and & pointer to its incompiete name entry. This information is
used to update the various tables at the completion of the declaration.

Occurrence of an error in the declaration part or body part may invalidate an operand.
As in the Gier Algol compiler [ 5], no attempt is made to correct an invaiid operand.
Its description is changed to undefined., Subsequent accesses to an undefined operand
are ignored by the pass, but undefined operands will be placed in the intermediate out-
put code where necessary. No final code is produced for an incorrect program. Un-
defined operands may result from many different errors. For example an attempt to am-
biguously define a name will yield an undefined operand. An attempt to attach an argu-
ment 1ist to anything but a routine will yield an undefined operand. Error recovery
consists of marking the operand undefined and ignoring further attempts to process the
operand. For this reasen, every operand access myst first check for an undefined op-
erand. This involves far less effort than to correct illegal operands.



32
* summary *

This pass's output contains unique name indices that are used in later passes to refer
to types, variables, parameters, and routines. All access linkages between these quan-
tities are checked and distributed in the output code. The name table is used to re-
present the structural relationships of language elements. This structural relation-
ship embodies the major complexities of the language. Name analysis isolates this
complexity from the balance of semantic analysis. With few exceptions, the nodes of
this structure contain only name indices and links to other nodes. These links are
distributed in the intermediate code by transmitting the name index of the node refer-
enced by the 1ink. As examples, a variable appears in the output as the variable's
name index followed by its type's name index. A subscript expression is followed by
the array index type’s name index and the array element type's name index. In this
way traversal of linked structures is avoided in later passes. Name analysis is con-
cerned only with names and their relationships. The passes next described deal with
what these names represent.



7. Declaration Analysis
* function *

Declaration analysis performs the semantic processing of declaration parts. It analyzes
types, assigns addresses to variables and parameters, assigns program labels to routines,
and distributes this information in the body parts. A host of semantic rules contained
in the original language specification are enforced. These rules have two intentions:

to enforce implementation restrictions, and to ensure proper use of language facilities.
Examples of implementation restrictions are:

a. case labels must Tie in the interval [0, 127];
b. string types must contain an even number of characters;
Cc. process components must be component variables of the initial process.
Examples of proper usage rules are:
a. universal types must be passive;
b. function parameters must be constant parameters;
c. queue variables must be monitor component variables.
There are more than a score of these rules. Their enforcement depends on the efficient
representation of type information in the pass's data structures.
* the symbol table *
The analysis of deciarations requires a symbol table. This pass’s symbol table con-
tains no pointers. All symbol table links have been analyzed and distributed by name

analysis, the previous pass. These links appear in the input as name indices. They
are translated to symbol table links through a name table:

type
name index = 0..name max;
symbol table link = @ symbol table entry;
var
name table = array [ name index]
of symbol table Tink;



34

When a name is delcared, an entry is created for it in the symbol table. The link to
the entry is then stored in the name table. Subsequent references to the name are
processed indirectly through the name table. Note that the 1ink to the entry instead
of the entry itself is housed in the name table. This permits symbol table entries to
be allocated dynamically as they are declared. In this way small programs may be com-
piled in less memory space than large programs.

The operand stack used in this pass is a simple vector of symbol table links. Operands
appear in the input as name indices. They are translated to links via the name table,
and the 1inks are pushed on the operand stack.

This same simplicity carries over to the symbol table. 1In contrast to the plethora of
symbol table variants used in name analysis, there now exist only three non-empty var-
iants. A fourth variant, the undefined entry, is empty. Variables and parameters are
combined in the first variant, routines in the second variant, and types in the third

variant:

type
symbol table entry =
record
case class: entry class of
value: {
"variable or parameter information");
routine: (
"routine information®};
template: (
“type information")
end;

* the value variant *

Variables and parameters are represented in the symbol table by a value variant. This
variant contains the foliowing information about the value:

a. the address mode
b. the address displacement

c. the declaration context



35

This information is required by later passes and will be distributed in the output.

The address mode and address displacement are a virtual address in Concurrent Pascal.

Classical block structured architectures utilize an address consisting of an address
level and address displacement. In Concurrent Pascal routines may not be nested in-
side other routines, so there exist only two levels, the system component level (“glo-
bal"} and the routine level ("local®}. The mode encodes this information, as well as
the type of system component or entry routine. Some of the modes represented in this
pass are temporary modes; they do not appear in the final code. The modes are:

small constant *)
large constant
simple routine
sequential program
process entry routine
class entry routine
monitor entry routine
process component
class component
menitor component
standard routine *)
undefined *}

*) temporary mode

The address displacement is the displacement of the value within the data record of the
component, routine, record, or constants area. Displacements are assigned sequentially
as field, variable, and parameter declarations are processed. Displacements may be
positive or negative, they may be assigned forwards or backwards, and they may or may
not be offset. Record fields have positive forward displacements without offset. For
example, in a record with two integer fields, the first field's displacement is zero
and the second field's displacement is one word. Variables have negative forward dis-
placement without offset. For example in a routine with two integer variables, the
first variable's displacement is minus one word and the second variable's displacement
is minus two words. Parameters have positive backwards displacement with an offset of
one word. Backwards means their displacements are assigned in order from last declar-
ation to first declaration. For example in a routine with two integer parameters, the
last parameter's dispiacement is one word and the first parameter's displacement is

two words. Function results are displaced similarly to parameters, but the offset is
either one or two words depending on the mode. This assignment of displacements may
appear a bit intricate (as it did to this writer) but it is largely determined by the
address structure of the PDP-11/45. Chapter 12 illustrates these displacements.



36

Displacements are relative to a particular system component, routine, or record. The
previous displacement must be saved whenever & new level is entered. Again, as in
name analysis, this entails the use of a compile time display. The display is a stack
that has an entry for each level. It contains the previous mode and displacement to
be restored upon reentering the level.

The declaration context of a value indicates the context in which the value was de-

clared. This information is used in the next pass (body analysis) primarily to deter-
mine if a value may be changed. The different contexts are:

function result

class entry variable
variable

variable parameter

universal variable parameter
constant parameter

universal constant parameter
generic standard function parameter
record field

constant

expression

The "generic standard function parameter® context is used to handle the tricky standard
functions, absolute value, successor, and predecessor, whose result types depend on the
argument types. This problem is discussed in the body analysis description. The "con-
stant” and “"expression” contexts are also used in that pass since no declarations ap-
pear for them.

* the routine variant *

Routines are represented in the symbol table by a routine variant. This entry contains
the address of the routine and the routine's parameter length and Tocal variable length.
A routine may be a Tocal routine of a system component, or it may be an entry routine.
This information is encoded in the mode portion of the routine address. The modes are
the same as those for values.

Unlike value addresses, though, a displacement is not given. Displacements in the pro-
gram area will not be known until the code is assembled. In lieu of a displacement,

a routine label is given as the second part of the address. These labels are then re-
solved into program displacements during code assembly.



37

The parameter length and Tocal variable length are accumulated when the routine is de-
clared. This information will be included in the final code. The parameter length is
required in order to pop the parameters from the data stack upon routine exit. The
variable length is required in order to push the variable storage area on the data stack
during routine entry. The initial statement of a system component is treated, for these
purposes, as an entry routine. Associated with it are the parameter length and compon-
ent variable length of the system component itself. In the case of a process initial
statement, the additional stack length, if any, is included in the routine variant.

This facility allows the programmer to allocate a fixed additional amount of storage

to allow processes to execute Sequential programs.

To summarize, then, a routine variant contains:

the routine mode

the routine label

the parameter iength

the variable length

the additional stack length.

* the template variant *

A1l information associated with types is contained in the template variant. This in-
formation includes:

the name index

the type length

the active attributes

the type "kind"

information particular to individual kinds

The name index of the type is retained. It is transmitted in the intermediate code
for use in type checking by body analysis. The length of the type is used for assign-
ing displacements and may be incorporated in the final code.

* the active attributes *

The actjve attributes are a set of attributes associated with the type. They indicate

whether the type contains an instance of an active type. This information is impor-
tant since many semantic rules require knowledge of the active attributes of a type.
If a type contains no active types, then it is considered a passive type, and its



38

active attributes are empty. Pascal's simple types, record types with passive fields,
and array types with passive elements are all examples of passive types. A class type
is an active type with the class attribute. A monitor type is an active type with the
monitor attribute. A process type is an active type with the process attribute. A
queue type is an active type with the queue attribute. Structured types {array or re-
cord types) containing active types are themselves active types. They inherit the at-
tributes of their elements.

The active attributes are represented by a short set. In this implementation of Con-
current Pascal all sets are the same length; they all contain 128 possible elements.
Short sets are readily obtained from these rather long sets by using Concurrent Pascal's
universal type facility. This facility was discussed in the description of lexical
analysis. In composing structured types, these attributes are inherited by taking the
union of the element type's attributes with the structured type's attributes. The op-
eration of set inclusion tests for the presence of a particular attribute.

One important example of the use of active attributes is this. Queue variables are
intended to be monitor component variables. Process access to monitors is mutually
exclusive. Since only one process at a time may actively execute a monitor, the mon-
itor may place one process in a queue while it services another. Transfer of the queue
variable outside the monitor, say to another monitor, would violate this intent. The
only way the monitor could pass the queue variable out to another component would be

in an argument 1ist. The queue variable could be placed in an argument 1ist in an
init statement or in an entry routine reference. Since initial statements are viewed
as entry routines we are left with this one case. Entry routine parameter types may
not possess the queue attribute.

* the type kind *

Types are classified into kinds. These various kinds are chosen to facilitate type
checking in the body. This type checking will be done by the next pass. The possible
kinds are:

integer
real
boolean
character
enumeration
set

string
queue



39

system component
passive

active

generic
undefined

The standard index types, integer, real, boolean, and char, are each given their own

kind. Any other index type is considered an enumeration kind. The standard gueue type
is a gueue kind. The system component types are system component kinds. An array of
characters is a string type. Any passive structured type that is not a string type is
a passive kind. Any active structured type is an active kind.

The generic standard routine parameter types are of generic kind. The possible generic
types are arithmetic, index, and passive. For example the absolute value function takes

an arithmetic argument, the successor function takes an index argument, and the input/
output procedure takes several passive arguments.

Particular information may be included in the entry for the different kinds. Integer,
real, character, and enumeration kinds contain the minimum and maximum values of their
enumeration. System component kinds contain the mode of the component and its variable
length. This Tength will be incorporated in the code as the displacement required to
obtain the base address of the component data area. This permits system component data
areas to be addressed similarly to routine data areas.

* the pass output *

The symbol table entries are distributed in the intermediate code by declaration an-
alysis. A single entry may be distributed many times, since it is inserted in the out-
put wherever the entry is referenced in the body portions of the program. Only two
output formats are used for entries: a value format and a routine format. Type in-
formation is included in the value format.

The following information appears in the value format:

the address mode

the address displacement
the declaration context
the type kind

the type name index

the type length.



