
The ACK Pascal Compiler

Aad Geudeke
Frans Hofmeester

Dept. of Mathematics and Computer Science
Vrije Universiteit

Amsterdam, The Netherlands

ABSTRACT

This document describes the implementation of a Pascal to EM compiler. The compiler
is written in C. The lexical analysis is done using a hand-written lexical analyzer. Semantic
analysis makes use of the extended LL(1) parser generator LLgen. Several EM utility
modules are used in the compiler.

1. Introduction

The Pascal front end of the Amsterdam Compiler Kit (ACK) complies with the requirements of the
international standard published by the International Organization for Standardization (ISO) [ISO]. An informal
description, which unfortunately is not conforming to the standard, of the programming language Pascal is given
in [JEN].

The main reason for rewriting the Pascal compiler was that the old Pascal compiler was written in Pascal
itself, and a disadvantage of it was its lack of flexibility. The compiler did not meet the needs of the current
ACK-framework, which makes use of modern parsing techniques and utility modules. In this framework it is,
for example, possible to use a fast back end. Such a back end translates directly to object code [ACK]. Our
compiler is written in C and it is designed similar to the current C and Modula-2 compiler of ACK.

Chapter 2 describes the basic structure of the compiler. Chapter 3 discusses the code generation of the
main Pascal constructs. Chapter 4 covers one of the major components of Pascal, viz. the conformant array. In
Chapter 5 the various compiler options that can be used are enumerated. The extensions to the standard and the
deviations from the standard are listed in Chapter 6 and 7. Chapter 8 presents some ideas to improve the
standard. Chapter 9 gives a short overview of testing the compiler. The major differences between the old and
new compiler can be found in Chapter 10. Suggestions to improve the compiler are described in Chapter 11. The
appendices contain the grammar of Pascal and the changes made to the ACK Pascal run time library. A
translation of a Pascal program to EM code as example is presented.

2. The compiler

The compiler can be divided roughly into four modules:

d lexical analysis
d syntax analysis
d semantic analysis
d code generation

The four modules are grouped into one pass. The activity of these modules is interleaved during the pass.
The lexical analyzer, some expression handling routines and various datastructures from the Modula-2 compiler
contributed to the project.

2.1. Lexical Analysis

The first module of the compiler is the lexical analyzer. In this module, the stream of input characters making up
the source program is grouped into tokens, as defined in ISO 6.1. The analyzer is hand-written, because the
lexical analyzer generator, which was at our disposal, Lex [LEX], produces much slower analyzers. A character
table, in the file char.c, is created using the program tab which takes as input the file char.tab. In this table each
character is placed into a particular class. The classes, as defined in the file class.h, represent a set of tokens.
The strategy of the analyzer is as follows: the first character of a new token is used in a multiway branch to
eliminate as many candidate tokens as possible. Then the remaining characters of the token are read. The
constant INP_NPUSHBACK, defined in the file input.h, specifies the maximum number of characters the
analyzer looks ahead. The value has to be at least 3, to handle input sequences such as:

1e+4 (which is a real number)
1e+a (which is the integer 1, followed by the identifier "e", a plus, and the identifier "a")

Another aspect of this module is the insertion and deletion of tokens required by the parser for the recovery of
syntactic errors (see also section 2.2). A generic input module [ACK] is used to avoid the burden of I/O.

2.2. Syntax Analysis

The second module of the compiler is the parser, which is the central part of the compiler. It invokes the
routines of the other modules. The tokens obtained from the lexical analyzer are grouped into grammatical
phrases. These phrases are stored as parse trees and handed over to the next part. The parser is generated using
LLgen[LL], a tool for generating an efficient recursive descent parser with no backtrack from an Extended
Context Free Syntax.
An error recovery mechanism is generated almost completely automatically. A routine called LLmessage had to
be written, which gives the necessary error messages and deals with the insertion and deletion of tokens. The
routine LLmessage must accept one parameter, whose value is a token number, zero or -1. A zero parameter
indicates that the current token (the one in the external variable LLsymb) is deleted. A -1 parameter indicates
that the parser expected end of file, but did not get it. The parser will then skip tokens until end of file is
detected. A parameter that is a token number (a positive parameter) indicates that this token is to be inserted in
front of the token currently in LLsymb. Also, care must be taken, that the token currently in LLsymb is again
returned by the next call to the lexical analyzer, with the proper attributes. So, the lexical analyzer must have a
facility to push back one token.
Calls to the two standard procedures write and writeln can be different from calls to other procedures. The
syntax of a write-parameter is different from the syntax of an actual-parameter. We decided to include them,
together with read and readln, in the grammar. An alternate solution would be to make the syntax of an actual-
parameter identical to the syntax of a write-parameter. Afterwards the parameter has to be checked to see
whether it is used properly or not.

As the parser is LL(1), it must always be able to determine what to do, based on the last token read (LLsymb).
Unfortunately, this was not the case with the grammar as specified in [ISO]. Two kinds of problems appeared,
viz. the alternation and repetition conflict. The examples given in the following paragraphs are taken from the
grammar.