40

The value format is preceded by one of two intermediate language operators. These op-
erators are var or vcomp. The var operator implies an unqualified variable. The vcomp
operator implies a qualified variable (a variable component). Constants are treated

as ungualified variables with a constant declaration context. So in the output con-
stants, variables, and parameters all appear as values.

The routine format contains:

the routine mode

the routine label

the parameter length

the variable length

the additional stack length.

The routine format is also preceded by one of two intermediate language operators:
routine or rcomp. The routine operator implies a simple routine, while the rcomp op-
erator implies an entry routine. Function references introduce an additional require-
ment for specification of the function type.

This scheme provides a uniformity of reference to either values or routines. Declar-
ations are consumed and distributed in the body where required. This permits a very
simple design for body analysis, the next pass to be described.



8. Body Analysis

* function *

Body analysis performs semantic checking in the body parts of the program. It checks
the compatibility of operands and their operators, and generates addressing commands
for the machine. This is the final phase of semantic processing. Name analysis has
consumed constant declarations, and declaration analysis has consumed type, variable,
and routine declarations. Devoid now of declarations, the intermediate input code
consists of a simple sequence of bodies.

A short summary of semantic analysis is: Name analysis checks the access relationships
of the program and distributes valid symbol table 1inks in the output code. Declar-
ation analysis checks the declarations of the program and distributes valid symbol
table nodes in the body. Body analysis then checks the compatibility of operands and
their operators and distributes valid commands in the body. These commands will then
be processed by the code assembly passes to produce the final machine code.

* type compatibility checking *
Type compatibility may be of two forms:
a. compatibility of operands with each other;
b. compatibility of operands with their operator.
For example the addition operator requires that its two operands be compatible with
each other {a) and that they be arithmetic {b). Checking the compatibility of operands
with each other follows the type compatibility rules of Concurrent Pascal. These rules
have been especially chosen to minimize the labors of type checking and of learning
the language as a programmer. Two types are compatible if any of the following are
true:
1. they are defined by the same type definition;
2. both are subranges of a single type;

3. they are string types of the same length;

4, they are set types whose members are the same index type;



42
5. they are set types, one (or both) of which is the null set type;

6. one type is a universal parameter type and the other type is a passive argument
type of the same length;

7. one type is an argument type and the other type is its generic parameter type.

Type information appears in the input as it was distributed by declaration analysis.

So types appear as three arguments: a kind, a name index, and a length. These argu-
ments are chosen to mesh with the compatibility rules in a simple manner. This scheme
is made possible by using a small set of primitive attributes to represent the context
and type information of operands. This information is contained in the operand stack;
no symbol table exists in this pass. The operand stack is a linked stack whose entries
are:

type
operand entry =
record
"address information”
mode: address mode; displacement: integer;
"type information"
kind: type kind; name: name index;
length: integer;
case class: operand class of
value: (
"value information"
context: declaration context;
state: address state);
routine: {
"routine information”
parameter length,
variable length,
additional stack length: integer)
"undefined: (
empty)"
end;

The address information represents the virtual address of the operand. In the case of
routines the 'displacement’ is a label. The type information is the same as in declar-
ation analysis. For routines, this would be the function result type, if any. Except
for the address state, to be discussed later, the routine and value information has
also been described before.



43

Type compatibility is checked by a function that compares the type of the top operand,
‘t', and second to the top operand, ‘s':

function compatible: boolean;
begin
if tB.context in universal then
"apply Rule 6"
compatible:= (s@.kind in passives)
and {t8.7ength = s@.length)
else if t@.kind = s@.kind then
case t8.kind of
integer kind, real kind, boolean kind,
character kind, queue kind:
“"Rules 1, 2"
compatible:= true;
enumeration kind, passive kind,
active kind, component kind:
"Rules 1, 2"
compatible:= t@.name = s@.name;
string kind:
"Rules 1, 3"
compatible:= t@.length = s@.length;
set kind:
"Rules 1, 4, 5"
compatible:= (t@.name = s@.name)
or (t@.name = null)
or (s@.name = null};
undefined kind:
compatible:= false
“but suppress error message"”
end;
else if t@.kind = generic kind then
"Rule 7"
case t@.name of
arithmetic genre:
compatible:= s@.kind in arithmetic
index genre:
compatible:= s@.kind in indexes;
passive genre:
compatible:= s@.kind in passives
end



else compatible:= false
end;

This simple function performs compatibilty checking of two operands. It is usually only
invoked for argument type checking where the full range of operand types is possible.
Since most operators take limited operator types, the check can usually be performed
even more simply in-line. For example, addition checking need only ask if two kinds

are either both integer or both real.

The context of a value, as well as the kind, is also used in compatibility checking.
Assignment targets and variable arguments must be assignable. This is checked by ex-
amining the context of the value.

* addressing commands *

Before an operand may be utilized by the machine, it must be addressed. Body analysis
makes use of an address state. The address states are:

direct,
indirect,
addressed, or
expression.

The direct state indicates an operand that is directly addressable. Its mode and dis-
placement are known. Unqualified variables and constant parameters are directly ad-
dressable.

The indirect state indicates an operand whose address is directly addressable, for ex-
ample, a variable parameter.

The addressed state indicates an operand whose address is on the machine’s stack {such
as a subscripted variable), while the expression state indicates an operand whose value
is on the machine's stack.

To utilize an operand, the machine requires its state be either addressed or expression.
Short operands may be placed directly in the stack, while long operands may only haye
their addresses placed in the stack. The short operands are either of byte length
(characters within strings), word length (enumeration types), real length (reals), or
set length (sets). An address is itself a short (word length) operand. Long operands
are of structured type (arrays or records).



45

case t@.state of

direct:
"generate command to load value:
push value (length code, mode, displacement)”

indirect:
"first generate command to load value address:
push value (word length, mode, displacement)"”
"then generate command to indirectly load value:

push indirect (length code)"
addressed:

"generate command to indirectly load value:

push indirect (Tength code)"
expression:

"value is already loaded"
end

Long operands, assignment targets, and variable arguments have their address, not their
value, pushed on the machine stack at runtime. Again, the commands generated by boay
analysis depend on the address state of the operand:

case t@.state of
direct:
"generate command to load address:
push address (mode, displacement)"
indirect:
"generate command to load address value:
push value (word length, mode, displacement)"®
addressed:
"the address is already loaded"
expression:
error "expressions are not addressable"
end

These operations of value loading or address loading are performed for most operators.
Varjable references are a good example. Consider the variable reference

vii+1).f

and its resultant loading commands. First the address of 'v' is loaded. Then the
value of the subscript expression is loaded. Then the index command performs the in-
dexing leaving the address of 'v[1 + 1]' on the stack. Assume this is a record.

Then next a jjglg_insfruction is issued, taking as its argument the displacement of



46

'f' within the record. This adds the displacement to the address already on the stack,
leaving as a result the address of the field. If this is all that is required then no
further commands are issued, else the value is loaded by a push indirect command.

Should 'v[i + 1]' be a system component and 'f' an entry routine, then the commands
are different. After the indexing command is generated, a field command is generated
with its argument the component offset. Then the routine reference is generated. A
routine reference command is of the form

call (mode, label, paramter length).

* error recovery *

As in previous passes, the error recovery scheme, due to Naur [ 5], consists of marking
an operand undefined. This provides a simple uniform scheme of error recovery over
the three semantic analysis passes. The error routines themselves change the operand
description to undefined. Two error routines exist. The first routine is for unary
operators, the second for binary operators. Each routine checks the operand descrip-
tions on the stack. If they are undefined, no error message is given. If they are
defined, then an error message is given and their description is changed to undefined.
This eliminates redundant error messages in this pass.



9. Code Selection
* function *

The compiier's last two passes, both designed and written by Per Brinch Hansen, per-
form code assembly using a classic two-pass design. The first assembly pass is named
code selection. Its function is to define the addresses of program labels, determine
the stack requirements of routines and components, construct the constants table, and
translate the input code to final code. Code selection will leave four tables behind

in the heap for use by the next pass, code assembly. These tables contain the addresses
of routine labels, the addresses of jump labels, the stack requirements of components
and routines, and the large constants. No arbitrary limit is placed on the size of

the program that may be assembled.

* table management *

Code selection constructs four tables in the heap, a routine label table, a jump table,
a stack table, and a constants table. Common management routines are used for each of
these. Tables are broken up into pieces of 100 entries each:

const
piece length = 100;
type
piece pointer = @ table piece
table piece = record
next piece: piece pointer;
contents: array [ 1..piece length]
of integer
end;

Body analysis leaves a short record behind in the heap, called the interpass record.
This record contains the number of routine labels, the number of jump labels, and the
length of the constants area. These entries were computed by earlier passes. Declar-
ation analysis determined the number of routine labels, syntax analysis determined the
number of jump labels, and name analysis determined the length of the constants area.
Code selection uses this information to allocate the tables as part of pass initial-
ization; dynamic table extension is not required.

Three routines perform table management. The allocate routine takes the number of table
entries required and returns a pointer to the constructed table. This routine is called
during pass initialization, once for each of the four tables. The enter routine takes



48

a table pointer, an entry index, and an entry and enters it in a table. The entry
routine takes a table pointer and an entry index and returns the entry.

* address definition *

Program labels are divided into two groups, routine labels and jump labels. Routine
labels appear, one to a routine, at the start of each routine body. These labels were
generated by declaration analysis as part of the analysis of routine declarations.
Jump labels appear within a routine body. These labels were generated by syntax anal-
ysis when it converted statements to postfix notation.

Jump labels appear in the input code as a label command followed by a label number.
When encountered, the current program address is entered in the jump label table using
the label number as an index. Code assembly, the next pass, will use this table to
replace the label by a relative address in jump instructions. Three types of jump
instructions exist, the jump, the false jump, and the case jump. The jump and false
Jump commands are followed by a label number. The case jump command is followed by
the minimum and maximum case label values, and (maximum - minimum + 1) labels. These
Jump commands are output by code selection as they came in with the addition of one
more argument. Since all jumps in the machine use relative addressing, the current
program address is appended to all jump instructions. Then the next pass will take
the difference between the jump label address and the jump instruction address as the
argument of the jump instruction.

Routine labels appear in the input code as arguments to the enter command. This com-

mand begins all routine bodies. When encountered, the current program address is en-
tered in the routine label table. Code assembly, the next pass, will use this address
to replace the label in call instructions. The current program address is again in-~
cluded as an argument to the call instruction.

* stack requirements *

The compiler computes the maximum run-time stack requirements of routines and com-
ponents. Since routine calls may be dynamically nested, these stack requirements must
be computed for the worst case call sequence. This is possible to perform at compile
time because Concurrent Pascal forbids recursion. Recursion is allowed in sequential
Pascal, and here the programmer may reserve additional stack space for processes that
call separately compiled sequential programs.