2.2.1. Alternation conflict

An alternation conflict arises when the parser can not decide which production to choose.
Example:

procedure-declaration : procedure-heading ’;’ directive |
procedure-identification ’;’ procedure-block |
procedure-heading ’;’ procedure-block ;

procedure-heading : procedure identifier [formal-parameter-list]? ;
procedure-identification : procedure procedure-identifier ;

A sentence that starts with the terminal procedure is derived from the three alternative productions. This
conflict can be resolved in two ways: adjusting the grammar, usually some rules are replaced by one rule and
more work has to be done in the semantic analysis; using the LLgen conflict resolver, "%if (C-expression)", if
the C-expression evaluates to non-zero, the production in question is chosen, otherwise one of the remaining
rules is chosen. The grammar rules were rewritten to solve this conflict. The new rules are given below. For
more details see the file declar.g.

procedure-declaration : procedure-heading ’;’ (directive | procedure-block) ;
procedure-heading : procedure identifier [formal-parameter-list]? ;

A special case of an alternation conflict, which is common to many block structured languages, is the
"dangling-else" ambiguity.

if-statement : if boolean-expression then statement [else-part]? ;
else-part : else statement ;

The following statement that can be derived from the rules above is ambiguous:

if boolean-expr-1 then if boolean-expr-2 then statement-1 else statement-2

if-statement

then
boolean

expression-1

if statement

if-statement

then
boolean

expression-2

if
statement-1

else
statement-2

if-statement

then
boolean

expression-1

if statement else
statement-2

if-statement

then
boolean

expression-2

if
statement-1

(a) (b)

Two parse trees showing the dangling-else ambiguity

According to the standard, else is matched with the nearest preceding unmatched then, i.e. parse tree (a) is valid
(ISO 6.8.3.4). This conflict is statically resolved in LLgen by using "%prefer", which is equivalent in
behaviour to "%if(1)".

2.2.2. Repetition conflict

A repetition conflict arises when the parser can not decide whether to choose a production once more, or not.
Example:

field-list : [(fixed-part [’;’ variant-part]? | variantpart) [;]?]? ;
fixed-part : record-section [’;’ record-section]* ;

When the parser sees the semicolon, it can not decide whether another record-section or a variant-part follows.
This conflict can be resolved in two ways: adjusting the grammar or using the conflict resolver, "%while (C-
expression)". The grammar rules that deal with this conflict were completely rewritten. For more details, the
reader is referred to the file declar.g.

2.3. Semantic Analysis

The third module of the compiler is the checking of semantic conventions of ISO-Pascal. To check the program
being parsed, actions have been used in LLgen. An action consists of several C-statements, enclosed in brackets
"{" and "}". In order to facilitate communication between the actions and LLparse, the parsing routines can be
given C-like parameters and local variables. An important part of the semantic analyzer is the symbol table. This
table stores all information concerning identifiers and their definitions. Symbol-table lookup and hashing is done
by a generic namelist module [ACK]. The parser turns each program construction into a parse tree, which is the
major datastructure in the compiler. This parse tree is used to exchange information between various routines.

2.4. Code Generation

The final module in the compiler is that of code generation. The information stored in the parse trees is used to
generate the EM code [EM]. EM code is generated with the help of a procedural EM-code interface [ACK]. The
use of static exchanges is not desired, since the fast back end can not cope with static code exchanges, hence the
EM pseudoinstruction exc is never generated.
Chapter 3 discusses the code generation in more detail.

2.5. Error Handling

The first three modules have in common that they can detect errors in the Pascal program being compiled. If this
is the case, a proper message is given and some action is performed. If code generation has to be aborted, an
error message is given, otherwise a warning is given. The constant MAXERR_LINE, defined in the file
errout.h, specifies the maximum number of messages given per line. This can be used to avoid long lists of error
messages caused by, for example, the omission of a ’;’. Three kinds of errors can be distinguished: the lexical
error, the syntactic error, and the semantic error. Examples of these errors are respectively, nested comments,
an expression with unbalanced parentheses, and the addition of two characters.

2.6. Memory Allocation and Garbage Collection

The routines st_alloc and st_free provide a mechanism for maintaining free lists of structures, whose first field
is a pointer called next. This field is used to chain free structures together. Each structure, suppose the tag of the
structure is ST, has a free list pointed by h_ST. Associated with this list are the operations: new_ST(), an
allocating mechanism which supplies the space for a new ST struct; and free_ST(), a garbage collecting
mechanism which links the specified structure into the free list.

3. Translation of Pascal to EM code

A short description of the translation of Pascal constructs to EM code is given in the following paragraphs. The
EM instructions and Pascal terminal symbols are printed in boldface. A sentence in italics is a description of a
group of EM (pseudo)instructions.

3.1. Global Variables

For every global variable, a bss block is reserved. To enhance the readability of the EM-code generated, the
variable-identifier is used as a data label to address the block.

3.2. Expressions

Operands are always evaluated, so the execution of
if (p <> nil) and (pˆ.value <> 0) then

might cause a run-time error, if p is equal to nil.

The left-hand operand of a dyadic operator is almost always evaluated before the right-hand side. Peculiar
evaluations exist for the following cases:

the expression: set1 <= set2, is evaluated as follows :
- evaluate set2
- evaluate set1
- compute set2+set1
- test set2 and set2+set1 for equality

the expression: set1 >= set2, is evaluated as follows :
- evaluate set1
- evaluate set2
- compute set1+set2
- test set1 and set1+set2 for equality

Where allowed, according to the standard, constant integral expressions are compile-time evaluated while an
effort is made to report overflow on target machine basis. The integral expressions are evaluated in the type
arith. The size of an arith is assumed to be at least the size of the integer type on the target machine. If the
target machine’s integer size is less than the size of an arith, overflow can be detected at compile-time.
However, the following call to the standard procedure new, new(p, 3+5), is illegal, because the second
parameter is not a constant according to the grammar.

Constant floating expressions are not compile-time evaluated, because the precision on the target machine and
the precision on the machine on which the compiler runs could be different. The boolean expression (1.0 + 1.0)
= 2.0 could evaluate to false.

3.3. Statements

3.3.1. Assignment Statement

PASCAL :
(variable-access | function-identifier) := expression

EM :
evaluate expression
store in variable-access or function-identifier

In case of a function-identifier, a hidden temporary variable is used to keep the function result.

3.3.2. Goto Statement

PASCAL :
GOTO label

EM :
Two cases can be distinguished :
- local goto,

in which a bra is generated.

- non-local goto,
a goto_descriptor is build, containing the ProgramCounter of the instruction
jumped to and an offset in the target procedure frame which contains the value of
the StackPointer after the jump. The code for the jump itself is to load the address
of the goto_descriptor, followed by a push of the LocalBase of the target
procedure and a cal $_gto. A message is generated to indicate that a procedure or
function contains a statement which is the target of a non-local goto.

3.3.3. If Statement

PASCAL :
IF boolean-expression THEN statement

EM :
evaluation boolean-expression
zeq *exit_label
code statement
exit_label

PASCAL :
IF boolean-expression THEN statement-1 ELSE statement-2

EM :
evaluation boolean-expression
zeq *else_label
code statement-1
bra *exit_label
else_label
code statement-2
exit_label

3.3.4. Repeat Statement

PASCAL :
REPEAT statement-sequence UNTIL boolean-expression

EM :
repeat_label
code statement-sequence
evaluation boolean-expression
zeq *repeat_label

3.3.5. While Statement

PASCAL :
WHILE boolean-expression DO statement

EM :
while_label
evaluation boolean-expression
zeq *exit_label
code statement
bra *while_label
exit_label

3.3.6. Case Statement

The case-statement is implemented using the csa and csb instructions.

PASCAL :
CASE case-expression OF

case-constant-list-1 : statement-1 ;
case-constant-list-2 : statement-2 ;
.
.
case-constant-list-n : statement-n [;]

END

The csa instruction is used if the range of the case-expression value is dense, i.e.
(upperbound − lowerbound) / number_of_cases

is less than the constant DENSITY, defined in the file density.h.

If the range is sparse, a csb instruction is used.

EM :
evaluation case-expression
bra *l1
c1

code statement-1
bra *exit_label

c2
code statement-2
bra *exit_label
.
.

cn
code statement-n
bra *exit_label

.case_descriptor
generation case_descriptor

l1
lae .case_descriptor
csa size of (case-expression)

exit_label

3.3.7. For Statement

PASCAL :
FOR control-variable := initial-value (TO | DOWNTO) final-value DO
statement

The initial-value and final-value are evaluated at the beginning of the loop. If the values are not constant, they
are evaluated once and stored in a temporary.

EM :
load initial-value
load final-value
bgt exit-label (* DOWNTO : blt exit-label *)
load initial-value
l1
store in control-variable
code statement
load control-variable
dup control-variable
load final-value
beq exit_label
inc control-variable (* DOWNTO : dec control-variable *)
bra *l1
exit_label

Note: testing must be done before incrementing(decrementing) the control-variable,
because wraparound could occur, which could lead to an infinite loop.

3.3.8. With Statement

PASCAL :
WITH record-variable-list DO statement

The statement
WITH r1, r2, ..., rn DO statement

is equivalent to
WITH r1 DO

WITH r2 DO
...

WITH rn DO statement

The translation of
WITH r1 DO statement

is
push address of r1
store address in temporary
code statement

An occurrence of a field is translated into:
load temporary
add field-offset

3.4. Procedure and Function Calls

In general, the call
p(a1, a2,, an)

is translated into the sequence:

evaluate an
.
.
evaluate a2
evaluate a1
push localbase
cal $p
pop parameters

i.e. the order of evaluation and binding of the actual-parameters is from right to left. In general, a copy of the
actual-parameter is made when the formal-parameter is a value-parameter. If the formal-parameter is a
variable-parameter, a pointer to the actual-parameter is pushed.

In case of a function call, a lfr is generated, which pushes the function result on top of the stack.

3.5. Register Messages

A register message can be generated to indicate that a local variable is never referenced indirectly. This implies
that a register can be used for a variable. We distinguish the following classes, given in decreasing priority:

d control-variable and final-value of a for-statement
to speed up testing, and execution of the body of the for-statement

d record-variable of a with-statement
to improve the field selection of a record

d remaining local variables and parameters

3.6. Compile-time optimizations

The only optimization that is performed is the evaluation of constant integral expressions. The optimization of
constructs like

if false then statement,
is left to either the peephole optimizer, or a global optimizer.

4. Conformant Arrays

A fifth kind of parameter, besides the value, variable, procedure, and function parameter, is the conformant
array parameter (ISO 6.6.3.7). This parameter, undoubtedly the major addition to Pascal from the compiler
writer’s point of view, has been implemented. With this kind of parameter, the required bounds of the index-
type of an actual parameter are not fixed, but are restricted to a specified range of values. Two types of
conformant array parameters can be distinguished: variable conformant array parameters and value conformant
array parameters.

4.1. Variable conformant array parameters

The treatment of variable conformant array parameters is comparable with the normal variable parameter. Both
have in common that the parameter mechanism used is call by reference.
An example is:

to sort variable length arrays of integers, the following Pascal procedure could be used:

procedure bubblesort(var A : array[low..high : integer] of integer);
var i, j : integer;
begin

for j := high - 1 downto low do
for i := low to j do

if A[i+1] < A[i] then interchange A[i] and A[i+1]
end;

For every actual parameter, the base address of the array is pushed on the stack and for every index-type-
specification, exactly one array descriptor is pushed.

4.2. Value conformant array parameters

The treatment of value conformant array parameters is more complex than its variable counterpart.
An example is:

an unpacked array of characters could be printed as a string with the following program part:

procedure WriteAsString(A : array[low..high : integer] of char);
var i : integer;
begin

for i := low to high do write(A[i]);
end;

The calling procedure pushes the base address of the actual parameter and the array descriptors belonging to it
on the stack. Subsequently the procedure using the conformant array parameter is called. Because it is a call by
value, the called procedure has to create a copy of the actual parameter. This implies that the calling procedure
knows how much space on the stack must be reserved for the parameters. If the actual-parameter is a
conformant array, the called procedure keeps track of the size of the activation record. Hence the restrictions on
the use of value conformant array parameters, as specified in ISO 6.6.3.7.2, are dropped.

A description of the EM code generated by the compiler is:

load the stack adjustment sofar
load base address of array parameter
compute the size in bytes of the array
add this size to the stack adjustment
copy the array
remember the new address of the array

5. Compiler options

There are some options available to control the behaviour of the compiler. Two types of options can be
distinguished: compile-time options and run-time options.