43

The absence of recursion and forward references means that only previously defined
routines are referenced. This makes it simple to compute a routine's maximum stack
requirements. The current stack extent is kept in one global variable, and its high
water mark in another global variable. The first routine in a program cannot caill
any other routine in the program. So its stack reqguirements are only those for its
own variables and temporaries. Subsequent routines may call previous routines. When~
ever a call is encountered, the called routine's stack requirements are added to the
current stack extent. If this exceeds the high water mark, then the high water mark
is updated. Immediately after the call, the current stack extent is decremented by
the sum of the previous stack requirements plus the parameter length. (The parameter
length is added piecemeal to the current stack extent as code is generated to push
each argument on the stack before the call.) 1In this way the movement of the stack
at runtime is simulated by code selection. At the end of the routine, the high water
mark becomes the routine'’s stack requirement.

Routine and component stack requirements are placed in the stack table by code selec-
tion. Code assembly will remove them from the table and place them in the enter in-
struction at the beginning of the routine. The index of the stack reguirement in the
table is the routine label.

* the constants table *

Concurrent Pascal allows enumeration constants, real constants, and string constants.
The empty set is a special case; it is the only set constant. Enumeration constants
are short constants. They are included in the code as part of the instruction that

references them. All other constants are long constants. Llong constants are housed
in the constants table and referenced by their displacement. The constants table is
constructed piecemeal by code selection as large constants appear in the input code.
Code assembly outputs the constants table following the code at the end of the pass.

* command translation *

Code selection performs simple encoding of types into opcodes to make the simulation
of the virtual machine faster. This function is performed here to isolate the Sseman-
tic analysis from details of the machine simulation. It permits peephole optimization
of the instruction set without alteration of semantic analysis (this is not done 1in
the present compiler)

Code selection accepts less than fifty different commands from body analysis. By merg-
ing arguments with operators, this set of commands is more than doubled. For example



50

the "push value {word length, local routine mode, displacement)” command becomes the
“push local (displacement}” instruction. No similar instruction exists for reals. A
"push value (real length, local routine mode, displacement)" command becomes two in-
structions. A “"local address (displacement)" instruction followed by a push real in-
struction. If all possible permutations of commands and their arguments were made
separate instructions, the instruction set would be much larger.

Source line numbers may or may not appear as instructions in the final code. A compiler
option determines if line number instructions are to be generated for every source line
{and at every jump label) or only at the beginning of routines. This permits a run-
time error indication of the particular source line that failed.



10. Code Assembly

* function *

Code assembly is the last compiler pass. It completes the transformation of the pro-
gram to final machine code. Routine labels and jump labels are replaced by program
addresses, stack Tengths are inserted in routine entry and process initialization in-
structions, error messages are listed, and the constants table is output at the end
of the program.

* table manipulation *

The four tables constructed by code selection are used in this pass. Label addresses
are retrieved from either the routine label table or the jump label table and used to
resolve call or jump instructions. Stack lengths are retrieved from the stack table
and inserted in routine entry and process initialization instructions. At the con-
clusion of the pass, the constants table contents are appended to the code.

* error messages *

This pass prints error messages, if any, on the program listing. Earlier passes, when-
ever they encounter an error, output an error operator with its arguments the pass
number and error message number. This insures that error messages from different passes
will be listed in order of line number. Code assembly then processes error operators
and prints the associated error messages. Error messages are in plain text. They
consist of the source line number and a short explanatory message.



11. Interpass Topics

* overview *

Several interesting topics have been 1eft out of the compiler description by passes.
These topics spread over several compiler passes and are best described in a separate
chapter. Constants handling, the case statement, and the with statement are included.
These topics have been mentioned in previous chapters, but not completely or coherently.
Their treatment here shows how a number of complicated constructs may be handled in
stages.

* constants handling *

Anonymous constants are parsed and their values inserted in the intermediate code by

lexical analysis. Anonymous constants fall into five categories: 1integers, reals,
characters, strings, and sets. Integer and character constants are short constants.
They will be incorporated in the code as arguments. Real, string, and set constants
are long constants. They will appear in a separate constants table. Only one set
constant exists, the empty set. The empty set is the first entry in the constants
table.

Named constants are given values or constants table displacements in name analysis,

the third pass. Name analysis replaces short named constants by their values and long

named constants by their displacements. So constant declarations are the sole respons-
ibility of name analysis. A1l other declarations are handled by declaration analysis.

Constant references are included in the commands by body analysis as part of its op-
erand addressing responsibility. A short constant is referenced by a "push const (val-
ue)" instruction, and a long constant is referenced by a “const addr (displacement)"
instruction.

* the case statement *

Case labels are constants; they are handlied by name analysis. That pass collects all
the case label values, assures they 1ie in the range [0, 127], and insures there are
no ambiguous labels. A 128-element array is used for these operations. At the con-
clusion of the case statement, a transfer vector is placed in the output code. This
transfer vector has (maximum - minimum + 1) entries, where [minimum, maximum] is the
range of case label values. The transfer vector is indexed by case label values; its



53

entries are the jump labels for the individual cases. For example, the case statement

case x of 3: S51; 5: S2 end

would appear in the name analysis output as the case statement code followed by the
transfer vector (11, in, 12). Label '11' is the jump label of statement 'S1'. Label
'In' is the jump label of the end of the case statement. This is because no case exists
for 'x = 4', so the case statement will be skipped. Label '12' is the jump label of
statement 'S2'.

Body analysis performs case label type checking to insure that the case selector ex-
pression and case labels are of compatible type. Since name analysis collects case
labels at the end of the statement, it places special type checking operators in the
output. These operators take as their argument the name index of the case label type.
Body analysis uses these operators to compare the case label types with the type of
the selector expression.

* the with statement *

Concurrent Pascal's with statement may name a system component or a record variable.
This introduces the entry names or field names into the scope at that point. From
the point of view of name analysis, no real difference exists between these two cases.
An example for a record variable might be:
var
record variable:
record
field: integer

end;
begin
with record variable do
field:= 0
end;

The semantics of the with statement are simple. The address of the with variable is
evaluated and treated as a temporary pointer until the end of the statement., This
temporary is then used to qualify the entry or field names in the body of the with
statement. This can be stated in high level terms. Let the expression

pref v
mean “assign the address of variable ‘v' to pointer 'p'", Then the with statement
example above is treated as



54

with temporary ref record variable do
temporary@. field:= 0.

Name analysis translates the original with statement format to this new format. It
explicitly introduces a declaration of the with temporary, and it qualifies entry or
field names with the newly created temporary.

Declaration analysis processes the declaration of the with temporary. This is an ex-
ample of a declaration inside the body. Declaration analysis assigns a displacement
to the with temporary. This displacement is the stack displacement where the with
variable address is evaluated. At the end of the with statement, the temporary is
popped from the stack.

Body analysis generates the commands to evaluate the address of the with variable.
Inside the body of the with statement, it generates commands to push the with temp-
orary on the stack wherever a qualified name appears.

* remarks *

Altogether these are good examples of how semantic analysis can be split over several
different passes. Each pass performs a well-defined subset of the semantic analysis
process. A1l this is done with no pass having a complete symbol table. Context a-
wareness is strictly limited to the immediate program neighborhood. This requires a
systematic design of the entire compiler, with a clean development of each pass and
its interrelation to other passes.



12. The Virtual Machine

* introduction *

The Concurrent Pascal compiler generates code for an ideal machine. The transportable
compilers developed by Wirth's group at the Technical University (ETH) in Zurich com-
pile code for an ideal machine. Concurrent Pascal's ideal machine was designed by

Per Brinch Hansen. The following discussion is adapted from his description of the
machine. This ideal machine is simulated by the real machine, in our case a Digital
Equipment Corporation PDP-11/45. Certain peculiarities of the real machine (e.g. pro-
gram relative addressing) appear in the final code. These peculiarities are intro-
duced during the code assembly phase of compilation. For this reason, the machine is
best described at the point just before code assembly when the intermediate language
is still adaptable to general machine architectures. This then is a description of the
machine as viewed by semantic analysis. The machine instruction set is the command
set generated by the last semantic pass, body analysis. The two-pass code assembler
may be viewed as a postprocessor that adapts this virtual machine code to particular
architectures.

The virtual machine is an ideal stack machine. No assumptions are made about particular
registers in any real machine. The virtual instruction set may be assembled into real
code for any machine on an instruction by instruction {context free) basis.

* data types *
The virtual machine recognizes five types of data:

1) byte - used to represent a single character within a string;

2} word - used to represent enumeration types, queues, and processes; must be one or
more bytes in length;

3) real - used to represent a real; must be one or more words in length;
4) set - used to represent a set; must be one or more words in length;

5) structure - used to represent a structured type, class, or monitor.

The first four data types are fixed length, while the structure type is variable length.
Byte data represents characters within strings. The representation is ASCII. Word



56

data represents enumeration types. Programmer defined enumeration types are represented
by consecutive integers 0, 1, 2, ... Integer and real representations are determined

by the particular machine. Sets are represented as bit strings. The virtual machine
uses fixed length sets. Program components are represented by indices 1, 2, 3 ....
defined during system initialization. The index zero represents an uninitialized com-
ponent. Queues contain process indices. An empty queue contains index zero.

* data addresses *

The data store contains a constant segment, a stack, and a heap. Addresses contain

a mode and a displacement. Modes and displacements were described in the discussion

of declaration analysis. The apparent intricacy of displacement assignment actuaily

results from a very simple data segment design. The data segment of a component or a
routine has the same structure. This structure is diagrammed below:

temporaries

-4 | variables

0 1ine number gy stack

component index growth

4 parameters

function value

Figure: A data segment.

The base address of a data segment divides the variables from the parameters. Com-
ponent data segments have their address shifted by the variable length, or component
offset, in order to point to the base location. The base location contains either the
1ine number at the point of call for routines, or it contains the component index for
system components. The parameter portion may contain more than just the explicit par-
ameters. This allows the routine entry to address global component variables. A call
of a sequential program places a 1ist of interface routine addresses on the stack be-
fore the explicit parameters. After the explicit parameters, the address of the se-
quential code store is placed on the stack.



57
* program addresses *

Program addresses are represented by integer labels. A label is either a jump label
or a routine label. Jump labels are labels of points within the body of a routine.
Routine labels are the labels attached to the beginning of a routine body. A1l ref-
erences to jump labels are within a routine. A1l references to routine labels are
between routines.

* the virtual commands *

A virtual command consists of one or more integers. The first integer is the operator.
Subsequent integers, if any, are the arguments. For example, the field command takes

a displacement as its argument. The top stack Tocation contains an address and the
field command increments the address by the displacement. The instruction set is re-
markable in that it is unremarkable. It implements Concurrent Pascal with a simple
set of commands for manipulation of a stack machine.



13. Implementation

* history *

The Concurrent Pascal compiler was inspired by the Gier Algol compiler [5] of thirteen
years ago. That effort showed that compilation can be made simple and efficient by
using a large number of small passes. The Gier compiler used nine passes. lexical
analysis used two passes, syntax analysis used one pass, semantic analysis used three
passes, and code assembly used three passes.