5.1. Compile time options

There are some options that can be set when the compiler is installed. Those options can be found in the file
Parameters. To set a parameter just modify its definition in the file Parameters. The shell script in the file
make.hfiles creates for each parameter a separate .h file. This mechanism is derived from the C compiler in
ACK.

IDFSIZE
The maximum number of characters that are significant in an identifier. This value has to be at least the
value of MINIDFSIZE, defined in the file options.c. A compile-time check is included to see if the
value of MINIDFSIZE is legal. The compiler will not recognize some keywords if IDFSIZE is too
small.

ISTRSIZE, RSTRSIZE
The lexical analyzer uses these two values for the allocation of memory needed to store a string.
ISTRSIZE is the initial number of bytes allocated. RSTRSIZE is the step size used for enlarging the
memory needed.

NUMSIZE
The maximum length of a numeric constant recognized by the lexical analyzer. It is an error if this
length is exceeded.

ERROUT, MAXERR_LINE
Used for error messages. ERROUT defines the file on which the messages are written.
MAXERR_LINE is the maximum number of error messages given per line.

SZ_CHAR, AL_CHAR, etc
The default values of the target machine sizes and alignments. The values can be overruled with the −V
option.

MAXSIZE
This value must be set to the maximum of the values of the target machine sizes. This parameter is used
in overflow detection (see also section 3.2).

DENSITY
This parameter is used to decide what EM instruction has to be generated for a case-statement. If the
range of the index value is sparse, i.e.

(upperbound - lowerbound) / number_of_cases
is more than some threshold (DENSITY) the csb instruction is chosen. If the range is dense a jump table
is generated (csa). This uses more space. Reasonable values are 2, 3 or 4.
Higher values might also be reasonable on machines, which have lots of address space and memory (see
also section 3.3.3).

INP_READ_IN_ONE
Used by the generic input module. It can either be defined or not defined. Defining it has the effect that
files will be read completely into memory using only one read-system call. This should be used only on
machines with lots of memory.

DEBUG
If this parameter is defined some built-in compiler-debugging tools can be used:

d only lexical analyzing is done, if the −l option is given.
d if the −I option is turned on, the allocated number of structures is printed.
d the routine debug can be used to print miscellaneous information.
d the routine PrNode prints a tree of nodes.
d the routine DumpType prints information about a type structure.
d the macro DO_DEBUG(x,y) defined as ((x) && (y)) can be used to perform
several actions.

5.2. Run time options

The run time options can be given in the command line when the compiler is called.
They all have the form: −<character>
Depending on the option, a character string has to be specified. The following options are currently available:

−C The lower case and upper case letters are treated different (ISO 6.1.1).

−u The character ’_’ is treated like a letter, so it is allowed to use the underscore in
identifiers.
Note: identifiers starting with an underscore may cause problems, because

most identifiers in library routines start with an underscore.

−n This option suppresses the generation of register messages.

−r With this option rangechecks are generated where necessary.

−L Do not generate EM lin and fil instructions. These instructions are used only for profiling.

−M<number> Set the number of characters that are significant in an identifier to <number>. The
maximum significant identifier length depends on the constant IDFSIZE, defined in
idfsize.h.

−i<number> With this flag the setsize for a set of integers can be changed. The number must be the
number of bits per set. Default value : (#bits in a word) − 1

−w Suppress warning messages (see also section 2.5).

−V[[w|i|f|p|S][size]?[.alignment]?]*
Option to set the object sizes and alignments on the target machine dynamically. The
objects that can be manipulated are:
w word
i integer
f float
p pointer
S structure
In case of a structure, size is discarded and the alignment is the initial alignment of the
structure. The effective alignment is the least common multiple of alignment and the
alignment of its members. This option has been implemented so that the compiler can be
used as cross compiler.

6. Extensions to Pascal as specified by ISO 7185

ISO 6.1.3: The underscore is treated as a letter when the −u option is turned on (see also section 5.2). This
is implemented to be compatible with Pascal-VU and can be used in identifiers to increase
readability.

ISO 6.1.4: The directive extern can be used in a procedure-declaration or function-declaration to specify
that the procedure-block or function-block corresponding to that declaration is external to the
program-block. This can be used in conjunction with library routines.

ISO 6.1.9: An alternative representation for the following tokens and delimiting characters is recognized:
token alternative token

ˆ @
[(.
] .)

delimiting character alternative delimiting pair of characters

{ (*
} *)

ISO 6.6.3.7.2: A conformant array parameter can be passed as value conformant array parameter without the
restrictions imposed by the standard. The compiler gives a warning. This is implemented to
keep the parameter mechanism orthogonal (see also Chapter 4).

ISO 6.9.3.1: If the value of the argument TotalWidth of the required procedure write is zero or negative, no
characters are written for character, string or boolean type arguments. If the value of the
argument FracDigits of the required procedure write is zero or negative, the fraction and ’.’
character are suppressed for fixed-point arguments.

7. Deviations from the standard

The compiler deviates from the ISO 7185 standard with respect to the following clauses:

ISO 6.1.3: Identifiers may be of any length and all characters of an identifier shall be significant in
distinguishing between them.

The constant IDFSIZE, defined in the file idfsize.h, determines the (maximum)
significant length of an identifier. It can be set at run time with the −M option (see also
section on compiler options).

ISO 6.1.8: There shall be at least one separator between any pair of consecutive tokens made up of
identifiers, word-symbols, labels or unsigned-numbers.

A token separator is not needed when a number is followed by an identifier or a word-
symbol. For example the input sequence, 2then, is recognized as the integer 2 followed
by the keyword then.

ISO 6.2.1: The label-declaration-part shall specify all labels that prefix a statement in the corresponding
statement-part.

The compiler generates a warning if a label is declared but never defined.