Additional inspiration for this compiler was obtained from the ten-years' old Cobol
compiler for the Siemens 3003 [4]. This was a ten-pass compiler. Lexical analysis
used one pass, syntax analysis used one pass, semantic analysis used four passes, and
code assembly used four passes.

Both the Gier and Siemens compilers were written in assembly language and generated
code for the real machine. This accounts for differences in code assembly between
these compilers and the Concurrent Pascal compiler. The small size of the Gier com-
puter required that the compiler separate identifier matching from the balance of lTex-
ical analysis to obtain two passes. For syntax analysis, both previous compilers used
the traditional transition matrix technique (instead of recursive descent).

* testing *

The Concurrent Pascal compiler transmits intermediate code between its passes. As in
the Gier and Siemens compilers, the sole diagnostic information is a listing of the
intermediate and final code. If the compiler crashes or loops endlessly, the operating
system ensures that all intermediate code up to the point of failure is listed. This
listing is controlled by an option switch within the compiler.

The compiler was developed using a set of systematically developed test cases for each
pass. These test cases are Concurrent Pascal programs that make each pass generate
every possible operator and execute every statement at least once. At least two test
programs are written for each pass. One program is entirely correct for the pass; the
other program generates every possible error in the pass. Pass 1 is tested first.

This pass, lexical analysis, requires a special test mechanism. Since lexical analysis
lists the source program, the listing of the first intermediate code must be inter-
leaved with the source listing. Lexical analysis buffers test output between source
lines. This alternates source lines with their intermediate code.



59

Once the first pass is complete, the second pass is tested, and so on. As each pass
is finished, the next pass is added. This allows all test programs to be in source
text form, and it tests all interpass assumptions. At each phase of the testing all
test programs are used, not just the test programs for the new pass. Generally when
a new pass is first added, all test programs will fail. Several of these failures
will point out different bugs, and these may be discovered and corrected simultan-
eously. As testing progresses, more and more test programs will be compiled without
failure, until finally all test programs compile successfully.

The output of the test cases is the intermediate code. This is a sequence of integers.
Each integer is either an operator or an argument in the intermediate language. Op-
erators appearing on the test 1isting are preceded by the letter 'C', arguments are
not. The test output mechanism always remains in the compiler as an option. Once
released, users may use the test option if they encounter a compiler failure. The
1isting can then be mailed to the compiler writer for examination and correction. Com-
piler changes may also be tested with this mechanism.

Compiler failures during testing are normaily detected by runtime checks in the vir-
tual machine. Three types of checking are performed. Variant checking insures that
variant fields are only referenced when the tag field contains an appropriate value.
This check is vital during testing of name analysis where a large linked structure of
variant records is created. In a sample of 64 compiler failures during testing, 18
failures, or 28%, were variant errors. Pointer checking insures that nil pointer val-
ues are not used as references. Again this is valuable in any pass with a linked struc-
ture. 1In the sample of 64 failures, 13 failures, or 20%, were pointer errors. Range
checking insures that subscripts and case statement selectors are within range. In

the sample of 64 failures, 32 failures, or 50%, were range errors.

The sample of compiler failures was taken after name analysis had nearly been com-
pletely tested. Name analysis resulted in the most variant and pointer errors. Prob-
ably over the entire compiler, the proportions of variant, pointer, and range errors
were fairly close. The value of these checks is enormous. In the total sampie of &4
failures, only one failure, or less than 2%, was an endless loop!

Systematic testing of the compiler occupied three months, from October through December
of 1974. Actual PDP-11 machine time during testing was a twenty-minute session, twice
daily. The compiler had been designed and written during the summer, June through
September. It was written backwards, starting with the last pass.



60

* performance - space *

Before writing the Concurrent Pascal compiler, a small group first wrote a compiler

for the sequential Pascal language as defined by Wirth [71. This was a six-pass com-
piler that generated a combination of real and virtual code for the DEC PDP-11/45. In
this compiler semantic analysis used two passes instead of three. Name analysis was
split between declaration and body analysis. This made the two semantic analysis passes
nearly equal in size, both far Targer than the other passes. Declaration analysis con-
structed the symbol table for the entire program, and it remained in the heap between
the two passes. A space requirement histogram for the six passes is shown next. The
space measured is the sum of the program and data space for the pass. The data space

is sufficient for self-compilation.

Total space requirement for six-pass compiler.

Pass Space requirement; * = 500 16-bit words.

1 (14K) Foeddmiskdonddodokkodoh ok o kok ko xk

2 (13K} ek sk dedodeodokkodeodok ok don

3 (22K) Foedksddokdodddkdededk ke Rk R AR KRR K AR S
4 (23K) Frddkddeodokk dekdok ok kkokkdeodeodok koo ek Rk ek ok
5 (12K) etk do ke dokdeowk

6 (12k) JedkkkKdkdkkdkkddkkihdkkkkkk

Lessons Tearned from the six-pass compiler Tead to the development of a totally new
design for a seven-pass Concurrent Pascal compiler. The key element in the new design
is the name analysis pass, an idea that goes back to the Gier Algol compiler [51. The
space requirement histograms for the seven passes of the Concurrent Pascal compiler .
are shown next. The improvement in space utilization is striking. The data space is
sufficient for compilation of the Solo System, Brinch Hansen's oberating system writ-
ten in Concurrent Pascal. A sequential version of the Concurrent Pascal compiler was
constructed in one additional month {January 1975). The total space required for self-
compilation of the sequential Pascal compiler is 256 words larger than the maximum
space shown for Concurrent Pascal.



61

Total space requirement for Concurrent Pascal compiler.

Pass Space requirement; * = 500 16-bit words.

1 (le) *kkkkkkkkhkkkkkhkkkhkkkkk

2 ( gk) KRRk RRk ARk AR ARk AAK kK

3 (16.5k)*********************************

4 (13k) KRR AKAKRAKRRRAKRARRA KRR KRR KRR KA kK

5 (6.5Kk) *Rrksakddxnkk

6 (5.5k) Fkakkrdkdkk

7 ( 6k) *hkhkkhkAkhkk

Program space requirement for Concurrent Pascal compiler.

(About 1000 words of program are common I/0 routines in each pass.)

Pass Space requirement; * = 500 16-bit words.

1 (5.5k) *rkakkrksnkk
2 (6.5Kk) *rkkkrtkkkak

3 (9 k) kAR KkEAKRKKRK KKK KRR
4 (7 k) rertdrkdksorko

5 (5 k) *kwrkhihdx

6 (4 K) wrxxkrrk

7 (4.5k) *kwksiink

The program space requirements reflect the choice of compile-time options chosen for

the pass compilations. Line numbers may optionally appear in the code, as may variant,
pointer, and range checks. A Tine number always appears for each routine even if the
line number option is turned off. A range check is built into the indexing and case
jump instructions. Turning off the check option will not remove subscript and case
selector range checks. With this in mind, all passes were compiled without Tine numbers.



62

A1l passes except Pass 1 were compiled with checks. The importance in the choice of
compiler options is shown next. The program space for each pass is shown for the three
cases {1) with Tine numbers and with checks, {2) without 1ine numbers but with checks,
and (3) without Tine numbers and without checks. On the average, case (2} is 75% the
size of case (1), and case (3) is 70% the size of case (1}.

Program space requirements for Concurrent Pascal compiler.

First Tine with Tine numbers and with checks.
Second line without Tine numbers but with checks.
Third Tine without line numbers and without checks.

Pass  Space reguirement; * = 500 16-bit words.

(7000) *rkskskkskkns
1 (5300) *wkdkkskkrn

(5000) *kkkkknsk

(8500) Kk kkkkkkkhkkkkhkk
2 (6600) *¥xwkkkkkinsn

(6300) **FkHkkdrdxxkhk

(11300) Jedededede dededededod dede dede ke ded dedkk
3 (8800) *kkhkhhddhhhhdhkhhr

(7800) dkdkkkkddkkkdkkk

(8800) Jedkdk gk ddkkkkddkkdkkk
4 (6800Q) Fkseskdokdk ok e e

(6000) ***xkdkxsxsx

(6800) *khdkkkdkkkkkk

5 (5000) *kkrsdrsns
(4800) *xkkkkkohkk

(5800) *ksskkkk ek

6 (4000) *kkkkkkk
(4000) *kkhkkkk

(6500) Jeddkdedddkhdkdk

7 (4600) ddkkkhkkk

(4300) *dkhkddhk



Pass data for compilation of the Solo System may be estimated as follows:

Data space requirement for Concurrent Pascal compiler.

63

Pass

1

Space requirement; * = 500 16-bit words.

(7 k) L e
(2.5k) *rHwx
(7.5k) FhhhhKKFIKKKKFKK

(6 k) *hKh KKK KKk KKk

{1.5k) ***
(2 k) *kkk
(2 k) *kkk

Common data for all passes (16-bit words)

Pass

Call for Solo command interpreter
Command interpreter data

Call of compiler driver

Compiler driver data

Call of a pass

Pass code buffers

Total

1 data (16-bit words)

Hash table - 7 words * 751 entries
Other variables

Fixed data total
Local data
Long identifiers - 6 words * 17 entries

Dynamic_total

Fixed + dynamic total

100
370
1060
100
100
514

1284

5257
230

5487
25
102
127

5614



Pass

64

2 data (16-bit words)

Pass

Constant keys sets - 8 words * 66 sets
Other variables
Fixed data total

Recursion - 22 words avg. * 30 levels
Fixed + dynamic total

3 data (16-bit words)

Operand stack - 3 words * 151 entries
Case label array - 1 word * 128 entries
Update stack - 4 words * 100 entries
Display - 4 words * 15 entries

Spelling table - 3 words * 701 entries
Miscellaneous

Fixed data total

Named constants - 4 words * 66 entries

" Types - 4 words * 65 entries

Pass

Fields - 7 words * 19 entries

Parameters - 4 words * 170 entries

Varibles - 4 words * 123 entries

Initial statements - 4 words * 34 entries
& simple routines

Entry routines - 7 words * 89 entries

Interface routines - 3 words * 46 entries

Standard entries - 4 words * 39 entries

With temporaries - 4 words * 16 entries

Local data

Dynamic data total

Fixed + dynamic total

4 data {16-bit words)

Noun table - 1 word * 701 entries
Operand stack - 1 word * 101 entries
Display - 3 words * 16 entries
Miscellaneous

Fixed data total

Symbol table 7 words
* 65 types
* 19 fields
*170 parameters

528
10
538

660
1198

453
128
400

60

2103
101

3245

264
260
133
680
492
136

701
101

48
116
966

455
133
1190



65

* 123 variables 861
* 123 routines 861
* 29 standard entries 203
* 16 with temporaries 112
Local data 25
Dynamic data total 3840
Fixed + dynamic total 4806

Pass 5 data {16-bit words)

Standard operands - 9 words * 5 entries 45
Stack links - 3 words * 3 entries 9
Miscellaneous 111
Fixed data total 165
Stack entries - 12 words * 5 entries 60
Local data 25
Dynamic_data total 85
Fixed + dynamic total 250

Pass 6, 7 data (16-hit words)

Miscellaneous 29
Fixed data total 29
Local data 15
Labels - 92 labels 101
Blocks - 123 blocks 202
Large constants - few 101
Stack table - 123 blocks 202
Dynamic_data total 621
Fixed + dynamic total 650

Total compiler data space (16-bit words)

Common 1300
Pass 1 5600
Pass 2 1200
Pass 3 6200
Pass 4 4800
Pass 5 250
Pass 6, 7 650

Jotal 20,000



66

Total compiler program space {16-bit words)

Common 1000
Pass 1 4000
Pass 2 5600
Pass 3 7800
Pass 4 5800
Pass 5 4000
Pass 6 3000
Pass 7 3600
Total 34,800

Excluding a common prefix of 70 lines, and excluding common I/0 routines of 150 lines,
the Tength in lines of each pass's source text is:

Concurrent Pascal compiler source text length {lines).

Common 220
Pass 1 768
Pass 2 1079
Pass 3 1515
Pass 4 1182
Pass 5 943
Pass 6 863
Pass 7 912
Total 7482

* performance - time *

The speed of the original six-pass compiler running under Brinch Hansen's Basic System
is shown next. To estimate the internal speed of the compiler, a dummy six-pass com-
piler was measured that performed only the I/0 operations of the real compiler. All
times were measured with a stop watch. The average source line length for the test -
program is 25 characters. Pass 5 of the six-pass compiler served as the test program.

Six-pass compiler speed

Null program time 11 sec
Pass 1 internal speed 2035 char/sec
Compiler internal speed 678 char/sec

Pass 1 overall speed 1221 char/sec



67

Compiler overall speed 480 char/sec

A similar experiment was performed for the Concurrent Pascal compiler running under
Brinch Hansen's Solo System. The average source 1ine length for the test program is
20 characters. The Solo System itself served as the test program.

Concurrent Pascal compiler speed

Null program time 7 sec

Pass 1 internal speed 2318 char/sec
Compiler internal speed 843 char/sec
Pass 1 overall speed 605 char/sec
Compiler overall speed 236 char/sec

The Concurrent Pascal compiler is 24% faster internally than the six-pass compiler.

This combines with a 27% reduction in space required for the Concurrent Pascal compiler.
The poor showing for overall speed in the new design reflects two factors. One factor
is the greater amount of I/0 in the seven-pass compiler due to the additional pass and
to distribution of the symbol table in the intermediate code. The size of the output
code for each pass of the two compilers for their respective test cases is:

Pass six-pass Concurrent
1 8,205 10,368
2 8,240 10,880
3 6,728 10,880
4 7,474 15,744
5 6,060 9,344
6 6,075 5,504
7 0 5,248
Total 42,782 67,968

The sizes of the test cases are nearly the same while the intermediate code size is
greatly expanded in the new compiler. Another factor influencing the overall speed
difference is the relative I/0 efficiency of the Basic System {written in assembly lang-
uage) and the Solo System {written in Concurrent Pascal). This comparison has not been
undertaken.



68
* file system *

The Concurrent Pascal compiler relies heavily on an efficient implementation of sequen-
tial 1/0. 1In the performance evaluation, approximately three-quarters of total elapsed
compile time is I/0 time. A rough estimate would divide I/0 time equally between CPU
time for I/0 administration and physical wait time for the disk.

The compiler uses six separate files, each of which is sequential. A diagram of the

filing system is shown next: -
e T i,

INT. CODE }/ INT. CODE

SOURCE CPU LISTING

PASS CODE FINAL CODE

Compiler file system

The performance of a many-pass compiler is greatly affected by the performance of se-
quential I/0. The null program time is largely pass loading time. The speed of Pass 1
is largely the speed at which the source file can be read. The speed of later passes
is largely the speed the intermediate code files can be accessed.

* further work *

The performance of this system can be greatly improved with little effort. Generating
code in byte-length units instead of word-length unifs would shrink the code size by
nearly half. Placing the 1-K word virtual machine interpreter into read-only memory
would double its speed. This system uses the slowest main memory and slowest disk manu-
factured for the PDP-11/45. Peephole code optimization could easily be added to the
small code assembly passes.

The removal of classes from sequential Pascal was a mistake. The compilers would prob-
ably be smaller and simpler if they were written with classes. The class concept simp-
lifies the handling of data structures by hiding their implementation details. This
permits the use of classes as abstract types. Another use of classes is to collect
routines into manageable groups. A single routine of 100 statements is difficult to
understand; a single program of 100 routines is even worse. Classes impose a hierarchy
on routines just as routines impose a hierarchy on statements. Unlike routines, classes
may be nested and the program built up in "layers". Concurrent Pascal's scope rules



69
turn this multilevel hierarchy into only two levels at runtime.

This project shows that a very simple machine is ideal for Concurrent Pascal. Optimi-
zation improves the match between language and machine. Assembly languages and real
machines are so closely matched that they are very efficient. Using these same machines
with high-level languages can result in a mismatch and loss of efficiency. Optimizing
compilers may correct this at some expense. 1 believe a better way to optimize is to
restore the match between language and machine. The language syntax must simply ex-
press the intended semantics. These semantics should be simple to understand and im-
plement. And they should readily map onto the instruction set of an ideal machine.



(11

[23

[3]

(41

(5]

{61

73

14. References

Brinch Hansen, P. Papers on the Solo Operating System, Software--Practice and Ex~
perience, Yol.6, (April-June 1976), 139-205.

Brinch Hansen, P. The programming language Concurrent Pascal. IEEE Transactions
on Software Engineering 1, 2 (June 1975), 199-207.

Brinch Hansen, P. and House, R. The Cobol compiler for the Siemens 3003. BIT
6, 1 (1966), 1-23.

Knuth, D. Structured programming with go to statements. Computing Surveys 6, 4
(Dec. 1974}, 261-301.

Naur, P. The design of the Gier Algol compiler. BIT 3, 2-3 (1963), 124-140 and
145-166.

Wirth, N. The design of a Pascal compiler. Software 1 (1971), 309-333.

Wirth, N. Systematic Programming. Prentice-Hall, Englewood Cliffs, N.J., 1973.




APPENDIX

Concurrent Pascal - Syntax Graphs
Definitions
active type: type confaining class types, monitor types, process types, or gueue types.
active variable: a variable of active type.
argument: an expression passed in an argument list.
arithmetic type: an integer or real range.
component parameter: a parameter to a system component type.
component variable: a variable declared at the beginning of a system component type.
constant parameter: a parameter defined without the var keyword.
entry routine: a procedure entry, function entry, or initial statement.
index type: a symbolic scalar (including boolean), integer, or character type.
large type: array or record type.
parameter: an identifier declared in a parameter Tist.

passive type: a type not containing class types, monitor types, process types, or queue
types.

passive variable: a variable of passive type.

gueue variable: a variable of a type containing a queue type.
routine: a procedure, function, program, or initial statement.
scalar type: a real or index type.

small type: a scalar type or set type.



72

string type: an array of characters.

system component: a variable of type class, monitor, or process.

type compatibility: two types are compatibie if

1) they are defined by the same type definition; or

2} both are subranges of a single type; or

3) they are string types of the same length; or

4) they are set types whose members are of the same index type; or

5) they are set types, one {or both) of which is the null set type.

universal type: a parameter type defined with the uyniv keyword.

variable parameter: a parameter defined with the var keyword.

Syntax and Rules

The rules are preceded by a parenthesized number that refers to the compiler pass re-
sponsible for rule enforcement. The numbers and their associated passes are:

lexical analysis
syntax analysis
name analysis
declaration analysis
body analysis

code selection

code assembly

~N Y o W N e



73

Pass 1 - input syntax description

1. program

— block == . —=

2. Dblock

—w declarations e body w—

3. declarations

constant
I-declarations

[tvar'iable Lr‘outine
declarations declarations

type

declarations

4., constant declarations

-~» const -rid - = - constant —» ; -

5. type declarations
—» type rid ~»z ~»type - ; T

(3) The type definition may not reference its own

type identifier.

6. type
id

e enumeration type —ef
-» subrange type w——=t
f=set type it
b array type ———ag

= record type ———eme———ap

e cOmponent type w————i

(3) The id must be a type identifier.



74

7. enumeration type
e (= id ligt ~e= ) —e
(4) No more than 128 values may be enumerated.

(4) It may not be defined within a record type-.

8. subrange type

- constant —» ,, ~—» constant -—
(3) The lower bound must not exceed the upper bound.

(3) The constants must be of compatible index types.

9. set type
—+ set of — type —m
(4) The member type must be an index type.
{4) The bounds of integer member types must lie in

the range 0..127.

16. array tvpe

—~w array -+ {, E_ypej,)—-ﬁ-’type o
]

(4) The subscript types must be index types-

(4) String length mod word length must be zero.

11+ record type

—e rec Tid list ~»: -» type reng —




75

12. component type

class
— monitor -« parm list - ;-L + -» integer [ 2 block =~

process

(4) A system component type may only be nested
within another system component type (but not
within a record or routine). The entire program
is an implied process type.

(4) The “offset" of system component types must be

accumulated and associated with the type.

(4) Stack lengths may only be specified for processes.

13. yvariable declarations

- var meid ligt —w : =~ Lype =& ; T*

(4) Entry variables must be passive component

variables of class types.

(4) Active variables must be component variables.

(4) Queue variables must be monitor component
variables.

(4) Process components must be component variables of
the initial process.

4. list

id
T
’

15. routine declarations

e ; <@ procedure declaration‘w

3

e— ; @« function declaration #—

program declaration w—!

(4) Routine declarations cannot be nested.



76

16.. procedure declaration

——*Qroceduremzid-bparm list-e;-»block ~»

17. function declaration

—-functionE:gntrxibid-parm list -»:-»id -»; +block —
(3) The last identifier must be a type identifier.

(4) Function types must be index types.

18. program declaration

—» program-»id-eparm list—»;L»ggLnx-rid lista—;-i—a—
(3) The interface must name only entry routines
within the same component type as the given
program. These may be forward references.
( ) The last parameter is assumed to be a passive

code variable.

19. parm list

— (T;D‘id 1ist~>:—m>id-l-) —
; -

(3) The last identifier must be a type identifier.

(4) Universal types must be passive.

(4) Component parameters must be of small type or they
must be monitor components, with the exception
class components may be parameters of other class
components.

(4) Component parameters must be constant parameters.

(4) Function parameters must be constant parameters.

u) Progfam parameters must berof passive type.

(4) Entry routine parameters may not contain queues.