ISO 6.2.2: The scope of identifiers and labels should start at the beginning of the block in which these
identifiers or labels are declared.

The compiler, as most other one pass compilers deviates in this respect, because the
scope of variables and labels start at their defining-point.

program deviates;
const

x = 3;
procedure p;
const

y = x;
x = true;

begin end;
begin
end.

In procedure p, the constant y has the integer value 3. This program does not conform
to the standard. In [SAL] a simple algorithm is described for enforcing the scope rules,
it involves numbering all scopes encoutered in the program in order of their opening,
and recording in each identifier table entry the number of the latest scope in which it is
used.

Note: The compiler does not deviate from the standard in the following program:
program conforms;
type

x = real;
procedure p;
type

y = ˆx;
x = boolean;

var
p : y;

begin end;
begin
end.

In procedure p, the variable p is a pointer to boolean.

ISO 6.4.3.2: The standard specifies that any ordinal type is allowed as index-type.

The required type integer is not allowed as index-type, i.e.
ARRAY [integer] OF <component-type> is not permitted.

This could be implemented, but this might cause problems on machines with a small
memory.

ISO 6.4.3.3: The type possessed by the variant-selector, called the tag-type, must be an ordinal type, so the
integer type is permitted. The values denoted by all case-constants shall be distinct and the set
thereof shall be equal to the set of values specified by the tag-type.

Because it is impracticable to enumerate all integers as case-constants, the integer type
is not permitted as tag-type. It would not make a great difference to allow it as tagtype.

ISO 6.8.3.9: The standard specifies that the control-variable of a for-statement is not allowed to be modified
while executing the loop.

Violation of this rule is not detected. An algorithm to implement this rule can be found
in [PCV].

8. Hints to change the standard

We encoutered some difficulties when the compiler was developed. In this chapter some hints are presented to
change the standard, which would make the implementation of the compiler less difficult. The semantics of
Pascal would not be altered by these adaptions.

− Some minor changes in the grammar of Pascal from the user’s point of view, but which make the writing of an
LL(1) parser considerably easier, could be:

field-list : [(fixed-part [variant-part] | variant-part)] .
fixed-part : record-section ; { record-section ; } .
variant-part : case variant-selector of variant ; { variant ; } .

case-statement : case case-index of case-list-element ; { case-list-element ; } end .

− To ease the semantic checking on sets, the principle of qualified sets could be used, every set-constructor must
be preceeded by its type-identifier:

set-constructor : type-identifier [[member-designator { , member-designator }]] .

Example:
t1 = set of 1..5;
t2 = set of integer;

The type of [3, 5] would be ambiguous, but the type of t1[3, 5] not.

− Another problem arises from the fact that a function name can appear in three distinct ’use’ contexts: function
call, assignment of function result and as function parameter.
Example:

program function_name;

function p(x : integer; function y : integer) : integer;
begin .. end;

function f : integer;
begin

f := p(f, f); (*)
end;

begin .. end.

A possible solution in case of a call (also a procedure call) would be to make the (possibly empty) actual-
parameter-list mandatory. The assignment of the function result could be changed in a return statement. Though
this would change the semantics of the program slightly.
The above statement (*) would look like this: return p(f(), f);

− Another extension to the standard could be the implementation of an otherwise clause in a case-statement.
This would behave exactly like the default clause in a switch-statement in C.

9. Testing the compiler

Although it is practically impossible to prove the correctness of a compiler, a systematic method of testing the
compiler is used to increase the confidence that it will work satisfactorily in practice. The first step was to see if
the lexical analysis was performed correctly. For this purpose, the routine LexScan() was used (see also the −l
option). Next we tested the parser generated by LLgen, to see whether correct Pascal programs were accepted
and garbage was dealed with gracefully. The biggest test involved was the validation of the semantic analysis.
Simultaneously we tested the code generation. First some small Pascal test programs were translated and
executed. When these programs work correctly, the Pascal validation suite and a large set of Pascal test
programs were compiled to see whether they behaved in the manner the standard specifies. For more details
about the Pascal validation suite, the reader is referred to [PCV].

10. Comparison with the Pascal-VU compiler

In this chapter, the differences with the Pascal-VU compiler [IM2] are listed. The points enumerated below can
be used as improvements to the compiler (see also Chapter 11).

10.1. Deviations

- large labels
only labels in the closed interval 0..9999 are allowed, as opposed to the Pascal-VU compiler. The
Pascal-VU compiler allows every unsigned integer as label.

- goto
the new compiler conforms to the standard as opposed to the old one. The following program, which
contains an illegal jump to label 1, is accepted by the Pascal-VU compiler.

program illegal_goto(output);
label 1;
var i : integer;
begin

goto 1;
for i := 1 to 10 do
begin

1 : writeln(i);
end;

end.

This program is rejected by the new compiler.

10.2. Extensions

The extensions implemented by the Pascal-VU compiler are listed in Chapter 5 of [IM2].

- separate compilation
the new compiler only accepts programs, not modules.

- assertions
not implemented.

- additional procedures
the procedures halt, mark and release are not available.

- UNIX™ interfacing
the −c option is not implemented.

- double length integers
integer size can be set with the −V option, so the additional type long is not implemented.

10.3. Compiler options

The options implemented by the Pascal-VU compiler are listed in Chapter 7 of [IM2].

The construction "{$....}" is not recognized.

The options: a, c, d, s and t are not available.

The −l option has been changed into the −L option.

The size of reals can be set with the −V option.

11. Improvements to the compiler

In consideration of portability, a restricted option could be implemented. Under this option, the extensions and
warnings should be considered as errors.

The restrictions imposed by the standard on the control variable of a for-statment should be implemented (ISO
6.8.3.9).

To check whether a function returns a valid result, the following algorithm could be used. When a function is
entered a hidden temporary variable of type boolean is created. This variable is initialized with the value false.
The variable is set to true, when an assignment to the function name occurs. On exit of the function a test is
performed on the variable. If the value of the variable is false, a run-time error occurs.
Note: The check has to be done run-time.