20. body
—» begin —»stat list-+end —>



77

21. stat list

=T

H
22. stat

Feassignment ———®
»procedure call-»
~ecompound stat —m
F»1f stap =
-»case stat —————=
l-»whnile stat ~———
L.erepeat stat —w
efor stat ————m
F»cycle stat —»

»with stat ~——3p

Leinit stat ~————el

23. agsignment
i VAriable —m:iz ~weXPr i
(5) The variable must be passive.
(5) The variable may not be a constant parameter.
(5) The types of the variable and the expression must
be compatible.
(5) The variable may not be an entry variable outside

the present component.

24, procedure gall
wl—o»variable-v.i*iddharg list—w

(3) A routine may not reference itseif.
(3) A component type may not reference its own entry
routines.

(5) Process entry procedures may nhot be referenced.



8

25. arg list
A
*

(3) The arguments must correspond in number to the

parameters.

(5) The arguments must correspond in type to the
parameters, with the following exceptions:

(5) Arguments corresponding to parameters of
universal type may be of any passive type
of the same size as the parameter.

(5) String arguments corresponding to constant
non-universal string parameters may be
any length.

(5) Arguments corresponding to variable parameters

must themselves be variables.

26. compound stat
~-p begin -»stat list -» end —»

27. if stat

—» ifwexpr»then *stat]:else——stat}-o—

(5) The expression must be boolean.

26. case stat

— case*uexpr-—gijrconstant]>:4>stat end -

——

;.

(3) The case label constants must be unique.

(3) Integer case labels must possess values in the
range 0..127.

(5) The selector expression and the case label

constants must be of compatible index type.



79

29. while stat
—-while »expr +do#»stat —»

{5) The expression must be boolean.

30. repeat stat

—e repeat »stat list-»until-wexpr —»

(5) The expression must be boolean.
31. for stat

ko
B r--»id-»::-»expr'-c }'expr'-bggostat—»

downto

(3) The control variable may not be a record field or
a function name.
(5) The rules governing assignment apply.

(5) The control variable must be of index type.

32. cyecle stat

—woycle —mstat list —seend —=

33. with stat

R withtjvariable do-wstat —m
3

{(2) The use of more than one with variable is
equivalent to the use of nested with statements.
(3) With variables must be of class, monitor,

or record type.



80

34. init stat

el initrvar‘iable -~ arg list~r—>

y =

(5) System components may only be initialized within
the component in which they are declared as
variables {but not where they are declared as
parameters).

(3) The variable must be a system component variable.

35. expr
i sexpr'la-— expr op - sexpr —L—>

{5) = and <> require compatible passive operands.

{5) <= and >= require compatible small or string
operands.

(5) < and > require compatible scalar or string
operands.

(5) in requires an index left operand and a set right
operand whose member type is compatible with the

left operand.

3b. Sexpr

«1: unary opi-«-ter-m Lr:sexpr' op--term 1—*—-&

(5) Unary operators (+, =) require arithmetic

operands.
(5) Binary + requires compatible arithmetic operands.
(5) Binary - requires compatible arithmetic or set
operands.

(5) or requires compatible boolean or set operands.



-~ fACtor -Lrter'm op—mfactor ]-J-‘-

{5) * requires compatible arithmetic operands.

(5) / requires real operands.
(5) div and mod require integer operands.
(5) and (&) requires compatible boolean or set

operands.

38. factor

-t oonstant

o= variable ——-——mf
e function call —»
o (e QXD P ) i

- NOL ~factor ————=m

o (+ Le-exXpPrie.) —
¥

(5) not requires a boolean operand.

(5) Set member expressions must be of compatible

index type.

39. function call
J::var'iable -~ i’id +arg list -
(3) The identifier must be a function identifier.
(3) A routine may not reference itseif.

(5) Process entry functions may not be referenced.



40. variable

- id

ide—, We—

—.)Txprjh«-—
’

(3) Only class, monitor, or record variables may be

qualified.
(3) The field or entry name must exist.
{3) Only array variables may be subscripted.
(5) The subscript expressions must be compatible with

the subscript types.

41, constant
id

string =————————g -

scalar constant —

{(3) The identifier must be a constant identifier.

ha. id

— letter

letters

digit e
— ‘.‘—-
43, string
character
v L — -
T:C (:+»integer-—+:)

{1) The integer must lie in the range 0..127.

(1) The string length mod word length must be zero.

44, scalar constant

:real constant‘:
index constant




83

45. real constant
digit 14_.‘~digit *}, )dlglt .
sequence sequence sequenc

{1) The real constant must be representable on the

machine.

46, digit sequence

digit

47. index constant

:integer‘_‘“**j
char constant

48. integer

—»digit sequence ———m
(1) The integer value must be representable on the

machine.

49. char constant
character
(:-winteger —»:)

(1) The integer value must lie in the range 0..127.

50. separator

space

end of line %*

" — comment —

(1) An arbitrary number of separators may be inserted
between any two symbols except within word
delimiters, identifiers, constants, and the
composite operators:

e 1z 0= K= (. L) O



84

Pass 2 - input syntax description

1. program

-» block —»period —* eom —=

2. block

—a declarations —»body ~—s

3. declarations

constant
declarations
variable routine
declarations“T’declarationg_“
t_type
declarations

4, constant declarations

— cons;r;l_q(spix)»g_g—»constant——semigolon T

5. Ltype declarations
—= type rj,_g_(gpi;:)-»gg.-htype +semicolon T——.

6. iype
~1™ id{spix) -—————pg—
s enumeration type —m
= subrange type ——w»
—»set type -me————wm
—marray type w————m

e record type ————m

L-s-component type

7. enumeration type
—» open —w»id list -mglose -~



8. subrange type

—~+ constant —»up to —-econstant-e

10. array type
—w array -»subg»type »of »type —™

comma

11. record type

—a record [id list-»colon »type}-end —
semicolon

12. c¢omponent type

class
—» monitor -wparm lista-semicolonivglus—bintegeri>block*4>

process

13. variable declarations

—e yarLentrydsid list—-colon—vtype4>semicolog-T*>

14, id list
s
comma

15. routine declarations

— Semicolon «~ procedure declaration &

- semicolon w— function declaration e—

program declaration «—

16. procedure declaration
_»procedure4:;;;;;&>;Q(spix)q»parm list-»gemicolon =block—»




86

17. function declaration

-»function @»z_i_g(spix)-oparm list+colon+id{spix) -

Lwsemicolon wblock —m

18. program declaration
—eprogram »id(spix)-=parm list-»semicolon T—-T——b
I-»'en*gr'y, ~»id list-=semicolon

9. parm list
-0 gen{\-‘id llst*colonm;g(spix)]'close—~—'-
semicolon
20. body

~»begin ~»stat list -» end —»

21. stat list

[
semicolon

22. stat

»~assignment —————mi
—procedure call —m
—»=compound stat -
e if stat ——e——i-
= case stat —————m
=while stat ———
l=repeat stat ——m»
e fOor stat -t
lecycle stat ———m

b with stat w————in

. init stat ————dd



87

23. assignment

- Variable -mbecomes —»exXpr —m

24. procedure call

-+ variable -»arg list —

25. arg list
la open texpr close X

commas

26. compound statement

—= begin —» stat list -+ end —m

27. if stat
-~ if wexpr-+then »statleelse »stat te

28. case stat

—p CASE.mexproof constanj—colonwstat end —»
comma

semicolon

29. while stat

—» while —weXpr—» do ~#wstat —m

30. repegat stat

~—+ repeat -»wstat list ~»until -e expr —

31. for sta

E

—» for »id(spix}sbecomes »exprewty -—mexpr»do »stat-s
downto

32. cycle stat

—» cycle ~wstat list -» end —p



33. with stat

— withﬁariable do-»stat —»

comma

34, init stat

-~ init tvar‘iable —»arg list-—1»
comma

35. expr

— SEXPr -Lpexpr' op -~ sexpr —L>

expr op: ed ne le ge 1t gt in

36. sexpr

plus

term]-(sexpr‘ op-*term j—i—>

minus

sexpr op: plus minus or

37. term

— f‘actor[-r-term op —-—bf‘actor‘-TLP

term op: star slash div mod and

38. factor
—r+»constant
= variable —————J

-»function call ————

L»oOpen —» expr ~»close M

& not —w factor —————

L» sub?;(;_r‘? bus
comma




89

39. function call

— variable-»arg list —m

id(spix)* period
DUS«-€XPrg. sub
z:com;:3

40, yariable

— id(spix)

41. constant
id(spix)

string(length) —f—»

scalar constant —

44. scalar constant
real-—~——-——i
—"1:index constant
47. index constant
integer(value)
“—%:gggg(value)___:>—.

Pass 3 - input syntax description

1. Dprogram

—» component type —w eom —w

2. block

—» declarations -»body —



90

3. declarations

constant -
declarations
. variable routine
'declarationé‘T'declarations T
type -
declarations

4, constant declarations

T-»const id{spix) —»constant -»const def >

5. type declarations

™ tvoe id(spix)—»type —»type def T
6. type

—* type(spix) —p—
s enumeration type -
= subrange type —
—»set type ———
»array type ———»

—s-record type ——w

La component type

7. enumeration tvpe

- enumrenum id(spix)‘]—-enu def ~—w

8. subrange type

—»constant -» constant —»subr def ——=

9. set type
~—= type ~» set _def —»

10. array type

~—» type -» type—warray def —m



91

11. record type

—» recpfield id(spix)Tatype~>fieldlist(number)]>rec def -m

12. component type

class 1.
—» parm list -» monitor iPstack(length) declarations —
progess

13. variable declarations

—E:-var id{spix} T»type -+ {(e}var list{number) —r**

15. routine declarations
procedure declaration<

function declaration =

program declaration <

initial statement e—-

15.1 initial statement

—uw» inits def -«-body » inits end —m

16. procedure declaration

— proc(e) id(spix)®parm list-*proc(e) def *block*proc{(e) end»

17. function declaration

~wfunc(e) id(spix)+parm list-»func(e) def(spix)—»block-x

qunc e) end—»

18. program declaration

—wprog id(spix)=parm list#interface #prog def —



92

18.1 interface
= intf t_ -
intf id(spix)J

19. parm list

—»pstart (mode )l;_—gar‘m id(spix)]-»gar;g/univ type (spix)—rgeng -L»
ol

mode is any of: ¢lass mode monitor mode

process_mode Dproc¢c mode proce mode func mode

funce mode program mode.

20. body
- body -»stat-—»body end —»

22. stat

¢ assignment «w—j
4-Droc call <
o if stat e
i+ case stat «—
e while stat =i
e repeat stat «—
e for stat -
¢ cycle stat e—

e with stat «—

L. init stat we——

23. assignment

~ N1aNe - aname -~ cXpr - store —m

24, proc call

—» name »call name -» arg list-m call ~—»



93

25. arg list

-L-ar'g list —Eexprwarg :[-L

27. if stat

o ©XPP —= false jump{11) —=» stat~——]

def label(1l1)
jump def(12, 11)-mstat -=def label(12)

28. case stat

~— @Xpr —# case jumg(lO)Ldef case(li)—]

L»constant - Ccase ~Ibstat: _-—i

L»jumg(ln)T»end case(10, 1n)—m

29. wWhile stat

—def label(1l1)-wexpr »falsejumg(lE)—]

L»stat —»jump def (11, 12)—»

30. repeat stat
—w def label(l)wstat»expr»falsejump(l)—»

31. for stat

—~smname —» address ~» expr —

L—for store —»expr -»for 1im{11, comp, 12)_]

Lstat —wfor up/down{11, 12)——w

32. cycle stat
~o def label{(l)-w stat-» jump(l) —»
33. with stat

e with var -»name-+with temp-*stat->with -

34, 1init stat

—» name »init name #arg listw init -—



94

35. expr

-»sexpr-Lvalue -+3expr—expr op -L’-

expr op: 1t eg gt le ne ge in

36. sexpr
uplus
—p=term Mrf.erm-ﬁsexpr op7lo
uminus

sexpr op: plus minus or

37. term

-—-»f‘actor‘l»value grfactor-s=term op—TL

term op: star slash div mod and

38. factor
~—r= name -* fname -

l.». factor constant =———m—

= function call

= expr

e factor —»=not
. empty set -H-expr ~=include -[i-

factor constant: constant with an 'f' prefixed to

all terminal symbols.

39. function call

—sname »+functionmwarg list-»call func -

40. name

—» name{spix) -

comp(spix) e————i

subwexpre address «



95

41. constant
gonstant(spix)
string(length)

scalar constant

44, scalar constant

T

index constant
47. index gonstant
;B_L.@.ggr.(valti}’
{char(value)

Pass 4 - input syntax description

1. program

~» component type -weom —e»

2. block

—wdeclarations -m body —~—m

3. declarations

type variable routine

l declarationsleeelarations f declarations T

5. type declarations

t
- type -mtype g.@i—r»




96

6. Ltype

T-—u— type{noun) -

F»cnum def(noun, max)

| »subr def{(noun, "range" noun, min, max) ™

l>type — set def(noun) »

»type — type — array def(noun}-—————»u

terecord type

la=component type

11. record type
recf:new nggn(noun):»type4>fi§ldlist(number)1>rec def(noun)w

12. gombonent type

class
e parm listsmonitor{noun, "initial stat® noun)
process 1

L—stack(length)-iPdeclarations i

13. yariable declarations

- new _noun(noun)y=type +(e)var list(number)*r**

15. routine declarations

procedure declaration<

function declaration

program declaration e«

L. initial statement o . |

1.1 initial statement

- inits def ~»body =

16. procedure declaration
—>parm list-wproc{e)/(f) def{noun)-—-wblock —#=




97

17. function declaration

—separmn listefunc(e)/(f) def("type" noun, noun)-=block
18. program declaration

-—peparm list - prog def(noun)?bf'wd gef(noun)-—rb

19. parm list
—»;gstart(mode;ttw w(noun)r parm/univ pr_g(noun)—-l
L-c/vgar'mljst(number')]-bggr_l_q'—-*
mode: glass mode monitor mode process mode
proc mgge proce mode fungc mode funce mode

]

rogram €

20. body
—»body —™stat -»bodvy end ——w

- assignment «—
re- Droc call e—
e if stat +——
= case stat «—
wwhile stat -—
e repeat stat e—
- for stat 4——
- cycle stat e—

le-with stat e—-

+—init stat «—
23. assignment
address

—»name expr »store v

result("type" noun)



98

24, proc call
— NAME -Einter‘f‘ace Lar‘g list#gcall proc/prog—»

24,1 interface

—a»intf?bintf id(noun)j—b

25. arg list

JTexpr —=parm("parm" noun, "type" noun)—‘j->

27. if stat

—mexpr —» false jump(11)—» stat"*l

L[def label(11) ]
jump def(12, 11)-stat -™def label(12)

28. case stat
—m= eXpr -® Case jumg(lo)i-—déf label(li)-——l

[-.chk type("type" noun)l'stat—- jump(in)—

L-—case 1ist(10, min, max, 11, ... , 1n) ——a

29. while stat

def label(l1)-mexpr »falsejump(l2)-»stat-*jump def(11, 12)™

30. repeat stat
—» def label(l)wstatmexpr®falsejump(l)-»

31+ for stat

- name — address -—»expr‘—-]

Lfor‘ store —mexpr -»for 1im(11, comp, 12)—3

I:gtativﬁgr up/down (11, 12)-—wm

32. cycle stat
—w» def label(l)-wstat—e jump(l)—e




99

33. wWith stat

—»with var sname#swith temp{noun)®stat®uwith-»

34, init stat

~w name —warg list-einit-—e

35. expr

—m Sexpr Lwvalue —#SeXpr W eXpr op .

expr op: lt eg gt le npe ge in

36. sex
uplus
= term Hy_a_lu_grterm -~sexpr op -x—L
uminus

sexpr op: plus minus or

—-mfactor L>value rfactor -»term op —TL

term op: star slash div mod and

38. factor

—rw nanme -

= constant

b function call

- exXDpr

-»factor - not

Ls~ empty set %expr—»include —

39. function call

—» name #function{"type" noun)#®arg list#call func -w




100

40. nape
-{:rogtine(noun)
yar{"var" noun, "type" noun)- -

selection=

subscripting e— —

arrow("type" noun) e

40.1 selection
veomp{"var" noun, *"type"™ noun)
:rgomg("routine" J1TeR 01 1Y) I —

40.2 subseripting

—zddress -wexpr#sub("index" noun, "element" noun)-—m

41. constant
index(value, "type" noun)-—

real{displ) —

Lle-string(length, displ)

Pass 5 - input syntax description

1. program
—» body - eom(varlength) —»

20. body
body(mode, label, parm length, var length, stack length)

E:stat—rm end



101

e assignment -
- proc call eI
e if stat o
case stat a—
while stat e
repeat stat e
for stat w——

cycle stat w—q

LA O D

with stat s

~— init stat eg—i

23. assignment

address

—» operand expr-»store»

result(disp, kind, noun, length)

24, proc call

E:call proc t
— Ooperand r~;inter-fa\ceLbar*g list —

E:call prog{interface length)™

24.1 interface

T’ intf 1b1(1) T*

25. arg list

exprconst/var/saveparm(mode, disp, context,

kind, noun, length)




102

27. f stat

e @XPI — ;glsejumg(l?)*4~stati]

l_{:: def label(l1) l
jump def(12, 11)—» stat-»def label(12)

8. case stat

-~ €Xpr -» case jump(lO)-L—ggf label(li)—j
L>chg type(kind, noun, 1ength)-I;stat-——jggg(ln)~«
L'-gase list(10, min, max, 171, .ss , ln)—e

29. while stat

def label(l1)sexprwfalseijump(l2)#sstatejump def(l1, 12)%»

30. repeat stat

~» def label(l)wstateexprefalsejump(l)-=

31. for stat
-+ operand -» address -# expr -3

L»fgr store -»expr - for 1im(11, disp, op, 12)—]
L>stat ~» for up/down(11, 12)—»

32. gcyele stat
e def label(l) —wstat -»=jump(l) —e=

33. with stat

- operand »addressewstat®™ with -»

34, init stat
-s operand -» arg list-w init-—e

35, expr

fan 4 sexperalue »>seXpr+»expr op

B

expr op: 1t ed gt le ne



{

103

36. sexpr
uplus
—wterm ~_gt_;y_g_‘,vterm—>sexp1r- op-—#—»
uminus

sexpr op: plus minus or

- fac tor-lvvglue ?factor'»ter'm op —l*-'

term op: star slash div mo and
38. factor
oy

operand 3

function call

expr

factor - not e ——e e

empty set .mexpr . include -

39. function ¢all

call func -=

—w»operand »function(kind, noun, length)warg list

call gen —~w

40. operand
routine(mode, label, parm length, var length, stack lengt?j)'

var{mode, disp, context, kind, noun, length)‘“f““"“‘“‘*

selection =

subseripting 4———

arrow{kind, noun, length)«

40.1 selection

_cvcomg(mode, disp, context, kind, noun, 1ength)————————-~>*
ack length)

rcomp(mode, label, parm length, var length, st



104

40.2 subscripting
-» address -»expr < sub{min, max, length,
"index" kind, noun, length,

"element" kind, noun, length) -+

Pass 6 - input syntax description

1. program
— jump(1)-=»body »eom{var length}—

20. body

enter(mode, label, parm length, var length, temp length)~7

L—bstat —»= return{mode) —»

- assignment «—
M- proc call -——
o- if stat -]
'+ case stat «—-—
- while stat a—f
 repeat stat «—
- for stat -——
* cycle stat -

% with stat <€——

bwinit stat «-—
23+ assignment
assign(type)
~w varaddr - expr

copy(length)



105

24, proc call

arg list -»progedure(std number) -
interface#arg list#gcallprog ®pop(intf length}) =
var addr -» field{disp) —

L—arg list#»gcall{mode, label, parm length)

24,1 interface

t Qushlabel(label)J

25. iist

E:expr':

[

27. if stat

~wexpr »falsejump(1l1) »stat —rdeflabel(ﬂ ) ———T
I——jumg(ILZ)-’-clef‘label(l‘I)"stat »deflabel(12)

28. gcase stat

—expr — jump{10) —(deflabel(li) —]

e stat — jump(1n) S—*deflabel(lo)—'l

L»casejump(min, max, 11, ... , lm)-*deflabel(ln)-*

29. while stat

~» deflabel(11)— expr » false jump{12) =

L»stat -+ jump(11)-w~deflabel(12)—wm

30. repeat stat
—» deflabel(l)»=stat ®expr ®falsejump(l)—*



106

31. for stat

-~ "control" varaddr »"initial" expr bassigg(wor‘d)j

L"limit“ expr »"control®” varvalue®U'limit" var‘value»l

L—comp:-xr'e(ng/nl , word)#® false jumg(lZ)-’stat——]

i’ "control" varaddr ™ increment/decrement -——-—l
L’jumg(ﬂ )»deflabel{(12)®pop{word)—m

32. cygle stat

—»deflabel(l) * stat » jump(l) -

~w»varaddr »field{(disp)-e»arg 1ist-——-]

l-»ini'c,(mode, label, parm length, var length)-—w

35. expr
compare(comp, type) -————m
!L’
—» sexpr »sexpr X
compstruct{comp, length)-—
36, Sexpr

37. term

—» term -[vg_gg( type) i(ter'm mp -
L’addgsubgor‘(type)

-—»factor J;-factor' -]
L’mul/div/mod[and(type )




107

38. factor

- pushconst{(value)

-~ variable

o function call

= expr

- factor - not -~

e varvalue %expr‘——» uildset

39. function call

—r# arg list-»function(std number, type) -

> varaddr = field(disp) =

L» funcvalue(mode, type) -»arg 11st«7

chall(mode, label, parm length)
40. yvariable
‘ﬂivarvalue
varaddr 7
40.1 yarvalue

.{:Qushvar{type, mode, disp)

varaddr —» pushind(type)

40,2 yaraddr

pushaddr{mode, disp) ——g—=
varaddr
selection —-
subscripting «
varvalue

40.3 selection

~» field(disp) —»




108

40.4 subsecripting

—®expr *index(min, max, length) —»

Pass 7 = ipput syntax description

1. Drogram
—w» jump{loc, label)-» body * eom —™

20. body

-»enter -+ stat » return—»

20.1 enter

enter(block, pop length, line, var length)

enterprog(pop length, line, block, var length)
enterproc{block, pop length, line, var length)
enterclas(block, poplength + wordlength, line, var length)
entermon{block, poplength + wordlength, line, var length)
beginproc(line)

beginclas{block, fivewords, line, 0)

beginmon{(block, fivewords, line, 0)

20.2 return
exit exitprog exitproc exitclass
exitmon endproc endclass endmon




109

* assignment e
W proc call <
W if stat e
w- case stat e
¥ while stat «
* repeat stat-e
* for stat e
= cycle stat <=

“ywith stat <

- init stat «-?