The undefined value should be implemented. A problem arises with local variables, for which space on the stack
is allocated. A possible solution would be to generate code for the initialization of the local variables with the
undefined value at the beginning of a procedure or function.
The implementation for the global variables is easy, because bss blocks are used.

Closely related to the last point is the generation of warnings when variables are never used or assigned. This is
not yet implemented.

The error messages could specify more details about the errors occurred, if some additional testing is done.

333333333333333333
™ UNIX is a Trademark of Bell Laboratories.

Every time the compiler detects sets with different base-types, a warning is given. Sometimes this is
superfluous.

program sets(output);
type

week = (sunday, monday, tuesday, wednesday, thursday, friday, saturday);
workweek = monday..friday;

var
s : set of workweek;
day : week;

begin
day := monday;
s := [day]; (* warning *)
day := saturday;
s := [day]; (* warning *)

end.
The new compiler gives two warnings, the first one is redundant.

A nasty point in the compiler is the way the procedures read, readln, write and writeln are handled (see also
section 2.2). They have been added to the grammar. This implies that they can not be redefined as opposed to
the other required procedures and functions. They should be removed from the grammar altogether. This could
imply that more semantic checks have to be performed.

No effort is made to detect possible run-time errors during compilation.
E.g. a : array[1..10] of something, and the array selection a[11] would occur.

Some assistance to implement the improvements mentioned above, can be obtained from [PCV].

12. History & Acknowledgements

History

The purpose of this project was to make a Pascal compiler which should satisfy the conditions of the ISO
standard. The task was considerably simplified, because parts of the Modula-2 compiler were used. This gave
the advantage of increasing the uniformity of the compilers in ACK.
While developing the compiler, a number of errors were detected in the Modula-2 compiler, EM utility modules
and the old Pascal compiler.

Acknowledgements

During the development of the compiler, valuable support was received from a number of persons. In this regard
we owe a debt of gratitude to Fred van Beek, Casper Capel, Rob Dekker, Frank Engel, José Gouweleeuw and
Sonja Keijzer (Jut and Jul !!), Herold Kroon, Martin van Nieuwkerk, Sjaak Schouten, Eric Valk, and Didan
Westra.
Special thanks are reserved for Dick Grune, who introduced us to the field of Compiler Design and who helped
testing the compiler. Ceriel Jacobs, who developed LLgen and the Modula-2 compiler of ACK. Finally we
would like to thank Erik Baalbergen, who had the supervision on this entire project and gave us many valuable
suggestions.

13. References

[ISO] ISO 7185 Specification for Computer Programming Language Pascal, 1982, Acornsoft ISO-PASCAL,
1984

[EM] A.S. Tanenbaum, H. van Staveren, E.G. Keizer and J.W. Stevenson, Description Of A Machine
Architecture for use with Block Structured Languages, Informatica Rapport IR-81, Vrije Universiteit,
Amsterdam, 1983

[C] B.W. Kernighan and D.M. Ritchie, The C Programming Language, Prentice-Hall, 1978

[LL] C.J.H. Jacobs, Some Topics in Parser Generation, Informatica Rapport IR-105, Vrije Universiteit,
Amsterdam, October 1985

[IM2] J.W. Stevenson, Pascal-VU Reference Manual and Unix Manual Pages, Informatica Manual IM-2,
Vrije Universiteit, Amsterdam, 1980

[JEN] K. Jensen and N.Wirth, Pascal User Manual and Report, Springer-Verlag, 1978

[ACK] ACK Manual Pages: ALLOC, ASSERT, EM_CODE, EM_MES, IDF, INPUT, PRINT, STRING,
SYSTEM

[AHO] A.V. Aho, R. Sethi and J.D. Ullman, Compiler Principles, Techniques, and Tools, Addison Wesley,
1985

[LEX] M.E. Lesk, Lex - A Lexical Analyser Generator, Comp. Sci. Tech. Rep. No. 39, Bell Laboratories,
Murray Hill, New Jersey, October 1975

[PCV] B.A. Wichmann and Z.J. Ciechanowicz, Pascal Compiler Validation, John Wiley & Sons, 1983

[SAL] A.H.J. Sale, A Note on Scope, One-Pass Compilers and Pascal, Australian Communications, 1, 1, 80-
82, 1979

Appendix A: ISO-PASCAL grammar

A.1 Lexical tokens

The syntax describes the formation of lexical tokens from characters and the separation of these tokens, and

therefore does not adhere to the same rules as the syntax in A.2.

The lexical tokens used to construct Pascal programs shall be classified into special-symbols, identifiers,

directives, unsigned-numbers, labels and character-strings. The representation of any letter (upper-case or

lower-case, differences of font, etc) occurring anywhere outside of a character-string shall be insignificant in

that occurrence to the meaning of the program.

letter = a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z .

digit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 .

The special symbols are tokens having special meanings and shall be used to delimit the syntactic units of the

language.

special-symbol = + | − | * | / | = | < | > | [|] | . | , | : | ; | ˆ | (|) | <> | <= | >= | := | .. | word-

symbol .

word-symbol = and | array | begin | case | const | div | do | downto | else | end | file | for | function |

goto | if | in | label | mod | nil | not | of | or | packed | procedure | program | record |

repeat | set | then | to | type | until | var | while | with .

Identifiers may be of any length. All characters of an identifier shall be significant. No identifier shall have the

same spelling as any word-symbol.

identifier = letter { letter | digit } .

A directive shall only occur in a procedure-declaration or function-declaration. No directive shall have the same

spelling as any word-symbol.

directive = letter {letter | digit} .

Numbers are given in decimal notation.

unsigned-integer = digit-sequence .

unsigned-real = unsigned-integer . fractional-part [e scale-factor] | unsigned-integer e scale-factor .

digit-sequence = digit {digit} .

fractional-part = digit-sequence .

scale-factor = signed-integer .

signed-integer = [sign] unsigned-integer .

sign = + | − .