23. assignment

—w varaddr -»expr -»assign-—»

23.1 asgsign

copybyte
copyword >
copyreal
copyset

copystruct(length in words)~-—

24. proc call

- arg list -» std proc

e interface sarg listecallprog+pop(intf length)»

L varaddr ~}rfield(disp)—A—j

>y

callsys{number) \

L’-arg list /
call(loc, block)



110

24.1 std proc

delay continue io start stop setheap wait

24,2 interface

L pushlabel{loc, label) -

25. arg list

¥ expr':]

27. if stat

expr e falseijump(loc, 11)# statl’jumg(loc, 12) »stat KN

28. cage stat

—»expr »jump{loc, 10) «Lstat--jumg(loc , 1n)—

L»casejumg(min, max - min, loc, 11, +.. , 1m) —»

29. while stat

exprwfalsejump(loc, 12)#stat-+=jump(loc, 11) >

30. repeat stat
—»stat -» expr -» falsejump(loc, 1)-»

31. for stat

— "oontrol® varaddr®"initial" expr# cogxwordj

L"limit“ expr #»"control" varvalue® "limit" varvalue]

Lngwor‘d/nlwmﬂd »falsejump{loc, 12} stat:]

Lo tcontrol" varaddr ®incrword/decrword ———]

L‘*jumg(loc, 11)— pop(word)—m

32. cycle stat

— stat ~»Jjump(loc, 1)~



111

33. with stat

—» varaddr -»stat -= pop{word) —»

34. init stat

~'-varaddrl:field(disp)iﬁarg list-»init ~

34.1 init

initproc{parm length, var length, block, loc, block)

initeclass{parm length, loc, block)
initmon{parm length, loc, block)

35. expr

—» SeXpr i*sexpr —*= expr op RS

expr op: lsword egword grword nlword

neword ngword lsreal eqreal grreal nplreal

nereal ngreal egset nlset neset

ngset inset

36. sexpr

terml»negword/negreal;fterm**sexpr o;;1>
sexpr op: addword addreal subword

subreal subseft orwerd orset

37. term
—» factor l{bfactor» term op -rl>

term op: mulword mulreal divword

divreal modword andword andset




112

38. factor
~w» pushconst (value)

= variable

F»function call >

> expr

4

-»factor ~» not

~»varvalue Irexpr--—» buildset -

39. function c¢all

- arg list -» std func

—« varaddr 1ffield(disp) ]

callsys(number)

= funcvalue{mode) ®arg list

call{loc, block)

39.1 std func
truncreal absword absreal succword predword

convword empty attribute realtime

40. yariable

varvalue
_(var-addr-)h’

40.1 yarvalue
pushlocal(disp) ———g—*
pushglob{disp) ——
varaddr ushbyte -
pushind —
pushreal ——

pushset




13

40,2 yaraddr

—» constaddr{disp) ——————g——s
e localaddr(disp) —————s}
—» globaddr{disp) ——————un

- varaddr

selection w—-

subscripting

-® yarvalue

40.3 selection
—w field{(disp) =~

40.4 subscripting

-~ expr -» index{min, dimension, length)—m

Final code - syntax description

1. program
~# (prog length, code length, stack length, var length)j

i_, jump{(disp) » body -*{constants)—

20. body

- enter -» stat »return —e



114

20.1 enter

enter(stack length, pop length, line, var length)

enterprog{pop length, line, stack length, var length)
enterproc{stack length, pop length, line, var length)

enterclas{stack length, pop length + word length,

line, var length)
entermon(stack length, pop length + word length,
line, var length)
beginproc(line)
beginclas{stack length, five words, line, 0)
beginmon{stack length, five words, line, 0)

*pop length is parm length plus four words"

20.2 return

exit exitprog exitproc exitclass

exitmon endproc endclass endmon

22. stat

T

assignment <1

[

proc call
if stat «——
case stat -
while stat «—
repeat stat «—
for stat -#——

cycle stat e—

| 2 B B B

with stat -

L init stat a——i

22. assignment

—» varaddr - expr -» assign—w



115

23.1 assign

copybyte
copyword
copyreal
gopyset

copystruct{length in words) =
24. proc call

—w» arg list-e»std proc

L» interface warg list#callprog®pop(intf length) —m

s varaddr 1' field(disp)“"}

callsys(number)

“#arg list *ﬁ///~
call(disp)

24.1 std proe

delay continue io start stop setheap wait

24.2 interface

% ushiabel(disp)el

25. arg list

E:expr:]

27. Aif stat

expr+ falsejump(d1) »stat + jump{d2) »stat -»

28. case stat

*—'expr4—jumg(do)i:stat4>jumg(dn)——

L»casejumg(min, max - min, d1, ... , dm)~—™
29. while stat

s exprefalse jump(d2) »stat *jump{d1)—>

Y



116

30. repeat stat
-» stat - expr - falsejump(d) —e

31. for stat

— "oontrol® varaddr ~-»"initial" expr ~» gcopyword “j

L”"limit“ expr#fcontrol" varvalue®"limit" varvalue-—;

l—o—ggword(nlword »false jump(d2) »stat -
L”"control“ varaddr = incrword/decrword >jumg(d1)~j

l'-m(word)——mp

32. g¢ycle stat

— stat —» jump(d) —m

33. wWith stat

—~ varaddr -—»stat - pop{(word) —=

34, init stat

varaddr Efiel_l.d(disp)!n-arg list -®init =~
34.1 init

initproc{parm length, var length, stack length, disp)
initclass(parm length, disp)
initmon{parm length, disp)

35. expr
—a Sexpr L» sexpr - expr op ¥

expr op: 1lsword segword grword nlword
neword ngword lsreal eagreal grreal
rea nereal ngreal easet nlset neset

ngset inset 1lsstruct egstruct grstruct

nlstruct nestruct ngstruct.

"struct operators take the struct length in

words as an argument"



117

36. sex

I
—~tern &*W———} )

L’ter‘m —» sexpr op

sexpr op: addword addreal subword
subreal subset orword orset.

37. term

—» factor J;Lf‘actor‘ - term op -rl-*

term op: mulword mulreal divword

divreal modword andword andset.

38. factor
-+ pusheconst(value) 3 »
+-—# variable
—» function call
L expr -
- factor —wnot >
L~

varvalue j}oexpr‘«-u buildset -I—

39. function call

e arg list -» std func

> varaddr Tﬁg;}gd(disp)—]

Bl

callsys{number)

L funcvalue{mode)warg list

call(disp)

39.1 std func

truncreal absword absreal suceword predword

convword empty attribute realtime




118
40. variable
“~Cvarvalue
varaddr«;
0. varvalue

pushlocal(disp ) ——m———gg=—ise
E pushglob{disp) e
varaddr pushbyte wwe——ml
pushind ~—————

pushreal ————»

QQShSet LU |

40,2 varaddr

~# constaddr{disp)
-» localaddr(disp)
e globaddr{(disp)

y

o varaddr

selection w——m—

subscripting «—

L varvalue

40,3 selection

+ field(disp)—»

40,4 subscripting

~—expr ~» index(min, dimension, length)—»




119

Concurrent Pascal Machine Operators

CONSTADDR = 2; NLWORD. = 92;-  DECRWORD = 1823
PUSHLOCAL = 103 EQREAL = 100; PUSHLABEL = 190,
PUSHREAL = 18; NGREAL = 108; ABSREAL = 198;
POINTER = 26, NGSET = 1163 EMPTY = 206;
COPYWORD = 34; NLSTRUCT = 124; CONTINUE = 214;
COPYSTRUC = 42, JUMP = 132; SETHEAP = 222,
ANDWORD = 50, CALL = 140; PUSHCONST = 8;
NEGWORD = 58; ENTERPROG = 148; PUSHBYTE = 16;
SUBWORD. = 663 ENTERCLAS = 156; INDEX = 24,
MULREAL = 74, ENTERMON = 164; COPYBYTE = 32;
BUILDSET = 82; ENTERPROC = 172, COPYTAG = 40,
GRWORD = 903 INCRWORD = 180; NOT = 48;
LSREAL = 98; INITPROC = 188; ORSET = 563
NEREAL = 106 ABSWORD = 196; ADDREAL = 64;
NESET = 114; CONVWORD = 204; MULWORD = 72,
GRSTRUCT = 122; DELAY = 212; MODWORD = 80;
FUNCVALUE = 1303 STOP = 220; EQWORD = 88;
IHITVAR = 138, GLOBADDR = 6; NGWORD = 96;
EXIT = 146 PUSHIND = 14; NLREAL = 104;
ENDCLASS = 1543 FIFLD = 22, NLSET = 112,
ENDMON = 162; RANGE = 30; EQSTRUCT = 120;
ENDPROC = 1703 COPYSET = 38; NGSTRUCT = 128,
NEWLINE = 178, NEWINIT = 46; CASEJUMP = 1363
INITHMON = 1863 ORWORD = 54, ENTER = 144,
TRUMCREAL = 1945 ADDWORD = 62; BEGINCLAS = 1523
PREDWORD = 202; SUBSET = 703 BEGINMON = 1603
REALTIME = 210; DIVREAL = 78; BEGINPROC = 168;
START = 218; LSWORD = 86, poP = 176;
LOCALADDR = 4, NEWORD = 94; INITCLASS = 184;
PUSHGLOB = 125 CRREAL = 102; CALLPROG = 192;
PUSHSET = 203 EQSFT = 1103 SUCCWORD = 200;
VARIANT = 283 LSSTRUCT = 118; ATTRIBUTE = 208;
COPYREAL = 36; NESTRUCT = 1264 10 = 216;
NEW = 44, FALSEJUMP = 134, WAIT = 224;
ANDSET = 523 CALLSYS = 142;

NEGREAL = 603 EXITPROG = 150;

SUBREAL = 68; EXITCLASS = 158;

DIVHORD = 765 EXTTMON = 1663

INSET = 84, EXITPROC = 174;