Labels shall be digit-sequences and shall be distinguished by their apparent integral values and shall be in the

closed interval 0 to 9999.

label = digit-sequence .

A character-string containing a single string-element shall denote a value of the required char-type. Each

string-character shall denote an implementation- defined value of the required char-type.

character-string = ’ string-element { string-element } ’ .

string-element = apostrophe-image | string-character .

apostrophe-image = ’’ .

string-character = All 7-bits ASCII characters except linefeed (10), vertical tab (11), and new page (12).

The construct:

{ any-sequence-of-characters-and-separations-of-lines- not-containing-right-brace }

shall be a comment if the "{" does not occur within a character-string or within a comment. The substitution of a

space for a comment shall not alter the meaning of a program.

Comments, spaces (except in character-strings), and the separation of consecutive lines shall be considered to be

token separators. Zero or more token separators may occur between any two consecutive tokens, or before the

first token of a program text. No separators shall occur within tokens.

A.2 Grammar

The non-terminal symbol program is the start symbol of the grammar.

actual-parameter : expression | variable-access | procedure-identifier | function-identifier .

actual-parameter-list : (actual-parameter { , actual-parameter }) .

adding-operator : + | − | or .

array-type : array [index-type { , index-type }] of component-type .

array-variable : variable-access .

assignment-statement : (variable-access | function-identifier) := expression .

base-type : ordinal-type .

block : label-declaration-part constant-definition-part type-definition-part variable-declaration-part

procedure-and-function-declaration-part statement-part .

Boolean-expression : expression .

bound-identifier : identifier .

buffer-variable : file-variable ˆ .

case-constant : constant .

case-constant-list : case-constant { , case-constant } .

case-index : expression .

case-list-element : case-constant-list : statement .

case-statement : case case-index of case-list-element { ; case-list-element } [;] end .

component-type : type-denoter .

component-variable : indexed-variable | field-designator .

compound-statement : begin statement-sequence end .

conditional-statement : if-statement | case-statement .

conformant-array-parameter-specification : value-conformant-array-specification |

variable-conformant-array-specification .

conformant-array-schema : packed-conformant-array-schema | unpacked-conformant-array-schema .

constant : [sign] (unsigned-number | constant-identifier) | character-string .

constant-definition : identifier = constant .

constant-definition-part : [const constant-definition ; { constant-definition ; }] .

constant-identifier : identifier .

control-variable : entire-variable .

domain-type : type-identifier .

else-part : else statement .

empty-statement : .

entire-variable : variable-identifier .

enumerated-type : (identifier-list) .

expression : simple-expression [relational-operator simple-expression] .

factor : variable-access | unsigned-constant | bound-identifier | function-designator | set-constructor |

(expression) | not factor .

field-designator : record-variable . field-specifier | field-designator-identifier .

field-designator-identifier : identifier .

field-identifier : identifier .

field-list : [(fixed-part [; variant-part] | variant-part) [;]] .

field-specifier : field-identifier .

file-type : file of component-type .

file-variable : variable-access .

final-value : expression .

fixed-part : record-section { ; record-section } .

for-statement : for control-variable := initial-value (to | downto) final-value do statement .

formal-parameter-list : (formal-parameter-section { ; formal-parameter-section }) .

formal-parameter-section : value-parameter-specification | variable-parameter-specification |

procedural-parameter-specification | functional-parameter-specification |

conformant-array-parameter-specification .

function-block : block .

function-declaration : function-heading ; directive | function-identification ; function-block |

function-heading ; function-block .

function-designator : function-identifier [actual-parameter-list] .

function-heading : function identifier [formal-parameter-list] : result-type .

function-identification : function function-identifier .

function-identifier : identifier .

functional-parameter-specification : function-heading .

goto-statement : goto label .

identified-variable : pointer-variable ˆ .

identifier-list : identifier { , identifier } .

if-statement : if Boolean-expression then statement [else-part] .

index-expression : expression .

index-type : ordinal-type .

index-type-specification : identifier .. identifier : ordinal-type-identifier .

indexed-variable : array-variable [index-expression { , index-expression }] .

initial-value : expression .

label : digit-sequence .

label-declaration-part : [label label { , label } ;] .

member-designator : expression [.. expression] .

multiplying-operator : * | / | div | mod | and .

new-ordinal-type : enumerated-type | subrange-type .

new-pointer-type : ˆ domain-type .

new-structured-type : [packed] unpacked-structured-type .

new-type : new-ordinal-type | new-structured-type | new-pointer-type .

ordinal-type : new-ordinal-type | ordinal-type-identifier .

ordinal-type-identifier : type-identifier .

packed-conformant-array-schema : packed array [index-type-specification] of type-identifier .

pointer-type-identifier : type-identifier .

pointer-variable : variable-access .

procedural-parameter-specification : procedure-heading .

procedure-and-function-declaration-part : { (procedure-declaration | function-declaration) ; } .

procedure-block : block .

procedure-declaration : procedure-heading ; directive | procedure-identification ; procedure-block |

procedure-heading ; procedure-block .

procedure-heading : procedure identifier [formal-parameter-list] .

procedure-identification : procedure procedure-identifier .

procedure-identifier : identifier .

procedure-statement : procedure-identifier ([actual-parameter-list] | read-parameter-list | readln-parameter-list |

write-parameter-list | writeln-parameter-list) .

program : program-heading ; program-block . .

program-block : block .

program-heading : program identifier [(program-parameters)] .

program-parameters : identifier-list .

read-parameter-list : ([file-variable ,] variable-access { , variable-access }) .

readln-parameter-list : [((file-variable | variable-access) { , variable-access })] .

record-section : identifier-list : type-denoter .

record-type : record field-list end .

record-variable : variable-access .

record-variable-list : record-variable { , record-variable } .

relational-operator : = | <> | < | > | <= | >= | in .

repeat-statement : repeat statement-sequence until Boolean-expression .

repetitive-statement : repeat-statement | while-statement | for-statement .

result-type : simple-type-identifier | pointer-type-identifier .

set-constructor : [[member-designator { , member-designator }]] .

set-type : set of base-type .

sign : + | − .

simple-expression : [sign] term { adding-operator term } .

simple-statement : empty-statement | assignment-statement | procedure-statement | goto-statement .

simple-type-identifier : type-identifier .

statement : [label :] (simple-statement | structured-statement) .

statement-part : compound-statement .

statement-sequence : statement { ; statement } .

structured-statement : compound-statement | conditional-statement | repetitive-statement | with-statement .

subrange-type : constant .. constant .

tag-field : identifier .

tag-type : ordinal-type-identifier .

term : factor { multiplying-operator factor } .

type-definition : identifier = type-denoter .

type-definition-part : [type type-definition ; { type-definition ; }] .

type-denoter : type-identifier | new-type .

type-identifier : identifier .

unpacked-conformant-array-schema : array [index-type-specification { ; index-type-specification }] of
(type-identifier | conformant-array-schema) .

unpacked-structured-type : array-type | record-type | set-type | file-type .

unsigned-constant : unsigned-number | character-string | constant-identifier | nil .

unsigned-number : unsigned-integer | unsigned-real .

value-conformant-array-specification : identifier-list : conformant-array-schema .

value-parameter-specification : identifier-list : type-identifier .

variable-access : entire-variable | component-variable | identified-variable | buffer-variable .

variable-conformant-array-specification : var identifier-list : conformant-array-schema .

variable-declaration : identifier-list : type-denoter .

variable-declaration-part : [var variable-declaration ; { variable-declaration ; }] .

variable-identifier : identifier .

variable-parameter-specification : var identifier-list : type-identifier .

variant : case-constant-list : (field-list) .

variant-part : case variant-selector of variant { ; variant } .

variant-selector : [tag-field :] tag-type .

while-statement : while Boolean-expression do statement .

with-statement : with record-variable-list do statement .

write-parameter : expression [: expression [: expression]] .

write-parameter-list : ([file-variable ,] write-parameter { , write-parameter }) .

writeln-parameter-list : [((file-variable | write-parameter) { , write-parameter })] .

Appendix B: Changes to the run time library

Some minor changes in the run time library have been made concerning the external files (i.e. program
arguments). The old compiler reserved space for the file structures of the external files in one hol block. In the
new compiler, every file structure is placed in a separate bss block. This implies that the arguments with which
_ini is called are slightly different. The second argument was the base of the hol block to relocate the buffer
addresses, it is changed into an integer denoting the size of the array passed as third argument. The third
argument was a pointer to an array of integers containing the description of external files, this argument is
changed into a pointer to an array of pointers to file structures.

The differences in the generated EM code for an arbitrary Pascal program are listed below (only the relevant
parts are shown):

program external_files(output,f);
var

f : file of some-type;
.
.

end.

EM code generated by Pascal-VU:
.
.

hol 1088,-2147483648,0 ; space belonging to file structures of the program arguments
.
.
.

.2
con 3, -1, 544, 0 ; description of external files
lxl 0
lae .2
lae 0 ; base of hol block, to relocate buffer addresses
lxa 0
cal $_ini
asp 16
.
.

EM code generated by our compiler:
.
.

f
bss 540,0,0 ; space belonging to file structure of program argument f
output
bss 540,0,0 ; space belonging to file structure of standard output
.
.
.

.2
con 0U4, output, f ; the absence of standard input is denoted by a null pointer
lxl 0
lae .2
loc 3 ; denotes the size of the array of pointers to file structures
lxa 0
cal $_ini
asp 16
.
.

The following files in the run time library have been changed:
pc_file.h

hlt.c
ini.c
opn.c
pentry.c
pexit.c

Appendix C: An example

1 program factorials(input, output);
2 { This program prints factorials }
3
4 const
5 FAC1 = 1;
6 var
7 i : integer;
8
9 function factorial(n : integer) : integer;

10 begin
11 if n = FAC1 then
12 factorial := FAC1
13 else
14 factorial := n * factorial(n-1);
15 end;
16
17 begin
18 write(’Give a number : ’);
19 readln(i);
20 if i < 1 then
21 writeln(’No factorial’)
22 else
23 writeln(factorial(i):1);
24 end.

mes 2,4,4 loc 16
.1 cal $_wrs
rom ’factorials.p\000’ asp 12
i lin 19
bss 4,0,0 lae input

output cal $_rdi
bss 540,0,0 asp 4
input lfr 4
bss 540,0,0 ste i
exp $factorial lae input
pro $factorial, ? cal $_rln
mes 9,4 asp 4
lin 11 lin 20
lol 0 loe i
loc 1 loc 1
cmi 4 cmi 4
teq tlt
zeq *1 zeq *1
lin 12 lin 21
loc 1 .4
stl -4 rom ’No factorial’
bra *2 lae output
1 lae .4
lin 14 loc 12
lol 0 cal $_wrs
lol 0 asp 12
loc 1 lae output
sbi 4 cal $_wln
cal $factorial asp 4
asp 4 bra *2
lfr 4 1
mli 4 lin 23
stl -4 lae output
2 loe i
lin 15 cal $factorial
mes 3,0,4,0,0 asp 4
lol -4 lfr 4
ret 4 loc 1
end 4 cal $_wsi
exp $m_a_i_n asp 12
pro $m_a_i_n, ? lae output
mes 9,0 cal $_wln
fil .1 asp 4
.2 2
con input, output lin 24
lxl 0 loc 0
lae .2 cal $_hlt
loc 2 end 0
lxa 0 mes 4,24,’factorials.p\000’
cal $_ini
asp 16
lin 18
.3
rom ’Give a number : ’
lae output
lae .3

